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Abstract 

The economic concept of Returns-to-Scale (RTS) has been intensively studied in the context of 

Data Envelopment Analysis (DEA). The conventional DEA models that are used for RTS 

classification require well-defined and accurate data whereas in reality observations gathered 

from production systems may be characterized by intervals.  For instance, the heat losses of the 

combined production of heat and power (CHP) systems may be within a certain range, hinging 

on a wide variety of factors such as external temperature and real-time energy demand. 

Enriching the current literature independently tackling the two problems; interval data and RTS 

estimation; we develop an overarching evaluation process for estimating RTS of Decision 

Making Units (DMUs) in Imprecise DEA (IDEA) where the input and output data lie within 

bounded intervals. In the presence of interval data, we introduce six types of RTS involving 

increasing, decreasing, constant, non-increasing, non-decreasing and variable RTS. The situation 

for non-increasing (non-decreasing) RTS is then divided into two partitions; constant or 

decreasing (constant or increasing) RTS using sensitivity analysis. Additionally, the situation for 

variable RTS is split into three partitions consisting of constant, decreasing and increasing RTS 

using sensitivity analysis. Besides, we present the stability region of an observation while 

                                                
1
 An earlier version of this paper previously circulated with the title “Estimating returns to scale in imprecise data 

envelopment analysis” in Hatami-Marbini et al. (2014). 
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preserving its current RTS classification using the optimal values of a set of proposed DEA-

based models. The applicability and efficacy of the developed approach is finally studied through 

two numerical examples and a case study. 

Keywords: Returns-to-scale; Interval data; Data envelopment analysis. 

JEL Classification C61 D24 D80 

1. Introduction  

Among the most important and highly discussed topics in the Data Envelopment Analysis (DEA) 

literature is the estimation of Returns-to-Scale (RTS) of individual Decision Making Units 

(DMUs) (i.e., observations) (Banker et al., 2004). Since the seminal work on most productive 

scale size by Banker (1984), a series of papers have been devoted to various aspects of RTS 

classification in different types of DEA models (as we will briefly review in Section 1.1 below). 

In short, RTS classification poses two challenges. The most straightforward challenge is to 

classify RTS of efficient DMUs which turn out to be closely related to the optimal solutions of 

the standard DEA models. The second challenge is to classify the RTS of inefficient DMUs 

which further requires a relevant projection onto the efficient frontier of the production 

possibility set.  

In addition to the aforesaid challenges, this paper will consider data imprecision as another 

challenge. In many empirical cases, data is often subject to substantial imprecision that seriously 

questions the relevance of well-defined “crisp” data as required by the standard DEA framework 

(Hatami-Marbini et al., 2011). In such cases, interval data seem more appropriate as recognized 

by two important strands of literature: Imprecise DEA (IDEA) and Fuzzy DEA (FDEA). 
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IDEA was originally presented by Cooper et al. (1999, 2001a, 2001b) when data sets include 

intervals, ordinal data and/or ratio bounds. Subsequently, a great deal of interest for interval 

DEA followed as briefly reviewed in Section 1.1 below.  

The FDEA literature is recently surveyed in Emrouznejad et al. (2014) and Hatami-Marbini et 

al. (2011). Loosely speaking, fuzzy data can be seen as generalized intervals, but many of the 

relevant methods build on so-called α-level based approach, which are in fact interval data.    

When data is in the form of intervals, it is no longer obvious what RTS means. In case of crisp 

data, Constant Returns-to-Scale (CRS) prevails when scaling up or down all inputs by a factor α 

scales up or down all outputs by exactly the same factor α. With inputs and outputs given in the 

form of intervals, we apply a straightforward generalization of CRS in the way that multiplying 

input intervals by a factor α, [α x^L, α x^U], leads to multiplying output intervals by a factor α as 

well, [α y^L, α y^U]. In terms of economics, this corresponds to looking at imprecision as a 

relative uncertainty surrounding the value of a given variable, say, +/- 10% of the crisp value. 

Mimicking the standard methods for RTS classification in the conventional (crisp) case, we 

suggest using the approach of Wang et al. (2005) to determine the efficient frontier (in case of 

interval data). In particular, we propose six RTS classes involving increasing, decreasing, 

constant, non-increasing, non-decreasing and variable RTS. We then carry out the sensitivity 

analysis to divide the case of non-increasing RTS (non-decreasing RTS) into two partitions; 

constant or decreasing RTS (constant or increasing RTS) and to split the situation for variable 

RTS into three partitions consisting of constant, decreasing and increasing RTS. In the presence 

of bounded data, we present the stability region of a given DMU while preserving its current 

RTS classification using the optimal values of a set of proposed DEA-based models as in the 

approach of Seiford and Zhu (1999b).  
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To sum up, we submit that the way of estimating a frontier of the production possibility set 

with interval valued data put forward in Wang et al., (2005) can be utilized in connection with 

conventional methods for RTS classification introduced in Seiford and Zhu (1999a, 1999b) in 

order to analyse RTS in case of interval valued production data. We demonstrate the usefulness 

of our approach through various numerical illustrations, including an example where the results 

are directly comparable with the conventional approaches for crisp data sets.  We further 

consider an application involving undesirable outputs with interval data taken from a study of 

Iranian power plants by Khalili-Damghani et al. (2015). We demonstrate the ability of our 

suggested approach to classify these plants according to their RTS as well as supplementing 

these with ranges for which the classifications remain unchanged. 

 

    1.1. Related literature 

Banker (1984) initially discussed how to identify RTS in the CCR model, named after Charnes, 

Cooper and Rhodes (1978), and the BCC model, named after Banker, Charnes and Cooper 

(1984). Subsequently, Banker and Thrall (1992) and Zhu and Shen (1995) indicated some 

methods for estimating RTS when the BCC model encountered multiple optimal solutions. 

Banker et al. (1996) then proposed an alternative algorithm to specify RTS when the CCR model 

has alternative solutions but their method has high complexity.  

Using the efficiency scores of DMUs, Färe et al. (1985, 1994) attempted to characterize types 

of RTS. In an interesting study conducted by Golany and Yu (1997), an algorithm was proposed 

to determine RTS of the efficient DMUs. Jahanshahloo et al. (2005) extended Golany and Yu 

(1997)’s method since their algorithm is limited to some cases. Also, Seiford and Zhu (1999a, 
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1999b) proposed several DEA models for classifying RTS of DMUs in case of input and output 

orientation focusing on estimating stability regions of RTS.  

In the non-radial models, the classification of RTS is further complicated due to the multiple 

projections for each inefficient DMU. In this regard, Sueyoshi and Sekitani (2007a) discussed 

RTS of the non–radial range-adjusted measure (RAM) model. They dealt with the RTS problem 

associated with non–radial DEA model by finding all the efficient DMUs that belong to the 

reference set. Subsequently, Sueyoshi and Sekitani (2007b) extended their model when the 

alternative optimal solutions occur in the reference set and supporting hyperplane. Fukuyama 

(2000) provided some mathematical properties of scale elasticity (SE) of the efficient and 

inefficient DMUs. Although Soleimani-damaneh and Mostafaee (2008) and Zhang (2008) 

claimed that Fukuyama (2000)’s results are incorrect, Fukuyama (2008) showed the correctness 

of the results.  

Sueyoshi and Sekitani (2005) considered RTS in dynamic systems in which each DEA 

framework includes variable inputs and quasi-fixed inputs as two different types of inputs. 

Zarepisheh et al. (2006) introduced an algorithm to estimate the RTS of DMUs without chasing 

down alternative optimal solutions.  Førsund et al. (2007) presented two approaches for the 

specification of RTS. The first approach radially projected DMUs on the frontier. They then used 

the efficiency score and its dual variables for specifying RTS associated with DMUs. The second 

approach used the intersection of hyperplanes that passes through the DMU for distinguishing its 

RTS. Soleimani-damaneh et al. (2009) studied the relation between the RTS and scale elasticity 

(SE) when there are the alternative solutions. Zarepisheh and Soleimani-damaneh (2009) 

estimated RTS on the left and on the right by means of the dual simplex method. Soleimani-
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damaneh et al. (2010) explored the relation between the RTS and SE in the presence of weight 

restrictions and the alternative solutions.  

Sueyoshi and Goto (2011) considered DEA for the environmental assessment with the 

desirable and undesirable outputs. They then used a RAM model to estimate RTS and damages 

to scale (DTS) by means of desirable and undesirable outputs, respectively. Sueyoshi and Goto 

(2012) first defined the natural and managerial disposability concepts for environmental 

assessment. Next, they proposed non-radial model for distinguishing RTS and DTS of the natural 

and managerial disposability. Their method was applied to petroleum firms. Sueyoshi and Goto 

(2012) proposed radial and non-radial model for distinguishing RTS and DTS of the natural and 

managerial disposability. The authors applied their models to U.S. fossil fuel power. Sueyoshi 

and Goto (2013) first developed a technique to estimate RTS and DTS. Next, they applied their 

method to the US coal-fired power plants.  

Witte and Marques (2011), and Soleimani-damaneh and Mostafaee (2009) proposed models 

for non-convex production possibility set (PPS). Soleimani-damaneh and Mostafaee (2009) 

studied the RTS of free disposal hull (FDH) model according to the summation of lambda as 

well as providing an algorithm to calculate the stability region of RTS classification. Witte and 

Marques (2011) measured the RTS for a FDH model according to the most imprecise scale size 

and applied their model for data from the Portuguese drinking water sector. 

Roughly speaking, there are many studies in the literature for determining the returns-to-scale 

properties of a projected point on the frontier (e.g., Førsund and Hjalmarsson 2004; Førsund et 

al. 2007; Podinovski et al. 2009; Podinovski and Førsund 2010) 

Krivonozhko et al. (2012) argued that the returns-to-scale of efficient DMUs can be perceived 

by viewing the returns-to-scale characteristics of single interior points of these faces.  
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Lately, Podinovski et al. (2016) contributed to the relevant DEA literature by developing a 

unified linear programming approach for the purpose of calculating scale elasticity and 

corresponding RTS characterization in any polyhedral technology including the standard VRS 

and CRS technologies, technologies with production trade-offs and weight restrictions, their 

variants with negative inputs and outputs, some technologies with weakly disposable undesirable 

outputs, and network DEA technologies. 

Following the IDEA papers by Cooper et al. (1999, 2001a, 2001b), Entani et al. (2002) 

proposed a DEA model with interval and fuzzy data to measure the interval efficiencies of 

DMUs from the optimistic and pessimistic viewpoints. Despotis and Smirlis (2002) proposed a 

pair of DEA models to calculate the upper and lower efficiency when input and output data vary 

in intervals. They defined 2n PPS for evaluating n DMUs from the best and worst viewpoints. 

Wang et al. (2005) modified Despotis and Smirlis (2002)’s models by introducing a unified PPS 

in conjunction with n DMUs under assessment. Lee et al. (2002) presented a non-linear additive 

imprecise DEA (IDEA) model that was converted to the linear programming model. Kao (2006) 

expressed the imprecise DEA problem as a bi-level mathematical programming model when 

input and output data are characterized by the intervals. Park (2010) researched the relationship 

between primal and dual with imprecise data. Emrouznejad et al. (2011) developed the imprecise 

DEA models with interval data to estimate overall profit efficiency. The authors obtained the 

upper and lower bounds of the overall profit efficiency for DMUs and proposed a classifying the 

scores. Emrouznejad et al. (2012) developed general non-parametric corporate performance 

(GNCP) model and multiplicative non-parametric corporate performance (MNCP) model with 

interval ratio data. Shokouhi et al. (2010, 2014) used the robust optimization concept to propose 
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two different robust data envelopment analysis (RDEA) models for dealing with data 

uncertainty. 

The fuzzy DEA methods (as recently surveyed in Emrouznejad et al., 2014; Hatami-Marbini et 

al., 2011), can be classified into six main categories: (1) the tolerance approach, see, e.g. 

Sengupta (1992),  (2) the α-level based approach, see, e.g. Triantis and Girod (1998), Kao and 

Liu (2000), Hatami-Marbini et al. (2010), (3) the fuzzy ranking approach, see, e.g. Guo and 

Tanaka (2001), (4) the possibility approach, see, e.g. Lertworasirikul et al. (2003), Tavana et al. 

(2012), (5) the fuzzy arithmetic, see, e.g. Wang et al. (2009), and (6) the fuzzy random/type-2, 

see, e.g.  Qin and Liu (2010). 

Summing up the above literature, for crisp data our understanding of RTS is well developed. 

The literature on IDEA and Fuzzy DEA further provide a number of relevant models and 

approaches to handle uncertain production data. Yet, our understanding of RTS in models with 

uncertain data is much more limited. Our contribution is a step in the direction of combining 

established methods from the literature on RTS with crisp data and the literature on IDEA and 

fuzzy DEA in order to understand RTS in models with interval valued production data and non-

parametric estimation of the production possibility set.  

 

1.2. Organization 

The rest of the paper is organized as follows: In Section 2, we first review the conventional 

precise and imprecise CCR models and then present an overview of the sensitivity analysis 

method for RTS estimation.  In Section 3, we present a simple example to graphically show the 

concept of RTS with interval inputs and interval outputs. In Section 4, we develop a method to 

estimate RTS of DMUs with interval data followed by a discussion on stability of the RTS. We 
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present an empirical example to illustrate the proposed method in Section 6. In section 7, we also 

study a case study of Iranian power plants to bespeak the ability of the approach to categorise the 

plants in terms of their RTS. Finally, we provide some concluding remarks and suggestions for 

future research in Section 8. 

 

2.  Preliminaries 

In this section, we present the classic CCR model with precise data and review a central 

characterization result for determining Returns-to-Scale (RTS) of efficient DMUs. We then 

briefly review the Imprecise Data Envelopment Analysis (IDEA) model with interval data and 

the sensitivity analysis method for RTS estimation. 

 

2.1. CCR model 

The problem of evaluating of the performance of DMUo can be formulated by linear 

programming. Suppose that we have n DMUs where each DMUj, j=1,…,n, produces s outputs 

rjy  (r=1,…,s), using  m inputs 
ijx (i=1,…,m). Charnes et al. (1978) present the following 

envelopment form of the “CCR model” for measuring the radial input-efficiency of DMUo: 

1

1

min

. .       ,                 1,  ,  ,  

,                  1, , ,  

0 ,                             1, , .         

n

j ij io

j

n

j rj ro

j

j

s t x x i m

y y r s

j n



 









  

  

  




                                                                           (1) 

where 
j  (j=1,…,n) is the weight placed on each DMU for making up the efficient facet of 

DMUj. A DMU is called “CCR efficient” if and only if the objective function of model (1) is 
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equal to 1, i.e., if 
* 1  , otherwise, it is called “CCR inefficient”. Note that the constraint space 

of (1) defines the production possibility set (PPS) as {( , ) | , , 0}j j j j j

j j

T x y x x y y       .  

Within the DEA framework, the economic concept of RTS has received a great deal of attention 

(see, e.g., Banker, 1984; Banker et al. 1984). On the basis of model (1), Banker and Thrall 

(1992) proposed a theorem, so called BT theorem, characterizing RTS of given efficient DMUs 

(see appendix 1). It should be emphasized that BT theorem only holds for efficient DMUs. 

Therefore, the optimal value of 
* from model (1) is recognized as a prerequisite for executing 

the RTS analysis. Banker at al. (1996) further developed a method to omit the examining all the 

alternate optima. The RTS classification of an inefficient unit can be identified via its projection 

onto the efficient frontier.  Thereby, when studying the inefficient units, the input- and output-

oriented CCR models may lead to different RTS classifications. In this paper, we shall focus on 

the input oriented version of the CCR model for identifying the RTS characterizations. It is 

worth noting that the research idea that will be presented in this study for the input oriented CCR 

model can straightforwardly extend to output oriented CCR model. 

2.2. Imprecise CCR model 

We here briefly review the well-known imprecise (multiplier) DEA approach proposed by 

Despotis and Smirlis (2002).  

Let n DMUs each produce s interval outputs , L U

rj rj rjy y y    (r=1,…,s) using m interval inputs 

 [ ,  ]L U

ij ij ijx x x  (i=1,…,m)
 
where , L U

rj rjy y ,  L

ijx and U

ijx ,  are strictly positive. Despotis and Smirlis 

(2002) formulated a pair of imprecise technical efficiency (ITE) models [in multiplier form] to 

compute the lower bound (LB) and upper bound (UB) of technical efficiency, here presented in 

their envelopment forms: 
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(2): ITE1-IN-CCR (LB) (3): ITE1-IN-CCR (UB) 

1,

1,
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

 

U  and 
L  are called the efficiency scores of DMUo in the best and worst conditions, 

respectively, treated in the input-oriented direction.  As noticed by Wang et al. (2005) it is 

somewhat problematic that using (2) and (3) in effect implies that upper and lower efficiency 

scores are computed relative to different frontiers for the same DMU and hence introduces 

comparability issues. Consequently, Wang et al. (2005) developed a pair of multiplier DEA 

models using the same PPS to obtain the interval efficiency for each DMU. We apply the 

approach of Wang et al. (2005) to the envelopment CCR model resulting in the following 

models:   

(4): ITE2-IN-CCR (LB) (5): ITE2-IN-CCR (UB) 

1

1
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where 
L  and 

U are the lower and upper bounds of efficiency for DMUo. 



  

13 
 

The only difference between the BCC and CCR models is the inclusion of the convexity 

constraint 
1

1
n

jj



  in both models (4) and (5). A DMUo is called efficient if and only if the 

objective function of model (4) is equal to 1, otherwise, it is called inefficient. 

Let us now graphically display the shortcomings of the Despotis and Smirlis (2002) approach 

using a simple example that consists of six DMUs, marked as A, B, C, D, E and F in Fig. 1 

where these DMUs respectively produce one interval valued output [1, 2], [1, 3], [4, 6], [6.5, 7], 

[5, 6.5] and [1, 6.5] using one interval valued input [2.5, 4], [3, 6], [6, 10], [7.5, 9], [10, 12] and 

[7, 10]. Notice that the coordinates of each point in Fig. 1 are represented in the order (x, y).  

-------Insert Fig.1 here------- 

When calculating upper bound efficiency of the six DMUs under a Variable Returns-to-Scale 

(VRS) assumption each evaluated DMU autonomously uses its best situation and the worst 

situation for other DMUs to build the six different production frontiers.  

For instance, let us focus on DMUA and DMUC. When evaluating the upper efficiency bound 

of DMUA, the points k and t in Fig. 1 as the best and worst situations are considered to form a 

piecewise DEA frontier wkp (black dashed line) that problematically disregards the free 

disposability and convex hull assumptions of standard DEA. Likewise, in assessing DMUC an 

alternative production frontier as the piecewise linear form uthp (blue dotted line) is established 

using the point h as the best setting of DMUC and the points t and p as the worst position of 

DMUA and DMUD, respectively. Consequently, the PPS based on the Despotis and Smirlis 

(2002) approach is not only not unique (equals to twice the number of DMUs), but it also 

violates the fundamental DEA axioms, see e.g., Banker et al. (1984) and Wang et al. (2005).  

To deal with these drawbacks, we can define a unique piecewise BCC frontier based on Wang 

et al. (2005)’s approach shown in models (4) and (5). The piecewise frontier here consists of wk, 
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kq, qh, hg and gb (red dashed line) that starts at the vertical line (support at k) and ends through a 

horizontal line at gb (support at g), as shown in Fig. 1. To build the frontier, we use the best 

situation of all DMUs (i.e., the smallest and greatest value of inputs and outputs for each DMU), 

in other words, the data set {(2.5,2), (3,3), (6,6), (7.5,7), (10,6.5), (7,6.5)} is used to form the 

production frontier. 

 

2.3. Sensitivity of RTS classifications in the standard DEA model 

The sensitivity of RTS classifications is an interesting and challenging research topic in the DEA 

literature. The estimation of RTS in DEA often takes into account the proportional change in all 

the outputs of DMUo derived from a proportional change in all its inputs. In the standard input-

oriented DEA model the RTS classifications of a DMU is not changed by variation of input 

levels unless the DMU is on the efficient frontier (Seiford and Zhu, 1999b). Seiford and Zhu 

(1999b) present a sensitivity analysis framework by means of several linear programming 

models for exploring the stability of RTS classifications when the output levels are perturbed. In 

addition to the identification of the stability region for the RTS classifications (constant, 

increasing or decreasing returns-to-scale), the authors determined the RTS classification by the 

optimal values to a series of CCR-based models. 

Within the input-oriented model, it is noticeable that if IRS prevails for a DMU, then its IRS 

cannot vary with decreases in outputs whereas if DRS prevail for a DMU, then its DRS remains 

unchanged with augmentations in outputs unless the DMU gets to the CCR frontier.  
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The following pair of programs with different objective functions, i.e., * 1 min( )
o

o j

j E

 



   and 

* 1 max( )
o

o j

j E

 



  , can be used to detect the RTS classifications of DMUo (Seiford and Zhu, 

1999b): 

* 1 * 1
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0 ,               

min max

. .

    .  

o o

o

o

o j o j

j E j E

j ij io

j E

j rj ro

j E

j o

x x i m

y y r s

j

s t

E

   

 





 

 





 

  







 





 (6) 

where 
*  is the optimal value of the standard CCR model (1) and 

  
E

o
{all efficient DMUs in 

model (1)}. The following theorem demonstrates how to determine the RTS classification using 

the above-defined models. 

Theorem 1. (Seiford and Zhu, 1999b) Suppose that *

o  and *

o  are the optimal values of 

models (6). The following conditions specify the RTS of DMU0 

   (I) CRS prevail for DMUo if and only if * *1o o   , 

   (II) IRS prevail for DMUo if and only if * 1o  ,  

   (III) DRS prevail for DMUo if and only if * 1.o   

To implement the sensitivity analysis of RTS classification (CRS, IRS and DRS), the three 

following theorems were developed by Seiford and Zhu (1999b) to deal with situations when 

output perturbations occur in DMUo under the input-oriented DEA model. 

Theorem 2. (Seiford and Zhu, 1999b) Let DMUo exhibit CRS. Then, its CRS classification 

remains unchanged for  * *min{1,  } max{1,  }CRS

o oR         where 
 

indicates a 
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proportional variation of all outputs,
 

 and *

o  and *

o  are obtained by 

models (6). 

Theorem 3. (Seiford and Zhu, 1999b) Let DMUo exhibit IRS. Then, its IRS classification 

remains unchanged for *{ 1  }IRS

oR        where α is a proportional augmentation of all 

outputs  and *

o   is calculated by model (6). 

Theorem 4. (Seiford and Zhu, 1999b) Let DMUo exhibit DRS. Then, its DRS classification 

remains unchanged for * 1}{DRS

oR       where 
 
indicates a proportional variation of 

all outputs  and *

o  
is the optimal objective function of model (6).  

 

3. Motivating Example and a Few Preliminary Observations  

This section makes an attempt to show the main motivation behind the mathematical modelling 

that will be presented in the ensuing section for the RTS classification of each DMU. Let us 

consider the simple example presented in Subsection 2.2. We take the unique frontier into 

account (red dashed line in Fig. 1) for determining the RTS classification of each DMU because 

this piecewise frontier envelops all the imprecise observations as tightly as possible and avoids 

the aforesaid shortcomings. The line segments wk, kq, qh, hg and gb present IRS, IRS, CRS, 

DRS, DRS. Ray oqh (black dash-dotted line) is the CCR efficient frontier giving the case of 

CRS. If a DMU is on or projected onto the CCR efficient frontier, then this DMU exhibits the 

condition for CRS. When we encounter two distinct RTSs at the intersections such as q and h, 

we give priority to CRS-viz., on the line segment kq IRS prevail to the left of q, whereas on the 

line segment hg, DRS prevail to the right of h.  
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Unless a DMU lies on the production frontier, the interpretation of RTS is not straightforward. 

That is to say, the RTS for the inefficient DMUs can be identified after applying the projection. 

It should be noted that input- and output-oriented models may lead to different RTS 

classifications for the same DMU (Golany and Yu, 1994). We therefore limit our study to the 

input-oriented radial model (a similar approach can be developed for output efficiency with the 

straightforward changes). 

Now, consider the interval data for DMUA that is presented by a rectangle. The left width of 

the rectangle of DMUA is on the line segments wk where IRS prevails. The input-oriented 

projection (input-reduction) of the residual points of the DMUA will be located on the line 

segment wk where IRS prevails. Therefore, the RTS classification for DMUA is IRS where the 

input and output varies in a range.  

As a result, the two points AE= ,( )L L

io rox y  and BE= (x
io

L , y
ro

U ) of each DMU enable us to 

determine the corresponding RTS classification. For instance, DMUA exhibits IRS because IRS 

prevails at the two points AE= (2.5,1) and BE=(2.5,2) where these points are shown in Fig. 1. As 

another example, consider DMUB in Fig. 1. Despite of the points AE and BE, it is clear that 

DMUB exhibits IRS and CRS simultaneously, which can be called Non-Decreasing Returns-to-

Scale (NDRS). In other words, IRS prevails when the input and output lie within [3, 6] and [1, 

3), respectively, and CRS prevails when the input lies within [3, 6] input and the output is 3. 

Interestingly, we can obtain the same result if the two points AE=(3,1) and BE=(3,3) of DMUB 

are used for RTS classification. It is obvious that there is no point of DMUB between points AE 

and BE that exhibits DRS. Resultantly, we have the following general observation. 

Observation 1: If DMUo exhibits IRS (that is, both points AE and BE exhibit IRS), increases in 

outputs below the CRS output level cannot change its IRS classification. 
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Proof. Let a DMU be associated with its (optimistic) point BE. Thus, let DMU ( , )o o ox y
 

exhibit IRS. By Theorem 3 (adapted from Seiford and Zhu, 1999b) the IRS classification 

remains unchanged for α ≤ *

o  as determined in the maximization model (6). Due to the inputs 

change does not alter the RTS, let us evaluate * *( , )o io o rox y   using the maximization model (6) as 

presented below: 

 

1 *

* * *

* *

*

( ) max

, 1,..., ,

, 1,...,s,

0 .

o

o

o

o j

j E

j ij o o io

j E

j rj o ro

j E

j o

x x i m

y y r

j E

 

  

 













 

 

 







 

where 
*  is the optimal objective function value of model (4) when evaluating * *( , )o io o rox y  . 

Obviously,  * * 0,j o oj E     is the feasible solution for the maximization model (6) when 

evaluating ( , )io rox y . Due to  * * *1 1
o

j o oj E
  


   we have  * *1

o
j oj E

 


  . We already 

know *( , )io o rox y
 
is not IRS, therefore, 

* 1
o

jj E



 and the RTS of DMUo is CRS.   

The rectangles associated with DMUC and DMUD exhibit CRS and DRS, respectively. DMUE 

reveals DRS and CRS at the same time and it is consequently called Non-Increasing Returns-to-

Scale (NIRS). Put differently, DRS prevails when the input and output lie within [10, 12] and 

(6,6.5], respectively, and CRS prevails when the input and output lies within [10,12] and [5,6], 

respectively.  
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Observation 2: If DMUo exhibits CRS (that is, both points AE and BE exhibit CRS), increases 

(decreases) in outputs cannot change its CRS classification unless for point BE, DRS (for point 

AE, IRS) prevails.  

Proof. As in the case of Observation 1 above we can now use Theorem 2 (adapted from Seiford 

and Zhu, 1999b) with respect to points BE and AE  

The rectangle associated with DMUF exhibits IRS, CRS and DRS at the same time. In other 

words, DRS prevails when the input and output lie within [7, 10] and (6,6.5], respectively, CRS 

prevails when the input and output lie within [7, 10] and [3,6], respectively and IRS prevails 

when the input and output lie within [7, 10] and [1,3), respectively. Therefore, the RTS 

classification of DMU is called Variable Returns-to-Scale (VRS). We obtain this result from the 

two points AE=(7, 1) and BE=(10, 6.5) which exhibit IRS and DRS, respectively. The DMU is 

thus classified into a VRS group according to Observation 3. 

Observation 3: If DMUo exhibits IRS (that is, point AE exhibits IRS), and increases in outputs 

change its IRS to DRS (that is, point BE exhibits DRS), then there is at least one potential output 

level for which CRS prevails. In other words, when DMU
o

(x
o
, y

o
) exhibits IRS, increase the 

outputs of DMU ( , )o o ox y  by 1   such that DMU ( , )o o ox y   exhibits DRS. Then 

DMU ( , )o o ox y 
 
, 1     exhibits CRS.

 

Proof. The proof is straightforward according to Observation 1 (omitted).  

 

4. RTS classification with interval data 

As discussed and illustrated in the proceeding section, the two points AE= ,( )L L

io rox y  and BE= 

(x
io

L , y
ro

U ) of each DMU are able to identify the RTS classification. In doing so, we first construct 
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AE and BE as the substitutes for a DMU under evaluation and then calculate their best relative 

[technical] efficiencies using the following [input-oriented] models (8) and (9): 

(8):TE-IN-CCR (AE) (9): TE-IN-CCR (BE) 

1

1

min

. .       ,                1,  ,  ,

,                  1, , ,   

0 ,                             1, , .

AE

o

n
L AE L

j ij o io

j

n

j rj ro

j

j

U L

t x x i m

y y r s

j n

s



 









  

  

  




 

1

1

min

. .       ,    1,  ,  ,   

,        1, , ,          

0 ,                 1, , .

BE

o

n
L BE L

j ij o io

j

n
U

j rj ro

j

j

U

t x x i m

y y r s

j n

s



 









  

  

  




 

Each of the above models includes n DMUs and their PPSs are identical to Wang et al. (2005)’s 

models (see models (4) and (5)). In models (8) and (9), DMUo represents AE and BE, 

respectively, taken the role of a DMU under evaluation in which 
L

iox  and 
L

roy  are the i
th

 input and 

r
th

 output for AE, and 
L

iox  and 
U

roy  are the i
th

 input and r
th

 output for BE. The optimal solution of 

models (8) and (9) can be represented by 
*AE

o
 and 

BE*

o
 , respectively, where 

* BE*0 1AE

o o
    . 

Note that DMUo is efficient if 
BE* 1
o
   and, consequently, a set of efficient DMUs, denoted by oE , 

can be defined. 

Adapting the Seiford and Zhu (1999b) framework for each point of AE= ,( )L L

io rox y  and BE= 

,( )L U

io rox y  results in the following pair of models: 

(10):EFF-IN-CCR (AE) (11): EFF-IN-CCR (BE) 

1 1

*

( ) ( )
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


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1 1

*

( ) ( )

,  1,..., ,

,        1, , ,    

0 ,

max

             

mi

     .

n

. .

o o

o

o

BE BE

o j o j

j E j E

L B L

j ij o io

j E
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j E
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where *AE

o
 and BE*

o
 are the optimal solution of models (8) and (9), respectively and 

  
E

o
{all 

efficient DMUs in model (9)}. It is worth noting that each of programs (10) and (11) include two 

separate linear programming models which possess the similar set of constraints, but the 

objective functions of (10) and (11) are independently maximized and minimized. The linear 

programs (10) and (11) have a unified PPS based on the set of efficient DMUs, oE , subject to all 

DMUs consume the least inputs to secure the most outputs. However, programs (10) and (11) 

take the AE and BE, respectively, in lieu of the DMU under evaluation. At present, we customize 

Theorem 1 to propose the following definitions: 

I. AE (or BE) exhibits IRS if and only if 
* BE*1 ( 1)AE

o o
   . 

II. AE (or BE) exhibits DRS if and only if 
* BE*1 ( 1)AE

o o
   . 

III. AE (or BE) exhibits CRS if and only if 
* * *BE *BE1 ( 1 )AE AE

o o o o
       . 

Let us return to the earlier example in Section 3 to illustrate the above step of the proposed 

method. To identify RTS of AE= (2.5, 1) and BE=(2.5, 2) associated with DMUA we use the 

optimal solution of models (10) and (11) which are 
* *3 1 ( 1.5 1)AE BE

o o
     . Thereby, AE 

and BE exhibit IRS. Table 1 is summarized the findings for all the DMUs. 

-------Insert Table 1 here------- 

The following conditions determine the RTS classification of DMUo in terms of its RTS 

estimation for the two points AE and BE: 

     Con. 1. DMUo exhibits IRS iff BE exhibits IRS. 

     Con. 2. DMUo exhibits DRS iff AE exhibits DRS. 

     Con. 3. DMUo exhibits CRS iff AE and BE exhibit CRS. 

     Con. 4. DMUo exhibits NDRS iff AE and BE exhibit IRS and CRS, respectively. 
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     Con. 5. DMUo exhibits NIRS iff AE and BE exhibit CRS and DRS, respectively. 

     Con. 6. DMUo exhibits VRS iff AE and BE exhibit IRS and DRS, respectively. 

We draw the attention to the fact that the following conditions never occurs for DMUo: 

     Con. 7. AE and BE exhibit DRS and IRS, respectively. 

     Con. 8. AE and BE exhibit DRS and CRS, respectively. 

     Con. 9. AE and BE exhibit CRS and IRS, respectively. 

For example, DMUA exhibits IRS because of Con. 1. The last column of Table 1 reports the 

RTS estimation of all the DMUs in terms of the above conditions. 

 

As illustrated in Section 3, NDRS, NIRS and VRS individually encompass different RTS 

(CRS, IRS or DRS). Therefore, when DMUo according to Con. 4, 5, or 6 is classified as having 

either NDRS, NIRS or VRS, we present three propositions regarding sensitivity analysis to 

identify its different partitions. 

Proposition 1. If DMUo exhibits NDRS (involving CRS and IRS) derived from Con. 4, then its 

CRS and IRS classifications are unaltered under the following conditions, respectively: 

(I) IRS prevails when the inputs and outputs of DMUo lie within ,[ ]L U

io iox x  and ,[ )L

ro roy y  

where *{ },min AE L U

ro ro rooy y y   and 
*AE

o
  is the optimal solution of (10). 

(II) CRS prevails when the inputs and outputs of DMUo lie within ,[ ]L U

io iox x  and [ , ]U

ro roy y    

where *{ },min AE L U

ro ro rooy y y   and 
*AE

o
  is the optimal solution of (10). 

Proof (I). Assume that DMU ( , )L L

o io rox y   where *[1, )AE

o   and its RTS
 

is not IRS. 

Therefore, the RTS on DMUo
  will be either DRS or CRS. In this regard, 
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*DMU ( , )AE L L

o o io rox y    will be either DRS or CRS because the inputs change does not impact 

on RTS. Therefore, we have: 

 

 

* * * *

*

*

*

, 1,..., ,

, 1,...,s,

1, ( )

0, .

o
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o
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j ij o io o io

j E
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j E
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j E

j o
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j E
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 
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



  

 


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





 

where *  is the optimal objective function value of model (8) when assessing oDMU . 

Evidently,    * 0j oj E     is the feasible solution for model (10). According to the above 

equation (i),  * *1 1
o

AE

j oj E
   


   failing the optimality of (10

 

Proof (II). We need to prove that  *( , ), 1L U AE L U

io ro o ro rox y y y     exhibits CRS where (x
io

L , y
ro

U )
 

is CRS. Obviously, the RTS of ( , )L U

io rox y  and ( , )L U

io rox y   are identical. In addition,

    * *,AE L U L AE L U U

o ro ro io o ro ro roy y x y y y 

 

exhibits CRS since (x
io

L , y
ro

U )
 

is CRS (see Thrall and 

Banker, 1992). As a result,  *( , ), 1L U AE L U

io ro o ro rox y y y     
 

Proposition 2. If DMUo exhibits NIRS (involving CRS and DRS) derived from Con. 5, then its 

CRS and DRS classifications are unaltered under the following conditions, respectively: 

(I) DRS prevails when the inputs and outputs of DMUo lie within ,[ ]L U

io iox x  and  

,( ]U

ro roy y
 
where *a },m x{ B U L

ro ro ro

E

oy y y   and 
*BE

o
  is the optimal solution of (11). 

(II) CRS prevails when the inputs and outputs of DMUo lie within ,[ ]L U

io iox x  and [ , ]L

ro roy y  

where *a },m x{ B U L

ro ro ro

E

oy y y   and 
*BE

o
  is the optimal solution of (11).   
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Proof (I). Assume that DMU ( , )L L

o io rox y   where *( ,1]BE

o
   and its RTS

 
is not DRS. 

Therefore, the RTS on DMUo
  will be either IRS or CRS. In this regard, 

*DMU ( , )BE L U

o o io rox y    will be either IRS or CRS because the inputs change does not impact 

on RTS. Therefore, we have: 

 * * * *
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*
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where 
*  is the optimal objective function value of model (9) when assessing oDMU . 

Evidently,    * 0j oj E     is the feasible solution for model (11). According to the above 

equation (i),  * BE*1 1
o

j oj E
   


   failing the optimality of (11

 

Proof (II). We need to prove that  *( , ), 1L L BE U L

io ro o ro rox y y y     exhibits CRS where   
(x

io

L , y
ro

L )
 

is CRS. Obviously, the RTS of ( , )L L

io rox y  and ( , )L L

io rox y   are identical. In addition,

    * *,BE U L L BE U L L

o ro ro io o ro ro roy y x y y y 

 

exhibits CRS since   
(x

io

L , y
ro

L )
 
is CRS (see Thrall and Banker, 

1992). As a result,  BE*( , ), 1L L U L

io ro o ro rox y y y     
 

Proposition 3. If DMUo exhibits VRS (involving CRS, IRS and DRS) derived from Con. 6, its 

CRS, IRS and DRS classifications are unaltered under the following conditions, respectively: 

(I) DRS prevails when the inputs and outputs of DMUo lie within ,[ ]L U

io iox x  and

BE*( , ]U U

ro oo r
y y  and 

BE*

o
  is the optimal solution of (11). 
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(II) CRS prevails when the inputs and outputs of DMUo lie within ,[ ]L U

io iox x  and 

* BE*[ , ]AE

o

L U

ro ro o
y y   and *AE

o
  is the optimal solution of (10). 

(III) IRS prevails when the inputs and outputs of DMUo lie within ,[ ]L U

io iox x  and 

*[ , ]AL L

ro

E

o ro
y y  and 

*AE

o
  is the optimal solution of (10). 

Proof (I).  

Proof (II).  

Proof (III).  

Returning to the example in Section 3 we now consider, DMUB, DMUE and DMUF, that 

exhibit NDRS, NIRS and VRS and explain how to implement a sensitivity analysis as above.  

The set of efficient DMUs is oE ={DMUB, DMUC} since their upper efficiency scores derived 

from model (9) are equal to unity (see the 8
th

 column of Table 1).  As can be seen in the last 

column of Table 1, DMUB, DMUE and DMUF display NDRS, NIRS and VRS, respectively. 

Model (10) for DMUB with the situation for NDRS is formulated as follows: 

2
1

1

1 2

1 2

1 2

ˆ( ) max

. . 3 6 0.33 3

3 6 1

, 0.

AE

B j

j

s t

 

 

 

 






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 





 

where AE=(3,1), * 0.33AE

B   and the optimal value of the above model, 1( )AE

B
 , for DMUB is 

0.167. According to Proposition 1, the region of IRS and CRS for DMUB can be obtained as: 

(I) IRS prevails at DMUB when its input and output vary within [3, 6] and [1, 3), 

respectively. Note that min{5.988, }3 3rBy   .  
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(II) CRS prevails at DMUB when its inputs of DMUo vary within [3, 6] and its output is 3. 

Note that [ , ] [3,3]U

rB rBy y   where min{5.988, }3 3rBy   . 

Model (11) for DMUE with the situation for NIRS is described as follows: 

2
1

1

1 2

1 2

1 2

ˆ( ) min

. . 3 6 0.65 10

3 6 6.5

, 0.

BE

E j

j

s t

 

 

 

 







  

 





 

where BE=(10, 6.5), * 0.65BE

E   and the optimal value of the above model, 1( )BE

E
 , for DMUE 

is 1.0833. According to Proposition 2, the region of DRS and CRS for DMUE can be determined 

as: 

(I) DRS prevails at DMUE when its input and output vary within [10,12] and (6,6.5], 

respectively. Note that max{6, } 66rEy   .  

(II) CRS prevails at DMUE when its input and output vary within [10,12] and [5,6], 

respectively. Note that max{6, } 66rEy   . 

According to the proposed algorithm, we use models (10) and (11) for DMUF with the 

situation for VRS as follows: 

2
1

1

2 3

2 3

1 2

ˆ( ) max

. . 3 6 0.142 7

3 6 1

, 0,

AE

F j

j

s t
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 

 

 
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



  

 





 

2
1

1

2 3

2 3

1 2

ˆ( ) min

. . 3 6 0.92 7

3 6 6.5

, 0.

BE

F j

j

s t

 

 

 

 


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
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where AE=(7,1), BE=(7, 6.5), * 0.142AE

F  , * 0.92BE

F  8 and the optimal values of the above 

models are 1( )AE

F
 0.3333 and 1( )BE

F
  1.0833. According to Proposition 3, the region of 

CRS, IRS and DRS for DMUF can be determined as: 

(I) DRS prevails at DMUF when the inputs and outputs of DMUo lie within [7,10] and 

(6,6.5], respectively. 

(II) CRS prevails at DMUF when the inputs and outputs of DMUo lie within [7,10] and 

[3,6], respectively. 

(III) IRS prevails at DMUF when the inputs and outputs of DMUo lie within [7,10] and 

[1, 3), respectively. 

5.  Stability of the RTS classification with interval data 

This section presents the stability regions of RTS classification when inputs and outputs are 

given by intervals. Given the identification of the RTS of DMUs in the input-oriented 

perspective, the input perturbations cannot change the RTS classification and we only need to 

study the output perturbations (Seiford and Zhu, 1999b)
2
.  

Again, consider the example in Section 3 and focus on DMUE that is classified as NIRS (i.e., 

its points BE and AE are DRS and CRS, respectively). The output increase of DMUE expresses 

the output increase
3
 of point BE in DMUE and this DMU still exhibits DRS. Therefore, the RTS 

of DMUE remains unchanged since the RTS of point BE is unchanged with the output 

augmentation. The output reduction in DMUE prompts the output reduction
4
 of point AE in 

DMUE and this change is able to turn RTS into VRS, but it definitely depends on the amount of 

the output reduction. As a result, the impact of the output perturbation on two points AE and BE 

                                                
2 Note that in the case of the output-oriented perspective, the output perturbations cannot alter the RTS nature of 

DMU under evaluation and it is only essential to scrutinize the input perturbations for the RTS estimation of DMUs. 
3 The output increase means an increase in the upper bound of the output. 
4 The output reduction means a reduction in the lower bound of the output. 
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of the DMU under evaluation enable us to find the stability of RTS classifications. We here 

explain how to identify the stability region of six types of RTS: 

     (1) A DMU with IRS: If a DMU exhibits IRS, then the reduction of its outputs does not alter 

the RTS classification and only the output augmentation has the capability to change the RTS 

classification. We identify the stability region for the virtual point BE using model (11) and 

Theorem 3 when its outputs are increased. In this regard, the IRS of the point BE remains 

unaltered for *1  BE

o  
 
where α is a proportional increase in all outputs of the virtual point 

BE ( )( )new BE BE

r ry y . Therefore, the stability region of IRS for the DMU is [ , ]L U

ro roy y  where

*1  BE

o   .  

     (2) A DMU with DRS: If a DMU exhibits DRS, then the augmentation of its outputs does not 

alter the RTS classification and only the output reduction is able to change the RTS 

classification. We identify the stability region for the virtual point AE using model (10) and 

Theorem 4 when its outputs are reduced. In this regard, the DRS of the point AE remains 

unaltered for *  1AE

o  
 
where   is a proportional reduction in all outputs of the virtual point 

AE ( ( ) ( )new AE AE

r ry y ). Therefore, the stability region of DRS for the DMU is [ , ]L U

ro roy y
 
where 

*  1AE

o   . 

     (3) A DMU with CRS: If a DMU exhibits CRS then the variation of its outputs (increase 

and/or decrease) may alter the RTS classification. We identify the stability region for the virtual 

points AE and BE using models (10) and (11) as well as Theorem 2 when its outputs are varied. 

The stability region of CRS for the DMU is [ , ]L U

ro roy y   where *(min{1, } 1)AE

o  
 
and 

*(1 max{1, })BE

o   . 
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     (4) A DMU with NDRS: If a DMU exhibits NDRS, then the reduction of its outputs does not 

alter the RTS classification and only the output augmentation has the capability to change the 

RTS classification. We identify the stability region for the virtual point BE using model (11) and 

Theorem 2 when its outputs are increased. The stability region of NDRS for the DMU is 

[ , ]L U

ro roy y
 
where *(1 max{1, })BE

o   . 

     (5) A DMU with NIRS: If a DMU exhibits NIRS, then the augmentation of its outputs does 

not alter the RTS classification and only the output reduction is able to change the RTS 

classification. We identify the stability region for the virtual point AE using model (10) and 

Theorem 2 when its outputs are reduced. The stability region of NIRS for the DMU is 

[ , ]L U

ro roy y  where *(min{1, } 1)AE

o   . 

     (6) A DMU with VRS: If a DMU is VRS, then the variation of its outputs (increase and/or 

decrease) does not alter the RTS classification. 

Let us consider all six DMUs of an earlier example in Section 3 (see Fig. 1) to detail the 

formulation and solution to the sensitivity analysis of RTS classification. 

The set of efficient DMUs is oE ={DMUB, DMUC} because their upper efficiency scores 

flowed from the maximization model (6) are equal to 1.  

(1) DMUA shows IRS. We evaluate the point BE=(2.5,2) using model (11) as follows: 

2
1

1

2 3

2 3

1 2

ˆ( ) max

. . 3 6 0.8 2.5

3 6 2

, 0.

BE

A j

j

s t

 

 

 

 







  

 





 

The optimal solution of the above model is * 1( ) 0.666BE

A
 

 
and the RTS keeps unchanged 

when the output of DMUA varies within [1, 3). 
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(2) DMUB exhibits NDRS. We evaluate the point BE=(3,3) using model (11) as follows: 

2
1

1

2 3

2 3

1 2

ˆ( ) max

. . 3 6 3

3 6 3

, 0.

BE

B j

j

s t

 

 

 

 







 

 





 

The optimal solution of the above model is * 1( ) 1BE

B
  and the RTS keeps unchanged when 

the output of DMUB varies within [1, 3]. 

(3) DMUC exhibits CRS. We assess the points BE=(6,6) and AE=(6,4) using models (11) and 

(10), respectively, as follows: 

2
1

1

2 3

2 3

1 2

ˆ( ) min

. . 3 6 6

3 6 6

, 0.

BE

C j

j

s t

 

 

 

 







 

 




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1

1

2 3

2 3

1 2

ˆ( ) max

. . 3 6 0.33 6

3 6 4

, 0.

AE

C j

j

s t

 

 

 

 







  

 





 

The optimal solution of the above models are * 1( ) 1BE

C
   and * 1( ) 1.3333AE

C
  . Therefore, the 

RTS keeps unchanged when the output of DMUC varies within [3, 6]. 

(4) DMUD exhibits DRS. We evaluate the point AE=(7.5,6.5) using model (10) as follows: 

2
1

1

2 3

2 3

1 2

ˆ( ) min

. . 3 6 0.86 7.5

3 6 6.5

, 0,

AE

D j

j

s t

 

 

 

 







  

 





 

The optimal solution of the above model is * 1( 1 83) .0 3D

AE   . Therefore, the RTS keeps 

unchanged when the output of DMUD varies within (6, 7]. 

(5) DMUE exhibits NIRS. We evaluate the point AE=(10,5) using model (10) as follows: 
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2
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2 3

2 3

1 2

ˆ( ) max

. . 3 6 0.5 10

3 6 5

, 0,

AE

E j

j

s t
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The optimal solution of the above model is 1*( ) 1.6666A

E

E   . Therefore, the RTS keeps 

unchanged when the output of DMUE varies within [3,6.5]. 

(6) DMUF exhibits VRS and its RTS preserves fixed with any output variations. 

 

6. Illustrative Example  

In order to illustrate our method as well as to compare with the conventional approach, this 

section presents a real-world data set with 28 Chinese cities (DMUs) with three inputs and three 

outputs in 1983 from Charnes et al. (1989). Seiford and Zhu (1999b) used the data set to 

implement their RTS sensitivity analysis on the inefficient DMUs without considering 

imprecision in data (see the 12
th

 column of Table 3). We think of imprecision as a variable 

having a "true" value added a percentage of uncertainty, +/- 5%, in data of 28 DMUs in 1983, as 

represented in Table 2. For instance, DMU1 consumes three interval inputs [463.068, 

511.812],[1514338, 1673742] and [683005.4, 754900.7] to produce three interval outputs 

[7071515, 7815885],[1607495, 1776705] and [1257610, 1389990]. 

-------Insert Table 2 here------- 

We first calculate the efficiency of points AE and BE for each DMU using models (8) and (9) 

as reported in the 2
nd

 and 3
rd

 columns in Table 3. The DMUs {DMU1, DMU11, DMU19, DMU21, 

DMU22, DMU23, DMU24, DMU25, DMU26, DMU28} are efficient on account of * 1.BE

j   The 4
th
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column of Table 3 presents the set of DMUs whose λs are strictly positive in model (4). To 

determine the RTS of DMU we solve models (10) and (11) with respect to the efficiency of 

points AE and BE as its the optimal objective function value are reported in 5
th

, 6
th

, 8
th

 and 9
th

 

columns of Table 3. The 7
th
 and 10

th
 columns of Table 3 represent the RTS of points AE and BE 

while the 11
th 

column indicates the RTS of DMU under assessment in terms of * 1( )AE

o
 , * 1( )BE

o


, * 1( )AE

o
  and conditions 1-6.  

-------Insert Table 3 here------- 

As a result, DMUs {DMU1, DMU11, DMU19, DMU21, DMU22, DMU23, DMU24, DMU25, 

DMU26, DMU28} exhibit NDRS where all of them are a composite of two partitions IRS and 

CRS, DMUs {DMU6} exhibit VRS where all of them are a mix of three partitions: CRS, IRS and 

DRS, DMUs {DMU2, DMU3, DMU4, DMU5} exhibit DRS, and the remaining DMUs exhibit 

IRS. Table 4 shows the different RTS regions of DMUs whose RTS exhibit NDRS and VRS in 

terms of their outputs. Notice that the change in inputs does not influence the RTS classification. 

-------Insert Table 4 here------- 

The stability region of DMUs with the interval observations keeping their present RTS 

classifications are identified by means of the discussion in Section 5. The results are presented in 

the last column on Table 3 where “N.G.” or (Non-Change) presents the DMUs {DMU1, DMU6, 

DMU11, DMU19, DMU22, DMU23, DMU24, DMU25, DMU26, DMU28} which do not alter the RTS 

classification with the output reduction or outputs augmentation. 

Even though we have introduced imprecision in the data set (+/- 5%), the overall structure of 

the RTS classification remains almost the same as under the conventional approach with precise 

data. The main difference is concerned with DMU8 where its RTS classification is IRS and CRS 

for imprecise and precise scenarios, respectively.   Adding data imprecision, we obtain a more 
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nuanced picture where, for instance, DMU1 is now classified as NDRS including IRS and CRS 

regions (see Table 4) whereas with precise data it was classified as CRS and DMU6 is now VRS 

including IRS, CRS and DRS regions (see Table 4) versus CRS with precise data etc.  Further 

nuances are illustrated by the stability regions (column 13 in Table 3) and mapping of RTS 

regions in Table 4. 

It is important to emphasize that our approach does not generate useless vague results where 

most DMUs are classified as exhibiting every kind of RTS despite adding imprecision to the data 

set. Clearly this is caused by the fact that we still refer to a single common efficient frontier.  

7. Case study 

Every combined cycle power plant includes gas and steam turbines for producing electricity in 

which the gas turbine consumes fossil fuels such as gas and gasoline to produce electricity and at 

the same time the steam turbine uses the leftover (exhaust) heat released from the gas turbine to 

produce electricity. While the purpose of combined cycle power plants is to produce electricity, 

some emissions and pollutions are unavoidably and undesirably produced through the production 

processes. In this section, we determine RTS classification and stability region of seventeen 

combined cycle power plants in Iran over six years in the presence of undesirable variables 

(pollution) and interval data. The production process includes one input; Fossil fuel (m
3
), and 

fours undesirable outputs CO2 (ton), SO2(ton), SO3(ton), and NOx(ton); as well as a single 

desirable output; Electricity (thousand kilo-watts per hour). The structural pattern of the 

combined cycle power plant is depicted in Fig. 2. 

-------Insert Fig. 2 here------- 

We use a dataset consisting of interval data for 17 combined cycle power plants from Khalili-

Damghani et al. (2015). Data are reported in Table 5, referring to Khalili-Damghani et al. (2015) 
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for further data description. Let us first get to grips with undesirable outputs which are often 

observed through environmental efficiencies. To address this challenge, several approaches have 

been developed and discussed in the DEA literature. Dyckhoff and Allen (2001) organised the 

most approaches for tackling undesirable outputs into three categories: (i) making use of the 

reciprocal of the undesirable outputs in a way that is changed to the desirable one (Scheel, 2001), 

(ii) making use of a multi-criteria approach in a way that is regarded as an input (Rheinhard et 

al., 1999), and (iii) making use of the translation property observed in BCC and additive DEA 

models in a way that a positive scalar can be added to the reciprocal additive transformation of 

the undesirable output (Ali and Seiford, 1990). Other than the last category that is appropriate for 

special DEA models, considering an undesirable output as an input or utilising its reciprocal 

seems to be straightforward.  In the present study, we therefore consider the four undesirable 

outputs as inputs of the process.  

-------Insert Table 5 here------- 

We calculate the efficiency of points AE and BE for each combined cycle power plant using 

models (8) and (9) as reported in the 2
nd

 and 3
rd

 columns of Table 6. Power plant 12 is known as 

an efficient unit on account of    
    , and it can be recognised as the reference set for all other 

inefficient plants. To identify the RTS of power plants, models (10) and (11) are first solved by 

making use of the efficiency of points AE and BE.  

-------Insert Table 6 here------- 

The optimal values of objective functions for models (10) and (11) are reported in the 4
th
 and 

5
th 

columns of Table 6 when our focus is on point AE, and the 7
th
 and 8

th
 columns of Table 6 are 

allocated to the optimal values of objective functions for models (10) and (11) when one thinks 

of point BE. Thereafter, the RTS of points AE and BE can be determined as represented in the 
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6
th
 and 9

th
 columns of Table 6. Concerning point AE, the power plants {1,2,3,4,6,9,10,13,17} all 

exhibit DRS and the remaining plants reveal IRS. For point BE, all plants exhibit DRS, except 

for plants {11, 12} that exhibits CRS. At present, we are able to specify the RTS of all the power 

plants by the use of the RTS of points AE and BE (see Conditions 1-6 in Section 4). The results 

including three partitions; DRS, VRS and NDRS appear in the 10
th 

column of Table 6. In the 

case of DRS, the smaller firms outperform the bigger ones. Thereby, the power plants 

{1,2,3,4,6,9,10,13,17} are required to scale down their production. The power plants 

{5,7,8,14,15,16} and {11,12} exhibit VRS and NDRS, respectively, whereby the VRS situation 

subsumes a mix of CRS, IRS and DRS regions, and the NDRS situation subsumes a combination 

of CRS and IRS regions (see Table 7). It is worth noting that those power plants which exhibit 

VRS and NDRS will grab the utmost situation if the value of their output (electricity power) is 

aligned in terms of the CRS partition defined in the 4
th
 column of Table 7. 

-------Insert Table 7 here------- 

With reference to the last column of Table 6, we scrutinise the stability region of the RTS 

classification (argued in Section 5) to determine in which situation the present RTS classification 

of power plants remain unchanged. 

 

8. Final remarks 

In the present paper, we have shown how one could can extend the RTS classification of 

standard DEA models to Imprecise DEA where the input and output data take the form of 

intervals. In short, our idea relates RTS classification to one common frontier for all DMUs and 

that frontier becomes the frontier spanned by the most optimistic data for all DMUs. Once this 

frontier is in place we can utilize RTS characterizations of standard (crisp) DEA models and 
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analyse the sensitivity of these using the Seiford-Zhu approach (Seiford and Zhu, 1999b). We 

illustrate our approach on a well know data set from Charnes et al. (1989). 

Fundamentally, our approach builds on the assumption that the data imprecision represented 

by the interval data can be seen as a relative uncertainty around some “true” value of the 

variables. However, many other forms of imprecision can be imagined and we leave for future 

research a deeper analysis of the connection between imprecision measures and RTS 

classification. Another future research opportunity would be to dictate how the proposed 

approach can be applied to solve a practical case in the presence of imprecise data. 

 

Appendix 1 

BT theorem . (Banker and Thrall, 1992) Suppose that ˆ ˆ( , )o ox y  is CCR efficient and *

j   is an 

optimal solution of model (1).  

(I) Increasing returns-to-scale (IRS) prevail at ˆ ˆ( , )o ox y  if 
*

1
1

n

jj





 
for all alternate 

optimal solutions. 

(II) Decreasing returns-to-scale (DRS) prevail at ˆ ˆ( , )o ox y  if 
*

1
1

n

jj





 
for all alternate 

optimal solutions. 

(III) Constant returns-to-scale (CRS) prevail at ˆ ˆ( , )o ox y  if 
*

1
1

n

jj





 
in some optimal 

solutions. 
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Fig. 1. Different production possibility frontiers for six DMUs 
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Table 1. Efficiency and RTS classification of points AE and BE, and RTS classification of DMUs 

DMU AE 

*AE  

maximization 

model (6) 

* 1( )AE

o


 
* 1( )AE

o


 
RTS of AE BE 

*BE  

minimization 

model (6)
 

* 1( )BE

o


 
* 1( )BE

o


 RTS of BE 
RTS of 

DMU 

A (2.5,1) 0.400 0.333 0.166 IRS (2.5,2) 0.800 0.666 0.333 IRS IRS 

B (3,1) 0.333 0.333 0.166 IRS (3,3) 1.000 1.000 0.500 CRS NDRS 

C (6,4) 0.666 1.333 0.666 CRS (6,6) 1.000 2.000 1.000 CRS CRS 

D (7.5,6.5) 0.866 2.166 1.083 DRS (7.5,7) 0.933 2.333 1.166 DRS DRS 

E (10,5) 0.500 1.666 0.833 CRS (11,6.5) 0.650 2.166 1.083 DRS NIRS 

F (7,1) 0.142 0.333 0.166 IRS (7,6.5) 0.928 2.166 1.083 DRS VRS 
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Table 2. Imprecise data for 28 Chinese cities 

DMU 
Lower bound of inputs Upper bound of inputs Lower bound of outputs Upper bound of outputs 

IL(1) IL(2) IL(3) IU(1) IU(2) IU(3) OL(1) OL(2) OL(3) OU(1) OU(2) OU(3) 

1 463.068 1514338 683005.4 511.812 1673742 754900.7 7071515 1607495 1257610 7815885 1776705 1389990 

2 356.6965 907367.8 495930.4 394.2435 1002880 548133.6 2676340 560120 965770 2958060 619080 1067430 

3 260.0055 743455.8 352748.3 287.3745 821714.3 389879.7 2389155 421420 537890 2640645 465780 594510 

4 198.379 465192.2 131116.2 219.261 514159.8 144917.9 1270245 154565 389785 1403955 170835 430815 

5 189.9905 493701.7 135553.6 209.9895 545670.3 149822.4 1308720 221255 363755 1446480 244545 402045 

6 172.805 456372.4 246137.4 190.995 504411.6 272046.6 1266920 199215 583775 1400280 220185 645225 

7 143.3835 390190.7 90986.25 158.4765 431263.4 100563.8 720999.7 97748.35 283634.9 796894.4 108037.7 313491.2 

8 178.8185 446598.8 127329.5 197.6415 493609.2 140732.6 1099693 158629.1 392341.5 1215451 175326.9 433640.6 

9 120.156 281707.3 123808.8 132.804 311360.7 136841.3 925253.5 157753.2 280180.7 1022649 174358.8 309673.4 

10 116.565 318562.6 100200.3 128.835 352095.5 110747.7 634701.7 79548.25 236246 701512.4 87921.75 261114 

11 126.4735 318824.8 98259.45 139.7865 352385.3 108602.6 792870 122032.3 814024.6 876330 134877.8 899711.4 

12 103.8445 263692.5 62610.7 114.7755 291449.6 69201.3 513406.6 81973.6 283272.9 567449.4 90602.4 313091.1 

13 89.7275 194748.1 123831.6 99.1725 215247.9 136866.5 514826.9 82931.2 138110.1 569019.2 91660.8 152648 

14 107.502 294290.1 109612 118.818 325268 121150.1 872582.6 160985.1 275993.1 964433.4 177930.9 305045 

15 83.163 198737.2 61657.85 91.917 219656.9 68148.15 807458.2 122231.8 261232.9 892453.8 135098.3 288731.1 

16 70.015 238030.1 81742.75 77.385 263085.9 90347.25 513814.2 124106.1 134623.6 567899.9 137169.9 148794.5 

17 73.758 172013.7 50215.1 81.522 190120.4 55500.9 518761.8 77955.1 182470.3 573368.3 86160.9 201677.7 

18 70.4805 150907.5 50079.25 77.8995 166792.5 55350.75 519765.9 133115.9 114702.1 574478.1 147128.1 126776 

19 85.2055 193534 72751 94.1745 213906 80409 652063.9 191232.2 145237 720702.2 211361.9 160525.1 

20 71.744 175442.2 74751.7 79.296 193909.8 82620.3 428205.9 84579.45 162566.9 473280.2 93482.55 179679.2 

21 67.1935 129459.4 12752.8 74.2665 143086.7 14095.2 876443.4 58115.3 242900.8 968700.6 64232.7 268469.3 

22 64.695 698517.9 11746.75 71.505 772046.1 12983.25 958299.2 130252.6 283781.2 1059173 143963.4 313652.9 

23 55.651 90926.4 7081.3 61.509 100497.6 7826.7 631212.3 59479.5 206676.3 697655.7 65740.5 228431.7 

24 65.8065 165994.5 13210.7 72.7335 183467.6 14601.3 1039188 92964.15 203374.1 1148576 102749.9 224781.9 

25 45.5715 105994.4 9976.9 50.3685 117151.7 11027.1 673814.1 65875.85 142634.9 744741.9 72810.15 157649.1 

26 64.3815 99821.25 9801.15 71.1585 110328.8 10832.85 659580.3 36103.8 243238 729009.8 39904.2 268842 

27 19.0665 52614.8 1754.65 21.0735 58153.2 1939.35 154331.3 12198.95 27588.95 170576.7 13483.05 30493.05 

28 68.7515 127134.7 4105.9 75.9885 140517.3 4538.1 341958.2 36925.55 191705.3 377953.8 40812.45 211884.8 

 

 

 

 



  

48 
 

Table 3. RTS classification and stability region 

DMU 
*AE

o  
*BE

o  Eo 
1( )AE

o


 
1( )AE

o


 
RTS 
AE 

1( )BE

o


 
1( )BE

o


 
RTS 
BE 

RTS of 
DMU 

RTS (Charnes 
et al., 1989)  

Stability 
region 

1 0.905 1 1 1.105 1.105 IRS 1 1 CRS NDRS CRS N.G.* 

2 0.657 0.727 1,11,23 0.478 0.478 DRS 0.418 0.476 DRS DRS DRS 0.478<β≤1 

3 0.583 0.645 1,11,23,24 0.887 0.887 DRs 0.772 0.818 DRS DRS DRS 0.887<β≤1 

4 0.462 0.511 1,11,23,24 0.850 0.850 DRS 0.767 0.770 DRS DRS DRS 0.850<β≤1 

5 0.505 0.558 1,11,22,23 0.952 0.952 DRS 0.802 0.875 DRS DRS DRS 0.952<β≤1 

6 0.637 0.705 1,11,23,24 1.067 1.067 IRS 0.947 0.973 DRS VRS CRS N.G. 

7 0.399 0.441 1,11,22,24,25 1.434 1.434 IRS 1.292 1.340 IRS IRS IRS 1≤α≤1.292 

8 0.475 0.525 1,11,23,24 1.125 1.125 IRS 1.121 1.121 IRS IRS CRS 1≤α<1.121 

9 0.595 0.657 1,11,23 1.274 1.274 IRS 1.124 1.228 IRS IRS IRS 1≤α<1.124 

10 0.415 0.459 1,11,22,24 1.933 1.933 IRS 1.641 1.819 IRS IRS IRS 1≤α<1.640 

11 0.905 1 11 1.105 1.105 IRS 1 1 CRS NDRS IRS N.G. 

12 0.515 0.569 1,11,22,23 1.662 1.662 IRS 1.441 1.516 IRS IRS IRS 1≤α<1.441 

13 0.437 0.483 1,23 2.247 2.247 IRS 1.987 2.087 IRS IRS IRS 1≤α<1.987 

14 0.598 0.661 1,11,23,24 2.133 2.133 IRS 1.882 1.953 IRS IRS IRS 1≤α<1.882 

15 0.733 0.810 1,11,23,24 1.500 1.500 IRS 1.353 1.359 IRS IRS IRS 1≤α<1.353 

16 0.552 0.610 1,11,22,23 4.671 4.671 IRS 4.223 4.227 IRS IRS IRS 1≤α<4.223 

17 0.555 0.613 1,11,23,24 2.190 2.190 IRS 1.974 1.985 IRS IRS IRS 1≤α<1.974 

18 0.850 0.940 19,23 1.293 1.293 IRS 1.168 1.188 IRS IRS IRS 1≤α<1.168 

19 0.905 1 19 1.105 192.926 IRS 1 1 CRS NDRS IRS N.G. 

20 0.535 0.591 1,11,23 2.647 2.647 IRS 2.393 2.401 IRS IRS IRS 1≤α<2.393 

21 0.905 1 21 1.105 1.105 IRS 1 1 CRS NDRS CRS 1≤α≤1 

22 0.905 1 22 1.105 1.105 IRS 1 1 CRS NDRS IRS N.G. 

23 0.905 1 23 1.105 1.105 IRS 1 1 CRS NDRS CRS N.G. 

24 0.905 1 24 1.105 1.105 IRS 1 1 CRS NDRS CRS N.G. 

25 0.905 1 25 1.105 1.105 IRS 1 1 CRS NDRS CRS N.G. 

26 0.905 1 26 1.105 1.105 IRS 1 1 CRS NDRS CRS N.G. 

27 0.893 0.987 23 4.520 4.520 IRS 2.323 4.140 IRS IRS IRS 1≤α<2.323 

28 0.905 1 28 1.105 1.105 IRS 1 1 CRS NDRS IRS N.G. 

* Non-Change 

 

 

 



  

49 
 

 
Table 4. RTS regions for NDRS and VRS 

 

 

 

 

DMU RTS 
IRS CRS DRS 

O(1) O(2) O(3) O(1) O(2) O(3) O(1) O(2) O(3) 

1 NDRS [7071515, 

7815885) 

[1607495, 

1776705) 

[1257610, 

1389990) 

[7815885, 

7815885] 

[1776705, 

1776705] 

[1389990, 

1389990] 
- - - 

6 VRS [1266920, 

1351292) 

[199215, 

212482) 

[583775, 

622652.3) 

[1351292, 

1363114] 

[212482, 

214340.9] 

[622652.3, 

628099.592] 

(1363114, 

1400280] 

(214340.9, 

220185] 

(628099.592, 

645225] 

11 NDRS [792870, 

876330) 

[122032.3, 

134877.8) 

[814024.6, 

899711.4) 

[792870, 

876330] 

[122032.3, 

134877.8] 

[814024.6, 

899711.4] 
- - - 

19 NDRS [652063.9, 

720702.2) 

[191232.2, 

211361.9) 

[145237, 

160525.1) 

[720702.2, 

720702.2] 

[211361.9, 

211361.9] 

[160525.1, 

160525.1] 
- - - 

21 NDRS [876443.4, 

968700.6) 

[58115.3, 

64232.7) 

[242900.8, 

268469.3) 

[968700.6, 

968700.6] 

[64232.7, 

64232.7] 

[968700.6, 

968700.6] 
- - - 

22 NDRS [958299.2, 

1059173) 

[130252.6, 

143963.4) 

[283781.2, 

313652.9) 

[1059173, 

1059173) 

[143963.4, 

143963.4) 

[313652.9, 

313652.9] 
- - - 

23 NDRS [631212.3, 

697655.7) 

[59479.5, 

65740.5) 

[206676.3, 

228431.7) 

[697655.7, 

697655.7] 

[65740.5, 

65740.5] 

[228431.7, 

228431.7] 
- - - 

24 NDRS [1039188, 

1148245) 

[92964.15, 

102720.2) 

[203374.1, 

224717) 

[1148245, 

1148576] 

[102720.2, 

102749.9] 

[224717, 

224781.9] 
- - - 

25 NDRS [673814.1, 

744741.9) 

[65875.85, 

72810.15) 

[142634.9, 

157649.1) 

[744741.9, 

744741.9] 

[72810.15, 

72810.15] 

[157649.1, 

157649.1] 
- - - 

26 NDRS [659580.3, 

728934.4) 

[36103.8, 

39900.07) 

[243238, 

268814.2) 

[728934.4, 

729009.8] 

[39900.07, 

39904.2] 

[268814.2, 

268842] 
- - - 

28 NDRS [341958.2, 

377953.8) 

[36925.55, 

40812.45) 

[191705.3, 

211884.8) 

[377953.8, 

377953.8] 

[40812.45, 

40812.45] 

[211884.8, 

211884.8] 
- - - 
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Table 5. Input and output data for the 17 power plants. 

DMU 

Input Output Undesirable output (Ton) 

Fuel (M
3
) 

Electricity power 

(1000KW/Hr) 
Nox SO2 CO2 SO3 

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

1 1,002,243 1,534,381 4,663,820 5,948,123 3.6 5 1.8 6.6 2338 3015 0 0.1 

2 971,509 1,298,112 4,821,296 5,657,392 3.7 4.4 2.1 4.7 2367 2727 0 0.1 

3 1,331,457 1,831,098 7,220,851 7,699,512 5.3 5.8 2.8 6.7 3478 3631 0 0.1 

4 766,658 1,117,322 3,781,843 4,628,520 2.8 3.7 1.7 4.8 1779 2250 0 0.1 

5 24,213 1,060,942 356,963 3,184,631 0.6 3.2 0.4 2.2 318 2119 0 0 

6 1,045,455 1,283,541 5,339,780 5,975,686 3.8 4.4 1.3 3 2545 2806 0 0 

7 412,442 758,142 1,925,856 2,631,210 1.7 2.3 0.1 1.1 1052 1557 0 0 

8 446,094 1,017,339 1,836,793 4,289,004 1.8 3.6 1.1 4.2 1089 2229 0 0.1 

9 1,244,520 1,820,737 4,222,796 7,935,571 4.3 8 0.2 12.5 2806 4788 0 0.2 

10 1,056,182 1,410,680 5,126,256 6,213,138 3.4 4.4 0.2 3 2262 2802 0 0 

11 311,239 635,257 1,820,209 2,106,015 1.6 1.9 1 3.3 979 1091 0 0.1 

12 204 796,605 515 2,128,410 0 2.6 0 5 1 1595 0 0.1 

13 1,234,922 2,303,468 4,500,169 9,886,102 5.2 8.3 4.1 11.4 3209 4993 0.1 0.2 

14 422,191 905,874 1,770,332 2,761,553 1.9 2.9 0.4 2.4 1222 1848 0 0 

15 147,683 2,769,634 5,008,772 1,030,008 5.5 8.5 3 9.2 3546 5535 0 0.1 

16 161,614 928,637 1,258,570 2,678,996 1.9 4.5 1.4 7.7 985 2661 0 0.1 

17 1,298,688 1,961,314 4,785,753 5,898,717 5.3 5.7 0.5 4 3382 3828 0 0.1 
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Table 6. RTS classification and stability region  

DMU 
o

A*  
  o

B*  (
o

A) 1 
  
(

o

A) 1  RTS A (
o

B ) 1 (
o

B ) 1  RTS B RTS  Stability region 

1 0.00094 0.00119 2.19122 2.19141 DRS 2.79461 2.80560 DRS DRS 0.4564<β≤1 

2 0.00096 0.00112 2.26521 2.26521 DRS 2.65738 3.07710 DRS DRS 0.4414<β≤1 

3 0.00098 0.00104 3.39260 3.39262 DRS 3.61717 3.82580 DRS DRS 0.2947<β≤1 

4 0.00100 0.00122 1.77684 1.77685 DRS 2.17442 2.31270 DRS DRS 0.5627<β≤1 

5 0.00141 0.01261 0.16771 0.16771 IRS 1.49620 1.50738 DRS VRS N.G. 

6 0.00099 0.00110 2.50881 2.50884 DRS 2.80720 3.05400 DRS DRS 0.3985<β≤1 

7 0.00086 0.00118 0.90483 0.90484 IRS 1.23619 1.26240 DRS VRS N.G. 

8 0.00079 0.00185 0.86299 0.86299 IRS 2.01504 2.06910 DRS VRS N.G. 

9 0.00071 0.00133 1.98401 1.98404 DRS 3.72809 3.92840 DRS DRS 0.5040<β≤1 

10 0.00106 0.00129 2.40849 2.40851 DRS 2.91911 2.94060 DRS DRS 0.4151<β≤1 

11 0.00087 0.00101 0.85520 0.85521 IRS 0.98934 1.07690 CRS NDRS 1< α ≤1.0107 

12 0.00024 1 0.00024 0.00024 IRS 1 1 CRS NDRS N.G. 

13 0.00066 0.00145 2.11433 2.11435 DRS 4.64457 4.81350 DRS DRS 0.4729<β≤1 

14 0.00068 0.00106 0.83176 0.83177 IRS 1.29740 1.34420 DRS VRS N.G. 

15 0.00067 0.00325 0.48393 0.48394 IRS 2.35314 2.38899 DRS VRS N.G. 

16 0.00075 0.00159 0.59132 0.59133 IRS 1.25865 1.26756 DRS VRS N.G. 

17 0.00066 0.00082 2.24851 2.24852 DRS 2.77099 3.04380 DRS DRS 0.4447<β≤1 
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Table 7. RTS regions for NDRS and VRS 

DMU RTS 

IRS CRS DRS 

[OL,OU]* [OL,OU]* [OL,OU]* 

5 VRS [356963 ,2128400.6641) [2128400.6641,2128477.0371] (2128477.03771, 3184631] 

7 VRS [1925856, 2128404.03780) [2128404.03780,2128480.6397] (2128480.6397, 2631210] 

8 VRS [1836793, 2128408.5054) [2128408.5054, 2128499.3957] (2128499.3957,4289004] 

11 NDRS [1820209, 2106015) [2106015,2106015] - 

12 NDRS [515, 2128363.0202) [2128363.0202,2128410] - 

14 VRS [1770332, 2128400.1669) [2128400.1669, 2128530.1924] (2128530.1924, 2761553] 

15 VRS [1030008, 2128393.0937) [2128393.0937, 2128546.7187] (2128546.7187,5008772] 

16 VRS [1258570, 2128389.5322) [2128389.5322, 2128473.5607] (2128473.5607,2678996] 

 

* Electricity power 
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Highlights 
 

 We estimate returns-to-scale of firms in imprecise data envelopment analysis 

 We present the stability regions of RTS classification with interval data. 

 Two examples are presented for illustrating the proposed approach. 

 

 

 


