6 research outputs found

    Pol-InSAR-Island - A benchmark dataset for multi-frequency Pol-InSAR data land cover classification

    Get PDF
    This paper presents Pol-InSAR-Island, the first publicly available multi-frequency Polarimetric Interferometric Synthetic Aperture Radar (Pol-InSAR) dataset labeled with detailed land cover classes, which serves as a challenging benchmark dataset for land cover classification. In recent years, machine learning has become a powerful tool for remote sensing image analysis. While there are numerous large-scale benchmark datasets for training and evaluating machine learning models for the analysis of optical data, the availability of labeled SAR or, more specifically, Pol-InSAR data is very limited. The lack of labeled data for training, as well as for testing and comparing different approaches, hinders the rapid development of machine learning algorithms for Pol-InSAR image analysis. The Pol-InSAR-Island benchmark dataset presented in this paper aims to fill this gap. The dataset consists of Pol-InSAR data acquired in S- and L-band by DLR\u27s airborne F-SAR system over the East Frisian island Baltrum. The interferometric image pairs are the result of a repeat-pass measurement with a time offset of several minutes. The image data are given as 6 × 6 coherency matrices in ground range on a 1 m × 1m grid. Pixel-accurate class labels, consisting of 12 different land cover classes, are generated in a semi-automatic process based on an existing biotope type map and visual interpretation of SAR and optical images. Fixed training and test subsets are defined to ensure the comparability of different approaches trained and tested prospectively on the Pol-InSAR-Island dataset. In addition to the dataset, results of supervised Wishart and Random Forest classifiers that achieve mean Intersection-over-Union scores between 24% and 67% are provided to serve as a baseline for future work. The dataset is provided via KITopenData: https://doi.org/10.35097/170

    Arctic Sea Ice Characterization using Spaceborne Fully Polarimetric L-, C- and X-Band SAR with Validation by Airborne Measurements

    Get PDF
    Accepted manuscript version. Published version available at https://doi.org/10.1109/TGRS.2018.2809504.In recent years, spaceborne synthetic aperture radar (SAR) polarimetry has become a valuable tool for sea ice analysis. Here, we employ an automatic sea ice classification algorithm on two sets of spatially and temporally near coincident fully polarimetric acquisitions from the ALOS-2, Radarsat-2, and TerraSAR-X/TanDEM-X satellites. Overlapping coincident sea ice freeboard measurements from airborne laser scanner data are used to validate the classification results. The automated sea ice classification algorithm consists of two steps. In the first step, we perform a polarimetric feature extraction procedure. Next, the resulting feature vectors are ingested into a trained neural network classifier to arrive at a pixelwise supervised classification. Coherency matrix-based features that require an eigendecomposition are found to be either of low relevance or redundant to other covariance matrix-based features, which makes coherency matrix-based features dispensable for the purpose of sea ice classification. Among the most useful features for classification are matrix invariant-based features (geometric intensity, scattering diversity, and surface scattering fraction). Classification results show that 100% of the open water is separated from the surrounding sea ice and that the sea ice classes have at least 96.9% accuracy. This analysis reveals analogous results for both X-band and C-band frequencies and slightly different for the L-band. The subsequent classification produces similarly promising results for all four acquisitions. In particular, the overlapping image portions exhibit a reasonable congruence of detected sea ice when compared with high-resolution airborne measurements

    Pol-InSAR-Island - A benchmark dataset for multi-frequency Pol-InSAR data land cover classification

    Get PDF
    This paper presents Pol-InSAR-Island, the first publicly available multi-frequency Polarimetric Interferometric Synthetic Aperture Radar (Pol-InSAR) dataset labeled with detailed land cover classes, which serves as a challenging benchmark dataset for land cover classification. In recent years, machine learning has become a powerful tool for remote sensing image analysis. While there are numerous large-scale benchmark datasets for training and evaluating machine learning models for the analysis of optical data, the availability of labeled SAR or, more specifically, Pol-InSAR data is very limited. The lack of labeled data for training, as well as for testing and comparing different approaches, hinders the rapid development of machine learning algorithms for Pol-InSAR image analysis. The Pol-InSAR-Island benchmark dataset presented in this paper aims to fill this gap. The dataset consists of Pol-InSAR data acquired in S- and L-band by DLR's airborne F-SAR system over the East Frisian island Baltrum. The interferometric image pairs are the result of a repeat-pass measurement with a time offset of several minutes. The image data are given as 6 × 6 coherency matrices in ground range on a 1 m × 1m grid. Pixel-accurate class labels, consisting of 12 different land cover classes, are generated in a semi-automatic process based on an existing biotope type map and visual interpretation of SAR and optical images. Fixed training and test subsets are defined to ensure the comparability of different approaches trained and tested prospectively on the Pol-InSAR-Island dataset. In addition to the dataset, results of supervised Wishart and Random Forest classifiers that achieve mean Intersection-over-Union scores between 24% and 67% are provided to serve as a baseline for future work. The dataset is provided via KITopenData: https://doi.org/10.35097/1700

    Analyse des signaux radars polarimétriques en bandes C et L pour le suivi de l'humidité du sol de sites forestiers

    Get PDF
    RĂ©sumĂ© : Dans les couverts forestiers, le suivi de l’humiditĂ© du sol permet de prĂ©venir plusieurs dĂ©sastres tels que la paludification, les incendies et les inondations. Comme ce paramĂštre est trĂšs dynamique dans l’espace et dans le temps, son estimation Ă  grande Ă©chelle prĂ©sente un grand dĂ©fi, d’oĂč le recours Ă  la tĂ©lĂ©dĂ©tection radar. Le capteur radar Ă  synthĂšse d’ouverture (RSO) est couramment utilisĂ© grĂące Ă  sa vaste couverture et sa rĂ©solution spatiale Ă©levĂ©e. Contrairement aux sols nus et aux zones agricoles, le suivi de l’humiditĂ© du sol en zone forestiĂšre est trĂšs peu Ă©tudiĂ© Ă  cause de la complexitĂ© des processus de diffusion dans ce type de milieu. En effet, la forte attĂ©nuation de la contribution du sol par la vĂ©gĂ©tation et la forte contribution de volume issue de la vĂ©gĂ©tation rĂ©duisent Ă©normĂ©ment la sensibilitĂ© du signal radar Ă  l’humiditĂ© du sol. Des Ă©tudes portĂ©es sur des couverts forestiers ont montrĂ© que le signal radar en bande C provient principalement de la couche supĂ©rieure et sature vite avec la densitĂ© de la vĂ©gĂ©tation. Cependant, trĂšs peu d’études ont explorĂ© le potentiel des paramĂštres polarimĂ©triques, dĂ©rivĂ©s d’un capteur polarimĂ©trique comme RADARSAT-2, pour suivre l’humiditĂ© du sol sur les couverts forestiers. L’effet du couvert vĂ©gĂ©tal est moins important avec la bande L en raison de son importante profondeur de pĂ©nĂ©tration qui permet de mieux informer sur l’humiditĂ© du sol. L’objectif principal de ce projet est de suivre l’humiditĂ© du sol Ă  partir de donnĂ©es radar entiĂšrement polarimĂ©triques en bandes C et L sur des sites forestiers. Les donnĂ©es utilisĂ©es sont celles de la campagne terrain Soil Moisture Active Passive Validation EXperiment 2012 (SMAPVEX12) tenue du 6 juin au 17 juillet 2012 au Manitoba (Canada). Quatre sites forestiers de feuillus ont Ă©tĂ© Ă©chantillonnĂ©s. L’espĂšce majoritaire prĂ©sente est le peuplier faux-tremble. Les donnĂ©es utilisĂ©es incluent des mesures de l’humiditĂ© du sol, de la rugositĂ© de surface du sol, des caractĂ©ristiques des sites forestiers (arbres, sous-bois, litiĂšres
) et des donnĂ©es radar entiĂšrement polarimĂ©triques aĂ©roportĂ©es et satellitaires acquises respectivement, en bande L (UAVSAR) Ă  30˚ et 40˚ et en bande C (RADARSAT-2) entre 20˚ et 30˚. Plusieurs paramĂštres polarimĂ©triques ont Ă©tĂ© dĂ©rivĂ©s des donnĂ©es UAVSAR et RADARSAT-2 : les coefficients de corrĂ©lation (ρHHVV, φHHVV, etc); la hauteur du socle; l’entropie (H), l’anisotropie (A) et l’angle alpha extraits de la dĂ©composition de Cloude-Pottier; les puissances de diffusion de surface (Ps), de double bond (Pd) extraites de la dĂ©composition de Freeman-Durden, etc. Des relations entre les donnĂ©es radar (coefficients de rĂ©trodiffusion multifrĂ©quences et multipolarisations (linĂ©aires et circulaires) et les paramĂštres polarimĂ©triques) et l’humiditĂ© du sol ont Ă©tĂ© dĂ©veloppĂ©es et analysĂ©es. Les rĂ©sultats ont montrĂ© que 1) En bande L, plusieurs paramĂštres optimaux permettent le suivi de l’humiditĂ© du sol en zone forestiĂšre avec un coefficient de corrĂ©lation significatif (p-value < 0,05): σ[indice supĂ©rieur 0] linĂ©aire et σ[indice supĂ©rieur 0] circulaire (le coefficient de corrĂ©lation, r, varie entre 0,60 et 0,96), Ps (r entre 0,59 et 0,84), Pd (r entre 0,6 et 0,82), ρHHHV_30˚, ρVVHV_30˚, φHHHV_30˚ and φHHVV_30˚ (r entre 0,56 et 0,81) alors qu’en bande C, ils sont rĂ©duits Ă  φHHHV, φVVHV et φHHVV (r est autour de 0,90). 2) En bande L, les paramĂštres polarimĂ©triques n’ont pas montrĂ© de valeur ajoutĂ©e par rapport aux signaux conventionnels multipolarisĂ©s d’amplitude, pour le suivi de l’humiditĂ© du sol sur les sites forestiers. En revanche, en bande C, certains paramĂštres polarimĂ©triques ont montrĂ© de meilleures relations significatives avec l’humiditĂ© du sol que les signaux conventionnels multipolarisĂ©s d’amplitude.Abstract : Over forest canopies, soil moisture monitoring allows to prevent many disasters such as paludification, fires and floods. As this parameter is very dynamic in space and time, its large-scale estimation is a great challenge, hence the use of radar remote sensing. Synthetic aperture radar (SAR) sensor is commonly used due to its wide spatial coverage and its high spatial resolution. Unlike bare soils and agricultural areas, only few investigations focused on the monitoring of soil moisture over forested areas due to the complexity of the scattering processes in this kind of medium. Indeed, the high attenuation of soil contribution by the vegetation and the high vegetation volume contribution significantly reduce the sensitivity of the radar signal to soil moisture. Studies conducted at C-band have shown that the radar signal mainly comes from the upper layer and it quickly saturates with the vegetation density. However, very few studies have explored the potential of polarimetric parameters derived from a fully polarimetric sensor such as RADARSAT-2, to monitor soil moisture over forest canopies. With its large penetration’s depth, vegetation cover effect is less important at L-band, allowing thus to better inform on soil moisture. The main objective of this project is to monitor soil moisture from fully polarime tric L and C bands radar data acquired over forested sites. The data used were collected during the field campaign of Soil Moisture Active Passive Validation EXperiment 2012 (SMAPVEX12) which took place from June 6 to July 17, 2012 in Manitoba (Canada). Four deciduous forested sites were sampled. The main species is the trembling aspen. The data used included measurements of soil moisture, soil surface roughness, characteristics of the forested sites (trees, undergrowth, litter, etc.) and fully polarimetric airborne and satellite radar data respectively acquired at L-band (UAVSAR) with 30 ̊ and at 40 ̊ incidence angles and at C-band (RADARSAT -2) between 20 ̊ and 30 ̊. Several polarimetric parameters were derived from UAVSAR and RADARSAT-2 data: the correlation c oefficients (ρHHVV, φHHVV, etc); the pedestal height; entropy (H), anisotropy (A) and alpha angle extracted from Cloude-Pottier decomposition; surface (Ps) and double bounce (Pd) scattering powers extracted from Freeman-Durden decomposition, etc. Relationships between radar backscattering data (multifrequency and multipolarisation (linear/circular) backscattering coefficients and polarimetric parameters) and soil moisture were developed and analyzed. The results showed that 1) at L-band, several optimal parameters allow soil moisture monitoring over forested sites with a significant correlation coefficient (p-value < 0.05): linear and circular σ[superscript 0] (the correlation coefficient, r, varies between 0.60 and 0.96), Ps (r varies between 0.59 and 0.84), Pd (r varies between 0.60 and 0.82), ρHHHV_30 ̊, ρVVHV_30 ̊, φHHHV_30 ̊ and φHHVV_30 ̊ (r varies between 0.56 and 0.81). However, at C-band, there are only few optimal parameters φHHHV, φVVHV and φHHVV (r is around 0.90) . 2) at L-band, polarimetric parameters did not show any added values for soil moisture monitoring over forested sites compared to multipolarised σ[superscript 0]. Nevertheless, at C-band some polarimetric parameters show better significant relationships with the soil moisture than the conventional multipolarised backscattering amplitudes

    L’utilisation de la polarimĂ©trie radar et de la dĂ©composition de Touzi pour la caractĂ©risation et la classification des physionomies vĂ©gĂ©tales des milieux humides : le cas du Lac Saint-Pierre

    Full text link
    Les milieux humides remplissent plusieurs fonctions Ă©cologiques d’importance et contribuent Ă  la biodiversitĂ© de la faune et de la flore. MĂȘme s’il existe une reconnaissance croissante sur l’importante de protĂ©ger ces milieux, il n’en demeure pas moins que leur intĂ©gritĂ© est encore menacĂ©e par la pression des activitĂ©s humaines. L’inventaire et le suivi systĂ©matique des milieux humides constituent une nĂ©cessitĂ© et la tĂ©lĂ©dĂ©tection est le seul moyen rĂ©aliste d’atteindre ce but. L’objectif de cette thĂšse consiste Ă  contribuer et Ă  amĂ©liorer la caractĂ©risation des milieux humides en utilisant des donnĂ©es satellites acquises par des radars polarimĂ©triques en bande L (ALOS-PALSAR) et C (RADARSAT-2). Cette thĂšse se fonde sur deux hypothĂšses (chap. 1). La premiĂšre hypothĂšse stipule que les classes de physionomies vĂ©gĂ©tales, basĂ©es sur la structure des vĂ©gĂ©taux, sont plus appropriĂ©es que les classes d’espĂšces vĂ©gĂ©tales car mieux adaptĂ©es au contenu informationnel des images radar polarimĂ©triques. La seconde hypothĂšse stipule que les algorithmes de dĂ©compositions polarimĂ©triques permettent une extraction optimale de l’information polarimĂ©trique comparativement Ă  une approche multipolarisĂ©e basĂ©e sur les canaux de polarisation HH, HV et VV (chap. 3). En particulier, l’apport de la dĂ©composition incohĂ©rente de Touzi pour l’inventaire et le suivi de milieux humides est examinĂ© en dĂ©tail. Cette dĂ©composition permet de caractĂ©riser le type de diffusion, la phase, l’orientation, la symĂ©trie, le degrĂ© de polarisation et la puissance rĂ©trodiffusĂ©e d’une cible Ă  l’aide d’une sĂ©rie de paramĂštres extraits d’une analyse des vecteurs et des valeurs propres de la matrice de cohĂ©rence. La rĂ©gion du lac Saint-Pierre a Ă©tĂ© sĂ©lectionnĂ©e comme site d’étude Ă©tant donnĂ© la grande diversitĂ© de ses milieux humides qui y couvrent plus de 20 000 ha. L’un des dĂ©fis posĂ©s par cette thĂšse consiste au fait qu’il n’existe pas de systĂšme standard Ă©numĂ©rant l’ensemble possible des classes physionomiques ni d’indications prĂ©cises quant Ă  leurs caractĂ©ristiques et dimensions. Une grande attention a donc Ă©tĂ© portĂ©e Ă  la crĂ©ation de ces classes par recoupement de sources de donnĂ©es diverses et plus de 50 espĂšces vĂ©gĂ©tales ont Ă©tĂ© regroupĂ©es en 9 classes physionomiques (chap. 7, 8 et 9). Plusieurs analyses sont proposĂ©es pour valider les hypothĂšses de cette thĂšse (chap. 9). Des analyses de sensibilitĂ© par diffusiogramme sont utilisĂ©es pour Ă©tudier les caractĂ©ristiques et la dispersion des physionomies vĂ©gĂ©tales dans diffĂ©rents espaces constituĂ©s de paramĂštres polarimĂ©triques ou canaux de polarisation (chap. 10 et 12). Des sĂ©ries temporelles d’images RADARSAT-2 sont utilisĂ©es pour approfondir la comprĂ©hension de l’évolution saisonniĂšre des physionomies vĂ©gĂ©tales (chap. 12). L’algorithme de la divergence transformĂ©e est utilisĂ© pour quantifier la sĂ©parabilitĂ© entre les classes physionomiques et pour identifier le ou les paramĂštres ayant le plus contribuĂ©(s) Ă  leur sĂ©parabilitĂ© (chap. 11 et 13). Des classifications sont aussi proposĂ©es et les rĂ©sultats comparĂ©s Ă  une carte existante des milieux humide du lac Saint-Pierre (14). Finalement, une analyse du potentiel des paramĂštres polarimĂ©trique en bande C et L est proposĂ© pour le suivi de l’hydrologie des tourbiĂšres (chap. 15 et 16). Les analyses de sensibilitĂ© montrent que les paramĂštres de la 1re composante, relatifs Ă  la portion dominante (polarisĂ©e) du signal, sont suffisants pour une caractĂ©risation gĂ©nĂ©rale des physionomies vĂ©gĂ©tales. Les paramĂštres des 2e et 3e composantes sont cependant nĂ©cessaires pour obtenir de meilleures sĂ©parabilitĂ©s entre les classes (chap. 11 et 13) et une meilleure discrimination entre milieux humides et milieux secs (chap. 14). Cette thĂšse montre qu’il est prĂ©fĂ©rable de considĂ©rer individuellement les paramĂštres des 1re, 2e et 3e composantes plutĂŽt que leur somme pondĂ©rĂ©e par leurs valeurs propres respectives (chap. 10 et 12). Cette thĂšse examine Ă©galement la complĂ©mentaritĂ© entre les paramĂštres de structure et ceux relatifs Ă  la puissance rĂ©trodiffusĂ©e, souvent ignorĂ©e et normalisĂ©e par la plupart des dĂ©compositions polarimĂ©triques. La dimension temporelle (saisonniĂšre) est essentielle pour la caractĂ©risation et la classification des physionomies vĂ©gĂ©tales (chap. 12, 13 et 14). Des images acquises au printemps (avril et mai) sont nĂ©cessaires pour discriminer les milieux secs des milieux humides alors que des images acquises en Ă©tĂ© (juillet et aoĂ»t) sont nĂ©cessaires pour raffiner la classification des physionomies vĂ©gĂ©tales. Un arbre hiĂ©rarchique de classification dĂ©veloppĂ© dans cette thĂšse constitue une synthĂšse des connaissances acquises (chap. 14). À l’aide d’un nombre relativement rĂ©duit de paramĂštres polarimĂ©triques et de rĂšgles de dĂ©cisions simples, il est possible d’identifier, entre autres, trois classes de bas marais et de discriminer avec succĂšs les hauts marais herbacĂ©s des autres classes physionomiques sans avoir recours Ă  des sources de donnĂ©es auxiliaires. Les rĂ©sultats obtenus sont comparables Ă  ceux provenant d’une classification supervisĂ©e utilisant deux images Landsat-5 avec une exactitude globale de 77.3% et 79.0% respectivement. Diverses classifications utilisant la machine Ă  vecteurs de support (SVM) permettent de reproduire les rĂ©sultats obtenus avec l’arbre hiĂ©rarchique de classification. L’exploitation d’une plus forte dimensionalitĂ©e par le SVM, avec une prĂ©cision globale maximale de 79.1%, ne permet cependant pas d’obtenir des rĂ©sultats significativement meilleurs. Finalement, la phase de la dĂ©composition de Touzi apparaĂźt ĂȘtre le seul paramĂštre (en bande L) sensible aux variations du niveau d’eau sous la surface des tourbiĂšres ouvertes (chap. 16). Ce paramĂštre offre donc un grand potentiel pour le suivi de l’hydrologie des tourbiĂšres comparativement Ă  la diffĂ©rence de phase entre les canaux HH et VV. Cette thĂšse dĂ©montre que les paramĂštres de la dĂ©composition de Touzi permettent une meilleure caractĂ©risation, de meilleures sĂ©parabilitĂ©s et de meilleures classifications des physionomies vĂ©gĂ©tales des milieux humides que les canaux de polarisation HH, HV et VV. Le regroupement des espĂšces vĂ©gĂ©tales en classes physionomiques est un concept valable. Mais certaines espĂšces vĂ©gĂ©tales partageant une physionomie similaire, mais occupant un milieu diffĂ©rent (haut vs bas marais), ont cependant prĂ©sentĂ© des diffĂ©rences significatives quant aux propriĂ©tĂ©s de leur rĂ©trodiffusion.Wetlands fill many important ecological functions and contribute to the biodiversity of fauna and flora. Although there is a growing recognition of the importance to protect these areas, it remains that their integrity is still threatened by the pressure of human activities. The inventory and the systematic monitoring of wetlands are a necessity and remote sensing is the only realistic way to achieve this goal. The primary objective of this thesis is to contribute and improve the wetland characterization using satellite polarimetric data acquired in L (ALOS-PALSAR) and C (RADARSAT-2) band. This thesis is based on two hypotheses (Ch. 1). The first hypothesis stipulate that classes of plant physiognomies, based on plant structure, are more appropriate than classes of plant species because they are best adapted to the information content of polarimetric radar data. The second hypothesis states that polarimetric decomposition algorithms allow an optimal extraction of polarimetric information compared to a multi-polarized approach based on the HH, HV and VV channels (Ch. 3). In particular, the contribution of the incoherent Touzi decomposition for the inventory and monitoring of wetlands is examined in detail. This decomposition allows the characterization of the scattering type, its phase, orientation, symmetry, degree of polarization and the backscattered power of a target with a series of parameters extracted from an analysis of the coherency matrix eigenvectors and eigenvalues. The lake Saint-Pierre region was chosen as the study site because of the great diversity of its wetlands that are covering more than 20 000 ha. One of the challenges posed by this thesis is that there is neither a standard system enumerating all the possible physiognomic classes nor an accurate description of their characteristics and dimensions. Special attention was given to the creation of these classes by combining several data sources and more than 50 plant species were grouped into nine physiognomic classes (Ch. 7, 8 and 9). Several analyzes are proposed to validate the hypotheses of this thesis (Ch. 9). Sensitivity analysis using scatter plots are performs to study the characteristics and dispersion of plant physiognomic classes in various features space consisting of polarimetric parameters or polarization channels (Ch. 10 and 12). Time series of made of RADARSAT-2 images are used to deepen the understanding of the seasonal evolution of plant physiognomies (Ch. 12). The transformed divergence algorithm is used to quantify the separability between physiognomic classes and to identify the parameters (s) that contribute the most to their separability (Ch. 11 and 13). Classifications are also proposed and the results compared to an existing map of the lake Saint-Pierre wetlands (Ch. 14). Finally, an analysis of the potential of polarimetric parameters in C and L-band is proposed for the monitoring of peatlands hydrology (Ch. 15 and 16). Sensitivity analyses show that the parameters of the 1st component, relative to the dominant (polarized) part of the signal, are sufficient for a general characterization of plant physiognomies. The parameters of the second and third components are, however, needed for better class separability (Ch. 11 and 13) and a better discrimination between wetlands and uplands (Ch. 14). This thesis shows that it is preferable to consider individually the parameters of the 1st, 2nd and 3rd components rather than their weighted sum by their respective eigenvalues (Ch. 10 and 12). This thesis also examines the complementarity between the structural parameters and those related to the backscattered power, often ignored and normalized by most polarimetric decomposition. The temporal (seasonal) dimension is essential for the characterization and classification of plant physiognomies (Ch. 12, 13 and 14). Images acquired in spring (April and May) are needed to discriminate between upland and wetlands while images acquired in summer (July and August) are needed to refine the classifications of plant physiognomies. A hierarchical classification tree developed in this thesis represents a synthesis of the acquired knowledge (Chapter 14). Using a relatively small number of polarimetric parameters and simple decision rules, it is possible to identify, among other, three low marshes classes and to discriminate with success herbaceous high marshes from other physiognomic classes without using ancillary data source. The results obtained are comparable to those from a supervised classification using two Landsat-5 images with an overall accuracy of 77.3% and 79.0% respectively. Various classifications using the support vector machine (SVM) can reproduce the results obtained with the hierarchical classification tree. But the possible exploitation by the SVM of a higher dimensionality, with a maximum overall accuracy of 79.1%, does not allow however to achieve significantly better results. Finally, the phase of the Touzi decomposition appears to be the only parameter (in L-band) sensitive to changes in water level beneath the peat surface (Ch. 16). Therefore, this parameter offer a great potential for peatlands hydrology monitoring compared to the HH-VV phase difference. This thesis demonstrates that the Touzi decomposition parameters allow a better characterization, better separability and better classifications of wetlands plant physiognomic classes than HH, HV and VV polarization channels. The grouping of plant species into physiognomic classes is a valid concept. However, some plant species sharing a similar physiognomy, but occupying a different environment (high vs. low marshes), have presented significant differences in their scattering properties
    corecore