16 research outputs found

    Alternating Vector Addition Systems with States

    Get PDF
    International audienceAlternating vector addition systems are obtained by equipping vector addition systems with states (VASS) with 'fork' rules, and provide a natural setting for infinite-arena games played over a VASS. Initially introduced in the study of propositional linear logic, they have more recently gathered attention in the guise of multi-dimensional energy games for quantitative verification and synthesis. We show that establishing who is the winner in such a game with a state reachability objective is 2-ExpTime-complete. As a further application, we show that the same complexity result applies to the problem of whether a VASS is simulated by a finite-state system

    Fixed-Dimensional Energy Games are in Pseudo-Polynomial Time

    Get PDF
    We generalise the hyperplane separation technique (Chatterjee and Velner, 2013) from multi-dimensional mean-payoff to energy games, and achieve an algorithm for solving the latter whose running time is exponential only in the dimension, but not in the number of vertices of the game graph. This answers an open question whether energy games with arbitrary initial credit can be solved in pseudo-polynomial time for fixed dimensions 3 or larger (Chaloupka, 2013). It also improves the complexity of solving multi-dimensional energy games with given initial credit from non-elementary (Br\'azdil, Jan\v{c}ar, and Ku\v{c}era, 2010) to 2EXPTIME, thus establishing their 2EXPTIME-completeness.Comment: Corrected proof of Lemma 6.2 (thanks to Dmitry Chistikov for spotting an error in the previous proof

    The ideal view on Rackoff's coverability technique

    Get PDF
    Rackoff’s small witness property for the coverability problem is the standard means to prove tight upper bounds in vector addition systems (VAS) and many extensions. We show how to derive the same bounds directly on the computations of the VAS instantiation of the generic backward coverability algorithm. This relies on a dual view of the algorithm using ideal decompositions of downwards-closed sets, which exhibits a key structural invariant in the VAS case. The same reasoning readily generalises to several VAS extensions

    On the complexity of resource-bounded logics

    Get PDF
    We revisit decidability results for resource-bounded logics and use decision problems for vector addition systems with states (VASS) to characterise the complexity of (decidable) model-checking problems. We show that the model-checking problem for the logic RB+-ATL is 2EXPTIME-complete by using recent results on alternating VASS. In addition, we establish that the model-checking problem for RBTL is decidable and has the same complexity as for RBTL* (the extension of RBTL with arbitrary path formulae), namely EXPSPACE-complete, proving a new decidability result as a by-product of the approach. Finally, we establish that the model-checking problem for RB+-ATL* is decidable by a reduction to parity games, and show how to synthesise values for resource parameters

    Energy Games with Resource-Bounded Environments

    Get PDF
    An energy game is played between two players, modeling a resource-bounded system and its environment. The players take turns moving a token along a finite graph. Each edge of the graph is labeled by an integer, describing an update to the energy level of the system that occurs whenever the edge is traversed. The system wins the game if it never runs out of energy. Different applications have led to extensions of the above basic setting. For example, addressing a combination of the energy requirement with behavioral specifications, researchers have studied richer winning conditions, and addressing systems with several bounded resources, researchers have studied games with multi-dimensional energy updates. All extensions, however, assume that the environment has no bounded resources. We introduce and study both-bounded energy games (BBEGs), in which both the system and the environment have multi-dimensional energy bounds. In BBEGs, each edge in the game graph is labeled by two integer vectors, describing updates to the multi-dimensional energy levels of the system and the environment. A system wins a BBEG if it never runs out of energy or if its environment runs out of energy. We show that BBEGs are determined, and that the problem of determining the winner in a given BBEG is decidable iff both the system and the environment have energy vectors of dimension 1. We also study how restrictions on the memory of the system and/or the environment as well as upper bounds on their energy levels influence the winner and the complexity of the problem

    On the complexity of resource-bounded logics

    Get PDF
    We revisit decidability results for resource-bounded logics and use decision problems on vector addition systems with states (VASS) in order to establish complexity characterisations of (decidable) model checking problems. We show that the model checking problem for the logic RB+-ATL is 2EXPTIME-complete by using recent results on alternating VASS (and in EXPTIME when the number of resources is bounded). Moreover, we establish that the model checking problem for RBTL is EXPSPACE-complete. The problem is decidable and of the same complexity for RBTL*, proving a new decidability result as a by-product of the approach. When the number of resources is bounded, the problem is in PSPACE. We also establish that the model checking problem for RB+-ATL*, the extension of RB+-ATL with arbitrary path formulae, is decidable by a reduction to parity games for single-sided VASS (a variant of alternating VASS). Furthermore, we are able to synthesise values for resource parameters. Hence, the paper establishes formal correspondences between model checking problems for resource bounded logics advocated in the AI literature and decision problems on alternating VASS, paving the way for more applications and cross-fertilizations

    Automata Column: The Complexity of Reachability in Vector Addition Systems

    Get PDF
    International audienceThe program of the 30th Symposium on Logic in Computer Science held in 2015 in Kyoto included two contributions on the computational complexity of the reachability problem for vector addition systems: Blondin, Finkel, Göller, Haase, and McKenzie [2015] attacked the problem by providing the first tight complexity bounds in the case of dimension 2 systems with states, while Leroux and Schmitz [2015] proved the first complexity upper bound in the general case. The purpose of this column is to present the main ideas behind these two results, and more generally survey the current state of affairs
    corecore