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The Ideal View on Rackoff’s
Coverability Technique ?

Ranko Lazić1 and Sylvain Schmitz1,2

1 DIMAP, Department of Computer Science, University of Warwick, UK
2 LSV, ENS Cachan & CNRS & INRIA, France

Abstract. Rackoff’s small witness property for the coverability problem
is the standard means to prove tight upper bounds in vector addition
systems (VAS) and many extensions. We show how to derive the same
bounds directly on the computations of the VAS instantiation of the
generic backward coverability algorithm. This relies on a dual view of the
algorithm using ideal decompositions of downwards-closed sets, which
exhibits a key structural invariant in the VAS case. The same reasoning
readily generalises to several VAS extensions.

1 Introduction

Checking safety properties in infinite transition systems can often be reduced
to coverability checks. The coverability problem asks, given a transition system
and two configurations x and y and a quasi-ordering ≤ over configurations,
whether x might cover y, i.e. reach some configuration y′ ≥ y in finitely many
steps. The problem is decidable for the large class of (effective) well-structured
transition systems (WSTS) where ≤ is a well-quasi-ordering (wqo) compatible
with the transition relation [1, 9]. The algorithm to that end is a generic backward
coverability procedure, which computes successively the sets of configurations
that can cover y in at most 0, 1, 2, . . . steps. Those sets are upwards-closed and
since ≤ is a wqo they can be represented through their finitely many minimal
elements.

Nevertheless, the naive complexity upper bounds one can extract directly
from the termination argument of the backward coverability algorithm—which
also relies on ≤ being a wqo—are sometimes very far from the optimal ones. A
striking illustration is provided by vector addition systems (VAS): the complexity
bounds offered e.g. by [8] are in Ackermann, whereas coverability in VAS has
long been known to be ExpSpace-complete thanks to a lower bound by Lipton
[14] and an upper bound by Rackoff [16].

Rackoff’s Technique is essentially combinatorial in nature: he shows by induc-
tion on the dimension of the VAS that, if x can reach one such y′ ≥ y, then
there exists a small (doubly-exponential) run in the VAS witnessing this fact.
? Work funded in part by the Leverhulme Trust Visiting Professorship VP1-2014-041,
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A non-deterministic algorithm can then simply look for such a witness using
only exponential space. The same general technique has since been extended to
prove tight complexity upper bounds for coverability in numerous extensions of
VASs [7, 3, 6, 13, 12]. It is however less clear how to adapt the technique for
more general systems, where for instance the notion of dimension is absent or
more involved.

Remarkably, Bozzelli and Ganty [5] showed that Rackoff’s small witness prop-
erty can be applied to the backward coverability algorithm for VAS to obtain
a 2ExpTime upper bound.3 However, their proof uses Rackoff’s analysis as a
black box, and does not work directly with the structures manipulated by the
backward coverability algorithm. As such, it is again unclear how this result
could be translated to further classes of well-structured transition systems.

Contributions. In this paper, we revisit the backward coverability algorithm for
VAS, and extract directly a 2ExpTime upper bound for its running time. We
take for this in Sec. 3 a dual view on the backward coverability algorithm, by
considering successively the sets of configurations that do not cover y in 0, 1, 2,
. . . or fewer steps. Such sets are downwards-closed, and enjoy a (usually effective)
canonical representation as finite unions of ideals [4, 10, 11]. We show in Sec. 4
that, in the case of VAS, this dual view exhibits an additional structural property
of ω-monotonicity, which allows to derive the desired doubly-exponential bound.

Our purpose is above all pedagogical, as we hope to see this type of reason-
ing applied more broadly where the simple proof argument of Rackoff fails. As
illustrations of the versatility of the framework, we consider in the full version of
the paper (available from https://hal.inria.fr/hal-01176755) the top-down and
bottom-up coverability problems in alternating branching VAS. In each case, we
provide an instance of the generic backward algorithm that solves the prob-
lem, and show that its running time matches the known optimal complexi-
ties [7, 6, 13].

We start with some preliminaries on WSTS and ideals in Sec. 2.

2 Preliminaries

We first recall the necessary background on well-quasi-orders, well-structured
transition systems, and ideal decompositions, while illustrating systematically
the definitions on VAS and reset VAS.

2.1 Well-Structured Transition Systems

A well-quasi-order (wqo) (X,≤) is a set X equipped with a transitive reflexive
relation ≤ such that, along any infinite sequence x0, x1, . . . of elements from X,
one can find two indices i < j such that xi ≤ xj . A finite or infinite sequence

3 In the same spirit, Majumdar and Wang [15] show that the ‘expand, enlarge, and
check’ algorithm for bottom-up coverability in branching VASs runs in 2ExpTime,
using the combinatorial analysis of Demri et al. [7].

https://hal.inria.fr/hal-01176755
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without such pair of indices is bad, and necessarily finite over a wqo. See for
instance [18] for more background on wqos.

Example 2.1 (Dickson’s Lemma). The set Nd of d-dimensional vectors of natural
numbers forms a wqo when endowed with the product ordering v, defined by
u v v if u(i) ≤ v(i) for all 1 ≤ i ≤ d.

A well-structured transition system (WSTS) [1, 9] is a triple (X,→,≤) where
X is a set of configurations, → ⊆ X × X is a transition relation, and (X,≤)
is a wqo with the following compatibility condition: if x ≤ x′ and x → y, then
there exists y′ ≥ y with x′ → y′. In other words, ≤ is a simulation relation on
the transition system (X,→). We write as usual →≤0 def= {(x, x) | x ∈ X} and
→≤k+1 def= →≤k ∪ {(x, y) | ∃z ∈ X . x → z →≤k y} for the reachability relation
in at most k steps, and →∗ def=

⋃
k→≤k for the reflexive transitive closure of →.

Example 2.2 (VAS are WSTS). A d-dimensional vector addition system (VAS) is
a finite set A of vectors in Zd. It defines a WSTS (Nd,→,v) with configurations
space Nd and u→ u + a for all u in Nd and a in A such that u + a is in Nd.

For instance, the 2-dimensional VAS A÷2 = {(−2, 1)} can be seen as weakly
computing the halving function: from any configuration (n, 0), it can reach
(n mod 2, bn/2c) and all its reachable configurations (n′,m) satisfy m ≤ n/2.

Example 2.3 (Reset VAS are WSTS). A d-dimensional reset VAS is a finite
subset A of Zd × P({1, . . . , d}). Given R ⊆ {1, . . . , d} and a vector u, we define
the vector R(u) by R(u)(i) = 0 if i ∈ R, and R(u)(i) = u(i) otherwise. A reset
VAS defines a WSTS (Nd,→,v) where u → R(u + a) if there exists (a, R) in
A such that u + a is in Nd.

For instance, the 5-dimensional reset VAS

Alog =
{

(0, 0,−2, 1, 0, ∅), (0, 0, 1,−1, 0, ∅),
(−1, 1,−2, 1, 0, {3}), (1,−1, 1,−1, 1, {4})

}
is a weak computer for the logarithm function: from any configuration of the
form (1, 0, 2n, 0, 0), it can reach (1, 0, 1, 0, n), and all its reachable configurations
of the form (1, 0, n′,m, l) satisfy l ≤ n.

2.2 Ideal Decompositions

The downward-closure of a subset S ⊆ X over a wqo (X,≤) is ↓X def= {x ∈ X |
∃s ∈ S . x ≤ s}. A subset D ⊆ X is downwards-closed if ↓D = D. We write ↓x
for the downward-closure of the singleton set {x}. Well-quasi-orders can also be
characterised by the descending chain condition: a quasi-order (X,≤) is a wqo if
and only if every descending sequence D0 ) D1 ) D2 ) · · · of downwards-closed
subsets Di ⊆ X is finite.

An ideal of X is a non-empty downwards-closed subset I ⊆ X, which is di-
rected : if x, x′ are two elements of I, then there exists y in I with x ≤ y and
x′ ≤ y. Over a wqo (X,≤), any downwards-closed set D ⊆ X has a unique
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decomposition as a finite union of ideals D = I1∪· · ·∪In, where the Ij ’s are mu-
tually incomparable for inclusion [4, 10]. Alternatively, ideals are characterised
as irreducible downwards-closed sets: an ideal is a non-empty downwards-closed
set I with the property that, if I ⊆ D1 ∪D2 for two downwards-closed sets D1

and D2, then I ⊆ D1 or I ⊆ D2.

Example 2.4 (Vector Ideals). Over (Nd,v), observe that ↓u is an ideal for every
u in Nd. Those are however not the only ideals, e.g. I def= {(0, n, 0) | n ∈ N} is
also an ideal. Write Nω

def= N ] {ω} where ω is a new top element; the product
ordering v extends naturally to Ndω. Then the ideals of (Nd,v) are exactly the
downward-closures ↓u inside Nd of vectors u from Ndω. For the previous example,
↓(0, ω, 0) = I.

Although ideals provide finite representations for manipulating downwards-
closed sets, some additional effectiveness assumptions are necessary to employ
them in algorithms. In this paper, we will say that a wqo (X,≤) has effective
ideal representations [see 10, 11, for more stringent requisites] if every ideal can
be represented, and there are algorithms on those representations:

(CI) to check I ⊆ I ′ for two ideals I and I ′,
(II) to compute the ideal decomposition of I ∩ I ′ for two ideals I and I ′,
(CU’) to compute the ideal decomposition of the residual X/x def= {x′ ∈ X |

x 6≤ x′} for any x in X.

Example 2.5 (Effective Representations of Vector Ideals). We shall use vectors
in Ndω as representations. For (CI), given two vectors u and v in Ndω, ↓u ⊆
↓v if and only if u v v. Furthermore, for (II), ↓u ∩ ↓v = ↓w where w(i) def=
min≤(u(i),v(i)) for all 1 ≤ i ≤ d. Finally, for (CU’), if u is in Nd, then Nd/u =⋃

1≤j≤d |u(j)>0 ↓u/j where u/j(i) = ω if i 6= j and u/j(j)
def= u(j)− 1 otherwise.

Crucially for the applicability of our approach, effective ideal representations
exist for most wqos of interest [10, 11].

3 Backward Coverability

Let us recall in this section the generic backward coverability algorithm for well-
structured transition systems [1, 9]. We take a dual view on this algorithm, by
considering downwards-closed sets represented through their ideal decomposi-
tions, instead of the usual view using upwards-closed sets represented through
their minimal elements. We present the generic algorithm, but will illustrate all
the notions using the case of VAS and reset VAS in Sec. 3.2, and derive naive
upper bounds for both in Sec. 3.3—which will turn out optimal for reset VAS.
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3.1 Generic Algorithm

Consider a WSTS (X,→,≤) and a target configuration y from X to be covered.
Define D∗

def= {x ∈ X | ∀y′ ≥ y . x��→∗ y′} as the set of configurations that do
not cover y. The purpose of the backward coverability algorithm is to compute
D∗; solving a coverability instance with source configuration x0 then amounts
to checking whether x0 belongs to D∗. The idea of the algorithm is to compute
successively for every k the set Dk of configurations that do not cover y in k
steps or fewer:

D∗ =
⋂
k

Dk , Dk
def= {x ∈ X | ∀y′ ≥ y . x���→≤k y′} . (1)

These over-approximations Dk can be computed inductively on k by

D0 = X/y , Dk+1 = Dk ∩ Pre∀(Dk) , (2)

where for any set S ⊆ X,

Pre∀(S) def= {x ∈ X | ∀z ∈ X . (x→ z =⇒ z ∈ S)} . (3)

The algorithm terminates as soon as Dk ⊆ Dk+1 (and thus Dk+j = Dk = D∗ for
all j). This is guaranteed to arise eventually by the descending chain condition,
since otherwise we would have an infinite descending chain of downwards-closed
sets D0 ) D1 ) D2 ) · · · .

Correctness. The correctness of the algorithm hinges on the following claim:

Claim 3.1 (Correctness). Equations (1) and (2) define the same Dk.

Proof. By induction on k. For the base case, x���→≤0 y′ for all y′ ≥ y, if and
only if x 6≥ y, i.e. if and only if x is in X/y. For the induction step and for all
y′ ≥ y, x����→≤k+1 y′ if and only if x�

��→≤k y′ and there does not exist any z with
x→ z and z →≤k y′. The former is equivalent to x belonging to Dk by induction
hypothesis. The latter occurs if and only if for all z in X, if x→ z then z���→≤k y′,
i.e. if and only if x belongs to Pre∀(Dk) by induction hypothesis.

Effective Ideal Representations. The algorithm as presented above relies on the
effectiveness of Eq. (2). We are going to use effective representations of the ideal
decompositions of the Dk to this end. Let us first check that we are indeed
dealing with downwards-closed sets:

Claim 3.2 (Downward-closure). For all k, Dk is downwards-closed.

Proof. By induction on k. For the base case, D0 = X/y is downwards-closed. For
the induction step, first observe that, if D is downwards-closed, then Pre∀(D)
is also downwards-closed. Indeed, let x ≤ x′ for some x′ in Pre∀(D). Consider
any z such that x → z. Then by WSTS compatibility, there exists z′ ≥ z
such that x′ → z′. Since x′ belongs to Pre∀(D), z′ belongs to D. Because D is
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downwards-closed, z also belongs to D. This shows x in Pre∀(D) as desired. We
conclude by noting that downwards-closed sets are closed under intersection,
hence Dk+1 = Dk ∩ Pre∀(Dk) is downwards-closed by applying the induction
hypothesis to Dk.

The only additional effectiveness assumption we make is that:

(Pre) the ideal decomposition of Pre∀(D) is computable for all downwards-
closed D.

This is sufficient to compute the ideal decompositions of all the Dk. Indeed,
initially D0 is computed using (CU’). Later, Pre∀(Dk) is computable by (Pre),
and its intersection with Dk is also computable by (II). Finally, recall that, by
ideal irreducibility, I1∪· · ·∪In ⊆ J1∪· · ·∪Jm for ideals I1, . . . , In and downwards-
closed J1, . . . , Jm if and only if for all 1 ≤ i ≤ n there exists 1 ≤ j ≤ m such
that Ii ⊆ Jj . Therefore, the termination check Dk ⊆ Dk+1 is effective by (CI).

3.2 Coverability for VAS and Reset VAS

In order to instantiate the backward coverability algorithm for VAS and reset
VAS, we merely need to prove that they also satisfy the (Pre) effectiveness
assumption: given a downwards-closed D = ↓u1∪· · ·∪↓um for some u1, . . . ,um
in Ndω, compute a finite set of vectors v1, . . . ,vn from Ndω such that Pre∀(D) =
↓v1 ∪ · · · ∪ ↓vn. Using (CI) we can then select the maximal such vj to obtain
incomparable ideals.

Universal Predecessors in VAS. Thanks to (II) and the fact that A is finite
(VAS are finitely branching), we start by reducing our computation to that of
predecessors along a specific action a from A: Pre∀(D) =

⋂
a∈A Prea(D) where

Prea(D) def= {v ∈ Nd | v + a ∈ Nd =⇒ v + a ∈ D} (4)

= {v ∈ Nd | v + a 6∈ Nd} ∪ {v ∈ Nd | v + a ∈ D} (5)

= Nd/θ(a) ∪ {v ∈ Nd | v + a ∈ D} , (6)

where θ(a) def= minv{v ∈ Nd | v + a ∈ Nd} is called the threshold of a and can
be computed for all 1 ≤ i ≤ d by

θ(a)(i) =

{
0 if a(i) ≥ 0
−a(i) otherwise.

(7)

Thus by (CU’) it only remains to compute a representation for the decomposition
of {v ∈ Nd | v + a ∈ D} =

⋃
1≤j≤m{v ∈ Nd | v + a ∈ ↓uj}. For each ideal ↓uj

in the decomposition of D, {v ∈ Nd | v + a ∈ ↓uj} is either the empty set if
uj 6w θ(−a), or ↓(u− a) otherwise, where addition is extended with ω + z = ω
for all z in Z.
Example 3.3. Recall the VAS A÷2 = {(−2, 1)} from Example 2.2. Setting D0 =
↓(ω, 4), the backward coverability algorithm computes the set of all configura-
tions from which A÷2 cannot compute at least 5 in its second component; see
Fig. 1.
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D0 = ↓(ω, 4) D1 = ↓(1, 4) ∪ ↓(ω, 3) D2 = ↓(1, 4) ∪ ↓(3, 3) ∪
↓(ω, 2)

D3 = ↓(1, 4) ∪ ↓(3, 3) ∪
↓(5, 2) ∪ ↓(ω, 1)

D4 = ↓(1, 4) ∪ ↓(3, 3) ∪
↓(5, 2) ∪ ↓(7, 1) ∪ ↓(ω, 0)

D∗=D5 = ↓(1, 4)∪↓(3, 3)∪
↓(5, 2) ∪ ↓(7, 1) ∪ ↓(9, 0)

Fig. 1. The successive Dk for A÷2 with target t = (0, 5).

Universal Predecessors in Reset VAS. The same reasoning holds for reset VAS as
for VAS: Pre∀(D) =

⋂
(a,R)∈A

(
Nd/θ(a) ∪

⋃
1≤j≤m{v ∈ Nd | R(v + a) ∈ ↓uj}

)
.

In order to compute a representation for this last set, given a vector v in Ndω and
R ⊆ {1, . . . , d}, define vR as the vector in Ndω with ω’s in the components of R:

vR(i) def=

{
ω if i ∈ R
v(i) otherwise.

(8)

Then {v ∈ Nd | R(v + a) ∈ ↓uj} (where R(v + a) is defined as in Example 2.4)
is either the empty set if uj

R 6w θ(−a), or ↓
(
uj

R − a
)

otherwise.

Example 3.4. Recall the reset VAS Alog from Example 2.3, in which the first
two vector components are used to encode two control states. Setting

D0 = ↓(1, 0, ω, ω, 1) ∪ ↓(0, 1, ω, ω, 0) ,

the backward coverability algorithm computes as follows the set of all configura-
tions from which Alog cannot compute in its last component either at least 2 in
state (1, 0) or at least 1 in state (0, 1). The interesting part of the computation
for the subsequent discussion occurs from k = 2 to k = 4:

D2 = ↓(0, 0, ω, ω, 1) ∪ ↓(1, 0, 1, 0, 1) ∪ ↓(1, 0, 0, ω, 1) ∪ ↓(1, 0, ω, ω, 0) ∪
↓(0, 1, ω, 0, 0) ∪ ↓(0, 1, 0, ω, 0) ,

D3 = ↓(0, 0, ω, ω, 1) ∪ ↓(1, 0, 1, 0, 1) ∪ ↓(1, 0, 0, 1, 1) ∪ ↓(1, 0, ω, ω, 0) ∪
↓(0, 1, 2, 0, 0) ∪ ↓(0, 1, 0, 1, 0) ,

D4 = ↓(0, 0, ω, ω, 1) ∪ ↓(1, 0, 1, 0, 1) ∪ ↓(1, 0, 0, 1, 1) ∪ ↓(1, 0, 1, ω, 0) ∪
↓(1, 0, ω, 0, 0) ∪ ↓(0, 1, 2, 0, 0) ∪ ↓(0, 1, 0, 1, 0) .
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3.3 Ackermann Upper Bounds

Let us finally show how to bound the running time of the backward coverability
algorithm on VAS and reset VAS. The main ingredient to that end is a combi-
natorial statement on the length of controlled descending chains of downwards-
closed sets.

Controlled Descending Chains. Consider some set X with a norm ‖.‖:X → N.
Given a monotone control function g: N→ N and an initial norm n ∈ N, we say
that a sequence x0, x1, . . . of elements from X is (g, n)-controlled if ‖xi‖ ≤ gi(n)
the ith iterate of g applied to n. In particular, ‖x0‖ ≤ n initially.

This notion can be applied to the descending chain D0 ) D1 ) · · · con-
structed by the backward coverability algorithm for a d-dimensional VAS or
reset VAS A and target vector t ∈ Nd. We define for this ‖.‖ as the infinity
norm on elements and finite subsets of Zdω

def= (Z]{ω})d, i.e. the maximum abso-
lute value of any occurring integer. For instance, ‖{(1, ω, 5), (0, ω, ω)}‖ = 5, and
in Example 2.2 ‖A÷2‖ = 2. When considering a downwards-closed set D with
decomposition ↓u1 ∪ · · · ∪ ↓um, we define ‖D‖ def= ‖{u1, . . . ,um}‖. Hence what
is controlled in a descending chain D0 ) D1 ) · · · is its ideal representation.

Claim 3.5 (Control for VAS and Reset VAS). The descending chain D0 ) D1 )
· · · is (g, n)-controlled for g(x) def= x+ ‖A‖ and n

def= ‖t‖.

Proof. The fact that ‖D0‖ ≤ ‖t‖ follows from (CU’). Regarding the control func-
tion g, observe that taking unions and intersections of ideals using (II) cannot
increase the norm. Hence it suffices to show that ‖Pre∀(D)‖ ≤ ‖D‖+‖A‖ for all
D = ↓u1 ∪ · · · ∪ ↓um. Note that for reset VAS, ‖ujR−a‖ ≤ ‖uj −a‖. Hence for
both VAS and reset VAS, ‖Pre∀(D)‖ ≤ maxa max1≤j≤m(‖Nd/θ(a)‖, ‖uj − a‖).
We conclude by observing that ‖Nd/θ(a)‖ ≤ ‖a‖ ≤ ‖A‖ by (CU’) and ‖uj −
a‖ ≤ ‖uj‖+ ‖a‖ ≤ ‖D‖+ ‖A‖.

Upper Bound. Consider a computation D0 ) D1 ) · · · ) D` = D`+1 of the
backward coverability algorithm for a VAS or a reset VAS. At each step 0 ≤
k ≤ `, the cost of computing Dk+1 from Dk and of checking for termination is
polynomial in ‖A‖ and ‖Dk‖. The difficulty is to evaluate how large ` can be.

The idea here is that, at every step 0 ≤ k < `, there is at least one proper
ideal ↓vk: an ideal appearing in the representation of Dk but not in that of
Dk+1; then ↓vk ⊆ Dk but ↓vk 6⊆ Dk+1. Note that for all 0 ≤ j < k < `,
vj 6v vk, since the contrary would entail ↓vj ⊆ ↓vk ⊆ Dk ⊆ Dj+1. Hence the
sequence (vk)0≤k<` is a bad sequence, which is also controlled by (g, n) according
to Claim 3.5. Using the combinatorial results from [18, Cor. 2.25 and Thm. 2.34]
on such bad sequences, we obtain (see the full paper for details):

Theorem 3.6. (Length Function Theorem for Descending Chains). Let
n > 0. Any (g, n)-controlled descending chain D0 ) D1 ) · · · of downwards-
closed subsets of Nd is of length at most hωd+1(n · d!), where h(x) def= d · g(x).
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Here hα for an ordinal α and base function h denotes the αth Cichoń func-
tion [18]. Each of the ` steps of computation can furthermore be performed in
time polynomial in g`(n).

Since g is primitive-recursive according to Claim 3.5, the overall complexity
for an instance of size n is bounded by ackermann(p(n)) for some primitive-
recursive function p, which lies within the complexity class Ackermann [17].
Such an upper bound is overly pessimistic for VAS, but is actually tight for reset
VAS: coverability for reset VAS is indeed complete for Ackermann [19, 18].

4 Complexity for VAS

We know from Bozzelli and Ganty’s 2ExpTime upper bound [5] for the back-
ward coverability algorithm that the Ackermann upper bound from the pre-
vious section is far from tight in the case of VAS. We show in this section that
the descending chains D0 ) D1 ) · · · computed by the backward coverability
algorithm for VAS enjoy a structural invariant, which we dub ω-monotonicity,
and which is absent from the chains computed for reset VAS. In turn, we show
in Thm. 4.4, that controlled decreasing chains that are ω-monotone are much
shorter, allowing us to derive the desired 2ExpTime bound in Cor. 4.6.

4.1 Transitions Between Proper Ideals

The proof of ω-monotonicity in the case of VAS can be shown directly, but re-
flects a more general proper transition sequence property of the generic backward
coverability algorithm, which we are going to show in the general setting.

Let us first lift the transition relation → of a WSTS (X,→,≤) to work over
ideals. Define for any ideal I of X

Post∃(I) def= {z ∈ X | ∃x ∈ I . x→ z} . (9)

Then ↓Post∃(I) is downwards-closed with a unique decomposition into maximal
ideals. We follow Blondin et al. [2] and write ‘I → J ’ if J is an ideal from the
decomposition of ↓Post∃(I).

Example 4.1 (Transitions over Vector Ideals). In the case of a VAS A, observe
that, if v is a vector from Ndω, then Post∃(↓v) =

⋃
a∈A ↓(v + a). Each such

↓(v + a) is already an ideal. In the case of a reset VAS A, we have similarly
Post∃(↓v) =

⋃
(a,R)∈A ↓R(v + a).

We can now state the result that motivates this subsection:

Claim 4.2 (Proper Transition Sequence). If Ik+1 is a proper ideal of Dk+1, then
there exist an ideal J and a proper ideal Ik of Dk such that Ik+1 → J ⊆ Ik.
Proof. An ideal is proper in Dk if and only if it intersects the set of elements
excluded between steps k and k + 1: by basic set operations, first observe that
(2) is equivalent to

Dk+1 = Dk \ {x ∈ Dk | ∃z 6∈ Dk . x→ z} . (10)
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Moreover, noting D−1
def= X, z in (10) must belong to Dk−1, or x would have

already been excluded before step k. We have therefore Dk+1 = Dk \ Ek where

E−1
def= {x ∈ X | x ≥ y} , Ek

def= {x ∈ Dk | ∃z ∈ Ek−1 . x→ z} . (11)

Consider now a proper ideal Ik+1 of Dk+1: this means Ik+1 ∩Ek+1 6= ∅. This
implies in turn ↓Post∃(Ik+1) ∩ Ek 6= ∅ by (11), thus there exists J such that
Ik+1 → J and J ∩ Ek 6= ∅.

Since Ik+1 ⊆ Dk+1 ⊆ Pre∀(Dk) by (2), we also know that Post∃(Ik+1) ⊆
Dk. By ideal irreducibility, it means that J ⊆ Ik for some ideal Ik from the
decomposition of Dk. Observe finally that Ik∩Ek 6= ∅, i.e. that Ik is proper.

4.2 ω-Monotonicity

For u in Ndω, its ω-set is the subset ω(u) of {1, . . . , d} such that u(i) = ω if
and only if i ∈ ω(u). We say that a descending chain D0 ) D1 ) · · · ) D` of
downwards-closed subsets of Nd is ω-monotone if for all 0 ≤ k < ` − 1 and all
proper ideals ↓vk+1 in the decomposition of Dk+1, there exists a proper ideal
↓vk in the decomposition of Dk such that ω(vk+1) ⊆ ω(vk).

Claim 4.3 (VAS Descending Chains are ω-Monotone). The descending chains
computed by the backward coverability algorithm for VAS are ω-monotone.

Proof. Let D0 ) D1 ) · · · ) D` be the descending chain computed for a VAS
A. Suppose 0 ≤ k < ` − 1 and ↓vk+1 is a proper ideal in the decomposition of
Dk+1. By Claim 4.2, there exists a proper ideal ↓vk in the decomposition of Dk

such that vk+1 + a v vk. We conclude that ω(vk+1) ⊆ ω(vk).
As we can see with Example 3.4 however, the descending chains computed for

reset VAS are in general not ω-monotone: (1, 0, ω, ω, 0) is proper in D3 and has
a proper transition to (0, 1, 0, ω, 0) in D2 using (−1, 1,−2, 1, 0, {3}) from Alog,
but no ideal with {3, 4} as ω-set is proper in D2.

4.3 Upper Bound

We are now in position to state a refinement of Thm. 3.6 for ω-monotone con-
trolled descending chains. For a control function g: N → N, define the function
g̃: N2 → N by induction on its first argument:

g̃(0, n) def= 1 , g̃(m+ 1, n) def= g̃(m,n) + (geg(m,n)(n) + 1)m+1 . (12)

Theorem 4.4 (Length Function Theorem for ω-Monotone Descending
Chains). Any (g, n)-controlled ω-monotone descending chain D0 ) D1 ) · · ·
of downwards-closed subsets of Nd is of length at most g̃(d, n).

Proof. Note that D` the last element of the chain has the distinction of not
having any proper ideal, hence it suffices to bound the index k of the last set
Dk with a proper ideal ↓vk, and add one to get a bound on `. We are going to
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establish by induction on d − |I| that if ↓vk is a proper ideal from the decom-
position of Dk and its ω-set is I, then k < g̃(d− |I|, n), which by monotonicity
of g̃ in its first argument entails k < g̃(d, n) as desired.

For the base case, |I| = d implies that vk is the vector with ω’s in every
coordinate, which can only occur in D0. The inductive step is handled by the
following claim, when setting k < g̃(d − |I| − 1, n) by induction hypothesis for
the last index with a proper ideal whose ω-set strictly includes I:

Claim 4.5. Let I and k < k′ be such that:

(i) for all j ∈ {k + 1, . . . , k′ − 1}, the decomposition of Dj does not contain a
proper ideal whose ω-set strictly includes I;

(ii) the decomposition of Dk′ contains a proper ideal whose ω-set is I.

Then we have k′ − k ≤ (‖Dk+1‖+ 1)(d−|I|).

For a proof, from assumption (ii), by applying the ω-monotonicity for j =
k′−1, k′−2, . . . , k+ 1 and due to assumption (i), there exists a proper ideal ↓vj
in the decomposition of Dj and such that ω(vj) = I for all j ∈ {k + 1, . . . , k′}.
Since they are proper, those k′ − k vectors are mutually distinct.

Consider any such vj . Since Dk+1 ⊇ Dj , by ideal irreducibility there exists a
vector uj in the decomposition of Dk+1 such that vj v uj . We have that ω(uj) =
I, since otherwise uj would be proper at Dj′ for some j′ ∈ {k + 1, . . . , j − 1},
which would contradict assumption (i). Hence ‖vj‖ ≤ ‖uj‖ ≤ ‖Dk+1‖.

To conclude, note that there can be at most (‖Dk+1‖ + 1)(d−|I|) mutually
distinct vectors in Ndω with I as ω-set and norm bounded by ‖Dk+1‖.

Finally, putting together Claim 3.5 (control for VAS), Claim 4.3 (ω-monotonicity),
and Thm. 4.4 (lengths of controlled ω-monotone descending chains), we obtain
that the backward coverability algorithm for VAS runs in 2ExpTime, and in
pseudo-polynomial time if d is fixed.

Corollary 4.6. For any d-dimensional VAS A and target vector t, the backward
coverability algorithm terminates after at most ((‖A‖+ 1)(‖t‖+ 2))(d+1)! steps.
Proof. Let h(m,n) = g̃(m,n)(‖A‖+ 1)(n+ 2) where g(x) = x+ ‖A‖. We have
h(m+1, n) ≤ (h(m,n))m+2, so g̃(m,n) ≤ h(m,n) ≤ ((‖A‖+1)(n+2))(m+1)!.

5 Concluding Remarks

Rackoff’s technique has successfully been employed to prove tight upper bounds
for the coverability problem in VAS and extensions [7, 3, 6, 13, 12]. However, the
technique does not readily generalise to more complex classes of well-structured
transition systems, e.g. where configurations are not vectors of natural numbers.

We have shown that the same complexity bounds can be extracted in a prin-
cipled way, by considering the ideal view of the backward coverability algorithm
for VAS, and by noticing a structural invariant on its computations. Essentially
the same arguments suffice to re-prove several recent upper bounds [7, 6, 13].

This paves the way for future investigations on coverability problems with
large complexity gaps (where different structural invariants will need to be
found).
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