
An Agent Architecture for Concurrent Bilateral
Negotiations

Bedour Alrayes and Kostas Stathis

Computer Science, Royal Holloway, University of London, Egham Hill,
Egham TW20 0EX, UK

{B.M.Alrayes,Kostas.Stathis}@cs.rhul.ac.uk,
URL: http://www.cs.rhul.ac.uk

Abstract. We present an architecture that makes use of symbolic
decision-making to support agents participating in concurrent bilateral
negotiations. The architecture is a revised version of previous work with
the KGP model [23, 12], which we specialise with knowledge about the
agent’s self, the negotiation opponents and the environment. Our work
combines the specification of domain-independent decision-making with
a new protocol for concurrent negotiation that revisits the well-known
alternating offers protocol [22]. We show how the decision-making can
be specialised to represent the agent’s strategies, utilities and prefer-
ences using a Prolog-like meta-program. The work prepares the ground
for supporting decision-making in concurrent bilateral negotiations that
is more lightweight than previous work and contributes towards a fully
developed model of the architecture.

Key words: Negotiation architectures, Interaction Protocol, e-Markets

1 Introduction

Electronic marketplaces (e-marketplaces or e-markets) are typically construed
as inter-organizational information systems that allow participating buyers and
sellers to exchange information about prices and product offerings. The orga-
nization operating an e-marketplace is normally referred to as an intermediary,
which may be a market participant - a buyer or seller, an independent third
party, or a multi-firm consortium [6].

E-marketplaces provide an electronic, or online, method to facilitate transac-
tions between buyers and sellers, and will typically support all of the steps in the
entire order fulfilment process. In recent years, we have witnessed a huge number
of successful e-marketplaces on the Web, such as E-Bay, Amazon, or Gumtree.
E-markets of this kind have become popular because they support mechanisms
such as advertising, buying/selling, and paying for goods online, thus providing
an efficient and convenient way to perform commercial activities on the Web.

However, one problem with the existing e-marketplaces is that a market par-
ticipant must repeatedly be online in order to follow the progress of an activity
such as buying a product, especially if such a product requires bargaining. In

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28905275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
{B.M.Alrayes, Kostas.Stathis}@cs.rhul.ac.uk

2 B. Alrayes and K. Stathis

addition, the duration of some market mechanisms (e.g. auctions) can be long,
so e-marketplace activities can often become tedious and tiring for a participant.
What is worse, buyers and sellers come and go, they have different goals and
preferences. Thus pursuing best deals in an e-marketplace requires from partic-
ipants to engage in multiple, possibly conflicting, activities at the same time,
sometimes in different e-marketplaces.

To deal with the dynamic and complex environment that e-marketplaces give
rise to, we follow a multi-agent systems approach [24] whereby agents negotiate
bilaterally with other agents on behalf of their users. The idea here is that
agents can satisfy user preferences by isolating emotions and feelings when they
negotiate [11] as well as save users time. In this context, the issue becomes how to
build models that support such agents to engage in multiple and dynamic market
environments concurrently, take accountable decisions in these environments,
and produce results that are approved by the users they represent.

We revisit previous work with the KGP model [23] applied to decision mak-
ing [12] to equip it for decision-making in multiple and concurrent negotiations
as required by an agent’s participation in multiple markets. We represent mar-
kets explicitly via the introduction of an environment model, we profile other
participating agents by introducing an opponents’ model, and we also keep a
representation of self [5]; none of these models were available in [23]. The focus
of this paper is to integrate the models of the environment, the opponents and
self in a revised agent-architecture to aid the symbolic representation of decision
making in negotiations. Our longer term goal involves how to support an agent
wishing to acquire a product decide first in which market to buy it and then
what offers to make to a seller at different stages of the negotiation.

The paper is organised as follows. Section 2 is a brief overview of negotiation
and decision-making. In Section 3 we present our agent architecture. Section 4
is a discussion of the protocol. The skeleton of decision making is discussed in
Section 5. We conclude with Section 6.

2 Negotiation and Decision Making

Negotiation is the process of agents communicating with one another in order
to reach agreements or solve conflicts on matters of common interest. As in [10],
the negotiation process is like bargaining by which a joint decision is made by
two parties. The parties first verbalise contradictory demands and then move
towards agreements. Negotiation of this kind has recently gained a lot of at-
tention in multi-agent systems, especially in e-commerce [23] but also in other
application areas too, for instance, service selection and composition [7], vir-
tual organisations [18], supply chain [13, 14, 15], service-oriented [19] and cloud
computing [9].

To enable multiple agents participate in the negotiation process we assume
a negotiation protocol that is often construed as the rules of encounter [21]
between the participants. Such a protocol states who can say what, to whom
and at what time. Given a protocol, an agent strategy then defines the model

An Agent Architecture for Concurrent Bilateral Negotiations 3

that the individual participants apply to act in line with the protocol in order
to achieve their negotiation objectives. However, in our setting it is not possible
to pre-compute an optimal negotiation strategy at design time, as in classical
mechanism design. Rather the agents need to adopt a heuristic and satisfying
approach for their strategy.

As argued in [10], when the assumptions of classical mechanism design do
not apply, we need to seek to develop a distributed approach where solutions are
sought when agents do not know the other player’s preferences for negotiation
outcomes, their reservation values, or any other resource constraints. Also, agents
are computationally bounded in both time and resources. Moreover, agents may
engage in a multi-criteria decision problem whose interactions follow the rules
of an alternating sequential protocol in which the agents take turns to make
offers and counter offers [22]. This protocol terminates when the agents agree or
when one of them withdraws from the negotiation. In the most complex form,
the negotiation is conducted concurrently via a number of bilateral negotiations
rather than sequentially [10]. Here the agent may be required to apply different
strategies for different opponents in order to achieve its goals with the advantage
of overcoming slowness of human negotiation.

Unlike [10], however, we want to develop a heuristic approach that combines
efficient reasoning techniques and approximate decision models to develop nego-
tiating agents. We look at an agent architecture that interprets the negotiation
process as consisting of three main stages: initial, middle and final. In the initial
phase, planning and preparation for the negotiation is taking place. The goal of
negotiation is set by the agent’s user in the initial phase and consists of speci-
fying the required product and its properties, such as price range and deadline.
In the middle phase, the actual negotiation takes place, which includes deciding
the agent’s offers, evaluating the opponent offers, modelling the environment
and/or opponents’ behaviour changes, and measuring the performance of the
negotiating position. In this phase, a number of questions arise: what changes
should the buyer take into consideration in order to maximise its negotiation
outcome? How it will behave in the light of these changes? In the final phase,
the negotiation agreement is implemented.

3 Agent Architecture

To specify our problem, a negotiating agent architecture must be presented.
In brief, there are two types of architecture. The first is an agent architecture
that provides a clear demonstration of the agent structure without declaring
how the agent behaves during negotiation because the agents are autonomous
in nature [26]. The second is an architecture that combines both agent structure
and behaviour [5]. The agent’s behaviour addresses the process of deciding what
actions to perform at each stage.

In Figure 1, we develop an agent architecture with four components: Physical
Capabilities, Domain Knowledge, Current State, and Cognitive Capabilities. The
following is a brief description for each component:

4 B. Alrayes and K. Stathis

Fig. 1. Architecture of negotiating agent I that is interacting concurrently in different
sub-environments E1, E2, . . . , Ek with opponents O1, O2, . . . On.

The Domain Knowledge represents generic and dynamically changing knowl-
edge about the negotiating application at hand. It consists of five subcompo-
nents: a Strategy Model detailing how the agent selects actions in the applica-
tion domain, a Goal Model outlining which goals the agent can achieve and how
they can be achieved using the strategies, an Environment Model representing
knowledge about classes of different types of environments and the protocols
they require, an Opponent Model detailing classes of different opponents and a
Self Model representing information about the agent itself and its preferences.

The Current State contains instances of the on-going negotiations in terms
of the participants for each negotiation, the protocol used for each negotiation,
and the progress made in these so far.

The Physical Capabilities situate the agent in an environment by connecting
the agent’s sensors and effectors to its internal state. It consists of two sub-
components: a Sensing capability that captures environment information via the
sensors and an Action Execution capability that performs the actions in the envi-
ronment via the actuators. Both capabilities operate on the History of the agent,
another component that holds the experience of the agent represented as a series
of events that have happened, either in the form of observations (events from the
Sensing capability) or actions (events from the Action Execution capability).

The Cognitive Capabilities allow the agent to reason about the negotiation
and take decisions. This component consists of three subcomponents: Deci-

An Agent Architecture for Concurrent Bilateral Negotiations 5

sion Making is responsible for evaluating the Current State, and uses Domain
Knowledge to decide what to do next, Knowledge Revision updates the Domain
Knowledge component either through simple revisions or through learning over
time, and Temporal Reasoning supporting changes in the Domain Knowledge
due to events happening in the History of the agent.

Finally, the Control component details how the capabilities are being invoked
and under which circumstances, represented by the outer container and the
arrows in Figure 1. The typical control cycle is an instance of the more general
framework described in [16]. It involves the agent sensing an event from the
environment, updates its history, which in turn causes a revision of the knowledge
and the current state, then the agent makes a decision to act, and the action is
executed in the environment and recorded in the history.

4 Concurrent Alternating Offers Protocol

We study a practical concurrent negotiation setting where a buyer agent en-
gages in multiple bilateral negotiations in order to acquire a good. In doing so
we experimented with the alternating offers protocol [22] due to its simplicity
and wide use. As shown in Figure 2, in this protocol a buyer and a seller take
turns to negotiate with possible actions: offer, accept and reject. The negotiation
terminates either because the agreement is reached (buyer/seller accept) or the
negotiation has terminated (buyer/seller reach their deadlines).

Fig. 2. Alternating Offer State Dia-
gram

Fig. 3. Concurrent Alternating Offers
State Diagram

However, the alternating offers protocol is not sufficient to handle the com-
plexity of concurrent negotiation due its limited actions. In Figure 3, we extended

6 B. Alrayes and K. Stathis

the protocol allowing for: offer, accept, commit, de-commit and exit. Commit
provides the buyer with opportunity to hold a preferred offer for a certain time
until they find a better one, reflecting what happens in practice. If an agent
(buyer/seller) finds a better agreement then it can de-commit from committed
offer(s). If an agent reaches its deadline, it will accept one committed offer, thus
an agreement is reached. The agent may maintain a number of committed offers
at the same time. However, the de-commitment process is subject to a penalty
that asserts fairness by avoiding unnecessary de-commitments.

There have been two previous attempts to extend the alternating offers pro-
tocol. In [2], confirm action is presented, which comes after an accept; a buyer
cannot de-commit from confirmed offers. In [25], a concurrent protocol is pro-
posed but does not distinguish between the commitment and agreement actions
(both are represented by confirm). In our protocol, we have commit and accept
instead. In addition, de-commitment in [25] happens after the agreement has
been made, which can be inefficient in real time applications. In contrast, the
de-commitment in our protocol occurs before the agreement is finalized.

5 The Skeleton of Decision Making

To test our negotiation protocol we study the development of agent strategies
with emphasis on the strategy of a buyer agent in a multiple market setting.
Existing literature (e.g. [3, 20, 25]) provides answers only on when to offer or
accept and what to offer, since the protocol used does not allow for concurrency.
In addition, offers are computed using an opponent’s model but ignore both the
environmental and self models [20, 25], while some work assumes complete and
certain information about the negotiation environment and the opponents [20].
In most approaches the agent strategy is an isolated component without clear
illustration of how the model is designed and how different component interact
with each other [3, 20, 25]. Consequently, the produced offers are inadequate for
our purposes. To overcome these shortcomings, in Section 5.1 we developed a
heuristic negotiation strategy and demonstrate an example run in Section 5.2.

5.1 Representation Framework

We represent the state of an agent during negotiation as a temporal logic pro-
gram. We specify the rules of such a program in Prolog, which we assume the
reader is familiar with. Prolog uses the convention that a constant is an iden-
tifier starting with a lower-case letter, while a variable is an identifier starting
with a upper-case letter. A constant stands for a specific entity, and different
constants stand for different entities. On the other hand, a variable can stand for
any entity, and different variables can stand for the same entity. The predicate
name must be a constant, while each argument can either be a constant or a
variable. As Prolog program can be used to answer queries, or to achieve goals,
the prompt ”?-” denotes a query whose truth will be judged by the program.

An Agent Architecture for Concurrent Bilateral Negotiations 7

The temporal part of the logic is represented using the Event Calculus
(EC) [17], a logical language for reasoning about actions and their effects. We
will use a dialect of the EC based on temporal variables known as multi-valued
fluents due to the fact that these variables can take different values at different
times. At a time T a fluent is represented in the form F=V to denote that it
holds at T that F has value V [1]. For instance, to query that the initial price of
specific labtop, say laptop12, costs 1200 at the current time 15, we write:

?- holds_at(initial_price(labtop12) = 1200, 15).

The state of the agent will generally contain many other fluents to represent in-
formation about negotiation threads, information about other agents and knowl-
edge about the environment.

From a representation of state as the one above, we develop a strategy as an
action selection policy whose specification is defined by Prolog rules of the form:

select(Thread, Action, T):- Conditions [T].

Such rules state that given a negotiation Thread that the agent is engaged in at
time T, the Action is selected if the Conditions hold at T. For example, the rule
below shows how the agent exits a negotiation thread if the agent’s deadline for
the Thread has passed:

select(Thread, exit, T):-

holds_at(self_deadline(Thread, Td)=true, T), T > Td.

Our model allows the agent to make decisions using utilities over actions. The
top-level decision process finds the most promising Thread in the current time
T, generates all the Options that the agent is capable of performing at this time,
evaluates the options and returns the one with the highest utility:

decide(in(Thread, Action), T):-

promising(Thread, T),

generate(Thread, Options, T),

evaluate(Thread, Options, Evaluation, T),

return(Thread, Evaluation, Action, T).

The way we measure that a Thread is promising at time T is by measuring the
eagerness of the user for obtaining a negotiation item and how well the opponent
has behaved during negotiation. Lack of space does not allow us to explain in
detail how these concepts are formulated, however, we plan to elaborate them
in our future work. We discuss next how we generate all the options within the
most promising Thread as shown below:

generate(Thread, Options, T):-

findall(Option, select(Thread, Option, T), Options).

findall/3 is a Prolog primitive that finds every Option that can be selected by
the agent in the Thread and storing it in a list of Options to be returned.

Once generated, the Options are evaluated by the program:

8 B. Alrayes and K. Stathis

evaluate(_, [], [], _).

evaluate(Thread, [Option|Options], [(Option,Util)|Pairs], T):-

utility(Thread, Option, Util, T),

evaluate(Thread, Options, Pairs, T).

The first clause defines the termination conditions of the evaluation. The under-
score sign ’ ’ indicates that we do not care about a variable. The second clause
of the evaluation defines the main procedure that computes for each Option a
utility Util. The result returned is a list of pairs (Option, Util). A utility
Util is obtained via a dynamic domain-specific function evaluated at run-time.
For example, we calculate the utility of an offer act as:

utility(Thread, offer(Price), Utility, T):-

holds_at(product(Thread, Product)=true, T),

holds_at(initial_price(Thread, Product)=IP, T),

holds_at(reservation_price(Thread, Product)=RP, T),

Utility is (RP-Prics)/(RP-IP).

The preference process of the agent then returns the option with highest utility,
once it orders the options in increasing order:

return(Thread, Evaluation, Action, T):-

order(Evaluation, Ordered),

choice(Thread, Ordered, Action, T).

choice(_, [(Option,_)|_], Option, _).

Other definitions for choice/4 are possible, to deal with options having the same
utility, but discussion on this issue is beyond the scope of the paper.

Table 1. Observations, deliberations and decisions of buyer during a negotiation.

Time Observation Deliberation Decision

t1 seller1 & seller2. Make offer to all visible sellers. Offer(700)
t2 seller1 offers 950.
t3 seller2 offers 920.
t4 Active threads: seller1, seller2.

Options for selected thread seller1:
[offer(750), exit, commit, accept].
Utilities for seller1: [(offer(750), 0.8),
(exit,0.5), (commit,0.6),(accept,0.1)].
Highest Utility Action: offer(750). Offer(750) to seller1.

5.2 Example Run

We have prototyped a small agent market in the GOLEM platform [8], which
acts as a proof-of-concept of our architecture. GOLEM supports experimenting

An Agent Architecture for Concurrent Bilateral Negotiations 9

with Prolog agents like ours and endows them with additional features such
as agent communication and interoperability. We have focused on how a user
specifies an item to be bought by a buyer agent. Table 1 illustrates how the
buyer agent interacts with sellers in the market in order to purchase a laptop.
The scenario is presented from a buyer’s perspective and assumes the user has
specified that (a) the laptop’s price to be in the range [700, 900] and (b) the
maximum negotiation duration to be 5 minutes. At time t1, buyer is negotiating
concurrently with seller1 and seller2. At time t2, seller1 sends a counteroffer
to buyer while at time t3, seller2 sends back an offer to buyer. In t4, buyer will
follow the skeleton strategy in section 5.1 to select the best action.

6 Conclusion and Future Work

We have outlined the components of an agent architecture to support the de-
ployment of negotiating agents participating in negotiations of multiple elec-
tronic markets. The architecture is influenced from previous work with the KGP
model [23] revisited here to contain an explicit representation of environment,
opponent, and self models for the purposes of negotiation. The newly proposed
model also provides a light version of the cognitive capabilities of the agent to
aid decision making in multiple concurrent negotiations for which we have pro-
vided a protocol. We have also described the skeleton of the decision making
capability and we have shown how it links to utilities and preferences.

Future work involves developing the heuristic negotiation strategy that in-
volves the environment, opponent and self models to decide the market to nego-
tiate in, what, how, and when to offer, and whether to accept or exit. Finally, we
will also develop a test bed [4] to compare our agent’s performance in negotiation
with other negotiating agents (e.g. [3, 20, 25])).

References

1. A. Artikis, M. Sergot, and J. Pitt. Specifying norm-governed computational soci-
eties. In ACM Trans. Comput. Logic, 10(1):1-42, 2009.

2. B. An, N. Gatti, and V. Lesser. Extending alternating-offers bargaining in one-to-
many and many-to-many settings. In Proceedings of the 2009 IEEE/WIC/ACM
International Joint Conference on Web Intelligence and Intelligent Agent Technol-
ogy - Volume 02, WI-IAT ’09, pages 423–426, Washington, DC, USA, 2009.

3. B. An, V. Lesser, and K. M. Sim. Strategic agents for multi-resource negotiation.
Journal of Autonomous Agents and Multi-Agent Systems, 2011.

4. S. Bromuri and K.Stathis. Distributed agent environments in the Ambient Event
Calculus. DEBS 2009, ACM. NY, USA, 2009.

5. R. Ashri, I. Rahwan, and M. Luck. Architectures for negotiating agents. In Proceed-
ings of the 3rd Central and Eastern European conference on Multi-agent systems,
CEEMAS’03, pages 136–146, Berlin, Heidelberg, 2003.

6. J. Y. Bakos. A strategic analysis of electronic marketplaces. MIS Quarterly,
15(3):pp. 295–310, 1991.

10 B. Alrayes and K. Stathis

7. S. Bromuri, V. Urovi, M. Morge, K. Stathis, and F. Toni. A multi-agent system
for service discovery, selection and negotiation. In AAMAS 2009, 1395–1396, 2009.

8. S. Bromuri and K. Stathis. Situating Cognitive Agents in GOLEM. EEMMAS’07,
115-134, Springer, 2007.

9. R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Computer Systems, 25(6):599 – 616, 2009.

10. P. Faratin, C. Sierra, and N. R. Jennings. Using similarity criteria to make issue
trade-offs in automated negotiations. Artificial Intelligence, 142:205–237, 2002.

11. R. Fisher and W. L. Ury. Getting to Yes: Negotiating Agreement Without Giving
In. Penguin (Non-Classics), 2nd edition edition, Dec. 1991.

12. J. Forth, K. Stathis, and F. Toni. Decision making with a KGP agent system.
Journal of Decision Systems, 15(2-3):241–266, 2006.

13. J.E. Hernández, J. Mula, R. Poler, and A.C. Lyons. Collaborative Planning in
Multi-tier Supply Chains Supported by a Negotiation-Based Mechanism and Multi-
agent System. Group Decision and Negotiation, 1-35, 2013.

14. J.E. Hernández, A.C. Lyons, J. Mula, R. Poler, and H.S. Ismail. Supporting the
collaborative decision-making process in an automotive supply chain with a multi-
agent system. Production Planning & Control, 2013.

15. J.E. Hernández, A.C. Lyons, R. Poler, J. Mula, and R. Goncalves. A reference
architecture for the collaborative planning modelling process in multi-tier supply
chain networks: a Zachman-based approach. Production Planning & Control, 2013.

16. A. Kakas. P. Mancarella, F. Sadri, K. Stathis and F. Toni. Declarative Agent
Control. CLIMA 2004, pages 96–110, Springer, Lecture Notes in Computer Science,
vol 3487, 2005.

17. R. Kowalski and M. Sergot. A logic-based calculus of events. New Gen. Comput.,
4:67–95, January 1986.

18. J. McGinnis, K. Stathis, and F. Toni. A formal framework of virtual organisations
as agent societies. In FAVO, pages 1–14, 2009.

19. M. Morge, J. McGinnis, S. Bromuri, F. Toni, P. Mancarella, K. Stathis. Toward
a modular architecture of argumentative agents to compose services. In Proc. of
EUMAS, 2007.

20. T. Nguyen and N. R. Jennings. Coordinating multiple concurrent negotiations.
In 3rd International Conference on Autonomous Agents and Multi-Agent Systems,
pages 1064–1071, 2004.

21. J. S. Rosenschein and G. Zlotkin. Rules of encounter: designing conventions for
automated negotiation among computers. MIT Press, Cambridge, MA, USA, 1994.

22. A. Rubinstein. Perfect equilibrium in a bargaining model. Econometrica, 50(1):pp.
97–109.

23. K. Stathis and F. Toni. The KGP model of agency for decision making in e-
negotiation. In Joint-Workshop on Decision Support Systems, Experimental Eco-
nomics E-Participation, June 2005.

24. P. West, D. Ariely, S. Bellman, E. Bradlow, J. Huber, E. Johnson, B. Kahn, J. Lit-
tle, and D. Schkade. Agents to the rescue? Marketing Letters, 10(3):285–300,
1999.

25. C. R. Williams, V. Robu, E. H. Gerding, and N. R. Jennings. Negotiating concur-
rently with unknown opponents in complex, real-time domains. In 20th European
Conference on Artificial Intelligence, volume 242, pages 834–839, August 2012.

26. M. Witkowski, K. Stathis. A Dialectic Architecture for Computational Autonomy.
Agents and Computational Autonomy 2003. pp 261-274. Springer, 2003.

	An Agent Architecture for Concurrent Bilateral Negotiations
	Bedour Alrayes and Kostas Stathis
	Introduction
	Negotiation and Decision Making
	Agent Architecture
	Concurrent Alternating Offers Protocol
	The Skeleton of Decision Making
	Representation Framework
	Example Run

	Conclusion and Future Work
	References

