
Northumbria Research Link

Citation: Wu, Haimeng, Pickert, Volker, Giaouris, Damian and Ji, Bing (2017) Nonlinear Analysis and 
Control of Interleaved Boost Converter Using Real-Time Cycle to Cycle Variable Slope Compensation. 
IEEE Transactions on Power Electronics, 32 (9). pp. 7256-7270. ISSN 0885-8993 

Published by: IEEE

URL: https://doi.org/10.1109/TPEL.2016.2626119 <https://doi.org/10.1109/TPEL.2016.2626119>

This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/42524/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access 
the University’s research output. Copyright © and moral rights for items on NRL are retained by the 
individual author(s) and/or other copyright owners.  Single copies of full items can be reproduced, 
displayed or performed, and given to third parties in any format or medium for personal research or 
study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, 
title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata 
page. The content must not be changed in any way. Full items must not be sold commercially in any  
format or medium without formal permission of the copyright holder.  The full policy is available online: 
http://nrl.northumbria.ac.uk/pol  i  cies.html  

This  document  may differ  from the  final,  published version of  the research  and has been made 
available online in accordance with publisher policies. To read and/or cite from the published version 
of the research, please visit the publisher’s website (a subscription may be required.)

                        

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Northumbria Research Link

https://core.ac.uk/display/288430540?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nrl.northumbria.ac.uk/policies.html


IEEE TRANSACTION ON POWER ELECTRONICS   1 

 

Abstract— Switched-mode power converters are inherently 

nonlinear and piecewise smooth systems which may exhibit a 

series of undesirable operations that can greatly reduce the 

converter’s efficiency and lifetime. This paper presents a 

nonlinear analysis technique to investigate the influence of system 

parameters on the stability of interleaved boost converters. In this 

approach, Monodromy matrix which contains all the 

comprehensive information of converter parameters and control 

loop can be employed to fully reveal and understand the inherent 

nonlinear dynamics of interleaved boost converters, including the 

interaction effect of switching operation. Thereby not only the 

boundary conditions but also the relationship between stability 

margin and the parameters given can be intuitively studied by the 

eigenvalues of this matrix. Furthermore, employing the 

knowledge gained from this analysis a real time cycle to cycle 

variable slope compensation method is proposed to guarantee a 

satisfactory performance of the converter with an extended range 

of stable operation. Outcomes show that systems can regain 

stability by applying the proposed method within a few time 

periods of switching cycles. The numerical and analytical results 

validate the theoretical analysis, and experimental results verify 

the effectiveness of the proposed approach. 

Index Terms— Nonlinear analysis, bifurcation control, 

interleaved boost converter, Monodromy matrix, variable slope 

compensation 

I. INTRODUCTION 

ue to the benefits of current ripple cancellation, passive 

components size reduction, and improved dynamic 

response contributed by interleaving techniques [1-3], 

interleaved switch-mode power converters are widely used in 

power systems such as electric vehicles [4], photovoltaics 

power generation [5] and thermoelectric generator systems [6]. 

However, in spite of the widespread applications of this type of 

DC-DC converter, their nonlinear effects due to sequential 

switching operations have not been sufficiently considered in 

converter design.  
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In general, DC-DC converters are piecewise smooth systems 

and their dynamic operations show a manifestation of various 

nonlinear phenomena, as evidenced by sudden changes in 

operating region, bifurcation and chaotic operation when some 

circuit parameters are varied [7, 8]. For example, it is possible 

to have a sudden increase in the current ripple and then it forces 

the converter to operate in forbidding current/voltage areas 

with adding low frequency, high amplitude components. These 

unexpected random-like behaviors potentially lead to a 

violation of designated operation contours, increased 

electromagnetic interference (EMI), reduced efficiency and in 

the worst-case scenario a loss of control with consequent 

catastrophic failures. Unfortunately, all these phenomena 

cannot be predicted (and hence avoided) by using conventional 

linearized model of the converter. Without the thorough 

knowledge of the existing circuits, experience-based trial and 

error procedure is often applied in practice to restrain operating 

point within the safe operating region. As a result, circuit 

design criteria are always determined by selective ballpark 

values of components and parameters based on lessons learned 

from the past rather than applying an appropriate systematic 

design methodology. 

A. Stability Analysis Methods for Power Converters  

To study and analyze the inherent stability of power 

converters, most power electronics practitioners conventionally 

employ the linearized averaging technique to fit the analysis of 

power converter into the framework of linear systems theory, 

and thus discontinuities introduced by the switching action of 

the circuit are ignored [9, 10]. This gives a simple and accurate 

model for steady-state and dynamic response at timescale much 

slower than switching cycles but fails to encompass nonlinear 

behavior at a fast timescale as the switching action itself makes 

the converter model to be a highly nonlinear system.  

Researchers had shown endeavor to develop the 

conventional averaging methodology and thus it was extended 

to frequency-dependent averaged models by taking into 

account of the effect of fast-scale dynamics [11]. A 

multi-frequency averaging approach was then proposed to 

improve the conventional state-space averaging models [12], 

modelling the dynamic behavior of DC–DC converters by 

applying and expanding the frequency-selective averaging 

method [13]. An analysis method based on the 

Krylov-Bogoliubov-Mitropolsky (KBM) algorithm was 

developed to recover the ripple components of state variables 
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from the averaged model [14]. However, such improved 

models have some limitations to describe chaotic dynamics 

completely and effectively. To address fast-scale nonlinearities, 

discrete nonlinear modelling is the most widely used approach. 

Nonlinear map-based modelling [15] developed from 

sampled-data modelling [16] in the early stages applies an 

iterative map for the analysis of system stability which is 

obtained by sampling the state variables of the converter 

synchronously with PWM clock signals. This method is 

commonly referred to as the Poincaré map method. Stability is 

indicated by the eigenvalues of the fixed point of the Jacobian 

of the map, even though in some cases the map itself cannot be 

derived in close-form because of the transcendental form of the 

system’s equations. Hence the map has to be obtained 

numerically.  

Other alternative approaches such as Floquet theory [17], 

Lyapunov-based methods [18] and trajectory sensitivity 

approach [19] are applied effectively for the nonlinear analysis 

of power converters. Specifically, the evolution of perturbation 

is studied directly in Floquet theory to predict the system’s 

stability, by deriving the absolute value of the eigenvalues of 

the complete-cycle solution matrices. In Lyapunov-based 

methods, piecewise-linear Lyapunov functions are searched 

and constructed to describe the system’s stability. For trajectory 

sensitivity approach, systems are linearized around a nominal 

trajectory rather than around an equilibrium point and the 

stability of the system can be determined by observing the 

change in a trajectory due to small initial or parameters 

variation. There have been combined approaches developed 

from combining state-space averaging and discrete modelling. 

Examples of these methods are design-oriented ripple-based 

approach [20, 21]; Takagi–Sugeno (TS) fuzzy model-based 

approach [22] and system-poles approach [23]. Apart from 

aforementioned approaches, other individual methods, such as 

symbolic approach [24] and energy balance model [25] were 

proposed to analyze the nonlinearities of switching power 

converters. A recent review paper on stability analysis methods 

for switching mode power converters has summarized some 

approaches presented [26]. 

B. Control of Nonlinearity in Power Converters  

Various control techniques are proposed to tackle nonlinear 

behaviours based on the above methodologies, which can be 

classified into two categories: feedback-based and 

non-feedback based techniques. In the feedback-based group, a 

small time-dependent perturbation is tailored to make the 

system operation change from unstable periodic orbits (UPOs) 

to targeted periodic orbits. Ott-Grebogi-Yorke (OGY) 

approach proposed by Ott et al [27] was the first well-known 

chaos control method. One advantage of this method is that a 

priori analytical knowledge of the system dynamics is not 

required, which makes it easier to implement [28]. Then 

Delayed Feedback Control (TDFC) methods were proposed to 

stabilize the UPOs in the field of nonlinear dynamics [29, 30]. 

In this method, the information of the current state and prior 

one-period state is used to generate signals for the stabilizing 

control algorithm. Washout filter-aided feedback control was 

proposed to address the Hopf bifurcation of dynamic systems 

[31]. Other filter-based non-invasive methods for the control of 

chaos in power converters have also been proposed [32]. Apart 

from the aforementioned control methods, a self-stable 

chaos-control method [33], predictive control [34] and 

frequency-domain approach [35] have been proposed to 

eliminate bifurcation and chaotic behavior in various switching 

DC-DC converters. 

In the non-feedback category, the control target is not set at 

the particular desired operating state, whereas the chaotic 

system can be converted to any periodic orbit. Resonant 

parametric perturbation is one of the most popular methods [36, 

37]. In this approach, some parameters at appropriate 

frequencies and amplitude are normally perturbed to induce the 

system to stay in stable periodic regions, converting the system 

dynamic to a periodic orbit. Other examples of this type of 

method include the ramp compensation approach [38], fuzzy 

logic control [39] and weak periodic perturbation [40]. 

Compared to feedback-based methods, no online monitoring 

and processing are required in a non-feedback approach, which 

makes it easy to implement and suitable for specific practical 

applications. 

However, in spite of the various approaches available, the 

most interesting results are presented by abstract mathematical 

forms, which cannot be directly and effectively applied to the 

design of practical systems for industrial applications. In this 

paper, a relatively intuitional approach using Monodromy 

matrix is applied to investigate the system stability and design 

the advanced controller of interleaved boost converter. This 

Monodromy matrix contains all the comprehensive system 

information including system parameters, external conditions, 

and coefficients of the controller [41, 42]. Accordingly, the 

influence of various parameters on overall system stability can 

be investigated intuitively and it is able to be used for the 

further study on interaction effect of the switching operation to 

system’s behavior. Most importantly, the boundary conditions 

of stable operation and the information of stability margin and 

the parameters given can be obtained by the eigenvalues of this 

matrix. Furthermore, based on the knowledge gained from this 

matrix, a novel real time cycle to cycle variable slope 

compensation method is proposed to stabilize the system, 

avoiding phenomena of subharmonic and chaotic operation. 

Theoretical analysis is validated numerically and 

experimentally to show the effectiveness of this proposed 

method. 

The rest of this paper is organized as follows. The 

fundamental principle of stability analysis methodology 

employed and the corresponding derivation of matrices is 

presented in Section II. The study of the control loop and the 

concept of control approach proposed is illustrated in Section 

III. Simulation results and related analysis are shown in Section 

IV and experimental results of interleaved boost converter 

using mixed-signal controller are given in Section V. The final 

section summarizes the conclusions drawn from investigation 

and analysis. 

II. THEORETICAL PRINCIPLE AND MATRIX DERIVATION 

A. Nonlinear phenomena 

Nonlinear phenomena can commonly be found in the 

analysis of power electronics converters. Fig.1(a) shows 

experimental results of an interleaved boost converter (circuit 

parameters are shown in Table 1) when it is in the stable 
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operation (period-1), in contrast, Fig.1(b) presents its chaotic 

operation where the only difference is a slight change at the 

values of slope compensation. Thus, the stability analysis is 

crucial to guarantee the stable operation of the converter as the 

small variation of parameters may change the performance of 

converter dramatically. The study of how the value of slope 

compensation affects the stability of the system and its 

influence to the margin of system stability can be fully given by 

using the Monodromy matrix based method which is presented 

in the following.  

 

B. Concept of Monodromy Matrix Based Method 

The topology of an interleaved boost converter and the 

diagram of a control strategy are shown in Fig.2, Ki and Kp 

represent the gains of the PI controller; Kvc and Kil are the gain 

of signals from the practical sampled output voltage vc and 

inductor currents iLi (i=1,2) to the controller respectively. The 

inductor currents iL1 , iL2, capacitor voltage vc and the output of 

the integrator in the feedback loop vip are chosen as the state 

variables. S1 and S2 are the switches employing the interleaving 

PWM control technique, which means that there is an 180 

degree phase shift between them.  

The key waveforms of the converter at different duty cycles 

in the steady state operation are illustrated in Fig.3(a) (when 

d>0.5) and Fig.3(b) (when d<0.5) respectively. It can be seen 

that there are four subintervals in one period for both 

operational modes and the state transition matrix can be 

represented as Φ1~ Φ4. The system states at different switching 

sequences can be described by the following state equations: 
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(b) 
Fig.1 Operation of interleaved boost converter at two different values of 

slope compensation: 
(a) Stable operation (period-1) (b) Chaotic operation 
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(b) 

Fig.3 (a) Key operational waveforms in steady state (d>0.5) 
(b) Key operational waveforms in steady state (d<0.5) 

 

Vi

L1

L2

S4

S2

Cs2

S3

S1

Cs1

C

vc(t)

iL1

iL2

iin

 

(a) 

  

T/2

PWMviL1(t)

Vref

KI

vip(t)

Kp

1/s

vcon(t)

R

S

Q

¯ Q
S1

KiL

Kvc

iL1

PWMviL2(t)

R

S

Q

¯ Q

S2
KiL

Clock

vc

phase shift

 

(b) 
Fig.2 (a) Topology of interleaved boost converter 

(b) Diagram of control strategy for interleaved boost converter 
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The concept of Monodromy matrix based method is to 

deduce the stability of a periodic solution by linearizing the 

system around the whole periodic orbit. This can be obtained by 

calculating the state transition matrices before and after each 

switching and the saltation matrix that describes the behaviors 

of the solution during switching. The derivation of this matrix is 

shown in Fig.4, which demonstrates perturbation evolves in 

one complete period through four different STM and four 

saltation matrices S in sequence. 

 

C. Theoretical Principle of Monodromy Matrix Based Method 

 
The fundamental theory of this method is presented in the 

following. As shown in Fig.5(a), assuming that a given system 

has an initial condition 
0( )tx at time t0 and it is perturbed 

to
0( )tx such that the initial perturbation is 

0 0 0( ) ( ) ( )t t t  x x x . 

After the evolution of the original trajectory and the perturbed 

trajectory during time t, according to Floquet theory, the 

perturbation at the end of the period can be related to the initial 

perturbation by 

 
0 0( ) ( )t T t   x Φ x   (2) 

where Φ is called the state transition matrix (STM), which 

is a function of the initial state and time. For any power 

converter, the ON and OFF state of the switches makes the 

system evolve through different linear time-invariant (LTI) 

subsystems, Therefore, for each subsystem, the STM can be 

obtained by the expression when the initial conditions are 

given. 

  0( )t t
e




A
Φ  (3) 

where A is the state matrix that appears in the state equation:  

 x Ax + Bu   (4) 

In smooth systems, the fundamental matrix can be used to 

map the perturbation from the initial condition to the end of the 

period. Nevertheless, the vector field of a power electronics 

system is piecewise smooth and the vector field is 

discontinuous at the switching instant, which means that the 

STM cannot be utilized directly for stability analysis. As a 

result, some information representing the switching event 

needs to be introduced to fully describe the dynamic behavior 

of the system. 

With the assumption that there is no jump in the state vector 

at switching instants, the Filippov method can be applied in the 

study of this discontinuous vector field, calculating the 

evolution of vectors during the interval of [t∑-, t∑+]. The 

principle of this approach is illustrated in Fig.5(b), and it 

describes the behaviour of a perturbation crossing the switching 

surface ∑. Assuming that there is an initial perturbation ∆x(t0) 

at the time of t0, it then evolves to ∆x(t∑-), starting to cross the 

switching manifold at the time of t∑-. After a time (t∑+, t∑-), it 

comes out of the switching surface and becomes ∆x(t∑+). The 

saltation matrix S is used to map the perturbation before and 

after the switching manifold as follows [43].  

 ( ) ( )t t   x S x  (5) 

 ( ) T

T

f f

h
f

t

 




 





n
S I

n

  (6) 

where I is the identity matrix of the same order of state 

variables; h contains information of the switching condition; n 

represents the normal vector to the switching surface, and f∑− 

and f∑+ are the differential equations before and after the 

switching instant. The derivations of (5) and (6) have been 

presented in detail in the appendix. Hence the fundamental 

solution of a periodic system for one complete cycle, which is 

named the Monodromy matrix can be represented as follows: 

 
0 0 0 0( , ) ( , ) ( , )t t T t t T t t      M S  (7) 

where Ф(t0,t∑-) and Ф(t∑+,t0+T) are the state transition matrices 

in the time intervals of [t0,t∑-] and [t∑-,t0+T] respectively. The 

eigenvalues of the Monodromy matrix (also termed the Floquet 

multipliers) can be applied to predict the stability. If all the 

eigenvalues have magnitudes less than unity, the system will be 

stable, otherwise, the system will exhibit various bifurcation 

and chaotic behaviors determined by the movement trajectory 

of crossing the unit circle. 

D. Matrix Derivation 

In the operation of interleaved boost converter as shown in 

Fig.3, when the switches S1 and S2 are ON, the state equations 

can be expressed as: 

 c cdv v

dt RC
 , 1

1

iL
Vdi

dt L
   (8)~(9) 

 2

2

iL
Vdi

dt L


，
( )

ipi

I vc c ref

dv
K K v V

dt
    (10)~(11) 

When the switch S1 is ON and S2 is OFF, the state equations are:  

 2c L cdv i R v

dt RC




,

1

1

iL
Vdi

dt L
  (12)~(13) 

 2

2

i cL
V vdi

dt L




 ,

 ( )
ip

I vc c ref

dv
K K v V

dt
   (14)~(15) 

When the switch S1 is OFF and S2 is ON, the state equations are: 

 
             (a)                                                          (b) 

Fig.5 Periodic solution and its perturbed solution 
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Fig.4 Diagram of derivation of Monodromy matrix 
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 1c L cdv i R v

dt RC




,

1

1

i cL
V vdi

dt L


  (16)~(17) 

 2

2

iL
Vdi

dt L


,
( )

ip

I vc c ref

dv
K K v V

dt
   (18)~(19) 

When the switch S1 and S2 are OFF, the state equations are 

obtained as: 

 1 2( )c L L cdv i i R v

dt RC

 
 , 1

1

i cL
V vdi

dt L


  (20)~(21) 

 2

2

i cL
V vdi

dt L




 ,

( )
ipi

I vc c ref

dv
K K v V

dt
    (22)~( 23) 

The state equations above can be represented using vectors. 

Where x1 is the capacitor voltage vc, x2 is the inductor current iL, 

and x3 the output of the integrator in the feedback loop vip, and 

the right-hand side state equations are expressed as: 

1
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Thus, the corresponding state matrices for these four 

subintervals are shown in the following: 
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According to the control strategy of peak current control, the 

switching transients occur at the beginning of each switching 

period and the moment when the value of inductor current iLi 

equals the reference signal. Therefore, the switching conditions 

from the ON to OFF state can be expressed as ( , ) 0ih x t    

(i=12,34),where 

 
( , ) ( )i p ref vc c ip iL Lih x t K V K v v K i   

 (31) 

Hence, its normal vector can be given by:  
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  (33) 

The saltation matrices S23 and S41 turn out to be identity 

matrices, since they are related to the switching event from the 

OFF state to the ON state for S1 and S2 at the initial instant of 

every clock cycle respectively, which means that the rising 

edge of the ramp causes the term of əh/ət in (5) to be infinity. 

When the duty cycle d is bigger than 0.5, the system states 

evolve from the following sequence as illustrated in Fig.3(a): 

①→③→①→② 

Saltation matrix S12a can be obtained as follows: 

3 3 3

12
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Similarly, the saltation matrix S34a can be derived as: 
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 where 

1
34 34 1 1
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p on I vc ref

K K x K V
s f f K K x V

RC L
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(36) 
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For the interleaved control algorithm, the time of each 

subinterval can be represented in terms of d and T. The state 

transition matrices are given by the matrix exponential, hence 
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  (38) 

When duty cycle d is less than 0.5, the evolution of system 

states can be expressed in the following sequence: 

②→④→③→ ④ 

Fig.3(b) presents the key operational waveforms in steady state 

at this condition. The saltation matrices S12b and S34b can be 

calculated as follows: 
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where  
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When duty cycle is less than 0.5, the state transition matrices 

are given as 
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  ( 43) 

Thus, the Monodromy matrix M can be calculated by the 

following expression: 

1 12 2 23 3 34 4 41cycle        M Φ Φ S Φ S Φ S Φ S
 

 (44) 

This contains all of the information about the system input 

and load conditions, the parameters of the converter and the 

coefficients of the control loop, and therefore the influence of 

any system parameter on system stability can be analyzed using 

this matrix. 

III. PROPOSED CONTROL METHOD 

 
Slope compensation is widely adopted in many different 

kinds of converters employing peak current mode control to 

avoid unstable phenomenon when the duty cycle d is bigger 

than 0.5. However, although several papers mentioned different 

methods to calculate the minimum required value of the 

compensation ramp in order to sufficiently eliminate 

subharmonic oscillations [44, 45], the influence of the slope 

parameter mc to the margin of system stability cannot be 

investigated theoretically in these methods. In the Monodromy 

matrix based approach, the slope parameter mc can be 

introduced in the derived saltation matrices S12 and S34. Thus, 

vs(t)
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¯ Q
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dT TimeT

viL1(t)
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(c) 

 
(d) 

Fig.6 (a) Diagram of proposed control strategy 

(b) Movement of eigenvalues applying proposed method 

(c) Conventional constant slope compensation in interleaved boost 

converters 

(d) Proposed real time variable slope compensation using Monodromy 

matrix 
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the relationship among the value of mc, other variables and 

margin of stable operation can be intuitively demonstrated by 

using the locus of eigenvalues. Specifically, by altering various 

coefficients of the Monodromy matrix, the stability of the 

system will be influenced correspondingly. Based on this 

concept, a real time variable slope compensation method is 

proposed to control the nonlinear behavior of power converters, 

which is illustrated in Fig.6. The difference compared to 

conventional constant slope compensation is that the amplitude 

of compensation ramp ac can be varying according to the 

change of external conditions, such as input and output voltage 

or load conditions.  

When applying slope compensation to peak current control 

the time derivative of the switching manifold changes by 

adding a variable slope signal to the switching manifold h, thus 

the switching condition becomes 

 ( , ) ( ) +i p ref vc c ip c iL Lih x t K V K v v m t K i     (45) 

There is no effect on its normal vector, but compared to peak 

current control without slope compensation, the ∂h/∂t changes 

from 0 to the expression below: 

 c
c

s

ah
m

t T


  


 (46)  

The diagram of proposed control strategy is shown in 

Fig.6(a), information of the input voltage Vi , output voltage vc 

and the output of the PI controller are gathered as the input of 

the VSC control block. After the operation of calculation in this 

control block, a control signal vctrl(t) containing the slope 

compensation with appropriate amplitude can be generated as 

the input signal of PWM generation block. As illustrated in 

Fig.6(b), the original system may lose the stability when some 

parameters are varying. Thus by choosing the appropriate 

parameter ac in the new constructed Monodromy matrix, the 

corresponding eigenvalues can be located at any targeted places 

within the unit circle which indicate stable period-1 operation. 

In other words, for the given location of eigenvalues, the value 

of ac can be calculated at every switching period accordingly, 

which is shown in Fig.6(d). The proposed method is to keep the 

magnitude of the eigenvalues the same at different input 

voltages. For the controller design, the relationship between the 

input voltage and required value of ac must be obtained. 

Therefore, the following nonlinear transcendental equation 

should be solved numerically: | ( (0, ))|eig T RM . Where R is 

the radius of the circle on which the eigenvalues of the 

Monodromy matrix lie.  

IV. SIMULATION RESULTS 

The specifications of system parameters are presented in 

TABLE 1. Simulation results are produced based on the models 

built in Matlab/Simulink which using these parameters above. 

Fig. 7(a) shows the bifurcation diagram of output voltage vc and 

inductor current iL1 at different input voltages. The input 

voltage is varied from 5 to 18 V with a constant amplitude of 

slope (ac=|mc*T|=0.1). It can be seen that the system 

experiences from a chaotic state to double period (period-2) and 

eventually to stable period-1 operation with the increase of 

input voltages. The bifurcation phenomena take places when 

the input is set close to 8.75V, where the system changes 

between double-period oscillation and period-1 operation. The 

corresponding eigenvalues of the system at different inputs can 

be calculated using the expression of Monodromy matrix 

derived and the movement track of eigenvalues at different 

inputs can be plotted as shown in Fig. 7(b). The related 

eigenvalues reach the border of unit circle when input voltage 

equals 8.75V, which demonstrates the system will exhibit 

period doubling oscillation at this condition. The numerical 

computation matches with the simulation results well and the 

margin of 

system stability can be intuitively indicated by the locus of 

eigenvalues.  

Key operational waveforms and FFT spectrum at different 

inputs (12V, 8.5V, and 6 V) are shown in Fig.8(a), (b) and (c) 

respectively. The waveforms are output voltage vc, inductor 

current of one phase iL1, corresponding control signal ictrl, 

generated PWM drive signal and FFT spectrum of the drive 

signal from top to bottom. When input voltage equals 12V, the 

system is to run at stable period 1, which is the expected 

operation region as shown in Fig.7(a). When the input voltage 

 

(a) 

   

(b) 

Fig. 7(a) Bifurcation diagram of output voltage and inductor current at 

different input voltages  
(b) corresponding locus of eigenvalues 

 

TABLE 1 
SPECIFICATIONS OF SYSTEM PARAMETERS 

Parameters Value Parameters Value 

Input voltage （V） 5~18, Frequency （kHz） 50 

Output voltage （V） 24, KiL 1/8.5 

Power rating （W） 60 Kp1 0.5 

Inductance （μH） 75 Ki1 2000 

Output capacitance (μF) 40 mc*T -0.10 

Kvc 1/10   
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is reduced to 8.5V, the frequency of generated PWM reduces 

from 50kHz to 25kHz according to the FFT spectrum. The 

non-periodic and random-like waveforms demonstrate that the 

converter is to run at chaotic operation. We can see the ripple of 

voltage and current increase dramatically from period-1 to the 

chaotic operation through period 2. Specifically, the ripple 

voltage changes from nearly 0.05V to 1.7V and ripple current 

vary from 1.5A to 3.2A. Thus it is evident that the chaotic 

operation does cause more losses and degrade the performance 

of the converter. 

 

 
In order to further study the relationship among Vin, ac and 

system stability, the bifurcation diagram of inductor current and 

the output voltage at different input voltages and ac are shown 

in Fig.9. The amplitude of slope is set at 0.05 to 0.20 with the 

step of 0.05 and the bifurcation points vary from 10.5V to 5.5V 

input when ac is changed from 0.05 to 0.20 accordingly. It 

clearly shows the bifurcation points vary at different ac, 

exhibiting certain linear relationship. The figure also shows that 

bigger amplitude of slope compensation brings in the wider 

range of stable operation at the same given input conditions. 

The Monodromy matrix can be expressed as a function M in 

terms of ac and Vin:    

 ( , )c inM a VM   (47) 

The border value of the stable operating region can be 

calculated using the Monodromy matrix derived, which 

provides the design guidance for the given system.  

 

V. EXPERIMENTAL VERIFICATION 

A. Bifurcation Diagram 

To verify the analysis on simulation results, an interleaved 

boost converter with relevant control circuit have been 

designed using the specification presented in Table 1. Fig.10 

presents the experimental bifurcation diagram of the output 

voltage and inductor current at the conditions of different input 

voltages and values of ac. Graphs are reconstructed based on 

the sampled and stored data, which are from the generated file 

by using Labview. Compared with the shown in Fig.9, it can be 

seen that both waveforms are quite close but with some 

differences in terms of the practical values of ac employed, 

profile and bifurcation point. The practical required value of ac 

is slightly bigger (about 0.05) than the ones set in the 

simulation. Other differences are caused by the varying steps of 

the input voltage in the experiment and the constant step setting 

in the simulation. The simulation results are from the ideal 

model-based calculation, and thus the sampled points generated 

for constant values are exactly located at one point. In contrast, 

errors in the experimental results are caused by the sampling 

 
(a) 

   
(b) 

 
Fig.8 Key operational waveforms and FFT spectrum at different operation 

states in simulation: 

 (a) period-1 (b) period-2 (c) chaotic state 

 

(a) 

   

(b) 

Fig.9 Bifurcation diagram of inductor current and output voltage at 
different input voltages and ac in Simulation:  

(a) Output voltage (b) Inductor current 
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resolution and quantization effect, and thus the constant values 

to sample will be transferred as values with some errors in the 

DSP controller. The errors are also related to settings of the 

zero-order hold and capture window in relevant registers, and 

this is normally set within a certain acceptable range to 

guarantee accuracy. In general, the simulation results are 

reliable enough so as to be used to facilitate the practical circuit 

design. 

 

 

 
The influence of different value of ac to the operation of the 

converter is demonstrated in Fig.11. The input voltage is set at 

6V, and ac is set from 0.1 to 0.25 with the step of 0.05. Fig.11(a) 

shows the converter is operated in the chaotic state when ac 

equals 0.1; when the ac is changed to 0.15, the FFT spectrum 

curve indicates the converter is in the operation of period-4, 

with the fundamental frequency of 12.5kHz, which is a quarter 

of period-1. The operation of converter becomes to period-2 

when ac is set to 0.20, and stable operation of period-1 will 

occur if ac is increased to 0.25. The key operation waveforms 

are presented in Fig.11 (b), (c) and (d) respectively. It is evident 

that the values of compensation ramp affect dramatically to the 

stability of converter’s operation and the larger value of ac can 

increase the stability of the system. 

B. Real-Time Cycle-to-Cycle Variable Slope Compensation 
Control 

In order to control nonlinear behavior and improve the 

performance of converters, an approach named real-time 

cycle-by-cycle variable slope compensation (VSC) is proposed 

in this section, which is based on the knowledge of Monodromy 

matrix. The concept and principles of this method are presented 

in section III, but the challenge is the practical implantation of 

variable slope compensation. To address this problem, a 

high-performance Digital to Analogue (DAC) is employed with 

a DSP controller to achieve this advanced control method. As 

illustrated in Fig.12(a), a TI F28335 based-DSP controller is 

used as the core processor to achieve the functions of voltage 

signal sampling, calculation of control strategy and sending 

commands to the external high-speed waveform generator 

AD9106 to produce the control signals. Two continuous time 

inductor currents are sampled and scaled by current sensors, 

and corresponding signals are fed into the comparators to 

generate the PWM signals. Fig.13 (b) presents the operational 

 
(c) 

 
(d) 

Fig.11 Experimental results of key operational waveforms at different 

compensation slope  

 (a) ac=0.10 (b) ac=0.15 (c) ac=0.20 (d) ac=0.25 
 

 
(a) 

   
(b) 

 

(a) 

   
(b) 

Fig.10 Experimental bifurcation diagram of inductor current and output 

voltage at different input voltages and mc: (a) output voltage (b) 

inductor current 
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waveforms of control and clock signals, the upper waveforms 

are two current references added by variable slope 

compensations with an 180 degree shift, which are generated 

by this programmable DAC, and the bottom waveforms are the 

corresponding clock signals. The amplitudes of the slopes are 

programmed to increase by a given step to demonstrate the 

capability of cycle-by-cycle slope control. 

 
As discussed in Section III, the eigenvalues of Monodromy 

matrix can be used to predict the bifurcation points of the 

system and the locus of eigenvalues can indicate the margin of 

the stable range at different levels of variation in system 

parameters or external input and output conditions. In other 

words, if a specific margin is set, the corresponding 

compensation slope can be calculated by the given parameters. 

Here, if the eigenvalues are placed at the radius of 0.5 in the 

unit circle, for example, the following nonlinear transcendental 

equation can be obtained which should be solved numerically:  

 | ( (0, ))| 0.5eig T M  (48) 

The relationship of input voltage and the required mc can be 

given in the form of a third order polynomial expression:  
5 3 4 2 32.098 10 7.832 10 5.5 10 0.2561c in in inm T V V V             

 (49) 

 

Fig.13 shows the polynomial fitting curve and the calculated 

values of mc at different input voltages for the given radius of 

0.5. Thus, in digital VSC, the amplitudes of the compensation 

ramp are calculated from the input voltages according to the 

expression above.  

 
A comparison of conventional fixed slope compensation and 

the proposed method of digital control is presented in Fig.14(a). 

It can be seen that bifurcation occurs when the input voltage is 

around 11 volts with conventional fixed slope compensation; in 

contrast, the converter remains stable over the whole range of 

input voltage from 6 to 18 volts when employing VCS. Thus 

the range of stable operation is effectively extended by using 

the proposed method. Fig.14(b) demonstrates the calculated 

values of mc*T and the output of digital PI in the operation at 

different input voltages, which shows that with a linear increase 

in the absolute value of mc*T, the output of digital PI falls 

inversely.  

Fig.15 presents the effect of the proposed method on the 

control of nonlinearity in converters. The waveforms of the 

output voltage, inductor current, feedback control signals and 

gate drives are displaoyed from the top to the bottom. Fig.15 (a) 

and (b) respectively show the moments where the converter 

loses stability from stable operation of period-1 to the chaotic 

state and to the period-2. By employing VSC, the system can be 

kept in stable operation at certain operating conditions; in 

contrast, when the controller is switched to use conventional 

fixed slope control, the converter loses stability immediately at 

one cycle time. Similarly, the system can regain stability by 

switching to the proposed method within a few time periods of 

switching cycles. Compared to the stable state, it can also be 

seen that the ripples of the output voltage and inductor current 

 
(a) 

   
(b) 

Fig.14 (a) Comparison of conventional fixed slope compensation and 

proposed method  

(b) calculated values of mc and output of PI in digital controller 

 

Fig.13 Polyfit curve and calculated values of mc vs. input voltage 
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Fig.12 Implementation of variable slope compensation control: 
(a) Control strategy in the practical circuit (b) control and clock signals 
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increase remarkably when the converter is in the unstable 

chaotic state.  

 

VI. CONCLUSION 

The nonlinear phenomenon for an interleaved boost 

converter is discussed and a new control method based on 

Monodromy matrix has been presented in this paper. The 

system dynamic behavior dependent stability and further 

understanding of the tipping point for unstable operations can 

be gained by employing this adopted nonlinear analysis 

method. This method can be readily extended to other types of 

DC-DC converters using interleaving structure. In addition, it 

provides a new perspective on control laws of designing the 

appropriate controllers to address the nonlinearities in DC-DC 

converters. Accordingly, a real time slope compensation 

method is proposed to mitigate the nonlinear behavior, which is 

successful to extend the range of stable operation and 

effectively to increase the dynamic robustness by control the 

nonlinearity as validated by experimental results.  

APPENDIX 

The theory of Filippov provides a generalized definition of 

system solutions with switching behavior [17, 43, 46]. Such 

systems can be described as: 
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where ( ( ), )f t t x  and ( ( ), )f t t x   represent the smooth vector 

fields before and after switching respectively. V- and V+ are 

two different regions in state space and the switching manifold 

Σ separates them as shown in Figure A1.1 
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Fig.A1.1 Solution of nonsmooth system and its perturbed solution 

In smooth systems, the evaluation of perturbation from the 

initial condition to the end of the period can be mapped by the 

fundamental matrix. In non-smooth systems, however, the 

switching instant makes the vector field discontinuous. As a 

result, the fundamental matrix breaks down and the information 

of the switching instant needs to be taken into account. The 

relations of perturbation vectors ( )tx  and ( )tx  which 

are before and after the switching respectively can be described 

using the saltation matrix 

 
( ) ( )t t   x S x

 (A1.2) 

The following equations can be obtained: 
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 (A1.3) 

t  represents the time difference before and after the switching 

instant, which is small enough. By employing Taylor series 

expansion, the relationship of the state vectors can be expressed 

as follows: 
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 (A1.4) 

 
( ) ( ) ( )t t t t f t       x x x

 (A1.5) 

By substituting (A1.4), (A1.5) into (A1.3), the following is 

obtained: 
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      

   

x x x x x
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 (A1.6) 

Switching conditions satisfy the following relationship: 

 

( ), ) 0

( ), ) 0

h( t t

h( t t

 

 
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



x

x
 (A1.7) 

Also using the Taylor series expansion of h(x(t),t), an 

expression can be derived in terms of t : 

 0

( ), ) ( ) ( ) , )

( ), ) m ( ( ) ) 0T

h( t t h( t t f t t t

= h( t t t t f t

 

 

     

   

   

    

x x x

x n x

 (A1.8) 

where: 

 
(t ,x(t ))

h
 




n =

x  (A1.9) 

and: 

 
(a) 

   
(b) 

Fig.15 Control of nonlinearity in converters by employing cycle by 

cycle variable slope compensation:  

(a) period-1 to chaotic state; (b) period-1 to period-2 
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m

t t t

   
 

  

x x
=  (A1.10) 

Here, n represents the normal to the switching manifold. The 

expression for t can be obtained as: 

 

( )T

T

t
t

f m
 




 



n x

n
 (A1.11) 

Substituting (A1.8), (A1.9) and (A1.10) into (A1.11), the 

relationship between the perturbations vectors before and after 

the switching is shown as follows: 

 

( )
( ) ( ) ( )

T

T
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t t f f

f m
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
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

n x
x x

n
 (A1.12) 

Comparing (A1.2) and (A1.12), the saltation matrix can be 

written as: 

 

( ) T

T
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h
f
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 (A1.13) 
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