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Abstract. In this paper we study a periodic impulsive Hopfield-type neural network
system with piecewise constant argument of generalized type. Under general con-
ditions, existence and uniqueness of solutions of such systems are established using
ergodicity, Green functions and Gronwall integral inequality. Some sufficient condi-
tions for the existence and stability of periodic solutions are shown and a new stability
criterion based on linear approximation is proposed. Examples with constant and non-
constant coefficients are simulated, illustrating the effectiveness of the results.
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1 Introduction

1.1 Scope

In [45], A. D. Myshkis noticed that there was no theory for differential equations with discon-
tinuous argument h(t),

x′(t) = f (t, x(t), x(h(t))).

These equations are also called Differential Equations with Piecewise Constant Arguments (in short
DEPCA). The systematic study of problems related to piecewise constant argument began in
the 80’s in [52]. Since then, these equations have been deeply studied by many researchers
of diverse fields like biomedicine, chemistry, biology, physics, population dynamics and me-
chanical engineering. See [17,32,35,43,46]. In [18], S. Busenberg and K. L. Cooke were the first to
introduce a mathematical model that involved such types of deviated arguments in the study
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of models of vertically transmitted diseases, reducing their study to discrete equations. Very
good sources of DEPCA theory are [30, 55].

In [6], M. U. Akhmet considers the equation

x′(t) = f (t, x(t), x(γ(t))),

where γ(t) is a piecewise constant argument of generalized type, that is, given (tk)k∈Z and (ζk)k∈Z

such that tk < tk+1 , ∀k ∈ Z with limk→±∞ tk = ±∞ and tk ≤ ζk ≤ tk+1, then if t ∈ Ik =

[tk, tk+1) , then γ(t) = ζk. These equations are called Differential Equations with Piecewise Con-
stant Argument of Generalized Type (in short DEPCAG). They have continuous solutions, even
when γ(t) is not, producing a recursive law on tk i.e., a discrete equation. These equations
combine discrete and continuous dynamics, this is the reason why they are called hybrids.
Stability, approximation of solutions, oscillation and periodicity have been studied in this con-
text, see [6,13–15,28,31,33,34,36,37,40–42,44,49,50,54]. In the DEPCAG case, when continuity
at the endpoints of intervals of the form Ik = [tk, tk+1) is not considered, i.e when a jump
condition is defined at these points, give rise to Impulsive Differential Equations with Piecewise
Constant Argument of Generalized Type (in short IDEPCAG),

x′(t) = f (t, x(t), x(γ(t))), t 6= tk

∆x|t=tk = Qk(x(t−k )), t = tk.

where ∆x|t=tk = x(tk)− x(t−k ) with x(t−k ) = limt→tk
t<tk

x(t). See [5, 53, 56]. In the last years the

scientific community has been paying much attention to cellular neural networks (CNN’s).
The two main motivation issues are the own theoretical development and the wide applica-
bility of the theory. In the former type of works the focus has been put in the mathematical
foundations, the mathematical models formulation, and the qualitative and numerical analy-
sis of those models, see for instance [16, 26, 27, 38, 58] and the references cited therein. Now,
in the case of applications the topics are disperse, we refer for instance to signal processing,
image processing, pattern recognition. See [9,26,27]. It is well known that we can find several
mathematical models or approaches to describe the behavior in neural networks. The nature
of existing models is diverse and the unification or construction of an hybrid model with all
the distinct optics is a hard problem. However, there are some general distinctions. For in-
stance we distinguish between discrete and continuous models, when the time is considered
as discrete or a continuous variable, respectively. Another general classification is given by
the dynamics of the cells by considering the deterministic or probabilistic behavior. A well
known class of continuous deterministic CNN’s mathematical model is given by the following
nonlinear ordinary differential system

dxi(t)
dt

= −ai(t)xi(t) +
m

∑
j=1

bij f j(xj(t)) + di(t), i = 1, . . . , m, (1.1)

where m corresponds to the number of units in the neural network, xi = xi(t) is the activity
or the membrane potential of the ith cell at time t, di = di(t) is the external input to the ith
cell, ai = ai(t) represents the passive decay rate of the ith cell activity, bij is the connection
or coupling strength of postsynaptic activity of the ith cell transmitted to the jth cell, and
the function f j(xj) is a continuous function representing the output or firing rate of the ith
cell. The construction of (1.1) is given by using the electrochemical properties of the neural
networks and assuming that the circuit is formed by resistors. The analysis of the neural
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dynamic system (1.1) involves the study of several properties like stability, periodic and almost
periodic oscillatory behavior, chaos and bifurcation. See [3, 19, 21–23, 39, 40, 58–61].

Stimulated by two facts some new relevant generalized versions of the (1.1) are recently
formulated. First, by considering that the circuit is constituted by memristors instead of re-
sistors we get that the model equation includes a term with a piecewise argument. Second,
if we consider that the representation of the state-variable trajectories in some experimental
processes, we note that the model solutions are of the type of an impulsive differential equa-
tion (IDE) solution. Then CNNs models of the mixed type IDE-DEPCA can be found in the
mathematical literature of the last decades [5, 8, 13, 56, 57].

1.2 Cellular neural networks with piecewise constant argument

Cellular neural networks (1.1) in the DEPCAG and IDEPCAG cases have been deeply inves-
tigated by many authors. Huang et al. [39] considered the following neural network with
piecewise constant argument

y′i(t) = −ai([t])yi(t) +
m

∑
j=1

bij([t]) f j(yj([t])) + di([t]),

where [·] denotes to the greatest integer function and [t] = k if t ∈ Ik = [k, k + 1), k ∈ N. In
this case tk = γk = k, k ∈N. Some sufficient conditions of existence and attractivity of almost
periodic sequence solution were given for the discrete-time analogue

yi(n + 1) = yi(n)e−ai(n) +
1− ai(n)

ai(n)

(
m

∑
j=1

bij(n) f j(yj(n)) + di(n)

)
.

In [40], Huang et al. investigated the following neural network with piecewise constant argu-
ment

y′i(t) = −aiyi(t) +
m

∑
j=1

bij f j

(
yj

(
δ

[
t
δ

]))
+ di(t),

where δ
[ t

δ

]
= kδ if t ∈ Ik = [kδ, (k + 1)δ), k ∈ N and δ > 0. In this case tk = γk = kδ, k ∈ N.

The authors obtained several sufficient conditions for the existence and exponential attractivity
of a unique δ-almost periodic sequence solution of the following discrete-time neural network

yi((n + 1)δ) = yi(nδ)e−
∫ (n+1)δ

nδ ai(u)du +
m

∑
j=1

(∫ (n+1)δ

nδ
e−
∫ (n+1)δ

s ai(u)du f j(yj(nδ))

)
bij(s)ds

+
∫ (n+1)δ

nδ
e−
∫ (n+1)δ

s ai(u)dudi(s).

In [8], Akhmet et al. obtained some sufficient conditions for the globally asymptotically stable
periodic solution of the following constant coefficients delayed IDEPCAG system:

y′i(t) = −aiyi(t) +
m

∑
j=1

bij f j(yj(t)) +
m

∑
j=1

cijgj(yj(γ(t))) + di, t = tk

∆yi|t=tk = Ii,k(yi(t−k )),

where t, yi ∈ R+, ai > 0, i = 1, 2, . . . , m and γ(t) = tk if tk ≤ t < tk+1, k ∈N.
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In [24], K.-S. Chiu et al. studied some new and simple sufficient conditions for the existence
and uniqueness of periodic solutions of the following DEPCAG system:

y′i(t) = −aiyi(t) +
m

∑
j=1

bij(t) f j(yj(t)) +
m

∑
j=1

cij(t)gj(yj(γ(t))) + di(t),

where γ(t) = γk if tk ≤ γk < tk+1, k ∈ N, θ+ = γk − tk, θ− = tk+1 − γk, and a positive real
number θ such that tk+1 − tk = θ+ + θ− ≤ θ.

Later, in [25], the same author investigated some sufficient conditions for the existence,
uniqueness and globally exponentially stability of solutions of the following IDEPCAG system
with alternately retarded and advanced piecewise constant argument:

y′i(t) = −aiyi(t) +
m

∑
j=1

bij f j(yj(t)) +
m

∑
j=1

cijgj

(
yj

(
m
[

t + l
m

]))
+ di, t 6= tk

∆yi|t=tk = Ji,k
(
yi(t−k )

)
.

In this case tk = mk− l and γk = mk, with 0 ≤ l < k, k ∈N.
Finally, in [1], S. Abbas and Y. Xia investigated existence, uniqueness and exponential

attractivity of almost automorphic solution of the following IDEPCAG system with alternately
retarded and advanced piecewise constant argument:

y′i(t) = −aiyi(t) +
m

∑
j=1

bij(t) f j(yj(t)) +
m

∑
j=1

cij(t)gj

(
yj

(
2
[

t + 1
2

]))
+ di(t), t 6= tk

∆yi|t=tk = Ji,k
(
yi(t−k )

)
.

In this case tk = 2k− 1 and γk = 2k, k ∈N.

1.3 Aim of the paper

The main subjects under investigation in this paper are sufficient conditions for the existence,
uniqueness, periodicity and stability of the following impulsive Hopfield-type neural network
with piecewise constant arguments

y′i(t) = −ai(t)yi(t) +
m

∑
j=1

bij(t) f j(yj(t)) +
m

∑
j=1

cij(t)gj(yj(γ(t))) + di(t), t 6= tk, (1.2a)

∆yi|t=tk = −qi,kyi(t−k ) + Ii,k(yi(t−k )) + ei,k, (1.2b)

for i = 1, 2, . . . , m, where m is the number of neurons in the network,

{tk}k∈N is a sequence of positive real numbers such that there is
a positive number θ̄ such that 0 < tk+1 − tk ≤ θ̄ for all k ∈N,

}
(1.2c)

γ : R+
0 → R+

0 is the piecewise constant function, on every interval,
[tk, tk+1), argument precisely, it is a function such that
γ([tk, tk+1[) = {tk}, for all k ∈N.

 (1.2d)

The length of every discontinuity of yi(t) on t = tk is ∆yi = yi(tk)− yi(t−k )
where yi(t−k ) = lim

t→tk
t<tk

yi(t).

 (1.2e)



Exponential periodic attractor of an impulsive Hopfield-type system 5

The functions and parameters in (1.2a) and (1.2b) have the following meaning:

– The value of the function yi(t) corresponds to the state of the ith unit at time t and the
unknown function yi typically denotes the potential of the ith cell of the network.

– The functions ai(t) > 0, and 0 < qi,k < 1 are the rates of reseting potential for the unit i.

– The functions f j(yi(t)) and gj(yi(γ(t)) represent the measure of the activations to the
incoming potential of unit j on unit i.

– The functions bij(t) and cij(t) represent the activation connection weighs of unit j on
unit i.

– The functions ei and di(t) represent the input from outside on the unit i.

– The functions Ii,k(yi(t−k )) represent the activation connection weighs of the unit i on the
unit i for every impulse, such that Ii,k(yi(t−k )) = limt→tk

t<tk

Ii,k(yi(t)).

– The functions ei,k represent the input from outside on the unit i for every impulse.

Here, N and R+
0 = [0, ∞) denote the sets of natural and nonnegative real numbers, respec-

tively. Note that (1.2) is a perturbed system of the impulsive differential linear nonhomoge-
neous system

y′i(t) = −ai(t)yi(t) + di(t), t 6= tk, (1.3a)

∆yi|t=tk = −qi,kyi(t−k ) + ei,k. (1.3b)

Additional notation has been taken from the standard theory of impulsive and differential
equations with piecewise continuous argument, see for instance [2, 10, 11, 20, 29, 45].

1.4 General assumptions

In this paper in order to obtain the results for (1.2), we consider the following general assump-
tions:

(H1) The functions ai, bij, cij, di are real valued and ω-periodic with ω > 0. Moreover, there
exists p ∈N such that the sequences {tk}k∈N, {qi,k}k∈N, {ei,k}k∈N and {Ii,k}k∈N satisfy

[0, ω] ∩ {tk}k∈N =
{

t1, . . . , tp
}

,

tk+p = tk + ω, qi,k+p = qi,k,

ei,k+p = ei,k, Ii,k+p = Ii,k, ∀k ∈N, ∀i ∈ {1, . . . , m}.

(H2) (Non-critical case) The function ai and the sequence {qi,k}k∈N are such that

p

∏
k=1

(
1− qi,k

)
exp

(
−
∫ ω

0
ai(u)du

)
6= 1, ∀i ∈ {1, . . . , m}.

(H3) The functions f j and gj are Lipschitz, i.e. there exists Lj, L̄j > 0 such that

| f j(u)− f j(v)| ≤ Lj|u− v|, |gj(u)− gj(v)| ≤ L̄j|u− v|, ∀u, v ∈ Rm, ∀j ∈ {1, . . . , m}.
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(H4) The functions Ii,k are Lipschitz, i.e. there exists li,k > 0 such that

|Ii,k(u)− Ii,k(v)| ≤ li,k|u− v|, ∀u, v ∈ Rm, ∀k ∈N, ∀i ∈ {1, . . . , m}.

(H5) The functions f j, gj and Ii,k satisfy f j(0) = gj(0) = Ii,k(0) = 0, (H3) and (H4) for
|u|, |v| ≤ R.

(H6) There exists σ > 0 such that∫ t

s
ai(u)du + ∑

s≤tk<t
ln(1 + qi,k) ≥ σ(t− s), ∀k ∈N, ∀i ∈ {1, . . . , m}.

This condition follows from
ā + ln

(
1 + q+

)
≥ σ,

where ā = mini∈{1,...,m} inft∈R+ ai(t) and q+ = maxi∈{1,...,m} supk∈N qi,k.

Furthermore, in various results of this paper, the following assumptions will be needed:

(H7) We assume that

ρ = sup
n∈N

∫ tn+1

tn

(
b̃(s) + c̃(s)

)
ds < 1,

where b̃(s) and c̃(s) are defined as follows

b̃(s) =
m

∑
i=1

m

∑
j=1
|bij(s)|Li and c̃(s) =

m

∑
i=1

m

∑
j=1
|cij(s)|Li. (1.4)

Here, Li, Li is the notation defined on (H3).

(H8) We consider that

K
(

ωM (b̃ + c̃) + pM
(

l̃
))

< 1, (1.5)

where K is the norm of the Green function of the system (1.2) defined in (3.2), l̃k is
defined as

l̃k =
m

∑
i=1

li,k, (1.6)

and

M (b̃) =
1
ω

∫ ω

0
b̃(u)du, M (l̃) =

1
p

p

∑
k=1

l̃k

denote the means of b̃ and l̃ respectively.
Condition (1.5) follows from

K
(

b̃+ + c̃+ + l̃+
)
< 1.

(H9) There exists σ > 0 such that

ωM
(

b̃ + eθ̄σ c̃
)
+ pM

(
ln(1 + l̃)

)
< σ,

with ω and p as is given on (H1), b̃, c̃ and l̃ the notation in (1.4) and (1.6), respectively.
This condition follows from

b̃+ + eθ̄σ c̃+ + ln(1 + l̃+) < σ.
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Remark 1.1. We stand out the following facts:

(a) The hypothesis (H6) follows from ωM (ai) + pM (ln(1 + qi)) > σ.

(b) In (H8), when ai(t) = ai and qi,k = qi are constants, we can take:

K =
1

1− (1− α)p exp(−ωa)
, a = min

1≤i≤m
ai and α = min

1≤i≤m
qi.

2 Existence and uniqueness of solutions for (1.2)

2.1 A useful Gronwall type result

The following lemma will be adopted throughout this paper and its proof is almost identical
to the verification of Lemma 2.2 in [47] with slight changes which are caused by the impulsive
effect.

Lemma 2.1. Let I an interval and u, η1, η2 be three functions from I ⊂ R to R+
0 such that u is

continuous; η1, η2 are locally integrable and η : {tk} → R+
0 . Let γ(t) be a piecewise constant argument

of generalized type, i.e. a step function such that γ(t) = ζk for all t ∈ Ik = [tk, tk+1) , with tk ≤ ζk ≤
tk+1, ∀k ∈N satisfying

υ+
k =

∫ ζk

tk

(η1(s) + η2(s)) ds ≤ ν = sup
k∈N

υ+
k < 1,

u(t) ≤ u(τ) +
∫ t

τ
(η1(s)u(s) + η2(s)u(γ(s))) ds + ∑

τ≤tk<t
η (tk) u(t−k ).

Then, the inequalities

u(t) ≤
(

∏
τ≤tk<t

(1 + η(tk))

)
exp

(∫ t

τ

(
η1(s) +

η2(s)
1− ν

)
ds
)

u(τ)

u(ζk) ≤ (1− ν)−1u(tk)

are valid for all t ≥ τ.

Corollary 2.2. Let I an interval and u, η1, η2 be three functions from I ⊂ R to R+
0 satisfying the

hypothesis described in Lemma 2.1 and consider the step function defined as γ(t) = tk for all t ∈ Ik =

[tk, tk+1) , ∀k ∈N. If

u(t) ≤ u(τ) +
∫ t

τ

(
η1(s)u(s) + η2(s)u(γ(s))

)
ds + ∑

τ≤tk<t
η(tk)u(t−k )

holds, then the inequality

u(t) ≤
(

∏
τ≤tk<t

(1 + η(tk))

)
exp

(∫ t

τ
(η1(s) + η2(s)) ds

)
u(τ).

is valid for all t ≥ τ.
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2.2 Existence and uniqueness of solutions of (1.2a) for t ∈ [tr, tr+1) with r ∈N

In this section we consider the analysis of (1.2a) with initial condition y(ξ) = y0 and restricted
to the case that ξ, t ∈ [tr, tr+1) with tr and tr+1 two arbitrary consecutive impulsive times. In-
deed, for convenience of the presentation of the results and proofs, we consider the following
system

y′i(t) = −ai(t)yi(t) +
m

∑
j=1

bij(t) f j(yj(t)) +
m

∑
j=1

cij(t)gj(yj(tr)) + di(t), yi(ξ) = y0
i

with arbitrary initial moment ξ ∈ [tr, tr+1), t ∈ [ξ, tr+1) and r ∈N.

 (2.1)

Note that, in the third term of (2.1), we have used the fact that γ(t) = tr for t ∈ [tr, tr+1).
Moreover we note that (2.1) is equivalent to the following integral equation

zi(t) = Hi(z(t), ξ, y0), z(t) = (z1(t), . . . , zm(t)), t ∈ [ξ, tr+1], (2.2)

where

Hi(z(t), ξ, y0)

= exp
(
−
∫ t

ξ
ai(u)du

)
y0

i

+
∫ t

ξ
exp

(
−
∫ t

s
ai(u)du

)( m

∑
j=1

bij(s) f j(zj(s)) +
m

∑
j=1

cij(s)gj(zj(tr)) + di(s)

)
ds.

(2.3)

The following lemmata provide the conditions for the uniqueness and existence of solutions
for (2.1).

Lemma 2.3. Consider that there are solutions of (2.1) for y0 = (y0
1, . . . , y0

m)
T ∈ Rm and ξ ∈ [tr, tr+1].

If (H3) and (H6) are satisfied, then the solution y(t) = y(t, ξ, y0) = (y1(t), . . . , ym(t))T of (2.1) is
unique for each y0 and ξ.

Proof. The proof is developed by contradiction. Indeed, we assume that z2
i and z1

i are two
distinct solutions of (2.2). Then, by application of the hypotheses (H3) and (H6), we have the
estimate

|z2
i (t)− z1

i (t)| ≤
∫ t

ξ
exp

(
−σ(t− s)

)
×
(

m

∑
j=1

∣∣bij(s)
∣∣ Lj

∣∣∣z2
j (s)− z1

j (s)
∣∣∣+ m

∑
j=1

∣∣cij(s)
∣∣ L̄j

∣∣∣z2
j (tr)− z1

j (tr)
∣∣∣) ds.

Then, using the notations (1.4) and ‖ · ‖1 for the sum norm in Rm, we obtain that∥∥z2(t)− z1(t)
∥∥

1 ≤
∫ t

ξ
exp

(
− σ(t− s)

) (
b̃(s)

∥∥z2(s)− z1(s)
∥∥

1 + c̃(s)
∥∥z2(tr)− z1(tr)

∥∥
1

)
ds,

which is rewritten as it follows

u(t) ≤
∫ t

ξ

(
b̃(s)u(s) + c̃(s)u(γ(s))

)
ds with u(t) = exp(σt)

∥∥z2(t)− z1(t)
∥∥

1.

From Lemma 2.1 we deduce that u(t) ≡ 0, since u(ξ) = 0. Now, we have that z2 = z1, which
contradicts our initial assumption. Hence, we have the uniqueness of solutions for (2.2) or
equivalently the uniqueness of solutions for (2.1).
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Lemma 2.4. Let (H3), (H6) and (H7) be satisfied. Then for each y0 = (y0
1, . . . , y0

m)
T ∈ Rm and

ξ ∈ [tr, tr+1), there exists a solution y(t) = y(t, ξ, y0) = (y1(t), . . . , ym(t))T of (2.1) on [ξ, tr+1] such
that y(ξ) = y0.

Proof. In order to prove the lemma, it is enough to show that the equation (2.2) has a unique
solution z(t) = (z1(t), . . . , zm(t))T on [ξ, tr+1]. Indeed, let us define the norm ‖z‖0 =

maxt∈[tr ,tr+1] ‖z(t)‖1 and construct the following sequence {zn
i (t)}n∈N such that

z0
i (t) = Hi(0, ξ, y0) and zn+1

i (t) = Hi(zn
i (t), ξ, y0) for n ∈N,

where Hi is defined in (2.3). By application of (H3), (H6) and using the notation (1.4), we can
see that

‖zn+1(t)− zn(t)‖1 ≤
m

∑
i=1

∫ t

ξ
exp

(
−
∫ t

s
ai(u)du

)
×
(

m

∑
j=1
|bij(s)|Lj|zn

j (s)− zn−1
j (s)|

m

∑
j=1
|cij(s)|Lj|zn

j (tr)− zn−1
j (tr)|

)
ds

≤ ‖zn − zn−1‖0

∫ t

ξ
e−σ(t−s)

(
b̃(s) + c̃(s)

)
ds

≤ ρ‖zn − zn−1‖0,

where ρ is the notation defined on (H7). Now, using mathematical induction, we get that

‖zn+1 − zn‖0 ≤ ρn+1‖z0‖0.

Hence, by (H7), the sequence {zn(t)}n∈N is convergent and its limit satisfies the integral
equation (2.2) on [ξ, tr+1]. The existence is proved.

Remark 2.5. The previous results extend the corresponding constant coefficient case given by
Akhmet et al. in [8].

2.3 Existence and uniqueness of solutions for (1.2) on [t0, t] ⊂ R+
0

Using the impulsive condition, the solutions of (2.1) can be extended inductively on k ∈ N to
construct a solution of (1.2a) on the interval [t0, t]. Indeed, we will give a theorem that allows
us to construct a unique solution of equation (1.2) on [t0, t] ⊂ R+.

Theorem 2.6. Assume that conditions (H3)–(H4), (H6) and (H7) are fulfilled. Then, for (t0, y0) ∈
R+

0 ×Rm, there exists y(t) = y(t, t0, y0) = (y1(t), y2(t), . . . , ym(t))T for t ≥ t0, a unique solution of
(1.2), such that y(t0) = y0.

Proof. We proceed inductively, using the sequence of impulsive times. Indeed, in the following
we describe the first two steps. First, fix t0 ∈ R+

0 . Then, there exists r ∈ N such that
t0 ∈ [tr−1, tr) and by Lemmas 2.3 and 2.4 with ξ = t0 we obtain the unique solution y(t, t0, y0)

on [ξ, tr]. Now, we apply the impulse condition (1.2b) to evaluate uniquely the solution at
t = tr :

yi(tr, t0, y0) = yi(t−r , t0, y0)− qi,ryi(t−r , t0, y0) + Ii,r(y(t−r )) + ei,r

= (1− qi,r)yi(t−r , t0, y0) + Ii,r(yi(t−r , t0, y0)) + ei,r.

Next, on the interval [tr, tr+1] the solution satisfies the ordinary differential equation (2.1) with
ξ = tk and y0

i = yi(tr, t0, y0). Then, by a new application of Lemmas 2.3 and 2.4 we have that
the new system has a unique solution y(t, tr, y(tr, t0, y0)). Thus, by construction, we have the
unique solution of (1.2) on [tr, tr+1]. The mathematical induction completes the proof.
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2.4 Integral equations associated to (1.2)

Let us establish the integral equation associated to (1.2) in the following two lemmas. We will
prove only the first one, the proof for the second one is similar and omitted.

Lemma 2.7. A function y(t) = y(t, t0, y0) = (y1(t), . . . , ym(t))T, where t0 is a fixed real number, is
a solution of (1.2) on R+

0 if and only if it is a solution, on R+
0 , of the following integral equation:

yi(t) = y0
i +

∫ t

t0

(
−ai(s)y(s) +

m

∑
j=1

bij(s) f j(yj(s)) +
m

∑
j=1

cij(s)gj(yj(γ(s))) + di(s)

)
ds

+ ∑
t0≤tk<t

(
(1− qi,k)yi(t−k ) + h̃i,k

(
yi(t−k )

))
,

where h̃i,k
(
yi(t−k )

)
= Ii,k(yi(t−k )) + ei,k, for i = 1, . . . , m, t ≥ t0.

Proof. Sufficient part of this lemma can be easily proved. Therefore, we only prove the neces-
sity part of this lemma. Fix i = 1, . . . , m. Assume that y(t) = (y1(t), . . . , ym(t))T is a solution
of (1.2) on R+

0 . Denote by ϕi the following function

ϕi(t) = y0
i +

∫ t

t0

(
−ai(s)y(s) +

m

∑
j=1

bij(s) f j(yj(s)) +
m

∑
j=1

cij(s)gj(yj(γ(s))) + di(s)

)
ds

+ ∑
t0≤tk<t

(
(1− qi,k)yi(t−k ) + h̃i,k

(
yi(t−k )

))
. (2.4)

It is clear that the expression in the right side exists for all t. Assume that t ∈ (tr−1, tr), then
differentiating ϕi we get

ϕ′i(t) = −ai(t)y(t) +
m

∑
j=1

bij(t) f j(yj(t)) +
m

∑
j=1

cij(t)gj(yj(γ(t))) + di(t).

Also, we have that

y′i(t) = −ai(t)y(t) +
m

∑
j=1

bij(t) f j(yj(t)) +
m

∑
j=1

cij(t)gj(yj(γ(t))) + di(t).

Hence, for t 6= tk, k ∈N, we obtain

(ϕi(t)− yi(t))
′ = 0.

Moreover, it follows from (2.4) that

∆ϕi(tr) = ϕi(tr)− ϕi(t−r ) = −qi,r ϕi(t−r ) + h̃i,r
(

ϕi(t−r )
)

,

which implies that

ϕi(tr) = (1− qi,r) ϕi(t−r ) + h̃i,r
(

ϕi(t−r )
)

. (2.5)

One can see that ϕi(t0) = y0
i . Then, by (2.5), we have that ϕi(t) = yi(t) on [t0, tr), which

implies ϕi(t−r ) = yi(t−r ). Next, using (2.5) and the last equation, we obtain

ϕi(tr) = (1− qi,r) ϕi(t−r ) + h̃i,k
(

ϕi(t−r )
)
= (1− qi,r) yi(t−r ) + h̃i,r

(
yi(t−r )

)
= yi(tr).

Therefore, one can conclude that ϕi(t) = yi(t) for t ∈ [tr, tr+1). Similarly, as shown in the
discussion above, one can also obtain with variation of constant formula that ϕi(t) = yi(t)
on [tr, tr+1]. We can complete the proof by using mathematical induction and a variation of
constant formula.
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Lemma 2.8. A function y(t) = y(t, t0, y0) = (y1(t), . . . , ym(t))T, where t0 is a fixed real number, is
a solution of (1.2) on R+

0 if and only if it is a solution, on R+
0 , of the following integral equation:

yi(t) =
k(t)

∏
l=k(t0)

(1− qi,l) exp
(
−
∫ t

t0

ai(u)du
)

y0
i

+
∫ t

t0

k(t)

∏
l=k(s)

(1− qi,l) exp
(
−
∫ t

s
ai(u)du

)

×
(

m

∑
j=1

bij(s) f j(yj(s)) +
m

∑
j=1

cij(s)gj(yj(γ(s))) + di(s)

)
ds

+ ∑
t0≤tk<t

k(t)

∏
l=k(tk)

(1− qi,l) exp
(
−
∫ t

tk

ai(u)du
)

h̃i,k(y(t−k )),

for i = 1, . . . , m, t ≥ t0, where k = k(t) is the unique k ∈N such that t ∈ [tk, tk+1) .

3 Green function and periodic solutions for (1.2), global and local
conditions

In this section, we will prove the existence and uniqueness of a periodic solution of the CNN
model (1.2). First, we obtain a Green function which reduces the problem to an integral
equation. Then, we prove the existence and uniqueness of a periodic solution in two situa-
tions: under global Lipschitz conditions (H3)–(H4) and under local Lipschitz conditions (H5)
satisfied in the ball B[0, R].

3.1 Green function

Here, we will give the following version of the Poincaré criterion for system (1.2). One can
easily prove the following lemma (see for instance [7]).

Lemma 3.1. Suppose that conditions (H1)–(H4) and (H7) hold. Then, a solution y(t) = y(t, 0, y0) =

(y1, y2, . . . , ym)T of (1.2) with y(0) = y0 is ω-periodic if and only if y(ω) = y0.

Lemma 3.2. Suppose that conditions (H1) and (H2) hold and y is a ω-periodic solution of (1.2). Then
y satisfies the integral equation

yi(t) =
∫ ω

0
Ki(t, s)Fi(s, y(s))ds +

p

∑
k=0

Ki(t, tk)h̃i,k(y(t−k )), (3.1)

where

Fi(t, y(t)) =
m

∑
j=1

bij(t) f j(yj(t)) +
m

∑
j=1

cij(t)gj(yj(γ(t))) + di(t),

h̃i,k(y(t−k )) = Ii,k(yi(t−k )) + ei,k
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Ki(t, s) =

(
1−

p

∏
l=1

(
1− qi,l

)
exp

(
−
∫ ω

0
ai(u)du

))−1

(3.2)

×



k(t)

∏
l=k(s)

(1− qi,l) exp
(
−
∫ t

s ai(u)du
)

, 0 ≤ s ≤ t ≤ ω

k(t)+ω

∏
l=k(s)

(1− qi,l) exp
(
−
∫ t+ω

s ai(u)du
)

, 0 ≤ t < s ≤ ω.

The function Ki is the Green function of the system (1.2).

Proof. Let PCω =
{

ϕ∈PC(R+
0 , Rm) | ϕ(t + ω) = ϕ(t), t ≥ 0

}
be the linear space of ω-periodic

functions. Using Lemma 2.8, one can show that if y ∈ PCω is a ω-periodic solution of the
following system:

y′i(t) = −ai(t)yi(t) + Fi(t, ϕ(t)), t 6= tk, (3.3a)

∆yi|t=tk = −qi,kyi(t−k ) + h̃i,k(ϕ(t−k )), (3.3b)

with i = 1, 2, . . . , m, k = 1, 2, . . . p, then yi(t, 0, y0
i ) is given by

yi(t) =
k(t)

∏
l=1

(1− qi,l) exp
(
−
∫ t

0
ai(u)du

)
y0

i +

t∫
0

k(t)

∏
l=k(s)

(
1− qi,l

)
exp

(
−
∫ t

s
ai(u)du

)
Fi(s, ϕ(s))ds

+ ∑
0≤tk<t

k(t)

∏
l=k(tk)

(
1− qi,l

)
exp

(
−
∫ t

tk

ai(u)du
)

h̃i,k(ϕ(t−k )). (3.4)

Then, evaluating at t = ω we obtain

yi(ω) =
p

∏
l=1

(
1− qi,l

)
exp

(
−
∫ ω

0
ai(u)du

)
y0

i

+
∫ ω

0

p

∏
l=k(s)

(
1− qi,l

)
exp

(
−
∫ ω

s
ai(u)du

)
Fi(s, ϕ(s))ds

+
p

∑
k=1

p

∏
l=1

(
1− qi,l

)
exp

(
−
∫ ω

tk

ai(u)du
)

h̃i,k(ϕ(t−k )).

Now, in order to prove that y is a periodic solution we need to verify that yi(ω) = yi(0) = y0
i .

Indeed, from (3.4) we have that

yi(ω) =
p

∏
l=1

(
1− qi,l

)
exp

(
−
∫ ω

0
ai(u)du

)
y0

i

+

ω∫
0

p

∏
l=k(s)

(
1− qi,l

)
exp

(
−
∫ ω

s
ai(u)du

)
Fi(s, ϕ(s))ds

+
p

∑
k=1

p

∏
l=1

(
1− qi,l

)
exp

(
−
∫ ω

tk

ai(u)du
)

h̃i,k(ϕ(t−k ))

= y0
i
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Thus, (
1−

p

∏
l=1

(
1− qi,l

)
exp

(
−
∫ ω

0
ai(u)du

))
y0

i

=

(∫ ω

0

p

∏
l=k(s)

(
1− qi,l

)
exp

(
−
∫ ω

s
ai(u)du

)
Fi(s, ϕ(s)) ds

+
p

∑
k=1

p

∏
l=1

(
1− qi,l

)
exp

(
−
∫ ω

tk

ai(u)du
)

h̃i,k(ϕ(t−k ))

)
and by (H2) we deduce that the initial condition y0

i is given by

y0
i =

(
1−

p

∏
l=1

(
1− qi,l

)
exp

(
−
∫ ω

0
ai(u)du

))−1

×
(∫ ω

0

p

∏
l=k(s)

(
1− qi,l

)
exp

(
−
∫ ω

s
ai(u)du

)
Fi(s, ϕ(s))ds

+
p

∑
k=1

p

∏
l=1

(
1− qi,l

)
exp

(
−
∫ ω

tk

ai(u)du
)

h̃i,k(ϕ(t−k ))

)
. (3.5)

Then, substituting (3.5) in (3.4) we get

yi(t) =
k(t)

∏
l=1

(
1− qi,l

)
exp

(
−
∫ t

0
ai(u)du

)(
1−

p

∏
l=1

(1− qi,l) exp
(
−
∫ ω

0
ai(u)du

))−1

×
(∫ ω

0

p

∏
l=k(s)

(
1− qi,l

)
exp

(
−
∫ ω

s
ai(u)du

)
Fi(s, ϕ(s))ds

+
p

∑
k=1

p

∏
l=1

exp
(
−
∫ ω

tk

ai(u)du
)

h̃i,k(ϕ(t−k ))

)

+
∫ t

0

k(t)

∏
l=k(s)

(
1− qi,l

)
exp

(
−
∫ t

s
ai(u)du

)
Fi(s, ϕ(s)) ds

+ ∑
0≤tk<t

k(t)

∏
l=k(tk)

(
1− qi,l

)
exp

(
−
∫ t

tk

ai(u)du
)

h̃i,k(ϕ(t−k )), (3.6)

which is a ω-periodic solution of (3.3). Now, if we consider that Ψi is defined as follows

Ψi(t, s) =
k(t)

∏
l=k(s)

(1− qi,l) exp
(
−
∫ t

s
ai(u)du

)
,

from (3.6) we obtain

yi(t) =
∫ ω

0
Ψi(t, s) (1−Ψi(ω, 0))−1 Ψi(ω, s)Fi(s, ϕ(s)) ds

+
p

∑
l=1

(1−Ψi(ω, 0))−1 Ψi(ω, tk)h̃i,k(ϕ(t−k ))

+
∫ t

0
Ψi(t, s)Fi(s, ϕ(s)) ds + ∑

0≤tk<t
Ψi(t, tk)h̃i,k(ϕ(t−k )).
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Finally, we can write the last expression in terms of Hi(t, s) and using (3.2) we get

yi(t) =
∫ ω

0
Hi(t, s)Fi(s, ϕ(s)) ds +

p

∑
k=0

Hi(t, tk)h̃i,k(ϕ(t−k ))

which implies (3.1).

3.2 Global Lipschitz condition

Let ϕ(t) = (ϕ1(t), . . . , ϕm(t))T ∈ PCω. In this section, we use the global Lipschitz condition
(H3)-(H4) and, by application of Banach fixed point theorem, we will prove that (1.2) has a
unique ω-periodic solution y∗.

Theorem 3.3. Assume that conditions (H1)–(H4) and (H6)–(H8) are valid. Then system (1.2) has a
unique ω-periodic solution y∗.

Proof. Let us consider the operator N from PCω to PCω such that for each ϕ ∈ PCω, is defined
as follows

(N ϕ)i (t) =
ω∫

0

Hi(t, s)

(
m

∑
j=1

bij(s) f j(ϕj(s)) +
m

∑
j=1

cij(s)gj(ϕj(γ(s))) + di(s)

)
ds

+
p

∑
i=1

Hi(t, tk)
(

Ii,k(ϕi(t−k ) + ei,k
)

, i = 1, . . . , m. (3.7)

In the view of (H1)–(H4), (H6)–(H7) and Lemma 3.1 we can deduce that N ϕ ∈ PCω for all
ϕ ∈ PCω. We shall show that N is a contraction mapping. If ϕ, ψ ∈ PCω, then

‖N ϕ(t)−N ψ(t)‖ =
m

∑
i=1
|(N ϕ)i (t)− (N ψ)i (t)|

≤
m

∑
i=1

{∫ ω

0
|Hi(t, s)|

(
m

∑
j=1

∣∣bij(s)
∣∣ Lj

∣∣ϕj(s)− ψj(s)
∣∣+ m

∑
j=1

∣∣cij(s)
∣∣ Lj

∣∣ϕj (γ(s))− ψj (γ(s))
∣∣)ds

+
p

∑
k=1

Hi(t, tk)li,k
∣∣ϕi(t−k )− ψi(t−k )

∣∣ }

≤ K

{ ω∫
0

(
b̃(s) ‖ϕ(s)− ψ(s)‖+ c̃(s) ‖ϕ (γ(s))− ψ (γ(s))‖

)
ds +

p

∑
k=1

lk
∥∥ϕ(t−k )− ψ(t−k )

∥∥}.

Hence,

‖N ϕ−N ψ‖ ≤ K
[
ωM

(
b̃ + c̃

)
+ pM

(
l̃
)]
‖ϕ− ψ‖ ,

Consequently, by (H8) and since (PCω, ‖ϕ‖) is a Banach space of ω-periodic functions, with
the norm ‖ϕ‖ = max0≤t≤ω |ϕ(t)|, we can use Banach fixed point theorem to conclude that N

has a unique fixed point ϕ ∈ PCω, i.e. such that N ϕ = ϕ, which implies that (1.2) has a
unique ω-periodic solution.
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3.3 Local Lipschitz condition

Suppose now that the local Lipschitz condition (H5) is valid on the ball B[0, R] = {φ ∈
PCω | ‖φ‖ ≤ R}. Also suppose that condition (H2) holds. Let ϕi, the unique solution ω-
periodic of linear system (1.3), defined as follows

ϕi(t) =
∫ ω

0
Hi(t, s)di(s)ds +

p

∑
k=1

Hi(t, tk)ei,k (3.8)

and suppose that ϕ = (ϕ1, ϕ2, . . . , ϕm)
T satisfies

‖ϕ‖ < R. (3.9)

Then, for r = R− ‖ϕ‖ , we deduce that B[ϕ, r] = {φ ∈ PCω | ‖φ− ϕ‖ ≤ r} ⊂ B[0, R]. More-
over, assume that the local Lipschitz condition (H5) holds on B[0, R]. Now, if we consider
again the operator N used in the proof of the Theorem 3.3 (see (3.7)) on B[ϕ, r], i.e. N :
B[ϕ, r]→ PCω, we note that N is a contraction mapping and also is invariant on B[ϕ, r], since

‖N φ− ϕ‖ ≤ γ ‖φ‖ ≤ γ (‖φ− ϕ‖+ ‖ϕ‖) ≤ 2γr,

whenever

2γ = 2K
(
M (b̃ + c̃) + pM (l̃)

)
≤ 1. (3.10)

Thus, the fixed point is in B[ϕ, r] and we have the following result which is more general than
Theorem 3.3.

Theorem 3.4. Assume that the conditions (H1)–(H2), (H5)–(H7) and (3.10) hold, and ϕ given by (3.8)
satisfies (3.9). Then, the system (1.2) has a unique ω-periodic solution y∗ on B[ϕ, r], for r = R− ‖ϕ‖.

4 Exponential attraction

When neural networks are used for the solution of optimization problems, one of the funda-
mental issues in the design of a network is concerned with the existence of a unique globally
asymptotically stable equilibrium state of the network. In this section, we will give sufficient
conditions for the global asymptotic stability of the periodic solution, y∗, of (1.2) based on
linearization [51]. The system (1.2) can be simplified as follows. Let us consider the change of
variable z = y− y∗. Then, z satisfies the following system

z′i(t) = −ai(t)zi(t) +
m

∑
j=1

bij(t) f̂ j(zj(t)) +
m

∑
j=1

cij(t)ĝj(zj(γ(t))), t 6= tk (4.1a)

∆zi|t=tk = −qi,kzi(t−k ) + Îk(zi(t−k )), (4.1b)

where f̂ j, ĝj and Îk are given by

f̂ j(zj(t)) = f j(zj(t) + y∗j (t))− f j(y∗j (t)), ĝj(zj(t)) = gj(zj(t) + y∗j (t))− gj(y∗j (t)), (4.1c)

Îk(zi(t−k )) = Ik(zi(t−k ) + y∗i (t
−
k ))− Ik(y∗i (t

−
k )).
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For each i, j = 1, . . . , m, and k ∈ N, f̂ j(·) , ĝj(·) and Îk(·) are Lipschitzian since f j(·), gj(·) and
Ik(·) are Lipschitzian with Lj, L̄j and lk respectively, with f̂ j(0) = ĝj(0) = Îk(0) = 0. It is
clear that the stability of the zero solution of (4.1) is equivalent to the stability of the periodic
solution y∗ of (1.2). In the following theorem, we prove the stability of the periodic solution
y∗ of (1.2).

Theorem 4.1. Assume that (H1)–(H4) and (H6)–(H9) are fulfilled. Then, the periodic solution y∗ of
(1.2) is a global exponential attractor. That is

‖y(t)− y∗(t)‖ ≤ ‖y(t0)− y∗(t0)‖e−σ̂(t−t0), t ≥ t0

where
σ̂ = σ−ωM

(
b̃ + c̃eσθ̄

)
− pM

(
ln(1 + l̃)

)
.

Proof. For a solution y of (1.2), z = y− y∗ satisfies (4.1). Let z(t) = (z1(t), z2(t), . . . , zm(t))T be
an arbitrary solution of (4.1). We have

‖z(t)‖ =
m

∑
i=1
|zi(t)|

≤ exp
(
−σ(t− t0)

)
‖z0‖

+
∫ t

t0

exp
(
−σ(t− s)

)( m

∑
i=1

m

∑
j=1

Lj
∣∣bij(s)

∣∣ |zi(s)|+
m

∑
i=1

m

∑
j=1

L̄j
∣∣cij(s)

∣∣ |zi(γ(s))|
)

ds

+ ∑
t0≤tk<t

exp
(
−σ(t− tk)

)( m

∑
i=1

li,k |zi(tk)|
)

≤ exp
(
−σ(t− t0)

)
‖z0‖+

∫ t

t0

exp
(
−σ(t− s)

) (
b̃(s) ‖z(s)‖+ c̃(s) ‖z(γ(s))‖

)
ds

+ ∑
t0≤tk<t

exp
(
−σ(t− tk)

)
l̃k ‖z(tk)‖ ,

which can be written as follows

exp(σt) ‖z(t)‖ ≤ exp(σt0) ‖z0‖

+
∫ t

t0

exp(σs)
(

b̃(s) ‖z(s)‖+ c̃(s) exp(−σγ(s)) exp(σγ(s)) ‖z(γ(s))‖
)

ds

+ ∑
t0≤tk<t

exp(σtk)l̃k ‖z(tk)‖ .

Now, with u(t) = exp(σt) ‖z(t)‖, η1(t) = b̃(t), η2(t) = c̃(t) exp(σθ̄) and t− γ(t) ≤ θ̄, the last
expression can be written as follows

u(t) ≤ u(t0) +
∫ t

t0

(η1(s)u(s) + η2(s)u(γ(s))) ds + ∑
t0≤tk<t

l̃ku(tk). (4.2)

Hence, by Corollary 2.2 we have the following estimation

exp(σt) ‖z(t)‖ ≤ exp(σt0) ‖z0‖ ∏
t0≤tk<t

(1 + l̃k) exp
(∫ t

t0

(η1(s) + η2(s)) ds
)

≤ exp(σt0) ‖z0‖ ∏
t0≤tk<t

(1 + l̃k) exp
(
M
(

b̃ + c̃eσθ̄
)
(t− t0)

)
≤ ‖z0‖ exp

((
pM (ln(1 + l̃)) + ωM

(
b̃ + c̃eσθ̄

))
(t− t0) + σt0

)
,
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which implies that

‖z(t)‖ ≤ ‖z0‖ exp
(
−
[
σ− pM (ln(1 + l̃))−ωM

(
b̃ + c̃eσθ̄

)]
(t− t0)

)
.

Thus, using (H7), we can prove that ‖z(t)‖ → 0 as t→ ∞, or equivalently the periodic solution
of system (1.2) is a global exponential attractor.

Remark 4.2. In Theorems 3.3, 3.4 and 4.1 we have used a Gronwall-type inequality instead
of lemma 3.1 of [8]. In this lemma is proved that if z is a solution of (4.1), then ‖z(γ(t))‖ ≤
B̃ ‖z(t)‖ for all t ∈ [0, ∞). However, in the practice B̃ is a very large constant. This fact has
critical importance for contractivity and stability conditions, see (C5) and (C7) in [8]. Then,
our results are significantly sharp even when the coefficients are constants. See Sections 3
and 5.

Remark 4.3. In the last theorem, (H9) is a natural stability assumption and it can be un-
derstood as follows: the strength of the self-regulating negative feedback of each neuron
dominates its own contribution to the entire network including itself. This assumption is a
generalization of condition (2.2) of K. Gopalsamy’s paper [33].

Remark 4.4. Our results applied to the completely delayed case, can be extended using the
general piecewise constant argument γ([tk, tk+1]) = ζk with ζk ∈ [tk, tk+1]. In such case, the
Green function defined in section 3 must consider I+ = [tk, ζk] and I− = [ζk, tk+1]; i.e the
advance and delay intervals, respectively. As a consequence, the solution naturally splits in
an advanced and delayed component, as it is shown in the DEPCAG case treated in [48].

5 The constant coefficients case and simulations

In this section, we establish the analogue results for the constant coefficients case. Examples
and simulations for constant and a non-constant coefficients cases are given, illustrating the
effectiveness of our main results.

Consider the following IDEPCAG Hopfield-type neural network system with piecewise
constant arguments and constant coefficients

y′i(t) = −aiyi(t) +
m

∑
j=1

bij f j(yj(t)) +
m

∑
j=1

cijgj(yj(γ(t))) + di, t 6= tk, (5.1a)

∆yi|t=tk = −qiyi(t−k ) + Ii(yi(t−k )) + ei, (5.1b)

for i = 1, 2, . . . , m, with m the number of neurons in the network and where f j, gj and Ii are real
functions satisfying the same hypotheses (H3)–(H5), ai, bij, cij, di, qi, and ei are real sequences.

5.1 Exponentially global convergence of periodic solutions

The assumptions (H1)–(H9) in the constant parameters case are:

(H1*) There exists p ∈N and ω ∈ R such that the sequence {tk}k∈N satisfies

tk+p = tk + ω, ∀k ∈N.
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(H2*) (Non-critical case) The sets {ai}m
i=1 and {qi}m

i=1 are such that

(1− qi) 6= exp
(

ωai

p

)
, i = 1, . . . , m.

(H3*) The functions f j and gj are Lipschitz, i.e. there exists Lj, L̄j > 0 such that

| f j(u)− f j(v)| ≤ Lj|u− v|, |gj(u)− gj(v)| ≤ L̄j|u− v|, ∀u, v ∈ Rm, ∀j ∈ {1, . . . , m}.

(H4*) The functions Ii are Lipschitz, i.e. there exists li > 0 such that

|Ii(u)− Ii(v)| ≤ li|u− v|, ∀u, v ∈ Rm, ∀i ∈ {1, . . . , m}.

(H5*) The functions f j, gj and Ii satisfy f j(0) = gj(0) = Ii(0) = 0, (H3*) and (H4*)
for |u|, |v| ≤ R.

(H6*) There exists σ > 0 such that

a + ln(1 + α) > σ, where a = min
1≤i≤m

ai and α = min
1≤i≤m

qi.

(H7*) We assume that

ω
(

b̃ + c̃
)
+ pl + (1− α)p exp(−ωa) < 1,

b̃ =
m

∑
i=1

m

∑
j=1
|bij|Li, c̃ =

m

∑
i=1

m

∑
j=1
|cij|Li, and l =

m

∑
i=1

li. (5.2)

(H8*) There exists σ > 0 such that

σ̂ = σ−
(

b̃ + eθ̄σ c̃
)
− ln(1 + l) > 0.

The following result is a constant coefficient version of Theorems 3.3 and 4.1 integrated:

Theorem 5.1. Assume that (H1*)–(H4*) and (H6*)–(H8*) are fulfilled. Then, system (5.1) has a
unique periodic solution y∗ which is a global exponential attractor. That is

‖y(t)− y∗(t)‖ ≤ ‖y(t0)− y∗(t0)‖e−σ̂(t−t0), t ≥ t0

with σ̂ defined in (H8*).

A similar local existence theorem is obtained if we use (H5*) and Theorem 3.4, where the
analogous of condition (3.10) is

2γ = 2K
(

ω
(

b̃ + c̃
)
+ pl

)
≤ 1,

on B[0, R].

Next, we present examples of IDEPCAG systems with constant and non-constant coeffi-
cients to illustrate the veracity of the previous results.
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5.2 Simulation for the constant coefficients case

Consider the following system:

y′(t) = −Ay(t) + BF(y(t)) + CG(y(γ(t))) + D, t 6= tk, (5.3)

∆y|t=tk = −Qky(t−k ) + Ik(y(t−k )) + Ek,

where

y(t) =
(

y1(t)
y2(t)

)
, A =

(
1.1495 0

0 1.099

)
,

B =
1
π

(
1/2 3/10
3/5 2/5

)
, C =

1
π

(
−3/5 4/5
−1/5 3/10

)
,

F(y) =
(

tanh(y1/10)
tanh(y2/10)

)
, G(y) =

(
(|y1 + 1| − |y1 − 1|)/28
(|y2 + 1| − |y2 − 1|)/28

)
,

D =

(
1/6
1/7

)
, Ik(y) = 1

10

(
tanh(y1)

tanh(y2)

)
,

Qk =

(
0
0

)
, Ek =

(
0
0

)
,

where t0 = 0, y1(0) = y2(0) = 0.12 and tk+1 = tk +
π
4 , γ(t) = tk if t ∈ [tk, tk+1) with k ∈ N.

Computing the constants given in [8],

α1 =
9

50π
≈ 0.0572, α2 =

19
140π

≈ 0.04, α3 = a1 + a2 + α1 ≈ 2.3489, θ̄ =
π

4
,

we can see conditions (C3) and (C4) in [8] do not hold, since

(C3) θ̄ (α3 + α2) ≈ 1.87624 > 1,

(C4) θ̄
[
α2 + α3

(
1 + θ̄α2

)
eθ̄α3
]
≈ 12.07 > 1.

Thus, in this case the authors cannot conclude existence of solutions neither a bound for
y(β(t)). However, (5.3) satisfies conditions of Theorem 5.1 and hence, there exists a unique π

4 -
periodic solution y∗ which is globally asymptotically stable, with rate σ̃ ≈ 0.72. The periodic
attractor can be seen clearly in Figures 5.1(a), 5.1(b), 5.2(a), 5.2(b) and 5.3.

(a) (b)

Figure 5.1: Components of the eventually π
4 -periodic solution of (5.3) on [0, 40]:

(a) component y1 and (b) component y2.
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(a) (b)

Figure 5.2: The eventually π
4 -periodic solution of the system (5.3) on [0, 40].

Figure 5.3: Exponential periodic attractor associated to (5.3) shown with 3 sets
of initial conditions: y1

0 = (−0.01,−0.02), y2
0 = (0.12, 0.12) and y3

0 = (0.1,−0.1).

5.2.1 Equilibrium

In [8], Akhmet et al. considered the constant coefficients system

y′(t) = −Ay(t) + BF(y(t)) + CG(y(γ(t))) + D, t 6= tk, (5.4)

∆y|t=tk = Ik(y(t−k )).

and assumed that an equilibrium solution for (5.4) is a constant vector y∗ = (y∗1 , . . . , y∗m)
T ∈

Rm, where each y∗i satisfies

aiy∗i =
m

∑
j=1

bij f j

(
y∗j
)
+

m

∑
j=1

bijgj

(
y∗j
)
+ di,

and the impulsive operator Ik(·) of (5.4) is assumed to satisfy Ik(y∗) = 0. Then, they used the
following theorem to assure the existence of a unique equilibrium for (5.4):
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Theorem 5.2. Assume that the neural parameters ai, bij, cij and Lipschitz constants Lj, L̄j associated
to (5.4) satisfy

ai > Li

m

∑
j=1
|bji|+ L̄i

m

∑
j=1
|cji|, i = 1, . . . , m. (5.5)

Then, the system (5.4) has a unique equilibrium.

We note that (5.5) holds for system (5.3), and it should have a unique equilibrium. Indeed, the
parameters verify

a1 = 1.1495 > L1

2

∑
j=1
|bj1|+ L̄1

2

∑
j=1
|cj1| ≈ 0.05,

a2 = 1.099 > L2

2

∑
j=1
|bj2|+ L̄2

2

∑
j=1
|cj2| ≈ 0.04.

However, we know by Theorem 5.1 and fig. 5.3 that system (5.3) has a unique non-constant
periodic solution which is globally asymptotically stable (see Fig. 5.2(b)). Thus, we can con-
clude that condition (5.5) for existence and uniqueness of an equilibrium for (5.4) is not useful.
This fact suggests the necessity of obtaining a novel result about existence and uniqueness of
equilibrium for such systems.

5.2.2 Nonzero linear impulse

If we consider (5.3) with the nonzero linear impulse

Qk =

(
2/5
2/5

)
, ∀k ∈N, (5.6)

we obtain the exponential stability rate σ̃ ≈ 1.06, given in Theorem 5.1. Therefore, the ex-
ponential stability rate σ̃ ≈ 0.72 obtained in the system with zero linear impulse (5.3) is
improved. We can see this in Figures 5.4(a) and 5.4(b) (compare with figures 5.2(b) and 5.3
respectively):

(a) (b)

Figure 5.4: (a) The eventually π
4 -periodic solution of the system (5.7) with the

nonzero linear impulse (5.6) on [0, 40]. (b) The exponential periodic attractor
associated to (5.3) with the nonzero linear impulse (5.6) shown with 3 sets of
initial conditions: y1

0 = (−0.01,−0.02), y2
0 = (0.12, 0.12) and y3

0 = (0.1,−0.1).
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5.3 Simulation for the non-constant coefficients case

Now, we consider an IDEPCAG system with non-constant coefficients. Let system (1.2) written
as follows:

y′(t) = −A(t)y(t) + B(t)F(y(t)) + C(t)G(y(γ(t))) + D(t), t 6= tk, (5.7)

∆y|t=tk = −Qky(t−k ) + Ik(y(t−k )) + Ek,

where

y(t) =
(

y1(t)
y2(t)

)
A(t) =

(
1.15 + sin(8t)/38 0

0 1.1 + cos(8t)/38

)
,

B(t) =
(

sin(8t)/4 3 cos(8t)/20
3 sin(8t)/10 sin(8t)/5

)
, C(t) =

(
−3 cos(8t)/10 2 sin(8t)/5
− sin(8t)/10 3 cos(8t)/20

)
,

F(y) =
(

tanh(y1/10)
tanh(y2/10)

)
, G(y) =

1
28

(
|y1 + 1| − |y1 − 1|
|y2 + 1| − |y2 − 1|

)
,

D(t) =
(

2 sin(8t)
cos(8t)

)
, Qk =

(
2/5
2/5

)
,

Ek =

(
1
2

)
, Ik(y) =

1
10

(
tanh(y1)

tanh(y2)

)
,

with γ(t) = tk if t ∈ [tk, tk+1), k ∈ N. The initial conditions are given by y1(0) = 10, y2(0) =
12, the sequence {tk}k∈N is defined by tk = t0 +

π
4 k, i.e. such that tk+1 = tk +

π
4 with p =

1, ω = π
4 , and γ(t) = tk for t ∈ [tk, tk+1) , k ∈ N. We note that Li = 1/10, L̃i = 1/14, l̃ =

1/5, ρ ≈ 0.07, σ ≤ 1.43318276, K ≤ 1.321283 and σ̂ ≈ 1.1. The hypothesis of Theorem 3.3
and Theorem 4.1 are satisfied, so (5.7) has a unique ω-periodic solution y∗. Moreover, y∗ is
globally asymptotically stable

‖y(t)− y∗(t)‖ ≤ ‖y(0)− y∗(0)‖e−1.1t, t ≥ 0

as can be seen in Figures 5.5(a), 5.5(b), 5.6(a), 5.6(b) and 5.7.

(a) (b)

Figure 5.5: Components of the eventually π
4 -periodic solution of the system (5.7)

on [0, 40]: (a) component y1 and (b) component y2.
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(a) (b)

Figure 5.6: The eventually π
4 -periodic solution of the system (5.7) on [0, 40].

Figure 5.7: Exponential periodic attractor associated to (5.7) shown with 3 sets
of initial conditions: y1

0 = (10, 12), y2
0 = (−3,−10) and y3

0 = (10,−8).

Conclusions

In this work we have obtained some sufficient conditions for the existence, uniqueness, peri-
odicity and stability of solutions for the impulsive Hopfield-type neural network system with
piecewise constant arguments (1.2). By means of the Green function associated to (1.2), we
established that (1.2) has a unique ω-periodic solution under the assumptions (H1)–(H4) and
(H6)–(H8). Furthermore, a local result concerning to the existence and uniqueness of solu-
tions for (1.2) on the ball B[ϕ, r] is given under the assumptions (3.10) and (H5), where ϕ

is the unique ω-periodic solution of the linear nonhomogeneous impulsive differential sys-
tem (1.3). Assuming that (H9) is fulfilled, we also determined that the periodic solution of
(1.2) is globally asymptotically stable. The corresponding result for constant coefficients case
ensures the existence, uniqueness and stability of a periodic solution, that is not necessarily
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constant. A constant coefficients example shows that the classical condition (5.5) for existence
and uniqueness of an equilibrium for systems like (5.1) is not practical (see [8, 33] and the
references therein). Simulations illustrate the exponential attraction of the periodic solution,
such as the effect of the linear impulse. They are very applicable to a large class of such
systems.
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