52 research outputs found

    The KGP model of Agency for Decision Making in e-Negotiation

    No full text
    We investigate the suitabilility of the KGP (Knowledge, Goals, Plan) model of agency for autonomous decision making in dynamically changing environments. In particular, we illustrate how this model supports the decision making process of an agent at different levels, while the agents generates goals, plans for these goals, and selects actions to achieve the goals that it has planned for. We also exemplify the approach by illustrating how the model and a prototype implementation in the PROSOCS platform can be adopted to support e-negotiation, using a particular kind of internet auctions as a case study

    CRAFTING THE MIND OF PROSOCS AGENTS

    Get PDF
    PROSOCS agents are software agents that are built according to the KGP model of agency. KGP is used as a model for the mind of the agent, so that the agent can act autonomously using a collection of logic theories, providing the mind's reasoning functionalities. The behavior of the agent is controlled by a cycle theory that specifies the agent's preferred patterns of operation. The implementation of the mind's generic functionality in PROSOCS is worked out in such a way so it can be instantiated by the platform for different agents across applications. In this context, the development of a concrete example illustrates how an agent developer might program the generic functionality of the mind for a simple application. 20 2-4 105 131 Cited By :1

    Narrative based Postdictive Reasoning for Cognitive Robotics

    Full text link
    Making sense of incomplete and conflicting narrative knowledge in the presence of abnormalities, unobservable processes, and other real world considerations is a challenge and crucial requirement for cognitive robotics systems. An added challenge, even when suitably specialised action languages and reasoning systems exist, is practical integration and application within large-scale robot control frameworks. In the backdrop of an autonomous wheelchair robot control task, we report on application-driven work to realise postdiction triggered abnormality detection and re-planning for real-time robot control: (a) Narrative-based knowledge about the environment is obtained via a larger smart environment framework; and (b) abnormalities are postdicted from stable-models of an answer-set program corresponding to the robot's epistemic model. The overall reasoning is performed in the context of an approximate epistemic action theory based planner implemented via a translation to answer-set programming.Comment: Commonsense Reasoning Symposium, Ayia Napa, Cyprus, 201

    An Agent Architecture for Concurrent Bilateral Negotiations

    Get PDF
    Abstract. We present an architecture that makes use of symbolic decision-making to support agents participating in concurrent bilateral negotiations. The architecture is a revised version of previous work with the KGP model [23, 12], which we specialise with knowledge about the agent’s self, the negotiation opponents and the environment. Our work combines the specification of domain-independent decision-making with a new protocol for concurrent negotiation that revisits the well-known alternating offers protocol [22]. We show how the decision-making can be specialised to represent the agent’s strategies, utilities and prefer-ences using a Prolog-like meta-program. The work prepares the ground for supporting decision-making in concurrent bilateral negotiations that is more lightweight than previous work and contributes towards a fully developed model of the architecture

    Application of Hybrid Agents to Smart Energy Management of a Prosumer Node

    Get PDF
    We outline a solution to the problem of intelligent control of energy consumption of a smart building system by a prosumer planning agent that acts on the base of the knowledge of the system state and of a prediction of future states. Predictions are obtained by using a synthetic model of the system as obtained with a machine learning approach. We present case studies simulations implementing different instantiations of agents that control an air conditioner according to temperature set points dynamically chosen by the user. The agents are able of energy saving while trying to keep indoor temperature within a given comfort interval

    SAGE: A Logical Agent-Based Environment Monitoring and Control System

    Full text link
    • …
    corecore