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  Pref ace   

 In this book, we summarize recently deployed monitoring approaches with a focus 
on automatically detecting health threats for older patients living alone at home. 
First, in order to give an overview of the problems at hand, we briefl y describe older 
adults who would mostly benefi t from healthcare supervision and explain their 
potential health threats and dangerous situations, which need to be detected timely. 
Second, we summarize possible scenarios for monitoring an older patient at home 
and derive common functional requirements for monitoring technology. Third, we 
identify the realistic state-of-the-art technological monitoring approaches, which 
are practically applicable to older adults, in general, and to geriatric patients, in 
particular. In order to uncover the majority of applicable solutions, we survey the 
interdisciplinary fi elds of smart homes, telemonitoring, ambient intelligence, ambi-
ent assisted living, gerotechnology, and aging-in-place technology among others. 
Consequently, we discuss the related experimental studies and how they collect and 
analyze the measured data, focusing on the application of sensor fusion, signal 
processing, and machine learning techniques whenever possible, which are shown 
to be useful for improving the detection and identifi cation of situations that can 
threaten older adults’ health. Finally, we discuss future challenges and offer a num-
ber of suggestions for further research directions. We conclude the book by high-
lighting the open issues within automatic healthcare technologies and link them to 
potential solutions. 
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    Chapter 1   
 Introduction                     

    Abstract     In recent years, distributed computing and monitoring technologies have 
gained a lot of interest in the cross-disciplinary fi eld of healthcare informatics. This 
introductory chapter reveals the growing need for timely detection of numerous 
health threats of older people, who are challenged by various chronic and acute ill-
nesses and are susceptible to injuries. First, we give a concise overview of the rele-
vant terms, which are often used for representing state-of-the-art technologies and 
research fi elds dealing with monitoring of older patients. Second, we guide the 
readers through the contents of this book, which are intended for both geriatric care 
practitioners and engineers, who are developing or integrating monitoring solutions 
for older adults. Then, we provide a summary of notable worldwide smart-home 
projects aimed at monitoring and assisting older people, including geriatric patients. 
The underlying aim of these projects was to explore the use of ambient and/or wear-
able sensing technology to monitor the well-being of older adults in their home 
environments.  

  Keywords     Geriatric patient   •   Elderly   •   Older adults   •   Automatic health monitoring   
•   Smart-home   •   Patient at home   •   Telemonitoring   •   Assisted living   •   Gerotechnology   
•   Caregiver   •   eHealth   •   Ambient intelligence (AmI)   •   Ambient assisted living (AAL)  

         Due to the changing demographics in most industrialized countries, the number and 
the proportion of older adults are rapidly increasing [ 1 – 3 ]. The risk of having to face 
health problems increases with advancing age. Advancing age is also associated 
with an increased risk of living alone and with having a potentially smaller social 
network [ 4 ]. Living alone also means having no supervision or proper care when 
needed, e.g., in case of a disease or an adverse event [ 5 ]. Timely detection of  health 
threats  1  at home can be benefi cial in numerous ways; for example, it can enable 
independence and can potentially reduce the need of institutionalization [ 6 ], facili-
tating so-called  aging-in-place  paradigm [ 7 – 9 ], which is defi ned as “the ability to 

1   In this book, we defi ne a  health threat  as any possible health-threatening situation, condition, or 
risk factor, including external, such as environmental hazards, or internal, such as evolving dis-
eases, as well as dangerous and life-threatening occurrences, such as falls or medication misuse. 
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live in one’s own home and community safely, independently, and comfortably, 
regardless of age, income, or ability level” [ 10 ]. 

 Eventually, when facing health problems, many older adults may prefer to stay 
in their own home, often due to the fear of losing the ability of managing their pri-
vate life or possibility of being involved in their social relationships [ 11 ,  12 ]. 
Researchers argue that older adults who are staying at home with an appropriate 
assistance have a higher likelihood of staying healthy and independent longer [ 3 , 
 13 ]. For example, there is evidence that older adults may experience signifi cantly 
higher risk of becoming delirious at a hospital than at home [ 14 ]. For this and other 
reasons, geriatric patients should, in principle, be sent from a hospital to their home 
as quickly as possible. Consequently, this raises several challenges associated with 
the necessity of intensive monitoring by home care staff, which may be inadequate 
and privacy intrusive, to avoid further aggravation but secure recovery [ 15 ]. On the 
other hand, for those older adults, who are mobile and independent but at risk of the 
consequences of aging, early detection of deteriorating health is also essential for 
avoiding the necessity of hospitalization and eventually move to a nursing home. As 
a solution, in-home monitoring technology, if applied properly, can nowadays be 
used on both healthy older adults, for detecting health-threatening situations, and 
geriatric patients, for detecting adverse events or health deterioration. Therefore, 
there is a vastly growing interest in developing robust unobtrusive ubiquitous home- 
based health monitoring systems and services that can help older home dwellers to 
live safely and independently [ 16 ]. However, due to the high variety of possible 
scenarios and circumstances, keeping track on health conditions of an older indi-
vidual at home may be exceedingly diffi cult. 

 In this book, we are looking for (a)  which  health threats should be detected, (b) 
 what  data is relevant for detecting these health threats, and (c)  how  to acquire the 
right data about an older home dweller. In particular, (a) and (b) include a proper 
understanding of the problems at hand, the possible constraints, and the needs seen 
by patients and medical staff, while (c) includes a choice of sensors and their place-
ment. Furthermore, (a), (b), and (c) are closely interrelated. Then, we aim to uncover 
which approaches can automate detection of the health threats and extraction of 
relevant information and knowledge for supporting further decision-making. 

 In the past 15 years, a great number of monitoring technologies, which can gather 
patient-specifi c data automatically, have been developed to monitor and support 
frail older adults at home. The application of these technologies have become 
increasingly popular mainly due to the rapid advances in both sensor and informa-
tion and communication technologies (ICT). They allow reduction of chronic dis-
ease complications and better follow-up, allow accessing healthcare services 
without using hospital beds, and reduce patient travel, time off from work, and 
overall costs [ 17 ]. Automated monitoring systems, which are becoming cheaper and 
less intrusive with each year, have been made possible for clinical use by reducing 
the size and cost of monitoring sensors, as well as of recording and transmitting 
hardware [ 18 ]. These hardware developments, coupled with the available wired 
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(e.g., PSTN, ISDN, IP) 2  and wireless (e.g., IrDA, WLAN, GSM) 3  telecommunica-
tion options, have led to the development of various home monitoring applications. 
For the deployment of these kinds of technologies, several terms have been coined, 
such as  smart-home  [ 19 – 25 ],  home automation  [ 19 ,  23 ,  25 – 28 ],  ubiquitous home  
[ 24 ,  29 – 31 ],  ambient intelligence  ( AmI ) [ 32 – 37 ],  assistive technology  [ 38 – 40 ], 
 assisted living technology  ( ALT ) [ 41 – 43 ],  ambient assisted living  ( AAL ) [ 33 ,  34 ,  37 , 
 44 – 49 ],  home telehealth  [ 50 – 52 ],  telemonitoring  [ 18 ,  50 ,  53 – 55 ],  wireless body 
area sensor networks  ( WBASNs ) [ 56 – 60 ],  aging-in-place  technologies [ 8 ,  9 ,  61 ], 
 gero(n)technology  [ 39 ,  62 – 64 ],  eHealth  [ 65 ,  66 ], and others. All these technologies 
are related (e.g., all incorporate  sensor technology ); however, each of them usually 
has diverse aims, and they can be supplementary to each other in terms of contribut-
ing to the monitoring purposes of older patients at home. 

 The schematic overlap of these most notable technological research areas is 
illustrated in Fig.  1.1 . As it becomes evident, investigating automated monitoring of 
older patients with comorbidities at home requires us to understand and recognize 
the different related fi elds. Thus, defi nitions of these research fi elds along with dis-
cussion of relevance to this book are presented in the next chapter.

1.1       Defi nition of Terms and Relevance to This Book 

 The term  smart-home  has many diverse defi nitions [ 19 – 25 ]. A  smart-home  is often 
defi ned as a residence equipped with technology that observes its inhabitants and 
provides proactive services [ 21 ]. Most commonly, it refers to  home automation  [ 19 , 
 23 ,  25 – 28 ], which by defi nition tackles four main goals: comfort, security, life 
safety, and low cost [ 28 ]. In the context of this book, we focus our analysis primarily 
on improving life safety, which is achieved by incorporating  telemonitoring  tech-
nology that can be a part of a  smart-home  as well. 

  Telemonitoring  is originally defi ned as the use of audio, video, and other tele-
communications and electronic information processing technologies to monitor 
patient status at a distance [ 67 ]. Thus, all the other systems intended for increasing 
the comfort of home inhabitants by automating their tasks or controlling home 
appliances (e.g., automatic light switches, dish washers, etc.) as well as energy man-
agement systems intended for reducing costs (e.g., by preventing unnecessary heat-
ing and lighting) do not fall into the scope of our book. It is also worth noting that 
the term  telemonitoring  is often used in different contexts, and thus, one should be 
very careful in identifying the methods of data collection and communication cho-
sen for remote patient monitoring. Often in literature, manual self-reporting of 
health status via telephone (e.g., in [ 68 ]) is already considered as  telemonitoring . 

2   PSTN  – Public Switched Telephone Network;  ISDN  – Integrated Services for Digital Network; 
 IP  – Internet Protocol. 
3   IRDA  – Infrared Data Association;  WLAN  – Wireless Local Area Network;  GSM  – Global System 
for Mobile Communications. 
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  Fig. 1.1    An overlap of the most notable and emerging state-of-the-art technological research 
fi elds that contribute to automated monitoring of older patients at home. In this graph, we focus 
only on those technological domains, which explicitly or implicitly facilitate patient-centered care. 
Other related areas, such as ICT, wireless sensor networks, telematics, sensor fusion, machine 
learning, software engineering, etc. (purely from a technological point of view) and homecare, 
telehealth, telecare, telemedicine, mobile health (i.e., mHealth), etc. (which already indicate a 
healthcare point of view), are not visualized for redundancy reasons. The  horizontal axis  abstracts 
the domain of user requirements, while the  vertical axis  encapsulates the variety of different envi-
ronments. Generally, the requirements of monitoring older patients at home are very complex, and 
thus a very limited selection of all possible technological advances can be practically useful for 
monitoring this target group. Hence, we schematically illustrate the applicability of the existing 
state-of-the-art monitoring technologies for geriatric patients at home as a  red oval  in the  upper 
right  corner of the fi gure       

Meanwhile, numerous other automated information and communication technology 
( ICT ) options exist in  telemonitoring , enabling automatic and preferably more reli-
able data collection and transmission from home, which therefore are of interest for 
our book. For example, Paré et al. in their systematic review [ 55 ] defi ned the term 
 home telemonitoring  as an automated process for the transmission of data on a 
patient’s health status from home to the respective healthcare setting. However, one 
should notice that this defi nition does not imply that data collection is also auto-
mated. They further explained that only patients, when necessary, are responsible 
for keying in and transmitting their data without the help of a healthcare provider, 
such as a nurse or a physician. However, since we are also interested in monitoring 
technologies, which might require healthcare provider being present and being 
responsible for acquiring the right data at a patient’s home (e.g., during their homec-
are visits), our scope is not limited to  home telemonitoring  alone. 

  Health smart-home (HSH)  [ 22 ,  24 ,  69 ,  70 ] is another relevant term derived from 
the marriage of  smart-home  technology and  medicine. HSH  is defi ned as a residence 
equipped with automatic devices and various sensors to ensure the safety of a patient 
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at home and the supervision of their health status [ 71 ], which fi ts well with the focus 
of this book.  HSH  is a specialization of the general  smart-home  concept, which 
integrates sensors and actuators to ensure a medical  telemonitoring  to residents and 
to assist them in performing their activities of daily living ( ADL ) [ 22 ]. It also 
 facilitates an  aging-in-place  process [ 22 ], because it aims at giving an autonomous 
life to older people in their own home, thus avoiding or postponing the need for 
institutional care. 

 Following the rapidly increasing deployment of wireless sensing devices, such 
devices have a growing impact on the way we live, and they open up possibilities to 
many healthcare applications that were not feasible previously. For maximizing the 
value of collected data,  wireless sensor networks  ( WSN ),  ubiquitous/pervasive com-
puting , and  artifi cial intelligence  (AI) as individual research domains have come 
together to build an interdisciplinary concept of  ambient intelligence  or  AmI  [ 35 , 
 72 ]. The defi nition of  AmI , however, is highly variable [ 34 ,  35 ,  73 ]. Most com-
monly,  AmI  is described as an emerging discipline that brings intelligence to every-
day environments and makes those environments sensitive, adaptive, and responsive 
to human needs [ 32 ,  34 ,  35 ]. In addition, several studies require that  AmI  systems 
should be transparent (i.e., unobtrusive) [ 35 ,  74 ] and ubiquitous (i.e., present every-
where anytime) [ 32 ,  34 ,  35 ,  73 ,  74 ]. All this correlates well with the general require-
ments for  aging-in-place  technologies [ 8 ,  9 ] and  gerotechnology  [ 62 ], because these 
systems should be able to adopt to the needs of older adults, to sense hazardous or 
unsafe situations with minimal human intervention, and to inform a medical person-
nel and/or family members if something is truly “wrong” [ 9 ]. While  smart-home , 
 home automation ,  ubiquitous home , and  ambient intelligence  technologies can be 
intended for any user group and irrespective of age,  gerotechnology  is explicitly 
focusing on older adults, including older patients with comorbidities, while  aging- 
in- place  technology limits the deployment of the  gerotechnology  to private homes. 
 Aging-in-place  technology is a popular and a relatively general term, which refers 
to increasing the ability of older adults to stay in their own home as they age [ 75 , 
 76 ], and is recognized as a part of  gerotechnology  (which is consequently derived 
from combination of two words: gerontology and technology).  Gerotechnology  
plays a crucial role in the  aging-in-place  process and is defi ned as “an interdisci-
plinary fi eld of research and application involving gerontology, the scientifi c study 
of aging, and technology, the development and distribution of technologically based 
products, environments, and services” [ 77 ]. However,  gerotechnology  does not nec-
essarily involve intelligence in the sense of being sensitive and adjustable to patient’s 
needs. Different aging-associated aids (e.g., vision and hearing aids [ 78 ], or even 
walking aids [ 79 ] and toileting aids [ 80 ]) are often considered as appliances of  gero-
technology ; however, these do not directly fall into the scope of our book, unless 
they are capable of collecting meaningful medically relevant data, which we will 
reveal in the further chapters. 

 Most commonly, when dealing with geriatric or disabled patients, a majority of 
the aforementioned technologies employ  assistive technology  ( AT ), which by defi -
nition serves three major purposes relevant to life safety of patients at home [ 81 ]: 
(1) detecting hazards or emergencies, (2) facilitating independence and improving 
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functional performance, and (3) supporting medical staff (i.e., caregivers) by facili-
tating provision of personal care. For our book, the main focus is put on the fi rst 
purpose. One of the most important aspects that can differentiate  ATs  from other 
technologies is the  user-centered design , which can be achieved by complying with 
numerous requirements defi ned by both medical and technical factors. Generally, it 
is considered to be a good practice to comply with  universal design  principles (often 
called as  design for all ) [ 82 ]. These fundamental principles include [ 82 ] (a) usage 
equitability, i.e., the design should be useful and marketable to people with diverse 
abilities; (b) fl exibility in use, i.e., the design accommodates a wide range of indi-
vidual preferences and abilities; (c) simple and intuitive use, i.e., easy to understand 
regardless of experience, knowledge, language skills, or current concentration level 
of the user; (d) perceptible information, i.e., the design communicates necessary 
information effectively to the user despite ambient conditions or sensory abilities of 
the user; (e) tolerance for error, i.e., the design minimizes hazards and the adverse 
consequences of accidental or unintended actions; (f) low physical effort, i.e., effec-
tive and comfortable usage with minimum of fatigue; and fi nally (g) size and space 
for approach and use, i.e., appropriate size and space should be provided for 
approach, reach, manipulation, and use regardless of human body size, posture, or 
mobility of a user, such as older patient. 

  Assisted living technologies  ( ALTs ) is another relevant and broad term, which 
often remains undefi ned and may have different meanings throughout  aging-in- 
place  related literature [ 43 ]. Commonly, it refers to sensors, devices, and communi-
cation systems (including software), which, in combination, help to assist older 
adults and those who are physically or cognitively impaired in accomplishing their 
daily tasks toward independent lives and an improved quality of life, by delivering 
 assisted living services  [ 83 ,  84 ]. These services may include  telehealth services  
(i.e., delivering medical care, treatment, and monitoring services at home from a 
remote location),  telecare services  (i.e., delivering social care and related monitor-
ing services at home from a remote location),  wellness services  (i.e., delivering 
services for healthy lifestyles at home from a remote location),  digital participation 
services  (i.e., which remotely engage older and disabled people in terms of social, 
educational, or entertainment activities at home), and  teleworking services  (i.e., in 
which older and disabled people work remotely from home for an employer, a vol-
untary organization, or themselves and need remote computing to work success-
fully) [ 84 ]. Noteworthy,  telemedicine services  (i.e., which involve delivering 
medical services and advices from one practitioner to another at a remote location) 
are not considered to be a part of  ALTs  [ 84 ]. 

  Assisted living technologies  based on  ambient intelligence  are called  ambient 
assisted living  ( AAL )  tools  [ 33 ], and they are, respectively, broader than our scope of 
monitoring and detecting health-threatening problems.  AAL  in general can be used 
for preventing health problems, treatment, and improving health conditions and well-
being of older individuals. These tools can be installed in ( health )  smart- homes  and 
therefore can greatly support monitoring purposes by collecting contextual informa-
tion and recording  activities of daily living  ( ADL ) [ 85 – 88 ], for example.  ADL  may 
include any activity, which can be observed in daily living of an individual (e.g., 
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walking, lying, and sitting, which are considered as basic activities, or preparing a 
coffee, laundering, cooking meals, and shopping groceries, which are considered as 
instrumental activities). A huge number of  AAL  tools exists, such as medication man-
agement tools [ 55 ,  89 ,  90 ], fall detection [ 91 – 95 ] and prevention systems [ 96 – 98 ], 
video surveillance systems [ 6 ,  99 – 101 ], indoor location tracking [ 102 ,  103 ], com-
munication systems [ 8 ,  104 ,  105 ], mobile emergency response systems [ 8 ,  63 ,  106 –
 108 ], and diet suggestion systems [ 109 ], which in general can be built and 
implemented with the purpose of health monitoring and improving safety, connectivity, 
and mobility of older adults at home. 

 The term  eHealth , which nowadays seems to serve public as a general “buzz-
word,” is currently defi ned by World Health Organization (WHO) as “the use of 
information and communication technologies (ICT) for health. Examples include 
treating patients, conducting research, educating the health workforce, tracking dis-
eases and monitoring public health” [ 65 ]. In the light of this defi nition, our book is 
focused on tracking diseases and monitoring public health for older adult users. 
Apparently, defi nitions of  eHealth  seem to vary with respect to the functions, stake-
holders, contexts, and various theoretical issues targeted [ 110 ]. The medical subject 
heading (MeSH) [ 111 ] library directly relates  eHealth  to the term  telemedicine , 
which is defi ned as a “delivery of health services via remote telecommunications. 
This includes interactive consultative and diagnostic services.” One may by intu-
ition anticipate that  eHealth  refers to “electronic” healthcare, because of the prefi x 
“e.” However, the meaning of the letter “e” is rather ambiguous, and therefore, 
 eHealth  term can be found in a very broad context. Furthermore,  eHealth  and 
 E-Health  are often used interchangeably and considered as synonyms [ 110 ]. 
However, one might fi nd it rather confusing that WHO itself has another and slightly 
different defi nition for the term  E-Health , which is the following: “the transfer of 
health resources and health care by electronic means. It encompasses three main 
areas:

•    The delivery of health information, for health professionals and health consum-
ers, through the Internet and telecommunications.  

•   Using the power of IT and e-commerce to improve public health services, e.g. 
through the education and training of health workers.  

•   The use of e-commerce and e-business practices in health systems management.” 
[ 112 ]    

 Eysenbach [ 113 ], on the other hand, provided the following defi nition to  e-health  
as a term and as a concept, and his defi nition remains to be broadly accepted till this 
date: “e-health is an emerging fi eld in the intersection of medical informatics, public 
health and business, referring to health services and information delivered or 
enhanced through the Internet and related technologies. In a broader sense, the term 
characterizes not only a technical development, but also a state-of-mind, a way of 
thinking, an attitude, and a commitment for networked, global thinking, to improve 
health care locally, regionally, and worldwide by using information and communi-
cation technology.” He also explained that the letter “e” in the term  eHealth  might 
refer to ten qualities, (1) effi ciency, (2) enhancing quality of care, (3) evidence 
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based, (4) empowerment of consumers and patients, (5) encouragement of a new 
relationship between the patient and health professional, (6) education of consum-
ers and physicians through online sources, (7) enabling information exchange and 
communication in a standardized way between healthcare establishments, (8) 
extending the scope of healthcare beyond its conventional boundaries, (9) ethics, 
and (10) equity, so that everyone who needs  eHealth  would be able to receive it. For 
the context of our book,  eHealth  provides various monitoring services for older 
adults in need. For example, Cabrera-Umpiérrez et al. [ 66 ] described the developed 
functionalities of the  eHealth  services for European co-funded projects, which pro-
vided (a) personalized health monitoring, (b) health coaching, and (c) alerting and 
assisting services to assure the well-being of the older adult users during their daily 
activities. Our book is thus focused primarily on the  eHealth  services referring to 
the use cases (a) and (c) in that context. 

 Although much research has been carried out in the aforementioned fi elds that 
deal with older people monitoring at home in the recent years, several unsolved 
problems with existing tools persist, such as privacy issues [ 11 ,  64 ,  100 ], a lack of 
accuracy in detecting health-threatening problems [ 114 ], invasiveness [ 115 ] and 
intrusiveness [ 116 ,  117 ] of monitoring devices, and the fact that the monitoring 
systems are mostly meant for direct patient-physician communication, while physi-
cians have a very limited time available per patient [ 16 ,  46 ,  118 ,  119 ]. Furthermore, 
the size and complexity of the available data from different electronic healthcare 
records is growing, which makes it harder for medical staff to analyze it and to make 
clinical decisions [ 120 ]. Thus, an automated detection of health-threatening situa-
tions and clinical decision support systems has become a new prerequisite for an 
effective home healthcare with limited manning [ 121 ].  

1.2     Content and Audience of This Book 

 This book is intended for both geriatric care practitioners and engineers, who are 
developing or integrating monitoring solutions for older adults. On the one side, this 
book helps healthcare practitioners to familiarize with the available home monitor-
ing technologies, and on the other side, it helps engineers to better understand the 
purposes and problems of monitoring older people at home through the insight into 
different scenarios and potential health-threatening situations and conditions of 
older adults with physical and/or mental impairments. 

 We start with reviewing a variety of well-known smart-home projects, which pres-
ent an overview of the needed infrastructure and give an insight of what should be 
taken into consideration, when monitoring older people at home. The second chapter 
includes the summary of the existing notable reviews and the taxonomies of most 
common home monitoring scenarios. Subsequently, the third chapter reveals the spec-
trum of geriatric diseases and conditions mentioning the known approaches of solving 
them in home settings. Chapter   4     further reveals the available monitoring technology 
and possible automation of monitoring approaches, followed by examples of how to 

1 Introduction

http://dx.doi.org/10.1007/978-3-319-27024-1_4


9

realize these solutions, what the pros and cons are, and what must be taken into con-
sideration when implementing them in real home environments. The fi fth chapter 
summarizes the available datasets, which are practically useful for developing health 
threat detection algorithms based on already monitored empirical data. Finally, in 
Chap.   6     we discuss some anticipated future challenges of applying monitoring tech-
nology for older adults and consequently propose possible measures and directions 
toward dealing with some common issues. 

 This book is based on numerous scientifi c articles, which were exclusively pub-
lished in English, in a peer-reviewed text and were available as full works. Because 
of the rapid progression in technology and the relative lack of information in earlier 
years [ 24 ], our search was limited to articles in journals, book chapters, and confer-
ence proceedings written within the last 15 years, i.e., between 2001 and 2015; only 
few key relevant articles or book chapters with original sources from earlier years 
were included as exceptions. Additionally, several reports were cited to give more 
illustrative examples of approaches identifi ed to be useful for monitoring geriatric 
patients at home, but which were not yet tested on older adults explicitly. As few 
exceptions, some web sites describing systems, devices, prototypes, and projects 
were included as references when the published literature did not offer adequate 
presentations of the projects. Searches using relevant keywords were conducted 
either in  Scopus ,  Elsevier ,  IEEE Xplore ,  Springer ,  PubMed , and  PubMed Central  or 
using the  Google Scholar  search engine.  

1.3     An Overview of the Relevant Smart-Home Projects 

 Table  1.1  summarizes several notable smart-home projects that are generally aimed 
at monitoring and assisting older people, including geriatric patients. The underly-
ing aim of such projects was to explore the use of ambient and/or wearable sensing 
technology to monitor the well-being of older adults in their home environment.

   The majority of the relevant smart-home projects are originating from Europe 
and America. For example, the well-known CASAS project, named for the Center 
for Advanced Studies in Adaptive Systems, at Washington State University (WSU) 
is active since 2007 and has established numerous smart-home test-beds equipped 
with sensors, which mainly aim to provide a noninvasive and unobtrusive assistive 
environment by monitoring ADL of the residents, including older patients [ 122 –
 125 ]. The latest initiative of the CASAS project is to develop a “smart-home in a 
box” (SHiB), i.e., a small and portable home kit, lightweight in infrastructure, which 
can be implemented in a real home environment and extendable with minimal effort 
[ 123 ]. Noteworthy, the WSU CASAS database is the largest publicly available 
source of ADL datasets to date [ 126 ]. Meanwhile, researchers at the University of 
Missouri are using passive sensor networks installed in apartments of residents 
called as TigerPlace to detect changes in health status and offer clinical interven-
tions helping the residents to age in place. The TigerPlace project aims to provide a 
long-term care model for seniors in terms of supportive health [ 9 ]. As another 
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   Table 1.1    Smart-home projects with a perspective of monitoring geriatric patients   

 Reference 
 Coordinating research 
institution, country  Smart-home project  Datasets a   Type b  

 Cook et al. 
[ 123 ] 

 Washington State 
University, USA 

 CASAS, SHiB   ✓ , 65+, p  2, 4 

 Ranz et al. [ 9 ]  University of Missouri, 
Colombia 

 TigerPlace   ✓ , 65+, p  4 

 Stanford [ 119 ]  Oregon Health and Science 
University, USA 

 Elite Care  –, 65+, p  3 

 Abowd et al. 
[ 148 ] 

 Georgia Institute of 
Technology, USA 

 Aware Home  –  2 ~ 3 

 Kadouche et al. 
[ 131 ] 

 University of Sherbrooke, 
Canada 

 DOMUS   ✓ , s  2 

 Intille et al. 
[ 132 ] 

 Massachusetts Institute of 
Technology, USA 

 PlaceLab House_n   ✓   3 

 Fleury et al. 
[ 134 ], Noury 
et al. [ 149 ] 

 TIMC-IMAG Laboratory 
of Grenoble, France 

 Health Smart Home, 
HIS 2  

  ✓ , s  2 

 Orpwood et al. 
[ 137 ] 

 Bath Institute of Medical 
Engineering, UK 

 Gloucester Smart 
House 

 –  2 

 S. Bjørneby 
et al. [ 138 ] 

 The Norwegian Centre for 
Dementia Research, 
Norway 

 ENABLE  –, 65+, p  4 

 Beul et al. [ 47 ]  Aachen University, 
Germany 

 Future Care Lab  –  1 

 Helal et al. 
[ 150 ] 

 University of Florida, USA  Gator Tech Smart 
House 

  ✓ , 65+, p  2 

 Yamazaki et al. 
[ 29 ,  142 ] 

 National Institute of 
Information and 
Communications 
Technology, Japan 

 Ubiquitous Home   ✓ , 65+, p  2 

 Tamura et al. 
[ 141 ] 

 Chiba University, Japan  Welfare Techno 
House 

 –, 65+, p  2 

 Kim et al. [ 144 ]  Pohang University of 
Science and Technology 
(POSTECH), South Korea 

 POSTECH’s 
U-Health Smart 
Home 

 –  1 

 Chan et al. 
[ 136 ], 
Bonhomme 
et al. [ 102 ] 

 Laboratory for Analysis 
and Architecture of 
Systems (LAAS), France 

 PROSAFE, 
PROSAFE- extended 

 –, 65+, p  3 

 Callaghan et al. 
[ 151 ,  152 ] 

 University of Essex, UK  iDorm, iDorm2 
(iSpace) 

  ✓ , s  3 

 Nishida et al. 
[ 143 ] 

 Electrotechnical Lab, Japan  SELF  –  1 

 Ivesen [ 153 ]  Danish Technological 
Institute (DTI), Denmark 

 DTI CareLab  –  1 

(continued)
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example, Elite Care is an assisted living facility equipped with sensors to monitor 
indicators such as time in bed, body weight, and sleep restlessness using various 
sensors [ 119 ,  127 ]. The Aware Home project at Georgia Tech [ 128 ] employs a vari-
ety of sensors such as smart fl oor sensors, as well as assistive robots for monitoring 
and helping elderly. The MavHome [ 129 ,  130 ] at University of Texas at Arlington 
is another smart-home environment equipped with sensors, which records inhabit-
ant interactions with many different devices, medicine-taking schedules, movement 
patterns, and vital signs. It aimed at providing healthcare assistance in living envi-
ronments of older adults and people with disabilities. MavHome is one of the fi rst 

Table 1.1 (continued)

 Reference 
 Coordinating research 
institution, country  Smart-home project  Datasets a   Type b  

 Sundar et al. 
[ 154 ] 

 University at Buffalo, USA  ActiveHome (X10)  –  4 

 Youngblood 
et al. [ 130 ] 

 The University of Texas at 
Arlington, USA 

 MavHome  –  1 

 Orcatech 
Technologies 
[ 155 ] 

 Oregon Center for Aging 
and Technology, USA 

 ORCATECH: Life 
Lab, Point of Care 
Lab 

  ✓ , 65+, p  2, 4 

 Coradeschi et al. 
[ 135 ], Palumbo 
et al. [ 156 ] 

 Örebro University, Sweden 
Real houses, and 
apartments in Italy, Spain, 
and Sweden 

 GiraffPlus  –, 65+, p  4 

 Soar et al. [ 147 ]  University of Southern 
Queensland, Australia 

 Queensland Smart 
Home Initiative 
(QSHI) 

 –, 65+, p  1, 4 

 Wilson et al. 
[ 145 ] 

 Australia’s Commonwealth 
Scientifi c and Industrial 
Research Organization 
(CSIRO), Australia 

 Hospital Without 
Walls 

 –, 65+, p  2 

 Dodd et al. 
[ 146 ] 

 Australia’s Commonwealth 
Scientifi c and Industrial 
Research Organization 
(CSIRO), Australia 

 Smarter Safer Home  –, 65+, p  4 

   a “Datasets” column indicates which smart-home projects have collected empirical datasets (“ ✓ ”) 
and whether these projects include data from real older adults (“65+”) and whether real medical 
patients were involved (“p”), or only simulated patients were used (“s”), i.e., healthy persons (often 
younger students) imitated symptoms of certain illnesses or alarming events, such as falls, or other 
behaviors of older patients. 
  b “Type” column classifi es the test-beds of the reviewed smart-home projects into four main types, 
according to Tomita et al. [ 157 ]: 1 = “laboratory setting” (i.e., a facility at a research institution, 
which utilizes an infrastructure and sensory equipment that researchers fi nd suffi cient but is not 
meant for actual habitation), 2 = “prototype smart-home” (allows actual habitation, usually for a 
short-term, and is specifi cally designed for research purposes), 3 = “smart-home in use” (necessary 
infrastructure and monitoring technology is implemented in actual community settings, apartment 
complexes, or retirement housing units), 4 = “retrofi tted smart-home” (i.e., a private home or an 
individual apartment is converted to a smart-home, by integrating (retrofi tting) monitoring technol-
ogy on top of existing home infrastructure).  
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projects, which proposed to apply machine learning approaches to create a smart- 
home that can act as an intelligent agent, i.e., which can adopt to its inhabitants, 
identify trends that could indicate health concerns or a need for transition to assisted 
care, or detect anomalies in regular living patterns that may require intervention. 
Other notable smart-home test-beds include DOMUS [ 131 ] at the University de 
Sherbrooke, and House_n project at the Massachusetts Institute of Technology 
[ 132 ]. Several smart-home projects in Europe include iDorm [ 133 ], Grenoble 
Health Smart Home [ 134 ], GiraffPlus [ 135 ], PROSAFE [ 136 ], Gloucester Smart 
House [ 137 ], ENABLE [ 138 ] for dementia patients, and Future Care Lab [ 47 ,  139 ]. 
The majority of these research projects monitor a subset of ADL tasks. There are 
also related joint initiatives such as the “Ambient Assisted Living Joint Programme” 
or “The Active and Assisted Living Joint Programme,” supported by the European 
commission with the goal of enhancing the quality of life of older people across 
Europe through the use of AAL technologies and to support applied research on 
innovative ICT-enhanced services for aging well [ 44 ,  140 ]. As an example, in one 
of the most recent European projects, called as GiraffPlus [ 135 ], researchers develop 
and evaluate a complete system that collects daily behavioral and physiological data 
of older adults from distributed sensors; performs context recognition, a long-term 
trend analysis; and presents the information via a personalized interface. GiraffPlus 
supports social interaction between primary users (older citizens) and secondary 
users (formal and informal caregivers), thereby allowing caregivers to virtually visit 
an older person in the home. 

 Also in Asia, some notable smart-home projects were developed, such as the 
early “Welfare Techno Houses” across Japan [ 141 ], promoting independence for 
older and disabled persons and for improving their quality of life. For example, the 
large Takaoka Techno House [ 141 ] measured medical indicators such as electrocar-
diogram (ECG), body and excreta weights, and urinary volume, using sensor sys-
tems placed in the bed, toilet, and bathtub. The Ubiquitous Home project [ 29 ,  142 ] 
is another Japanese smart-home project, which applied passive infrared (PIR) sen-
sors, cameras, microphones, pressure sensors, and radiofrequency identifi cation 
(RFID) technology intended for monitoring living activities of residents, including 
older adults. The SELF smart-home project, also in Japan, monitored posture, body 
movement, breathing, and oxygen in the blood, using pressure sensor arrays, cam-
eras, and microphones [ 143 ]. In South Korea, a POSTECH’s U-Health smart-home 
project [ 144 ] is focused on establishing autonomic monitoring of home and its 
aging inhabitants in order to detect health problems, by applying different environ-
mental wireless sensors and a wearable ECG monitor, and to provide assistance 
when needed. 

 In Oceania region, there are several noteworthy projects as well. For instance, the 
Hospital Without Walls project [ 145 ] is an early example of home telecare project 
in Australia that used a wireless wearable fall monitoring system based on small 
on-body sensors, which measured heart rate and body movements. The initial clini-
cal scenario was monitoring older patients who were at risk of repeated falls. More 
recent projects include the Smarter Safer Home project [ 146 ] and the Queensland 
Smart Home Initiative (QSHI) [ 147 ]. The Smarter Safer Home platform [ 146 ] is 
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aimed to enable aging Australians to live independently longer in their own homes. 
The primary goal of the proposed approach is to enhance the quality of life (QoL) 
for older patients and for the adult children supporting their aged parents. The afore-
mentioned platform uses environmentally placed sensors for nonintrusive monitor-
ing of human behaviors, extracting specifi c ADLs and predicting health decline or 
critical health situations from the changes in those ADLs. The Queensland Smart 
Home Initiative (QSHI) [ 147 ] program included so-called demonstrator smart- 
home, which involved feedback gathering from stakeholder visits, such as 
 consumers, family members, care providers, and policy-makers, as well as 101 
homes that are equipped with home telecare technologies and occupied by frail 
older adults or other people with special needs.     
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    Chapter 2   
 Reviews and Taxonomies                     

    Abstract     This chapter summarizes the existing review articles in the fi eld of moni-
toring and diagnosing older adults at risk of health deterioration, in the context of 
smart-homes. We provide taxonomy of these notable review articles, characterizing 
their aims and reviewing approaches of proposed monitoring systems capable of 
detecting health threats in smart-home settings. We included reviews, which focus 
on describing technology, applications, costs, and quality of monitoring services. 
These reviews greatly help to orientate in the assortment of available monitoring 
solutions for various scenarios.  

  Keywords     Patient monitoring systems   •   Smart-home projects   •   Review   • 
  Technology   •   Application   •   Cost   •   Quality of service (QoS)   •   Ambient assisted  living 
(AAL)   •   Taxonomy  

         Over the past decade, the number of publications concerning the fi eld of monitoring 
older adults at home has grown signifi cantly. To structure an overview of the indi-
vidual review articles, including their purpose and approaches, a taxonomy may be 
defi ned to arrange them into various groups having similar characteristics. 

 Various categories may be used for a taxonomy to distinguish between different 
approaches (e.g., in random order): patient-centric versus physician-centric 
approaches, vision-based versus non-vision-based systems, active versus passive 
sensing, mobile versus stationary sensors, various scenario assumptions (health 
condition and disabilities, single patient vs. multiple patients, number of rooms at 
home, etc.), cost, number of monitored parameters, sensor modality, long-term 
monitoring versus short-term monitoring, nonintrusive versus holistic intrusive 
methods, etc. The various review works that are discussed in the next chapter have 
used different taxonomies. 
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2.1     Previous Reviews 

 A number of comprehensive reviews were written which summarized the important 
proposals of monitoring and diagnosing at home older adults at risk of health dete-
rioration, in the context of smart-homes, the last one being published in March 2015. 
All reviews discuss both vision and non-vision-based monitoring technology. Some 
of these reviews explicitly mentioned medical application contexts [ 1 – 13 ], and some 
did not [ 14 ]. These reviews can be classifi ed into different overlapping groups 
according to the viewpoints used during the review process. The viewpoints are (a) 
technology centric, (b) application centric, (c) cost centric, and (d) quality of service 
(QoS) centric. Figure  2.1  illustrates these four groups and corresponding reviews 
from the literature. Technology-centric reviews included discussions and summa-
rized methods regarding core technologies, such as object segmentation, feature 
extraction, activity detection and recognition, clinically important symptom detec-
tion, etc. Application-centric reviews discussed and summarized methods related to 
applications such as fall detection, detection of ADL, detection of instrumental activ-
ities, detection of sick samples for diagnosis, etc. Cost-centric reviews discussed the 
expenditures required for implementation of activity monitoring systems. The QoS-
centric reviews discussed and summarized the service quality of the methods in the 
area of activity monitoring and elderly assisted smart-homes. Service quality can be 
defi ned in terms of validation study, performance, user adaptability, sensitivity, etc., 
which is usually assessed based on the outcomes. Service quality naturally is focused 
on benefi tting an end user (an older adult), and when this end user is a patient, QoS-
centric reviews often discuss patient centeredness of the reviewed approaches. They 
often tend to summarize outcomes of different telemonitoring solutions and to give 
best practice recommendations for improving quality of service for older adults.

Previous reviews of monitoring systems capable of detecting health threats in smart-home settings

Technology centric Application centric Cost centric Quality of Service centric

1.   Scanaill et al., 2006 [2]
2.   Aggarwal et al., 2011 
      [14]
3.   Ke et al., 2013 [1]
4.   Popoola et al., 2012 [15]
5.   Rashidi et al., 2013 [4]
6.   Mukhopadhyay, 2015 
      [13]

1.   Demiris et al., 2008 [10]
2.   Aggarwal et al., 2011 
      [14] 
3.   Sadri, 2011 [18]
4.   Cardinaux et al., 2011 [5]
5.   Bemelmans et al., 2011 
      [16]
6.   Popoola et al., 2012 [15]
7.   Ludwig et al., 2012 [6] 
8.   Tamura, 2012 [11]
9.   Patel et al., 2012 [12]
10. Ali et al., 2012 [19]
11. Sampaio et al., 2012 [20]
12. Rashidi et al., 2013 [4]

1.   Scanaill et al., 2006 [2]
2.   Remoortel et al., 2012 
      [8]
3.   Reeder et al., 2013 [7]

1.   Demiris et al., 2008 [10]
2.   Cardinaux et al., 2011 
      [5] 
3.   Bemelmans et al., 2011 
      [16]
4.   Ludwig et al., 2012 [6]
5.   Remoortel et al., 2012 
      [8]
6.   Sampaio et al., 2012 [20]
7.   Kim et al., 2012 [9]
8.   Reeder et al., 2013 [7]
9.   Morris et al., 2013 [3]
10. Cheung et al., 2015 [21]

  Fig. 2.1    Categories of existing reviews in the literature in terms of their viewpoints (mentioning 
the fi rst author and year of publication for each reference)       
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   Among the previous reviews, technology- and application-centric reviews 
achieved good consideration in the study of automated monitoring and diagnosis in 
smart-homes. Though technology-centric reviews in the literature thoroughly 
addressed the core technologies used in this area (e.g., describing system architec-
ture, integrated sensors, proposed algorithms, communication protocols, etc.), 
application-centric reviews focus on particular application area and may, for exam-
ple, merely consider some subgroups of ADL, or instrumental activities, or general-
ized human activities in both medical and nonmedical contexts [ 1 ,  4 ,  5 ,  7 ]. Most of 
these application-centric reviews did not include comprehensively the issues of 
older patients in an assisted living environment; however, they have mentioned gen-
eral scenarios of monitoring older adults at home. There is a very limited discussion 
of patient centeredness among these reviews, which only includes some discussions 
and summaries of the methods in terms of patient’s necessity, services, and measur-
ing parameters, such as handling adverse condition, assessing state of health, and 
in-home diagnosis methods. Moreover, the previous reviews did not discuss the 
methods for in-home diagnosis of patients and include less discussion regarding 
collection of datasets in the patient-centered contexts. Thus, in this book we system-
atically summarize the methods that came up as solutions by utilizing monitored 
data to the issues related to patient’s necessity, services, and measuring diagnostic 
parameters of older adults in smart-home scenarios. 

 Table  2.1  further summarizes the main features and contents of these key review 
works in the domain of monitoring technologies and health threat detection in older 
adults, where the column  Topic  presents the reviews’ context such as the algorithms 
for activity recognition, hardware tools available for monitoring, hospitality ser-
vices available at home, and/or evaluation methods for monitoring systems. The 
column  Contents  presents the summaries of reviews,  Types of Analysis  notes the 
types of data (either quantitative or qualitative) used in the review in order to assess 
the existing literature and the application types (medical or general) considered in 
the reviews, and  Sensors Discussed  presents the types of sensors discussed in the 
reviews. The medical application in column 4 was drawn from the setup related to 
the medically ill patients, whereas the nonmedical or general application context 
was drawn from the setup not necessarily related to real patients or geriatrics. 
However, in Table  2.1  we have included reviews covering nonmedical applications, 
because the contents of the reviews included the literatures and the underlying 
objectives of monitoring activities and measuring physiological parameters of geri-
atric patients at home. In column 5, vision-based sensors include, for example, ther-
mal cameras, RGB cameras, and/or infrared cameras. On the other hand, the most 
common non-vision-based sensors are microphones, accelerometers, heat sensors, 
fl ow sensors, pressure sensors, electromagnetic sensors, ultrasonic sensors, and par-
ticle sensors.

   A notable study by Morris et al. [ 3 ] systematically reviewed smart-home tech-
nologies that assisted older adults to live well at home. This review is mainly quality 
of service (QoS) centric, because the authors only reviewed works, which assessed 
smart-home technologies in terms of effectiveness, feasibility, acceptability, and 
perceptions of older people. They indicated that only one study assessed  effectiveness 

2.1 Previous Reviews
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of a smart-home technology in the context of monitoring and assisting older adults 
at home [ 17 ], while majority of studies reported on the feasibility of smart- home 
technology, and other studies were purely observational. 

 Demiris and Hensel [ 10 ] conducted a systematic review of smart-home projects 
worldwide, discussing applied technologies and models used, categorizing these 
projects according to different goals, as, for example, the monitoring of physiologi-
cal vital signs, functional outcomes (e.g., abilities to perform ADLs), safety (e.g., 
detecting environmental hazards, such as fi re or gas leaks) and security (e.g., alerts 
to human threats), social interactions (i.e., measuring and facilitating human contact 
including information and communication applications), emergency detection (e.g., 
falls), and cognitive and sensory assistance (i.e., cognitive aids such as reminders 
and assistance with defi cits in sight, hearing, and touch). They stressed that the 
design and implementation of informatic applications for older adults should not be 
determined simply by technological advances but by the actual needs of end users. 
Furthermore, the current smart-home research needs to address such important 
questions as health outcomes, clinical algorithms to indicate potential health prob-
lems, user perception and acceptance, and ethical implications [ 10 ]. 

 In a recent and comprehensive technology- and application-centric surveys, 
Rashidi et al. [ 4 ] summarized the emergence of  ambient assisted living  ( AAL ) tools 
for older adults based on  ambient intelligence  ( AmI ) paradigm. They summarized 
the state-of-the-art AAL technologies, tools, and techniques and revealed current 
and future challenges. They divided the AAL tools and technologies into (a) smart- 
homes, (b) mobile and wearable sensors, and (c) robotics. They also summarized 
the general sensor types and measurement parameters used in the smart-home 
projects. 

 Another related application-centric article written by Sadri [ 18 ] surveyed  AmI  
and its applications at home, including care of older adults. The main focus was on 
ambient data management and artifi cial intelligence, for example, planning, learn-
ing, event-condition-action (ECA) rules, temporal reasoning, and agent-oriented 
technologies. Sadri found that older adults, typically, need initial training and often 
follow-up daily assistance, to use  AmI  devices. Finally, security threats as well as 
social, ethical, and economic issues behind  AmI  were discussed. 

 One application-centric systematic review by Ali et al. [ 19 ] studied specifi cally 
gait disorder monitoring using vision and non-vision-based sensors. They showed 
strong evidence for the development of rehabilitation systems using a marker-less 
vision-based sensor technology. They therefore believed that the information con-
tained in their review would be able to assist the development of rehabilitation sys-
tems for human gait disorders. 

 Sampaio et al. [ 20 ] in his survey on  AmI  made a comparative analysis of some of 
the research projects, with a specifi c focus on the human profi le, which in the 
authors’ point of view is a crucial aspect to take into account when searching for a 
correct response to human stimuli. This survey explains both application-centric 
and QoS-centric matters. The main objective of their work was to understand the 
current necessities, devices, and the main results in the development of these proj-
ects. The authors concluded that most projects do not present the different 

2 Reviews and Taxonomies



33

 characteristics and needs of people and miss exploring the potential of human 
profi les in the context of ambient adaptation. 

 Another application- and QoS-centric review was conducted by Bemelmans 
et al. [ 21 ], where the authors searched the domain of socially assistive robotics and 
studied their effects in elderly care. They found only very few academic publica-
tions, where a small set of robot systems were found to be used in elderly care. 
Although individual positive effects were reported, the scientifi c value of the evi-
dence was limited due to the fact that most research was done in Japan with a small 
set of robots (mostly off-the-shelf AIBO, Paro [ 22 ] and NeCoRo [ 23 ]), with small 
sample sets, not yet clearly embedded in a care need-driven intervention. The stud-
ies were mainly of an exploratory nature, underlining the initial stage of robotics as 
monitoring and assistive technology applied within healthcare. 

 The recent QoS-centric systematic review by Cheung et al. [ 16 ] studied organi-
zational and clinical impacts of integrating various bedside monitoring equipments 
to an information system, i.e., a computer-based system capable of collecting, stor-
ing, and/or manipulating clinical information important to the healthcare delivery 
process. The authors drew a special attention that implementation of so-called 
patient data management systems (PDMS) potentially offers more than just a 
replacement of a paper-based charting and documentation system but also ensures 
considerable time savings, which can lead to more time left for direct patient care. 
Additionally, authors concluded that improved legibility, consistency, and structure 
of information, achieved by using a PDMS, could result in fewer errors. 

 In one of the most recent technology-centric reviews by Mukhopadhyay [ 13 ], the 
latest reported systems on human activity monitoring based on wearable sensors 
were discussed, and several issues to tackle related technical challenges were 
addressed. The author pointed out that development of lightweight physiological 
sensors could lead to comfortable wearable devices for monitoring different types 
of activities of home dwellers, while the cost of the devices is expected to decrease 
in the future.     
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    Chapter 3   
 Relevant Scenarios for Home Monitoring 
Solutions for Older Adults                     

    Abstract     In this chapter, we describe three common scenarios of older people’s living 
situation in order to increase the understanding of when and how home monitoring can 
be used among older people at risk of worsening health. We aim at describing the dif-
ferent circumstances under which monitoring approaches and personal care solutions 
can be applied. Then, we describe relevant geriatric conditions and threats of deterio-
rating health and functional losses, which are considered to be of paramount need for 
suitable monitoring solutions. Finally, we summarize these needs in a concise list of 
conditions and activities that shall be automatically monitored.  

  Keywords     Geriatric conditions   •   Falls   •   Delirium   •   Cognitive impairment   • 
  Malnutrition   •   Multimorbidity   •   Wandering   •   Health monitoring scenario   •   Older 
adult   •   Sleeping disorder   •   Breathing problem   •   Infection  

         We acknowledge that older people are individuals with very different health, social, 
and socioeconomic characteristics, which make them as a whole a very heteroge-
neous group of the population. Yet we will describe three common scenarios, which 
we believe cover a majority of the situations encountered by older adults in need of 
special attention to prevent health deterioration. This includes, but it is not limited to, 
the description of the involved persons 1  that are receiving or potentially will receive 
in-home health and personal care. The descriptions may include, for example, the 
older persons’ general health condition (i.e., their physical, mental, and cognitive 
functional abilities), the current living environment and daily activities, the health-
care services and technologies that they already have or are potentially available, and 
the possible ethical and legal issues. These basic conditions have to be considered 
before proposing any home monitoring solution. It is important to understand the 
various scenario descriptions in order to identify the key requirements and needs for 
an optimal monitoring solution in each single case. For example, the use of video 
cameras is legally restricted in many countries for privacy reasons, which means that 
it does not make sense to propose video-based solutions if the legal situation does 

1   In this book we have a primary focus on older adults, mainly aged 70 and over (70+), who are 
being monitored. Other involved persons may include formal caregivers (nurses, social and health-
care assistants, and helpers) and informal caregivers (family, neighbors, and friends). 
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not allow their installation. But even when it is legal, cognitively or mentally impaired 
persons may not be able or willing to cooperate with caregivers and thus would 
require other solutions. 

 Finally, emphasis should be put on establishing seamless and consistent informa-
tion and communication fl ow between the different actors in healthcare, i.e., formal 
home care, general practitioner (family doctor), and secondary healthcare, which 
requires accessibility to electronic health records (EHR), also for mobile units, to 
retrieve updated information on health, diseases, and actual treatment, as well as for 
documentation [ 1 ]. Appropriate analysis of which in-home monitoring tools may be 
used when and where requires principally a broad cooperation between involved 
engineering teams and healthcare professionals. 

 The most relevant factors that ultimately infl uence in-home monitoring scenarios 
are the older person’s conditions and abilities, types of living environment, types of 
activities, existing infrastructure, current care and medication plans, parameters that 
need to be monitored, intensity of monitoring, and data transmission, among others. 

3.1      Healthy, Vulnerable, and Acutely Ill Older Adults 

 The older we get, the more diverse we become in terms of health and functions. It is 
therefore a challenge to categorize older adults into a few descriptive groups and 
scenarios. Most commonly and depending on the general abilities of older adults, 
three main groups of in-home monitoring scenarios can be observed: (1) scenarios 
involving relatively “healthy” older adults, (2) scenarios involving “vulnerable” 
older adults, and (3) scenarios involving “acutely ill” older adults. 

 Although the meaning of being healthy can be discussed at length, we describe 
the main actors of our fi rst scenario as older adults who seem relatively “healthy,” 
as they most likely are independently living in their own home and do not show any 
particular symptoms of health deterioration [ 2 ,  3 ]. These older adults may still have 
a few comorbid diseases, e.g., cataract and osteoarthritis, but are not yet hampered 
in their activities of daily living, although they may have had a few incidents in the 
past such as falls. Thus, they would benefi t from early detection of health- threatening 
situations and potential risks, e.g., poor lightning at night when they have to go to 
the bathroom, or fast movements before the body has gained stability, for instance, 
when rising from a chair. Another monitoring example could be the detection of 
declining mobility, which may happen, for instance, due to inadequate relief of a 
bodily pain caused by osteoarthritis in the knee. Less physical activity would lead to 
a negative spiral with not only worsening of the pain but also disuse of muscles, 
which in turn leads to muscle wasting and loss of muscle mass and strength, i.e., 
 sarcopenia , a disabling disease. 

 The second scenario type is the most commonly described in the home monitoring 
literature. It involves “vulnerable” older adults diagnosed with one or more chronic med-
ical conditions [ 4 – 10 ], e.g., chronic obstructive pulmonary disease (COPD), diabetes, 
cardiovascular diseases, stroke, hypertension, depression, etc., and/or with impaired 
physical, mental, or cognitive functions. Older adults with chronic diseases are at higher 
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risk of worsening health, e.g., chronic atrial fi brillation increases the risk of getting a 
stroke and cognitive impairment. Within this scenario, the older persons would in many 
cases benefi t from regular (daily/weekly) attention and possibly assistance from a care-
giver. In addition, the monitoring equipment should be adaptable to other requirements 
for this more vulnerable group of persons, compared to the fi rst scenario, e.g., being 
applied to older adults who would have diffi culties in interacting with the technology but 
perhaps even accept its presence. 

 The third scenario type involves older adults, either belonging to the fi rst or the 
second scenarios, who are developing an acute illness, on top of chronic diseases or 
conditions, and thus at threat of an acute hospitalization, as exemplifi ed in [ 8 ,  11 , 
 12 ]. This scenario has the most complex requirements for monitoring technology 
and is often called  hospital at home  (HH) scenario [ 13 ]. In addition to monitoring 
technology, there is usually a need of appropriate assistive technology that makes it 
feasible for older adults with multiple geriatric conditions to avoid acute admission, 
or, if admitted to the emergency department, to be discharged earlier to their own 
dwelling with the appropriate technology. 

 It is important to note that the aforementioned three main types of scenarios are 
only rough approximations of patient groups. The boundaries between the three 
groups are often blurred, while the real-life scenarios would require much deeper 
insight into the individual patient’s characteristics, institutional factors, the current 
social network situation, the comorbidities, and the main healthcare tasks and goals. 
Therefore, the next subchapter describes possible geriatric conditions, which are 
relevant and worthy to have an insight to, in order to understand the challenges of 
applying in-home monitoring of older adults in their dwellings. Such geriatric con-
ditions would also be involved in the ultimate decision on which type of monitoring 
devices should be used in one of the three scenarios. Apart from getting insight to 
the various, but common, geriatric conditions, it is also important to understand that 
with advancing age the risk of suffering from multiple diseases at the same time 
increases. Two different words are commonly used when describing disease profi les 
in older patients: comorbidity and multimorbidity. The fi rst is mainly defi ned by the 
coexistence of at least one chronic disease or condition with the disease of interest, 
while multimorbidity is usually defi ned as the co-occurrence of at least two chronic 
conditions within one person at a given time [ 14 ]. Multimorbidity is very common 
within the geriatric population and increases with age [ 15 ].  

3.2     Relevant Geriatric Conditions and Threats 
of Deteriorating Health and Functional Losses 

 This subchapter gives a general brief description of common health conditions and 
diseases of older adults, focusing on the scenarios of types two and three. Also, we 
will discuss the most relevant adversities for which monitoring solutions are needed. 

 We will start with discussing some key terms. With advancing age, older persons 
undergo some aging-related physical, mental, and cognitive changes, which increase in 
their vulnerability [ 16 ]. The type two scenario of vulnerable older adults may also 
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include, but not only, persons at risk of  frailty.  Frailty has been coined as a state of 
increased vulnerability to poor resolution of homeostasis after a stressor event, which 
increases the risk of adverse outcomes, including falls, delirium, and disability [ 17 ]. 
Frailty is a complex condition, which is not only defi ned by diseases but also by socio-
economic status and social network [ 18 ], as well as with an increased level of infl am-
matory markers [ 19 ]. Moreover, frailty is associated with disability and mortality [ 16 , 
 17 ], and identifying or detecting some of the factors leading to frailty would be an 
important scope of  gerotechnology . As frailty is not only complex but also very com-
mon in old age, older people with frailty would benefi t from being treated by specialist 
doctors in  geriatric medicine  or  geriatrics , which however are underrepresented in 
many countries despite the demographic challenges of the future [ 20 ] .  Geriatric medi-
cine is “a branch of general medicine concerned with the clinical, preventative, remedial 
and social aspects of illness in old age. The challenges of frailty, complex comorbidity, 
different patterns of disease presentation, slower response to treatment and require-
ments for social support call for special medical skills.” [ 21 ]. Consequently, a geriatric 
patient may be defi ned as an older person with comorbid conditions and co-occurring 
functional limitations, in other words, a host of conditions. Further, the geriatric patient 
is challenging for healthcare professionals because they show atypical symptoms of 
disease, delaying diagnosis [ 22 – 24 ] and treatment, and, consequently, are at higher risk 
of developing disability, loss of autonomy, and lower quality of life [ 25 ]. 

 In order to keep the autonomy of an older person, the health hazards associated 
to old age must be addressed from various angles, including the framework of  gero-
technology , by applying appropriate monitoring technology, which is described in 
more detail in Chap.   4    . 

 In the reminder of this chapter, we outline and describe the potentially dangerous 
situations and health threats that occur most frequently in older and very often 
comorbid and frail patients in our scenarios. We start with discussing falls and inju-
ries in older geriatric patients, since these are among the most frequently reported 
health problems and serious threats to independent living. Then we review a list of 
potential health threats, which are the most alarming in the older comorbid popula-
tion, such as delirium, stroke, hypertension, and heart failure, among others. For 
each situation, we fi rst defi ne the problem. Then, we discuss its importance and 
refer to the epidemiology of these occurrences. Finally, we discuss if these problems 
can be detected, mentioning what data might be necessary to acquire. 

 For clarity, we are not focusing on diagnostic approaches for major chronic con-
ditions, such as dementia, but rather describing potential adverse events and danger-
ous situations, which are of potential interest for automated detection. 

3.2.1     Falls and Injuries 

 Across the main three scenario types, falls are very common and may lead not only 
to injuries and adverse outcomes, such as hip fractures or brain concussions, but 
also to a secondary effect of fear of falling, which in itself increases the risk of fall-
ing and reduced physical activity [ 26 ]. As a consequence, social interaction is 
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reduced, loneliness becomes frequent, and quality of life is diminished [ 27 ]. A neg-
ative spiral may begin and may eventually lead to death, if left unrecognized. 
Therefore, detection of falls is of paramount importance, not only for identifying 
those who have fractures or intracranial hematomas but also because many fallers 
are simply unable to get up by themselves and are therefore at risk of lying on a fl oor 
for several hours, even days, with the subsequent risk of dehydration, muscle dam-
age and consequent damage of the kidneys, or even death [ 28 ,  29 ]. Falls could also 
be the outcome of a stroke or a cardiac arrest. To lower the risk of subsequent further 
health-threatening complications, fast identifi cation and diagnosis is required. 

 The adoption of a defi nition of a fall is an important requirement when studying 
falls as many studies fail to specify an operational defi nition, leaving space for inter-
pretation to researchers. This usually results in many different interpretations of 
falls in the literature [ 29 ]. For example, older adults including their family members 
tend to describe a fall as a loss of balance, while healthcare professionals generally 
refer to an event which results in a person coming to rest inadvertently on the ground 
or fl oor or other lower level leading to injuries and health problems [ 30 ,  31 ]. 

 The geometry of the human body in motion requires an individual to remain bal-
anced and upright under a variety of conditions. Balance is adversely affected by 
intrinsic and extrinsic factors (). Intrinsic factors are, for example, side effects of 
medication (e.g., orthostatic hypotension), medical conditions (e.g., stroke), aging- 
related physiological changes (e.g., declining muscle strength), and nutritional fac-
tors (e.g., vitamin D defi ciency), while extrinsic factors are, for example, poor 
lighting conditions, loose carpets, slippery surfaces, stairs, etc. [ 32 ,  33 ]. A system-
atic review and meta-analysis of risk factors for falls in older adults, who live at 
home, can be found here [ 34 ]. Since in real-life scenarios a great majority of fall 
incidents in older adults who live alone are not reported to healthcare providers 
[ 28 ], automated detection of falls is of high practical research interest [ 35 ].  

3.2.2     Delirium 

 Patients of all three scenarios are potentially at risk of developing delirium, but the 
more frail and impaired an older person is, the higher is the risk [ 36 ]. Delirium is 
described as an acute confusional state [ 36 ]. Delirium may develop as a reaction to 
infection, dehydration, pain, and painkillers and has a within-hours fl uctuating 
course from cognitively intact to a state of confusion and even agitation (hyperac-
tive delirium), although silent (hypoactive) delirium also occurs [ 36 ]. Furthermore, 
neurological disorders, such as dementia, signifi cantly contribute to the risk of hav-
ing delirium. Being in an unfamiliar and busy place with many disturbances and 
strange faces, e.g., a hospital emergency ward, does not enhance recovery in frail 
older adults, nor does surgery [ 37 ]. Some diagnostic tools, such as the Confusion 
Assessment Method (CAM) [ 38 ], are often used to recognize delirium and help 
distinguish delirium from other forms of cognitive impairment. Treatment should 
be targeted toward the underlying disease, not the symptoms of delirium, and the 
delirium will gradually disappear as the initial condition is treated, normally within 
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hours to a few days. Apart from severe causes of delirium, e.g., severe infection, in 
which intravenous medication is imperative, delirium may not always need to be 
treated in a hospital setting but may be cared for in the patient’s own dwelling if the 
necessary surveillance can be established. Discharging older persons at risk of delir-
ium to their own home with in-home monitoring soon after establishing a diagnosis 
and starting targeted treatment will reduce the risk of delirium or shorten the time 
period of delirium [ 39 ].  

3.2.3     Wandering and Leaving Home 

 In cases of cognitive impairment, both unrecognized and recognized, the risk of 
accidents and getting lost while being outdoors (mostly referring to scenario types 
two and three) can be rather high. A frequent symptom of cognitive impairment and 
dementia is geographical disorientation, and in more advanced stages, demented 
persons may leave their dwelling to fi nd their childhood home, a typical delusion of 
parents being still alive. Such condition may lead to fatal situations, e.g., with wan-
dering in cold weather without proper clothing followed by hypothermia and subse-
quent death. Therefore, it is important for the caregiver to know whether and when 
the demented person is leaving the dwelling and, more importantly, when and where 
wandering behavior may have occurred [ 40 ,  41 ]. However, despite of several 
attempts to defi ne wandering behavior, no commonly accepted defi nition of wan-
dering exists so far [ 42 ], assumingly because the underlying behavior is very com-
plex and it may present differently depending on the person’s physical location 
(e.g., person’s own home, hospital, care facility, or a nursing home). One of the 
latest and most cited defi nitions of wandering, proposed by Algase et al. [ 43 ], is “a 
syndrome of dementia-related locomotion behaviour having a frequent, repetitive, 
temporally disordered, and/or spatially disoriented nature that is manifested in lap-
ping, random, and/or pacing patterns, some of which are associated with eloping, 
eloping attempts, or getting lost unless accompanied.” Detecting and analyzing 
leaving and returning home habits, as well as travel patterns of older people, are 
therefore of high importance.  

3.2.4     Malnutrition 

 Malnutrition and weight loss are mostly relevant for scenarios two and three but also 
valid for scenario type 1. Cognitive impairment, loneliness, and depression, as well as 
poor appetite due to undiagnosed or diagnosed disease or gastrointestinal side effects 
of commonly used medicines, may lower the appetite of older people and lead to mal-
nutrition and its typical symptom: weight loss. Apart from a geriatric assessment of the 
etiology of weight loss, securing adequate intake of energy and protein is of paramount 
importance to revert the otherwise resulting development of sarcopenia (defi ned 
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previously on Sect.  3.1 ) and subsequent functional loss. Surveillance of adequate food 
intake, liquids, and medicine, as well as automated monitoring of body weight, would 
help to identify older persons at risk of adverse outcomes and thus lead to the initiation 
of preventive actions. Sarcopenic older persons are at high risk of severe disability, 
falls, fractures, and institutionalization [ 44 ]. It has in recent years been acknowledged 
that sarcopenia may also be present in obese older adults, so-called sarcopenic obesity, 
caused by excess intake of energy of poor quality, physical inactivity, and hormonal 
alterations [ 45 ]. Such persons have the same adverse outcomes as low-weight sarcope-
nic persons and may too benefi t from surveillance of adequate food intake.  

3.2.5     Sleeping Disorders 

 Another potential problem, again mostly relevant for scenarios 2 and 3 but also valid 
for type 1, is disturbances in sleep. In fact, the majority of the geriatric patients experi-
ence signifi cant alteration of their sleep patterns and thus overall bad quality of sleep. 
Changes in sleep pattern are considered to be normal changes with advancing age, 
with a greater percentage of the night spent in the lighter sleep stages [ 46 ,  47 ], but 
other causes exist too and can be divided into intrinsic conditions of an individual 
patient and extrinsic factors related to the environment, where the patient is sleeping. 
Intrinsic conditions may include pain (e.g., from arthritis), nocturia, medication effects, 
depression, restless legs syndrome, obstructive sleep apnea (long pauses in breathing 
associated with snoring), and paroxysmal nocturnal dyspnea (sudden pauses in breath-
ing, experienced during exacerbations of congestive heart failure) [ 48 ]. Extrinsic fac-
tors may include acoustic noise, lightning, vibration or physical movement, fl uctuations 
of environmental temperature, draught at home, dust, and poor air condition, among 
others. Thus, monitoring sleep and detecting possible causes of sleep disturbances are 
of high importance for revealing causes of disturbed sleep.  

3.2.6     Shortness of Breath 

 With advancing age certain physical activities, such as walking upstairs, may cause 
dyspnea in older adults, who in turn would adapt their physical activities to less 
challenging activity levels, or even inactivity. Aging is associated to aging-related 
changes in the respiratory organs leading to lower oxygen uptake from the air to the 
blood, lower lung volume, and less lung compliance, all leading to shortness of 
breath when extra respiratory capacity is needed. Diseases such as osteoporotic 
compression or vertebral deformities of the thoracic vertebras may also affect nor-
mal lung function by diminishing the thorax volume [ 49 ]. Environmental factors 
such as smoking and previous employment in jobs associated with dust may rein-
force these eventually pathologic changes. 
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 A common medical breathing condition is chronic obstructive pulmonary diseases 
(abbreviated as COPD), which shares many symptoms with pulmonary emphysema, 
chronic bronchitis, and asthma. Co-occurring diseases such as chronic heart failure, 
anemia, and cancers may worsen breathing, as well as acute pneumonia. Also snoring 
with apnea is considered as a breathing problem, which may lead to lower oxygen 
intake during sleep and subsequent cognitive impairment [ 50 ]. Other reasons of 
breathing problems may include smoking habits, poor air quality in the living envi-
ronment, and non-pulmonary infections. Due to the vital importance of pulmonary 
function, many studies aim at detecting, monitoring, and preventing respiratory prob-
lems in older adults at their living environments [ 51 – 54 ].  

3.2.7     Hygiene and Infections 

 Poor hygiene and not the least in combination with a weaker immune system associ-
ated to aging may increase the risk of contracting infections, often leading to fever 
(elevated body temperature). Oral hygiene and oral infections, such as dental caries 
and oral fungal infections, are important to care about, especially for those individu-
als who use artifi cial dentures [ 55 ], as it may lead to malnutrition and weight loss 
and may furthermore cause systemic infections. 

 Urinary tract infections (UTIs), as another example, can be a serious health threat to 
older people (). UTIs are common in older adults, especially in women (). Many cases 
are self-limiting in healthy individuals, but in vulnerable and diseased older persons, a 
UTI, if untreated, may spread to the blood stream causing systemic infection, kidney 
damage, delirium, and even death. Common symptoms of UTIs include urgency, fre-
quent and painful urination, and incontinence but may be absent in older adults. 

 An infection of the lungs (pneumonia) [ 56 ] may lead to multiple symptoms, such 
as cough, fever, shortness of breath, and weakness. The pneumonia may stress the 
heart and lead to acute heart failure and atrial fi brillation, which further worsens the 
situation and demands immediate medical attention.  

3.2.8     Problems Related to Physical Environment 

 Finding potential threats in older adult’s living environment is relevant for all three 
scenarios. However, not many studies investigating health conditions of older adults 
at home were able to thoroughly assess the environmental threats of the older persons’ 
dwellings. For example, levels of environmental noise, lighting, vibrations, ambient 
temperature, humidity, climate and air condition, and other matters, such as availabil-
ity of household facilities, can all signifi cantly infl uence the quality of life of an older 
individual, especially when the individual suffers from comorbid chronic heart and/or 
lung conditions. Other environmental hazards may include obstacles in pathways, 
slippery surfaces, tripping hazards, loose rugs, unsafe or unstable furniture, etc., which 
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may contribute to injuries or falls [ 57 ,  58 ]. Indeed, the most frequently cited causes 
and risk factors of falls are “accidental” and “environment related,” accounting for 
approximately 30–50 % of all older adult falls [ 59 ]. However, many falls attributed to 
accidents stem from the interaction between identifi able environmental hazards and 
increased individual susceptibility to such hazards from accumulated effects of age-
ing and diseases [ 59 ].  

3.2.9     Underlying Medical Conditions and Multimorbidity 

 The concept of multimorbidity has been explained earlier and refers to co- occurrence 
of two or more chronic diseases or conditions within the same individual [ 14 ,  15 , 
 60 ]. Multimorbidity, associated with polypharmacy (i.e., using fi ve or more different 
medications per day), and adverse side effects of medication increase with advanc-
ing age, resulting to more than half of older adults suffering from three or more 
chronic diseases simultaneously [ 61 ]. The most frequent comorbid conditions in 
older people are [ 62 ] hypertension, coronary artery disease, diabetes mellitus, his-
tory of stroke, chronic obstructive pulmonary disease, and cancer. Early recognition 
of acute illness and diagnosis, followed by timely and adequate treatment, is not 
only the key to prevent severe deterioration in health but also the key to reducing the 
risk of functional impairments and mortality in geriatric patients. The Comprehensive 
Geriatric Assessment (CGA) is a tool that has proven effective in terms of reducing 
mortality and institutionalization [ 63 ]. The same principle of comprehensive assess-
ment by monitoring medical parameters and features in older persons at risk, e.g., 
multimorbid geriatric patients, would be valuable for the individual as well as to the 
society. However, it requires an understanding of the multidisciplinary nature of 
health and health deterioration in older adults, and therefore, a broad range of medi-
cally sensitive parameters, both objective and subjective, that can detect and mea-
sure such deterioration, needs to be considered. Novel automated monitoring 
technology yet needs to be identifi ed or developed, which will create new perspec-
tives on using in-home monitoring.   

3.3     Summary of the Needs 

 A list of conditions and activities that may be monitored is listed below. The list is 
far from being exhaustive but addresses the most common needs given by the indi-
vidual’s living style, culture, and acceptance of remote surveillance and monitoring 
in private homes. The future may bring new conditions, e.g., economic challenges, 
changed family structures and intergenerational support and care, improved health 
literacy as well as IT literacy of caregivers, and the target population itself, which 
may identify new ways of monitoring older adults in their dwellings. 

3.3 Summary of the Needs
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 The focus is on the following topics:

•    Gait and balance monitoring  
•   Detecting falls  
•   Detecting problems related to physical environment  
•   Detecting wandering  
•   Detecting delirium  
•   Recognizing abnormal activity, such as, absence of meal preparation or disturbed 

day-night cycle  
•   Monitoring physiological vital status parameters, including body weight  
•   Monitoring food intake  
•   Detecting adherence to medication    

 In the next chapter, we will summarize the available monitoring technologies, which 
directly or indirectly address and attempt to contribute to the aforementioned topics. 
Most of these monitoring technologies share common ground as organized in Chap.   4    .     
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    Chapter 4   
 Monitoring Technology                     

    Abstract     This chapter aims at giving an insight into a variety of available monitor-
ing technologies and techniques, which aim to provide solutions to the issues listed 
in Chap.   3    . First, we start with discussing possible data collection approaches, by 
revealing choices of available sensors and underlying constrains. Second, we pro-
vide a summary of sensors used for data acquisition in regard to needed medical 
applications, revealing what relevant parameters can be derived from those sensor 
measurements. We then summarize what common data processing and analysis 
techniques are used for interpreting this data, with a special focus on machine learn-
ing approaches. Third, we derive important requirements and underlying challenges 
for the involved machine learning strategies and discuss possible implications for 
applying the different monitoring approaches. Finally, we refer to a number of 
established standards, which are needed to be complied with, when developing and 
implementing home monitoring systems for older adults.  

  Keywords     Monitoring technology   •   Sensor   •   Physiological parameter   •   Activity 
monitoring   •   Patient at home   •   Machine learning   •   Wearable   •   Remote sensing   • 
  Standards   •   Activity of daily living (ADL)  

         Most of the smart-home projects, which were briefl y introduced in Sect.   1.3    , signifi -
cantly contribute to the research and development of automated monitoring tech-
nologies related to the topics listed in Sect.   3.3    . Many of these projects proposed 
holistic approaches, which aim at solving multiple problems simultaneously within 
one smart-home environment. However, these topics are highly abstracted, and 
thus, many of them are treated differently, depending on different scenario con-
straints, on what sensors are applied for data acquisition, and on what information 
is available a priori. For example, recognition of abnormal activity highly depends 
on the monitored subset of ADLs, and furthermore, the abnormality may be defi ned 
differently. For instance, abnormality may mean a certain deviation from the learned 
baseline of “normal” everyday activities, or it can be strictly predefi ned based on 
prior expert knowledge, e.g., a known sequence of activities that is considered to be 
abnormal and health threatening. 
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 The most common monitoring approach for recognizing health problems at 
home is motion capture (e.g., for classifying and assessing ADL). Recordings are 
usually examined manually by healthcare professionals, such as nursing staff, phys-
iotherapists, and occupational therapists, which is very time-consuming [ 1 ]. In pre-
vious studies about automated monitoring, movement is usually captured using 
inertial sensors [ 2 ], computer vision [ 3 – 5 ], electromyography (EMG) [ 6 ], radiofre-
quency (RF) sensors, or infrared (IR) sensors [ 7 ]. For detecting different health 
threats, video monitoring and computer vision have been widely presented and dis-
cussed in the literature, but the main two purposes of these systems were surveil-
lance and communication applications. Video (incl. audio) transmission is usually 
made in real time over an ordinary telephone line [ 8 ] or the Internet [ 9 ]. The video 
can be either viewed directly on a tablet or a monitor by a nurse or doctor, or a video 
processing system is used to automatically interpret the video data and present the 
relevant (alarming) information to the medical staff [ 10 ] only when some abnormal-
ity is detected. The main problem with these video-audio solutions is the ethical 
issues, i.e., the majority of older adult users are concerned about being monitored 
by video, as discovered by usability studies, e.g., in the EU-funded Seventh 
Framework Programme (FP7) Project Confi dence [ 11 ]. Another common problem 
is insuffi cient bandwidth or the quality of Internet connectivity and poor mobile 
network coverage in some geographic areas such as rural areas. Therefore, it may be 
impossible to establish real-time video link with suffi ciently high resolution of, e.g., 
complicated wounds, which may need to be treated by a visiting nurse, perhaps 
guided by a surgeon watching the video in his or her hospital offi ce. Nevertheless, 
as a communication tool to allow older adults communicating with medical staff on 
their own request, video-audio technology is already commonly applied [ 10 ,  12 , 
 13 ], when connectivity allows it. 

4.1     Sensing and Data Acquisition 

 There are numerous ways of collecting data about the older persons’ health condi-
tion, which can be accomplished by asking specifi c questions and registering 
answers (considered to be a subjective approach) or by using various sensors (an 
objective approach). In this book we are mainly interested in collecting objective 
data, which can be acquired automatically, by using sensors and data capturing 
devices. However, very often both subjective and objective approaches are com-
bined, to provide as full information as possible. 

4.1.1     Types of Sensors and Data Capturing Devices 

 The different types of sensors used in the fi eld of patient monitoring and the purpose of 
their employment in regard to the topics listed in Chap.   3     are shown in Table  4.1 . The 
most common purpose of employing these sensors has been for fall detection applica-
tions. Fall detectors [ 54 ,  107 ], in most cases, measure motions and accelerations of the 
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   Table 4.1    Summary of sensors used for data acquisition in regard to needed medical applications   

 Sensor type/sensing 
modality  Data of interest  Purpose of application  References 

 Video cameras  Pose estimation, 
location, movement 
speed, size and shape 
changes, custom- defi ned 
visual features, temporal 
semantic data, facial skin 
color, head motion, face 
alignment positions 

 Gait and balance monitoring, fall 
detection, monitoring the activity 
of daily living, abnormal activity 
recognition, activity detection in 
fi rst-person camera view and 
detection of activity of taking 
medicine, measurement of 
physiological parameters and 
tracking medical conditions, 
elopement detection 

 [ 14 – 43 ] 

 Microphones  Heart sound, speech, 
coughing sounds, 
snoring sounds, 
stethoscope signal, 
environmental noise, etc. 

 Physiological vital status 
parameter monitoring, 
environmental threat detection 

 [ 44 – 50 ] 

 Infrared (IR) sensors 
(incl. motion detectors 
and depth cameras) 

 Indoor location, 
movement 

 Fall detection, abnormal activity 
recognition, wandering detection 

 [ 21 ,  34 ,  51 , 
 52 ] 

 Accelerometers  Body movement  Fall detection, abnormal activity 
recognition, wandering 
detection, gait and balance 
monitoring, food intake 
monitoring 

 [ 53 – 63 ] 

 Gyroscopes  Body movement, 
orientation 

 Fall detection, abnormal activity 
recognition, gait and balance 
monitoring 

 [ 55 ,  64 – 67 ] 

 GPS trackers  Outdoor (and limited 
outdoor) location 

 Wandering detection  [ 68 ,  69 ] 

 Pulse oximeter/
near-infrared 
(cuffl ess) 

 SpO 2 , blood pressure, 
heart rate 

 Physiological vital status 
parameter monitoring 

 [ 39 ,  44 ,  70 ] 

 Blood pressure 
monitor (cuffed) 

 Systolic and diastolic 
blood pressures and 
heart rate 

 Physiological vital status 
parameter monitoring 

 [ 44 ,  70 – 77 ] 

 Impedance 
pneumography (IP) 
sensor 

 Respiration rate  Physiological vital status 
parameter monitoring 

 [ 78 ] 

 ECG device  ECG signal; heart rate; 
including inter-beat (RR) 
interval; beginning, 
peak, and end of the 
QRS complex; the P and 
T waves; the ST 
segment, etc. 

 Physiological vital status 
parameter monitoring, 
arrhythmia detection, delirium 
detection 

 [ 44 ,  63 ,  77 , 
 79 – 81 ] 

 EMG device  EMG signal and related 
parameters 

 Abnormal activity (incl. 
inactivity) detection 

 [ 63 ,  77 ,  82 ] 

(continued)
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person using tags worn around the waist or the upper part of the chest (by using inertial 
sensors: accelerometers, gyroscopes, and/or tilt sensors). In general, if the accelera-
tions exceed a threshold during a time period, an alarm is raised and sent to a commu-
nity alarm service. By defi ning an appropriate threshold, it is possible to distinguish 
between the accelerations during falls and the accelerations produced during the nor-
mal ADL. However, threshold-based algorithms tend to produce false alarms, for 
instance, standing up or sitting down too quickly often results in crossing a threshold 
and an erroneous classifi cation of a fall [ 1 ]. Several machine learning approaches were 
also proposed for detection and identifi cation of falls [ 65 ,  108 – 111 ], which help to 
minimize those false alarms by automatically adapting to specifi cs of the monitored 
person. The use of indoor localization sensors (both IR and RF based) has also been 
reported [ 109 ,  112 ], which are intended for localizing persons in 3D space and analyz-
ing their movements, useful for detecting accidental falls or abnormal activity.

Table 4.1 (continued)

 Sensor type/sensing 
modality  Data of interest  Purpose of application  References 

 EEG device  EEG signal, blood 
glucose levels 

 Physiological vital status 
parameter monitoring, detection 
of various health threats, such as 
hypoglycemia, epilepsy, sleep 
apnea, dementia, and other uses 

 [ 82 – 91 ] 

 Weighting scale  Body weight  Physiological vital status 
parameter monitoring, food 
intake monitoring 

 [ 44 ] 

 Spirometer  Spirometric parameters, 
such as forced vital 
capacity (FVC), peak 
expiratory fl ow (PEF), 
and peak inspiratory 
fl ow (PIF) 

 Physiological vital status 
parameter monitoring 

 [ 44 ,  92 ,  93 ] 

 Blood glucose 
monitor 

 Blood glucose levels  Physiological vital status 
parameter monitoring 

 [ 44 ,  70 ,  94 , 
 95 ] 

 Pressure mat/carpet  “Step on,” “sit on,” or 
“lay on” events 

 Abnormal activity recognition, 
wandering detection 

 [ 96 ] 

 Stove sensor  Stove on/off events  Environmental threat detection  [ 97 ] 
 RFID sensor  Different events (such as 

taking pills), localization 
 Abnormal activity recognition, 
tracking medical conditions, 
environmental threat detection, 
food intake monitoring 

 [ 98 – 102 ] 

 Temperature sensors  Body temperature, 
environmental 
temperature 

 Physiological vital sign 
monitoring, detecting problems 
of physical environment 

 [ 63 ,  69 ,  77 , 
 103 – 106 ] 

  “Purpose of Application” column refers to detecting health threats for older adults living alone at 
home, which is relevant to the list specifi ed in Sect.   3.3      
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   Another common technology for fall and/or accident detection is emergency 
alarm systems, which usually include a device with an alarm button [ 98 ,  113 ], e.g., 
embedded in a mobile phone, pendant, chainlet, or a wristband. These devices can 
be used to alert and communicate with a responsible care center. However, such 
devices are effi cient only if the person consciously recognizes an emergency and is 
physically and mentally capable to press the alarm button. Also static alarm buttons 
exist, which are often placed in the toilet or bathroom, as required by the BS 8300 
and ISO 21,542 standards [ 114 ,  115 ]. 

 The sensors reported in the literature included (but were not limited to) infrared 
(IR) and near-infrared (NIRS) sensors [ 21 ,  103 ,  116 – 120 ], video [ 15 ,  42 ,  121 ] and 
thermal cameras [ 122 ,  123 ], bioelectrical sensors (used in ECG, EMG, EEG) [ 63 , 
 80 ,  81 ,  124 ,  125 ], ultrasonic sensors and microphones [ 126 – 130 ], radiofrequency 
(RF) transceivers, piezoresistive and piezoelectric sensors [ 131 – 133 ], inertial sen-
sors (such as accelerometers, gyroscopes, and tilt sensors) [ 53 ,  54 ,  56 – 60 ,  63 – 65 , 
 134 ], electrochemical sensors (such as smoke detectors, CO 2  meters, blood glucose 
and hemoglobin testers) [ 135 – 139 ], as well as mechanical measurement devices 
(such as weighing scales). 

 Video cameras and thermal cameras have two different types: static cameras and 
active PTZ (pan-tilt-zoom) cameras. IR sensors also have two types, active and pas-
sive, but the meaning of activeness in this context is different. Instead of being able 
to rotate or zoom in and out, active IR sensors emit IR radiation pattern and then 
capture the refl ection of the infrared rays. On the other hand, passive IR (i.e., PIR) 
sensors merely capture the IR radiation from the environment. Ultrasonic sensors, 
for instance, are typically active, meaning that an ultrasound transmitter is involved 
and an ultrasound receiver is tuned to capture the refl ected ultrasonic waves initially 
emitted by the transmitter. 

 Bioelectrical sensors measure electrical current generated by a living tissue. 
Electrochemical sensors typically measure the concentration of the substance of 
interest (such as gas or liquid), by chemically reacting with that substance and con-
sequently producing an electrical signal proportional to the substance concentra-
tion. Piezoresistive sensors measure changes in the electrical resistivity of a 
piezoresistive material (e.g., consisting of semiconductor crystals) when a mechani-
cal stress is applied to it. On the other hand, piezoelectric sensors measure the elec-
trical potential generated by a piezoelectric material itself, which is also caused by 
applying mechanical force to it. 

 Most of these aforementioned sensors have been utilized for data acquisition in 
different areas of older patient monitoring, such as activity of daily living (ADL), 
instrumental activity of daily living (IADL), abnormal activity detection such as fall 
detection or wandering, and extraction of physiological parameters. 

 Hence, the general goal of using the aforementioned sensors is to measure rele-
vant physical properties for estimating specifi c medically important parameters 
(often called as  biosignals  or  biomarkers ), which are summarized in Sect.  4.1.3  and 
which allow to further infer the patients’ health conditions [ 140 ] followed by man-
ual or automatic analysis (Fig.  4.1 ).
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  Fig. 4.1    The linkage between the identifi ed sensors and the most common corresponding param-
eters (summarized in Sect.  4.1.3 ), which can infer patients’ health conditions and therefore can be 
valuable assets for each of the three scenarios (introduced in Chap.   3    ).  NIRS  stands for near- infrared 
spectroscopy,  IR  infrared,  RF  radiofrequency,  CO   2   carbon dioxide (concentration),  SpO   2   peripheral 
capillary oxygen saturation, i.e., estimation of the oxygen saturation level,  HR  and  HRV  stand for 
heart rate and heart rate variability, respectively,  GSR  galvanic skin response,  t ° temperature       
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4.1.2        Sensor Location and Placement 

 Technically, there are infi nite location options for placing the variety of sensors 
intended for in-home monitoring. The choice of these sensors and their placement, 
however, highly depends on the needs seen by patients and medical staff, on  physical 
and mental conditions of a person, who needs to be monitored, and on the various 
scenario constrains, including existing infrastructure options, physical layout of the 
dwelling, etc. In general, these sensors can be divided in the following groups in 
terms of their placement:

    1.     On-body sensors , such as skin patches and sensors worn by an individual as an 
accessory or embedded in the outfi t (part of clothing), like:

    (a)    Electronic skin patches or artifi cial skin, as exemplifi ed in [ 52 ,  141 ,  142 ], 
that can be glued to the skin on a body area of interest and which may include 
various sensors for measuring various physiological parameters, such as (but 
not limited to) body temperature, heart rate, EMG parameters, pulse  oximetry 
for monitoring the oxygen saturation (SpO 2 ), as well as accelerometers, 
moisture sensors, and possibly others.   

   (b)    Wristwatches, wristbands, and armbands [ 103 ,  143 – 147 ] or rings [ 103 , 
 148 ], measuring heart rate, body temperature, near-body ambient tempera-
ture, galvanic skin response (GSR), and EMG data. Similarly, these sensors 
can also be incorporated into jewelry, such as necklaces, brooches, pins, 
earrings, belt buckles, etc.   

   (c)    Clothes, belts, and shoes for monitoring gait, motion, and vital signs and 
detection of health emergencies [ 133 ,  149 ]. The most common are chest- 
worn belts and “smart textile” shirts for measuring vital signs and motion 
[ 78 ,  131 ,  133 ,  150 ,  151 ]. Other examples may include gloves for recording 
fi nger and wrist fl exion during ADLs and/or vital signs [ 152 ,  153 ], a waist-
band with textile sensors for measuring acidity (pH levels) of sweat and 
sweat rate [ 139 ], or moisture-sensitive diapers [ 154 ].   

   (d)    Headbands and headsets for monitoring brain activity, based on EEG and 
NIRS signal analysis [ 82 ,  155 ,  156 ].    

      2.     Remote sensors , which can be placed on ceilings or desks, embedded in pieces 
of objects, furniture, in the fl oor of a house, which are usually static (i.e., not 
mobile). These can include the following:

    (a)    Sensors, which are mounted on ceilings or walls (incl. corners), include 
video cameras (with or without microphones); [ 21 ,  42 ,  121 ,  125 ] IR active 
and passive sensors (including thermal imaging) [ 118 – 120 ,  122 ,  144 ,  157 , 
 158 ], and ultrasound sensor arrays [ 159 ]. Those sensors are used mainly for 
localization and motion capture of home residents and also for measuring 
various physiological signs, such as breathing rate and cardiac pulse, as well 
as for assessing functional status of older adults at home; detecting 
 emergencies, such as falls; and recognizing various ADLs. Noteworthy, the 
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majority of the aforementioned monitoring approaches do not require wear-
ing tags or carrying a mobile device for older persons during monitoring; 
however, several IR-based motion capture systems [ 66 ,  160 ] and RF-based 
localization systems [ 11 ,  109 ,  161 ,  162 ] do require wearing dedicated tags 
or  on-body  devices attached to a subject and thus are mainly meant for 
experimental purposes.   

   (b)    Pressure-sensitive mats, carpets, beds, sofas, and chairs, or load-sensing 
fl oor, which are used for monitoring movement, assessing gait, detecting 
falls, and recognizing sitting and sleeping postures, as well as ADLs [ 163 –
 168 ]. Various contextual data can be extracted from load-sensing techniques, 
for example, the body weight or position of a person. Other sensors, such as 
moisture sensors, can be also embedded into bed mattresses or sofas, to 
detect, for example, possible urinary incontinence [ 132 ,  169 ], or vibration 
sensors, embedded in the fl oor, for movement tracking and fall detection 
[ 170 ].   

   (c)    Ambient temperature, humidity, CO 2  concentration, vibration, particle, 
lightning sensors, microphones, and smoke detectors, which are placed in all 
or certain rooms of older residents, to monitor environmental living condi-
tions, to recognize different ADLs, as well as to screen for certain emergen-
cies [ 48 ,  94 ,  105 ,  171 – 173 ]. Usually these sensors are also mounted on walls 
or ceilings.   

   (d)    Medication tracking and reminder systems, as well as usage tracking of dif-
ferent items at home, usually based on RFID technology [ 31 ,  101 ,  102 ]. 
These systems could detect how many times an older adult uses his or her 
preferred items, thus providing a good measure of the person’s ADLs.    

      3.     Implantable  (in vivo)  devices , like:

    (a)    Implantable cardiac monitors, i.e., ECG loop recorders [ 174 ]   
   (b)    Smart pills, e.g., for gastric pressure and pH level measurement [ 175 ]   
   (c)    Continuous glucose-monitoring biosensors, e.g., implanted into the inner 

ear of subjects, detecting hypoglycemia from EEG signals [ 84 ,  90 ]   
   (d)    Wireless capsule for endoscopy [ 176 ]    

      4.     Portable (mobile) devices , like:

    (a)    Smartphones and tablets [ 38 ,  57 ,  60 ,  64 ,  134 ,  152 ,  177 – 179 ]   
   (b)    Multimedia devices or systems [ 94 ,  180 ,  181 ]   
   (c)    Robots equipped with multimodal sensors [ 125 ,  180 ,  182 – 185 ]   
   (d)    Portable video cameras and microphones [ 10 ,  186 ]    

      For a number of practical and fi nancial reasons, the devices mentioned in the fourth 
group of the above list are often used as devices for the fi rst and second group. 
Furthermore, smartphones and tablets typically provide wider range of functional-
ity, including transmission, storage, processing, accessing of the data and relevant 
information, as well as providing functionality for human-computer interaction. 
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 Systematic evaluation is needed in order to quantify which location and place-
ment is the most suitable for the sensors. For instance, Kaushit et al. [ 63 ] evaluated 
the characteristics of a pyroelectric infrared (PIR) detector to identify any section of 
a room, where the detector will fail to respond, and assessed the number of detectors 
required to identify reliably the movements of the occupant. They showed the spa-
tial characteristics of PIR detector and assessed the minimum number of detectors 
required to sense even small movements (e.g., reading a book) in its defi ned fi eld of 
view in order to monitor activities of older people living alone at home. They sug-
gested combining several detectors (four per room – one at each corner of the room) 
in order to gather reliable data for all types of movements to assess the occupancy 
patterns of the room, because a single detector was not capable of providing infor-
mation about the level of activity performed by the occupant. 

 One of the most promising patient monitoring technologies is based on health 
monitors that are body worn (e.g., on the wrist). Most commonly, they are intended 
to continuously monitor the pulse, skin temperature, movement [ 187 – 191 ], and 
other data of interest. Usually, at the beginning of the systems usage, the pattern for 
the user is learned. For this purpose, machine learning approaches are used (see 
Sect.  4.2.1 ). Afterwards, if any deviations are detected, alarms are typically sent to 
the emergency center. Such a system can detect various health threats, for example, 
collapses, faints, blackouts, etc. The drawbacks of these systems are poor tracking 
accuracy [ 11 ] and that people are not likely to carry the body-worn devices at all 
times, even if the transceiver is built into a convenient form, such as a wristwatch, a 
smartphone, or a bracelet. 

 Finally, the common problem with most of the currently proposed health moni-
toring systems is that patients are often compelled to wear or even carry on uncom-
fortable and/or cumbersome equipment, to be within certain smart-home rooms or 
beds fi tted with monitoring devices, which clearly restricts older persons’ activity 
[ 192 ]. The challenge of building monitoring system, which can automatically moni-
tor older patients at home and detect dangerous conditions and situations, remains 
unsolved. In order to solve the abovementioned problems, it is strategically impor-
tant to prioritize the most unobtrusive technological solutions with a trade-off of 
capturing enough  clinically useful  data.  

4.1.3      Summary of Parameters 

 All sensible parameters can be categorized into the fi ve main classes, which repre-
sent the nature of the target measures:

    1.    Physiological parameters, as, for example, in [ 193 – 199 ], which represent intrin-
sic functioning of human body (often called as vital signs) such as pulse, blood 
pressure, respiration rate, temperature, lung vital capacity, blood oxygenation, 
blood glucose levels, hemoglobin, cholesterol, blood lactate, and others   
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   2.    Behavioral parameters, as, for example, in [ 3 ,  64 ,  107 ,  192 ,  196 ,  197 ,  200 – 203 ], 
which can be observed extrinsically (e.g., represented as ADL, cognitive tasks, 
social interaction, etc.)   

   3.    Parameters describing sensory, cognitive, and functional abilities of a person 
[ 204 – 206 ], e.g., strength and balance, that can be measured, for instance, through 
a “handgrip” test and a balance tests, respectively, or other physical and cogni-
tive parameters, which can be assessed by performing specifi c ADLs   

   4.    Anthropometric parameters [ 53 ,  207 ] (such as weight and height, body circum-
ferences ,  body mass index, and knee-heel length), which usually stay constant 
and are necessary for statistical comparison between diversity of older adults, 
and in some cases, detecting a body weight loss or gain may be of interest   

   5.    Environmental parameters [ 94 ,  169 ,  208 – 212 ] (such as ambient temperature, 
humidity, pressure, lighting, environmental noise, air quality, etc., which are 
important factors for health condition)     

 In general, human health state can be defi ned by a variety of physiological and 
behavioral parameters, which usually are self-interdependent. However, not all of 
them are equally important, and not all of those parameters can be easily and pre-
cisely measured, requiring different medical equipment and measuring approaches 
(e.g., invasive, noninvasive, and distance monitoring). 

 From the reviewed works, it is evident that only few studies covered two or more 
aspects simultaneously, and no work was found where all the fi ve sensor categories 
were considered. In practice, there are obvious overlaps between what sensory tech-
nology is used, what biosignals are measured, and how and where they are mea-
sured. By applying sensor fusion techniques, it is possible to:

    1.    Make the sensors work in equilibrium (i.e., synchronized in time and cross 
dependent, when one or more measured parameters can rectify another parame-
ter of interest being monitored, as described by the heterogeneous approach 
[ 213 ])   

   2.    Optimally select the hardware, with the aim of achieving maximally accurate, 
complete, and consistent patient records     

 In the related works, optimality of sensor selection is generally assessed by the 
following measures that might play a role in different scenarios:

    1.    Validity and reliability of the sensor measurements. Validity refers to the degree 
to which a measurement method or instrument actually measures the concept in 
question and not some other concept. It often refers to precision and accuracy of 
a monitored parameter measured by a sensor or estimated by a sensor system. 
Reliability refers to the degree to which a sensor or a sensor system produces 
stable and consistent data over time. For example, it should be stable to noise and 
robust to patient’s activity and location [ 189 ].   

   2.    Comfortability, which is often measured based on the nonintrusiveness and non-
invasiveness of sensors [ 214 ,  215 ]. For example, on-body noninvasive sensors 
are more feasible for home appliances than invasive ones, while a remote unob-
trusive (distance monitoring) approach is more comfortable than, e.g., wearable/
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on-body sensors. Size, form, and weight are also considered as important factors 
for the comfortability measure of wearable sensors [ 113 ]. Hensel et al. [ 214 ] 
describe in total eight different types of user-perceived obtrusiveness that are 
caused by home telehealth technology and which should be considered when 
evaluating comfortability.   

   3.    Durability and longevity, which describes how long a particular device can oper-
ate, in terms of wear and tear and in case of necessity to change some parts, such 
as stickers or patches [ 216 ].   

   4.    Energy effi ciency, which is assessed in terms of energy consumption and battery 
life [ 216 ,  217 ].   

   5.    Observation ranges and location and placement of sensors, which ultimately 
defi nes whether or not it is feasible to use the sensors under certain constraints 
and how many sensory devices should be used [ 218 ]. In addition, the effects of 
potential sensor displacement should be considered as well [ 219 ].   

   6.    Low cost, which justifi es the fi nancial feasibility for applying the proposed sen-
sors [ 166 ].       

4.2     Data Processing and Analysis 

 In this subchapter we review the available methods for analyzing, using, and under-
standing the data collected by the sensors described in the previous chapter. 

4.2.1      Machine Learning Approaches 

 Machine learning techniques are able to examine and to extract knowledge from the 
monitored data in an automatic way, which facilitates robust and more objective 
decision-making. Although the number of potential applications for machine learn-
ing techniques in geriatric medicine is large, few geriatric doctors are familiar with 
their methodology, advantages, and pitfalls. Thus, a general overview of common 
machine learning techniques, with a more detailed discussion of some of these algo-
rithms, which were used in related works, is presented in this chapter. 

 Numerous recent studies [ 64 ,  91 ,  198 ,  220 – 230 ] have attempted to leverage dif-
ferent machine learning techniques on a wide variety of data readings to solve prob-
lems of detecting potential health threats automatically and to better understand 
health conditions of older adults at their living environment. Most of the discussed 
problems are concerned with classifi cation tasks, as, for example, where the desired 
result is a categorical variable, i.e., a class label [ 15 ,  17 ,  19 ,  65 ,  66 ,  220 ,  228 – 238 ]. 
The most notable examples of classifi cation tasks are fall detection [ 15 ,  17 ,  19 ,  65 , 
 228 ,  232 ,  234 ,  237 ,  238 ] and abnormal behavior or event detection [ 220 ,  229 ,  233 ] 
(which can be caused, for instance, by falls or health deterioration) in older adults. 
Few other works are solving regression problems, like in [ 239 – 241 ], where the goal 

4.2 Data Processing and Analysis



60

is to estimate a continuous variable. Regression examples include predicting func-
tional ability [ 239 ], estimating mortality risk in geriatric patients [ 240 ], or continu-
ously estimating a vital sign, such as blood pressure or blood glucose concentration 
[ 70 ], based on other noninvasively measurable parameters. It is important to note 
that regression is often used as an intermediate step before fi nal classifi cation, as, 
for example, in [ 234 ,  242 – 245 ], where a continuous regression curve is truncated 
into two distinct classes or more (most commonly ordinal) categories. It is worthy 
to mention that sometimes a regression curve is also used to estimate a boundary 
that explicitly separates two classes, but there are no relevant studies yet, where it is 
mentioned in our context. For instance, logistic regression can be often used as a 
classifi er. 

 There are numerous works, which report treating the posed problems in a 
 supervised  fashion, when a dataset with empirical data including correct classifi -
cation or regression results is provided as a “learning material” for training and 
testing machine learning techniques, as, for example, in studies dealing with rec-
ognizing ADLs [ 22 ,  25 ,  26 ,  30 ,  246 – 248 ], where datasets with clear labels for 
each activity annotated by a human expert were used. Most of these studies focus 
purely on the detection of “alarming situations” (e.g., a fall) commonly treated in 
 discriminative  fashion, i.e., learning to distinguish an alarming event from non-
harmful situations based purely on the previously monitored data and fi nding 
dependency of annotations (ground truth). These problems can be solved by  dis-
criminative  (often called as  conditional ) models, such as by logistic regression 
[ 234 ,  243 ,  245 ], support vector machines (SVMs) [ 59 ,  228 ,  242 ,  249 ,  250 ], condi-
tional random fi elds [ 30 ,  230 ,  247 ,  251 ,  252 ], boosting [ 253 ], and artifi cial neural 
networks (ANNs) [ 254 ,  255 ]. Often researchers simplify the problem as a  binary  
classifi cation, by considering only two classes, for instance, classifying “an alarm-
ing situation” versus “a non- alarming situation” (usually applied in short-term 
monitoring scenarios, e.g., fall detection) or diagnosing a certain impairment (usu-
ally applied in long-term monitoring scenarios, e.g., dementia diagnosis). 
However, many recent studies attempted solving  multi-class  classifi cation prob-
lems, i.e., distinguishing between more than two classes, for instance, in the sce-
narios, where multiple ADLs are recognized [ 21 ,  22 ,  30 ,  247 ,  256 ,  257 ]. Binary 
classifi cation approaches are relatively easy to evaluate, compared to multi-class 
classifi cation methods. 

 Furthermore, hierarchical classifi cation models exist, which are useful for distin-
guishing activities or events on different abstraction levels. For example, at fi rst, a 
fall or a non-fall is classifi ed; then in case of a non-fall, a more specifi c activity is 
then returned; and in case of a fall, the type of fall is further estimated [ 22 ,  65 ,  120 ]. 
These hierarchies can be learned and represented as decision trees (DTs) [ 22 ] or 
random forests [ 47 ]. By default, some of the discriminative approaches, such as 
logistic regression, SVMs, or ANNs, can output only a discrete class label for a 
given sample, while some can provide a probabilistic estimate of a sample being a 
part of either class, such as CRFs. Thus, in patient-at-home scenarios, when geriat-
ric care requires a probabilistic measure representing a likelihood of a detected 
health threat, probabilistic approaches are more preferable [ 258 ]. This can be 
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accomplished also by applying several  generative models  (often referred to  proba-
bilistic classifi cation ), such as naïve Bayesian classifi er (NBC) [ 220 ], dynamic 
Bayesian networks (DBN) [ 16 ,  259 ,  260 ], hidden Markov models (HMMs) [ 58 , 
 201 ,  230 ,  261 ], Gaussian processes (GPs) [ 262 – 264 ], Gaussian mixture models 
(GMMs) [ 16 ,  263 ,  265 ], or deep belief networks [ 266 ]. GPs proved to be very effec-
tive in the patient monitoring scenarios both for solving regression [ 260 ,  267 ] and 
for classifi cation [ 16 ,  259 ] tasks. Like SVMs, GPs are kernel methods. GPs, proved 
to handle well multidimensional inputs and unequally sampled data points, have a 
relatively small number of tuneable parameters that does not require lots of training 
data. However, choosing the right kernel function is a question of experience. 
Difference between other discriminative and generative models in the light of activ-
ity recognition has been discussed in [ 30 ]. 

 Popular graphical models, such as Markov chains, dynamic Bayesian networks 
[ 16 ,  30 ,  241 ,  259 ,  260 ,  268 ,  269 ], hidden Markov models (HMMs) [ 58 ,  201 ,  230 , 
 261 ], and conditional random fi elds (CRFs) [ 30 ,  230 ,  247 ,  252 ,  269 ,  270 ], are 
reported to deal successfully with the sequential nature of data. HMMs are the most 
common graphical models for activity recognition, and many extensions have been 
proposed, for example, the coupled HMM for recognizing multi-resident activities, 
hierarchal HMM for providing hierarchal defi nitions of activities, hidden semi- 
Markov model for modeling activity duration, and partially observable Markov 
decision process for modeling sequential decision processes. 

 There are also several works, which treat problems in an  unsupervised  fashion 
(without knowing “correct” answers a priori), when the task is to automatically 
discover structure or new patterns in given data, and therefore, clustering and/or 
outlier analysis is used [ 33 ,  35 ,  55 ,  223 ,  229 ,  253 ]. Unsupervised and supervised 
learning is often used in conjunction, when clustering results serve as an extra 
input for classifi cation, as, for example, in [ 55 ,  253 ]. For instance, in [ 55 ] cluster-
ing was used for revealing an uncommon acceleration that potentially indicated a 
fall, which was used as an input for a classifi er; while [ 253 ] demonstrated the use 
of unsupervised classifi cation for amplifying predictability of models describing 
expert classifi cation of coronary heart disease (CHD) patients, as well as boosting 
cause-and-effect relationships hidden in the data. As an example of a relatively 
simple technique, k-means algorithm itself is often used to initialize the parame-
ters in a Gaussian mixture model before applying the  expectation maximization  
algorithm [ 271 ], p. 427. There are also other ways, where a number of studies 
reported the application of  unsupervised  machine learning approaches for improv-
ing the performance of health-threatening event detection systems. For example, 
Yuwono et al. [ 55 ] used the data stream from a waist-worn wireless triaxial accel-
erometer and combined the application of discrete wavelet transform, regrouping 
particle swarm optimization, Gaussian distribution of clustered knowledge, and an 
ensemble of classifi ers, including a multilayer perceptron and augmented radial 
basis function (ARBF) neural networks. Clustering was used for revealing an 
uncommon acceleration that potentially indicated a fall, which was used as an 
input for a classifi er.  
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4.2.2     Requirements and Challenges of Machine Learning 
Strategies 

 The types and distributions of monitored data dictate the specifi c requirements for 
machine learning techniques that intend to handle and reason from these data. For 
example, the following requirements for machine learning techniques that intend 
solving medical-related tasks can be noted [ 272 ]:

    1.    Good performance (e.g., high accuracy and precision)   
   2.    Dealing with missing data (e.g., loss of some amount of data should not result 

in a rapid drop of performance)   
   3.    Dealing with noisy data (e.g., when some errors in data are present)   
   4.    Dealing with imbalanced data (e.g., when class distribution is not uniform 

among the classes of interest)   
   5.    Dealing with uncertainty (e.g., when imprecision, vagueness, or gradedness of 

training data is present)   
   6.    Transparency of diagnostic knowledge (i.e., the automatically generated knowl-

edge and the explanation of decisions should be transparent to the responsible 
medical personnel, possibly providing a novel point of view on the given prob-
lem, by revealing interrelation and regularities of the available data in an 
explicit form)   

   7.    Ability to explain decisions (e.g., the process of decision-making of a machine 
learning approach should be transparent to the user. For instance, when a cer-
tain health threat is automatically detected, an algorithm should present an 
explanation of the circumstances, which forced to make such a statement. For 
example, graphical models and decision trees are more acceptable than so- 
called black box algorithms, where mathematical reasoning is hardly explain-
able to the responsible medical personnel.)   

   8.    Ability to reduce a number of tests without compromising the performance 
(since the collection of patient data is often expensive and time-consuming for 
the patients, it is desirable to have a classifi er that is able to reliably detect a 
certain health threat with a relatively small amount of training data about the 
target patients. A machine learning approach should be able to select an appro-
priate subset of attributes during the learning process.)   

   9.    Dealing with growing dimensionality (e.g., adding new sensors may provide 
additional information about a given problem; thus, a machine learning 
approach should be able to accept extra measurements or new parameters as an 
input; and the decision-making should be susceptible to this input after classi-
fi er retraining.)   

   10.    Continuously learn (and improve) from new data (i.e., when new empirical data 
is available, a machine learning approach should be able to relearn from the 
new input. For example, so-called  active learning  approaches may be applied 
[ 273 ].)    
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  In most cases, the performance of a classifi er (e.g., a fall detector) is expressed in 
terms of sensitivity and specifi city. For example, in the case of a binary classifi er, 
the sensitivity is the ability of a detector to correctly classify a fall event as a fall, 
while the specifi city is the ability of a detector to correctly classify normal activity 
as being normal. In other words, sensitivity represents the percentage of how well 
the algorithm detects a certain event or activity when that event or activity actually 
occurred (i.e., positive cases), while specifi city represents the percentage of how 
well the algorithm can rule out all other events or activities than the one that is being 
identifi ed (i.e., negative cases). Another commonly used performance measure is 
classifi cation accuracy, which represents the percentage of the correctly classifi ed 
events or activities among all events or activities that are being observed (both posi-
tive and negative cases). It is important to note that accuracy measure alone is not 
enough for assessing the overall performance of the classifi er, because it does not 
reveal how well the classifi er can detect an important health threat of interest. For 
example, if a dataset contains very few instances of positive cases, comparing to the 
number of negative cases, and the algorithm is tuned to classify all instances as 
negative cases (i.e., the sensitivity is 0), then the accuracy can still be very high 
(close to 100 %), which would be obviously misleading, because such algorithm 
would not be capable of detecting the important health threat at all. 

 Throughout a variety of technical articles on solving medical issues, one can eas-
ily stumble upon ill-posed problems. For example, the potential problem of class 
overlap (when a sample is a part of either class simultaneously) is often neglected in 
the technical articles, which can lead to false evidence with unsubstantiated results. 
For instance, in [ 66 ] the authors attempted to classify a user’s gait into one of the 
following fi ve classes: (1) normal, (2) with hemiplegia, (3) with Parkinson’s disease, 
(4) with pain in the back, and (5) with pain in the leg. However, in a real-world sce-
nario, these classes can potentially overlap (for instance, people may experience pain 
in the back and in the leg at the same time); therefore, the classifi cation results should 
not be generalized, and the trained (discriminative) classifi er models might not be 
appropriate, especially when healthy young individuals were used to simulate the 
gait for each class. This, however, is a general design problem of testing protocols. 

 More complex examples of classifi cation problems include both the situations 
with naturally overlapping classes and, furthermore, the situations when the uncer-
tainty of the ground truth is high. These problems are sometimes called as continu-
ous classifi cation problems, and the data behind such problems is often referred to 
fuzzy sets. When it is combined with problems, such as class imbalance (when the 
total number of available data instances of one class is far less than the total number 
of data instances of another class), which is implicit in most of the real-world appli-
cations, the situation becomes even more complicated. Recent works [ 274 ,  275 ] 
prove that the successful trick to deal with class imbalance problems is to include 
additional pre-processing steps, such as undersampling and oversampling methods, 
e.g., “synthetic minority oversampling technique” (SMOTE) [ 276 ], which overs-
amples the minority class by creating “synthetic” samples based on spatial location 
of the samples in the Euclidean space. A recent approach by Das et al. [ 275 ] was 
able to more accurately distinguish individuals with mild cognitive impairment 
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(minority class) from healthy older adults (majority class), by applying so-called 
ClusBUS (a clustering-based undersampling technique). This technique success-
fully identifi ed data regions, where minority class samples were embedded deep 
inside majority class. By removing majority class samples from these regions, 
ClusBUS preprocessed the data in order to give more importance to the minority 
class during classifi cation, which outperformed existing methods, such as SVM, 
C4.5 DT, kNN, and NBC, for handling class overlapping and imbalance. 

 Among the proposed approaches, there was a high ambiguity in the defi nitions 
of the classes, as well as different training and test datasets were used, and the 
reported machine learning algorithms have highly varying complexities [ 55 ,  66 , 
 109 ,  234 ,  252 ,  269 ,  277 ]. Therefore, comparing the performances of these diverse 
algorithms is fundamentally not feasible in an objective manner, unless benchmark-
ing datasets and well-defi ned evaluation strategies are used. For example, Khawandi 
et al. [ 237 ] proposed an algorithm of learning using a decision tree for fall detection 
based on the simultaneous input from a video camera and a heart rate monitor, 
which showed a low error rate of 1.55 % in average on test data after training. 
However, no defi nition of a falling event was revealed, and a description of the used 
dataset and the learning speed of the algorithm were missing. 

 It is important to note that every machine learning strategy has some limitations. 
For example, Zhang et al. [ 59 ] proposed a fall detector based on support vector 
machine (SVM) algorithm, which used input from one waist-worn accelerometer. The 
features for machine learning were the accelerations in each direction and changes in 
acceleration, and their method detected falls with a promising 96.7 % accuracy. 
Despite that SVMs are relatively fast and effi cient to compute, they do not output with 
what probability a sample belongs to either class. Other well-known limitations of 
SVMs are a choice of the kernel function and high algorithmic complexity. 

 In order to avoid some limitations of individual machine learning approaches and 
consequently to improve the overall classifi cation or regression performances, mul-
tiple learning methods can be used at the same time, called as ensemble methods. 
They use multiple learning algorithms to obtain better predictive performance than 
could be obtained from any of the constituent learning algorithms. Therefore, 
ensemble methods are increasingly attractive for research on problems of monitor-
ing older patients [ 43 ,  226 ,  240 ,  278 ]. Furthermore, it is often favorable to use a set 
of relatively simple learners, which can result in a better performance, comparing to 
a single complex and computationally expensive method. 

 For combining the above machine learning techniques in an effective manner, 
one should be extremely careful, because there are a number of different learning 
stages, and different learning problems are addressed, so that incorrect treatment of 
data can accumulate and result in false reasoning. As previous research suggests, for 
optimal results, a physician or clinical expert will only be able to guide and under-
stand the research if it possesses suffi cient basic knowledge of the machine learning 
algorithms [ 279 ]. 

 Meanwhile, some recent studies have further attempted to compare the perfor-
mances of machine learning systems with human experts. For example, Marschollek 
et al. [ 243 ] compared the performances of a multidisciplinary geriatric care team 
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with automatically induced logistic regression models based on conventional clini-
cal and assessment data as well as matched sensor data. Their results indicated that 
a fall risk model based on accelerometer sensor data performs almost as well as a 
model that is derived from conventional geriatric assessment data.   

4.3      Standards 

 Generally, a wide variety of monitoring technologies for older patients, i.e., the 
sensory devices, including software, are considered to fall under the defi nition of a 
“medical device.” A full defi nition of a “medical device” by World Health 
Organization is given here [ 280 ]. Medical devices are considered to be a subset of 
electronic products that may have general regulatory provisions [ 281 ]. Numerous 
national and international standards exist that must be complied with before and 
after such electronic products enter into commercial use. These standards offer a 
possibility to cope with the high demands on technical and scientifi c expertise in the 
regulation processes of medical devices. These standards are being constantly 
updated, following the high rate of innovations. 

 It is important to note that medical devices may be regulated even for nonmedical 
reasons. For example, if the device (an electronic product) emits or can potentially 
emit some type of electronic product radiations, such as x-rays and other ionizing 
radiation; ultraviolet, visible, infrared, microwave, radio- and low frequency 
 radiation; coherent radiation produced by stimulated emission; and infrasonic, 
sonic, and ultrasonic vibrations [ 281 ]. 

 There are two main organizations, which are typically issuing international stan-
dards, namely, the International Organization for Standardization (ISO) and the 
International Electrotechnical Commission (IEC). Every region (e.g., EU) or a country 
(e.g., Japan) has a standard organization that may adopt the established international 
standards and in some certain cases may modify it or place limitations on it. 
Furthermore, the local medical device authorities may recognize the standard, but nor-
mally there is no legal obligation to do so. In other words, a certain international stan-
dard does not defi ne in itself, where it operates. Consequently, any country or region 
may adopt them, possibly with certain modifi cations or limitations. For example, in 
EU, all medical devices, which are intended for use within the EU region, must con-
form to the Medical Device Directive 93/42/EEC (MDD) [ 282 ], which was updated 
by the Directive 2007-47-EC [ 283 ], and must have a CE conformance mark [ 284 ]. 

 The following relevant standards are mostly and generally requested (this is not 
an exhaustive list, and some might not be applicable for the existing solutions, and 
furthermore, at the same time, some more standards could be relevant):

•    ISO 13485:2012 – Medical devices – Quality management systems – 
Requirements for regulatory purposes. ISO 13485:2012 is applicable only to 
manufacturers placing devices on the market in Europe. For the rest of the world, 
the older version ISO 13485:2003 remains the applicable standard [ 285 ].  
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•   ISO 14971:2012 – Medical devices – Application of risk management to medical 
devices [ 286 ].  

•   IEC 60601–1:2015 SER – Medical electrical equipment – All parts [ 287 ].  
•   IECEE TRF 60601-1-2:2015 – Medical electrical equipment – Part 1–2: General 

requirements for basic safety and essential performance – Collateral standard: 
Electromagnetic disturbances – Requirements and tests [ 288 ].  

•   IECEE TRF 60601-1-6:2014 – Medical electrical equipment – Part 1–2: General 
requirements for basic safety and essential performance – Collateral standard: 
Usability [ 289 ].  

•   IEC 60601-1-8:2006 – Medical electrical equipment – Part 1–8: General require-
ments for basic safety and essential performance – Collateral standard: General 
requirements, tests, and guidance for alarm systems in medical electrical equip-
ment and medical electrical systems [ 290 ] (included in [ 287 ]).  

•   EN 60601-1-9:2007 – Medical electrical equipment – Part 1–9: General require-
ments for basic safety and essential performance – Collateral Standard: 
Requirements for environmentally conscious design [ 291 ] (included in [ 287 ]).  

•   IEC 60601-1-11:2015 – Medical electrical equipment – Part 1–11: General 
requirements for basic safety and essential performance – Collateral standard: 
Requirements for medical electrical equipment and medical electrical systems 
used in the home healthcare environment [ 292 ] (included in [ 287 ]).  

•   EN 62304:2006 – Medical device software – Software life cycle processes [ 293 ].  
•   ISO 10993:2009 – Biological evaluation of medical devices – Part 1: Evaluation 

and testing within a risk management process [ 294 ].  
•   ISO 15223–1:2012 – Symbols to be used with medical device labels, labeling, 

and information to be supplied – Part 1: General requirements [ 295 ].  
•   EN 1041:2008 + A1:2013 – Information supplied by the manufacturer of medical 

devices [ 296 ].  
•   ISO 14155:2011 – Clinical investigation of medical devices for human sub-

jects – Good clinical practice [ 297 ].  
•   MEDDEV 2.7.1 Rev. 3:2009 – Clinical evaluation: A guide for manufacturers 

and notifi ed bodies [ 298 ].  
•   IEC 62366–1:2015 – Medical devices – Part 1: Application of usability engi-

neering to medical devices [ 299 ].  
•   ISO/IEC 27001 – Information security management [ 300 ].  
•   ISO/IEC 25010:2011 – Systems and software engineering – Systems and soft-

ware Quality Requirements and Evaluation (SQuaRE) – System and software 
quality models [ 301 ].    

 The aforementioned standards facilitate so-called harmonized medical device 
regulatory requirements, and more comprehensive and updated list of titles and 
references of the harmonized standards under EU harmonization legislation is 
available on the European Commission web site [ 302 ]. 

 As an important note, any software, which is related to the monitoring technol-
ogy in our context, must also fulfi ll the aforementioned requirements of the medical 
device wherein it is incorporated. One can typically divide software in two groups. 

4 Monitoring Technology



67

First, there is so-called embedded software, which is incorporated in the apparatus, 
i.e., in a physical device being used for monitoring. Second, there is software that is 
used in combination with the apparatus but is separate from the device, i.e., software 
that is involved, for instance, in transferring, receiving, storing, processing, and 
accessing the data. Both types of software fall under the defi nition of a “medical 
device,” as we previously mentioned, since it affects the use of the devices. 
According to the essential requirements of European Medical Device Directive, 
such software “must be validated according to state of the art taking into account the 
principles of development lifecycle, risk management, validation and verifi cation” 
(Annex I, 93/42/EEC as amended by Directive 2007/47/EC [ 282 ]). There are 
numerous specifi c standards for each area of interest; for example, for the ECG 
measurement devices, the health informatics standards, such as ISO 11073–
91064:2009, ISO/TS 22077–2:2015, and ISO/TS 22077–3:2015, are relevant. 
Furthermore, in accordance with the current security standards (such as ISO/IEC 
27001 [ 300 ]), the availability, integrity, and confi dentiality of the monitored data 
and information must be ensured. Last but not least, several generic standards must 
be followed. For example, ISO/IEC 25010:2011 [ 301 ] is necessary for every com-
puter system and software products in general. 

 In general, most of the national and international standards, for example, those 
that are published by ISO and IEC, are unfortunately not available free of charge, 
since there is a certain fee for obtaining them. Furthermore, each individual  standard 
may include many cross-references to other standards. In the fi eld of health tele-
monitoring, the number of relevant standards is substantially high. Therefore, for 
many stakeholders this would result in extra investments, which can be increasingly 
high due to the fact that these standards are frequently updated and manufacturers 
have to constantly adapt to the state of the art. 

 As a solution, the responsible authorities for safeguarding the quality and reli-
ability of various health telemonitoring solutions should in principle promote an 
open access to the relevant standards, or at least help to improve their availability to 
those who develop and deliver health telemonitoring products and services. This 
solution is in agreement with previously proposed suggestions [ 303 ]. Alternatively, 
some reimbursement strategies for successful implementation of those standards 
might be initiated, which could further motivate the compliance with those impor-
tant standards for further quality improvement of the healthcare.     
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    Chapter 5   
 Datasets                     

    Abstract     Publicly available datasets constitute the ground to evaluate and compare 
the performance of proposed approaches for monitoring older patients at home. In 
this chapter, we shed light on the importance of using datasets as a benchmarking 
tool for comparing various monitoring techniques for detecting the health threats, 
which we discussed in the previous chapters. The methods, which are tested by 
using a standard publicly available dataset as a benchmark, are considered to be 
more reliable and are more likely to be accepted by the scientifi c community for 
their claimed results. Therefore, we summarize the references of available datasets, 
which are relevant to the fi eld of automatic monitoring of older patients.  

  Keywords     Patient monitoring dataset   •   Activity recognition dataset   •   Fall detection 
dataset   •   Wandering detection dataset   •   Audiovisual data   •   Benchmarking  

         In the context of audiovisual content-based monitoring, a dataset contain audio and 
video clips of human body parts and/or activities in experimental or real-life envi-
ronments. In the context of measuring movements and locations of patients, for 
example, by means of radio-frequency sensors, infrared detectors, or inertial sen-
sors, a dataset usually contains annotated recordings of a fi nite set of specifi c ADLs. 
Sampling rate of these recordings may vary, depending on the monitoring equip-
ment, and numeric timestamps are usually assigned to every instance of the recorded 
data. The attributes of those datasets can be very different and may simultaneously 
contain both numeric and categorical variables. Every dataset should in principle 
contain detailed description about how the data was collected and annotated. Often 
the data is already preprocessed. Therefore, the detailed description of those prepro-
cessing steps should be included in the dataset description as well, often accompa-
nied with available program source code. Most important dataset descriptions 
usually are included in a so-called “readme” fi le. 

 Though a vast body of literature has been produced for older patient monitoring, 
in fact, a few methods are tested on real older patients’ data. Most of the methods used 
their own confi guration of sensors for data acquisition and young people as actors in 
a laboratory environment to create scenes and tested the system by their custom 
dataset. The datasets are not only varying in number and placement of  sensors but 
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also varying by objective of data collection (e.g., fall detection or specifi c set of ADLs 
detection), environmental description, and subjects’ behavior. Thus, the results from 
one method tested on a custom dataset are not comparable with the results of another 
method tested on some other custom datasets. Also, the results from a method that is 
tested on the data collected from young volunteers may signifi cantly differ for older 
adults, because of dissimilarity between the data obtained from real seniors and the 
data obtained from young volunteers in the laboratory. For example, a real fall of an 
older adult and an acted fall of a young man in the laboratory may not “look” similar 
[ 1 ]. Thus, it is very diffi cult to predict the performance of a proposed method in a 
real-life scenario. Additionally, making a dataset publicly available might be very dif-
fi cult due to the privacy policies of personal data [ 2 ]. Thus, only few publicly avail-
able datasets can be obtained from the literature. In previous reviews, Aggarwal et al. 
[ 3 ] divided the available datasets for human activity monitoring in three broad themes: 
action recognition datasets, surveillance datasets, and movie datasets. However, only 
the action recognition datasets are well suited for in-home activity monitoring. On the 
other hand, Popoola et al. [ 4 ] listed a number of publicly available datasets from in-
home scenarios for fall detection, kitchen activities, audiovisual activities, and daily 
activities. A summary of well- known, publicly available and generic action recogni-
tion dataset (not specifi cally for geriatric patients) is presented in [ 5 ]. None of these 
reviews focused on datasets that are strictly relevant to geriatric patient monitoring. 
Thus, this chapter provides a description of important datasets used in the literature. 
Though some datasets are collected by using multimodal sensors and included the 
scenarios of human activity recognition, e.g., acoustic event detection datasets in [ 5 –
 8 ] and visual activity detection dataset in [ 9 ], we do not include summaries of these 
datasets in our book, because of the too broad activity classes considered in these 
datasets and they are not relevant to geriatric patient monitoring. 

 It is also worth noting that the fi rst study, which proposed to use datasets as a 
benchmarking tool, was [ 10 ]; however in their rich dataset, which focused mainly 
on activity recognition, they did not include data on vital signs that are prerequisites 
for assessing the health state of patients and thus are very important for fi nding cor-
relation between ADL data and vital sign data (e.g., which can be used to validate 
ADL data). 

 Table  5.1  lists the datasets and their key characteristics. We mention the datasets 
either by the names given by the creators of the datasets or by the fi rst author of the 
articles that introduced the dataset. The description of the datasets includes the 
overall data acquisition environment, dataset size, and types of dataset (annotated/
non-annotated or real-life/laboratory implementation). Column 4 states the intended 
application of the dataset collection, e.g., activity recognition, fall detection, wan-
dering detection, and elopement detection. Column 5 mentions the subjects used in 
the scene to create these datasets. Column 6 indicates the types of sensors used in 
each dataset collection. The last column in Table  5.1  states whether the dataset is 
available online or not. We write “Yes” for the datasets which are already available 
online or can be acquired by fi lling up an online requisition form. From Table  5.1 , 
it is observed that some datasets, such as “Multi-view fall dataset,” were used in a 
number of works. We found only one dataset in [ 24 ] that considered the issue of 
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elopement and wandering detection. Unfortunately, most of the datasets are devel-
oped by employing young actors instead of older adults or geriatric patients. Only 
few datasets are developed by employing older patients. In addition to Table  5.1 , 
other relevant collections of public datasets are available online [ 41 ,  42 ].
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    Chapter 6   
 Discussion                     

    Abstract     This chapter briefl y discusses the anticipated future challenges within 
the fi eld of monitoring older adults and provides a number of future research direc-
tions. Some of the most notable challenges are lack of publically available datasets, 
poor measurement accuracy of sensors, user-centered design barriers, and user 
acceptability for monitoring. We try to draw attention to the importance of acquiring 
objective information of older patients’ health conditions by applying appropriate 
sensor technology for automated monitoring, which we covered in the previous 
chapters of this book. As possible future research directions, we draw attention to 
the necessary research in the fi elds of sensor fusion and machine learning for detect-
ing various health-threatening events and conditions in older population.  

  Keywords     Future challenges   •   Research directions   •   User-centered design   • 
  Acceptability   •   Time delays   •   Sampling limitations   •   Datasets   •   Accuracy   •   Taxonomy  

         The need for objective measurements of older patients’ conditions in the home envi-
ronment is a critical ingredient of assessment before institutionalization. In the 
absence of such measurements, the relationship between certain activities or inac-
tivity, for example, cannot be related to the appearance of a specifi c health- 
threatening event or condition. To date, there is no routine procedure available to 
measure activity in a home setting. Attempts to overcome this have predominantly 
employed archaic methods using observations and surveys, which are susceptible to 
observation and interpretation bias, as well as cannot be directly applied to those 
patients who are living alone. 

6.1     Future Challenges 

6.1.1     Defi ning Taxonomy 

 In-home activity monitoring initially requires defi nitions of activities, level of cor-
respondence between activities, and an established relationship model between the 
activities. These can be achieved by defi ning taxonomy of activities systematically. 
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Unfortunately, except the work of [ 1 ], which manually defi ned taxonomy of some 
daily living activities, no systematic study was accomplished in order to defi ne the 
taxonomy of daily living activities in a private home.  

6.1.2     Lack of Publicly Available Datasets 

 The availability of public datasets is necessary to compare the methods proposed to 
solve similar problems. However, a few datasets are available in public to assess the 
methods proposed in the literature. Moreover, the available datasets have the limita-
tion of the experimental setup and standard quality assurance. It is also observed 
from our book that most of the previously proposed methods used custom datasets 
instead of publicly available datasets, and furthermore, many of the authors did not 
make their dataset publicly available due to privacy policies. Thus, there is a need of 
regulatory initiatives, which would lessen the hurdles for the researchers’ commu-
nity to access and publish datasets necessary for solving the emerging healthcare 
problems.  

6.1.3     Ineffi ciency of Health-Threat Detection Technologies 

 As discussed in our book, a number of health-threat detection methods have been 
proposed; however the false alarm rates from the methods are still questionable. 
Moreover, majority of authors used their own custom datasets to generate experi-
mental results for their proposed methods and thus provided less room for compari-
son between different methods.  

6.1.4     Sampling Limitations and Time Delays in Monitoring 

 Every sensor has temporal sampling limitations, which need to be considered. 
Every measurement process involves some time delays in data capture, which 
depend on various factors, such as location of sensors and sensing modality. In 
general, sensor signals are noisy and thus require digital fi ltering, which causes 
certain time delays as well. Furthermore, delays in sensor signals may or may not 
be constant [ 2 ]. If the sampling frequency is too low or irregular, interpolating the 
measurements reliably over time might not be feasible depending on a given prob-
lem. Estimating eventual time delays between irregularly sampled time series is 
crucial for avoiding possible data processing and interpretation errors. For sce-
narios, where multiple sensors are used, time synchronization among all sensors is 
necessary to enable fusion of sensory data, which can be increasingly diffi cult, 
because different time delays in data acquisition, transmission, and processing 

6 Discussion
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may be present. In addition, the time lag between sampling and obtaining the anal-
ysis results may be ranging from a matter of milliseconds to several hours, which 
can be a signifi cant problem if the situation requires immediate decision concern-
ing patient’s health. 

 Choosing an optimal sampling frequency in order to provide suffi cient resolu-
tion for detecting a certain health threat is generally not a trivial task. Some sen-
sor types may have an advantage over other sensors in terms of resolution and 
detection times for certain health threats. It can be discussed at length whether 
monitoring a certain parameter is necessary for a given problem, while taking 
into account various trade- offs between sample sizes, measurement costs, detec-
tion accuracy, privacy, and comfortability of monitoring. Understanding these 
trade-offs requires further research. Furthermore, adaptive sampling techniques 
might be useful for scenarios, where it does not make sense to continuously mea-
sure a certain parameter rather than to take a sample once in a while or only 
when the risk of a health threat is detected by analyzing other parameters. Such 
approach may potentially improve energy effi ciency, when certain sensors can 
be in sleep mode and are set active only when there is an identifi ed need for 
using them in time. 

 Another area of great importance, which we did not have the space to cover, is 
ICT solutions for the transmission of large data over long distances, which can 
potentially improve the accessibility of monitoring technologies for those living in 
rural areas. Network delays in data transmission can have a critical impact on detect-
ing health threats at home. Even for relatively short distances, the network delay 
problem may present a signifi cant obstacle for monitoring scenarios. One example 
is the delay in active camera-based systems, which use the pan-tilt-zoom capability 
of video cameras. Industry standard available cameras exhibit long network delays 
in executing move instructions. Thus, real-time monitoring and tracking suffer from 
the camera delays and frequently miss the object of interest during monitoring or 
tracking. Thus, active research is necessary to address network delay problem as 
well [ 3 ].  

6.1.5     Accuracy in Measuring Physiological Parameters 

 Although a number of innovative methods have been proposed for physiological 
parameter measurements, for example, automatic heart rate measurement by using 
facial image or fi ngertip image from video cameras, the accuracy of such approach 
is not up to the standard yet, while successful examples were only possible in highly 
limited lab conditions. Besides, when the facial expression changes or the face 
moves in the video frames, the accuracy of heart rate estimation decreases signifi -
cantly. To overcome this problem, the use of quality assessment techniques as an 
intermediate step between facial detection and relevant feature extraction was 
recently proposed [ 4 ].  

6.1 Future Challenges
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6.1.6     User-Centered Design Barriers for Older Adults 

 Resolving barriers to engagement, participation, and spreading of telemonitoring 
service programs among older populations is challenging [ 5 ]. In [ 5 ], authors 
described the specifi c issues concerning technological acceptance, human resource 
development, and collaboration with service systems. They discussed possible 
strategies and policy implications with regard to human-computer interaction 
design considerations for telemonitoring of medical and aging conditions of older 
adults and possible improvements for the access to technology services and addi-
tional training for effective use of the technology. However, it can be increasingly 
challenging to fi nd a balance between user requirements for designing a dedicated 
technological solution for a specifi c need of some target patients and for complying 
such solution with the  Universal Design  principles [ 6 ] at the same time. In our 
view, the concept of  Universal Design  should not be seen as a synonym to  user-
centeredness  for designing and applying monitoring technology to older patients; 
in other words, “one size fi ts all” cannot be used in this context. It is important to 
have end-users involved in the process of designing, testing, and evaluating the 
monitoring technologies [ 7 ].  

6.1.7     User Acceptability in Monitoring 

 As stated in [ 8 ], accepting monitoring systems in a person’s home, especially when 
it is the home of an older person, is very diffi cult. This is due to the fact that people 
do not want to be monitored for privacy concerns, even if this is necessary for 
assisted living. However, if it is possible to provide high data and privacy protection 
by other means, then the acceptability can be increased, as discussed in [ 9 ]. 
Therefore, privacy is a crucial consideration for the design and implementation of 
monitoring technologies.   

6.2     Future Research Directions 

 First, as a prerequisite to further research in this fi eld, a direct involvement of vari-
ous end-users is needed, including healthy, vulnerable, and acutely ill older adults, 
as well as their family members and healthcare staff, to ensure the quality and 
applicability of monitoring technologies in real-life settings. Further research is 
necessary that can contribute to creation of a systematic guideline for developing 
benchmarking datasets for the topics covered in Chap.   3    . For collecting new datas-
ets, it would be important to use multiple sensor categories for collecting a wide 
diversity of measurable parameters (see Sect.   4.1.3    ) and to apply sensor fusion 
techniques with a purpose of dealing with uncertainties in detecting individual 
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health threats. For example, those datasets should at least contain both physiologi-
cal parameters and data about environmental conditions of older adults collected at 
the same time. More effort should be put on creating and applying generative 
machine learning methods on these datasets, instead of discriminative methods, 
with the purpose of detecting new health-threatening events and conditions in older 
population. Furthermore, the research on machine learning techniques should in 
principle be done in collaboration with the involved healthcare personnel to ensure 
that the algorithms are properly understood. For this reason, further research on 
graphical models and incorporating them into end user interfaces is expected to be 
benefi cial. For future studies, it is important to clearly communicate the limitations 
of the developed systems and constrains of their evaluation results. Last but not 
least, further research is needed to fi nd the balance between privacy constrains of 
data collection and what data is a strict requirement for successful monitoring of 
specifi c geriatric conditions.     
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    Chapter 7   
 Conclusion                     

    Abstract     This chapter concludes the book by summarizing the current status and 
visions for research and developments in the cross-disciplinary fi eld of monitoring 
older populations.  

  Keywords     Data quality   •   eHealth   •   IT literacy   •   Older populations   •   Benchmarking   
•   Further research   •   Non-intrusiveness   •   Machine learning   •   Smart-homes   • 
  Telemonitoring   •   Ambient intelligence   •   Ambient-assisted living   •   Gerotechnology   
•   Aging-in-place technology   •   Healthcare   •   Long-term care   •   Welfare systems  

         Common data quality standards for patient databases and datasets need to be developed, 
because currently little is known about how to organize and store data from moni-
tored older patients in an effi cient way, which is a prerequisite for learning. Also 
benchmarking techniques for testing the performance of machine learning tech-
niques on these datasets are currently lacking. As the number of databases and data-
sets with diverse data about older patients at home is very limited but is on the rise, 
we are only at the beginning of understanding and analyzing these data. Though, the 
number of possible applications is high. As long as no single machine learning 
technique proved to be substantially superior to others for some given task, it would 
be wise to run multiple algorithms whenever possible for objective comparison of 
these learning approaches. 

 The described technological applications are mainly aimed at older adults, and 
as mentioned earlier, it is of utmost importance to understand the enormous het-
erogeneity of the older populations. This heterogeneity has the effect that there is 
no such thing as “one size fi ts all.” Also,  eHealth  technology has to be adaptable 
to the needs of the individual older adults, i.e., to his or hers cognitive, physical, 
emotional, and societal skills as well as the environment. The heterogeneity is 
further enlarged by the differences in IT skills and competencies of older adults 
both today and in the near future, as some countries already today have a high 
proportion of IT literate older adults, while other countries have a majority of 
older adults with low educational attainment and IT-illiteracy. A further constraint 
is that, while the most remote and rural areas would benefi t a lot in using  eHealth , 
these areas are usually also those with the most poorly developed IT-infrastructure, 
a fact that emphasizes the challenges of using  eHealth  in the health monitoring of 
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older adults. Hopefully, innovative solutions for the transmission of large data 
over long distances will soon come and thereby would add to some of the solu-
tions to challenges of aging societies. 

 Indeed, the room for innovative solutions in the area of monitoring older 
adults at home environment is very large, and a lot of improvements of existing 
solutions can be made. Non-intrusiveness and noninvasiveness of sensor technol-
ogy will likely be the key factor for successful application. Smaller and cheaper 
types of sensors, such as piezoresistive and piezoelectric textile sensors, will 
have the advantage for becoming a part of daily life of older adults, because they 
have a better potential to be embedded in garments and furniture with prospect of 
being comfortable and reusable. In terms of advances in software solutions, various 
machine learning techniques have shown a great potential towards more reliable 
detection of health- threatening situations and conditions of older adults. There is 
a large research potential for the interplay of unsupervised and supervised learning, 
where there is only a small amount of labeled data and a large amount of unlabeled 
data available, because for many of the patient-at-home  scenarios data labeling 
can be expensive and time consuming. Furthermore, combining the available 
knowledge from the research results of the various cross-disciplinary fi elds of 
smart-homes, telemonitoring, ambient intelligence, ambient-assisted living, gero-
technology, aging-in- place technology, and others, which we have mentioned 
in this book, can boost the further development of technological monitoring solu-
tions for healthcare, long- term care, and welfare systems to better meet the needs 
of aging populations.   

7 Conclusion
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