1,253 research outputs found

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    Two-leg three-phase inverter control for STATCOM and SSSC applications

    Get PDF
    Flexible ac transmission systems (FACTS) devices are attracting an increasing interest both in power system academic research and in electric utilities for their capabilities to improve steady-state performance as well as system stability. Several converter topologies for FACTS applications have been proposed in the recent literature, even if those based upon voltage source inverters (VSI) seem to be more attractive due to their intrinsic capability to rapidly respond to network changes such as perturbations subsequent to a fault and their property of being immune to resonance problem. In this paper, a new topology for inverter-based FACTS is proposed. This configuration, employing a two-leg three-phase inverter is employed for both series and parallel-connected reactive power compensators. The converter utilizes a modular topology for allowing a satisfaction of electronic components rating. A control strategy based on variable structure control technique with sliding mode is employed to track appropriate reference quantities. Design and control, as well as good tracking performances, are also verified through numerical simulations

    Multifrequency Averaging in Power Electronic Systems

    Get PDF
    Power electronic systems have been widely used in the electrical power processing for applications with power levels ranging from less than one watt in battery-operated portable devices to more than megawatts in the converters, inverters and rectifiers of the utility power systems. These systems typically involve the passive elements such as inductors, capacitors, and resistors, the switching electronic components such as IGBTs, MOSFETS, and diodes, and other electronic circuits. Multifrequency averaging is one of the widely used modeling and simulation techniques today for the analysis and design of power electronic systems. This technique is capable of providing the average behavior as well as the ripple behavior of power electronic systems. This work begins with the extension of multifrequency averaging to represent uniformly sampled PWM converters. A new multifrequency averaging method of solving an observed issue with model stability is proposed and validated. Multifrequency averaging can also be applied to study the instability phenomenon in power electronic systems. In particular, a reduced-order multifrequency averaging method, along with a genetic algorithm based procedure, is proposed in this work to estimate the regions of attraction of power electronic converters. The performance of this method is shown by comparing the accuracy and efficiency with the existing methods. Finally, a new continuous-time multifrequency averaging method of representing discrete-time systems is proposed. The proposed method is applied to model digitally controlled PWM converters. Simulation and hardware results show that the proposed method is capable of predicting the average behavior as well as the ripple behavior of the closed-loop systems. Future research in the area of multifrequency averaging is proposed

    Steady-state analysis of switching converters via frequency-domain circuit equivalents

    Get PDF
    This brief presents a frequency-domain approach for the steady-state analysis of pulsewidth-modulated converters and switched circuits with nonideal switching behavior. The proposed strategy generalizes recent methodologies based on the Fourier expansion of the steady-state responses of a periodically switching circuit and on the simulation of an augmented linear-time-invariant system. This system is now also given an interpretation in terms of an equivalent circuit, which is simulated at a single frequency point to solve for all the harmonics. The method offers a modular topological approach that is combined with standard tools for circuit analysis and enables the simulation of networks with an arbitrary number of switches and driving mechanisms. Single, multiple, and possibly nonideal commutation events within the switching period are handled in the same framework, without additional complexity. The technique allows for the full frequency-domain characterization of both the functional and the noisy behavior of the circuit responses. The feasibility and strength are demonstrated via comparisons with simulations and measurements on two application examples, i. e., a full-bridge single-phase inverter and a dc-dc boost converter

    EMI Analysis and Modeling of Switching Circuits

    Get PDF
    Nowadays, switching power converters are massively used in almost any electrical and electronic equipment and appliances. This class of circuits are inherently time-varying systems that are characterized by the periodic activity of their internal switches which leads to discontinuous absorbed currents. The above currents, that play the role of high frequency noisy disturbances feeding the power distribution system, become a serious concern for designers that need to comply with the electromagnetic compatibility (EMC) regulation for the conducted emission (CE). In this frame- work, modeling and simulation tools for switching circuits are key resources in the early design phase for the prediction of the conducted emission and for the assessment of alternative design scenarios. The classical approach to CE prediction is via physical-based models and time-domain simulations. This solution, however, requires intimate knowledge of the internal device structure. Also, large simulation times are in general needed to avoid integration errors and to achieve accurate results (the CE are in fact computed by applying the Fourier transform on the steady-state portion of the current response of the circuit). As an alternative, frequency-domain behavioral approaches are available in literature. In the latter case, the proposed models are small-signal time-invariant approximations computed from the external observation of the circuit behavior. These approaches, that are based on simplified equivalents, do not take into account the internal time-varying nature of the circuit and in many cases unavoidably lead to a model accuracy that strongly depends on the operating condition of devices. To overcome the above limitations, this thesis proposes an alternative approach to CE assessment based on the mathematical framework developed for time-varying circuits and systems. The proposed method allows for the steady-state prediction of circuit responses directly in the frequency-domain. A topological approach is used, where the original time-varying circuit is suitably replaced by an augmented time-invariant equivalent solved via standard tools for circuit analysis. The new augmented variables in the above equivalent turn out to be the harmonic coefficients of the Fourier series expansion of the corresponding voltage and current variables in the original circuit. A second important contribution in this work is the application of the pro- posed mathematical tool to the modeling of a switching converter and of its CE disturbances from measured data. The converter is seen as a black-box element that is characterized via a limited set of port voltage and current observations, leading to an equivalent augmented admittance fully describing the time-varying nature of the system. Summarizing, this thesis provides a comprehensive theoretical discussion together with several tutorial examples. What is more important, it proposes a novel approach to CE prediction with improvements with respect to state-of-the-art approaches and linear time-invariant surrogates. A real application test case involving a dc-dc boost converter and real measured data is also used to validate the method and stress its features for both numerical simulation and black-box modeling

    STABILITY IMPROVEMENTS FOR GENERALIZED AVERAGE-VALUE MODEL OF DC-DC CONVERTERS

    Get PDF
    Power electronics have a significant role in modern electrical devices, for instance, hybrid electric vehicles. Power electronics are the technology in between the source and the load circuits and can convert the power from dc to ac or from dc to ac. There are also many types of dc-dc converters, like such as boost and buck converters, which exhibit switching ripple behavior. A boost converter increases the output voltage (with respect to the input voltage) and reduces the output current. A buck converter decreases the output voltage and increases the output current. Many models are used to predict the behavior of the boost and buck converters. The detailed (DET), state-space averaged (SSA), and generalized averaging method (GAM) models are capable of predicting the average behavior of dc-dc converters. For DET and GAM models, the rippling behavior can also be predicted. These models differ in terms of required run time, existence of constant equilibrium points, and accuracy. The DET model has a long run time and does not have constant equilibrium, but it is very accurate. The SSA technique is a mathematical and time-invariant model that capable of describing the behavior of a dc-dc boost converters. It can derive the small signal ac equations of a switching converter and is used to illustrate the average behavior of any linear or nonlinear system in converters. The SSA does not take extensive runtime simulation and has constant equilibrium points, and can be applied to continuous, discrete and sample data systems. The GAM model can predict the average and ripple behavior in power electronic systems and has constant equilibrium and fast run time. However, it has a numerical stability issue. The integrator stabilized multifrequency averaging (ISMFA) model is employed to solve the stability issue in the GAM model, but it is a complicated dynamic method and has restrictions in its process. In the present study, a simplified but stable GAM model is introduced to predict the average and ripple behavior of boost dc-dc converters and to overcome the limitations of other methods. In this work, the stabilized GAM model has been used for a dc-dc boost converters. The stability of the proposed model is analyzed. The performance of the improved GAM model is compared with the DET, SSA, and GAM models. The results show that the stabilized GAM model is stable with the additional poles created by the GAM assignable by parameter choice. The new GAM model predicts the same results as the existing GAM method without the underlying stability concerns. The stabilized GAM model exhibits constant ii equilibrium point and requires significantly lower run times than the DET model, but it is also able to predict the ripple performance of the converter. The stabilized GAM model does not take a long run time, is less complicated, has fewer restrictions, has constant equilibrium and internal stability, and has more straightforward implementation than other models, like the ISMFA model. It represents a suitable alternative to DET models when high accuracy simulations are desired without long simulation run times

    Nonlinear Analysis and Control of Interleaved Boost Converter Using Real-Time Cycle to Cycle Variable Slope Compensation

    Get PDF
    Switched-mode power converters are inherently nonlinear and piecewise smooth systems that may exhibit a series of undesirable operations that can greatly reduce the converter's efficiency and lifetime. This paper presents a nonlinear analysis technique to investigate the influence of system parameters on the stability of interleaved boost converters. In this approach, Monodromy matrix that contains all the comprehensive information of converter parameters and control loop can be employed to fully reveal and understand the inherent nonlinear dynamics of interleaved boost converters, including the interaction effect of switching operation. Thereby not only the boundary conditions but also the relationship between stability margin and the parameters given can be intuitively studied by the eigenvalues of this matrix. Furthermore, by employing the knowledge gained from this analysis, a real-Time cycle to cycle variable slope compensation method is proposed to guarantee a satisfactory performance of the converter with an extended range of stable operation. Outcomes show that systems can regain stability by applying the proposed method within a few time periods of switching cycles. The numerical and analytical results validate the theoretical analysis, and experimental results verify the effectiveness of the proposed approach

    Harmonic State Space (HSS) Modeling for Power Electronic Based Power Systems

    Get PDF

    Steady-State Analysis of Switching Power Converters via Augmented Time-Invariant Equivalents

    Get PDF
    This letter addresses the simulation of the steadystate response of switching power converters. The proposed approach is based on the interpretation of the voltage and current variables of a periodically switched linear circuit in terms of a series expansion and on the generation of augmented timeinvariant constitutive relations of the circuit elements. The circuit solution is obtained from an augmented time-invariant nodal equation generated from topological information and circuit inspection only. The feasibility and strength of the approach are demonstrated on a DC-DC boost converte
    corecore