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MULTIFREQUENCY AVERAGING
IN POWER ELECTRONIC SYSTEMS

ABSTRACT OF DISSERTATION

Power electronic systems have been widely used in the electrical power processing for
applications with power levels ranging from less than one watt in battery-operated
portable devices to more than megawatts in the converters, inverters and rectifiers
of the utility power systems. These systems typically involve the passive elements
such as inductors, capacitors, and resistors, the switching electronic components such
as IGBTs, MOSFETS, and diodes, and other electronic circuits. Multifrequency av-
eraging is one of the widely used modeling and simulation techniques today for the
analysis and design of power electronic systems. This technique is capable of provid-
ing the average behavior as well as the ripple behavior of power electronic systems.
This work begins with the extension of multifrequency averaging to represent uni-
formly sampled PWM converters. A new multifrequency averaging method of solving
an observed issue with model stability is proposed and validated. Multifrequency av-
eraging can also be applied to study the instability phenomenon in power electronic
systems. In particular, a reduced-order multifrequency averaging method, along with
a genetic algorithm based procedure, is proposed in this work to estimate the regions
of attraction of power electronic converters. The performance of this method is shown
by comparing the accuracy and efficiency with the existing methods. Finally, a new
continuous-time multifrequency averaging method of representing discrete-time sys-
tems is proposed. The proposed method is applied to model digitally controlled PWM
converters. Simulation and hardware results show that the proposed method is capa-
ble of predicting the average behavior as well as the ripple behavior of the closed-loop
systems. Future research in the area of multifrequency averaging is proposed.

KEYWORDS: Digital Control, Modeling, Power Electronic Systems,
Pulse Width Modulation, Stability
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CHAPTER 1

INTRODUCTION

Power electronic systems have been widely used in the electrical power processing for

applications with power levels ranging from less than one watt in battery-operated

portable devices [1–5] to more than megawatts in the converters, inverters and recti-

fiers of the utility power systems [6–11]. These systems typically involve the passive

elements such as inductors, capacitors, and resistors, the switching electronic compo-

nents such as IGBTs, MOSFETS, and diodes, and other electronic circuits.

Previous work on the modeling and simulation has focused on the detailed models

of power electronic systems (e.g., detailed switch-level models of PWM power elec-

tronic converters). These models (discrete-time models or continuous-time models)

represent the on-off behavior of switching elements explicitly. They accurately de-

scribe the operation of the power electronic systems but generally require relatively

long simulation run times (compared to averaged models) because the simulation time

step is limited by the switching period. Also, the detailed models do not have constant

equilibrium. Averaged models are time-invariant models that portray the average be-

havior of the power electronic systems without requiring excessive run times and have

constant equilibrium. Such models have traditionally been constructed using state-

space averaging method [12–15]. However, the successful application of such models

has been limited to power electronic systems that satisfy a small ripple assumption

(e.g., [16, 17]).

Herein, the multifrequency averaging, as one of the widely used modeling and

simulation techniques today [18–29], is studied for the analysis and design of power

electronic systems. The fundamental idea is to represent the state variables of power

electronic systems using a truncated Fourier series [30]. This technique is capable
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of providing the average behavior as well as the ripple behavior of power electronic

systems.

This work begins with the extension of multifrequency averaging to representing

uniformly sampled pulse-width-modulated (PWM) converters. In the past, multifre-

quency averaging has been studied for naturally sampled PWM where the modulation

signal is compared with a sawtooth (or other carrier) signal to produce the gate con-

trol switching signal for the power electronic systems. In this setting, an algebraic

equation must be solved at each time step. The approaches to solve for the switching

time at which the modulation signal crosses the sawtooth carrier in each switching

cycle are presented in [20, 24]. However, the switching times remain implicit and

cannot be solved directly in these approaches. Uniformly sampled PWM implemen-

tation has attracted increasing interest because of the ease of digital implementation

(e.g., [31–33]). Compared with analog implementations, digital implementations have

lower sensitivity to parameter variation, higher design flexibility, and better commu-

nication capability [34–39]. The modulation signal in uniformly sampled PWM is

sampled at the beginning of each switching period, and the sampled value is com-

pared with the carrier signal. In this setting, the switching times do not depend on

the ripple of the natural modulation signal explicitly; rather, it depends on what the

value of the modulation signal at the beginning of the switching period. In this work,

a method of representing uniformly sampled PWM converters using multifrequency

averaging is proposed. The proposed method also addresses a numerical stability

issue that is observed in multifrequency averaging representations of integrators. An

associated solution is then developed to achieve stabilized integrators. The proposed

method is demonstrated in simulation studies and validated experimentally using a

uniformly sampled PWM buck converter. It is shown that the proposed method is ca-

pable of predicting the transient and steady-state behavior predicted by the detailed

model.

2



To analyze the large-signal stability of nonlinear power electronic systems, it is

necessary to set forth an effective method to estimate the region of attraction. The

region of attraction is defined as a region for which all system trajectories starting

within the region asymptotically approach the equilibrium point. Lyapunov tech-

niques have been used to search for region of attraction estimates of power electronic

systems [40–44]. These approaches rely on evaluating the values of carefully chosen

scalar functions (Lyapunov functions) on state-space averaging models without nu-

merically integrating the system trajectories. The state-space averaging models are

capable of portraying the average behavior of power electronic systems. However,

the small ripple assumption inherent to state-space averaging models can limit the

applicability of these models. In this work, a reduced-order multifrequency averaging

method is proposed to perform region of attraction estimation using Lyapunov tech-

niques. The proposed reduced-order multifrequency averaging method is capable of

representing the effects of switching ripple on the behavior of the system and is, there-

fore, more capable of predicting the influence of the switching ripple on the stability

of the system. The proposed method in performing region of attraction estimation

using Lyapunov techniques is demonstrated in simulation studies and validated ex-

perimentally using a naturally sampled PWM converter with constant power load.

The use of the proposed models for region of attraction estimation is found to be more

accurate than the use of state-space averaging models for power electronic converters

in which the switching ripple is not negligible.

Discrete-time models have already been studied for the nonlinear dynamics of

the discrete-time power electronic systems (e.g, digitally controlled PWM convert-

ers) [45–50]. These discrete-time approaches carefully describe the nonlinear dy-

namics but generally require long simulation run times (compared with averaged

models) because the simulation time step of the discrete-time models is limited by

the sampling period or the switching period. Continuous-time state-space averaged

3



models are capable of portraying the average behavior of the nonlinear dynamics of

the discrete-time systems [51–55]. These approaches rely on the s-domain models of

the discrete-time systems directly via approximation transformations (e.g., forward

or backward Euler, bilinear). The resultant averaged models have been limited to

discrete-time systems that satisfy a small ripple assumption. To describe the av-

erage behavior as well as the low-order components of the ripple behavior of the

discrete-time systems, a continuous-time multifrequency averaging representation of

the discrete-time systems is proposed in this work. The proposed method relies on

the discrete-time multifrequency averaging representation of the discrete-time systems

and approximation transformations (e.g., forward or backward Euler, bilinear) from

discrete-time models to continuous-time models. The proposed method is demon-

strated in simulation studies and validated experimentally using a digitally controlled

PWM converter. It is shown that the proposed method is capable of predicting the

transient and steady-state behavior predicted by the detailed model.

1.1 Applications of Dissertation

In this work, the multifrequency averaging method is extended to model and simu-

late uniformly sampled PWM converters and digitally controlled PWM converters.

It is noted that the studies considered herein are for buck converters and that the

results could be applied equally to other power electronic systems or even to other

systems that exhibit periodic oscillation in steady state. The extension of the multi-

frequency averaging method makes the modeling and simulation of complicated power

electronic systems highly accurate (compared to state-space averaged models) while

highly numerically efficient (compared to detailed models). It helps designers gain

better understanding of circuit operation, select appropriate circuit component types

and values, choose control topologies, and estimate circuit performance. Further, the

multifrequency averaging is applied to study the instability phenomenon in power

4



electronic systems. In particular, a reduced-order multifrequency averaging method,

along with a genetic algorithm based procedure, is proposed in this work to estimate

the regions of attraction of power electronic systems. Such a procedure provides

the region of attraction estimates with sufficient accuracy and efficiency, rather than

working directly with detailed models. It helps design power electronic systems with

high robustness and reliability, where the circuit performance will meet specifications

even with anticipated perturbations in operation conditions.

1.2 Organization of Dissertation

The organization of the dissertation is as follows. The background and literature re-

view are presented in Chapter 2. A multifrequency averaging method for representing

uniformly sampled PWM converters is proposed in Chapter 3. A reduced-order multi-

frequency averaging method is proposed in Chapter 4 to perform region of attraction

estimation using Lyapunov techniques. A method of continuous-time multifrequency

averaging representation of discrete-time systems is proposed in Chapter 5 and is used

to model digitally controlled PWM converters. A concluding summary and areas of

future work are provided in Chapter 6. The results of stability analysis in Chap-

ter 3 are provided in Appendices A–B. The mixed-Kronecker-product property that

is useful for deriving the continuous-time multifrequency averaging representation of

discrete-time systems in Chapter 5 is proved in Appendix C. The hardware prototype

used for the experimental validations of this work is described in Appendix D.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

In this chapter, background information related to this work is presented, and related

literature is reviewed. The remainder of this chapter is organized as follows. The

state-space averaging method for modeling power electronic systems is introduced

in Section 2.1. It is followed by Section 2.2 in which the multifrequency averaging

method is introduced and several properties of partial-Fourier-series are described.

For comparison, discrete-time models are described in Section 2.3. The structures

and schemes of feedback control are presented in Section 2.4. Stability in power

electronic systems is briefly introduced in Section 2.5.

2.1 State-Space Averaging

Power electronic systems typically involve the passive elements such as inductors,

capacitors, and resistors, the switching electronic components such as IGBTs, MOS-

FETS, and diodes, and other electronic circuits. Detailed switch-level models of power

electronic systems represent the on-off behavior of the switching elements explicitly.

Such models can be discrete-time models or continuous-time models. They accurately

describe the operation of power electronic systems but generally require relatively long

run times (compared to averaged models) because the simulation time step is limited

by the switching period. Also, the detailed models do not have constant equilibrium

points.

The state-space averaged (SSA) models are simplified approximate models exacted

from the detailed models through averaging over one switching cycle [12, 13]. Such

models are time-invariant models that portray the average behavior of the power elec-

tronic systems without requiring excessive run times and have constant equilibrium

points.
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Figure 2.1: A simple buck converter.

Herein, a simple open-loop buck converter shown in Figure 2.1 is used to illustrate

the SSA method. It is assumed that the buck converter is operating in continuous

conduction mode, i.e., one and only one of the switches are conducting at all times.

The detailed model of the buck converter is given as

L
diL
dt

= qVin − vC (2.1)

C
dvC
dt

= iL −
vC
R

(2.2)

where q is the switching function that takes values of zero and one corresponding to

the transistor being open (off) or closed (on). Without loss of generality, one set of

differential equations can be constructed to describe the detailed model of the buck

converter considering the on-off behavior of the transistor:

ẋ = q(A1x +B1u) + (1− q)(A2x +B2u) (2.3)
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where state vector x, input vector u, state matrices A1 and A2, and input matrices

B1 and B2 are given by the following, respectively,

x =

[
iL vC

]T

(2.4)

u =

[
Vin 0

]T

(2.5)

A1 = A2 =

 0 − 1
L

1
C
− 1
RC

 (2.6)

B1 =

 1
L

0

0 0

 (2.7)

B2 =

 0 0

0 0

 . (2.8)

A lagged running average is defined in [56] to describe the percentage of “on-time”

of the switching function q(t) in each switching cycle T such that

d(t) =
1

T

∫ T

t−T
q(τ)dτ (2.9)

and d(t) is referred to as the continuous duty cycle. Likewise, the local averages of x

and u are defined in [56] as

x̄ =
1

T

∫ T

t−T
x(τ)dτ (2.10)

ū =
1

T

∫ T

t−T
u(τ)dτ . (2.11)
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The SSA model which describes the average behavior is derived in [13] by averaging

the detailed model (2.3), such that

˙̄x = q(A1x +B1u) + (1− q)(A2x +B2u) (2.12)

= (A1 − A2)qx + (B1 −B2)qu + A2x̄ +B2ū. (2.13)

The average of a product (i.e., qx and qu in (2.13)) is generally not the product of

the averages. Under reasonable assumptions [13], it is possible to approximate the

averages such that

qx ≈ q̄x̄ = dx̄ (2.14)

qu ≈ q̄ū = dū. (2.15)

These approximations lead to the simplification of the SSA model in (2.13)

˙̄x = (A1 − A2)dx̄ + (B1 −B2)dū + A2x̄ +B2ū. (2.16)

Rearranging the above simplification into the standard linear continuous state-space

expression results in the basic SSA model:

˙̄x = (dA1 + (1− d)A2)x̄ + (dB1 + (1− d)B2)ū. (2.17)

It can be simplified as

˙̄x = Āx̄ + B̄ū. (2.18)

where the matrices Ā and B̄ are defined by

Ā = dA1 + (1− d)A2 (2.19)

B̄ = dB1 + (1− d)B2. (2.20)
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If the switching function q(t) is periodic with period T , then the continuous duty cycle

d(t) is fixed at a constant value D. The resultant SSA models are time-invariant and

can be applied to solve for the steady-state equilibrium point by setting the derivatives

in (2.18) to zero. The SSA models also lead to much more efficient simulations

(compared to detailed models) of the power electronic systems without requiring

excessive run times, because the simulation time step in not limited by the switching

period in the time-invariant models.

The SSA models have been studied as a convenient starting point to analyze

and design various nonlinear controllers in power electronic systems [51–53]. In [51],

a Lyapunov-based control which relies on the SSA models of the switched power

converters is proposed to design globally stabilizing controls that include adaptive

schemes for handling uncertain nominal parameters. In [52], the SSA method is used

for designing stabilizing nonlinear proportional-integral feedback controllers which

regulate to a constant set-point value either the average output inductor current, the

average input inductor current, or the average transfer capacitor voltage of pulse-

width modulation controlled Ćuk converter. Several nonlinear control algorithms

based on SSA models of the power converters are experimentally compared in [53] for

real physical applications. Recently, the SSA models have been studied specifically to

design and analyze discrete-time controllers (e.g., digital controllers) [54, 55]. These

approaches start from the linearized model of the converter power stage and the

continuous-time controller. The discrete-time model is derived form the SSA model of

the controller using discretization approximations (e.g., forward or backward Euler,

bilinear). However, these averaged models do not account for the influence of the

modulators on the dynamics of the controllers. To address this problem, an alternative

formulation of the SSA model is presented in [57]. This approach yields a linearized

small-signal representation of the power converter circuit, where the on-time, as well

as the off-time of the pulse-width modulation signal are treated as distinct control
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inputs. However, the successful application of the SSA models has been limited to

power electronic systems that satisfy a small ripple assumption (e.g., [16, 17]).

2.2 Multifrequency Averaging

It has been shown in the previous subsection that the small ripple assumption nature

of the SSA models precludes their application to power electronic systems where large

ripple may be exhibited (e.g., quasi-resonant converters [58]).

For analysis of power electronic systems exhibiting large ripple, a generalized

state-space-averaging (GSSA) method is proposed in [30]. The fundamental idea is

to represent state variables using a truncated Fourier series. This approach predicts

the average behavior as well as low-order components of the ripple behavior and

can be applied directly to a number of different types of power electronic systems.

In [18], the GSSA method is applied to study the basic dc-dc topologies, such as the

buck, boost, buck-boost and Ćuk. This approach is extended in [59] to modeling

zero-current switching quasi-resonant buck converter and and zero-voltage switching

quasi-resonant boost converter where the natural frequency of the quasi-resonant tank

is of the same order as the switching frequency and large ripple may exhibit. GSSA

method can also be applied to analyze complex power electronic systems, such as

multiconverter dc power electronic systems [22,60], three-phase inverters [61] and ac

distribution systems [62].

Conceptually similar approaches to GSSA have been coined multifrequency av-

eraging (MFA) and dynamic phasors. In [20], MFA takes into account interactions

between harmonics and produces accurate estimates of the state variables in a boost

converter. It also presents a method to condense the averaged models to lower order

by exploiting certain structural features. MFA modeling is applied advantageously to

a multiple-input buck-boost converter in [24]. Therein, the MFA modeling has been

shown to be capable of capturing overall behavior, particularly in closed-loop cases
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when duty cycle command ripple may be presented. This approach is extended in [29]

by identifying and presenting a systematic set of rules to automatically construct the

MFA model for any PWM dc-dc converter of an arbitrary order and complexity. This

automatic approach can be used to develop computer programs that systematically

generate high-accurate time-invariant models for PWM dc-dc converters. In [25], a

linear time-invariant model of a single-phase four-quadrant PWM converter is de-

rived based on MFA approach. The proposed model is shown to be applicable for

direct calculation of steady-state equilibrium and small-signal analysis. Extensions

of MFA method have also been applied to other power electronic systems, such as

converters [28], inverters [26,27] and rectifiers [23]. Other studies involve the stability

assessment of MFA models [21, 63]. It is shown in [21] that an MFA model of a Ćuk

converter, as well as other PWM converter topologies, with a fixed duty cycle and

a finite switching frequency is asymptotically stable. In [63], by applying MFA, the

feedback duty cycle is treated as a function of the open-loop duty cycle. This function

indicates whether a stationary duty cycle exists in the closed-loop configuration. The

ideas of MFA are refined for other applications in [64–67], and often referred to as

dynamic phasors.

In order to use the MFA method to study the power electronic systems, it is

necessary to explore the properties of partial-Fourier-series approximations. These

properties are discussed in the subsections below.

2.2.1 MFA Representation

According to the averaging method presented in [20, 30], a quasiperiodic signal x(t)

can be approximated by a partial Fourier series. This series can be expressed as either
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a trigonometric Fourier series (TFS) or an exponential Fourier series (EFS):

x(t) ≈ x0(t) +
K∑
k=1

(xkc(t) cos(kωt) + xks(t) sin(kωt)) (2.21)

=
K∑

k=−K

〈x〉k(t)ejkωt (2.22)

where x0(t), xkc(t), and xks(t) are real-valued TFS coefficients referred to as the

index-0, index-kc, and index-ks averages, respectively, 〈x〉k(t) is a complex-valued

EFS coefficient referred to as the index-k average, and ω is the switching angular

frequency. This series is a Kth-order approximation of x(t). While the approximation

improves as K increases, it is shown in [24] that values of one or two are sufficient

with very modest improvement for larger K. An average vector of length (2K + 1)

can be constructed from the TFS coefficients in (2.21):

x = [x0 x1c x1s . . . xKc xKs]
T. (2.23)

With this vector, (2.21) can be reconstructed as x(t) ≈ θT(t)x, where θ(t) is defined

as

θ(t) = [1 cos(ωt) sin(ωt) . . . cos(Kωt) sin(Kωt)]T. (2.24)

2.2.2 Relationship Between Fourier Series Representations

Suppose a signal x(t) is approximated by the Kth-order series in (2.21) and (2.22).

By Euler’s formula, the relationship between the TFS and EFS coefficients can be
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expressed as

〈x0〉 = x0 (2.25)

〈x〉k =
1

2
xkc −

j

2
xks (2.26)

〈x〉−k =
1

2
xkc +

j

2
xks. (2.27)

2.2.3 Average of Product and Quotient

Often, the mathematical model of a converter involves the product of two signals (e.g.,

a switching function and a voltage or a current [68]). Suppose two signals x(t) and

y(t) are approximated by Kth-order series and the corresponding average vectors are

denoted x and y, respectively. A Kth-order approximation of the product of these

signals can be constructed by computing the product of the approximations of the

multiplicand and multiplier and neglecting higher order terms:

z(t) = x(t)y(t) ≈
K∑

k=−K

〈x〉kejkωt
K∑

k=−K

〈y〉kejkωt ≈
K∑

k=−K

〈z〉kejkωt. (2.28)

A discrete convolution relationship can be used to calculate the index-k average of

the product [30]:

〈z〉k =
∑
l

〈x〉l〈y〉k−l (2.29)

where the sum is taken over all integers l that lie on the interval for which the

indices 〈x〉l and 〈y〉k−l are defined. Using the relationships between the TFS and
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EFS coefficients in (2.25)–(2.27), it can be shown that

z0 = x0y0 +
K∑
l=1

(
1

2
xlcylc +

1

2
xlsyls

)
(2.30)

zkc = x0ykc + xkcy0 +
−1∑

l=−K+k

(
1

2
x−lcy(k−l)c +

1

2
x−lsy(k−l)s

)

+
k−1∑
l=1

(
1

2
xlcy(k−l)c −

1

2
xlsy(k−l)s

)
+

K∑
l=k+1

(
1

2
xlcy(−k+l)c +

1

2
xlsy(−k+l)s

)
(2.31)

zks = x0yks + xksy0 +
−1∑

l=−K+k

(
1

2
x−lcy(k−l)s −

1

2
x−lsy(k−l)c

)

+
k−1∑
l=1

(
1

2
xlcy(k−l)s +

1

2
xlsy(k−l)c

)
+

K∑
l=k+1

(
−1

2
xlcy(−k+l)s +

1

2
xlsy(−k+l)c

)
.

(2.32)

For notational simplicity, a (2K+1)× (2K+1) matrix Φ associated with x is defined

such that the average vector z can be represented as

z = Φ(x)y. (2.33)

In a special case where x(t), y(t) and the product z(t) are approximated by a first-

order series, the matrix Φ(x) can be expressed as

Φ(x) =


x0

1
2
x1c

1
2
x1s

x1c x0 0

x1s 0 x0

 . (2.34)

Quotients can be represented similarly. Given Kth-order approximated signals z(t),

x(t), and the quotient y(t) = z(t)/x(t), utilizing the relationship for the average of a

product results in the following expression for the average of a quotient:

y = Φ(x)−1z. (2.35)
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It is noted that y(t) may not be approximated by a Kth-order Fourier series in the

case that Φ(x) is not invertible.

2.2.4 Average of Time Derivative

Suppose a signal x(t) is approximated with a Kth-order series. Differentiating with

respect to time yields

dx

dt
≈ dx0

dt
+

K∑
k=1

(kωxks cos(kωt)− kωxkc sin(kωt))

+
K∑
k=1

(
dxkc
dt

cos(kωt) +
dxks
dt

sin(kωt)

)
. (2.36)

If dx
dt

is approximated with a Kth-order series represented by average vector dx
dt

, then

dx

dt
=
dx

dt
+ Tx (2.37)

where dx
dt

is the time derivative of the average vector x and T is a (2K+1)× (2K+1)

matrix that is zero everywhere except for T2k,2k+1 = kω and T2k+1,2k = −kω for

k ∈ {1, 2, . . . , K}.

2.2.5 Average of Switching Function

A switching function q which controls the switching of power electronic systems takes

values of zero and one corresponding to the switch being open or closed, respectively.

For a switching function that becomes one at the beginning of the switching period

and has a constant duty cycle D, the index-0, index-kc and index-ks averages are
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given by

q0 = D (2.38)

qkc =
1

kπ
sin(2πkD) (2.39)

qks =
1

kπ
(1− cos(2πkD)). (2.40)

These averages are constants for open-loop operation at constant duty cycle. It has

been shown in [20] that for slowly varying duty cycle (whether varied in open-loop or

closed-loop), the same expressions can be used with D replaced by the time-varying

duty cycle.

2.3 Discrete-Time Models

Discrete-time models have been studied for modeling power electronic systems [45,

46, 48, 69–71]. In [69], discrete-time models are derived to account for the effects of

sampling due to the pulse-width modulators and standard analog controllers. Ex-

tensions of this approach to study various analog control techniques are described

in [46, 48]. In [70, 71], the discrete-time models have been successfully used to study

the nonlinear dynamics of switching power electronic converters, such as bifurcations,

strange attractors, and routes to chaos. These models are typical sampled-data mod-

els that naturally represent the periodic behavior of the systems and have been shown

to be more accurate than the averaged models. The widespread application of these

approaches has been limited because of the involvement of matrix exponentials. Bi-

linear discrete-time models are utilized in [49] to retain necessary accuracy of these

sampled-data models with less complexity by applying first-order approximations to

the matrix exponentials. However, these models are not able to describe the behavior

of the systems when the switching instants are not positioned at the beginning of

the switching cycle. To address this problem, an exact small-signal z-domain model
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is proposed in [32] that correctly takes into account sampling, modulator effects and

delays in the discrete-time controller loop. This approach has been shown to be di-

rectly applicable to digitally controlled converters where the analog-digital sampling

instants can occur at any time during a switching period. In [50], this small-signal

z-domain model is extended to modeling any constant-frequency PWM converter.

Recently, the applications of these approaches have extended to discrete-time anal-

ysis and modeling of digitally controlled power electronic systems [72–76]. However,

these discrete-time models require relatively long simulation run times (compared to

averaged models) because the simulation time step is limited by the sampling rate.

2.4 Feedback Control

Feedback control has been used for output regulations of power electronic systems.

With feedback control, the operation of the switching would adjust automatically to

ensure that the system would return to the operating point after disturbances (e.g.,

a fast disturbance such as noise pulses, a large disturbance such as loss of load or

variations in the components, or a continuous small disturbance such as ripple) [77].

 

Compensator Converter
Pulse-width
modulator

Figure 2.2: The diagram of a closed-loop PWM converter.

For a voltage-mode closed-loop PWM converter shown in Figure 2.2, the feedback

controller is often developed based on the architecture where the converter output

voltage vout(t) is compared with the reference voltage v∗out(t) and fed into the com-

pensator for computing the modulation signal m(t). The modulation signal gener-
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Figure 2.3: A simple PI compensator.

ates the switching signal q(t) via the pulse-width modulator, which in turn controls

the switching of the converter. Most of the controllers so far reported in literature

employ such a voltage-mode control principle [78–81]. In [78], a versatile power con-

verter controller is designed to provide dual outputs using voltage-mode regulation.

The key features of this design are its low-power dissipation, reconfigurability, use of

either delay or voltage feedback, and multiple outputs. In [79], the architecture of a

digital PWM controller for application in multiphase voltage regulation modules is

presented. Therein, passive current sharing and transient response of the voltage regu-

lation module are analyzed. A scheme for sensing a combination of the output voltage

and output current with a single low-resolution window analog-to-digital converter

is proposed. An improved topology named the multiphase coupled-buck converter is

proposed in [80]. This approach uses the existing coupled inductor windings to form

an active clamping circuit between interleaved channels to solve the voltage spike

problem in voltage regulation modules. In [81], a novel switching-capacitor PWM

converter is proposed. The converter is a combination of a switching-capacitor con-

verter and a PWM converter and is suitable for both voltage regulator module and

voltage regulator down application.

2.4.1 Compensator

Conventional PID compensators are commonly used to regulate the output voltage

of converters due to their simplicity and flexibility of design (e.g., [82–84]). A simple
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PI compensator, such as that depicted in Figure 2.3, is often sufficient to meet per-

formance requirements. This compensator calculates the modulation signal m(t) in

order to regulate the output voltage using the output voltage error as the input to

the compensator. The PI compensator is described as

vs = kp(v
∗
out − vout) + e (2.41)

de

dt
=
kp(v

∗
out − vout)
τi

(2.42)

m =
vs
V ∗in

(2.43)

where kp and τi are control parameters and V ∗in is the nominal value of the input

voltage Vin.

2.4.2 Pulse-Width Modulator

In feedback control of power electronic systems, it is necessary to represent the rela-

tionship between the modulation signal m(t) and the switching function q(t).

Naturally sampled PWM is traditionally an analog technique where the modula-

tion signal is compared with a carrier signal (e.g., a sawtooth function) as shown in

Figure 2.4. The switching function is the result of this comparison. MFA modeling

has been studied for such implementation. In [20], the switching function produced

by this modulation scheme is approximated by a partial Fourier series. The switching

time at which the modulation signal crosses the sawtooth carrier in each switching

cycle is solved indirectly within the simulation by introducing an additional state

variable and driving an error function to zero. In [24], it is argued that this approach

does not account for a potential phase shift in the carrier signal. Therein, a similar

set of nonlinear equations is derived for determining the MFA representation of the

switching signal, and it is suggested that one iteration of Newton’s method with an

initial guess corresponding to zero command ripple is sufficient to solve the nonlinear
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equation. However, the switching times in [20] and [24] remain implicit and cannot

be solved directly.

Uniformly sampled PWM has attracted increasing interest because of the ease

of digital implementation (e.g., [31–33]). In this setting as depicted in Figure 2.4,

the modulation signal is regularly sampled at the beginning of the switching period

before being compared with the carrier and stored in a shadow register for use during

that period (e.g, [85]). For trailing edge modulation, the switching functions pro-

duced by these two PWM sampling techniques are shown in Figure 2.5. In naturally

sampled PWM, the edges of switching function qn(t) are determined by crossings of

the instantaneous modulation signal m(t) and the carrier signal c(t). In uniformly

sampled PWM, the switching instant does not depend on the ripple of modulation

signal explicitly; rather, it depends on the value of modulation signal at the beginning

of the switching cycle. However, this PWM sampling technique produces a delay in

switching function qu(t). It has been shown in [86] that the delay can be significant

when the modulation depth or the ratio of modulation signal frequency to carrier sig-

nal frequency increases. Typically, m(t) would change relatively slowly with respect

to the switching frequency and have a small switching frequency ripple component,

in which case uniformly sampled PWM is very similar in performance to naturally

sampled PWM.

2.4.3 Digital Feedback Controller

Traditionally, feedback controllers have been implemented with analog circuits (e.g.,

[68, 87, 88]) . Recently, digital controllers have attracted increasing interest due to

the rapid evolution of digital integrated circuit technologies applied to signal proces-

sors, analog to digital converters and digital to analog converters [89–91]. Compared

with analog controllers, digital controllers have higher robustness, reliability and flex-

ibility, lower power consumption, and better ability to employ sophisticated control
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Figure 2.4: Two PWM sampling techniques.
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Figure 2.5: Natural sampling versus uniform sampling.

schemes [34–39]. In [34], a complete digital PWM controller IC with feedforward

compensation of the input voltage is described. Therein, the feedforward compensa-

tion is accomplished through a delay-line digital PWM where the cell delay is made

inversely proportional to the input voltage. A voltage mode digital controller for low-

power high-frequency dc-dc switch-mode power supplies is proposed in [35]. Such a

controller has fast transient response, approaching the physical limitations of a given

power stage. A digital current-model control technique is studies in [36]. Therein, a
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digital current-mode control technique for dc-dc converters is proposed and its digital

implementation is described. The computational burden on the DSP is less compared

to other methods of digital current-mode control because a simpler duty ratio control

law is implemented here. More sophisticated control schemes are explored in [37–39].

In [37], a digital pulse-width modulation/pulse-frequency modulation (PWM/PFM)

controller with input voltage feedforward for synchronous dc-dc buck converters is de-

scribed. The controller includes automatic PWM/PFM mode switching and effective

synchronous operation with a minimum number of active components and without

the need for current sensing in PFM mode of operation. A high-frequency digital con-

troller that includes an optimized analog-digital converter with a novel formulation

of digital error value based on target clock frequency and converter output voltage is

presented in [38]. An online closed-loop compensator autotuning digital power con-

troller is proposed in [39]. This approach is relatively simple, does not require the

knowledge and/or measurement of the power stage or closed-loop frequency response,

and does not depend on conventional deign methods and the associated rule-of-thumb

design criteria.

2.5 Stability in Power Electronic Systems

In many power electronic systems, power electronic converters are used for many

functions such as to supply power to buses or as point-of-load converters. As control

technology has improved, these converters have become more tightly regulated with

high bandwidth and good robustness properties to mitigate the possible propagation

of disturbances from the power supply to the load. A consequence of this improvement

in control is that these converters are likely to behave as constant power loads and

exhibit negative small signal impedance at their input terminals, which can cause

instability problems for such systems [92,93].
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2.5.1 Local Stability

To study the instability phenomenon in nonlinear power electronic systems, linearized

(small-signal) average models can be developed around the equilibrium points, and

the local stability can be investigated considering the small-signal information [94–

98]. These approaches are capable of predicting the existence of stable steady-state

equilibrium points. Nevertheless, the small-signal nature precludes the use of these

approaches for large-signal stability analysis of power electronic systems.

2.5.2 Large-Signal Stability

To study the large-signal stability of nonlinear power electronic systems, it is neces-

sary to set forth an effective method to estimate the region of attraction. The region

of attraction is defined as a region for which all system trajectories starting within

the region asymptotically approach the equilibrium point. A traditional approach to

deal with transient stability analysis and ROA estimation of power electronics sys-

tems is with gridding-based methods in which numerical integration of the nonlinear

differential equations describing the system is performed. This method provides an

accurate description of transient phenomena, but its computational cost can limit

application (e.g., excluding real-time transient stability assessment) and significantly

constrain the number of cases which can be analyzed.

The closest equilibrium point (UEP) method, the controlling UEP method and

the boundary of stability region based controlling UEP method are alternative direct

approaches to large signal stability analysis. These approaches provide conservative

ROA estimates of power systems without numerical integrating the system trajec-

tories [99–101]. However, the computation burden for these methods remains large.

Bifurcation analysis is used in [102] to analyze the dynamics of the input voltage on

the stability of a dc/dc converter. In particular, the range of input voltage is found
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where the dc/dc converter remains stable. However, this method does not yield an

ROA estimate.

Lyapunov techniques have been used to search for ROA estimates of power elec-

tronic systems [40–44]. These approaches rely on evaluating the values of carefully

chosen scalar functions (Lyapunov functions) on SSA models without numerically

integrating the system trajectories. The SSA models are capable of portraying the

average behavior of power electronic systems. However, the small ripple assumption

inherent to SSA models can limit the applicability of these models [19].
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CHAPTER 3

MULTIFREQUENCY AVERAGING IN UNIFORMLY

SAMPLED PWM CONVERTERS

It has been shown in Section 2.4.2 that the MFA models have been studied for nat-

urally sampled PWM in power electronic systems. In this chapter, the MFA method

is extended by making the following contributions: 1) A method of representing

uniformly sampled PWM converters using MFA is proposed. 2) A model stability

problem associated with traditional MFA models is observed and described. 3) A

solution to the observed stability problem is proposed. The remainder of this chapter

is organized as follows. The MFA model of a buck converter and a PI compensator

for the converter are described in Sections 3.1 and 3.2, respectively. Also, the MFA

representation of the switching function in a uniformly sampled PWM converter is

provided in Section 3.2. In Section 3.3, a stability issue associated with integrators in

MFA models is explored, and a solution is proposed. Simulation studies demonstrat-

ing the proposed model during transient and steady-state intervals and frequency-

domain analysis are presented in Section 3.4. Experimental validation is described in

Section 3.5. A concluding summary and remarks are provided in Section 3.6.

3.1 MFA Model of Buck Converter

Unlike the simple buck converter shown in Figure 2.1, a practical buck converter

involves the equivalent series resistances for the inductor and the capacitor. In this

section, the MFA model of a practical buck converter shown in Figure 3.1 is set forth.

It is assumed that the buck converter is operating in continuous conduction mode.
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Figure 3.1: A practical buck converter.

The detailed model of the converter is given as

L
diL
dt

= qVin −RLiL − vout (3.1)

C
dvC
dt

= iL −
vout
R

(3.2)

vout =
R

R +RC

(vC +RCiL) (3.3)

where q is the switching function that represents the transistor state. If each signal is

approximated by a Kth-order series, then applying the properties in Sections 2.2.1–

2.2.4 yields the following MFA model:

L(
diL
dt

+ TiL) = qVin −RLiL − vout (3.4)

C(
dvC
dt

+ TvC) = iL −
vout
R

(3.5)

vout =
R

R +RC

(vC +RCiL). (3.6)

It is noted that, unlike the boost converter [20], this model does not involve the

product of two time-varying signals. There are circumstances in which the buck

converter model may include such products. Examples include the case when the
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Figure 3.2: PI compensator with feedforward voltage command v∗out.

input voltage source has series resistance and the case when parasitic voltage drops

in the semiconductor elements are represented (e.g., [29]).

3.2 MFA Model of Feedback Controller

It has been shown in Section 2.4.1 that the conventional PID compensator is com-

monly used to regulate the output voltage of a converter due to its simplicity and

flexibility of design. A simple PI compensator, such as that depicted in Figure 2.3,

is often sufficient to meet performance requirements. Herein, a feedforward voltage

command v∗out is used as the input to this simple PI compensator to provide faster dy-

namic response during start-up transient. Such compensator is depicted in Figure 3.2

and the detailed model can be described as

vs = v∗out + kp(v
∗
out − vout) + e (3.7)

de

dt
=
kp(v

∗
out − vout)
τi

(3.8)

m =
vs
V ∗in

(3.9)

where kp and τi are control parameters and V ∗in is the nominal value of the input

voltage Vin.
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If each signal is approximated by a Kth-order series, then applying the properties

in Sections 2.2.1–2.2.4 yields the following MFA model of this compensator:

vs = v∗out + kp(v
∗
out − vout) + e (3.10)

de

dt
+ Te =

kp(v
∗
out − vout)

τi
(3.11)

m =
vs
V ∗in

. (3.12)

In order to complete the model of the closed-loop buck converter, it is necessary

to represent the relationship between the modulation signal m(t) and the switching

function q(t). Herein, uniformly sampled PWM described in Section 2.4.2 is consid-

ered. With uniformly sampled PWM, the modulation signal is regularly sampled at

the beginning of the switching period before being compared with the carrier and

stored in a shadow register for use during that period (e.g, [85]). It has been shown

in Figure 2.4 that the switching instant in uniformly sampled PWM does not de-

pend on the ripple of modulation signal explicitly; rather, it depends on the value of

modulation signal at the beginning of the switching cycle.

MFA representation of the relationship between the modulation signal and the

switching function in naturally sampled PWM has been studied in [20, 24]. In [20],

an algebraic equation describing the duty cycle D of the switching function qn(t) in

terms of m0, m1c and m1s is proposed. An integral controller is used to solve for

D dynamically. This approach introduces an extraneous state variable and is only

valid for first-order approximations. In [24], the relationships between the modulation

signal and the switching function are explored from a different perspective. Therein,

higher order approximations are treated as well as alternative carrier functions. It is

also suggested that the solution to the algebraic equation describing the intersection

of the modulation signal and the carrier function can be approximated satisfactorily

with a single Newton step with an initial guess corresponding to zero ripple. It can be
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shown that the relationships that are described therein are equivalent to (2.38)–(2.40)

when the instantaneous value of m is used to calculate D.

Multifrequency averaging does not involve the algebraic complexity associated

with uniformly sampled PWM. If the modulation signal is represented as

m(t) ≈ m0 +
K∑
k=1

(mkc cos(kωt) +mks sin(kωt)) (3.13)

then the value of m(t) at the beginning of the switching period (the value that is used

by the PWM implementation) is

D ≈ m0 +
K∑
k=1

mkc. (3.14)

Application of (2.38)–(2.40) yields the average vector q. While each of the means

of averaging the switching function essentially depends on the components of the

average vector changing relatively slowly with respect to the switching frequency,

this can be particularly noticeable when comparing detailed and averaged models of

the uniformly sampled implementation. This is due to the effects of the sampling

shown in Figure 2.4.

3.3 Integrator Stabilization

In this section, a numerical issue associated with the MFA approach to modeling inte-

grators is investigated, and an alternative method of modeling integrators is proposed.

Consider the integrator described by

dx

dt
= u(t). (3.15)
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Table 3.1: Integrator Parameters

ω 1000π rad/s x0 0

u
(i)
1c 0.2 u

(f)
1c 0.2

u
(i)
1s 0.2 u

(f)
1s 0.3

If both x(t) and u(t) are approximated by first-order series, then the relationship

between the average vectors is

dx

dt
= Ax + u (3.16)

where A = −T (from (2.37)) is given by

A =


0 0 0

0 0 −ω

0 ω 0

 . (3.17)

The eigenvalues of A are 0, jω, and−jω. Consider such an MFA integrator implemen-

tation that is initially operating in steady state while excited by a signal with no dc

component represented by u(i) = [0 u
(i)
1c u

(i)
1s ]T, where u

(i)
1c and u

(i)
1s are constants. The

steady-state equilibrium point associated with such an input is x = [x0 − u
(i)
1s

ω

u
(i)
1c

ω
]T

where x0 is arbitrary and is related to the initial output of the integrator. At the time

t = 0 s, the input signal is changed such that u(f) = [0 u
(f)
1c u

(f)
1s ]T, where u

(f)
1c = u

(i)
1c to

ensure that u(t) is continuous. The results of simulating such a situation are shown

in Figure 3.3 and Figure 3.4 for the parameters given in Table 3.1. In Figure 3.3, it

can be seen that the reconstructed series x(t) corresponding to the average vector x

is identical to the results of a detailed (DET) model of the integrator (i.e., the direct

integration of u(t)). In Figure 3.4, it can be seen that the elements of x are initially

constant. However, when the input average vector u is changed, the elements of x

begin to oscillate. Furthermore, the steady-state result x(t) has a dc offset, while the

x0 average in Figure 3.4 does not exhibit this offset. This oscillation is unexpected
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Figure 3.3: Time-domain signals of DET, MFA, and ISMFA models of integrator
where x(t) ≈ θT(t)x and x̂(t) ≈ θT(t)x̂.
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Figure 3.4: Elements of x for MFA model of integrator.

in an average-value model in which the state variables are expected to take constant

values in steady state. This property of average-value models is useful from both a

simulation [103] and a control design perspective [104].
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Figure 3.5: Elements of x̂ for ISMFA model of integrator.

An approach to stabilizing this behavior in MFA models resulting in integrator-

stabilized MFA (ISMFA) models is described below. Instead of using (3.16) to repre-

sent the integrator, the integrator is represented as

dx̂

dt
= (A + K(t))x̂ + u (3.18)

where K(t) is a time-varying feedback matrix, which is defined as

K(t) =


0 K1c cos(ωt) K1s sin(ωt)

0 −K1c 0

0 0 −K1s

 (3.19)

and K1c and K1s are time-varying parameters used to dampen the system. Suppose an

error variable e(t) is used to represent the difference between the output values of the

MFA integrator and the ISMFA integrator, i.e., e(t) = x−x̂. Further, suppose that the

two integrator models have the same initial state such that e(t0) = x(t0)− x̂(t0) = 0.
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Differentiating e(t) with respect to time yields

de

dt
=

d

dt
(x− x̂) =

dθT

dt
(x− x̂) + θT(t)

d

dt
(x− x̂). (3.20)

It can be shown that for arbitrary input vector, the time derivative of e(t) is zero at

all times. Therefore, the ISMFA model of the integrator will result in time-domain

predictions for the output of the integrator that are identical to the predictions of

the MFA model. The notation x̂ is used here to differentiate the state variables of

the MFA and ISMFA models, but this notation is not used below. The following text

discusses the ISMFA model, and the state variable vector for the ISMFA model is

referred to as x.

Given the possibility of introducing the state feedback shown in (3.18) without

affecting the time-domain predictions of the model, it is possible to select K1c and

K1s to stabilize the integrator behavior. If the input average vector has constant

values for u1c and u1s, the steady-state values of the state average vector are

x1c = −u1s

ω
(3.21)

x1s =
u1c

ω
. (3.22)

A measure of distance to these steady-state values can be defined as

V = ∆2
1 + ∆2

2 (3.23)

where

∆1 = u1c − ωx1s (3.24)

∆2 = u1s + ωx1c. (3.25)

34



Differentiation of these measures with respect to time (and assuming the input vector

is constant) yields the following state equations:

d

dt

 ∆1

∆2

 =

 −K1s −ω

ω −K1c


 ∆1

∆2

+

 K1s 0

0 K1c


 u1c

u1s

 . (3.26)

Using these state equations, the time derivative of the function V can be calculated

as

V̇ = 2∆1ωx1sK1s − 2∆2ωx1cK1c. (3.27)

If K1c and K1s are chosen such that

2ωx1sK1s = −α∆1 (3.28)

2ωx1cK1c = α∆2 (3.29)

where α is a positive constant, then

V̇ = −α(∆2
1 + ∆2

2) = −αV (3.30)

and the distance measure would decay exponentially.

Practical constaints prevent the satisfaction of (3.28) and (3.29) in every case

(e.g., small values of x1c and x1s). In this case, the magnitudes of K1s and K1c can

be bounded by a large positive constant M . This can be accomplished by defining a

threshold parameter as

ε =
α

2M
. (3.31)
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Then, practical solutions for K1c and K1s can be expressed as

K1c =
α

2


∆2

ωx1c
, |ωx1c| > ε|∆2|

sign(∆2x1c)
ε

, otherwise

(3.32)

K1s = −α
2


∆1

ωx1s
, |ωx1s| > ε|∆1|

sign(∆1x1s)
ε

, otherwise.

(3.33)

The ISMFA model of the integrator is simulated using the same input as described

above with α = 103 s−1 and ε = 10−2. It can be seen in Figure 3.3 that the recon-

structed output of the integrator model is identical to that of the detailed model and

the MFA model. Figure 3.5 shows the elements of the average vector for the ISMFA

model of the integrator. It can be seen that the elements of the average vector are

initially in steady state (in the same way as the MFA model). However, when the

change in integrator input occurs, the elements associated with the ISMFA model

experience a transient change, ultimately settling into steady-state values. The time

constant associated with this transient change is controlled by the value of α and can

be adjusted accordingly.

3.4 Simulation Studies

A number of simulation studies were conducted to demonstrate the proposed ISMFA

method. In particular, the buck converter shown in Figure 3.1 with the feedback

controller shown in Figure 3.2 and the parameters given in Table 3.2 is studied. A

detailed model, an MFA model, and an ISMFA model of the converter are constructed.

For the ISMFA model, the stabilization parameters are given as α = 106 s−1 and

ε = 10−2.

36



Table 3.2: Parameters of Dc/Dc Buck Converter

Vin 250 V L 1.52 mH R 6 Ω

V ∗in 250 V RL 35 mΩ kp 0.0708

v∗out 150 V C 167 µF τi 0.001

f 10 kHz RC 50 mΩ

3.4.1 Time-Domain Comparison of ISMFA Models with Var-

ious Approximation Orders

The accuracy of a partial Fourier series can be increased by increasing the number of

terms in the series, i.e., K. It has been found in [24] that values of one or two are

generally sufficient to represent the switching harmonics. In Figure 3.6, the inductor

current and capacitor voltage for a detailed model and an ISMFA model of orders

zero, one, and two are shown. Table 3.3 compares the dc value and peak-peak (p-

p) value of inductor current and capacitor voltage and simulation runtimes in each

model. The simulation for each model is carried out on a personal computer (Intel(R)

Core(TM) i7-3770 CPU @ 3.40 GHz, 8.00 GB RAM, 64-bit Operating System). It

can be seen that the zeroth-order ISMFA model correctly predicts the average value of

the signals. The second-order model more carefully approximates the detailed model

than the first-order model, but both of the higher order models accurately predict

the nature of the harmonics in the waveforms. Therefore, the observation in [24] that

a first- or second-order model is sufficient is also confirmed here. It can be observed

that the detailed model takes 5 times more simulation runtimes than the ISMFA

models and the higher order ISMFA model takes longer simulation runtimes than the

lower order ISMFA model.
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Figure 3.6: Simulation results of inductor current and capacitor voltage for detailed
(DET) and ISMFA models of orders 0, 1, and 2.

3.4.2 Time-Domain Comparison of MFA and ISMFA Models

While the justification for introducing the ISMFA model presented in Section 3.3

was demonstrated with a simple integrator, an example in which the MFA model

demonstrates unstable behavior is presented below. Simulation results showing the

initial startup transient are shown in Figure 3.7–3.9. It can be seen that both the
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Table 3.3: Comparison of dc value and peak-peak (P-P) value of inductor current and
capacitor voltage and simulation runtimes for detailed (DET) and ISMFA models of
orders 0, 1, and 2.

Models
Inductor current (A) Capacitor voltage (V)

Runtimes (s)
DC P-P DC P-P

DET 25.00 3.94 150.00 0.30 1.4490

0 25.00 0 150.00 0 0.0406

1 25.00 3.16 150.00 0.30 0.1778

2 25.00 3.30 150.00 0.30 0.2704
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Figure 3.7: Simulation results of startup transient inductor current for detailed
(DET), (first-order) MFA, and ISMFA models.

(first-order) MFA and ISMFA models accurately predict the inductor current and

capacitor voltage with respect to the detailed model. It can be observed that close

agreement exists between the duty cycle as predicted by the ISMFA and detailed

models. These waveforms are depicted over a longer period of time in Figure 3.10–

3.12. It can be seen that the MFA model begins to oscillate over time and becomes

unstable. This instability is not observed in either the detailed model or the ISMFA

model. It is attributed to the integrator instability described in Section 3.3.
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Figure 3.9: Simulation results of startup transient duty cycle for detailed (DET),
(first-order) MFA, and ISMFA models.

To further understand the nature of the instability of the MFA model observed

in Figure 3.10–3.12, the MFA model is linearized about the equilibrium point. The

resulting Jacobian matrix is provided in Appendix A. It can be observed that one pair
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Figure 3.11: Simulation results of steady-state capacitor voltage for detailed (DET),
(first-order) MFA, and ISMFA models.

of eigenvalues of the resulting Jacobian matrix lies in the right half plane, indicating

that the MFA model is unstable. The ISMFA model has the same equilibrium point,

but the time-varying nature of the feedback matrix in (3.19) causes the Jacobian
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matrix to depend on t, which yields

J(θ) = A0 + cos(θ)A1 + sin(θ)A2, (3.34)

where A0, A1, and A2 are constant matrices provided in Appendix B and θ = ωt.

As θ is varied such that cos(θ) and sin(θ) lie in [−1, 1], the Jacobian matrix can be

shown to be a convex combination of four constant matrices, i.e.,

J(θ) = α1(θ)J1 + α2(θ)J2 + α3(θ)J3 + α4(θ)J4, (3.35)

where J1, J2, J3 and J4 are given by the following:


J1 = A0 + A1 + A2 J3 = A0 −A1 + A2

J2 = A0 + A1 −A2 J4 = A0 −A1 −A2

(3.36)
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If there exists a symmetric, positive definite matrix P that satisfies

JT
i P + PJi < 0 ∀i ∈ {1, 2, 3, 4} (3.37)

it can be shown that J(θ)TP + PJ(θ) is negative definite. Such a matrix P can

be found by solving a linear matrix inequality problem, and a solution is given in

Appendix B. Therefore, the ISMFA model is locally asymptotically stable about the

equilibrium point.

3.4.3 Frequency-Domain Analysis

The frequency-domain characteristics associated with the proposed ISMFA are exam-

ined by considering the open-loop control-to-output behavior. In particular, pertur-

bations to the modulation signal are introduced to either the dc-component (m0) or to

the first-order cosine component (m1c). These perturbations represent low-frequency

perturbations and perturbations about the switching frequency, respectively. Pertur-

bations between 1 Hz and 1 kHz are injected into the detailed, SSA, and ISMFA mod-

els and the subsequent output voltage perturbations are extracted using the method

described in [105]. The resulting magnitude and phase responses are shown in Fig-

ure 3.13 and Figure 3.14. It is observed that both the SSA and ISMFA models are

capable of predicting the response of the system to perturbations in the dc compo-

nent. However, only the ISMFA model can predict the response to perturbations to

the first-order component, representing perturbations about the switching frequency.

The erratic behavior exhibited by the SSA model in Figure 3.14 is due to the fact that

the perturbation to the first-order component of the modulation signal is introduced

as an equivalent higher frequency perturbation into the SSA model. This higher fre-

quency perturbation exceeds the bandwidth of the SSA model, and therefore, it is

unable to predict the response of the system to such perturbations.

43



10
0

10
1

10
2

10
3

30

40

50

Frequency (Hz)

G
ai

n
 (

d
B

)

10
0

10
1

10
2

10
3

−200

−100

0

Frequency (Hz)

P
h
as

e 
(D

eg
)

SSADET ISMFA

Figure 3.13: Gain and phase of responses to perturbations in the dc component of
detailed (DET), SSA, and ISMFA models.

3.5 Experimental Validation

In order to validate the ISMFA model, a uniformly sampled PWM buck converter

with the parameters given in Table 3.2 is studied experimentally. The control is im-

plemented in a TMS320F28335 microcontroller. The PI control is implemented by

sampling the output voltage at 100 kHz, which is sufficiently fast that the continuous

representation in Figure 3.2 is appropriate. The 10 kHz uniformly sampled PWM is

implemented using a shadow register to implement the zero-order hold depicted in

Figure 2.4. A step load resistance change from 7.481 Ω to 6.622 Ω is applied, and

the inductor current and output voltage are measured experimentally and compared

with the simulation output of a detailed model and a first-order ISMFA model. This

comparison is shown in Figure 3.15. It can be seen that the inductor current pre-
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Figure 3.14: Gain and phase of responses to perturbations to the first-order compo-
nent of detailed (DET), SSA, and ISMFA models.

dicted by the ISMFA model matches the experimentally measured inductor current

very well. There appears to be a small shift between the measured and simulated

output voltages. This minor discrepancy is likely due to small differences between

parameter values in the simulation model and the actual converter and does not seem

to significantly affect the accuracy of the model. It is noted that small deviations

(e.g. switch bounce when switching load) can degrade the ability of the simulation

models (both detailed and ISMFA) to predict the behavior of the converter exactly.

3.6 Conclusion

The ISMFA method of representing uniformly sampled PWM converters is proposed.

Furthermore, an observed issue with model stability is described, and this issue is
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Figure 3.15: Step load change experimental (EXP) and simulation results for detailed
(DET) and (first-order) ISMFA models. The experimental measurements are low-pass
filtered with a time constant of 2 µs to remove measurement noise.

addressed by the proposed method. Simulation results of both transient and steady-

state responses show that the proposed model provides an accurate prediction of

system behavior and its small-signal behavior. The proposed model is validated

experimentally by consideration of step load changes with a uniformly sampled dc-dc

PWM buck converter. It is shown that the proposed ISMFA model is capable of
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predicting the transient and steady-state behavior predicted by the detailed model

and measured experimentally.
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CHAPTER 4

MULTIFREQUENCY AVERAGING IN REGION OF

ATTRACTION ESTIMATION OF POWER ELECTRONIC

SYSTEMS

In this chapter, an reduced-order MFA (RMFA) model is proposed to perform ROA

estimation of power electronic systems. Such a model allows the effects of switching

harmonics to be included in the model without increasing the model order, permitting

the effects of switching ripple to be considered in stability analysis. The contributions

of this work are (i) the proposal to use RMFA models to perform ROA estimation

in power electronic systems, (ii) demonstration of the failure of traditional ROA

estimation using an SSA model by counterexample, (iii) demonstration of the success

of the proposed method by exhaustive gridding, and (iv) experimental validation of

the results. It is noted that the case study considered herein is for a buck converter

and that the results could be applied equally to other power electronic systems or

even to other systems that exhibit periodic oscillation in steady state.

The remainder of this chapter is organized as follows. Background results asso-

ciated with ROA estimation are set forth in Section 4.1. Likewise, relevant details

about the MFA modeling approach are presented in Section 4.2. The RMFA modeling

approach is described in Section 4.3. The use of RMFA models for ROA estimation

is proposed in Section 4.4. A buck converter with a constant power load and a con-

troller is used for a case study and is detailed in Section 4.5. The simulation and

experimental results associated with the case study are provided and discussed in

Section 4.6. A concluding summary is provided in Section 4.7.
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4.1 Region of Attraction Estimation

Herein, a dynamical autonomous system that satisfies

dx

dt
= f(x) (4.1)

is considered, where x ∈ Rn and f : Rn → Rn. It is also assumed that f satisfies the

standard conditions for the existence and uniqueness of solutions to (4.1) given an

initial condition x(t0) = x0 [106]. A solution x(t) of (4.1) corresponding to a curve in

the state space as time varies from t0 to infinity is generally referred to as a trajectory.

An equilibrium point of (4.1) is defined as a point xeq ∈ Rn such that

0 = f(xeq). (4.2)

Without loss of generality, it is assumed that the equilibrium point of interest occurs

at xeq = 0.

The ROA of an asymptotically stable equilibrium point is the set of initial states

from which the system trajectories tend asymptotically towards the equilibrium point.

Gridding-based techniques can be used to approximate the ROA by sampling points

in the neighborhood of the equilibrium point. However, the high computational cost

limits the application of these techniques. This creates a need for efficient techniques

for constructing an ROA estimate. An ROA estimate is an invariant set of initial

states from which the system trajectories tend asymptotically towards the equilibrium

point. An ROA estimate is a subset of the ROA, and is often represented by a contour

level of a positive definite function, e.g, a Lyapunov function.

Lyapunov’s second method utilizes Lyapunov functions to determine the stabil-

ity of the system described in (4.1) without explicitly integrating the differential

equations. A Lyapunov function candidate, V : Rn → R, must be locally positive
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definite in some neighborhood Br around the equilibrium point such that V (x) ≥ 0

for ∀x ∈ Br with equality if and only if x = 0. Assuming V (x) is differentiable, if its

derivative with respect to time evaluated along trajectories of (4.1), i.e.,

V̇ (x) =
dV (x)

dt
=
dV

dx

dx

dt
=
dV

dx
f(x) (4.3)

is locally negative definite in Br, then the equilibrium point is asymptotically stable

and all trajectories starting in Br asymptotically converge to the equilibrium point.

The functions V (x) and V̇ (x) are referred to as the Lyapunov function and the

Lyapunov derivative, respectively.

Lasalle’s principle yields sufficient conditions for a region to be an ROA estimate.

Herein, a region defined in the form of

D(V, c) = {x ∈ Rn : V (x) ≤ c} (4.4)

is considered, where V (x) is a Lyapunov function and c is a Lyapunov function

contour value. If V̇ (x) ≤ 0 for ∀x ∈ D(V, c), any trajectory starting within the

region of D(V, c) tends to the largest invariant set inside U , i.e.,

U =
{

x ∈ D(V, c) : V̇ (x) = 0
}

. (4.5)

In particular, if U contains no invariant sets other than xeq, then xeq is asymptotically

stable and D(V, c) is a subset of the ROA.

In order to use this approach for ROA estimation, an appropriate Lyapunov func-

tion must be identified. If the system described in (4.1) were linear, then the ROA

of a stable equilibrium point would be the entire state space. The general case of

a nonlinear system is considered herein. The problem of finding a Lyapunov func-

tion of such a nonlinear system that captures the nonlinear behavior of f around the
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equilibrium point is highly nontrivial [107, 108]. A simple approach for deriving an

appropriate Lyapunov function is referred to as a Jacobian diagonalization. First,

the system is linearized about the equilibrium point:

dx

dt
= Jx + fh.o.t(x), (4.6)

where J is the Jacobian matrix of f evaluated at the origin and fh.o.t contains only

higher order terms in x. Practically, higher order terms are simply neglected in the

linearized approximation in the neighborhood of the origin. The linearization only

captures the local behavior of the state space around the equilibrium point. Nonethe-

less, it is sufficient for finding an ROA estimate where the dynamical autonomous

system behaves similarly to its linearized approximation for small range motions.

If the Jacobian matrix is assumed to be diagonalizable, the eigenvalue decompo-

sition can be expressed as

J = SΛS−1, (4.7)

where S ∈ Cn×n and Λ ∈ Cn×n is a diagonal matrix where each diagonal entry is a

corresponding eigenvalue of J. If a state transformation z = S−1x is considered, the

linearized model can be expressed as

dz

dt
= Λz. (4.8)

A simple positive definite quadratic Lyapunov candidate function can be constructed

V (z) = zHz [109], where the superscript H is the complex conjugate transpose. The

derivative of V (z) with respect to time evaluated along trajectories yields

dV (z)

dt
=

d

dt

(
zHz
)

= zH
(
ΛH + Λ

)
z = 2zHRe(Λ)z. (4.9)

51



It can be observed that the Lyapunov derivative is negative definite if the real parts

of the diagonal entries of Λ are negative (they are the real parts of the eigenvalues

of A), which is true for an asymptotically stable equilibrium point. The resulting

Lyapunov function in terms of x is

V (x) = xTS−HS−1x. (4.10)

Given a Lyapunov function V (x), the problem of finding the largest contour value

c that bounds an ROA estimate is formulated as an optimization problem:

c = min
{
V (x) : V̇ (x) ≥ 0

}
. (4.11)

Genetic algorithms (GAs) are capable of solving nonlinear optimization problems

with high-dimensional search spaces [110]. Herein, a method of applying GAs to the

problem (4.11) is used. The objective is to generate an upper bound on the contour

value that will be used to define the boundary of the ROA estimate. GAs are usually

formulated to maximize a fitness function ffit, so a particular fitness function for the

minimization problem (4.11) can be constructed as

ffit(x) = −V (x)− p(x), (4.12)

where p(x) is an additive penalty function used to enforce the constraint of optimiza-

tion problem (4.11). It assumes a large positive value M when the constraint is not

met and zero when the constraint is met:

p(x) =


0, if dV (x)

dt
≥ 0

M , otherwise.

(4.13)
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4.2 Multifrequency Averaging

Power electronic circuits exhibit periodic switching in steady state, and this switching

gives rise to switching ripple in the currents and voltages of the circuit. SSA models

have been used in many applications shown in Section 2.1. These models are averaged

over one switching period and, as a result, do not convey the switching behavior

of the circuits. ROA esimation has been performed using SSA models of power

electronic systems [40–44], but these systems have generally satisfied a small ripple

assumption [19].

MFA models are applied herein for estimating ROAs of converters. In such mod-

els, the average behavior as well as low-order components of the ripple behavior can

be predicted. The MFA method and the properties of partial-Fourier-series approxi-

mations that are useful for the use of the MFA method are described in Section 2.2.1–

2.2.5.

In feedback control, a modulation signal m(t) is constructed and used to control

the switching of the converter. Herein, naturally sampled PWM with trailing edge

modulation described in Section 2.4.2 is considered. In this setting, the switching

function q(t) is the result of comparing the modulation signal with a sawtooth carrier

c(t). If the modulation signal is represented using a Kth-order approximation, the

nominal duty cycle D, which describes the percentage of “on-time” of the switching

function q(t) in each switching cycle, can be found by equating the reconstructed

modulation signal with the sawtooth carrier, which yields [20]

h(m, D) = θT(DT )m−D = 0, (4.14)

where T is the switching period. The resulting solution D should be projected if

necessary to lie in [0, 1]. It has been shown in [20] that the use of averages in (2.38)–

(2.40) to generate q(t) is valid in closed-loop configurations when D is relatively slowly
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varying. Alternative methods of solving the algebraic relationship in (4.14) have been

proposed. In [20], an additional state variable is added. One or more Newton steps

are employed in [29]. Herein, the algebraic relationship is enforced as part of the

model order reduction described below.

4.3 Reduced-Order Multifrequency Averaging

In an MFA model, each state variable in the original model is represented using

2K + 1 state variables. This increases the order of the system model and increases

the dimensionality of the search space in (4.11). In [20], a condensed MFA (CMFA)

approach is presented, but this approach requires a constant Jacobian matrix, a

condition that does not hold for nonlinear systems. Herein, an alternative method of

model order reduction described in [111] is used. A Kth-order approximated MFA

model of a system can be described as

dxf
dt

= f(xf ,xh, D) (4.15)

dxh
dt

= g(xf ,xh, D) (4.16)

h(xf ,xh, D) = 0 (4.17)

where vectors xf and xh collect the fundamental averages (e.g., x0) and harmonic

averages (e.g., x1c, x1s, . . . ) of the state variables, respectively. Conventional state-

space averaging only considers the fundamental averages in (4.15). Herein, xf and xh

are treated as “slow” and “fast” components with respect to time. A similar approach

is used in [20], where a selective modal analysis reduction procedure is utilized to

arrive a CMFA model. This decomposition is made possible by a Jacobian matrix

that is independent of operating point, precluding the use of this method for nonlinear

systems. Therefore, an RMFA model using a singular perturbation approach [112]

to reduce the Kth-order full system to a fundamental system that approximately
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accounts for the interaction between the “slow” (i.e., (4.15)) and “fast” (i.e., (4.16))

subsystems is used:

dx̄f
dt

= f
(
x̄f , x̄h, D̄

)
(4.18)

g
(
x̄f , x̄h, D̄

)
= 0 (4.19)

h(x̄f , x̄h, D̄) = 0 (4.20)

where x̄f , x̄h, and D̄ in the RMFA model correspond to xf , xh, and D, respectively,

in the MFA model. The “fast” component x̄h is solved using the steady-state rela-

tionship obtained by setting dx̄h/dt = 0 in (4.16). The vinculum notation is used

here to differentiate the variables of the MFA and RMFA models, but this notation

is not used below.

Generally, xh is implicit in (4.19) and can not be expressed explicitly as a function

of xf . Likewise, the duty cycle D in (4.20) cannot be solved explicitly. Therefore,

given xf , it is necessary to solve

g (xf ,xh, D) = 0 (4.21)

h (xf ,xh, D) = 0 (4.22)

for xh and D. Since the solution xh and D to the nonlinear equations (4.21) and

(4.22) cannot be expressed explicitly, the Newton-Raphson method is applied here

for estimating the solution using numerical iteration. The kth iteration of the Newton-

Raphson method is given by

x
(k+1)
h

D(k+1)

 =

x
(k)
h

D(k)

− (J(k)
)−1

g(xf ,x
(k)
h , D(k))

h(xf ,x
(k)
h , D(k))

 , (4.23)
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where J(k) is the Jacobian matrix of [g(·, ·, ·) h(·, ·, ·)]T evaluated at xf , x
(k)
h , and D(k).

The algorithm stops if convergence is reached:

∥∥∥∥∥∥∥
g(k)

h(k)


∥∥∥∥∥∥∥ ≤ ε, (4.24)

where ε is the given tolerance. Alternatively, a fixed number of iterations may be

performed.

The speed of convergence to the solution in the Newton Raphson method depends

on the selection of initial guess value. The initial guess value of x
(0)
h is usually zero.

An appropriate initial guess for the duty cycle is based on m0, which can be calcu-

lated using the fundamental averages xf . The initial value D(0) can be set to m0.

Alternatively, a single Newton step can be used to calculate

D(0) = m0 −
h(xf ,0,m0)

h′(xf ,0,m0)
, (4.25)

where h′(·, ·, ·) is the partial derivative of h(·, ·, ·) with respect to D.

With small values of ε (on the order of 10−6), no more than five Newton-Raphson

steps are required for convergence for the system studied herein. The RMFA model

allows the effects of switching harmonics to be included in the model without increas-

ing the model order, permitting the effects of switching ripple to be considered in

stability analysis.

4.4 Region of Attraction Estimation with Reduced-Order

Multifrequency Averaging

It is proposed herein to utilize the RMFA model of a system in order to perform ROA

estimation. In this way, the effects of switching ripple on the stability of the system
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can be considered without increasing the model order. The proposed method is as

follows:

1. The MFA model of the system under consideration is constructed using the

properties in Section 4.2 and partitioned as in (4.15)–(4.17).

2. The equilibrium point of interest is identified.

3. The Jacobian matrix of the MFA model is determined at the equilibrium point

such that

JMFA =


∂f
∂xf

∂f
∂xh

∂f
∂D

∂g
∂xf

∂g
∂xh

∂g
∂D

∂h
∂xf

∂h
∂xh

∂h
∂D

 =

 J11 J12

J21 J22

 . (4.26)

4. The Jacobian matrix of the RMFA model is given by

JRMFA = J11 − J12J
−1
22 J21. (4.27)

5. The Jacobian matrix of the RMFA model is used with the results of Section 4.1

to construct a Lyapunov function for the RMFA model.

6. A GA is used to solve the optimization problem in (4.11) using the fitness func-

tion in (4.12). The Lyapunov derivative is evaluated using the RMFA model.

7. The determined contour value c defines the boundary of the ROA estimate.

4.5 Case Study: System

As a case study of the proposed use of RMFA models to perform ROA estimation,

the buck converter shown in Figure 4.1 is studied. The buck converter feeds a con-

stant power load, which can represent a downstream converter that draws constant

power irrespective of changes to input voltage. An active droop controller shown in
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Figure 4.1: Buck converter with a constant power load.

V ∗

iL

vC

kd

kp

Figure 4.2: Active droop controller

Table 4.1: Parameters of Dc/Dc Buck Converter

f 2 kHz L 1.52 mH C 167 µF

V ∗in 250 V kp 2.2 kd 0.8 V/A

Vin 250 V V ∗ 200 V P 2.5 kW

Vin0 250 V V ∗0 200 V P0 2.5 kW

Vinkc 0 V V ∗kc 0 V Pkc 0 W

Vinks 0 V V ∗ks 0 V Pks 0 W

Figure 4.2 is used to regulate the output voltage of the converter. The parameters of

the system are given in Table 4.1. The detailed and MFA models of the system are

described below.
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4.5.1 Detailed Model

The detailed model of the buck converter with a constant power load is given as

L
diL
dt

= Vinq − vC (4.28)

C
dvC
dt

= iL −
P

vC
(4.29)

where q is the switching function that takes values of zero and one corresponding to

the transistor being open or closed, respectively.

Active droop control is a commonly used feedback control technique for regulating

the output voltage of a converter [113–115]. Herein, the inductor current is sensed

and fed back to adjust the output voltage reference V ∗. The modulation signal

m(t) required to regulate the output voltage is calculated using an adjusted output

voltage error and a feed forward adjusted output voltage reference as the input to the

controller, depicted in Figure 4.2. The detailed model of the active droop controller

can be described as

vs = V ∗ − kdiL + kp(V
∗ − kdiL − vC) (4.30)

m =
vs
V ∗in

(4.31)

where kd and kp are control parameters and V ∗in is the nominal value of the input

voltage Vin. The modulation signal is used to compute the switching function in

naturally sampled PWM with trailing edge modulation, shown in Section 2.4.2.

4.5.2 MFA Model

By applying the properties described in Section 4.2, an MFA model of the converter

system is developed. If each signal in the detailed model described in (4.28) and

(4.29) is approximated by a Kth-order series, then the following MFA model for the
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buck circuit arises:

L(TiL +
diL
dt

) = Φ(Vin)q− vC (4.32)

C(TvC +
dvC
dt

) = iL −Φ(vC)−1P. (4.33)

Similarly, the MFA model of the active droop controller described in (4.30) and (4.31)

can be given as

vs = V∗ − kdiL + kp(V
∗ − kdiL − vC) (4.34)

m =
vs
V ∗in

. (4.35)

The relationship between the modulation average vector m and the duty cycle D is

given in (4.14), and the duty cycle can be used in (2.38)–(2.40) to find the average

vector of the switching function q.

4.6 Case Study: Results

In order to demonstrate the proposed use of RMFA models is ROA estimation, ROA

estimation is performed for the system described above using both the traditional SSA

model and the proposed RMFA model. The GA used for these studies is GOSET [116],

an open-source MATLAB toolbox, using its default parameters with a population size

of 200 and 200 generations. The RMFA model used herein is based on a first-order

approximation of the switching ripple.

4.6.1 ROA Estimation in Average Space

Both the SSA and the RMFA models are averaged models, and their corresponding

ROA estimates are computed in terms of the averaged inductor current and capacitor

voltage. The ROA estimates derived from these models are shown in Figure 4.3. It is
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observed that the ROA estimate derived from the RMFA model, which includes the

effects of switching ripple, is smaller than that derived from the SSA model.

Two trajectories, one (A) originating from inside the ROA estimate derived from

the RMFA model and the other (B) originating from outside the ROA estimate de-

rived from the RMFA model but inside the ROA estimate derived from the SSA

model, are simulated using the detailed model. The simulated trajectories include

switching harmonics, but these trajectories are averaged such that

x̄(t) =
1

T

∫ t

t−T
x(τ) dτ . (4.36)

It is observed that the trajectory A originating inside the ROA estimate predicted

by the RMFA model converges to the equilibrium point without leaving the ROA

estimate. Furthermore, the trajectory B originating outside the ROA estimate pre-

dicted by the RMFA model does not approach the equilibrium point. The trajectory

approaches but does not enter the ROA estimate predicted by the RMFA model as it

oscillates with increasing amplitude until voltage collapse occurs. This suggests that

the “ROA estimate” predicted by the SSA model is not a true estimate of the ROA.

4.6.2 ROA Estimation in Instantaneous Space

In order to study the properties of the ROA estimates predicted by each method

more carefully, it is necessary to understand the relationship between averaged and

instantaneous values. Any averaged value xf corresponds to an instantaneous value

x(t) that contains fundamental and harmonic components. While the ROA estimate

associated with the RMFA model shown in Figure 4.3 is expressed in terms of xf , the

boundary of the same ROA estimate will be time-varying if expressed in terms x(t).

In particular, each point on the boundary of the ROA estimate in the average space

will correspond to an oscillating value in the instantaneous space.
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Figure 4.3: Region of attraction estimates predicted by the state-space-averaging and
reduced-order-multifrequency-averaging models in the average space and two example
averaged trajectories predicted by the detailed model

In particular, any fundamental average xf is associated with resulting harmonic

averages xh by virtue of (4.21) and (4.22). These average values can be mapped to

an instantaneous value using (2.21). If the phase angle is defined such that θ = ωt,

then any average value can be mapped to an instantaneous value for any phase angle

θ. This relationship is important when comparing results from the detailed model,

which uses instantaneous values, to the RMFA model, which uses averaged values.

In the case of the SSA model, which lacks any harmonic information, an identity

mapping is assumed.

Having established relationships between the averaged and instantaneous values, it

is possible to transform the ROA estimates predicted by the models from the average

space to the instantaneous space. This transformation is shown in Figure 4.4–4.6 for

three values of delay angle: θ = 0°, 120°, and 240°. It can be seen that the ROA

boundary predicted by the RMFA model shifts with respect to phase angle in the

instantaneous space. For comparison, the instantaneous space is gridded from −40 A

62



−40 −20 0 20 40 60 80
60

90

120

150

180

210

240

270

300

Inductor current (A)

C
ap

ac
it

o
r 

v
o
lt

ag
e 

(V
)

θ = 0◦SSA
RMFAConvergent

Divergent

Figure 4.4: Region of attraction estimates predicted by the state-space-averaging and
reduced-order-multifrequency-averaging models in the instantaneous space for phase
angle of 0° and convergent/divergent status of grid points predicted by the detailed
model

to 40 A with a spacing of 2 A for the inductor current and from 60 V to 300 V with

a spacing of 2 V for the capacitor voltage. The detailed model is simulated starting

at each grid point and for each phase angle. The detailed model is simulated for

0.4 s, and a trajectory is deemed convergent if the final value is within 1% of the

steady-state range of the inductor current and the capacitor voltage as predicted by

the detailed model (i.e., [5.5, 22.2] A and [178, 185] V). Otherwise, the trajectory is

deemed divergent. The convergent/divergent status of each grid point is also shown

in Figure 4.4–4.6. It can be observed that the shifting ROA estimate predicted by

the RMFA model remains inside the ROA suggested by the grid of detailed model

simulated trajectories. Furthermore, the ROA estimate predicted by the SSA models

include points from which divergent trajectories originate for each of the three phase

angles depicted.

In order to remove the phase angle dependence of the ROA estimate predicted by

the RMFA model in the instantaneous space, the intersection of the ROA estimates
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Figure 4.5: Region of attraction estimates predicted by the state-space-averaging and
reduced-order-multifrequency-averaging models in the instantaneous space for phase
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for each phase angle was calculated. Phase angles spanning 0° to 360° with a spacing

of 2.4° are considered. The resulting intersection representing the ROA estimate

predicted by the RMFA model in the instantaneous space as well as the ROA estimate

predicted by the SSA model are shown in Figure 4.7. Furthermore, points in grid

of the instantaneous space are deemed convergent if the trajectories are convergent

for each of the phase angles. If a trajectory originating at the point is divergent for

any of the phase angles, the point is deemed divergent. The initial conditions for the

trajectories A and B shown in Figure 4.3 are also shown in Figure 4.7. The convergent

points are points within the instantaneous space for which trajectories originating at

these points at any time will converge to the equilibrium point. It can be seen that

the ROA estimate predicted by the RMFA model only includes convergent points.

The ROA estimate predicted by the SSA model includes points for which there exists

times at which a trajectory originating at one of these points is divergent. While the

use of the traditional SSA model yields inaccurate ROA estimates, it is clear that the

use of the RMFA model for ROA estimation results in an ROA estimate that is more

accurate and that does not appear to contain any divergent trajectories.

4.6.3 Experimental Results

In order to validate the proposed use of RMFA models in ROA estimation as described

in Section 4.4, the buck converter and the feedback controller with the parameters

given in Table 4.1 are studied experimentally. The converter is loaded with a pulse-

width-modulated voltage source inverter supplying power to a three-phase balanced

resistive load. The inverter output is tightly regulated, resulting in approximately

constant inverter power consumption irrespective of dc voltage variations. The op-

erating point of the converter is determined by its reference voltage V ∗. Reference

voltages corresponding to the initial conditions of trajectories A and B in Figure 4.3

are considered. The reference voltage is stepped to the value given in Table 4.1,
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reducted-order-multifrequency-averaging models in the instantaneous space, conver-
gent/divergent status of grid points predicted by the detailed model for all phase
angles, and initial conditions of trajectories A and B

and the resulting capacitor voltage is observed. The capacitor voltage corresponding

to trajectory A, which originates inside the ROA estimate predicted by the RMFA

model, is shown in Figure 4.8. The capacitor voltage includes the expected switching

ripple, but it can be seen that the capacitor voltage exhibits a stable step response and

settles to the new equilibrium point. In contrast, the capacitor voltage corresponding

to trajectory B, which originates outside the ROA estimate predicted by the RMFA

model but inside the ROA estimate predicted by the SSA model, is shown in Fig-

ure 4.9. The initial voltage exhibits similar switching ripple. Unlike the trajectory

depicted in Figure 4.3, a voltage collapse is not observed. This is because the inverter

cannot behave like a constant power load over the entire range of voltages. Instead,

the capacitor voltage exhibits an undesirable limit cycle behavior. This oscillation is

low frequency (approximately 500 Hz) with respect to switching frequency of 2 kHz.

The magnitude of the oscillation (approximately 20 V, peak-to-peak) also far exceeds

the magnitude of the switching ripple (approximately 7 V, peak-to-peak). Thus, the
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Figure 4.8: Experimentally measured capacitor voltage for step voltage reference
voltage change corresponding to trajectory A (low-pass filtered with a time constant
of 10 µs to remove measurement noise)

trajectory originating from within the ROA estimate predicted by the RMFA model

is seen experimentally to be stable, but the trajectory originating from outside the

ROA estimate predicted by the RMFA model but inside the ROA estimate predicted

by the SSA model is seen experimentally to be unstable.

4.7 Conclusion

The use of RMFA models for ROA estimation is proposed as an alternative to the

traditional use of SSA models. As RMFA models are capable of representing the

switching behavior without increasing model order, they are suited for stability anal-

ysis even in cases where the switching ripple is considerable. It is shown that the ROA

estimates produced by the SSA model can overestimate the true ROA of a system.

Example trajectories are studied to illustrate how trajectories originating outside of

the ROA estimate predicted by the RMFA model but inside the ROA estimate pre-

dicted by the SSA model can be divergent. Exhaustive gridding of the state-space

67



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
150

160

170

180

190

200

210

220

230

240

250

Time (s)

0.02 0.025 0.03 0.035

210

220

230

240

C
ap

ac
it

o
r 

v
o
lt

ag
e 

(V
)

Figure 4.9: Experimentally measured capacitor voltage for step voltage reference
voltage change corresponding to trajectory B (low-pass filtered with a time constant
of 10 µs to remove measurement noise)

is employed to demonstrate that the ROA estimate predicted by the RMFA model

contains no points from which divergent trajectories originate. This observation is

further validated experimentally. In particular, the trajectory located within the

ROA estimate predicted by the RMFA model is found to be stable experimentally,

but the trajectory located outside the ROA estimate predicted by the RMFA model

but inside the ROA estimate predicted by the SSA model is found to be unstable

experimentally. Thus, the use of RMFA models for ROA estimation is found to be

more accurate than the use of SSA models for systems in which the switching ripple

is not negligible.
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CHAPTER 5

MULTIFREQUENCY AVERAGING IN DIGITALLY

CONTROLLED PWM CONVERTERS

Discrete-time controllers have attracted increasing interest due to the rapid evolution

of digital integrated circuit technologies applied to signal processors, analog to dig-

ital converters and digital to analog converters [89–91]. Discrete-time models have

been traditionally studied to model power electronic converters and the discrete-time

controllers as discussed in Section 2.3. These models carefully describe the nonlinear

dynamics of the systems but generally require relatively long simulation run times

(compared to averaged models) because the simulation time step of the discrete-time

models is limited by the sampling rate. It has been shown in Section 2.1 that the SSA

models have been studied specifically to design and analyze discrete-time controllers.

Theses approaches start from the linearized model of the converter power stage and

the continuous-time controller. The discrete-time model is derived from the SSA

model of the controller using discretization approximations (e.g., forward or back-

ward Euler, bilinear). However, the successful application of the SSA models have

been limited to power electronic converters that satisfy a small ripple assumption.

MFA model has been shown in Section 2.2 to be capable of predicting the average

behavior as well as low-order components of the ripple behavior. In this chapter, a

continuous-time MFA representation of discrete-time systems is proposed. The con-

tributions of this work are (i) the proposal of a method of representing discrete-time

systems using continuous-time MFA, (ii) demonstration of the failure of traditional

MFA model and proposed ISMFA model in Chapter 3 and the success of proposed

method herein on a digitally controlled PWM converter, (iii) experimental validation

of the results.
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The remainder of this chapter is organized as follows. The continuous-time MFA

representation of discrete-time systems is proposed in Section 5.1. The MFA model of

a continuous-time MFA model of a discrete-time controller is described in Section 5.2.

Also the state-space model of the delayed duty cycle introduced by the zero-order-

hold in the DPWM is provided in Section 5.2. Simulation studies demonstrating

the proposed model during transient and steady-state intervals are presented in Sec-

tion 5.3. Experimental validation is described in Section 5.4. A concluding summary

and remarks are provided in Section 5.5.

5.1 MFA Representation of Discrete-Time System

In this section, an approach for representing discrete-time systems using continuous-

time MFA models is proposed. A general discrete-time system is considered:

X[n+ 1] = AX[n] + BU[n] (5.1)

Y[n] = CX[n] + DU[n], (5.2)

where X ∈ Rnx is the state vector, U ∈ Rnu is the input vector, and Y ∈ Rny

is the output vector. The sampling rate of the discrete-time system is assumed to

be an integer multiple of the switching frequency, such that the sampling period is

Tp = T/N , where T is the switching period.

The state vector can be expressed as X[n] = [x1[n] x2[n] . . . xnx [n]]T. Each

component can be approximated using a (discrete-time) average vector such that

xj[n] ≈ θT
nxj[n] (5.3)

for j ∈ {1, 2, . . . , nx}, where φ represents an angular offset between the switching and

sampling times and θn = θ(Tp(n + φ/(2π))) (from (2.24)). It is assumed that the
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average vector xj[n] changes relatively slowly, and it can be written as

xj[n] = [xjf [n] xT
jh[n]]T (5.4)

where xjf [n] and xjh[n] are the fundamental average and the harmonic average vector

of xj[n], respectively.

If Xf [n] and Xh[n] are defined as

Xf [n] = [x1f [n] x2f [n] . . . xnxf [n]]T (5.5)

Xh[n] = [xT
1h[n] xT

2h[n] . . . xT
nxh[n]]T, (5.6)

then the discrete-time state vector can be approximated as

X[n] ≈
[
Inx Inx ⊗ θ̄T

n

]  Xf [n]

Xh[n]

 , (5.7)

where Il is the l × l identity matrix, θ̄n is θn with the first element removed, and

⊗ is the Kronecker product operator. Likewise, the the input vector and the output

vector can be approximated using the average vectors such that

U[n] ≈
[
Inu Inu ⊗ θ̄T

n

]  Uf [n]

Uh[n]

 (5.8)

Y[n] ≈
[
Iny Iny ⊗ θ̄T

n

]  Yf [n]

Yh[n]

 , (5.9)

where the average vectors are again assumed to change relatively slowly.
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Substitution of (5.7)–(5.9) into (5.1) and (5.2) yields a discrete-time MFA repre-

sentation of the discrete-time state-space model:

Xf [n+ 1] =AXf [n] + BUf [n] (5.10)(
Inx ⊗ θ̄T

n+1

)
Xh[n+ 1] =A

(
Inx ⊗ θ̄T

n

)
Xh[n] + B

(
Inu ⊗ θ̄T

n

)
Uh[n] (5.11)

Yf [n] =CXf [n] + DUf [n] (5.12)(
Inx ⊗ θ̄T

n

)
Yh[n] =C

(
Inx ⊗ θ̄T

n

)
Xh[n] + D

(
Inu ⊗ θ̄T

n

)
Uh[n]. (5.13)

It is shown in Appendix C that

A
(
Inx ⊗ θ̄T

n

)
=
(
Inx ⊗ θ̄T

n

)
(A⊗ I2K) (5.14)

B
(
Inu ⊗ θ̄T

n

)
=
(
Inx ⊗ θ̄T

n

)
(B⊗ I2K) (5.15)

C
(
Inx ⊗ θ̄T

n

)
=
(
Inx ⊗ θ̄T

n

)
(C⊗ I2K) (5.16)

D
(
Inu ⊗ θ̄T

n

)
=
(
Inx ⊗ θ̄T

n

)
(D⊗ I2K), (5.17)

where K is the MFA approximation order. Substituting (5.14) and (5.15) into (5.11)

gives

Inx⊗ θ̄T
n+1Xh[n+1] =

(
Inx ⊗ θ̄T

n

)
(A⊗I2K)Xh[n]+

(
Inx ⊗ θ̄T

n

)
(B⊗I2K)Uh[n] (5.18)

The relationship between θ̄n and θ̄n+1 can be expressed as

θ̄T
n = θ̄T

n+1P (5.19)

where P ∈ R2K×2K is a block diagonal matrix with the kth 2 × 2 block element pk

given by

pk =

 cos(2kπ
N

) − sin(2kπ
N

)

sin(2kπ
N

) cos(2kπ
N

)

 (5.20)
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for k ∈ {1, 2, . . . , K}. Therefore,

Inx ⊗ θ̄T
n = Inx ⊗

(
θ̄T
n+1P

)
=
(
Inx ⊗ θ̄T

n+1

)
(Inx ⊗P) . (5.21)

Substituting (5.21) into (5.18) and left multiplying by the pseudoinverse of Inx⊗ θ̄T
n+1

results in

Xh[n+ 1] = (Inx ⊗P) (A⊗ I2K)Xh[n] + (Inx ⊗P) (B⊗ I2K)Uh[n]

= (A⊗P) Xh[n] + (B⊗P) Uh[n]. (5.22)

Likewise, substituting (5.16) and (5.17) into (5.13) and left multiplying the pseudoin-

verse of Inx ⊗ θ̄T
n results in

Yh[n] = (C⊗ I2K)Xh + (D⊗ I2K)Uh. (5.23)

Thus, the discrete-time MFA representation of the discrete-time system in (5.1)

and (5.2) is given by

Xf [n+ 1] = AXf [n] + BUf [n] (5.24)

Xh[n+ 1] = (A⊗P) Xh[n] + (B⊗P) Uh[n] (5.25)

Yf [n] = CXf [n] + DUf [n] (5.26)

Yh[n] = (C⊗ I2K)Xh[n] + (D⊗ I2K)Uh[n]. (5.27)

This discrete-time MFA representation represents the behavior of the discrete-time

system of order nx using a discrete-time MFA system of order (2K + 1)nx, which is

identical to the relationship between continuous-time systems and their MFA repre-

sentations.

73



This discrete-time MFA approach actually describe the nonlinear dynamics of

the discrete-time systems but generally require long simulation run times (compared

with averaged models) because the simulation time step of the discrete-time models

is limited by the sampling period or the switching period. It is possible to represent

the discrete-time MFA model using a number of alternative transformations (e.g.,

forward or backward Euler, bilinear). If the bilinear transformation is applied to the

z-domain expression of the discrete-time MFA model in (5.24)–(5.27), such that

z ≈
1 + sTp

2

1− sTp
2

, (5.28)

then the time-domain expression of the resultant continuous-time s-domain model

can be described as

dZf

dt
= (A− Inx) Xf + BUf (5.29)

dZh

dt
= (A⊗P− I2Knx) Xh + (B⊗P) Uh (5.30)

Yf = CXf + DUf (5.31)

Yh = (C⊗ I2K)Xh + (D⊗ I2K)Uh, (5.32)

where Zf and Zh are defined in terms of Xf and Uf , Xh and Uh, respectively, such

that

Zf =
Tp
2

(A + Inx)Xf +
Tp
2

BUf (5.33)

Zh =
Tp
2

(A⊗P + I2Knx)Xh +
Tp
2

(B⊗P)Uh. (5.34)

5.2 Discrete-Time Feedback Controller

Discrete-time feedback controller has attracted increasing interest because of the ease

of digital implementation. Compared with analog implementations, digital imple-
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Figure 5.1: Discrete-time voltage-mode DPWM controller.

mentations have lower sensitivity to parameter variation, higher design flexibility,

and better communication capability [34–39]. In this section, a discrete-time feed-

back controller which employs the voltage-mode control principle (e.g., [78, 79, 117])

for output voltage regulation shown in Figure 5.1 is set forth. The zero-order hold

samples the output voltage vout and the output voltage command v∗out for discretiza-

tion. The sampling rate of zero-order hold is assumed to be an integer multiple of

the switching frequency, such that the sampling period is Tp = T/N , where T is the

switching period. The discrete-time vout[n] and v∗out[n] are fed into a discrete-time

compensator Gc(z) for calculating the modulation signal m[n]. It is followed by a

digital pulse-width modulator (DPWM) to produce the switching function q that

corresponds to the calculated modulation signal m[n].

This section is broken into two subsections covering the continuous-time MFA

representation of the discrete-time compensator and the DPWM.

5.2.1 Discrete-Time Compensator

A discrete-time PI compensator, such as that depicted in Figure 5.2, is a commonly

used discrete-time feedback compensator for regulating the output voltage due to its

simplicity and flexibility of design (e.g., [82–84]). This compensator calculates the

discrete-time modulation signal m[n] using the discrete-time output voltage error as

the input to the controller and a discrete-time feedforward voltage command v∗out[n].
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Figure 5.2: Discrete-time PI compensator.

The PI compensator can be described as

e[n+ 1] = e[n] + ki(v
∗
out[n]− vout[n]) (5.35)

vs[n] = e[n+ 1] + v∗out[n] + kp(v
∗
out[n]− vout[n]) (5.36)

m[n+ 1] =
1

V ∗in
vs[n] (5.37)

where kp and ki are control parameters and V ∗in is the nominal value of the input

voltage Vin.

If each signal is approximated by a Kth-order (discrete-time) Fourier series, then

applying the proposed continuous-time MFA representation of the discrete-time sys-

tem described in (5.29)–(5.32) yields the following

dwf
dt

= ki(v
∗
outf − voutf ) (5.38)

dwh

dt
= (P− I2K)eh + kiP(v∗outh − vouth) (5.39)

vs = e + v∗out + (kp + ki)(v
∗
out − vout) (5.40)

drf
dt

= −mf +
1

V ∗in
vsf (5.41)

drh
dt

= −I2Kmh +
1

V ∗in
Pvsh. (5.42)
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where the subscript f and h represent the fundamental average and the harmonic

average vector, respectively, wf , wh, rf and rh are defined as

wf = Tpef +
Tp
2
ki(v

∗
outf − voutf ) (5.43)

wh =
Tp
2

(P + I2K)eh +
Tp
2
kiP(v∗outh − vouth) (5.44)

rf =
Tp
2
mf +

Tp
2

1

V ∗in
vsf (5.45)

rh =
Tp
2

mh +
Tp
2

1

V ∗in
Pvsh. (5.46)

5.2.2 DPWM

A DPWM is to produce the switching function q that corresponds to the calculated

discrete-time modulation signal m[n]. Herein, uniformly sampled DPWM is consid-

ered. Uniformly sampled DPWM is similar to uniformly sampled PWM shown in

Section 2.4.2. In this setting, the discrete-time modulation signal is regularly sam-

pled through a zero-order hold at the beginning of the switching period before being

compared with the carrier c and stored in a shadow register for the use during that

period (e.g., [85]). An example showing the switching function produced by the uni-

formly sampled DPWM with trailing edge modulation is illustrated in Figure 5.3. It

can be observed that the switching instant does not depend on the ripple of modula-

tion signal explicitly; rather, it depends on the value of the modulation signal at the

beginning of the switching cycle.

If the modulation signal is approximated by a Kth-order (discrete-time) Fourier

series, then the value of m[n] (the value that is used by the DPWM implementation)

is

D[n] ≈ m0 +
K∑
k=1

mkc. (5.47)
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Figure 5.3: Switching function produced by uniformly sampled DPWM (N = 6).

It is possible to represent the discrete-time duty cycle D[n] with the continuous-

time representation D(t). It is also noted that the zero-order hold introduces an

effective average delay of T/2 on the continuous-time duty cycle D(t) [118]. The

continuous model of this delay can be approximated by applying the following first-

order approximation:

e−
T
2
s ≈ 1

1 + T
2
s

. (5.48)

The resultant state-space equation of the delayed duty cycle D̃ is given by

dD̃

dt
≈ − 2

T
D̃ +

2

T
D. (5.49)

Application of (2.38)–(2.40) yields the average vector q which in turn drives the MFA

model of the buck converter.
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Table 5.1: Parameters of Dc/Dc Buck Converter for Simulation Studies

Vin 250 V L 0.6818 mH R1 11.2565 Ω

V ∗in 250 V RL 422.3 mΩ R2 8.4129 Ω

v∗out 120 V C 150.34 µF kp 0.2

f 5 kHz RC 75.2 mΩ ki 0.05

5.3 Simulation Studies

Several simulation studies are described to demonstrate the proposed continuous-time

MFA representation of discrete-time systems. In particular, the buck converter shown

in Figure 3.1 with the discrete-time feedback controller shown in Figure 5.1 and the

parameters given in Table 5.1 is studied. In the discrete-time feedback controller,

the sampling rate is given by the switching frequency and the sampling instants are

synchronized with the uniformly sampled DPWM. A detailed model, a traditional

MFA model, an ISMFA model using the method proposed in Chapter 3 and an

MFA model using the proposed MFA representation of the discrete-time feedback

controller (DMFA) are constructed for simulation studies. Each approach involves

the representation of the discrete-time compensator and the DPWM. In the DMFA

model, the proposed method of continuous-time MFA representation of discrete-time

systems described in Section 5.1 is applied to represent the discrete-time compensator.

In the MFA and ISMFA models, the discrete-time compensator described by (5.35)–

(5.37) is directly approximated by the same transformation as in DMFA model (i.e.,

bilinear transformation), such that

dw̄

dt
= ki(v

∗
out − vout) (5.50)

vs = e+ v∗out + (kp + ki)(v
∗
out − vout) (5.51)

dr̄

dt
= −m+

1

V ∗in
vs, (5.52)
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where w̄ and r̄ are defined as

w̄ = Tpe+
Tp
2
ki(v

∗
out − vout) (5.53)

r̄ =
Tp
2
m+

Tp
2

1

V ∗in
vs. (5.54)

This continuous-time approximation of the discrete-time compensator is then approx-

imated by MFA representation. The uniformly sampled DPWM in the MFA model is

treated as naturally sampled PWM and the switching time at which the modulation

signal crosses the sawtooth carrier in each switching cycle is solved by one iteration

of Newton’s method described in [24]. ISMFA and DMFA models does not involve

the algebraic complexity associated with uniformly sampled DPWM. In this setting,

the value of the modulation signal at the beginning of the switching period (the value

that is used by the DPWM implementation) is approximated by (5.47). Also, the

delay introduced by the zero-order hold in this setting is represented by (5.49) in

these two models.

5.3.1 Comparison of Steady-State Behavior of MFA, ISMFA

and DMFA Models

To demonstrate the accuracy and efficiency of the proposed DMFA model in por-

traying the steady-state behavior of the system, simulations of output voltage and

inductor current for a detailed model, an (first-order) MFA model, an (first-order)

ISMFA model and a (first-order) DMFA model with a constant load R1 are shown in

Figure 5.4. To avoid discontinuous mode in the start transient, the reference voltage

is slowly ramped to the desired value in [0, 0.05] s. The simulation for each model is

carried out on a personal computer (Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz,

8.00 GB RAM, 64-bit Operating System) for 0.2 s. Table 5.2 compares the dc value

and rms error of inductor current and output voltage and simulation runtimes in
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Table 5.2: Comparison of dc value and rms error of inductor current and output
voltage and simulation runtimes for detailed (DET), (first-order) MFA, (first-order)
ISMFA and (first-order) DMFA models

Models
Inductor current (A) Output voltage (V)

Runtimes (s)
dc rms error dc rms error

DET 10.73 0 120.75 0 2.28

MFA 10.66 5.1384 120.00 0.7554 0.23

ISMFA 10.66 5.1384 120.00 0.7554 0.86

DMFA 10.72 5.1144 120.62 0.1439 0.20

each model. The rms error of inductor current or output voltage in each model is

calculated based on the following formula

frms =

√
1

t2 − t1

∫ t2

t1

(f(t)− fdet)2dt. (5.55)

Herein, the rms error is calculated over one switching period such that t2 − t1 = T

and fdet is given by the inductor current or output voltage in detailed model. It can

be seen that the (first-order) MFA, ISMFA and DMFA models accurately predict

the inductor current with respect to the detailed model. It can be observed that

close agreement exists between the output voltage as predicted by the DMFA and

detailed models. However, the MFA and ISMFA models are shown to be not capable

of predicting the correct steady-state output voltage. It can be observed that the

detailed model takes 10 times more simulation runtimes than the MFA and DMFA

models and 2 times more simulation runtimes than the ISMFA model.

5.3.2 Comparison of Transient Behavior of MFA and DMFA

Models

To demonstrate the proposed DMFA model in portraying the transient behavior of

the system, a step load change from R1 to R2 is applied and the comparison of
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Figure 5.4: Simulation results of steady-state inductor current and output voltage for
detailed (DET), (first-order) MFA, ISMFA and DMFA models.

output voltage and inductor current for a detailed model, an (first-order) MFA, an

(first-order) ISMFA model and a (first-order) DMFA model is shown in Figure 5.5. It

can be seen that the (first-order) MFA, ISMFA and DMFA models accurately predict

the inductor current with respect to the detailed model. It can be observed that

the output voltage predicted by the DMFA model matches the detailed model very
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Figure 5.5: Simulation results of transient inductor current and output voltage for
detailed (DET), (first-order) MFA, ISMFA and DMFA models.

well, while the MFA and ISMFA models show a deviation to the detailed model. To

further demonstrate the proposed DMFA model, the rms error of inductor current

and output voltage in the transient interval from 0.2 s to 0.206 s is calculated based

on the formula in (5.55) and shown in Table 5.3. It can be seen that the DMFA model

accurately predict the rms error in the transient with respect to the detailed model.
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Table 5.3: Comparison of rms error of inductor current and output voltage for detailed
(DET), (first-order) MFA, ISMFA and (first-order) DMFA models

Models
Inductor current (A) Output voltage (V)

rms error rms error

DET 0 0

MFA 8.5606 0.8423

ISMFA 8.5606 0.7390

DMFA 8.5359 0.1551

Table 5.4: Parameters of Dc/Dc Buck Converter for Experimental Validation

Vin 250 V L 1.5 mH R1 11.2565 Ω

V ∗in 250 V RL 422.3 mΩ R2 8.4129 Ω

v∗out 150 V C 150.34 µF kp 0.2

f 5 kHz RC 75.2 mΩ ki 0.05

5.4 Experimental Validation

In order to validate the proposed DMFA model, the buck converter and the discrete-

time feedback controller with the parameters given in Table 5.4 are studied experimen-

tally. The digital control is implemented in a TMS320F28335 microcontroller. The

discrete-time PI control is implemented by sampling the output voltage at the sam-

pling rate equal to the switching frequency. The sampling instants are synchronized

with the uniformly sampled DPWM. The uniformly sampled DPWM is implemented

using a shadow register to implement the zero-order hold depicted in Figure 5.1. A

step load resistance change from R1 to R2 is applied, and the inductor current and

output voltage are measured experimentally and compared with the simulation out-

put of a detailed model. This comparison is shown in Figure 5.6. It can be seen that

the inductor current and the output voltage predicted by the DMFA model match

the experimentally measured inductor current and output voltage very well.
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Figure 5.6: Step load change experimental (EXP) and simulation results for detailed
(DET) and (first-order) DMFA models. The experimental measurements are low-pass
filtered with a time constant of 2 µs to remove measurement noise.

5.5 Conclusion

The continuous-time MFA representation of discrete-time systems is proposed. Sim-

ulation results of both transient and steady-state responses show that the proposed

model provides an accurate prediction of system behavior. The proposed model is
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validated experimentally by consideration of step load changes with a digitally con-

trolled PWM buck converter. It is shown that the proposed method is capable of

predicting the transient and steady-state behavior predicted by the detailed model

and measured experimentally.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this chapter, a concluding summary of this work is presented and areas of future

work are suggested.

In this work, an MFA method is explored for the analysis and design of power

electronic systems. This technique is capable of portraying the average behavior

as well as the ripple behavior of power electronic systems. In this work, the MFA

method is extended to represent uniformly sampled PWM converters. The proposed

method also addresses a numerical stability issue that is observed in the traditional

MFA representations. Simulation results of both transient and steady-state responses

show that the proposed method provides an accurate prediction of system behavior

and its small-signal behavior. The proposed method is validated experimentally by

consideration of step load changes with a uniformly sampled dc-dc PWM buck con-

verter. It is shown that the proposed method is capable of predicting the transient and

steady-state behavior predicted by the detailed model and measured experimentally.

Then, a reduced-order MFA method is proposed to perform ROA estimations

using Lyapunov techniques. The proposed reduced-order MFA method is capable of

representing the effects of switching ripple on the behavior of the system and is, there-

fore, more capable of predicting the influence of the switching ripple on the stability

of the system. The proposed method in performing ROA estimations using Lyapunov

techniques is demonstrated in simulation studies and validated experimentally using

a naturally sampled PWM converter with constant power load. The use of the pro-

posed method for ROA estimation is found be be more accurate than the use of SSA

models for power electronic converters in which the switching ripple is not negligible.

Finally, a method of continuous-time MFA representation of discrete-time systems

is proposed. The proposed method relies on the discrete-time MFA representation
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of the discrete-time systems and approximation transformations from discrete-time

models to continuous-time models. The proposed method is demonstrated in sim-

ulation studies and validated experimentally using a digitally controlled PWM con-

verter. It is shown that the proposed method is capable of predicting the transient

and steady-state behavior predicted by the detailed model.

It is noted that the studies considered in this work are for buck converters and

that the results could be applied equally to other power electronic systems or even

to other systems that exhibit periodic oscillation in steady state. The extension of

the MFA method proposed in this work makes the modeling and simulation of com-

plicated power electronic systems highly accurate (compared to SSA models) while

highly numerically efficient (compared to detailed models). It helps designers gain

better understanding of circuit operation, select appropriate circuit component types

and values, choose control topologies, and estimate circuit performance. Further, a

reduced-order MFA method, along with a genetic algorithm based procedure, is pro-

posed in this work to perform ROA estimations of power electronic systems. Such a

procedure provides the ROA estimates with sufficient accuracy and efficiency, rather

than working directly with detailed models. It helps design power electronic sys-

tems with high robustness and reliability, where the circuit performance will meet

specifications even with anticipated perturbations in operation conditions.

There are several topics in which this work may be extended. These topics are

described in more detail below.

The MFA method has been studied for PWM control (e.g, naturally sampled

PWM and uniformly sampled PWM), but has not been extended to hysteresis current

control, peak current control, or other control methods. In hysteresis control, the

switching of the power electronic systems does not always have constant frequency.

Therefore, the state variables (e.g, inductor current and capacitor voltage) in the

systems are not quasiperiodic signals and cannot be directly approximated by MFA
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representation. To extend the applicability of the MFA method to hysteresis control,

the representation of state variables and time-varying switching frequency should be

studied carefully. Future work would focus on the construction of MFA representation

which is suitable for hysteresis controlled power electronic systems.

The MFA method has been applied to model three-phase inverters [61]. Therein,

the MFA representation for the time-varying fundamental components of the three-

phase state variables and the duty cycle is constructed. The fundamental components

are changing relatively slowly with respect to the small-ripple switching components

and have relatively large magnitude. Therein,it is assumed that the small-ripple

switching components in the MFA model are negligible. However, the small-ripple

switching components might be significant with lower switching frequency. This mo-

tivates one to seek complete MFA representation for the state variables in inverters.

In Section 2.2, a quasiperiodic signal x(t) can be approximated by a partial Fourier

series described in (2.21) and (2.22). This representation might be extended by con-

sidering the fundamental components and switching (i.e., small-ripple) components

such that

x(t) ≈ x0(t) +
N∑
n=1

(x̄nc(t) cos(nω̄t) + x̄ns(t) sin(nω̄t))

+
K∑
k=1

(x̂kc(t) cos(kω̂t) + x̂ks(t) sin(kω̂t)) (6.1)

where x0(t), x̄nc(t), x̄ns(t), x̂kc(t) and x̂ks(t) are real-valued TFS coefficients referred to

as the index-0, index-nc, index-ns, index-kc and index-ks averages, respectively, ω̄ and

ω̂ are fundamental angular frequency and switching angular frequency, respectively.

This series is a Nth-Kth-order approximation of x(t). An average vector of length

(2(N +K) + 1) can be constructed from the TFS coefficients in (6.1):

x = [x0 x̄1c x̄1s . . . x̄Nc x̄Ns x̂1c x̂1s . . . x̂Kc x̂Ks]
T. (6.2)
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With this vector, (6.1) can be reconstructed as x(t) ≈ C(t)x, where C(t) is defined

as

C(t) = [1 cos(ω̄t) sin(ω̄t) . . . cos(Nω̄t) sin(Nω̄t)

cos(ω̂t) sin(ω̂t) . . . cos(Kω̂t) sin(Kω̂t)]. (6.3)

This complete MFA representation carefully describes the fundamental averages and

the switching averages, and might be suitable for modeling three-phase inverters.

However, the MFA representation for the feedback controllers in three-phase inverters

remains complicated. Future work would focus on using this complete MFA method

to model the three-phase inverters.

It has been shown in Chapter 4 that the proposed RMFA model is capable of

predicting the effects of switching ripple on the behavior of the power electronic

systems, and is more capable of predicting the influence of the switching ripple on

the stability of the system than the SSA model. The full-order MFA model is found

to be more accurate than the RMFA model in predicting the ripple behavior of the

power electronic systems. Such a model allows the effects of switching harmonics

to be included in the model with increasing the model order, permitting the effects

of switching ripple to be considered in stability analysis. However, the use of MFA

models for ROA estimation is found to be less accurate than the use of proposed

RMFA models. This extraordinary phenomenon might be attributed to the method

which is used herein to select the Lyaponuv functions for the full-order MFA models.

Future work would focus on the construction of Lyapunov functions which are suitable

for ROA estimation using full-order MFA models.
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Appendix A

STABILITY ANALYSIS OF MFA MODEL

The MFA model of the buck converter given in Subsection 3.4.2 is linearized about

the equilibrium point. The Jacobian matrix is given by

J =


−5.80×101 −2.31×100 0 −6.99×102 −4.62×101 0 6.58×102 6.58×102 0
3.68×100 −5.19×101 −6.28×104 7.35×101 −5.79×102 0 −1.05×103 −1.05×103 0
2.80×100 6.28×104 −5.56×101 5.59×101 5.59×101 −6.52×102 −7.97×102 −7.97×102 0
5.94×103 0 0 −9.90×102 0 0 0 0 0

0 5.94×103 0 0 −9.90×102 −6.28×104 0 0 0
0 0 5.94×103 0 −6.28×104 −9.90×102 0 0 0

−3.51×100 0 0 −7.02×101 0 0 0 0 0
0 −3.51×100 0 0 −7.02×101 0 0 0 −6.28×104

0 0 −3.51×100 0 0 −7.02×101 0 6.28×104 0


(A.1)

The eigenvalues of the Jacobian matrix are

λ1 =
(
−6.6754× 101

)
rad/s (A.2)

λ2,3 =
(
−4.9048× 102 ± j1.9755× 103

)
rad/s (A.3)

λ4,5 =
(
−5.1266× 102 ± j6.4672× 104

)
rad/s (A.4)

λ6,7 =
(
−5.8792× 102 ± j6.0947× 104

)
rad/s (A.5)

λ8,9 =
(
5.7007× 101 ± j6.2878× 104

)
rad/s (A.6)
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Appendix B

STABILITY ANALYSIS OF ISMFA MODEL

The ISMFA model of the buck converter given in Section 3.4.2 is linearized about

the equilibrium point. The constant matrices in the time-varying Jacobian matrix in

(3.34) are given by

A0 =
−5.8×101 −2.3×100 0 −7.0×102 −4.6×101 0 6.6×102 6.6×102 0
−1.9×101 −5.0×105 −6.2×104 −3.7×102 −1.0×103 5.2×103 5.3×103 5.3×103 0
3.2×101 6.2×104 −5.0×105 6.4×102 −4.6×103 −6.5×102 −9.1×103 −9.1×103 0
5.9×103 0 0 −9.9×102 0 0 0 0 0

0 5.9×103 −4.7×104 0 −5.0×105 −5.5×104 0 0 0
0 4.7×104 5.9×103 0 5.5×104 −5.0×105 0 0 0

−3.5×100 0 0 −7.0×101 0 0 0 0 0
0 −3.5×100 2.8×101 0 −7.0×101 5.6×102 0 −5.0×105 −6.3×104

0 −2.8×101 −3.5×100 0 −5.6×102 −7.0×101 0 6.3×104 −5.0×105

 (B.1)

A1 =
2.2×101 5.0×105 −4.4×102 4.5×102 4.5×102 −5.2×103 −6.3×103 −6.3×103 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 4.7×104 0 5.0×105 −7.9×103 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 −2.8×101 0 0 −5.6×102 0 5.0×105 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 (B.2)

A2 =
−2.9×101 4.1×102 5.0×105 −5.9×102 4.6×103 0 8.3×103 8.3×103 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 −4.7×104 0 0 7.9×103 5.0×105 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2.8×101 0 0 5.6×102 0 0 0 5.0×105

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 (B.3)
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A symmetric, positive definite matrix P which yields (3.37) is found by solving a

linear matrix inequality problem. One solution is

P =
3.9×10−1 1.2×10−2 −1.6×10−2 −3.9×10−2 1.9×10−3 3.7×10−4 −2.8×10−2 −2.5×10−3 4.8×10−3

1.2×10−2 2.4×102 6.9×10−1 2.1×10−1 −8.2×100 7.2×100 −3.0×100 −1.2×101 4.3×10−1

−1.6×10−2 6.9×10−1 2.4×102 −2.8×10−1 −6.7×100 −8.4×100 4.1×100 −1.8×10−1 −1.2×101

−3.9×10−2 2.1×10−1 −2.8×10−1 4.9×10−2 1.8×10−2 2.9×10−2 −4.6×10−2 −1.1×10−2 1.3×10−2

1.9×10−3 −8.2×100 −6.7×100 1.8×10−2 1.6×102 −1.2×10−1 −2.6×10−1 −1.2×101 2.4×10−1

3.7×10−4 7.2×100 −8.4×100 2.9×10−2 −1.2×10−1 1.6×102 −4.2×10−1 3.3×10−1 −1.2×101

−2.8×10−2 −3.0×100 4.1×100 −4.6×10−2 −2.6×10−1 −4.2×10−1 1.7×10−1 1.7×10−1 −1.9×10−1

−2.5×10−3 −1.2×101 −1.8×10−1 −1.1×10−2 −1.2×101 3.3×10−1 1.7×10−1 1.9×102 1.8×100

4.8×10−3 4.3×10−1 −1.2×101 1.3×10−2 2.4×10−1 −1.2×101 −1.9×10−1 1.8×100 1.9×102


(B.4)
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Appendix C

PROOF OF MIXED-KRONECKER-PRODUCT

PROPERTY

The purpose of this appendix is to prove the mixed-Kronecker-product property given

by

X(Ij ⊗Y) = (Ii ⊗Y)(X⊗ Ik) (C.1)

where X ∈ Ri×j, Y ∈ R1×k and In is the n× n identity matrix.

It has been stated in [119] that

(
Ij ⊗YT

)
vec(Xl) = vec

(
YTXlIj

)
= vec

(
YTXl

)
(C.2)

where Xl ∈ R1×j is the lth row in X for l ∈ [1, i] and vec(•) denotes the vectorization

of • formed by stacking the columns of • into a single column vector. The vectorization

of Xl can be expressed as

vec(Xl) = XT
l . (C.3)

Substituting (C.3) into (C.2) and taking the transpose results in

Xl(Ij ⊗Y) =
(
vec
(
YTXl

))T
. (C.4)

It can be shown that

(
vec
(
YTXl

))T
=
[
(YTxl1)T (YTxl2)T . . . (YTxlj)

T
]

= [xl1Y xl2Y . . . xljY]

= Xl ⊗Y (C.5)
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where xlm is the mth element in Xl for m ∈ [1, j]. Substituting (C.5) into (C.4)

results in

Xl(Ij ⊗Y) = Xl ⊗Y. (C.6)

Because Xl ∈ R1×j is the lth row in X for l ∈ [1, i], it can be shown that

X(Ij ⊗Y) = X⊗Y. (C.7)

Applying the property of Kronecker product, the term X⊗Y in the above equation

can be expressed as

X⊗Y = (IiX)⊗ (YIk) = (Ii ⊗Y)(X⊗ Ik). (C.8)

Substituting (C.8) into (C.7) results in

X(Ij ⊗Y) = (Ii ⊗Y)(X⊗ Ik). (C.9)
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Appendix D

HARDWARE PROTOTYPE

D.1 Prototype of Dc-Dc Converter

Figure D.1: Overall prototype.

Figure D.2: PCB board.
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The overall hardware prototype of the bidirectional dc-dc converter is shown Fig-

ure D.1. The capacitance ratings on the high side capacitor and the low side capacitor

are 470 µF and 167 µF, respectively. The inductor is constructed with two magnetic

E-cores and copper film. The inductance at 10 kHz is measured as 1.5 mH. The PCB

board shown in Figure D.2 is implemented for signal sensing and circuit protection

for the dc-dc converter.

D.2 Prototype of Three-Phase Dc-Ac Inverter

The hardware prototype of the switching network in the three-phase dc-ac inverter

is shown Figure D.3. The capacitance rating on the dc link capacitor is 680 µF. The

three-phase LC filter in the three-phase dc-ac inverter is shown in Figure D.4. The

inductance rating on the line inductor and the capacitance rating on the line-line

capacitor are 0.276 mH and 8 µF, respectively. The PCB board shown in Figure D.5

is implemented for signal sensing and circuit protection for the dc-ac inverter.

Figure D.3: Three-phase switching network.
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Figure D.4: Three-phase LC filter.

Figure D.5: PCB board.
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[98] T. Knüppel, J. N. Nielsen, K. H. Jensen, A. Dixon, and J. Ostergaard, “Small-
signal stability of wind power system with full-load converter interfaced wind
turbines,” IET Renew. Power Gen., vol. 6, no. 2, pp. 79–91, Mar. 2012.

[99] J. Lee, “An optimization-driven framework for the computation of the control-
ling UEP in transient stability analysis,” IEEE Trans. Autom. Control, vol. 49,
no. 1, pp. 115–119, Jan. 2004.

[100] H.-D. Chiang, Direct Methods for Stability Analysis of Electric Power Systems:
Theoretical Foundation, BCU Methodologies, and Applications. New York,
NY: Wiley, 2011.

[101] N. Yorino, E. Popov, Y. Zoka, Y. Sasaki, and H. Sugihara, “An application
of critical trajectory method to BCU problem for transient stability studies,”
IEEE Trans. Power Sys., vol. 28, no. 4, pp. 4237–4244, Nov. 2013.

[102] S. K. Mazumder, A. Nayfeh, and D. Borojevic, “A nonlinear approach to the
analysis of stability and dynamics of standalone and parallel dc-dc converters,”
in 16th Annu. IEEE Appl. Power Electron. Conf. Expo., 2001, vol. 2, Mar.
2001, pp. 784–790.

[103] A. Davoudi and J. Jatskevich, “Parasitics realization in state-space average-
value modeling of PWM dc-dc converters using an equal area method,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 9, pp. 1960–1967, 2007.

[104] R. Lai, F. Wang, R. Burgos, D. Boroyevich, D. Jiang, and D. Zhang, “Average
modeling and control design for Vienna-type rectifiers considering the dc-link
voltage balance,” IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2509–2522,
2009.

[105] S. Sudhoff, B. Loop, J. Byoun, and A. Cramer, “A new procedure for calculat-
ing immittance characteristics using detailed computer simulations,” in IEEE
Power Electron. Spec. Conf., 2007, 2007, pp. 901–908.

[106] P. J. Antsaklis and A. N. Michel, Linear Systems. New York: McGraw-Hill,
1997.

[107] T. Hu, A. Teel, and L. Zaccarian, “Stability and performance for saturated sys-
tems via quadratic and nonquadratic lyapunov functions,” IEEE Trans. Autom.
Control, vol. 51, no. 11, pp. 1770–1786, Nov. 2006.

[108] M. Anghel, F. Milano, and A. Papachristodoulou, “Algorithmic construction of
lyapunov functions for power system stability analysis,” IEEE Trans. Circuits
and Syst. I: Reg. Papers, vol. 60, no. 9, pp. 2533–2546, Sept. 2013.

[109] B. P. Loop, “Estimating regions of asymptotic stability of nonlinear systems
with applications to power electronics systems,” Ph.D. dissertation, Dept. Elect.
Comput. Eng., Purdue Univ., West Lafayette, IN, 2005.

107



[110] H. Schwefel, Evolution and Optimum Seeking. New York, NY: Wiley, 1995.

[111] F. Pan and A. M. Cramer, “Reduced-order multifrequency averaging in natu-
rally sampled pwm converters,” in 2014 IEEE Energy Convers. Congress Expo.,
Sep. 2014.
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