1,219 research outputs found

    A linear relational DEA model to evaluate two-stage processes with shared inputs

    Get PDF
    Two-stage data envelopment analysis (DEA) efficiency models identify the efficient frontier of a two-stage production process. In some two-stage processes, the inputs to the first stage are shared by the second stage, known as shared inputs. This paper proposes a new relational linear DEA model for dealing with measuring the efficiency score of two-stage processes with shared inputs under constant returns-to-scale assumption. Two case studies of banking industry and university operations are taken as two examples to illustrate the potential applications of the proposed approach

    A mixed-integer slacks-based measure data envelopment analysis for efficiency measuring of German university hospitals

    Get PDF

    Advancing efficiency analysis using data envelopment analysis: the case of German health care and higher education sectors

    Get PDF
    The main goal of this dissertation is to investigate the advancement of efficiency analysis through DEA. This is practically followed by the case of German health care and higher education organizations. Towards achieving the goal, this dissertation is driven by the following research questions: 1.How the quality of the different DEA models can be evaluated? 2.How can hospitals’ efficiency be reliably measured in light of the pitfalls of DEA applications? 3.In measuring teaching hospital efficiency, what should be considered? 4.At the crossroads of internationalization, how can we analyze university efficiency? Both the higher education and the health care industries are characterized by similar missions, organizational structures, and resource requirements. There has been increasing pressure on universities and health care delivery systems around the world to improve their performance during the past decade. That is, to bring costs under control while ensuring high-quality services and better public accessibility. Achieving superior performance in higher education and health care is a challenging and intractable issue. Although many statistical methods have been used, DEA is increasingly used by researchers to find best practices and evaluate inefficiencies in productivity. By comparing DMU behavior to actual behavior, DEA produces best practices frontier rather than central tendencies, that is, the best attainable results in practice. The dissertation primarily focuses on the advancement of DEA models primarily for use in hospitals and universities. In Section 1 of this dissertation, the significance of hospital and university efficiency measurement, as well as the fundamentals of DEA models, are thoroughly described. The main research questions that drive this dissertation are then outlined after a brief review of the considerations that must be taken into account when employing DEA. Section 2 consists of a summary of the four contributions. Each contribution is presented in its entirety in the appendices. According to these contributions, Section 3 answers and critically discusses the research questions posed. Using the Translog production function, a sophisticated data generation process is developed in the first contribution based on a Monte Carlo simulation. Thus, we can generate a wide range of diverse scenarios that behave under VRS. Using the artificially generated DMUs, different DEA models are used to calculate the DEA efficiency scores. The quality of efficiency estimates derived from DEA models is measured based on five performance indicators, which are then aggregated into two benchmark-value and benchmark-rank indicators. Several hypothesis tests are also conducted to analyze the distributions of the efficiency scores of each scenario. In this way, it is possible to make a general statement regarding the parameters that negatively or positively affect the quality of DEA estimations. In comparison with the most commonly used BCC model, AR and SBM DEA models perform much better under VRS. All DEA applications will be affected by this finding. In fact, the relevance of these results for university and health care DEA applications is evident in the answers to research questions 2 and 4, where the importance of using sophisticated models is stressed. To be able to handle violations of the assumptions in DEA, we need some complementary approaches when units operate in different environments. By combining complementary modeling techniques, Contribution 2 aims to develop and evaluate a framework for analyzing hospital performance. Machin learning techniques are developed to perform cluster analysis, heterogeneity, and best practice analyses. A large dataset consisting of more than 1,100 hospitals in Germany illustrates the applicability of the integrated framework. In addition to predicting the best performance, the framework can be used to determine whether differences in relative efficiency scores are due to heterogeneity in inputs and outputs. In this contribution, an approach to enhancing the reliability of DEA performance analyses of hospital markets is presented as part of the answer to research question 2. In real-world situations, integer-valued amounts and flexible measures pose two principal challenges. The traditional DEA models do not address either challenge. Contribution 3 proposes an extended SBM DEA model that accommodates such data irregularities and complexity. Further, an alternative DEA model is presented that calculates efficiency by directly addressing slacks. The proposed models are further applied to 28 universities hospitals in Germany. The majority of inefficiencies can be attributed to “third-party funding income” received by university hospitals from research-granting agencies. In light of the fact that most research-granting organizations prefer to support university hospitals with the greatest impact, it seems reasonable to conclude that targeting research missions may enhance the efficiency of German university hospitals. This finding contributes to answering research question 3. University missions are heavily influenced by internationalization, but the efficacy of this strategy and its relationship to overall university efficiency are largely unknown. Contribution 4 fills this gap by implementing a three-stage mathematical method to explore university internationalization and university business models. The approach is based on SBM DEA methods and regression/correlation analyses and is designed to determine the relative internationalization and relative efficiency of German universities and analyze the influence of environmental factors on them. The key question 4 posed can now be answered. It has been found that German universities are relatively efficient at both levels of analysis, but there is no direct correlation between them. In addition, the results show that certain locational factors do not significantly affect the university’s efficiency. For policymakers, it is important to point out that efficiency modeling methodology is highly contested and in its infancy. DEA efficiency results are affected by many technical judgments for which there is little guidance on best practices. In many cases, these judgments have more to do with political than technical aspects (such as output choices). This suggests a need for a discussion between analysts and policymakers. In a nutshell, there is no doubt that DEA models can contribute to any health care or university mission. Despite the limitations we have discussed previously to ensure that they are used appropriately, these methods still offer powerful insights into organizational performance. Even though these techniques are widely popular, they are seldom used in real clinical (rather than academic) settings. The only purpose of analytical tools such as DEA is to inform rather than determine regulatory judgments. They, therefore, have to be an essential part of any competent regulator’s analytical arsenal

    Non-Parametric Tests for Firm Efficiency in Case of Errors-in-Variables

    Get PDF
    This paper develops a novel statistic for firm efficiency called efficiency depth thatallows for statistical inference in case of errors-in-variables. We derive statistical teststhat require minimal statistical assumptions; neither the sample distribution nor thenoise level is required. An empirical illustration for European banks illustrates that -despite the minimal assumptions- the tests can have substantial discriminating powerin practical applications.errors-in-variables;firm efficiency;nonparametric analysis

    Calculating the scale elasticity in DEA models.

    Get PDF
    In economics scale properties of a production function is charcterised by the value of the scale elasticity. In the field of efficiency studies this is also a valid approach for the frontier production function. It has no good meaning to talk about scale properties of inefficient observations. In the DEA literature a qualitative characterisation is most common. The contribution of the paper is to apply the concept of scale elasticity from multi output production theory in economics to the piecewise linear frontier production function, and to develop formulas for calculating values of the scale elasticity for radial projections of inefficient observations. Illustrations also on real data are provided, showing the differences between scale elasticity values for the input- and output oriented projections and the range of values for efficient observations.Scale elasticity; DEA, production theory; Farrell efficiency measures

    COOPER-framework: A Unified Standard Process for Non-parametric Projects

    Get PDF
    Practitioners assess performance of entities in increasingly large and complicated datasets. If non-parametric models, such as Data Envelopment Analysis, were ever considered as simple push-button technologies, this is impossible when many variables are available or when data have to be compiled from several sources. This paper introduces by the ‘COOPER-framework’ a comprehensive model for carrying out non-parametric projects. The framework consists of six interrelated phases: Concepts and objectives, On structuring data, Operational models, Performance comparison model, Evaluation, and Result and deployment. Each of the phases describes some necessary steps a researcher should examine for a well defined and repeatable analysis. The COOPER-framework provides for the novice analyst guidance, structure and advice for a sound non-parametric analysis. The more experienced analyst benefits from a check list such that important issues are not forgotten. In addition, by the use of a standardized framework non-parametric assessments will be more reliable, more repeatable, more manageable, faster and less costly.DEA, non-parametric efficiency, unified standard process, COOPER-framework.

    Measurement of Returns-to-Scale using Interval Data Envelopment Analysis Models

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI linkThe economic concept of Returns-to-Scale (RTS) has been intensively studied in the context of Data Envelopment Analysis (DEA). The conventional DEA models that are used for RTS classification require well-defined and accurate data whereas in reality observations gathered from production systems may be characterized by intervals. For instance, the heat losses of the combined production of heat and power (CHP) systems may be within a certain range, hinging on a wide variety of factors such as external temperature and real-time energy demand. Enriching the current literature independently tackling the two problems; interval data and RTS estimation; we develop an overarching evaluation process for estimating RTS of Decision Making Units (DMUs) in Imprecise DEA (IDEA) where the input and output data lie within bounded intervals. In the presence of interval data, we introduce six types of RTS involving increasing, decreasing, constant, non-increasing, non-decreasing and variable RTS. The situation for non-increasing (non-decreasing) RTS is then divided into two partitions; constant or decreasing (constant or increasing) RTS using sensitivity analysis. Additionally, the situation for variable RTS is split into three partitions consisting of constant, decreasing and increasing RTS using sensitivity analysis. Besides, we present the stability region of an observation while preserving its current RTS classification using the optimal values of a set of proposed DEA-based models. The applicability and efficacy of the developed approach is finally studied through two numerical examples and a case study

    A reasonable benchmarking frontier using DEA : an incentive scheme to improve efficiency in public hospitals

    Get PDF
    There exists research relating management concepts with productivity measurement methods that offers useful solutions for improving management control in the public sector. Within this sphere, we connect agency theory with efficiency analysis and describe how to define an incentives scheme that can be applied in the public sector to monitor the efficiency and productivity of managers. To fulfill the main objective of this research, we propose an iterative process for determining what we define as a ‘reasonable frontier’, a concept that provides the foundation required to establish the incentive scheme for the managers. Our ‘reasonable frontier’ has the following properties: i) it detects the presence of outliers, ii) it proposes a procedure to establish the influence introduced by extreme observations, and iii) it sorts out the problem of data masking. The proposed method is applied to a sample of hospitals taken from the public network of the Spanish health service. The results obtained confirm the applicability of the proposal made. Summing up, we define and apply a useful method, combining aspects of agency theory and efficiency analysis, which is of interest to those public authorities trying to design effective incentive schemes which influence the decision making of the public managers

    Robust data envelopment analysis via ellipsoidal uncertainty sets with application to the Italian banking industry

    Get PDF
    AbstractThis paper extends the conventional DEA models to a robust DEA (RDEA) framework by proposing new models for evaluating the efficiency of a set of homogeneous decision-making units (DMUs) under ellipsoidal uncertainty sets. Four main contributions are made: (1) we propose new RDEA models based on two uncertainty sets: an ellipsoidal set that models unbounded and correlated uncertainties and an interval-based ellipsoidal uncertainty set that models bounded and correlated uncertainties, and study the relationship between the RDEA models of these two sets, (2) we provide a robust classification scheme where DMUs can be classified into fully robust efficient, partially robust efficient and robust inefficient, (3) the proposed models are extended to the additive DEA model and its efficacy is analyzed with two imprecise additive DEA models in the literature, and finally, (4) we apply the proposed models to study the performance of banks in the Italian banking industry. We show that few banks which were resilient in their performance can be robustly classified as partially efficient or fully efficient in an uncertain environment
    • …
    corecore