
Energy Games with Resource-Bounded
Environments
Orna Kupferman !

School of Computer Science and Engineering, Hebrew University of Jerusalem, Israel

Naama Shamash Halevy !

School of Computer Science and Engineering, Hebrew University of Jerusalem, Israel

Abstract
An energy game is played between two players, modeling a resource-bounded system and its
environment. The players take turns moving a token along a finite graph. Each edge of the graph is
labeled by an integer, describing an update to the energy level of the system that occurs whenever
the edge is traversed. The system wins the game if it never runs out of energy. Different applications
have led to extensions of the above basic setting. For example, addressing a combination of the
energy requirement with behavioral specifications, researchers have studied richer winning conditions,
and addressing systems with several bounded resources, researchers have studied games with multi-
dimensional energy updates. All extensions, however, assume that the environment has no bounded
resources.

We introduce and study both-bounded energy games (BBEGs), in which both the system and
the environment have multi-dimensional energy bounds. In BBEGs, each edge in the game graph
is labeled by two integer vectors, describing updates to the multi-dimensional energy levels of
the system and the environment. A system wins a BBEG if it never runs out of energy or if its
environment runs out of energy. We show that BBEGs are determined, and that the problem of
determining the winner in a given BBEG is decidable iff both the system and the environment
have energy vectors of dimension 1. We also study how restrictions on the memory of the system
and/or the environment as well as upper bounds on their energy levels influence the winner and the
complexity of the problem.
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1 Introduction

A reactive system interacts with its environment and should behave correctly in all
environments. Synthesis of a reactive system thus corresponds to finding a winning strategy
in a two-player game between the system and the environment. The game is played on a
graph whose vertices are partitioned between the players. Starting from some initial vertex,
the players move a token along the graph: whenever the token is in a vertex owned by
the system, the system decides to which successor to move the token, and similarly for
the environment. Together, the players generate a path in the graph. The choices of the
players correspond to actions that the system and the environment may take, and so the
generated path corresponds to a possible outcome of an interaction between the system and
its environment.

The winning condition in the game is induced by the correctness criteria for the system.
Early work on synthesis focuses on qualitative criteria, typically described by a temporal logic
formula that specifies the allowed interactions [26, 3]. There, the essence of the actions that
the system and the environment take is the way they modify the truth assignment to input
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19:2 Energy Games with Resource-Bounded Environments

and output signals. Accordingly, the edges of the graph are labeled by such assignments,
and the generated path is an infinite word over the alphabet of assignment. The system
wins if this word satisfies the specification. Recent work studies also games with quantitative
objectives. There, the essence of the actions that the system and the environment take is the
way they modify some quantitative measure, such as a budget or an energy level. Accordingly,
the edges of the graph are labeled by updates to the quantitative measure, and the winning
condition refers to properties like its limit sum or average [17].

Energy games belong to the second class of games: the two players model a resource-
bounded system and its environment. Accordingly, each edge of the game graph is labeled by
an integer, describing an update to the energy level of the system that occurs whenever the
edge is traversed. The system wins the game if it never runs out of energy. The term “energy”
may refer to a wide range of applications: an actual energy level, where actions involve
consumption or charging of energy; storage, where actions involve storing or freeing disc
space; money ones, where actions involve costs and rewards to a budget of some economic
entity, and more [11].

Different applications have led to extensions of the above basic setting. For example,
addressing a combination of the energy requirement with behavioral specifications, researchers
have studied energy parity games, whose winning conditions combine quantitative and
qualitative conditions [9, 2]. Then, addressing systems with several bounded resources,
researchers have studied generalized energy games, in which the system player has a multi-
dimensional energy level, the updates along the edges are vectors of integers, and the system
wins if it does not run out of energy in any of its resources.

Two main questions regarding energy games have been studied. The first, called the
unknown initial-credit problem, is the problem of deciding the existence of an initial energy
level that is sufficient for the system to win the game. The second, called the given initial-
credit problem, is the problem of deciding whether a given initial energy level is sufficient for
the system to win. It is shown in [6, 8] that memoryless strategies, namely strategies that
decide how to direct the token based on its current location, are sufficient to win energy
games, and that consequently, both the unknown and the given initial-credit problems are
decidable in NP∩coNP. For multi-dimensional energy games, the unknown initial-credit
problem is coNP-complete [10], whereas the given initial-credit problem (a.k.a. Z-reachability
VASS game) is 2EXPTIME-complete [7, 12, 19].

We introduce and study both-bounded energy games (BBEGs), in which both the system
and the environment have (multi-dimensional) energy bounds. In BBEGs, each edge in the
game graph is labeled by two integer vectors, describing updates to the multi-dimensional
energy levels of the system and the environment. A system wins a BBEG if it never runs out
of energy or if its environment runs out of energy.

Bounded environments are of interest in several paradigms in computer science. For
example, in cryptography, one studies the security of a given cryptosystem with respect to
attackers with bounded (typically polynomial) computational power [24]. In the analysis of
on-line algorithms, one sometimes cares for the competitive ratio of a given on-line algorithm
with respect to requests issued by a bounded adversary [5]. Likewise, studying bounded
rationality in games, bounds are placed on the power of the players. Closer to the work
here is the extension of bounded synthesis [27] to settings where both the system and the
environment have bounds on their size [21]. In addition to better modeling the studied setting,
the bounds are sometimes used in order to obtain decidability or better complexity, and they
can also serve in heuristics, as in SAT-based algorithms for bounded synthesis [13]. Finally,
a setting in which the system and the environment have similar properties (in particular,
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both are bounded) enjoys duality between the players. Adding budget constraints to the
environment makes the players in energy games dual up to the player that moves first and
the definition of who wins when the game continues forever. From a practical point of view,
in many of the scenarios modeled by energy games, the environment is another system, hence
with its own bounds. This includes, for example, a robot that interacts with another robot,
both having bounded batteries, or a consumer that interacts with a company, both having
bounded budgets.

We show that BBEGs are determined, and that the problem of determining the winner
in a given BBEG is decidable iff both the system and the environment have energy vectors
of dimension 1. This is both bad news, as traditional energy games are decidable for all
dimensions [7], and good news, as adding an (unbounded) energy level to the environment
causes even the setting with energy vectors of dimension 1 to include two unbounded
components, as in two-counter machines [25]. In order to show decidability, we relate the
energy level of the environment with the value of a counter in one-counter energy games [1],
which augment energy games with a counter. Once, however, the system or the environment
has an energy vector of dimension 2, we can use the energy level of the other player to store
the sum of the counters, which enable us to simulate a two-counter machine by a BBEG in
which the dimension of the energy vector of one of the players is strictly bigger than 1.

We continue and study how restrictions on the memory of the system and/or the
environment influence the winner and the complexity of the problem. We show that unlike
the case of energy games, where memoryless strategies suffice [6, 8], here the situation is
more complicated, and is also not symmetric: while infinite memory may be needed for
the system, finite-memory strategies are sufficient for the environment. Essentially, this
follows from the different winning criteria for the system and the environment, in particular
the fact that wins of the environment happen in finite prefixes of the interaction. The
memory required for the environment, however, cannot be a-priory bounded. We study the
problem of deciding a winner in BBEGs in which the players are restricted to memoryless or
finite-memory strategies. We show that such games are not determined, and that when both
players are restricted, the problem is ΣP

2 -complete. Also, when only the system is restricted,
the problem is strongly related to reachability problems in vector addition systems with states
(VASS) [18], is decidable, and is in PSPACE for BBEGs in which both the system and the
environment have energy vectors of dimension 1.

Finally, we consider settings in which there is an upper bound on the capacity of the
bounded resources. Such bounds exist in resources like batteries or disc space. In standard
energy games, researchers have extensively studied settings in which the energy level of the
system does not exceed a given maximum capacity [6, 15]. This includes both a semantics in
which an overflow leads to losing the game and a semantics in which an overflow is truncated.
We study this setting in BBEGs, in particular the problem of determining the winner in a
BBEG with energy bounds for one of the players. We show that the problem is reducible to
deciding standard multi-dimensional energy games, and is thus decidable.

Due to the lack of space, some proofs are omitted and can be found in the full version, in
the authors’ URLs.

2 Preliminaries

Both-bounded energy game. A both-bounded energy game (BBEG, for short) is a game
played by two players, Player 1 and Player 2, on a weighted game graph. Each of the players
has an energy vector, and the edges of the graph are labeled with updates to those vectors,
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19:4 Energy Games with Resource-Bounded Environments

applied when the edge is traversed. The vertices of the graph are partitioned into positions
that are owned by Player 1 and positions that are owned by Player 2. The game proceeds
as follows. A token is placed on the initial position of the game graph. The players move
the token along the graph in rounds. In each round, the player that owns the position the
token is placed on chooses an edge from this position, and moves the token along it. Each of
the players has an initial energy vector, which is updated according to the updates along
the edges. The goal of Player 1 is not to run out of energy. The goal of Player 2 is to make
Player 1 run out of energy, without running out of energy herself.

Formally, a BBEG is a tuple G = ⟨S1, S2, sinit, E, d1, d2, x
1
0, x

2
0, τ⟩, where S1 and S2 are

disjoint finite sets of positions, owned by Player 1 and Player 2, respectively. We use S
to denote S1 ∪ S2. Position sinit ∈ S is the initial position; E ⊆ S × S is a set of edges;
for j ∈ {1, 2}, we have that dj ≥ 1 is the dimension of Player j and xj

0 ∈ Ndj is the initial
energy vector of Player j. Finally, τ : E → Zd1 × Zd2 is a cost function. Traversing an edge
e with τ(e) = (x1, x2), updates to the energy vectors of Player 1 and Player 2 by x1 and
x2, respectively. We use τ(e)[1] and τ(e)[2] to denote x1 and x2, respectively. We consider
non-blocking games, i.e., for every position s ∈ S, there is at least one edge leaving s, thus
⟨s, s′⟩ ∈ E, for some s′ ∈ S. We call a BBEG with dimensions d1 for Player 1 and d2 for
Player 2 a (d1, d2)-BBEG.

For an integer n ≥ 1, we denote by [n] the set {1, ..., n}. For a vector u in Zn and i ∈ [n],
we denote by u[i] the i-th component of u. We define the size of G to be the size required
for storing the cost function τ , that is |G| = |E| · (d1 + d2) · log(m), where m is the largest
integer appearing in some energy update vector. Note that since G is non-blocking, the
definition takes the position space into account. Note also the definition assumes that the
updates are given in binary.

Given a BBEG G, we define a run in G to be an infinite sequence r = s1, s2, ... ∈ Sω such
that s1 = sinit and ⟨si, si+1⟩ ∈ E for all i ≥ 1. For a run r = s1, s2... and n ≥ 0, we denote by
rn the prefix of r up to its n-th position. That is, rn = s1, s2, ...sn. We say that n is the length
of rn. For j ∈ {1, 2}, we say that a prefix rn belongs to Player j if sn ∈ Sj . We define the
energy level of Player j up to the n-th position in r to be ej(rn) = xj

0 +
∑n−1

i=0 τ(⟨si, si+1⟩)[j].
Note that ej(rn) is a vector in Zdj . For a vector u in Zn, We use u ≥ 0 to indicate that
u[i] ≥ 0 for all i ∈ [n], and, dually, use u < 0 to indicate that u[i] < 0 for some i ∈ [n].

We say that a sequence c ∈ S∗ + Sω is a computation in G if one of the following holds:
1. c is an infinite run in G, and for every n ≥ 1, we have that e1(cn) ≥ 0 and e2(cn) ≥ 0.
2. There is n ≥ 1 such that c is a finite prefix of length n of a run in G, e1(c) < 0 or

e2(c) < 0, and for every m < n, it holds that e1(cm) ≥ 0 and e2(cm) ≥ 0.
We denote by comp(G) the set of computations in G. For a finite computation c ∈ comp(G)
of length m ∈ N and 0 ≤ n ≤ m, we denote by cn the prefix of c up to its n-th position. We
denote by comp(G) the set of computations in G, by pref(G) the set of prefixes of comp(G),
and by prefj(G), for j ∈ {1, 2}, the set of prefixes that belong to Player j.

Strategies. A strategy for Player j is a function γj : pref j(G) → S, such that for all
p · s ∈ pref j(G) with p ∈ S∗ and s ∈ Sj , we have that ⟨s, γj(p · s)⟩ ∈ E. That is, a strategy
for Player j maps each prefix p · s with s ∈ Sj to a position that has an incoming edge from
s. We say that a computation c = s1, s2, ... ∈ comp(G) is consistent with a strategy γj for
Player j, if for every i ≥ 1 such that ci ∈ pref j(G), it holds that si+1 = γj(ci). Given two
strategies γ1 for Player 1 and γ2 for Player 2, we define the outcome of γ1 and γ2, denoted
outcome(γ1, γ2), to be the single computation that is consistent with both γ1 and γ2. Note
that indeed there is exactly one such computation. Note also that since the domain of a
strategy may be infinite, a general strategy may require infinite memory.



O. Kupferman and N. Shamash Halevy 19:5

Winning Conditions. A computation c is winning for Player 1 if one of the following holds:
1. Player 1 never runs out of energy. That is, c is infinite. Note that if c is infinite, then

for all n ≥ 1, we have that e1(cn) ≥ 0. Thus, Player 1 manages to keep her energy level
non-negative during the infinite computation c.

2. Player 2 runs out of energy before Player 1. That is, there is n ≥ 1 such that c =
s1, s2, ..., sn, it holds that e2(c) < 0, and either e1(c) ≥ 0 or sn−1 ∈ S2. We can think of
the energy updates along the edges as if traversing an edge leaving position in Sj , for
j ∈ {1, 2}, updates first the energy vector of Player j, and then updates the energy vector
of the other player. Thus, Player 2 runs out of energy before Player 1 if the energy level
of Player 2 becomes negative while the energy level of Player 1 is non-negative, or both
energy levels become negative together, but as a consequence of a move made by Player 2.

If none of the two conditions above hold, then c is winning for Player 2. In other words, c is
winning for Player 2 if Player 1 runs out of energy before Player 2. That is, there is n ≥ 1
such that c = s1, s2, ..., sn, e1(c) < 0, and either e2(c) ≥ 0 or sn−1 ∈ S1. Note that while a
computation winning for Player 2 is always finite, a computation winning for Player 1 may
be either finite or infinite.

A strategy γ1 is winning for Player 1 if for every strategy γ2 for Player 2, the computation
outcome(γ1, γ2) is winning for Player 1. Dually, a strategy γ2 is winning for Player 2 if for
every strategy γ1 for Player 1, the computation outcome(γ1, γ2) is winning for Player 2. For
j ∈ {1, 2}, we say that Player j wins in G if she has a winning strategy.

▶ Example 1. Consider the BBEG G in Figure 1. Drawing BBEGs, we describe positions in
S1 and S2 by circles and squares, respectively. The initial position is marked by an incoming
arrow from the initial energy vectors, and edges are labeled with the energy vectors assigned
by the cost function. For example, in G both players start with energy level 0, and the
transition from s2 to s3 does not change the energy level of Player 1, and decreases by 1 the
energy level of Player 2.

We show that Player 1 wins in G. Indeed, if Player 2 always takes the loop on s1, then
Player 1 wins, as the outcome is an infinite computation in which the energy level of Player 1
is always non-negative. Otherwise, Player 2 loops n times in s1, for some n ∈ N, and then
moves to s2. At this point, the energy level of both players is n. Player 1 can then take the
loop on s2 exactly n times, setting both energy levels back to 0. At this point, Player 1 can
take the transition to s3 and make Player 2 lose, since her energy level drops below 0. ◀

0, 0 s1

1, 1

s2 s3
0, 0 0,−1

−1,−1 −1, 0

Figure 1 The game graph G.

Determinacy. A game is determined if in all instances G of the game, either Player 1 wins
in G, or Player 2 wins in G. Since the set of computations that are winning for Player 1 is
closed, we have from [23] that BBEGs are determined. Indeed, if Player 2 does not have a
winning strategy, one can construct a strategy for Player 1 such that every finite-computation
consistent with it is not losing for Player 1. Since the set of winning computations for Player 1
is closed (in the topological sense), this strategy must be winning.

CONCUR 2022



19:6 Energy Games with Resource-Bounded Environments

▶ Remark 2 (Adding structural assumptions). For simplicity of describing computations and
strategies, we define BBEGs without parallel edges. For convenience, we sometimes describe
BBEGs with parallel edges (that is, the graph G may have several, yet finitely many, edges
between two positions, each with a different update). We sometimes also assume that each
transition in the BBEG updates the energy to one player only, or assume that the costs on
the transitions are all in {−1, 0, 1}. As explained in Appendix A.1, these assumptions do
not restrict the generality of our results. In particular, while a translation to BBEGs with
updates in {−1, 0, 1} may involve an exponential blow-up (this is since we define the costs to
be given in binary), we consider such BBEGs only in the context of decidability. ◀

3 Deciding BBEGs

In this section we study the problem of determining the winner in a given BBEG. We give a
clear border for their decidability: determining the winner in (1, 1)-BBEGs is decidable, yet
determining the winner in (d1, d2)-BBEGs is undecidable when d1 ≥ 1 and d2 ≥ 2 or when
d2 ≥ 1 and d1 ≥ 2.

▶ Theorem 3. The problem of determining the winner in (1, 1)-BBEGs is decidable.

Proof. We reduce (1, 1)-BBEGs to one-counter energy games of dimension 1.
A one-counter energy game of dimension 1 is A = ⟨Q1, Q2, δ, δ0⟩, where Q1 and Q2 are

distinct finite sets of positions owned by Player 1 and Player 2, respectively. We use Q to
denote Q1 ∪ Q2. The game A has two transition relations, δ ⊆ Q × {−1, 0, 1}2 × Q and
δ0 ⊆ Q× {−1, 0, 1} × {0, 1} ×Q. A configuration in A is a triple ⟨p, e, c⟩ ∈ Q×Z×N, which
describes a position, energy level, and a counter value. The transition relations δ and δ0
define a relation between successor configurations as follows. A configuration ⟨p′, e′, c′⟩ is
successor of configuration ⟨p, e, c⟩ iff one of the following holds:
1. c′ ≥ 0 and ⟨p, e′ − e, c′ − c, p′⟩ ∈ δ.
2. c = 0 and ⟨p, e′ − e, c′, p′⟩ ∈ δ0.
Note that δ0-transitions can be taken only when the value of the counter is 0, and they can
not decrease the value. Also, δ-transitions can be taken whenever they do not reduce the
value of the counter below 0.

The game proceeds as follows. At each round, the player who owns the current position
chooses a transition, and the new configuration is a successor of the current one. Note that
during the game, the value of the counter is always non-negative. The game terminates and
Player 2 wins if a configuration ⟨p, e, r⟩ with e < 0 is reached. Player 1 wins every infinite
game. It is shown in [1], that given an initial configuration c = ⟨p, e, r⟩, determining the
winner in A from c is decidable.

Given a (1, 1)-BBEG G, we construct a one-counter energy game A with dimension 1, such
that Player 1 wins in G iff Player 1 wins in A. Since determining the winner of one-counter
energy games with dimension 1 is decidable [1], we get decidability for (1, 1)-BBEGs.

Let G = ⟨S1, S2, sinit, E, 1, 1, x1
0, x

2
0, τ⟩. For simplicity, we assume that each transition

in G updates the energy level of only one player, and that the costs on the transitions are
numbers in {−1, 0, 1} (see Remark 2).

We define A = ⟨Q1, Q2, δ, δ0⟩ so that the energy level in A represents the energy of
Player 1 in G, and the counter value represents the energy level of Player 2 in G. For that,
we define Q1 = S1 ∪ {sink}, and Q2 = S2. Now, let Q′

1 = {s ∈ S1 : there is s′ ∈ S such that
⟨s, s′⟩ ∈ E and τ(⟨s, s′⟩) = (0,−1)}, and Q′

2 = {s ∈ S2 : for all s′ ∈ S such that ⟨s, s′⟩ ∈ E,
we have that τ(⟨s, s′⟩) = (0,−1)}. That is, Q′

1 is the set of positions from which Player 1
can decrease the energy level of Player 2, and Q′

2 is the set of positions from which Player 2
must decrease her own energy level.
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We define δ = {⟨s, τ(⟨s, s′⟩)[1], τ(⟨s, s′⟩)[2], s′⟩ : ⟨s, s′⟩ ∈ E} ∪ {⟨sink, 0, 0, sink⟩} and
δ0 = (Q′

1 ∪Q′
2) × {0}2 × {sink}. In Appendix A.2, we prove that Player 1 wins in A from

⟨sinit, x
1
0, x

2
0⟩ iff Player 1 wins in G. Essentially, this follows from the fact we let Player 1

reach a winning sink whenever she can make Player 2 lose her energy, and we force Player 2
to the sink whenever she runs out of energy. ◀

We now show that the positive result in Theorem 3 is tight.

▶ Theorem 4. The problem of determining the winner of BBEGs is undecidable.
Undecidability holds already for (1, 2)-BBEGs or (2, 1)-BBEGs, and when the weights on the
transitions are all vectors over {−1, 0, 1}.

Proof. We start with (1, 2)-BBEGs, and show a reduction from the halting problem of
two-counter machines to our problem. A two-counter machine is a sequence M = (l1, ..., ln)
of commands involving two counters x and y. We refer to {1, ..., n} as the locations of the
machine. The command ln is the halting command, and each command li, for i < n, is of
one of the following forms, where c ∈ {x, y} is a counter and 1 ≤ i, j ≤ n are locations:

inc : c := c+ 1
goto : goto i
test-dec : if c = 0 then goto i else (c := c− 1; goto j)

For the test-dec command, we refer to i as the positive successor of the command, and
refer to j as the negative successor of the command. Since we always check whether c = 0
before decreasing it, the counters never have negative values. For a two-counter machine M ,
the question whether M halts is known to be undecidable [25].

Given a machine M , we construct a game G such that M halts iff Player 2 wins in G. The
reduction idea is as follows: the dimension of Player 1 is one, and the dimension of Player 2
is two. During a computation in G, the energy level of Player 1 is x + y, and the energy
level of Player 2 is (x, y), where x and y are the two counters of M . If M never halts, then
both energy levels remain non-negative during the infinite computation, and thus Player 1
wins. If M reaches the halting command, then we reach a losing position for Player 1, so
Player 2 wins. We now describe the reduction in detail. Given M = (l1, ..., ln), we construct
G = ⟨S1, S2, sinit, E, 1, 2, 0, 02, τ⟩, such that S2 = {1, ..., n}, and S1 = Ltd × {1, 2}, where
Ltd ⊆ {1, .., n} is the set of all locations of the test-dec commands in M . The initial energy
levels are 0 for Player 1 and (0, 0) for Player 2, reflecting the fact that the counters are
initiated to 0. Now, we introduce a gadget for each command li as follows.
1. if li is x := x+ 1, then G includes an edge e = ⟨i, i+ 1⟩ with τ(e) = (1, (1, 0)).
2. if li is y := y + 1, then G includes an edge e = ⟨i, i+ 1⟩ with τ(e) = (1, (0, 1)).
3. if li is goto j, then G includes an edge e = ⟨i, j⟩ with τ(e) = (0, (0, 0)).
4. if li is if x = 0 then goto j else (x := x− 1; goto k), then G includes the gadget described

in Figure 2 (left).
5. if li is if y = 0 then goto j else (y := y − 1; goto k), then G includes the gadget described

in Figure 2 (right).
6. for the halting command, ln, the game G includes an edge e = ⟨n, n⟩ with τ(e) =

(−1, (0, 0)).
These transitions are the only transitions G has. We also define sinit to be 1; that is, the
state corresponding to l1.

CONCUR 2022



19:8 Energy Games with Resource-Bounded Environments

i

(i, 1) (i, 2)k

j

−1, (−1, 0) 0, (0, 0)

0, (0, 0)

−1, (0,−1)

0, (0, 0)

i

(i, 1) (i, 2)k

j

−1, (0,−1) 0, (0, 0)

0, (0, 0)

−1, (−1, 0)

0, (0, 0)

1

Figure 2 The gadgets for x-test-dec (left) and y-test-dec (right) commands.

In Appendix A.3 we prove that the reduction is correct, thus M halts iff Player 2 wins
in G. For this, we first prove that if a player has a winning strategy, then she also has a
winning strategy that follows the instructions. That is, at every step of the computation, the
best move for the current player is the one that leads to the state corresponding to the next
command to be read according to M . Then, we show that the outcome of strategies that
follow the instruction, is such that the energy level of Player 1 stores x+ y, and the energy
level of Player 2 stores (x, y). Then, as the value of the counters is always non-negative and
the position that corresponds to the halting command is losing for Player 1, we get that M
halts iff Player 2 wins in G.

The challenging part in the construction and its proof is to construct the test-dec
gadgets so that a strategy that follows the instruction is indeed dominating, and that the
energy levels indeed maintain the values of the the counters and their sum. Note that
excluding positions induced by the test-dec gadgets, all positions in G belong to Player 2.
In order to understand the idea behind the gadget, consider for example the x-test-dec
gadget, associated with the command if x = 0 then goto j else (x := x− 1; goto k). As the
energy level of Player 2 is (x, y), taking the transition from position i to position k when
x = 0 is a losing action for Player 2, as it updates the x-component of her energy level to −1.
Thus, when x = 0, a dominating strategy for Player 2 takes the transition from position i to
position (i, 1). Then, as the energy level of Player 1 is x+ y, taking the transition from (i, 1)
to (i, 2) when x = 0 is a loosing action for Player 1. Indeed, after y traversals in the loop in
position (i, 2), the energy levels of the players become 0 and (0, 0), causing Player 1 to lose
in the next round. Thus, when x = 0, a dominating strategy for Player 1 takes the transition
from position (i, 1) to position j. In addition, the energy levels of the players does not change
when the token moves from position i to j. Similar considerations show that when x ̸= 0, a
dominating strategy for Player 2 takes the transition from position i to position k, which
involves an update to the energy levels that corresponds to the decrement of x by 1.

We continue and prove undecidability for (2, 1)-BBEGs. We show a similar reduction
from the halting problem of two-counter machines. Take G = ⟨S1, S2, sinit, E, 1, 2, 0, (0, 0), τ⟩
the BBEG used above, and consider the BBEG G′ = ⟨S2, S1, sinit, E, 2, 1, (0, 0), 0, τ ′⟩, where
τ ′(⟨s, s′⟩) = (τ(⟨s, s′⟩)[2], τ(⟨s, s′⟩)[1]) for all ⟨s, s′⟩ ∈ E, s ̸= n, and τ ′(n, n) = ((−1, 0), 0).
That is, G′ obtained from G by switching the dimensions of the players, their initial energy
vectors, the updates on the edges and the sets of positions. Consequently, also in G′, a
dominating strategy for the players is consistent with the commands, it implies that the
energy level of Player 1 is (x, y), the energy level of Player 2 is x+ y, and since the sink n is
losing for Player 1, we get that M halts if and only if Player 2 wins in G′. ◀

It is easy to extend Theorem 4 to bigger dimensions, by adding to the energy vectors
components whose energy values are not updated during the computation. Thus, by
Theorems 3 and 4, determining the winner of (d1, d2)-BBEGs is decidable iff d1 = d2 = 1.
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4 BBEGs with finite-memory strategies

In this section we study BBEGs in which the memory used in the strategies of the players is
bounded. Following [13], we consider two types of finite-memory strategies. The first type
bounds the number of states of a transducer that induces the strategy. The second type
is position-based, and bounds the number of memory states with which we can refine each
position of the BBEG. In particular, a memoryless strategy is a position-based strategy in
which no refinement is allowed. Below we describe the two types formally.

An I/O-transducer is a tuple M = ⟨I,O,Q, q0, δ, L⟩, for an input alphabet I, an output
alphabet O, a finite set of states Q, an initial state q0 ∈ Q, a transition function δ : Q×I → Q,
and a labelling function L : Q → O. We extend the transition function δ to words in I∗ in
the expected way, thus δ∗ : Q × I∗ → Q is such that for all q ∈ Q, p ∈ I∗, and i ∈ I, we
have that δ∗(q, ϵ) = q, and δ∗(q, p · i) = δ(δ∗(q, p), i). The transducer M induces a strategy
γM : I∗ → O, where for all p ∈ I∗, we have that γM(p) = L(δ∗(q0, p)).

Consider a BBEG G = ⟨S1, S2, sinit, E, d1, d2, x
1
0, x

2
0, τ⟩. Let S = S1 ∪ S2. We say that a

strategy γj for Player j in G has finite-memory if it can be defined by an S/S-transducer
(or transducer, when S is clear from the context). The strategy corresponding to M is
defined by γj(p) = L(δ∗(q0, p)), for all p ∈ pref j(G). We say that an S/S-transducer
M = ⟨S, S,Q, q0, δ, L⟩ refines G, if the states of M refine the positions of G. Formally,
Q = S ×M for some finite set of memory states M , q0 = ⟨sinit,m0⟩ for some m0 ∈ M , and
for all s1, s2 ∈ S and m1 ∈ M , it holds that δ(⟨s1,m1⟩, s2) = ⟨s2,m2⟩ for some m2 ∈ M . We
say that a strategy for Player j is memoryless, if it is induced by a transducer that refines G
with |M | = 1, thus, Q = S. Note that one can refer to a memoryless strategy for Player j as
a function γj : Sj → S.

For m1,m2 ≥ 1, we say that Player 1 (m1,m2)-wins in G, if she has a strategy induced
by a transducer with m1 states, that is winning against all strategies for Player 2 that are
induced by a transducer with m2 states. The definition for Player 2 (m1,m2)-winning is
similar. All our results on (m1,m2)-winning apply also to transducers that refine G (see
Remark 15). Note that a general BBEG corresponds to m1 = m2 = ∞. Of special interest
are also settings in which only one of m1 or m2 is ∞, corresponding to BBEGs where only
one player has a memory bound.

4.1 Properties of BBEGs with finite-memory strategies
Recall that in energy games with no resource-bounds on the environment, it is sufficient
to consider memoryless strategies. We first show that the situation in BBEGs is more
complicated, and is also not symmetric: while infinite memory may be needed for Player 1,
finite-memory strategies are sufficient for Player 2. Essentially, this follows from the fact
that a win of Player 2 is a co-safety property: when Player 2 wins, she does so in a finite
computation.

▶ Theorem 5. There is a game G such that Player 1 (∞,∞)-wins G, but for all m1 ≥ 1,
Player 2 (m1,∞)-wins G. On the other hand, for every BBEG G, if Player 2 (∞,∞)-wins
G, then there is m2 ∈ N such that Player 2 (∞,m2)-wins G.

Proof. For the first claim, consider the game G described in Example 1. We saw that
Player 1 has a (general) winning strategy. On the other hand, for every strategy γ1 for
Player 1 that is based on a transducer with m1 states, the (finite-memory) strategy γ2 for
Player 2 that loops m1 + 1 times in s1 and then moves to s2 is winning for Player 2 (see
proof in the full version). We continue to the second claim. Intuitively, it follows from the
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19:10 Energy Games with Resource-Bounded Environments

fact that all the computations in which Player 2 wins are finite. Formally, let G be a BBEG
in which Player 2 wins, and let γ2 be a winning strategy. Consider the unfolding of the game
G in which Player 2 plays γ2. The unfolding is a tree T γ2

G in which each node is a prefix of a
computation that is consistent with γ2. Since Player 2 wins, every such a computation is
finite, thus every path in T γ2

G is finite. Since the degree of T γ2
G is bounded, we get that T γ2

G

is a finite tree, which induces a finite-memory winning strategy for Player 2. ◀

Since finite-memory strategies are sufficient for Player 2 to win, a natural question is
whether there is a “bounded-size property” for Player 2’s strategy, in particular whether she
can win with a memoryless strategies. Such properties exist in several other settings. For
example, in synthesis of an LTL formula ψ, we know that if there is an infinite system that
realizes ψ, then there is also a system with at most 22|ψ| states that does it, and the same for
the environment [21, 26, 14]. Thus, (∞,∞)-realizability coincides with (∞, 22|ψ|)-realizability,
(22|ψ|

,∞)-realizability, and (22|ψ|
, 22|ψ|)-realizability. As we now show, in the case of BBEGs,

no bounded-size property exists.

▶ Theorem 6. There is no computable function f : BBEGs → N such that for every BBEG
G, we have that Player 2 (∞,∞)-wins G iff Player 2 (∞, f(G))-wins G.

Proof. In Section 4.2, we are going to show that the problem of deciding whether Player 2
(∞,m2)-wins a BBEG G is decidable for all given BBEGs and bounds m2 ∈ N. Hence, the
existence of a computable function f would lead to decidability of BBEGs of all dimensions,
contradicting Theorem 4. ◀

Recall that BBEGs are determined. As finite-state and memoryless strategies need not be
sufficient to winning a BBEG, we now study determinancy of BBEGs when both players have
bounds on their memory. Formally. we say that a game is determined under finite-memory
strategies or determined under memoryless strategies, if in all instances G of the game, either
Player 1 wins in G, or Player 2 wins in G, when the strategies of both players are restricted to
finite-memory or memoryless strategies, respectively. Note that since the restriction applies
to both players, the two types of determinancy need not imply each other.

▶ Theorem 7. BBEGs are not determined under finite-memory or memoryless strategies.

Proof. We start with finite-memory strategies. Consider the game G described in Example 1.
In the full version, we show that when both players are restricted to finite-memory strategies,
there is no winning player in G.

We continue to memoryless strategies. Consider the (1, 1)-BBEG G described in Figure 3.
In Appendix A.4, we show that there is no winning strategy in G when both players are
restricted to play memoryless strategies. ◀

0, 0 s1 s2

s3

s4

0, 0

1, 1

−1,−1

0,−1 −1, 0

0,−1

1

Figure 3 No player has a memoryless winning strategy.
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4.2 Deciding BBEGs with finite-memory strategies
In this section we study the problem of deciding the winner in a given BBEG in which
at least one player is restricted to finite-memory strategies. We show that the problem is
decidable for BBEGs of all dimensions. We start with BBEGs with memoryless strategies
and show that deciding whether Player 1 has a memoryless strategy that is winning against
every memoryless strategy for Player 2 is ΣP

2 -complete. We first prove the following lemma,
about deciding the winner given strategies for the players. The proof, in the full version, is
based on the fact that outcome(γ1, γ2) is a simple lasso, and one can determine the winner
by analyzing the updates to the energy levels along the prefix and the cycle of the lasso.

▶ Lemma 8. Given a BBEG and memoryless strategies γ1 and γ2 for Player 1 and Player 2,
respectively, deciding the winner in outcome(γ1, γ2) can be done in polynomial time.

Lemma 8 suggests that deciding whether Player 1 has a memoryless strategy that
is winning against every memoryless strategy for Player 2 can proceed by guessing a
Player 1 strategy and challenging it against a guessed Player 2 strategy. Thus, the problem
can be solved by a nondeterministic polynomial-time Turing machine with an oracle to a
nondeterministic polynomial-time Turing machine. Below we formalize this intuition and
provide also a matching lower bound.

▶ Theorem 9. Deciding whether Player 1 has a memoryless strategy that is winning against
every memoryless strategy for Player 2 is ΣP

2 -complete.

Proof. The upper bound follows directly from Lemma 8 (see details in Appendix A.5).
For the lower bound, we describe a reduction from QBF2, the problem of determining
the truth of quantified Boolean formulas with two alternations of quantifiers, where the
external quantifier is “exists”. Let ψ be a Boolean propositional formula over the variables
x1, ..., xl, y1, ..., ym, and let θ = ∃x1, ..., xl∀y1, ..., ymψ. Also, let X = {x1, ..., xl}, Y =
{y1, ..., ym}, X̄ = {x1, ..., xl}, Ȳ = {y1, ..., ym}, and Z = X ∪ X̄ ∪ Y ∪ Ȳ . By [28], we may
assume that ψ is given in 3DNF. That is, ψ = (z1

1 ∧ z2
1 ∧ z3

1) ∨ ... ∨ (z1
n ∧ z2

n ∧ z3
n), where

for all 1 ≤ i ≤ 3 and 1 ≤ j ≤ n, we have that zi
j ∈ Z. For 1 ≤ j ≤ n, we denote the clause

(z1
j ∧ z2

j ∧ z3
j ) by cj .

Given a formula θ = ∃x1, ..., xl∀y1, ..., ymψ, we construct a (1, 1)-BBEG G such
that θ is true iff Player 1 wins G with a memoryless strategy. In the game G, we
describe the energy levels of the players and updates to the energy levels by bit-vectors
in {−2,−1, 0, 1, 2, 3}n. Updates to the bit-vectors are done in a bit-wise manner, thus
⟨bn, bn−1, ..., b1⟩ + ⟨b′

n, b
′
n−1, ..., b

′
1⟩ = ⟨bn + b′

n, bn−1 + b′
n−1, ..., b1 + b′

1⟩. Our games are
defined so that all reachable energy levels are in {−2,−1, 0, 1, 2, 3}n. Each bit vector
v = ⟨bn, bn−1, ..., b1⟩ represents a single value in Z, namely

∑n
i=1 bi · (10)i−1. For example,

the value of ⟨1,−2, 0, 3⟩ is 3 · 1 + 0 · 10 + (−2) · 100 + 1 · 1000 = 803. We say that v is positive
(negative) iff the value it represents is positive (negative), respectively.

The idea behind the reduction is as follows. Each assignment g : X ∪Y → {T, F} induces
a bit-vector vg = ⟨bn, bn−1, ..., b1⟩ ∈ {0, 1, 2, 3}n, such that for all 1 ≤ i ≤ n, the bit bi

indicates how many literals in ci are satisfied by the assignment g. Note that this number
is indeed in {0, 1, 2, 3}. For example, take ψ = (x1 ∧ x2 ∧ y1) ∨ (x1 ∧ x2 ∧ y1), with the
assignment g in which g(x1) = g(x2) = T , and g(y1) = F . Since g satisfies two literals in c1
and three literals in c2, we have that vg = ⟨3, 2⟩.

The game G consists of two parts: an assignment part, and a check part. In the assignment
part, Player 1 assigns values to the variables in X, and then Player 2 assigns values to the
variables in Y . Together, the players generate an assignment g : X ∪ Y → {T, F}, and the
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19:12 Energy Games with Resource-Bounded Environments

energy level of both players is updated in the same way, so that by the end of this part, it is
vg. Note that the assignment g satisfies ψ iff the vector vg contains the bit 3; thus there is
1 ≤ i ≤ n with bi = 3. At the check part, we let Player 2 win if vg does not contain such a
bit. We do this by allowing Player 2 to decrease each bit (in the energy level of both players)
by 0, 1 or 2. Accordingly, if no bit in vg is 3, then Player 2 has a strategy so that by the end
of this process, the energy level of the players is represented by the bit-vector 0n, in which
case Player 2 can force a win. On the other hand, if some bit in vg is 3, then for all strategies
of Player 2, at least one bit is not 0 at the end of this process. In this case, Player 2 loses.

In Appendix A.5, we describe the two parts in detail and prove the correctness of the
reduction. ◀

Note that since under memoryless strategies, BBEGs are not determined, ΠP
2 -completeness

for the dual problem does not follow from Theorem 9. In fact, as we show below, the dual
problem is also ΣP

2 -complete. The proof, in the full version, is similar to the proof of
Theorem 9. In particular, for the lower bound, the game we construct here is obtained from
the game constructed there by switching the ownership of positions, switching between the
cost functions of the players, and by changing the sink to be a winning position for Player 2.

▶ Theorem 10. Deciding whether Player 2 has a memoryless strategy that is winning against
every memoryless strategy for Player 1 is ΣP

2 -complete.

We now show that ΣP
2 -completeness holds also when both players are restricted to

finite-state strategies. Note that while the considerations are similar to these in the proof
of Theorem 9, the lower bound for the memoryless case implies only a lower bound for
the finite-memory case with transducers that refine the game G. There, we can use the
reduction from the proof of Theorem 9 as is, with m1 = |S1| and m2 = |S2|. For general
finite-state strategies, a transducer with |Sj | states, for j ∈ {1, 2}, does not necessarily
induce a memoryless strategy for Player j. In the proof of the theorem, in the full version,
we show that for the specific game G described in the reduction in Theorem 9, Player 1
(|S1|, |S2|)-wins G iff she wins with a memoryless strategy, and similarly for Player 2 and the
game described in the reduction in Theorem 10. Hence, the same reduction can be used.

▶ Theorem 11. Given a BBEG G and m1,m2 ∈ N (given in unary), the problems of
deciding whether Player 1 (m1,m2)-wins and deciding whether Player 2 (m1,m2)-wins in G

are ΣP
2 -complete.

Note that the reductions used in Theorems 9, 10, and 11 generate a (1, 1)-BBEG, thus
ΣP

2 -hardness holds already for them.
We continue and consider BBEGs in which only Player 1 has a memory bound. We show

that the setting is strongly related to vector addition systems with states (VASS), defined
below.

For d ≥ 1, a d-VASS is a finite Zd-labeled directed graph V = ⟨Q,T ⟩, where Q is a finite
set of states, and T ⊆ Q×Zd ×Q is a finite set of transitions. The set of configurations of V
is C = Q× Nd. For a pair of configurations ⟨p1, v1⟩, ⟨p2, v2⟩ ∈ C and t = ⟨p1, z, p2⟩ ∈ T such
that v2 = v1 + z, we write ⟨p1, v1⟩ →t ⟨p2, v2⟩. For c, c′ ∈ C we write c →∗ c′ if c = c′, or if
there is m ≥ 1 such that c0 →t1 c2 →t2 .... →tm cm, for some t1, ..., tm ∈ T and c0, ..., cm ∈ C,
with c0 = c and cm = c′. That is, c →∗ c′ indicates that there is a sequence of successive
configurations from c to c′ in V , and the vector is non-negative in all the configurations
along the sequence. The d-VASS reachability problem is to decide, given a d-VASS V and
configurations c, c′ ∈ C, whether c →∗ c′.
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We are going to reduce questions about (m1,∞)-winning in BBEGs to questions about
VASSs. The underlying idea is as follows. First, once we bound the memory of Player 1, we
can guess a transducer that generates her strategy. The product of the BBEG with such a
transducer results in a one-player BBEG, in which all positions belong to Player 2. As the
evolution of a one-player BBEG does not involve alternation between players, we can model
it by a VASS. Essentially, the configurations of the VASS correspond to positions in the
game along with energy vectors of the players. The winning condition in the BBEG induces
requirement on the VASS, as formalized in the following lemma (see proof in Appendix A.6).

▶ Lemma 12. Given a (d1, d2)-BBEG G in which all the positions are owned by Player 2,
the winner in G can be decided by solving at most d1 instances of (d2 + 1)-VASS reachability.

We now use Lemma 12 in order to decide whether Player 1 (m1,∞)-wins a given BBEG.

▶ Theorem 13. Given a BBEG G and m1 ∈ N, determining whether Player 1 (m1,∞)-wins
G is decidable.

Proof. Let G be a (d1, d2)-BBEG, for some d1, d2 ≥ 1, and consider a transducer T with
state space Q of size m1 that maintains a strategy for Player 1. Let S = S1 ∪S2 be the state
space of G. When Player 1 follows T , the possible outcomes of the game are embedded in the
product G× T . The product has state space S ×Q. Each positions in S1 ×Q has a single
successor: its S-component is determined by the output function of T and its Q-component
is determined by the transition function of T . Therefore, we can refer to the product G× T

as a BBEG all whose positions belong to Player 2. The updates on the edges of the product
BBEG are induced by these in G, and so it is a (d1, d2)-BBEG. By Lemma 12, determining
the winner in G× T can be reduced to solving d1 instances of (d2 + 1)-VASS-reachability,
which is decidable [22].

It follows that determining whether Player 1 (m1,∞)-wins G can be decided by going
over the finitely many candidates transducers T of size m1, and applying the above check to
each of them. ◀

▶ Remark 14 (Complexity). While Theorems 13 only refer to decidability, known complexity
results on VASS can be used in order to give complexity upper bounds in some cases.
Specifically, as 2-VASS reachability is PSPACE-complete [4], and the candidate transducers
T are polynomial in m1, we get that determining whether Player 1 (m1,∞)-wins G is
decidable in PSPACE for (1, 1)-BBEGs with m1 given in unary. ◀

We note that while similar considerations can be used in order to decide whether Player 2
(∞,m2)-wins a given BBEG, for m2 ∈ N (see proof in Appendix A.7), the latter does not
provide a solution to the problem of deciding whether Player 1 (∞,m2)-wins a given BBEG,
which we leave open. Indeed, BBEGs are not (∞,m2)-determined, in the sense that there is
a BBEG G and m2 ∈ N such that neither Player 1 (∞,m2)-wins nor Player 2 (∞,m2)-wins
G. For example, by switching the vertices owned by Player 1 and Player 2 in the BBEG
appearing in Figure 3, we get a BBEG such that Player 1 does not (∞,m2)-wins for all
m2 ∈ N, and Player 2 does not wins with a memoryless strategy, and in particular does not
(∞, 1)-wins.

Finally, we note that, unsurprisingly, even when we fix the size of the strategy of Player 2,
the size of the strategy required for Player 1 to win depends on both the number of positions
in the game and the updates in its transitions, inducing a strict hierarchy. Specifically, in
the full version, we show that for all m1 ∈ N, there is a BBEG Gm1 with 3 states as well as
a BBEG G′

m1
in which all updates are in {−1, 0, 1}, such that Player 1 (m1 + 2, 0)-wins Gm1

and G′
m1

, yet Player 2 (m1 + 1, 0)-wins Gm1 and G′
m1

. Similar results can be shown for the
size of the strategy for Player 2.
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▶ Remark 15 (From general to position-based strategies). Our positive decidability and
complexity results are based on going over candidate strategies for the players. By restricting
attention to strategies that refine the BBEG, these results apply also to position-based
finite-state strategies. In addition, our lower bounds apply already for memoryless strategies,
and so apply also for position-based finite-state strategies. ◀

5 BBEG with Bounded Energy Capacities

So far we studied BBEGs in which the players must keep their energy level non-negative, but
there is no upper bound on the energy they may accumulate. This corresponds to systems in
which there is no bound on the capacity of the energy resource. In many cases (c.f., battery,
disc space), such a bound exists. In this section we study the problem of determining the
winner in BBEGs in which one of the players has a bounded energy capacity. We consider
both a semantics in which an overflow leads to losing the game (losing semantics, for short)
and a semantics in which an overflow is truncated (truncated semantics, for short).

Formally, a one-player-bounded BBEG is G = ⟨S1, S2, sinit, E, d1, d2, x
1
0, x

2
0, τ, j, b⟩, which

extends a BBEG by specifying a player j ∈ {1, 2} and a bound vector b ∈ Zdj . In the losing
semantics, the definition of a winning computation in a one-player-bounded BBEG is similar
to the definition in the case of a BBEG, except that the requirement for the energy to stay
non-negative is replaced, for Player j, by a requirement to stay both non-negative and below
the bound b. Formally, a computation c that is winning for Player j has to satisfy, in addition
to the winning condition of a BBEG, the requirement ej(cn)[i] ≤ b[i] for all n ≥ 1 and
i ∈ [dj ]. In the truncated semantics, the winning condition is as in the underlying BBEG,
yet the energy level of Player j up to the n-th position in a run r = s1, s2, ... is defined
inductively for all i ∈ [dj ] as follows: ej(rn)[i] = min{b[i], ej(rn−1)[i] + τ(⟨si, si+1⟩)[j][i]},
where ej(r0)[i] = xj

0[i].
In Theorem 16 below we show that the problem of deciding whether Player 1 wins a

one-player-bounded BBEG is decidable for BBEGs of all dimensions. Essentially, our solution
is based on expanding the position space of the game to maintain the energy level of Player j.
Consequently, the cost function in the transitions updates the energy level of the other player
only. When j = 2, thus the energy of Player 2 is bounded, we are left with updates to the
energy level of Player 1. Thus, we obtain a standard multi-dimensional energy game, except
that we add a sink that is winning for Player 1 and corresponds to positions in which the
energy level of Player 2 is negative or, in the losing semantics, is above the bound b.

When j = 1, thus the energy of Player 1 is bounded, we obtain a multi-dimensional energy
game in which transitions update the energy level Player 2 only. The game contains a sink,
which is losing for Player 1, and Player 2 wins the game if she can reach the sink without
her energy becoming negative. Thus, the setting is similar to that of multi-dimensional
reachability energy games. By [16], one-dimensional energy-reachability games can be
decided in NP∩coNP, and so our proof boils down to extending their algorithm to the
multi-dimensional case. The full details can be found in Appendix A.8.

▶ Theorem 16. The problem of determining whether Player 1 wins a one-player-bounded
BBEG is decidable.

▶ Remark 17 (Bounding only some of the energy components). In the multi-dimensional
setting, we can consider games in which each player has energy bounds for some of the
components in her energy vector. It is easy to see for for d1, d2 ≥ 1 determining the winner of
a (d1, d2)-BBEG is decidable iff each player has at most one unbounded component. Indeed,
one can extend the position space of a BBEG to remember the value of the (d− 1) + (d− 1)
bounded components, and then deciding (1, 1)-BBEG. ◀
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A Proofs

A.1 Proof of the assumptions in Remark 2

It is easy to see that every BBEG with parallel edges has an equivalent BBEG of linear size
without parallel edges. Indeed, let s, t ∈ S be two positions and let A be the set of edges
from s to t, with updates l1, ..., l|A|. We can add new positions s(s,t)

1 , ..., s
(s,t)
|A| , and edges

{(s, s(s,t)
i ) : 1 ≤ i ≤ |A|} ∪ {(s(s,t)

i , t) : 1 ≤ i ≤ |A|} instead of the parallel edges, with
updates τ(⟨s, s(s,t)

i ⟩) = li and τ(⟨s(s,t)
i , t⟩) = (0d1 , 0d2), for all 1 ≤ i ≤ |A|.

It is also easy to see that every BBEG with has an equivalent BBEG of linear size in
which each transition updates the energy to one player only. The only nontrivial issue in the
decomposition of a transition is that we should first update the energy of the player that
owns the source position. Thus, an edge leaving s ∈ S1, labeled with (x1, x2) and leading to
t ∈ S, can be replaced the two edges ⟨s, us,t⟩ with τ(⟨s, us,t⟩) = (x1, 0d2), and ⟨us,t, t⟩ with
τ(⟨us,t, t⟩) = (0d1 , x2), for a new position us,t. For the case s ∈ S2, the new edges update
first the energy of Player 2.

Finally, we can translate a BBEG to a BBEG in which the updates on the transitions are
all in {−1, 0, 1}. We describe the translation for (1, 1)-BBEGs. A similar translation works
for BBEGs of higher dimensions. Indeed, one can first convert a BBEG to one in which
every transition updates the energy to one player only, as described above, and then replace
an edge labeled with (x1, 0d2) with |x1| edges that update x1 to the energy of Player 1, while
not affecting the energy of Player 2. Similarly, we can handle edges labeled with (0d1 , x2).
Note, however, that since we define the size of a BBEG with the costs on the edges of given
in binary, the resulting BBEG is of size exponential in the size of the original BBEG. Since
we consider BBEGs with updates in {−1, 0, 1} only in the context of decidability, this does
not affect our results.
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A.2 Correctness of the upper-bound reduction in Theorem 3
We prove that Player 1 wins in A from ⟨sinit, x

1
0, x

2
0⟩ iff Player 1 wins in G. First, an infinite

computation in G induces an infinite game in A that never reaches the sink. Also, a finite
computation in G in which Player 1 runs out of energy before Player 2, induces a finite
game in A that is losing for Player 1. Finally, a finite computation in G that reaches a
configuration in which Player 1 can make Player 2 lose, or Player 2 has no choice but to lose
her energy, reaches a position in Q′

1 ∪ Q′
2 with the energy level of Player 2 being 0. The

corresponding game in A reaches Q′
1 ∪Q′

2 with the counter being 0. If the current position
is in Q′

1, Player 1 can use the δ0-transition to the sink and stay there forever. If the current
position is in Q′

2, Player 2 has no choice but to use the δ0-transition and reach the sink.
Thus, Player 1 wins in G iff Player 1 can force an infinite game in A.

A.3 Correctness of the lower-bound reduction in Theorem 4
We prove that the reduction is correct, i.e., the machine M halts iff Player 2 wins in G. We
describe a computation of M by an infinite sequence f = f0, f1, f2, ... ∈ ({1, ..., n} ×N×N)ω,
such that f0 = (1, 0, 0) and for all i ≥ 1, we have that fi[1] is the location of the i-th
command in the computation, and fi[2] and fi[3] are the values of the counters x and y,
respectively, after reading that command. If for some i ≥ 0 we have that fi[1] = n, then
fi+1 = fi. Consider a computation π ∈ comp(G), and let v = v0, v1, ... be the projection of
π on S2. We say that π is consistent if for all i ∈ N, we have that e1(vi) = fi[2] + fi[3] and
e2(vi) = (fi[2], fi[3]). That is, π is consistent if the energy level of Player 1 stores x+ y, and
the energy level of Player 2 stores ⟨x, y⟩.

First, we show that if a player has a winning strategy, then she also has a winning strategy
that follows the instructions. That is, at every step of the computation, the best move for the
current player is the one that leads to the state corresponding to the next command to be
read according to M . For c ∈ {x, y}, denote by Lc

td ⊆ Ltd the set of locations of test-dec
commands that examine counter c. Note that excluding positions induced by the test-dec
gadgets, all positions in G belong to Player 2, and that the position corresponding to the
halting command is losing for Player 1. Also note that all positions except some positions in
the test-dec gadgets are deterministic, that is, have a single transition leaving them.

Recall that for a consistent prefix p, the energy level e2(p) stores ⟨x, y⟩. Accordingly, for
c ∈ {x, y}, we use ec

2(p) to refer to e2(p)[1] when c = x, and to refer to e2(p)[2] when c = y.
Also, we use c̄ to refer to y when c = x, and to refer to x when c = y.

We say that a strategy γ1 for Player 1 is consistent if for every p ∈ pref 1(G) ending in
position (i, 1) for i ∈ Lc

td, if e1(p) > ec̄
2(p), then γ1(p) = (i, 2), and if e1(p) ≤ ec̄

2(p), then
γ1(p) = j, for j that is the positive successor of li. Similarily, we say that a strategy γ2 for
Player 2 is consistent if for every p ∈ pref 2(G) ending in position i ∈ Lc

td, if ec
2(p) = 0, then

γ2(p) = (i, 1), and if ec
2(p) > 0, then γ2(p) = k, for k that is the negative successor of li.

Note that every player has a unique consistent strategy. Let γ1 and γ2 be the consistent
strategies for Player 1 and Player 2, respectively. Let r = outcome(γ1, γ2). We argue that r
is consistent. Let v = v0, v1, ... be the projection of r on S2. We prove that for all i ∈ N, it
holds that e1(vi) = fi[2]+fi[3] and e2(vi) = (fi[2], fi[3]). The proof proceeds by an induction
on i. Initially, f0 = (1, 0, 0), and indeed for all runs in G, the initial position is 1 and the
initial energy levels are 0 for Player 1 and (0, 0) for Player 2.

Let m ≥ 1, and assume that the claim holds for all 0 ≤ i < m. If vm /∈ Ltd, then
Player 2 has a single successor, which corresponds to fm+1[1], and the energy levels are
updated correctly. We now consider the case vm ∈ Lx

td. Denote fm−1[1] = i, fm−1[2] = x,
and fm−1[2] = y. By the induction hypothesis, we have that e1(vm−1) = x + y and
e2(vm−1) = (x, y). We distinguish between two cases:
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1. If x = 0, then following γ2, Player 2 chooses to go to position (i, 1). This move does not
affect the energy level. Since x = 0, then x+ y = y, and following γ1, Player 1 chooses to
go to position j that is the positive successor of li. This transition does not affect the
energy levels either. So, we have that vm = j, e1(vm) = x+ y, and e2(vm) = (x, y), as
required.

2. If x > 0, then, following γ2, Player 2 chooses to go to position k that is the negative
successor of li. This transition decreases by one the the energy level of Player 1 and the
first component in the energy level of Player 2. So, vm = k, e1(vm) = x + y − 1, and
e2(vm) = (x− 1, y), as required.

The case where i ∈ Ly
td is similar.

Let γ1, γ2 be the consistent strategies for Player 1 and Player 2, respectively, and denote
r = outcome(γ1, γ2). We show that if Player 2 plays a strategy δ2 that is not consistent,
then she loses against the consistent strategy γ1 of Player 1.

Assume that Player 1 plays γ1 and Player 2 plays δ2, which is not consistent. Let m be
the minimal index in outcome(γ1, δ2) that deviates from r. That is, m is the minimal index t
such that δ2(rt) ̸= γ2(rt). Let i be the last position in rm. Since all positions in S2 \ Ltd are
deterministic, it must be that i ∈ Ltd. Assume that i ∈ Lx

td. Then, either e2(rm)[0] = 0 and
δ2(rm) = k, for k that is the negative successor of li, or e2(rm)[0] > 0 and δ2(rm) = (i, 1).
Since m is minimal and r is consistent, we get that e1(rm) = x+ y and e2(rm) = (x, y) for
some x, y ∈ N. If x = 0 and δ2(rm) = k, then the first component in the energy level of
Player 2 is decreased below 0, so she loses. If x > 0 and δ2(rm) = (i, 1), then according to
γ1, Player 1 chooses from (i, 1) to go to (i, 2). Since x + y > y, Player 1 wins at the sink
(i, 2). Hence, outcome(γ1, δ2) is winning for Player 1. The case where i ∈ Ly

td is similar.

Since δ2 is not winning for every δ2 ̸= γ2, we get that if Player 2 wins, her winning
strategy must be consistent.

Now, we show that if Player 1 wins, then she can win with γ1. Assume that Player 1
has a winning strategy δ1 ̸= γ1. We show that γ1 is winning for Player 1 too. We already
showed that outcome(γ1, δ2) is winning for Player 1 for every δ2 ̸= γ2. It is left to show that
outcome(γ1, γ2) is winning for Player 1. Let m be the minimal index t in outcome(δ1, γ2) such
that δ1(rt) ̸= γ1(rt). Since all positions in S1\(Ltd×{1}) are deterministic, it must be that rm

ends in position i ∈ Ltd×{1}. Assume that i ∈ Lx
td×{1}. Then, either e1(rm) > e2(rm)[2] and

δ1(rm) = j for j that is the positive successor of li, or e1(rm) ≤ e2(rm)[2] and δ1(rm) = (i, 2).
Since m is minimal and r is consistent, we get that e1(rm) = x + y and e2(rm) = (x, y)
for some x, y ∈ N. If it is the case that e1(rm) > e2(rm)[2], we have that δ1(rm) = j and
γ1(rm) = (i, 2). By going to (i, 2), since x+ y > y, we get that Player 2 loses at (i, 2). Hence,
outcome(γ1, γ2) is winning for Player 1. Also, it cannot be the case that e1(rm) ≤ e2(rm)[2]
and δ1(rm) = (i, 2): since x+ y ≤ y, we get that Player 1 loses at (i, 2), in contradiction to
the fact that δ1 is winning. The case where i ∈ Ly

td × {1} is similar.

By the above, if Player 2 has a winning strategy, it must be consistent, and if Player 1
wins, her consistent strategy is winning. Therefore, the question of determining the winner
in G is reduced to determining the winner of outcome(γ1, γ2). When both players play their
consistent strategies, we have that the energy levels are updated according to the values of
the counters in f . Since the value of every counter is non-negative during the run, so are the
energy levels of the players during the computation. Since the state corresponding to the
halt command is a rejecting sink for Player 1, we have that if M halts, then Player 2 wins in
G. Otherwise, the energy levels of both players, in particular Player 1, remain non-negative
during the infinite computation, and Player 1 wins.
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A.4 Proof of Theorem 7 – memoryless strategies
We prove that when both players are restricted to memoryless strategies, there is no winning
player in the BBEG G described in Figure 3.

First, we show that for every memoryless strategy γ1 for Player 1, there is a memoryless
strategy γ2 for Player 2 such that outcome(γ1, γ2) is winning for Player 2. Note that Player 1
has to choose an outgoing edge only from s2. Let us consider a memoryless strategy γ1 for
Player 1. If γ1(s2) = s3, then for the strategy γ2 for Player 2 that chooses to go from s1 to
s2 by the edge labeled (0, 0), it holds that outcome(γ1, γ2) is winning for Player 2: when
the computation reaches s2, the energy level of Player 1 is 0, so the transition to s3 makes
her lose. If γ1(s2) = s4, then the strategy γ2 for Player 2 that chooses to go from s1 to s2
by the edge labeled (1, 1) is such that outcome(γ1, γ2) is winning for Player 2: when the
computation reaches s4, the energy level of Player 2 is 1, so she can pay 1 to reach s5, which
is a rejecting sink for Player 1.

We continue and show that for every strategy γ2 for Player 2 (in particular a memoryless
strategy), there is a memoryless strategy γ1 for Player 1 such that outcome(γ1, γ2) is winning
for Player 1. Consider a strategy γ2 for Player 2. If by following γ2 Player 2 goes from s1 to
s2 by the edge labeled (0, 0), then a memoryless strategy γ1 for Player 1 with γ1(s2) = s4
is such that outcome(γ1, γ2) is winning for Player 1: the energy level of Player 2 becomes
negative at the transition to s4. If by following γ2 Player 2 goes from s1 to s2 by the edge
labeled (1, 1), then the strategy γ1 for Player 1 with γ1(s2) = s3 is such that outcome(γ1, γ2)
is also winning for Player 1: until the computation reaches s3, the energy level of Player 1
remains non-negative, and s3 is a winning sink for Player 1.

A.5 Missing details in the proof of Theorem 9
For the upper bound, consider a BBEG G = ⟨S1, S2, sinit, E, d1, d2, x

1
0, x

2
0, τ⟩. Memoryless

strategies for the players can be represented by polynomial-length strings. Then, given a
memoryless strategy γ1 for Player 1, the problem of checking whether there is a memoryless
strategy γ2 for Player 2 such that outcome(γ1, γ2) is winning for Player 2 is in NP. Indeed,
given a memoryless strategy γ1 for Player 1, we can decide by a non-deterministic Turing
Machine whether there is a memoryless strategy γ2 for Player 2 such that outcome(γ1, γ2) is
winning for Player 2, by guessing γ2 and applying Lemma 8. So, deciding whether there is a
memoryless strategy γ1 for Player 1 such that for every memoryless strategy γ2 for Player 2
it holds that outcome(γ1, γ2) is winning for Player 1, can be done by a nondeterministic
polynomial-time Turing machine with an oracle to a nondeterministic polynomial-time Turing
machine, and we are done.

We continue to the lower bound and describe the two parts of the BBEG in detail. For
convenience, we describe the BBEG with parallel edges (see Remark 2). Both players start
with the initial energy level 0, which is represented by the bit-vector 0n. The assignment
part is described in Figure 4.

sx1
sx2

....... sxl
sy1

sy2
....... sym check

0,0
bx1

bx1

bx2

bx2

bxl−1

bxl−1

bxl

bxl

by1

by1

by2

by2

bym−1

bym−1

0

1

Figure 4 The assignment part.
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For every literal z ∈ Z, let bz = ⟨bn
z , . . . , b

1
z⟩ ∈ {0, 1}n describe how the bit-vector

vg should be updated when z is assigned T . That is, for all 1 ≤ i ≤ n, if the literal z
appears in the clause ci, then bi

z = 1, and otherwise bi
z = 0. For our example formula

(x1 ∧ x2 ∧ y1) ∨ (x1 ∧ x2 ∧ y1), we have bx1 = ⟨0, 0⟩ and by1 = ⟨0, 1⟩. Since in this part,
the energy levels of both players are updated in the same way, we label each transition in
the figure by a single update. As described in the figure, first Player 1 assigns values to
the variables in X and then Player 2 assigns values to the variable in Y . An assignment
is reflected in the energy levels of both players being updated according to the literal that
is chosen. In our example, if from sy1 Player 2 chooses the transition that corresponds to
assigning T to y1, then the energy level of both players is increased by ⟨0, 1⟩.

We continue to the check part, where all the positions belong to Player 2. The check part
is described in Figure 5. Here too, except for the transition to the sink, the updates to the
energy levels of Player 1 and Player 2 coincide, and we label the transitions in the figure by
a single update.

sn . . . s1 p sink

tn,0 t2,0

tn,−1 t2,−1

tn,−2 t2,−2 t1,−2

t1,0

t1,−1

t1,−1, 0

0, 0

1

Figure 5 The check part.

For every 1 ≤ i ≤ n and d ∈ {0,−1,−2}, let ti,d = 0i−1 · {d} · 0n−(i+1). That is, all the
bits in ti,d are 0, except for the i-th bit, which is d. As described in Figure 5, the check part
consists of a chain of positions si, for n ≥ i ≥ 1, where from si+1 Player 2 proceeds to si

while updating the energy levels by ti,0, ti,−1, or ti,−2. Then, from position p, there is a
single transition with updates t1,−1, 0 to the energy levels. Thus, the least significant bit of
the energy level of Player 1 is decreased by 1, and the energy level of Player 2 is not changed.

We now prove that θ is true iff Player 1 wins in G with a memoryless strategy.
Assume first that θ is true. Then, there is an assignment fX for X such that for every

assignment fY for Y , we have that ψ is true under fX ∪ fY . We show that there is a
memoryless strategy for Player 1 that is winning against every (not necessarily memoryless)
strategy for Player 2. An assignment fX for X induces a memoryless strategy γfX for Player 1
in which for every variable xi such that fX(xi) = T , Player 1 chooses from sxi the transition
labeled bxi , and for every variable xi such that fX(xi) = F , Player 1 chooses from sxi the
transition labeled bxi . We show that γfX is winning for Player 1. Let γ be a strategy for
Player 2, and let fY be the assignment for Y induced by γfX and γ. That is, fY (yi) = T

if γ proceeds from syi with the transition labeled byi in the computation in which Player 1
follows γfX , and fY (yi) = F if γ proceeds from syi with the transition labeled byi . When
the computation that is consistent with γfX and γ reaches the check part, the energy level of
both players is vfX∪fY . Since fX ∪ fY satisfies ψ, we have that there is 1 ≤ i ≤ n such that
the i-th bit of vfX∪fY is 3. Let vp be the bit-vector the players own when reaching p. It is
easy to verify that vp is not all-zero. Let j be the most significant bit in vp that is not 0.
We distinguish between two cases. If the j-th bit of vp is positive, then vp is positive. In this
case, vp + t1,−1 is not negative, and Player 1 can loop in the sink forever and win the game.
Otherwise, the j-th bit of vp is negative, so vp is negative. So, at some point at the check
part, the current bit-vector of the players becomes negative, as a consequence of step made
by Player 2. So Player 2 loses.
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For the second direction, assume that θ is false, and consider a strategy γ for Player 1.
Note that every strategy for Player 1 in G is memoryless. Let fX be the assignment for X
induced by γ. Then, there is an assignment fY for Y such that ψ is false under fX ∪ fY .
Let γfY be the following memoryless strategy for Player 2. First, at the assignment part,
the strategy γfY is consistent with fY . That is, as detailed above, for a position syi the
strategy γfY proceeds with the transition labeled with the update that corresponds to fY (yi).
Let v = ⟨bn, bn−1, ..., b1⟩ be the energy level of both players at the end of the assignment
part. Since ψ is false under fX ∪ fY , then bi ∈ {0, 1, 2} for all n ≥ i ≥ 1. Accordingly, in
the check part, the strategy γfY can choose from si a transition labeled ti,−bi , namely a
transition that decreases the i-th bit of the energy levels of both players to 0. Consequently,
the computation of G that is consistent with γ and γfY reaches the state p with energy level
0, and reaches the sink with a negative energy level for Player 1, which loses.

A.6 Proof of Lemma 12
Let G = ⟨∅, S2, sinit, E, d1, d2, x

1
0, x

2
0, τ⟩ be a BBEG. We construct a VASS V with

configurations that represent a position and energy vectors in G, with target configuration
that represents a position and energy vectors from which Player 2 can win in one move. The
idea is that Player 2 wins in G iff she can force the game to an edge in which the energy
level of Player 1 is low enough at some component to drop below 0, and her own energy level
is high enough to stay non-negative after taking this edge.

Formally, for all k ∈ [d1], we construct the (d2 + 1)-VASS Vk = ⟨Qk, Tk⟩ as follows.
Let Qk = S ∪ {ssink} for some ssink /∈ S, and T

′

k = {⟨u, z, v⟩ : ⟨u, v⟩ ∈ E, for all i ∈
[d2] we have that z[i] = τ(⟨u, v⟩)[2][i], and z[d2 + 1] = τ(⟨u, v⟩)[1][k]}. That is, the vectors
on the transitions in T

′

k represent the update to the energy vector of Player 2 in their first
d2 components, and the update of the k-th component of Player 1 in their last component.
We define the set of transitions T ′′

k = {⟨u, z, ssink⟩ : there is v ∈ S such that ⟨u, z, v⟩ ∈ T
′

k}.
That is, for every transition in T ′

k leaving a state u, there is a transition in T ′′

k leaving u with
the same update and entering ssink. For i ∈ [d2 + 1] and z ∈ Z, let bz

i to be the vector of
dimension d2 + 1 with z in the i-th component, and 0 in all other components. We define
the set of transitions T ′′′

k = {⟨ssink, b
−1
i , ssink⟩ : i ∈ [d2]} ∪ {⟨u, b1

d2+1, u⟩ : u ∈ V \ {ssink}}.
That is, ssink has self loops that can decrease the components that belong to Player 2. Also,
every state but the sink has a self loop that increases the component that belongs to Player 1.
We define the set of transitions of V to be Tk = T

′

k ∪ T
′′

k ∪ T
′′′

k ∪ {⟨ssink, 0d2+1, ssink⟩}. Let
vk

init ∈ Zd2+1 be the vector with vk
init[i] = x2

0[i] for all i ∈ [d2], and vk
init[d2 + 1] = x1

0[k] + 1.
That is, vk

init represents x2
0 in its first d2 components, and x1

0[k] + 1 in its last component.
Note that we added 1 to x1

0[k]. That is because in Vk we want to let the last component
reach 0, if in the corresponding computation in G it becomes negative.

In the full version, we prove that Player 2 wins G iff there is k ∈ [d1] such that
⟨sinit, v

k
init⟩ →∗ ⟨ssink, 0d2+1⟩ in Vk.

A.7 Deciding whther Player 2 (∞, m2)-wins
▶ Theorem 18. Given a BBEG G and m2 ∈ N, determining whether Player 2 (∞,m2)-wins
G is decidable.

Proof. Assume that G is a (d1, d2)-BBEG. As in (m1,∞)-winning for Player 1, we can
consider the product of G with a transducer T for Player 2 with m2 states. This product is a
BBEG all whose positions are owned by Player 1. It is easy to see that Player 1 wins in this
product iff it contains infinite computation in which her energy level is always non-negative,
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or a finite prefix of a computation that leads to a position in which the energy level of
Player 2 is negative in some component while the energy vector of Player 1 along this prefix
is always non-negative. Checking the second condition can be done by a reduction to VASS,
with a construction similar to the one in the proof of Lemma 12. Checking the first condition
can also be reduced to VASS, but is more complicated. So, for the sake of decidability, it is
sufficient to note that the first condition can also be solved by solving a d1-dimensional energy
game, in which we ignore the components that belong to Player 2. From [20, 7], the given
initial-credit problem of d1-dimensional energy game can be solved in (d1 − 1)−EXPTIME,
and is thus decidable.

It follows that for every transducer with m2 states for Player 2, we can check whether
Player 1 wins when Player 2 follows this transducer. Moreover, if Player 1 does not win,
Player 2 does, and so the transducer T induces a winning strategy for her. Thus, Player 2
(∞,m2)-wins G iff she wins with some transducer with m2 states, that is, iff she wins in at
least on of these products, which is decidable. ◀

A.8 Proof of Theorem 16
Let G = ⟨S1, S2, sinit, E, d1, d2, x

1
0, x

2
0, τ, j, b⟩ be a one-player-bounded BBEG. Assume first

that j = 2, thus b ∈ Zd2 is a bound vector for Player 2. We start with the losing semantics and
define the d1-dimensional energy game G′ = ⟨S′

1, S
′
2, ⟨sinit, x

2
0⟩, E′, τ ′⟩ as follows. Let V be

the set of all non-negative vectors in Zd2 that are bounded by b. That is, V = {v ∈ Zd2 : 0 ≤
v[i] ≤ b[i] for all i ∈ [d2]}. Let S′

1 = S1 ×V and S′
2 = S2 ×V . Also, let S = S′

1 ∪S′
2 ∪ {ssink},

for some ssink /∈ S1 ∪ S2. We now define a set of edges E′ ⊆ S′ × S′ and a cost function
τ ′ : E′ → Zd1 . For all e = ⟨s, s′⟩ ∈ E and v, v′ ∈ V such that v′ = v + τ(e)[2], we have
the edge e′ = ⟨⟨s, v⟩, ⟨s′, v′⟩⟩ in E′, with τ ′(e′) = τ(e)[1]. For all e = ⟨s, s′⟩ ∈ E and v ∈ V

such that v + τ(e)[2] /∈ V , we have the edge e′ = ⟨⟨s, v⟩, ssink⟩ in E′, with τ ′(e′) = τ(e)[1].
We also have an edge ⟨ssink, ssink⟩ in E′, with τ ′(⟨ssink, ssink⟩) = 0d1 . Note that the cost
function τ ′ defines the cost for Player 1 only, while S′ maintains the energy level of Player 2.

We claim Player 1 wins in G iff Player 1 wins in G′ with initial energy x1
0. Indeed, every

computation c in G induces a computation c′ in G′, such that the current energy level of
Player 2 in c′ is maintained at the second component of the current position in c′, and the
energy level of Player 1 in c is the same as in c′. Thus, if c is infinite, so is c′. Also, if at
some point during c, Player 2 exceeds her boundaries (by going below 0 or above b at some
component), then c′ reaches ssink, which is a winning position for Player 1. Finally, if at
some point during c, the energy level of Player 1 drops below 0, then so it does in c′. Hence,
in order to decide the winner in G, we can determine the winner in G′. Since the given
initial-credit problem for d1-dimensional energy game is decidable in (d1 − 1)−EXPTIME
[20, 7], we can decide the winner of a one-player-bounded BBEG with j = 2.

Now, in the truncated semantics, since there are finitely-many possible energy vectors for
Player 2, we can also expand the position space to maintain them. The only difference is
that when an overflow in the energy of Player 2 occurs in some components, the computation
stays in positions that correspond to the maximum bound of those components.

We continue to the case j = 1, thus b ∈ Zd1 is a bound vector for Player 1. We describe
the construction for the losing semantics. The extension to the truncated semantics is as in
the j = 2 case.

We define the d2-dimensional energy-reachability game G′ = ⟨S′
1, S

′
2, ⟨sinit, x0⟩, E′, τ ′⟩ as

follows. Let V be the set of all non-negative vectors in Zd1 that are bounded by b. That
is, V = {v ∈ Zd1 : 0 ≤ v[i] ≤ b[i] for all i ∈ [d1]}. Let S′

1 = S1 × V and S′
2 = S2 × V .
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Also, let S = S′
1 ∪ S′

2 ∪ {ssink}, for some ssink /∈ S1 ∪ S2. We now define a set of edges
E′ ⊆ S′ × S′ and a cost function τ ′ : E′ → Zd2 . For all e = ⟨s, s′⟩ ∈ E and v, v′ ∈ V such
that v′ = v+ τ(e)[1], we have the edge e′ = ⟨⟨s, v⟩, ⟨s′, v′⟩⟩ in E′ with τ ′(e′) = τ(e)[2]. For all
e = ⟨s, s′⟩ ∈ E and v ∈ V such that v+τ(e)[1] /∈ V , we have the edge e′ = ⟨⟨s, v⟩, ssink⟩ in E′

with τ ′(e′) = τ(e)[2]. We also have an edge ⟨ssink, ssink⟩ in E′ with τ ′(⟨ssink, ssink⟩) = 0d2 .
Note that the cost function τ ′ defines the cost for Player 2 only, while S′ maintains the
energy level of Player 1. In G′, Player 2 wins if she can reach ssink, while keeping her own
energy vector non-negative. Otherwise, Player 1 wins.

By [16], one-dimensional energy-reachability games can be decided in NP∩coNP. Since we
are interested in the multi-dimensional case, we give here a brief description of an algorithm
that determines the winner in multi-dimensional energy-reachability games: First, note that
without the energy constraints, thus in a plain reachability game played on the game graph
G′ with objective ssink, one can compute in polynomial time the set Attr of winning positions
for the reacher, namely for Player 2. From every position in Attr, Player 2 has a memoryless
winning strategy, called the attractor strategy. Since the strategy is winning a memoryless, it
includes no cycles, and so we can assume that every play that is consistent with this strategy
is a simple path in the graph. Now, adding the energy constraint to the picture, we get that
if Player 2 reaches a position in Attr with energy level that is sufficient for traversing a simple
path in G′ she can win by using her attractor strategy. Moreover, such a sufficient energy
level can be computed, for example |E| · |W |d2 , where |W | is the largest absolute value of an
update, is sufficient. Hence, we can extend the position-space of G′ to maintain the energy
level of Player 2 (with the bound of |E| · |W |d2), and then determine the winner of a plain
reachability game on this extended graph.
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