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1. Introduction 

 

A core concept within economics is the efficient production function, i.e. a 

transformation from inputs to outputs, characterised by using the minimum of inputs 

for given outputs and yielding the maximum of outputs for given inputs allowed by 

the technology. Efficiency analysis based on a measure of distance between the 

efficient function and actual performance, on a micro level, started within economics 

with Farrell (1957).  He proposed a non-parametric piecewise linear envelopment of  

actual performance as the estimator for the efficient - best practice - production 

function. Based on the discussion of his paper (Discussion, 1957) estimation methods 

for parametric single output frontier production functions where developed the next 

20 years within economics (highlights are Aigner and Chu (1968), Afriat (1972), 

Meeusen and Broeck (1977), and Aigner, Lovell and Schmidt, 1977) .  

 

Within operational research and management science the original non-parametric 

estimation method of Farrell were picked up and developed in Charnes, Cooper and 

Rhodes (1978)1. The term Data Envelopment Analysis (DEA) was coined there. 

Developments and applications of the DEA model has increased rapidly in the last 

decade within the OR – MS fields (see Cooper, Seiford and Tone (2000) for a recent 

extensive bibiliography). With the emergence of a large number of user-friendly 

software packages, the DEA model has now become easily accessible for 

practitioners. It offers a seemingly simple method for estimation of efficiency, and it 

accommodates easily multiple-output multiple-input technologies. Moreover, it 

provides a lot of useful information – not only about efficiency but also, for example, 

about scale properties. Indeed, one of the most frequently conducted investigations 

concerns returns to scale and the optimal size of decision making units (DMUs in 

DEA terminology). 

 

Within the production theory in economics an efficient production function is 

characterised by two key features; the substitution- and scale properties. For 

                                                 
1 However, similar contributions to the programming model by Berkley agricultural economists in the 
late 60’s – early 70’s were overlooked, see Førsund and Sarafoglous (2002) for an account of the 
history of DEA from Farrell (1957) to Charnes, Cooper and Rhodes (1978). 
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parametric production functions these characteristics will also be parametric 

functions. While there are standard procedures for analysing scale properties of 

analytic production functions within economics, there does not seem to be a common 

approach to such studies of corresponding properties of the non-parametric frontier 

functions within the OR-MS field.  Indeed, there seems to be a lack of knowledge of 

production theory   that has created some rather unnecessary research efforts the last 

decade. In Banker, Charnes and Cooper (1984) there is an expressed wish of 

establishing ”contacts with economics” (pp. 1079-1080). However, only production 

theory related to a single output case is refered to, and not much of insights about 

production theory in economics is really utilised.  Although the case of multiple 

outputs is not covered as well as single output in textbooks, enough results are 

established to make a selective use rewarding. A seminal reference is Frisch (1965). 

See also Laitinen (1980) for a comprehensive review of the multiple output literature.   

 

Standard assumptions on the general production set in the non-parametric case 

ensures that the substitution properies are characterised by factor- and output 

isoquants with the same shape as for neoclassical production functions, although the 

isoquants will be piecewise linear. The efficient subset of the production set is 

piecewise linear, and corresponds to the efficient neo-classical analytical textbook 

production function. It is therefore the substitution- and scale properties of the 

efficient subset that correspond to these properties of the efficient neoclassical 

production function.  

 

We will be concerned with how to characterise scale properties of the frontier 

function contained in the DEA model. For a text book analytical production function 

the values of the scale elasticity function provide the characterisation directly. Given a 

parametric form of the production function the scale elasticity can be calculated and 

the scale characterisation done numerically. Since the DEA model is non-parametric it 

is not so obvious how to establish a numerical characterisation. Accordingly, most of 

the effort has been devoted to qualitative characterisation, i.e. whether the operations 

have increasing, constant or decreasing returns to scale. According to Banker et al. 

(2000, p. 26):  

”There is a literature – albeit a relatively small one – which is directed to 

“quantitative” estimates of RTS [returns to scale] in DEA.”  
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We will explore the latter approach, following up Førsund (1996), and show 

rigorously how the scale elasticity can be expressed as an analytical function in the 

case of DEA, and how it can be calculated. The exact numerical value of the scale 

elasticity will of course give more information than just a qualitative characterisation 

of belonging to three groups. If the computational effort involved in numerical 

calculations also is less than what is needed doing the qualitative characterisation, 

then there is no reason to continue the qualitative route. 

 

The literature will be reviewed in Section 2, and the derivation of the scale elasticity 

function in the case of neo-classical multiple output-multiple inputs production 

function stated in Section 3. Inefficiency and the DEA model are introduced in 

Section 4. The main results of how to calculated the scale elasticity are established in 

Section 5. Numerical examples from the literature and an actual data set are presented 

in Section 6. Section 7 concludes. 

 

 

2. The DEA scale elasticity literature  
 

Within the DEA tradition there are two different approaches to providing returns to 

scale information. One approach is to establish the qualitative nature of returns to 

scale, i.e. classify scale properties into the three categories increasing, constant and 

decreasing returns to scale. Another approach (presented first in Banker, Charnes and 

Cooper, 1984) is to establish the numerical value of the scale elasticity. The 

qualitative approach can be pursued along three different routes. One is due to Banker 

(1984) and is based on the constant returns to scale model (as a diagnostic device 

only, the technology must, of course, be variable returns to scale). The sum of weights 

defining the reference point on the frontier for each unit is used as a qualitative 

indicator. The second approach is due to Färe, Grosskopf and Lovell (1983) and 

(1985), and  Färe and Grosskopf (1985), and is based on a comparison efficiency 

scores based on three different technology specifications, constant, non-increasing 

and variable returns to scale (see Grosskopf (1986) for an exposition of the nature of 

production set specifications in DEA models). The third approach due to Banker, 

Charnes and Cooper (1984) is based on inspecting the shadow price on the convexity 
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constraint when setting up a variable  returns to scale specification.  

 

The problem with the Banker (1984) approach was that there might be multiple 

solutions of the linear programming models invalidating his estimator. Subsequent 

research has developed procedures for handling multiple solutions when doing 

qualitative classification of returns to scale (see e.g. Zhu and Shen (1995), Seiford and 

Zhu (1998), Thore (1996), Banker, Bardhan, and Cooper (1996), Banker, Chang, and 

Cooper (1996), Golany and Yu, 1997). It has been established that, when taking care 

of the possibility of multiple solutions, the Banker (1984) classification approach and 

the Färe, Grosskopf and Lovell (1983) approach lead to identical classifications (see 

e.g. Banker et al. (2000), Seiford and Zhu (1999a), Sueyoshi, 1999). Tone (1996) 

provides a qualitative characterisation of all facets based on the classification of the 

peers spanning them. 

 

Banker and Thrall (1992) showed how the classification of the scale elasticity could 

be done facing the possibility of multiple optimal solutions for the shadow price on 

the convexity constraint. This approach has been followed up in Førsund (1996) 

showing the connection to standard neo-classical production theory, in Tone (1996), 

in Golany and Yu (1997), and in the related papers of Banker, Bardhan, and Cooper 

1996), Banker, Chang and Cooper (1996), Banker et al. (2000), and Seiford and Zhu 

(1999b). Sueyoshi (1997) and (1999) connects the numerical calculation of returns to 

scale based on the production function to the calculation based on the cost function 

utilising duality.  

 

Sensitivity of the returns to scale classification was addressed in Golany and Yu 

(1997) and followed up in Seiford and Zhu (1999a). 

 

In two recent studies of establishing numerical value of scale elasticity Fukuyama 

(2000) and (2001) set forth to expose the mathematical structure of the scale elasticity 

for the Farrell model and also additive models. Some new insights are achieved, but 

unfortunately the issue becomes quite confused because of insisting on computing 

scale elasticity for inefficient observations. Therefore, further elaboration still seems 

to be useful in this field. 
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3. Neoclassical production theory  

 

The general starting point is a standard neoclassical production function F(y,x) = 0 for 

multiple outputs and multiple inputs. The output-vector is y = (y1,..,yM) ∈ MR+  and the 

input-vector x = (x1,..,xN) ∈ NR+ : 

F(y,x) =  0 ,
F(y,x)

y
>  0 ,  m= 1,.. , M ,

F(y,x)
x

<  0 , n = 1,.. ,N
m n

∂
∂

∂
∂

                  (1)                   

The transformation function F(y,x) = 0 represents the efficient output-input 

combinations, and it is assumed to be continuously differentiable and strictly 

increasing in outputs and decreasing in inputs. 

 

The scale elasticity  

The returns to scale, or scale elasticity, or the passus coefficient  in the terminology of 

Frisch (1965), is a measurement of the increase in output relative to a proportional 

increase in all inputs, evaluated as marginal changes at a point in output – input space. 

In a  multi-output setting  the increase in a single output is most naturally substituted 

with a proportional increase in all outputs (see Hanoch (1970), Starrett (1977) and 

Panzar and Willig, 1977). Expand inputs proportionally with factor µ, and pick the 

proportional expansion, β = β(µ, y, x) (with β(1, y, x) = 1), of outputs allowed by the 

transformation function: 

0),),,(( =xyxyF µµβ                                                                                                  (2)                                                                                

The scale elasticity, ε, as a function of outputs and inputs is defined for a 

differentiable function as the marginal change in the output expansion factor by a 

marginal change in the input expansion factor over the average ratio: 

β
µ

µ
µβ

ε
∂

∂
=

),,(
),(

xy
xy                                                                                               (3) 

The rule for calculating the scale elasticity is obtained by differentiating (2) with 

respect to the input scaling factor: 

  0
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∂
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Evaluating  the derivatives, without loss of generality, at β = µ = 1 and solving for the 
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scale elasticity yields2: 

 

 

(4) 

 

 

Equation (4) is the generalisation of Frisch`s Passus  Equation, or sometimes called 

the Generalised Euler Equation expressing a local homogeneity property, to  multiple 

outputs. 

 

The economic significance of the scale elasticity 

The interest in scale characterisations in production theory stems from the connection 

between the scale elasticity and conditions for competitive behaviour. Consider the 

multi- output and input production function (1), and let pm (m =1,..,M) be the prices on 

outputs and qn (n =1,..,N) be the prices on inputs, and assume that the firm operates in 

competitive markets both for outputs and inputs. The Lagrangian for the profit 

maximising problem is:  

),(
1 1
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= =
                                                                             (5) 

We then have the following first order conditions: 
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Inserting the first-order conditions in the expression for the maximised profit yields: 
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To derive the last expression in (7) the definition of the scale elasticity, ),( xyε , is 

                                                 
2 To our knowledge this formula was first stated, somewhat surprisingly, as late as in Hanoch (1970). 
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used, and the first order conditions for outputs in (6). Maximised profits can be 

expressed as total revenue multiplied by a function of the scale elasticity such that 

profit is only non-negative for the scale elasticity smaller or equal to one. Scale 

elasticity values greater than one are not compatible with profit maximisation and 

competitive markets. This is a generalisation of a rule expressed in Frisch (1965) in 

the case of a single output.  

 

The value 1 of the scale elasticity is of especial importance. We see from (7) that the 

profit is zero for ε = 1. This is the condition for  long-run competitive equilibrium; 

pure profit is exhausted. The economic benefit of such a state may be appreciated by 

noting a special feature of partial productivities when the scale elasticity is 1. We first 

have to introduce a regularity condition to ensure the text-book S-shape of the 

production function and U-shaped average cost curves. We will use the (generalised) 

Regular Ultra Passum law of Frisch (1965) (see Førsund and Hjalmarsson (2002) for 

an exposition). Due to monotonicity of the production function  all movements in 

input-output space satisfying the condition that none of the outputs and inputs are 

decreasing and at least one output and one input are increasing, must then pass 

through unique points where the scale elasticity is 1. If we as a special case consider 

proportional variation in outputs with the factor β and variations in the inputs with 

factor µ for points satisfying the production function (1), then an important result is 

that productivity, defined as the ratio β/µ, along a ray is maximal at the point where 

the scale elasticity equals 1: 

10
)/(),,(

2 =≡
∂
∂⇒=

−
∂
∂

=
∂

∂→ ε
β
µ

µ
β

µ

βµ
µ
β

µ
µβ

µ
µβ

µ
xy

Max                                   (8) 

using the definition (3) of the scale elasticity.  The long-run competitive equilibrium 

also ensures that  the resources are utilised most productively. The scale of an 

operation for ε = 1 is in Frisch (1965) termed Technically Optimal Scale (shortened to 

TOPS in Førsund and Hjalmarsson, 2002)3. 

 

 

                                                 
3 In the OR-MS literature this classical concept in production theory is overlooked completely, and the 
identical term MPSS (most productive scale size) in Banker (1984) is cited as an original concept. 
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4. Introducing inefficiency 

 

So far efficient operations have been assumed. In order to deal with inefficient 

operations we need a production technology where both feasible efficient and 

inefficient points can be identified. A production possibility set S is in general defined 

by: 

                                                                                  (9)            

 

Basic regularity conditions assumed for S is that the output- and input vectors are 

drawn from bounded sets, S includes its limit points, positive production cannot occur 

without positive inputs, and free disposals of inputs and outputs (increase in inputs 

must lead to increased or constant outputs, and a smaller output vector than a feasible 

vector is also feasible, employing the same inputs, see e.g. Färe and Primont, 1995). 

We need to distinguish between efficient and inefficient points as subsets of the 

production set S. The connection between the neoclassical production function (1) and 

the production set formulation (9) is as follows (see Hanoch (1970), and McFadden 

(1978), which states conditions for a unique connection), with the standard properties  

on  S as stated above: 

                                           (10) 

 

The subset of efficient point is then  defined by F(y,x) = 0. 

 

Efficiency measures 

Inefficiencies are measured by efficiency scores as defined by Farrell (1957) and 

extended to variable returns to scale  in Førsund and Hjalmarsson (1974) and (1979b), 

and Färe and Lovell (1978). An inefficient observation can be related to the frontier 

technology through potential input saving or potential output expansion. In the first 

case by a proportional shrinking of inputs, the input saving measure, E1; in the second 

case by expanding observed outputs proportionally to the frontier using observed 

inputs on frontier technology, the output-increasing measure, E2.4 The input saving 

                                                 
4 Farrell (1957) used the lower case notation e1 and e2. 

{ }yproducecanxxyS :),(=

{ } { }0),(:),(:),( ≤≡= xyFxyyproducecanxxyS
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efficiency measure is: 

{ } { }0),(:),(:),(1 =≡∈= xyFMinSxyMinxyE θθθθ θθ                                         (11) 

The output increasing measure is: 









=≡








∈= 0),(:),(:),(2 x
y

FMinSx
y

MinxyE
φ

φ
φ

φ φφ                                        (12) 

The E1 measure is identical to the inverse of the Shephard  input distance function, 

and the E2 measure is identical to the Shephard output distance function. Both 

measures are conditional upon the production possibility set, or the efficient 

production function. We assume enough smoothness so that the minimum is defined 

and unique. Notice that the efficiency measures are general as to production 

technology and not specific to the DEA model5. 

 

The DEA model 

Following Farrell (1957) the production possibility set, S, is empirically defined by 

enveloping the observations as tightly as possible by a piecewise linear outer 

boundary (see e.g. Banker,Charnes and Cooper (1984) for the properties of  this 

empirically based set S):                    

 

}),..,1(0,1

,),..,1(,),..,1(:),{(

1

11

∑

∑∑

=

==

=≥=

=≤=≥=

J

j
jj

nnjj

J

j
mmjj

J

j

Jj

NnxxMmyyxyS

λλ

λλ

                    (13) 

There are J observations and the non-negative weights, λj, determine the refererence 

points on the frontier. Restricting the sum of weights to be 1 implies variable returns 

to scale (VRS).  

 

It has become a common practice in the field of non-parametric efficiency analysis  to 

name the linear programme for the calculation of Farrell (1957) technical efficiency 

scores for the DEA model. The efficiency scores (11) and (12) for the VRS input- and 

output oriented DEA models, E1i and E2i respectively for unit i, are found by solving 

the following two linear programmes: 

 

                                                 
5 In fact the Farrell efficiency measures were extended to variable returns to scale in Førsund and 
Hjalmarsson (1974) and (1979b), and in Färe and Lovell (1978). 
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For notational ease the unit index i is suppressed on the λ- weights and the same 

symbols are used for the λ– weights in (13), (14) and (15). The constraints in (14) and 

(15) represent the definition of the piecewise linear technology relevant for unit i. 

This unit may be inefficient in e.g. its use of inputs. The input vector in (14) for unit i 

is adjusted by the efficiency score, θi, and then compared with the reference point, 

∑ =

J

j njj x1
λ , on the frontier. The output vector in (15) for unit i is marked up with the 

factor φi, and then compared  with the reference point  ∑ =
J
j mjj y1λ . 

 

We will also need the Lagrangians, L1 and L2, associated with (14) and (15), set up in 

such a way that the shadow prices, umi and vni, on the inequality constraints for outputs 

and inputs respectively are non-negative: 
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    (17) 

 

Again, the same symbols are used for the shadow prices in (16) and (17).                                                                                                                                                                           

The non-restricted variables, out
i

in
i uandu , are the shadow prices on the equality 

constraint on the sum of the λ’s.  

 

 

5. The scale elasticity in the DEA model 

 

Within neo-classical production theory the scale elasticity is simply determined for 

estimated functional forms by applying (4). When the production function is on a 

parametric form this is straightforward6. A problem in the DEA model is that since 

the production function is non-parametric, we cannot derive the scale elasticity as a 

parametric function based on the production function using (4). Another problem in 

the DEA model is the existence of inefficient points. It should be born in mind that 

returns to scale is a local property and applies only to efficient points, i.e. points 

satisfying F(y,x) = 0. To associate an inefficient point with a scale elasticity value is at 

best ambiguous, because the existence of inefficieny means that the local increase in 

outputs when inputs are increased cannot be separted from the increase due to a 

reduction in inefficiency7. Therefore, a very basic observation for the discussion of 

scale properties using the DEA model is that inefficient observations must first be 

represented by efficient points. Thus the discussion of scale properties for inefficient 

units must be conditional on a meaningful and interesting representation on the 

                                                 
6 In the first empirical estimation of a multi output function, according to Laitinen (1980), Klein (1952) 

used the function 04
121 =Π− =

− s
ss xAyy αδ  (in our symbols). Applying Eq. (4) then yields the scale 

elasticity function )1/(),( 4
1 δαε −= ∑ =s sxy . Its properties can then be checked analytically. The scale 

elasticity is constant, i.e. the production function is homogeneous. In Førsund and Hjalmarsson (1979a) 
a parametric homothetic frontier function is estimated. The scale elasticity is then constant along an 
isoquant. 
7 Banker (1984) and Banker, Charnes and Cooper (1984) are clear on this point. However, notice that 
a set is usually defined as having constant returns to scale if all finite points on rays belong to the set, 
i.e. the set is a cone. The definition of economies of scale in Panzar and Willig (1977) as a property of 
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frontier. In the DEA literature the input- or output-oriented reference points defined 

after (14) and (15), or the radial projections, are often called ”target values” (see e.g. 

Thanassoulis, 2001). However, target values must be conditional upon economic 

conditions, like the objective of the unit, the markets it faces, technical possibilities of 

realising frontier techniques, time involved, etc. It makes little sense to formulate 

targets without paying attention to such underlying features. It should also be 

remembered that  the DEA model does not explain why a unit is inefficient, but only 

provides measures of distances from the best practice frontier. However, in order to 

obtain a scale property reference for inefficient units it has been common to use the 

input- and output-oriented projections. We will follow this practice, but base our 

approach on radial projections. The reason why we deviate from most of the literature 

and do not apply the reference points as points of projections (i.e. include slacks on 

the relevant constraints in addition to radial change), will be explained later.  

 

The point of departure is the approach to characterise scale properties first introduced 

in Banker, Charnes and Cooper (1984). We then need the dual programmes to the 

problems (14) and (15).   

 

The dual programmes 

Using the shadow price variables introduced in (16) and (17) the dual problems for 

the primals (14) and (15) are: 
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the production set in general is rather awkward. 
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As pioneered in Banker, Charnes and Cooper (1984) the shadow prices ui
in and ui

out 

on the convexity constraint can be used to characterise the scale properties. But as 

noted before it is only meaningful to characterise scale for efficient points. Let us first 

study observations classified as efficient, i.e. units obtaining efficiency scores of 1 

and having positive (or zero) shadow prices on output- and input constraints (i.e. zero 

slacks in general). Efficient units are by definition vertice points or located on ridges 

delineating facets. This is also the case for reference points when slacks occur on the 

constraints in (14) and (15). Consequently we do not have differentiability at such 

points in general, and the scale elasticity calculation (4) cannot be applied. As 

observed by Banker, Charnes and Cooper (1984) the solutions for ui
in and ui

out are not 

unique for efficient units. For these we know that the objective functions in (18) and 

(19) must be equal to 1. For j = i in the last constraint of both duals we then see that 

the constraints must hold with equality independently of the values of ui
in and ui

out. 

We may then have multiple solutions for these shadow prices. Intuitively, since an 

efficient unit may belong to several facets we may have several returns to scale 

characteristics associated with points infinitesimally close to an efficient observation. 

What can be done is to investigate the range of the feasible solutions for the points. If 

the range covers zero values we know that constant returns to scale (CRS) is a 

possibility, since zero shadow prices on the equality constraint on the sum of λj’s 

being 1 means that this constraint is not binding in the primal problems (14) and (15),  

i. e. we are back to the CRS case. We will return to the determination of the range for 

ui
in and ui

out below. 
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Scale elasticity in DEA 

The values of the shadow prices ui
in and ui

out are only unique for inefficient units in 

general. The question is how these shadow prices may be used for calculating scale 

elasticity values. We will proceed by a radial projection of the inefficient points to the 

frontier, i.e. using the efficiency scores obtained from the primal programmes (14) 

and (15). The reason why we are not following the common procedure (see e.g. 

Banker et al., 2000) of using the reference points as projections (i.e. in addition to 

radial change also considering the slacks on output- and input constraints in the 

problems) is that as observed above we do not have differentiability at such points in 

general since they are vertices or located at ridges delineating the facets. Radial 

projections will in general be interior points on the facets8.  

 

PROPOSITION 1 

Consider an efficient hypothetical observation, i(i∈I, set of inefficient observations),  

characterised by the output- and input vectors (yi, ∗
ix ), with ∗

ix = E1i xi, where the 

input-oriented efficiency score, E1i, is defined by (11) and calculated by solving (14), 

and (yi, xi) is an inefficient unit with E1i < 1. Assume that the projected point is an 

interior point on a facet. We can then state the following results: 

a) The scale elasticity, defined by (4), for the efficient hypothetical observation  

(yi, ∗
ix ) can be calculated as:                                                                       

                                                                           (20) 

 

where in
iu is the shadow price on the equality constraint ∑ = =J

j j1 1λ calculated by 

solving the dual programme (18). 

b) The radial projected observation (yi, ∗
ix ) to the DEA frontier exhibits increasing 

returns to scale if  in
iu > 0, constant returns to scale if in

iu  = 0, and decreasing  

returns to scale if  in
iu < 0. 9  

 

 

                                                 
8 Radial projections and reference points coincide when all slacks are zero. 
9 Note that the sign convention is dependent on how the dual programme is set up. 
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PROOF: 

Part a): The scale elasticity is defined in (4) in terms of partial derivatives of the 

frontier function F(y,x). Since the efficiency measure functions (11), (12) give 

complete representations of the technology set, we have that E1(y, x) – 1 = 0,   E2(y, x) 

– 1 = 0 and φ(y,x) -1 = 0  must give the same representation of the frontier as F(y,x) = 

0 for the efficient points (x,y) (see e.g. McFadden (1978), Hanoch, 1970). We may 

then utilise this equivalence and establish the scale elasticity function following the 

procedure leading to  (4) for either E1(y, x) , E2(y, x) or φ(y,x) (cf. McFadden, 1978). 

Applying the scale elasticity expression (4) for the projected observation, (yi, ∗
ix ), and 

writing E1i*(.) for the corresponding efficiency function we have: 

 

 

 

 

 

(21) 

 

We first apply the property of homogeneity of degree –1 in inputs to derive the 

expression after the second equality sign. The numerator is obtained applying the 

Euler Theorem to homogeneous functions, or also termed the Passus Equation for a 

single output (i.e. E1i
*) “production function” in Frisch (1965), as mentioned after (4),  

remembering that E1i
* = 110. Applying the homogeneity property again we get the 

denominator. Notice the switch from the E1i
*(.) function to the E1i(.) function. This is 

a crucial step. The denominator in the expression after the third equality sign is 

obtained by applying the Envelope Theorem to problem (14) for the inefficient 

observation (yi, xi). Using the Lagrange function  (16) we get: 

 

                                                 
10 We could also use that 1
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efficient point with E1i* = 1. The third expression is obtained from the corresponding dual programme 

(18) where we have from the first constraint that 11 =∗
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∗∑ xv ni
N
n ni . 

in
ii

i

in
ii

i

mi

M

m
mi

i
mi

M

m mi

iii

i
mi

M

m mi

iiii

ni

N

n ni

niii

iii

uE
E

u

yuy
y

xyE
y

y
xyE

x
x

xyE

xy

−
=

−

==

∂
∂

=

∂
∂

∂
∂

−=
∑∑∑

∑

===

∗

∗

=
∗

∗∗

1

1

11

1

1

1

1

1

)(
1

1

1
1

),(1
1

),(

),(

),(

θ
θ

θθ
θ

θε



 

 

 

17

  mi
mimi

i u
y
L

y
=

∂
∂

=
∂
∂ 1θ

                                                                                                   (22) 

 
From the objective function of the dual programme (18) we have 

in
iimi

M
m mi uyu −=∑ = θ1 , yielding the denominator in the expression after the fourth 

equality sign. For the final expression we substitute E1i for θi. 

 

We may establish (21) in a slightly shorter way by noting, following Caves, 

Christensen and Diewert (1982), that the definition of scale the elasticity may be 

obtained by asking the question of establishing the minimal proportional increase, µ, 

in inputs corresponding to a proportional increase, β, in outputs; i.e. defining the scale 

elasticity as ε = 1/(∂µ/∂β) (evaluated at β =1). Noting from (2) and (11) that the 

scaling factor µ(βy, x) (with µ(y, x) = 1) corresponds to the input-saving efficiency 

function E1(βy, x) we have immediately: 
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/1),(ε                                                                              (23) 

We can then substitute for ∗
ix and use the homogeneity property of the E1i*(.)– 

function and apply the Envelope Theorem and use the dual (18) as above. 

 

REMARK 1 

From the objective function of the dual (18) the maximal value of ui
in is 1 when a unit 

is efficient, since the shadow prices on the output constraints are non-negative. The 

corresponding value of the scale elasticity is then infinity for an efficient unit. The 

minimal value of ui
in is minus infinity for an efficient unit. The corresponding value 

of the scale elasticity is then zero. This range shows the non-uniqueness of this 

shadow price for efficient (original) units. 

 

The scale elasticity may also be calculated based on a radial output-oriented 

projection of an inefficient unit. 

 

PROPOSITION 2. 

Consider an efficient hypothetical observation, i (i∈I, set of inefficient observations), 
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characterised by the output- and input vectors ),( ii xy∗ , with ∗
iy = (1/E2i )yi, where the 

output-oriented efficiency score, E2i, is defined by (12) and calculated by solving (15), 

and (yi, xi) is an inefficient unit with E2i < 1. Assume that the projected point is an 

interior point on a facet. We can then state the following results: 

a) The scale elasticity, defined by (4), for the efficient hypothetical 

observation ),( ii xy∗    can be calculated as: 

IiuxyEx
E
y out

iiiii
i

i ∈−= ,),(1),( 2
2

ε                                                                    (24) 

 where out
iu is the shadow price on the equality constraint ∑ = =J

j j1 1λ calculated 

by solving the dual programme (19). 

b) The radial projected observation ( ∗
iy ,xi) to the DEA frontier exhibits increasing            

returns to scale if  out
iu < 0, constant returns to scale if out

iu  = 0, and decreasing 

returns to scale if  out
iu > 0 (cf. footnote 9). 

 

PROOF: 

Part a): Proceeding as for the proof of proposition 1 we have the scale elasticity 

expression for the efficient hypothetical observation ),( ii xy∗ , using the equivalence 

between the general frontier production function F(y,x) and the output-oriented mark-

up function φ*(y,x) for an efficient observation:    
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In the expression after the second equality sign we have in the numerator utilised that 

the φi*(.) function is homogeneous of degree –1 in outputs, and in the denominator we 

have again utilised the Euler Theorem for homogeneous functions, or the Passus 
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Equation11. To derive the numerator in the expression after the third equality sign the 

Envelope Theorem is applied to (19): 
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                                                                                                     (26) 

In the expression after the fourth equality sign the dual programme (19) is used for 

observation i deriving the expression in the numerator, and for the final expression E2i 

is substituted for 1/φi. 

  

Part b) is established by observing the size of the scale elasticity in (25) following 

from the three possible states of the shadow price out
iu . 

 

As for Proposition 1 the expression (25) may be derived somewhat more directly by 

observing, comparing (12) and (2), that the mark-up factor φi plays the same role as 

the proportional expansion factor β = β(y, µx) when seeking the maximal proportional 

change, β, in outputs for a proportional change, µ, in inputs in the definition (3) of the 

scale elasticity: 
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where the derivatives are evaluated at µ =1. From this stage on we continue as in the 

derivation of (25). 

 

REMARK 2 

Since the shadow prices on the input constraints are non-negative we have from (19) 

that the maximal value of ui
out is 1 when a unit is efficient. The corresponding value 

of the scale elasticity is then zero for an efficient unit. The minimal value of ui
out is 

minus infinity. The corresponding value of the scale elasticity is then plus infinity. 

Again we see the potential for multiple  solutions for the shadow price. 
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Propositions 1 and 2 provide simple expressions for a numerical calculation of 

efficient hypothetical points being radial projections of inefficient units when solving 

the input – and output oriented DEA model (14) and (15). For the calculation of the 

scale elasticity, only the shadow prices on the convexity constraint is needed together 

with the efficiency scores. These are remarkably simple formulas compared with 

Equation (4), which requires one to evaluate sums of partial derivatives. Furthermore, 

we do not have to solve any new program, assuming that it is standard to get the 

shadow prices when solving the primal linear programming problems (14) and (15).  

 

The two scale elasticity values for the same inefficient observation resulting from 

applying the rules in Propositions 1 and 2, may be seen as representing the most 

acceptable range for efficient hypothetical projections, in the sense that no changes in 

outputs are required in the input-oriented case and only reductions required in inputs 

keeping the mix fixed, while no changes are required in inputs and only increases in 

outputs, keeping the mix fixed, for the output-oriented case. It may be asked if an 

average characterisation can be established for this range. Such a characterisation was 

provided in Førsund and Hjalmarsson (1979b) for single output and generalised to 

multiple outputs in Førsund (1996), and is included here for completeness. 

 

PROPOSITION 3 

Consider the radial projections ),( 1 iii xEy and ),)/1(( 2 iii xyE for an inefficient unit i 

(i∈I), where E1i and E2i are calculated by solving (14) and (15). We then have the 

following relationship between the efficiency measures and the average scale 

elasticity,ε , over the path from the input-oriented to the output-oriented projection 

(suppressing the unit index i): 

  εx)(y, x)(y, 12 EE =                                                                                                 (28) 

The average scale elasticity, ε , is defined by: 
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Sketching the derivation, starting at the input-oriented projected point, ),( 1xEy , on the 

frontier, we change the inputs with the factor µ and the output with factor β(y,µx) 

(β(y,x) =1) until the output-oriented point on the frontier, ),(),)/1(( 12 xEyxyE µβ= , is 
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reached, assuming that such a path is feasible. The value of µ at the output-oriented 

projection is m. Associating 1/E2 with β and 1/E1 with µ (x =µE1x ⇒ µ= 1/E1 ) we get 

(29) by using the generalised Second form of the Beam Variation Equation in Frisch 

(1965), see Førsund (1996) for the complete proof. 

 

The scale elasticity for efficient units 

As observed in  Banker, Charnes and Cooper (1984) and Banker and Thrall (1992) the 

solution for the shadow price on the convexity constraint in problems (14) or (15) 

may not be unique, making the reference to supporting hyperplanes of the frontier. By 

the nature of a piecewise linear frontier, the efficient observations must in general 

represent vertices. Marginal productivities and scale elasticities are not defined for 

such points. The standard procedure is to evaluate left- and right-hand derivatives12.  

In the DEA model an efficient unit may be a corner point for several facets. It seems 

most reasonable to calculate the maximal range of the shadow price for the efficient 

unit in question. We have already identified extreme values in the Remarks 1 and 2. 

 

Banker and Thrall (1992) offer a straightforward way of calculating upper and lower 

bounds for the scale elasticity for an efficient observation i ( i∈P, where P is the set of 

efficient observations, i.e. E1i =1 and all slacks zero). In the case of an input - adjusted 

frontier point, finding the maximal value of the key parameter ui
in in (16)  is done by 

substituting the objective function in the dual problem (16) with the shadow price 

itself and add to the two restrictions in (16) the constraint implied by the observation 

being efficient : 

  

Jjuxvyu

xv

uyu

tosubject

uMax

in
inj

N

n
nj

M

m
mjmj

N

n
nini

M

m

in
imimi

in
i

,..,1,0

1

1

11

1

1

=≤+−

=

=+

∑∑

∑

∑

==

=

=
                                                                (30)                                                                                                      

                                                 
12 See Førsund and Hjalmarsson (1987) for an application calculating scale elasticity in the case of one 
output and two inputs in a piecewise linear production model. 
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Writing the solution as ui
in-max using (21) yields: 
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To find the minimal bound value of the shadow price the sign in the objective 

function (30) is just changed from positive to negative value, i.e. {ui
in} is replaced 

with  {- ui
in }. Writing the solution as ui

in-min, we have the minimal scale elasticity for 

an efficient unit: 
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Since there is no difference by definition in orientation for an efficient unit the 

calculation of the bounds using (30) for finding maximal value and change of sign for 

the objective function for finding the minimal value, also applies for the output-

oriented model. From (20) and (24) we have  for efficient units:    

 

                                         (33) 

 

These relationships also hold for the extreme values. The maximal value of ui
in is 1 

corresponding to a minimal value - ∞ for ui
out, and yielding the maximal value of + ∞ 

for the scale elasticity. The minimal value of ui
in is  - ∞, corresponding to the maximal 

value of 1 for ui
out, yielding the minimal value of  zero for the scale elasticity. 

 

If the minus infinity value creates problems as to running a specific  LP-software, we 

can adapt the proposal in Banker, Bardhan, and Cooper (1996) to eliminate the 

problem of infinite solution. If a negative value of ui
in is obtained in the solution of 

(14), then by running the maximisation problem (30) with the objective function {ui
in} 

with an additional constraint of 0≤in
iu , the maximal non-positive value is found13. A 

binding constraint is then implying that constant returns to scale is present at least at 

one of the facets that the unit is a member of.  

                                                 
13 Note that we do not have to run the same procedure if a positive value of ui

in is obtained in the first 
run, since we know, as discussed in Remark 1, that the maximal value is 1. This seems to be 
overlooked in Banker, Bardhan, and Cooper (1996). If the output-oriented problem (15) is run, then for 
a positive value of ui

out the modified program (30) is run with {- ui
out} as objective function and 

0≥out
iu . Again, the modified program does not have to be run for negative values. 
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Remarks on the literature 

Key contributions in the OR-MS DEA literature are Banker, Charnes and Cooper 

(1984) and Banker and Thrall (1992). But notice that neither paper actually  claimed 

explicitly to calculate the scale elasticity numerically. Banker, Charnes and Cooper 

(1984) demonstrate an equivalence between using the sign of ui
in and  whether a 

parameter (termed Ŝ ) is greater or smaller than one. This parameter was informally 

linked to the elasticity of scale in the single output case. This failure to address 

explicitly the calculation of the numerical values of scale elasticities is also the case in 

Banker and Thrall (1992), although some analogy is made with a linear single output 

production function. In Cooper, Thompson and Thrall (1996), Sueyoshi (1997) and 

Fukuyama (2000) formulas for calculating the value of the scale elasticity are defined, 

not derived14. In Banker, Bardhan and Cooper (1996) it is claimed that Banker and 

Thrall (1992) “provide a measure of scale elasticity”. However, the precise rule (4) 

from production theory to calculate the numerical value of the scale elasticity is never 

considered formally. What is derived rather ad hoc in both papers as characterising 

the nature of returns to scale is the number 1/(1- ui
in), which is the rule (20) for E1i =1.  

 
In  Banker, Bardhan and Cooper (1996) the change in the program (30) described 

above to avoid the solution of minus infinity (it is unnecessary to worry about plus 

infinity since this is not feasible when we stick to the input-orientation, which is all 

that is needed) is introduced as a solution to “avoid the need for exploring all alternate  

optima, ..”(p. 584)15. However, it is hardly of interest to do this, what is needed is to 

find the maximal and minimal bounds, as done by the Banker and Thrall (1992) 

proposal.  

 

Golany and Yu (1997) point to the problem of classifying constant returns to scale 

when ui
in alternates in sign. However, this is not a problem to handle when calculating 

the scale elasticity bounds as described above including the infinity and zero values. 

                                                 
14 In Sueyoshi (1997) and (1999) there seems to be a mistake in the formula, see Eq. (36) in the latter, 
probably due to not paying sufficient attention to keeping the efficient projection and the inefficient 
observation apart. 
15 To underline the usefulness of their approach Banker, Bardhan and Cooper (1996) cite Ganley and 
Cubbin (1992) on  the difficulties of using the bounds approach in Banker and Thrall (1992). Actually 
the attempt at application in Ganley and Cubbin is the first one we know about in the literature. 
However, they have completely misunderstood the purpose of finding bounds, confusing it with finding 
optimal scale units. Unfortunately the book is full of misunderstandings of DEA and a warning to 
potential readers is hereby given. 
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Different signs for an efficient unit means that on the facet with the negative sign 

decreasing returns to scale prevails, while for the facet with positive sign increasing 

returns prevail. The efficient unit is then most reasonably defined to be of optimal 

scale, as proposed by Banker and Thrall (1992).  

 

As stated before it has no meaning to say that an inefficient observation has a scale 

property. Nevertheless, it may seem that such language is often used in the DEA  

literature, may be just  without making the explicit distinction between efficient 

projected points and the inefficient observations. However, Fukuyama (2000) and 

(2001) is very insistent on having derived scale elasticity expressions for inefficient 

observations. His way of establishing scale elasticity expressions has features in  

common with our derivation. The fundamental oversight right from the beginning is 

that there is only one frontier technology in the DEA model, and the scale elasticity is 

a local property of a point on this frontier; end of story. Fukuyama (2000) is in trouble 

already when entering the scale elasticity function in his Equation (7), because it is 

written as a function of an inefficient observation. As if- reasoning on parallel 

movements of geometric features to the interior of the technology set, made possible 

by homogeneity properties of the efficiency functions, must not be confused with the 

proper definition of the scale elasticity.  

 

In the DEA literature there is sometimes made a distinction between global and local 

scale characterisations (see e.g. Banker et al., 2000). We know from the general 

definition in production theory in economics that the scale elasticity is a local 

property at a point on the production function. What seems to lie behind the 

expression global characterisation is that in the DEA model it is possible to give 

qualitative characterisations of entire facets. However, this is not in conflict with the 

standard approach in economics of evaluating scale properties locally. It is just that 

the piecewise linear structure of the non-parametric DEA frontier function makes it 

possible to characterise all interior local points on a facet qualitatively. From the 

general expression (4) for the calculation of the scale elasticity we have that all partial 

derivatives at a point are involved. The consequence of the piecewise linear structure 

is that these partial derivatives at a point can be reduced to an expression involving 

just the efficiency measure and the shadow price on the convexity constraint in either 

(14) or (15) needed for specifying variable returns to scale (VRS). As long as we are 
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on the same facet this shadow price is constant. It then follows that any inefficient 

point we may construct keeping us on the same facet when doing radial projections to 

the frontier will have the same qualitative characterisation as to increasing, constant 

or decreasing scale elasticity according the expressions stated in Propositions 1 and 2. 

These propositions may then also be used for “global” characterisations. Theorem 3 in 

Tone (1996) is another way of expressing this feature of a facet.  

 

 

6. Pedagogical illustrations 

 

Data illustrations used in the literature 

Before turning to real data it may be helpful to apply the propositions (20), (24) and 

(28) to very simple constructed data sets used in the literature for the purpose of 

illustration of various properties of the DEA model.  

 

In Banker and Thrall (1992) some efficient units in the single output – single input 

case was used for illustrations. Running our programme16 we obtain the results set out 

in Table 1. All classification are in accordance with Banker and Thrall (1992), except  

 

Table 1. Data from Banker and Thrall (1992) 

Unit Output Input εmax εmin 
1 1 1 ∞ 5 
2 3.5 1.5 2.14 2.14 
3 6 2 1.67 0.67 
4 7 2.5 0.71 0.71 
5 8 3 0.75 0.38 
6 9 4 0.44 0.44 
7 10 5 0.5 0 

 
 

for unit 7, where it is stated that the scale elasticity is greater or equal to 1/2. We see 

that the worry of Golany and Yu (1997) is unwarranted, because for unit 1 we simply 

have that on the left-hand facet the value of the scale elasticity for unit 1 to the left is 

infinite, corresponding to the vertical line from unit 1 to the horizontal axis, and on 

the right-hand facet the value evaluated to the right is 5. Along this facet (the line to 

unit 2) the scale elasticity is falling, according to the Regular Ultra Passum Law 

                                                 
16 A DEA software developed at the Frisch Centre, Oslo, has been used. 
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(Frisch, 1965) explored in the DEA setting in Førsund and Hjalmarsson (2002). We 

see this by the right- and left-hand values of the scale elasticities for unit 2. Since this 

unit is placed exactly on the line between unit 1 and unit 3 the min- and max values 

should be equal, and our programme gets this right. We note that the scale elasticity 

value is less than the right-hand value for unit 1. For unit 3 the left-hand value is less, 

as predicted, and the right-hand value even smaller. Here we note that the right-hand 

value is greater than one, and the left-hand value is less than one. This implies that 

unit 3 is of optimal scale. Unit 4 is placed on the line between unit 3 and 5, and 

consequently the scale elasticity value is unique. But note that the value is greater 

than the right-hand value for unit 3. This is in accordance with the finding in Førsund 

and Hjalmarsson (2002) that the DEA model does not obey the Regular Ultra Passum 

law for the region of decreasing returns to scale. Unit 6 is also in the line between unit 

5 and 7. The unique scale elasticity value is again greater than the right-hand value for 

unit 5, and also smaller than the left-hand value for unit 7. For the latter the right-hand 

value is zero, corresponding to a horizontal facet.  

 

In the single output-input case the calculation of the scale elasticity is very simple, 

since it is the ratio between the marginal- and the average product. Since the marginal 

product is constant on a facet (line) the scale elasticity has to decrease on a facet 

where the average product is increasing, as is the case between unit 1 and 3, while the 

scale elasticity has to increase on facets where the marginal product decreases, as 

from unit 3 and outwards. The marginal product decreases from facet to facet going 

outwards from unit 1 by the convexity assumption. On the left-hand side of unit 3 the 

marginal product is greater than the average, implying increasing returns to scale, 

while on the right-hand side of unit 3 the marginal product is smaller than the average, 

implying decreasing returns to scale.  

 

The recurring dataset in Charnes et al. (1994) introduced in Chapter 2 contains both 

efficient and inefficient observations. Shadow prices on the convexity constraints are 

also reported. Running our programme yields the results set out in Table 2. The data 

are illustrated in Figure 1. Units P1, P2, P3 and P4 are located at corners, while units 

P5, P6 and P7 are inefficient as can be seen in Figure 1. The average scale elasticity is 

within the interval spanned by the two corresponding scale elasticities. The results for 

the frontier points C and L confirm the development of the scale elasticity within a 
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DEA model as analysed in Førsund and Hjalmarsson (2002). The value at C is 2.33, 

which is less than the lower bound of 3 at P1, and higher than 1.8 which is the upper  

 

Table 2. Scale elasticities and bounds for the Charnes et al. (1994) data 

 
Unit 

 
Input 

 
Output 

εin 
input-
saving 

εout 
output-

increasing 

ε  
average 

εmax 

upper 
limit 

εmin 
lower 
limit 

P1 2 2    ∞  3.00 
P2 3 5    1.80 0.40 
P3 6 7    0.57 0.29 
P4 9 8    0.38 0.00 
P5 5 3 2.33 0.53 0.98   
P6 4 1 ∞  0.47 2.50   
P7 10 7 0.57 0.00 0.26   

 
 
 

bound at P2. The value at L is 0.53, which is higher than the lower bound of 0.4 at P2, 

but lower than the upper bound of 0.57 at P3.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 1. A VRS frontier 
Source: Førsund and Hernæs (1994) 
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The input-corrected frontier point for observation P7 happens to coincide with P3 at a 

corner. Our LP-solver gives the upper bound as the solution, but this is probably 

arbitrary, and in such cases both bound values at P3 should be stated. This is an 

example of the very unlikely occurence with real data of a radial projection ending up 

at a corner point. 

 

Swedish dairies 

Here we have utilised primary data for general milk processing in 28 dairy plants for 

1973. The data have been used in Førsund and Hjalmarsson (1979a) and (1979b). 

Output is measured in tonnes of milk delivered to the plant each year. (The amount of 

milk received is equal to the amount produced.) The labour input variable is defined 

as the hours worked by production workers including a technical staff that usually 

consisted of one engineer. Capital data represents buildings and machines (of user-

cost type) and reflects depreciation based on current replacement cost, cost of 

maintenance and rate of interest.  

 

In the single input case of dairy plants we concentrate on the two scale elasticity 

values for the radial-projected input- and output points at the frontier for inefficient 

units and the minimum and maximum values for the efficient ones. Values of infinity 

are dealt with in a pragmatic way, by truncating the axis at the largest number that it is 

practical to work with. 

  
Figure 2: Scale elasticities : Dairy Plants 
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A picture of the variation in the different scale elasticities is given in Figure 2. The 

average scale elasticity values plotted for the non-frontier units were calculated 

according to equation (28), while the mean of min and max values are plotted for the 

frontier units. The average elasticity for efficient units is calculated as the average of 

the bounds. The units are sorted according to decreasing values of the average scale 

elasticity (truncated at 4). The output levels are denoted along the abscissa axis.  

 

Of the 28 dairy plants seven units are on the frontier in the case of variable returns to 

scale. Of these, three are optimal scale units, i.e. they are frontier units when constant 

returns to scale is imposed, and while the input-oriented max-value, ein is larger than 

one, and the output-oriented min-value eout is less than one. The bounds show quite a 

variation between the input- and output oriented scale elasticity calculations. The 

more inefficient the unit is the more scope there is for differences. We see that for 

many units the scale elasticities are on both sides of the strategic value 1. For the three 

units of optimal scale the lower bound for the first one, starting from the left in the 

diagram, is 1, while for the two others, located towards the end at the output values of 

39288 and 46920, the intervals between the bounds contain the value 1. The four 

other efficient units are entered with just one point in the diagram. 

 

Except for the three largest units exhibiting decreasing returns to scale at the end of 

the diagram, there is a lot of variation in output along the descending average scale 

elasticity curve. Moving along the DEA frontier we have the different observed 

output levels and the corresponding potential output levels obtained when moving the 

observed non-frontier units in vertical direction to the frontier, i.e. as the output levels 

C and L for P5 in Figure 1.  

 

 

7. Conclusions  

 

The main contribution of the paper is to firmly establish the concept of scale elasticity 

as defined within the production theory of economics for the DEA model with a 

piecewise linear frontier. It should be noted that it is not meaningful to ask for the 

scale elasticity of an inefficient obervation. The scale elasticity may be calculated for 
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inefficient units by radial projection to the DEA frontier for either input- or output 

orientation. The formulas for calculation are very simple, being functions of just the 

relevant efficiency score and the shadow price on the convexity constraint introduced 

in the DEA formulation to specify  variable returns to scale. The procedure is so 

simple that this route appears the most practical one also for establishing qualitatively 

whether frontier points exhibit increasing or decreasing returns to scale; confer the 

discussion started in Banker et al. (1984), Färe et al. (1985), Banker and Thrall 

(1992), and reviewed in Banker et al. (2000). 

 

The formulas require differentiability. Since efficient observations in general 

constitute vertices we do not have differentiability at such points, and neither at the 

reference points (projections including slacks). Following Banker and Thrall (1992) 

upper and lower bounds on the scale elasticities can be established for such points.  

 

Tone (1996) showed that  by extending the solution of  the variable returns to scale 

DEA model to also finding the bounds for the shadow price on the convexity 

constraint for efficient units, a complete qualitative characterisation of scale 

properties for all facets can be obtained. This complete characterisation is also 

obtained as a by-product of using our approach to calculating scale elasticity values.  

 

As for policy conclusions, since projections of inefficient units are hypothetical, the 

most interesting  exercise as to scale properties may be to characterise facets. In 

addition to using our approach for qualitative characterisation, actually computing the 

scale elasticity values for inefficient observations give an indication of  range of 

values. The application of our formulas on a real data set showed large variations in 

scale elaticity values from facet to facet. As demonstrated in Section 3 values may be 

important for policy analysis regarding the nature of competition that may be 

sustained. By constructing suitable (inefficient) observations one may check on any 

scale elasticity value of interest. 
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