499 research outputs found

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Global Cardinality Constraints Make Approximating Some Max-2-CSPs Harder

    Get PDF
    Assuming the Unique Games Conjecture, we show that existing approximation algorithms for some Boolean Max-2-CSPs with cardinality constraints are optimal. In particular, we prove that Max-Cut with cardinality constraints is UG-hard to approximate within ~~0.858, and that Max-2-Sat with cardinality constraints is UG-hard to approximate within ~~0.929. In both cases, the previous best hardness results were the same as the hardness of the corresponding unconstrained Max-2-CSP (~~0.878 for Max-Cut, and ~~0.940 for Max-2-Sat). The hardness for Max-2-Sat applies to monotone Max-2-Sat instances, meaning that we also obtain tight inapproximability for the Max-k-Vertex-Cover problem

    A Simple 1.5-Approximation Algorithm for a Wide Range of Max-SMTI Generalizations

    Full text link
    We give a simple approximation algorithm for a common generalization of many previously studied extensions of the stable matching problem with ties. These generalizations include the existence of critical vertices in the graph, amongst whom we must match as much as possible, free edges, that cannot be blocking edges and Δ\Delta-stabilities, which mean that for an edge to block, the improvement should be large enough on one or both sides. We also introduce other notions to generalize these even further, which allows our framework to capture many existing and future applications. We show that our edge duplicating technique allows us to treat these different types of generalizations simultaneously, while also making the algorithm, the proofs and the analysis much simpler and shorter then in previous approaches. In particular, we answer an open question by \cite{socialstable} about the existence of a 32\frac{3}{2}-approximation algorithm for the \smti\ problem with free edges. This demonstrates well that this technique can grasp the underlying essence of these problems quite well and have the potential to be able to solve countless future applications as well

    Spiking Neural Networks Through the Lens of Streaming Algorithms

    Get PDF
    We initiate the study of biological neural networks from the perspective of streaming algorithms. Like computers, human brains suffer from memory limitations which pose a significant obstacle when processing large scale and dynamically changing data. In computer science, these challenges are captured by the well-known streaming model, which can be traced back to Munro and Paterson `78 and has had significant impact in theory and beyond. In the classical streaming setting, one must compute some function ff of a stream of updates S={u1,…,um}\mathcal{S} = \{u_1,\ldots,u_m\}, given restricted single-pass access to the stream. The primary complexity measure is the space used by the algorithm. We take the first steps towards understanding the connection between streaming and neural algorithms. On the upper bound side, we design neural algorithms based on known streaming algorithms for fundamental tasks, including distinct elements, approximate median, heavy hitters, and more. The number of neurons in our neural solutions almost matches the space bounds of the corresponding streaming algorithms. As a general algorithmic primitive, we show how to implement the important streaming technique of linear sketching efficient in spiking neural networks. On the lower bound side, we give a generic reduction, showing that any space-efficient spiking neural network can be simulated by a space-efficiently streaming algorithm. This reduction lets us translate streaming-space lower bounds into nearly matching neural-space lower bounds, establishing a close connection between these two models.Comment: To appear in DISC'20, shorten abstrac

    Stability Yields Sublinear Time Algorithms for Geometric Optimization in Machine Learning

    Get PDF
    In this paper, we study several important geometric optimization problems arising in machine learning. First, we revisit the Minimum Enclosing Ball (MEB) problem in Euclidean space ?^d. The problem has been extensively studied before, but real-world machine learning tasks often need to handle large-scale datasets so that we cannot even afford linear time algorithms. Motivated by the recent developments on beyond worst-case analysis, we introduce the notion of stability for MEB, which is natural and easy to understand. Roughly speaking, an instance of MEB is stable, if the radius of the resulting ball cannot be significantly reduced by removing a small fraction of the input points. Under the stability assumption, we present two sampling algorithms for computing radius-approximate MEB with sample complexities independent of the number of input points n. In particular, the second algorithm has the sample complexity even independent of the dimensionality d. We also consider the general case without the stability assumption. We present a hybrid algorithm that can output either a radius-approximate MEB or a covering-approximate MEB, which improves the running time and the number of passes for the previous sublinear MEB algorithms. Further, we extend our proposed notion of stability and design sublinear time algorithms for other geometric optimization problems including MEB with outliers, polytope distance, one-class and two-class linear SVMs (without or with outliers). Our proposed algorithms also work fine for kernels

    Fine-grained I/O Complexity via Reductions: New Lower Bounds, Faster Algorithms, and a Time Hierarchy

    Get PDF
    This paper initiates the study of I/O algorithms (minimizing cache misses) from the perspective of fine-grained complexity (conditional polynomial lower bounds). Specifically, we aim to answer why sparse graph problems are so hard, and why the Longest Common Subsequence problem gets a savings of a factor of the size of cache times the length of a cache line, but no more. We take the reductions and techniques from complexity and fine-grained complexity and apply them to the I/O model to generate new (conditional) lower bounds as well as new faster algorithms. We also prove the existence of a time hierarchy for the I/O model, which motivates the fine-grained reductions. - Using fine-grained reductions, we give an algorithm for distinguishing 2 vs. 3 diameter and radius that runs in O(|E|^2/(MB)) cache misses, which for sparse graphs improves over the previous O(|V|^2/B) running time. - We give new reductions from radius and diameter to Wiener index and median. These reductions are new in both the RAM and I/O models. - We show meaningful reductions between problems that have linear-time solutions in the RAM model. The reductions use low I/O complexity (typically O(n/B)), and thus help to finely capture between "I/O linear time" O(n/B) and RAM linear time O(n). - We generate new I/O assumptions based on the difficulty of improving sparse graph problem running times in the I/O model. We create conjectures that the current best known algorithms for Single Source Shortest Paths (SSSP), diameter, and radius are optimal. - From these I/O-model assumptions, we show that many of the known reductions in the word-RAM model can naturally extend to hold in the I/O model as well (e.g., a lower bound on the I/O complexity of Longest Common Subsequence that matches the best known running time). - We prove an analog of the Time Hierarchy Theorem in the I/O model, further motivating the study of fine-grained algorithmic differences

    Veröffentlichungen und Vorträge 2004 der Mitglieder der Fakultät für Informatik

    Get PDF

    A Sub-Linear Time Framework for Geometric Optimization with Outliers in High Dimensions

    Get PDF
    Many real-world problems can be formulated as geometric optimization problems in high dimensions, especially in the fields of machine learning and data mining. Moreover, we often need to take into account of outliers when optimizing the objective functions. However, the presence of outliers could make the problems to be much more challenging than their vanilla versions. In this paper, we study the fundamental minimum enclosing ball (MEB) with outliers problem first; partly inspired by the core-set method from B?doiu and Clarkson, we propose a sub-linear time bi-criteria approximation algorithm based on two novel techniques, the Uniform-Adaptive Sampling method and Sandwich Lemma. To the best of our knowledge, our result is the first sub-linear time algorithm, which has the sample size (i.e., the number of sampled points) independent of both the number of input points n and dimensionality d, for MEB with outliers in high dimensions. Furthermore, we observe that these two techniques can be generalized to deal with a broader range of geometric optimization problems with outliers in high dimensions, including flat fitting, k-center clustering, and SVM with outliers, and therefore achieve the sub-linear time algorithms for these problems respectively
    • …
    corecore