23,820 research outputs found

    Algorithms for Infeasible Path Calculation

    Get PDF
    Static Worst-Case Execution Time (WCET) analysis is a technique to derive upper bounds for the execution times of programs. Such bounds are crucial when designing and verifying real-time systems. One key component in static WCET analysis is to derive flow information, such as loop bounds and infeasible paths for the analysed program. Such flow information can be provided as either as annotations by the user, can be automatically calculated by a flow analysis, or by a combination of both. To make the analysis as simple, automatic and safe as possible, this flow information should be calculated automatically with no or very limited user interaction. In this paper we present three novel algorithms to calculate infeasible paths. The algorithms are all designed to be simple and efficient, both in terms of generated flow facts and in analysis running time. The algorithms have been implemented and tested for a set of WCET benchmarks programs

    An integrated search-based approach for automatic testing from extended finite state machine (EFSM) models

    Get PDF
    This is the post-print version of the Article - Copyright @ 2011 ElsevierThe extended finite state machine (EFSM) is a modelling approach that has been used to represent a wide range of systems. When testing from an EFSM, it is normal to use a test criterion such as transition coverage. Such test criteria are often expressed in terms of transition paths (TPs) through an EFSM. Despite the popularity of EFSMs, testing from an EFSM is difficult for two main reasons: path feasibility and path input sequence generation. The path feasibility problem concerns generating paths that are feasible whereas the path input sequence generation problem is to find an input sequence that can traverse a feasible path. While search-based approaches have been used in test automation, there has been relatively little work that uses them when testing from an EFSM. In this paper, we propose an integrated search-based approach to automate testing from an EFSM. The approach has two phases, the aim of the first phase being to produce a feasible TP (FTP) while the second phase searches for an input sequence to trigger this TP. The first phase uses a Genetic Algorithm whose fitness function is a TP feasibility metric based on dataflow dependence. The second phase uses a Genetic Algorithm whose fitness function is based on a combination of a branch distance function and approach level. Experimental results using five EFSMs found the first phase to be effective in generating FTPs with a success rate of approximately 96.6%. Furthermore, the proposed input sequence generator could trigger all the generated feasible TPs (success rate = 100%). The results derived from the experiment demonstrate that the proposed approach is effective in automating testing from an EFSM

    Exploration of the scalability of LocFaults approach for error localization with While-loops programs

    Get PDF
    A model checker can produce a trace of counterexample, for an erroneous program, which is often long and difficult to understand. In general, the part about the loops is the largest among the instructions in this trace. This makes the location of errors in loops critical, to analyze errors in the overall program. In this paper, we explore the scala-bility capabilities of LocFaults, our error localization approach exploiting paths of CFG(Control Flow Graph) from a counterexample to calculate the MCDs (Minimal Correction Deviations), and MCSs (Minimal Correction Subsets) from each found MCD. We present the times of our approach on programs with While-loops unfolded b times, and a number of deviated conditions ranging from 0 to n. Our preliminary results show that the times of our approach, constraint-based and flow-driven, are better compared to BugAssist which is based on SAT and transforms the entire program to a Boolean formula, and further the information provided by LocFaults is more expressive for the user

    A search-based approach for automatic test generation from extended finite state machine (EFSM)

    Get PDF
    The extended finite state machine is a powerful model that can capture almost all the aspects of a system. However, testing from an EFSM is yet a challenging task due to two main problems: path feasibility and path test data generation. Although optimization algorithms are efficient, their applications to EFSM testing have received very little attention. The aim of this paper is to develop a novel approach that utilizes optimization algorithms to test from EFSM models

    Sequential and Parallel Algorithms for Mixed Packing and Covering

    Full text link
    Mixed packing and covering problems are problems that can be formulated as linear programs using only non-negative coefficients. Examples include multicommodity network flow, the Held-Karp lower bound on TSP, fractional relaxations of set cover, bin-packing, knapsack, scheduling problems, minimum-weight triangulation, etc. This paper gives approximation algorithms for the general class of problems. The sequential algorithm is a simple greedy algorithm that can be implemented to find an epsilon-approximate solution in O(epsilon^-2 log m) linear-time iterations. The parallel algorithm does comparable work but finishes in polylogarithmic time. The results generalize previous work on pure packing and covering (the special case when the constraints are all "less-than" or all "greater-than") by Michael Luby and Noam Nisan (1993) and Naveen Garg and Jochen Konemann (1998)
    • …
    corecore