17,314 research outputs found

    A Service-oriented Architecture for Ambient-Assisted Living

    Get PDF
    Ambient-Assisted Living (AAL) is currently an important research and development area, mainly due to the rapidly aging society, the increasing cost of health care, and the growing importance that individuals place on living independently. The general goal of AAL solutions is to apply ambient-assisted intelligence to enable people with specific demands (e.g. handicapped or elderly) to live in their preferred environment longer by tools (i.e. smart objects, mobile and wearable sensors, intelligent devices) being sensitive and responsive to the presence of people and their actions. The research describes the design and development of a novel service-oriented system architecture where different smart objects and sensors are combined to offer ambient-assisted living intelligence to older people. The design stage is driven by a user-centred approach to define an interoperable architecture and human-oriented principles to create usable products and well-accepted services. Such architecture has been realized in the context of an Italian research project funded by the Marche Region and promoted by INRCA (National Institute on Health and Science of Aging) in the framework of smart home for active ageing and ambient assisted living. The result is an interoperable and flexible platform that allows creating user-centred services for independent living

    Events of daily living classification on an ambient assisted living environment

    Get PDF
    Dissertação de mestrado em Engenharia Eletrónica Industrial e ComputadoresPopulation ageing is a global demographic challenge and countries all around the world are facing significant pressure on their health and social care systems in order to mitigate the effects of it. The emerging social aspect introduced some crucial challenges to society and greater demands on the actual health care sector, which led to the emergence and increased integration of agefriendly innovative welfare technological-based care services for safe and independent ageing, including the assisted living technologies based on Ambient Intelligence (AmI) paradigm and Pervasive HealthCare. The Ambient Assisted Living (AAL) systems intend to provide caregivers with a detailed overview of their Events of Daily Living (EDL), which constitutes a clinical criteria to evaluate activity limitations. This dissertation addresses these challenges and contributes to the Ambient Assisted Living research, by means of a holistic solution composed of a beyond the state-of-the-art AAL technologies, representing a novel approach to assist in the investigation and on the modeling of a subset of Events of Daily Living (EDL), for sustaining independent living and a continual naturalistic assessment of health. The investigation was focused on 1) developing a multisensorial pervasive Research Data Acquistion (RDA) Platform with embedded Ambient Intelligence (AmI), 2) COTS to verify their validity and reliability for healthcare applications. The proposed solution has been thoroughly evaluated in the Ambient Assisted Living Laboratory that showed its effectiveness classifying EDL through the application of the AAL paradigm in the real world.O envelhecimento populacional é um desafio demográfico global e os países em todo o mundo estão sob com enorme pressão nos seus sistemas de saúde a fim de mitigar os efeitos que poderão advir. O aspecto social emergente introduziu alguns desafios cruciais para a sociedade e uma maior sobrecarga no setor de saúde, o que levou ao surgimento e aumento da integração de serviços inovadores de assistência social, de modo a que haja um envelhecimento seguro e independente, incluindo as tecnologias de assistência à vida com base no paradigma de Ambient Intelligence (AmI) e no Pervasive HealthCare, os sistemas de Ambient Assisted Living (AAL). Eles pretendem fornecer aos profissionais de saúde uma visão detalhada de seu Events of Daily Living (EDL), que constitui um critério clínico para avaliar as limitações da atividade. Para enfrentar estes desafios, esta dissertação contribui para a pesquisa na área de Ambient Assisted Living, por meio de uma solução holística composta por uma tecnologia além das tecnologias state-of-the-art, representando uma nova abordagem para auxiliar na investigação e na modelação de um subconjunto de Events of Daily Living (EDL), para sustentar uma vida independente e uma avaliação naturalística contínua da saúde. A investigação foi focada em 1) desenvolver uma plataforma multisensorial pervasiva Research Data Acquistion (RDA) com Ambient Intelligence (AmI), 2) COTS para verificar a sua validade e fiabilidade para aplicações de assistência médica. A solução proposta foi avaliada no Ambient Assisted Living Laboratory, que mostrou bastante eficácia ao classificar EDL através da aplicação do paradigma AAL no mundo real

    Intentions: a confident-based interaction design for smart spaces

    Get PDF
    The paradigm of ubiquitous computing has become a reference for the design of Smart Spaces. Current trends in Ambient Intelligence are increasingly related to the scope of Internet of Things. This paradigm has the potential to support cost-effective solutions in the fields of telecare, e-health and Ambient Assisted Living. Nevertheless, ubiquitous computing does not provide end users with a role for proactive interactions with the environment. Thus, the deployment of smart health care services at a private space like the home is still unsolved. This PhD dissertation aims to define a person-environment interaction model to foster acceptability and users confidence in private spaces by applying the concept of user-centred security and the human performance model of seven stages of action

    Distributed Computing and Monitoring Technologies for Older Patients

    Get PDF
    This book summarizes various approaches for the automatic detection of health threats to older patients at home living alone. The text begins by briefly describing those who would most benefit from healthcare supervision. The book then summarizes possible scenarios for monitoring an older patient at home, deriving the common functional requirements for monitoring technology. Next, the work identifies the state of the art of technological monitoring approaches that are practically applicable to geriatric patients. A survey is presented on a range of such interdisciplinary fields as smart homes, telemonitoring, ambient intelligence, ambient assisted living, gerontechnology, and aging-in-place technology. The book discusses relevant experimental studies, highlighting the application of sensor fusion, signal processing and machine learning techniques. Finally, the text discusses future challenges, offering a number of suggestions for further research directions

    Ubiquitous Computing and Ambient Intelligence—UCAmI

    Get PDF
    The Ubiquitous Computing (UC) idea envisioned by Weiser in 1991 [1] has recently evolved to a more general paradigm known as Ambient Intelligence (AmI) that represents a new generation of user-centred computing environments and systems. These solutions aim to find new ways to better integrate information technology into everyday life devices and activities. AmI environments are integrated by several autonomous computational devices of modern life ranging from consumer electronics to mobile phones. Ideally, people in an AmI environment will not notice these devices, but will benefit from the services these solutions provide them. Such devices are aware of the people present in those environments by reacting to their gestures, actions, and context [2]. Recently the interest in AmI environments has grown considerably due to new challenges posed by society’s demand for highly innovative services, such as smart environments, Ambient Assisted Living (AAL), e-Health, Internet of Things, and intelligent systems, among others.The Ubiquitous Computing (UC) idea envisioned by Weiser in 1991 [1] has recently evolved to a more general paradigm known as Ambient Intelligence (AmI) that represents a new generation of user-centred computing environments and systems. These solutions aim to find new ways to better integrate information technology into everyday life devices and activities. AmI environments are integrated by several autonomous computational devices of modern life ranging from consumer electronics to mobile phones. Ideally, people in an AmI environment will not notice these devices, but will benefit from the services these solutions provide them. Such devices are aware of the people present in those environments by reacting to their gestures, actions, and context [2]. Recently the interest in AmI environments has grown considerably due to new challenges posed by society’s demand for highly innovative services, such as smart environments, Ambient Assisted Living (AAL), e-Health, Internet of Things, and intelligent systems, among others

    Assessing vulnerabilities in IoT-based ambient assisted living systems

    Get PDF
    Ambient Assisted Living systems aim at providing automated support to humans with special needs. Smart Homes equipped with Internet of Things infrastructure supporting the development of Ambient Intelligence which can look after humans is being widely investigated worldwide. As any IT based system, these have strengths and also weaknesses. One dimension of these systems developers want to strengthen is security, eliminating or at least reducing as much as possible potential threats. The motivation is clear, as these systems gather sensitive information about the health of an individual there is potential for harm if that information is accessed and used by the wrong person. This chapter starts by providing an analysis of stakeholders in this area. Then explains the IoT infrastructure used as a testbed for the main security analysis methods and tools. Finally it explains a process to assess the likelihood of certain vulnerabilities in the system. This process is mainly focused on the design stage of a system. It can be iteratively combined with development to inform a developing team which system architectures may be safer and worth given development priority

    Delivering elder-care environments utilizing TV-channel based mechanisms

    Get PDF
    In this paper, we present a smart environment for elderly. What makes the development of such system challenging is that the concept of smartness for elderly brings to the extreme the idea of invisibility of the technology. In our experience, elders are well-disposed to new technologies, provided that those will not require significant changes - namely, they are invisible - to their habits. Starting from this consideration, 200 caregivers responses were collected by questionnaire, so as to better understand elders' needs and habits. A system was subsequently developed allowing elders to access a number of "modern web services" as standard TV channels: at channel 43 there is the health status, at channel 45 the photos of the family, at 46 the agenda of the week, just to mention few of the available services. The content of such services is automatically generated by the smart devices in the environment and is managed by the caregivers (e.g., family members) by simple web apps. Fourteen families were asked to install the system in their house. The results of these experiments confirm that the proposed system is considered effective and user-friendly by elders

    Non-Invasive Ambient Intelligence in Real Life: Dealing with Noisy Patterns to Help Older People

    Get PDF
    This paper aims to contribute to the field of ambient intelligence from the perspective of real environments, where noise levels in datasets are significant, by showing how machine learning techniques can contribute to the knowledge creation, by promoting software sensors. The created knowledge can be actionable to develop features helping to deal with problems related to minimally labelled datasets. A case study is presented and analysed, looking to infer high-level rules, which can help to anticipate abnormal activities, and potential benefits of the integration of these technologies are discussed in this context. The contribution also aims to analyse the usage of the models for the transfer of knowledge when different sensors with different settings contribute to the noise levels. Finally, based on the authors’ experience, a framework proposal for creating valuable and aggregated knowledge is depicted.This research was partially funded by Fundación Tecnalia Research & Innovation, and J.O.-M. also wants to recognise the support obtained from the EU RFCS program through project number 793505 ‘4.0 Lean system integrating workers and processes (WISEST)’ and from the grant PRX18/00036 given by the Spanish Secretaría de Estado de Universidades, Investigación, Desarrollo e Innovación del Ministerio de Ciencia, Innovación y Universidades

    AmIE: An Ambient Intelligent Environment for Assisted Living

    Full text link
    In the modern world of technology Internet-of-things (IoT) systems strives to provide an extensive interconnected and automated solutions for almost every life aspect. This paper proposes an IoT context-aware system to present an Ambient Intelligence (AmI) environment; such as an apartment, house, or a building; to assist blind, visually-impaired, and elderly people. The proposed system aims at providing an easy-to-utilize voice-controlled system to locate, navigate and assist users indoors. The main purpose of the system is to provide indoor positioning, assisted navigation, outside weather information, room temperature, people availability, phone calls and emergency evacuation when needed. The system enhances the user's awareness of the surrounding environment by feeding them with relevant information through a wearable device to assist them. In addition, the system is voice-controlled in both English and Arabic languages and the information are displayed as audio messages in both languages. The system design, implementation, and evaluation consider the constraints in common types of premises in Kuwait and in challenges, such as the training needed by the users. This paper presents cost-effective implementation options by the adoption of a Raspberry Pi microcomputer, Bluetooth Low Energy devices and an Android smart watch.Comment: 6 pages, 8 figures, 1 tabl
    corecore