10 research outputs found

    Exponential periodic attractor of impulsive Hopfield-type neural network system with piecewise constant argument

    Get PDF
    © 2018, University of Szeged. All rights reserved. In this paper we study a periodic impulsive Hopfield-type neural network system with piecewise constant argument of generalized type. Under general conditions, existence and uniqueness of solutions of such systems are established using ergodicity, Green functions and Gronwall integral inequality. Some sufficient conditions for the existence and stability of periodic solutions are shown and a new stability criterion based on linear approximation is proposed. Examples with constant and non-constant coefficients are simulated, illustrating the effectiveness of the results

    Exponential periodic attractor of impulsive Hopfield-type neural network system with piecewise constant argument

    Get PDF
    In this paper we study a periodic impulsive Hopfield-type neural network system with piecewise constant argument of generalized type. Under general conditions, existence and uniqueness of solutions of such systems are established using ergodicity, Green functions and Gronwall integral inequality. Some sufficient conditions for the existence and stability of periodic solutions are shown and a new stability criterion based on linear approximation is proposed. Examples with constant and nonconstant coefficients are simulated, illustrating the effectiveness of the results

    Nonlinear Systems

    Get PDF
    Open Mathematics is a challenging notion for theoretical modeling, technical analysis, and numerical simulation in physics and mathematics, as well as in many other fields, as highly correlated nonlinear phenomena, evolving over a large range of time scales and length scales, control the underlying systems and processes in their spatiotemporal evolution. Indeed, available data, be they physical, biological, or financial, and technologically complex systems and stochastic systems, such as mechanical or electronic devices, can be managed from the same conceptual approach, both analytically and through computer simulation, using effective nonlinear dynamics methods. The aim of this Special Issue is to highlight papers that show the dynamics, control, optimization and applications of nonlinear systems. This has recently become an increasingly popular subject, with impressive growth concerning applications in engineering, economics, biology, and medicine, and can be considered a veritable contribution to the literature. Original papers relating to the objective presented above are especially welcome subjects. Potential topics include, but are not limited to: Stability analysis of discrete and continuous dynamical systems; Nonlinear dynamics in biological complex systems; Stability and stabilization of stochastic systems; Mathematical models in statistics and probability; Synchronization of oscillators and chaotic systems; Optimization methods of complex systems; Reliability modeling and system optimization; Computation and control over networked systems

    The 2nd International Conference on Mathematical Modelling in Applied Sciences, ICMMAS’19, Belgorod, Russia, August 20-24, 2019 : book of abstracts

    Get PDF
    The proposed Scientific Program of the conference is including plenary lectures, contributed oral talks, poster sessions and listeners. Five suggested special sessions / mini-symposium are also considered by the scientific committe

    Electronic Journal of Qualitative Theory of Differential Equations 2021

    Get PDF
    corecore