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—— Abstract

Assuming the Unique Games Conjecture, we show that existing approximation algorithms for some
Boolean Max-2-CSPs with cardinality constraints are optimal. In particular, we prove that Max-Cut
with cardinality constraints is UG-hard to approximate within =~ 0.858, and that Max-2-Sat with
cardinality constraints is UG-hard to approximate within &~ 0.929. In both cases, the previous best
hardness results were the same as the hardness of the corresponding unconstrained Max-2-CSP
(=~ 0.878 for Max-Cut, and ~ 0.940 for Max-2-Sat).

The hardness for Max-2-Sat applies to monotone Max-2-Sat instances, meaning that we also
obtain tight inapproximability for the Max-k-Vertex-Cover problem.
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1 Introduction

Constraint satisfaction problems (CSPs) are one of the most fundamental objects studied in
complexity theory. An instance of a CSP has a set of variables taking values over a certain
domain and a set of constraints on tuples of these variables as an input. Probably the best
known CSP is 3-Sat, in which the constraints are clauses, each clause is a disjunction of
at most three literals, and each literal is either a variable or negation of a variable. In the
satisfiability version of CSP problems, we are interested whether there is an assignment to
the variables which satisfies all the constraints. Hardness of deciding satisfiability of CSPs
is well understood, due to the dichotomy theorem [32] of Schaefer which shows that each
CSP with variables taking values in a Boolean domain is either in P or NP-complete, and
due to the more recent results of Bulatov [8] and Zhuk [35] which settle this question on
general domains.
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Another well-studied version is the Max-CSP, which is the optimization version in which
we are interested in maximizing the number of constraints satisfied. This type of problem is
NP-hard in most cases and we typically settle with finding a good estimate of the optimal
solution, for which we rely on approximation algorithms. A common example of a constraint
satisfaction problem in this setting is Max-Cut, in which the input consists of a graph G,
and the goal is to partition the vertices into two sets such that the number of edges between
the two parts is maximized. Approximability of Max-CSPs has been a major research topic
which inspired many influential breakthroughs. One of the first surprising results was an
algorithm of Goemans and Williamson [13], which uses semidefinite programming (SDP) to
approximate the optimal solution to within a constant of agw =~ 0.878. The SDP approach
is also useful in approximating many other well known Max-CSPs, such as Max-3-Sat [19]
within a constant of 7/8 and Max-2-Sat [23] within a7 =~ 0.9401.

On the hardness of approximation side, the first NP-hardness results are based on
the celebrated PCP theorem [1, 2] which provided a strong starting point for studying
inapproximability. For example, a direct corollary of the PCP theorem shows that the
Max-3-Sat problem cannot be approximated within 1 — ¢ for some universal constant § > 0.
By using the PCP theorem and parallel repetition [31] as a starting point, Hastad [17] proved
optimal inapproximability for Max-3-Sat by showing that it cannot be approximated better
than 7/8 + € for any € > 0.

However, despite further works relying on the similar techniques which improved our
understanding of inapproximability for several additional CSPs, the progress on closing the
gap between the best algorithm and the best hardness was at a standstill for some fundamental
problems such as Max-Cut, until the Unique Games Conjecture (UGC) was introduced by
Khot [20]. In particular, by assuming the UGC, optimality of the agw-approximation
algorithm for Max-Cut and the ayz-approximation algorithm for Max-2-Sat was shown in
[21, 26] and [3], respectively. The strength of semidefinite programming for approximating
Max-CSPs was corroborated in a breakthrough result of Raghavendra [28], which showed
that assuming the UGC, a certain SDP relaxation achieves optimal approximation ratios for
all Max-CSPs.

Locality of the constraints was of crucial importance in studying CSPs and Max-CSPs
since their inception. Therefore, it is not a surprise that typical techniques fail when we work
with CSPs for which feasible assignments need to satisfy some additional global constraints,
and these problems almost always become harder. For example, while the satisfiability of a
2-Sat instance can be checked by a straightforward algorithm, Guruswami and Lee recently
showed [14] that when the satisfying assignment needs to have exactly half of its variables
set to true, this problem becomes NP-hard. Hardness of deciding satisfiability of CSPs in
which we prescribe how many variables are assigned to certain values is well understood due
to the dichotomy theorem of Bulatov and Marx [9], which shows that these problems are
either NP-hard or in P, and gives a simple classification. Another type of global constraint
is studied by Brakensiek et al. [7], who consider hardness of deciding CSPs in presence of
modular constraints, which restrict cardinality of values in an assignment modulo a natural
number M.

In this paper we are interested in optimization variants of CSPs with global cardinality
constraints, i.e., constraints which specify the number of occurrences of each value from the
domain in the assignment. We refer to these problems as CC-Max-CSPs. It is not hard to see
that these problems are at least as hard to approximate as their unconstrained counterparts.
CC-Max-CSPs have been actively studied in the past. For example the Max-Bisection
problem, i.e., Max-Cut where the two partitions need to be of the same size, has been of
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a particular interest, with a series of papers [12], [34],[16], [11], [30] obtaining improved
approximation algorithms, until the most recent result which achieves an approximation ratio
of 0.8776 [4], which is only ~ 1072 below the UG-hardness bound agw . The state-of-the-art
algorithm [30] for the more general CC-Max-Cut problem achieves an approximation ratio
of o, ~ 0.858. Another related CC-Max-CSP actively studied is CC-Max-2-Sat, and its
monotone variant (a version in which negated literals are not allowed) Max-k-VC!. The
best algorithm [30] up to date for general CC-Max-2-Sat achieves an approximation ratio of
asS ., where as6,, ~ 0.929, which improved on a series of increasingly stronger algorithms
presented in [33], [6], and [18]. Manurangsi [25] showed that it is UG-hard to approximate
Max-k-VC within a factor aaxs ~ 0.944 (note that this is slightly larger than the hardness
of arpz =~ 0.940 for general Max-2-Sat).

Yet another well-studied CC-Max-CSP is the Densest k-Subgraph (Max-k-DS) problem,
in which we are given a graph and the objective is to find a maximally dense induced
subgraph on k vertices. Analogously to the Max-k-VC problem, Max-k-DS can be viewed
as the monotone CC-Max-2-And problem. Max-k-DS is qualitatively very different from
the previously discussed problems. It is not known to be approximable within a constant
factor, and is in fact known to be hard to approximate to within almost polynomial factors
assuming the Exponential Time Hypothesis [24], or to within any constant factor assuming
the Small-Set Expansion Hypothesis [29].

Obtaining tight approximability results for CC-Max-CSPs presents an important research
topic. Qualitatively, it is also interesting to determine whether adding a cardinality constraint
to a non-trivial Max-CSP makes approximation strictly harder. For example, we know that

CC-Max-2-Sat is as hard as Max-2-Sat, but it is still conceivable that they are equally hard.

In particular, it would be interesting to answer the following question:
“Can CC-Max-2-Sat be approximated within ayz?”

So far the only result in this direction comes from [4] which shows that the “bisection
version” (where the cardinality constraint is that exactly half of the variables must be set to
true) of CC-Max-2-Sat can be approximated within ay . However, the approach taken in
that algorithm does not immediately extend to handle general cardinality constraints. A
similar question arises for the CC-Max-Cut problem, but here even the basic Max-Bisection
problem is not known to be approximable within the Max-Cut constant gy =~ 0.878. As far
as we are aware, prior to this paper, the only examples of cardinality-constrained Max-CSPs
being harder than their unconstrained counterparts were examples where the unconstrained
version is easy (e.g. unconstrained Max-k-VC is monotone Max-2-Sat, and unconstrained
Max-k-DS is monotone Max-2-And, which are both trivial).

Our Results

In this paper, we answer the above question negatively, by giving improved UG-hardness
results for CC-Max-Cut and Max-k-VC.

» Theorem 1. For every ¢ > 0, CC-Maz-Cut is UG-hard to approximate within B, + €,
where 555, ~ 0.858.

cut

» Theorem 2. For every € > 0, Maz-k-VC is UG-hard to approximate within B+ €, where
B~ 0.929.

! Max-k-VC is an abbreviation for maximum k vertex cover, in which we are given a graph and the task
is to select a subset of k vertices covering as many of the edges as possible.
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Figure 1 Hardness ratio (red) vs. approximation constant (blue) as a function of cardinality
constraint ¢ for CC-Max-Cut (left), as well as Max-k-VC (right). We also use x to highlight the
approximation ratio known for Max-Bisection on the left plot, while x represents the optimal
approximation constant for the CC-Max-2-Sat problem in the special case ¢ = 1/2.

Note that since CC-Max-Cut and Max-k-VC are special cases of CC-Max-2-Lin and CC-Max-
2-Sat respectively, the corresponding hardness results apply to the latter problems as well.

The constants
i’at
achieved by the algorithm of Raghavendra and Tan [30]. We provide even stronger evidence

that these constants match each other, by showing that 5S¢ and 855,
cc

cc
ve and Qcuts

¢ and B5¢, are calculated numerically and their estimated values match

and af,, which are the approximation ratios for corresponding problems

the constants a$ P

are calculated as minima
of the same functions used for calculating their counterparts « but over a slightly
more restricted domain.

Moreover, in Section 3 we give refined statements of Theorem 1 and Theorem 2 which
describe inapproximability of these problems as a function of the cardinality constraint
q € (0,1), which specifies the fraction of variables that need to be set to true. For now, we

provide a visualization of these results in Figure 1.

Overview of proof ideas

The main observation behind the hardness results is that the reduction used to prove hardness
of approximation for the Independent Set and Vertex Cover problems in bounded degree
graphs [5] gives very strong soundness guarantees. In particular it shows that in the “no”
case of the reduction, all induced subgraphs of the graph contain many edges, which in turn
gives useful upper bounds on the number of edges cut by a bipartition of a given size, or the
number of edges covered by a subgraph. This is also how [25] obtained the previous hardness
of ~ 0.944 for Max-k-VC. Thus our results use essentially the same reduction as [5] (which
is in turn similar to the reduction for Max-Cut [21]). Note however that even though the
graph produced by that reduction has a small vertex cover in the “yes” case, using that small
vertex cover is not necessarily the best solution for the Max-k-VC problem on the graph. In
particular for ¢ < 1/2, it makes more sense to instead use the large independent set as the
Max-k-VC solution in the yes case (the intuition being that since it is independent, it covers
many edges relative to its size).

Another difference is that we have somewhat greater flexibility in choosing the noise
distribution of our “dictatorship test” (the key component of essentially all UG-hardness
results) The reason is that for Independent Set/Vertex Cover, the reduction needs “perfect
completeness”, i.e., in the “yes” case it needs to produce graphs with large independent
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sets/small vertex covers, whereas for e.g. Max-k-VC we are perfectly happy with graphs
where there are sets of size k covering many, but not necessarily all, edges. This increased
flexibility turns out to improve the hardness ratios for some range of the cardinality constraint
g. For example, for the CC-Max-Cut problem with ¢ = 1/2, this allows us to recover the
agw-hardness for the Max-Bisection problem using the same reduction. However, at ¢
further away from 1/2, and in particular at the local minima in Figure 1, it turns out that
this flexibility does not help. Thus in the global minimum at g ~ 0.365 for Max-k-VC,
the reduction outputs a graph with a large independent set containing a ¢ fraction of the
vertices, and choosing that independent set is the optimal solution for the Max-k-VC instance.
Similarly, at the local minimum with ¢ > 1/2, the optimal solution to the Max-k-VC instance
in the yes case is to pick an actual vertex cover of size ¢, and this point of the curve
corresponds exactly to the hardness of 0.944 from [25].

Organization

This paper is organized as follows. In Section 2 we fix the notation, recall some well-
known facts, and formally introduce the problems of interest. In Section 3 we give our
improved inapproximability results. In Section 4 we give a brief overview of the algorithm
of Raghavendra and Tan [30] in order to observe that the hardness ratios we get match
the approximation ratios of the algorithm. Finally, in Section 5 we propose some possible
directions for future research.

2 Preliminaries

2.1 Notational Conventions

In this paper we work with undirected (multi)graphs G = (V, E). For a set S C V of vertices
we use S¢ to denote its complement S¢ = V'\ S, and write UV for a disjoint union of sets U
and V. The graphs are both edge and vertex weighted and the weights of vertices and edges
are given by functions w: V' — [0,1], and w: E — [0, 1]. For subsets S CV and K C E we
interpret w(S) and w(K) as the sum of weights of vertices contained in S and edges in K,
respectively. Furthermore, weights are normalized so that w(V) = w(E) = 1 and the weight
of each vertex equals half the weight of all edges adjacent to it. Therefore, the weights of
edges and vertices can be interpreted as probability distributions, and sampling a vertex
with probability equal to its weight is the same as sampling an edge and then sampling one
of its endpoints with probability 1/2. For S,T C V, we write w(S,T) for the total weight of
edges from E which have one endpoint in S, and other in 7. Note that, since we work with
undirected graphs, the order of endpoints is not important, and therefore w(S,T) = w(T, S).
In other words, the weight of an edge e = (u,v) contributes to w(S,T) if either (u,v) € T x S
or (u,v) € S x T. We also have the identity

w(S, V) =w(9) + %w(S, S). (1)

The set of all neighbours of a vertex v including v is denoted by N(v), and the set of all
neighbours of a set S C V including S is denoted by N(.S). Let us also introduce the following
definition.

» Definition 3. A graph G is (q,¢)-dense if every subset S CV with w(S) = q satisfies
w(S,8) > e.

24:5
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We use ¢(z) = \/%e_””z/ 2 to denote the density function of a standard normal random

variable, and ®(z) = [*_ ¢(y)dy to denote its cumulative distribution function (CDF).
We also work with bivariate normal random variables, and to that end introduce the
following function.

» Definition 4. Let p € [—1, 1], and consider two jointly normal random variables X,Y with

mean 0 and covariance matriz Cov(X,Y) = Ll) ﬂ . We define T',: [0,1]> — [0,1] as

[y(z,y) =Pr[X <@ '(z)AY <& '(y)].
We also write I',(z) = I',(x,z). We have the following basic lemma (for a proof see
Appendix A of [4]).

» Lemma 5. For every p € [—1,1], and every x,y € [0, 1], we have

p(z,y) =T,1-z,1-y)—1+2z+y.

2.2 Problem Definitions

This paper is concerned with Max-Cut, Max-2-Lin, Max-2-Sat, and Max-k-VC problems with
cardinality constraints. Let us give the definitions of these problems as integer optimization
programs now. In these definitions instead of {0,1} we represent Boolean domain as {—1,1},
and for that reason instead of cardinality constraint ¢ we consider a balance constraint
r=1-2q.

» Definition 6. An instance F of the cardinality constrained Maz-2-Lin (CC-Max-2-Lin)
problem with balance constraint r € (—1,1) over variables X = {x1,...,z,} taking values in
{=1,1} is given by the following integer optimization program

1+ ngixj
max E _
(i,j)=ec€E
s.t. E €T; = nr,
ieV

where Py € {—1,1} and the term (14 Pyx;x5)/2 corresponds to the XOR constraint x;x; = Py.
In case Py = —1 for all ¢, the integer optimization program is an instance of CC-Max-
Cut problem.

» Definition 7. An instance F of the cardinality constrained Maz-2-Sat (CC-Max-2-Sat)
problem with balance constraint r € (—1,1) over variables X = {x1,...,x,} taking values in
{—1,1} is given by the following integer optimization program

max Z 3+lel‘i+P£2Ij+P£3$il‘j7

. 4
(i,j)=ec€E

s.t. E €xr; = nr,
i€V

where (P}, P, P}) € {(—1,-1,-1), (1,—1,1), (—1,1,1), (1,1,—1)} corresponds to one of
the four possible clauses

Jii\/l‘j, —wi\/xj, l‘i\/_‘l‘j, _\Z‘i\/_‘l‘j.

In case (P}, P?, P}) = (—1,—1,—1) for all £, the integer optimization program is an instance
of Max-k-VC problem.
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The objective in the problems given by Definitions 6 and 7 is to find an assignment
z: X — {-1,1} which satisfies a (hard) global cardinality constraint and maximizes the
number of satisfied soft constraints represented by the objective function. For an assignment
z that satisfies global constraint of an instance F we use Val,(F) to denote the value of the
objective function under the assignment z. Furthermore, we use

OptVal(F) = max Val, (F)

z: X—{-1,1}

Zmex z(xz)=rn

to denote the maximum value of the objective function over all assignments z satisfying the
cardinality constraint.

The starting point of the hardness results in this paper is the Unique Games problems,
which is defined as follows.

» Definition 8. A Unique Games instance A = (U, V,E,11, [L]) consists of an unweighted
bipartite multigraph (U UV, E), a set 11 = {m.: [L] — [L] | e € &€ and 7. is a bijection}
of permutation constraints, and a set [L] of labels. The value of A under the assignment
z:UUYV — [L] is the fraction of edges satisfied, where an edge e = (u,v),u € U,v €V is
satisfied if me(z(u)) = z(v). We write Val.(A) for the value of A under z, and Opt(A) for

the maximum possible value over all assignments z.
The Unique Games Conjecture [20] can be formulated as follows ([22], Lemma 3.4).

» Conjecture 9 (Unique Games Conjecture). For every constant v > 0 there is a sufficiently
large L € N, such that for a Unique Games instance A = (U,V,E, 11, [L]) with a regular
bipartite graph (U UV, E), it is NP-hard to distinguish between

Opt(A) =1 -7,

Opt(A) <.

2.3 Analysis of Boolean Functions

One of the ubiquitous tools in the hardness of approximation area is Fourier analysis of

Boolean functions. We now recall some of the well-known facts which are used in the paper.

For a more detailed study, we refer to [27].

For ¢ € [0,1] and n € N we write m,: {0,1} — [0,1] for the probability distribution
given by m,(1) = ¢,m4(0) = 1 — ¢. We also write W?" for the probability distribution on
n-bit strings @ € {0, 1}" where each bit is distributed according to 7, independently. We
use L?(7$") to denote the space of random variables f: {0,1}" — R over the probability
space ({0,1}", P({0,1}"),n$™), and interpret E[f] and Var[f] as expectation and variance
of f(X) when the X is drawn from 7¢". Depending on context, the elements of L?(7$")

q
will be interpreted as functions as well.

Let us now introduce some of the common objects used in the study of Boolean functions.

» Definition 10. Consider a function f € L*(x$™) and i € {1,...,n}. The influence Inf;[f]
of the i-th argument on f is defined as

Infi [f] = EzNﬂ_gan [Val'ji,\,ﬂ—q [f(.’El, ey i1, .’Ei, Lit1lye-- ,xn)]]

Minimal correlation between two g¢-biased bits is max(—q/(1 — ¢q),—(1 — ¢)/q). For
notational convenience, let us introduce the function x which assigns to each value ¢ € (0,1)
an interval I C (—1,0) as

[—q/(1-1q),0), ifg<1/2,
K;(q) = (_17 0)7 if q= 1/27
[—(1-4q)/q,0), ifg>1/2.

24:7

APPROX/RANDOM 2019



24:8

Global Cardinality Constraints Make Approximating Some Max-2-CSPs Harder

» Definition 11. For a fized z € {0,1},q € (0,1) and p € k(q) we write y ~ N,(x) to indicate
that y is a p-correlated copy of x. In particular each bit y; is equal to 1 with probability
q+p(1—¢q) if x; =1, and y; = 1 with probability ¢ — pqg when x; = 0, independently.

» Definition 12. Consider ¢ € (0,1) and p € k(q). The noise operator T,: L?(7%") —

q
L2(x$™) is defined as

Tpf(x) = E’y~Np(z) [f(y)]
The following lemma gives a useful bound on the number of influential variables of T}, f.

» Lemma 13. Consider q € (0,1), a function f € L*(x$™), and p € k(q). Then, for any
7 > 0 we have that

Var|f]
reln(1/|pl)’

For a proof we refer to Lemma 3.4 of [15]. We also need to introduce the notion of noise
stability, defined as follows.

(i € ] | Inf [T, ] > 7} <

» Definition 14. Let g € (0,1),p € r(q) and f € L*(z$™). The noise stability of function f
at p is defined as

S, = E[f - T, /).

Let us also recall the following variant of the “Majority is Stablest” theorem in the form
that appeared in [5], and which follows from Theorem 3.1 in [10].

» Theorem 15. Let g € (0,1) and p € k(q). Then for any € > 0, there exist 7 > 0 and § > 0
such that for every function f € L2(7r§<>"), f:{=1,1}" — [0, 1] that satisfies

maxTaf T3 5f] < 7
i€n

we have

Sp(f) = Tp(E[f]) —e.

3 Hardness Reduction

In this section we give our main hardness reduction. As discussed in the introduction, it is a
generalization of the reduction of Theorem IIL.1 from [5].

» Theorem 16. For every q € (0,1),e > 0, and p € k(q), there exists a vy > 0 and a reduction
from Unique Games instances A = (U, V,E, 11, [L]) to weighted multigraphs G = (V, E) with
the following properties:
Completeness: If Opt(A) > 1 — v, then there is a set S CV such that w(S) = q and
w(S,5°) >2¢(1 —q)(1 —p) — 2.
Soundness: If Opt(A) < v, then for every r € [0,1], G is (r,T',(r) — €)-dense.
Moreover, the running time of the reduction is polynomial in |U|, |V|,|€|, and exponential in L.

Proof. Let v: {0,1}2 — [0,1] be the probability distribution over two p-correlated g-biased
bits. In other words, letting t = (¢ — ¢*)(1 — p), we have

v(0,0)=1—qg—t, v(0,1)=v(1,0)=t v(l,1)=qg—t.
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Let us now describe how the multigraph G can be constructed from A. We define the
vertex set of G to be V =V x {0, 1} = {(v,2) | v € V,x € {0,1}1}. In particular, for every
vertex v € V we create 2& vertices of G, which we identify with L-bit strings in {0,1}*. We
also write v® for a vertex (v, z) of the graph G. The weights of vertices in G are given by

w(v®) = L7T®L(J:). (2)

v
The edges of G are constructed in the following way. For every u € U, and for every two
v1,v2 € N(u), we create an edge between vertices v{, vy with weight

1

L
|

X OMe,,YOTe,), wheree; = (u,v1), ey = (u,vs).

Expressed formally, the edge set E is
E={(ef,¢)) | er = (u,v1),e2 = (u,v2),u €U, v1,v9 €V, x,y € {0,1}F1).

Since the marginal of the distribution v over either the first or the second argument is a
g-biased distribution on {0, 1}, the weight of all edges adjacent to a vertex v* equals two
times the weight of the vertex v®. Furthermore, it is trivial to check that w(V) = w(FE) = 1.
The number of vertices in G is |V|2%, and the number of edges is /| D22 so the construction
is indeed polynomial in U], |V| and |€|.

Let us now prove completeness and soundness.

Completeness: Since Opt(A) > 1 — ~, there is a labeling z: & UV — [L] such that
Val,(A) > 1 —~. Consider a set S given by

S ={v* EV|Z‘Z(U) =1}

The weight of the set S is obviously ¢g. Let us consider a set consisting of pairs of edges in &
which have a common vertex in U, i.e. the set

A

E={(e1,e2) €E X E|er = (u,v1),ea = (u,v2),u € U,v1,v9 € V},

and its subset Egood consisting of edge pairs which are satisfied under the assignment z, or
formally

A

Egood = {(e1,€2) € B | €1 = (u,v1), €2 = (u,v2), 2(u) = 7, (2(v1)) = 7, (2(v2))},

Since at least fraction 1 — v of edges in £ are satisfied under z, at least fraction (1 — ~)? of
edge pairs in F is satisfied under z, i.e. |Egood| >(1 —7)2\E|. For every (e, es) € Egood, el =
(u,v1),e2 = (u,vy), the edges between S and S¢ created through the pair of edges (e, es)
have the total weight of

1 1
|u|D2 (z,yF:.V@L [(SL’ © //Tel_l)z(vl) 7& (y o 71—62_1)2(1)2)] = |U|D2 (x,y}grfw@L [xz(TL) 7é yz(u)]
1 1
=—— (v(0,1 1,0)) = ———=2t.
i O+ r(1,0) = o

Therefore, we have w(S, S¢) > 2t(1 — )% > 2¢(1 — ¢)(1 — p) — 2.

Soundness: Let us assume by contradiction that G is not (r,T',(r) — )-dense, and
therefore that there is a set S C V' of weight w(S) = r for which w(S,S) < T,(r) —e. For
each v € V, let us define a function S, € L?(7$'") to be the indicator function of S restricted

APPROX/RANDOM 2019



24:10

Global Cardinality Constraints Make Approximating Some Max-2-CSPs Harder

to the vertex v. In particular, we have that S,(z) = 1 if and only if v* € S. Furthermore,
for all u € U let us define S, € L*(7$1) as

Su(r) = _(E ) [Sy(x o ﬂ-e_l)]'
vEN’(u)’

We have that

wss)= B | B Suor)Suon]
ueld, (@) ~vBL
61:(%01)762:(“7”2)
v1,v2EN (u)
= E E Sy LL‘Oﬂ'e_l Sy o7re_1
uel, elz(u,vl),egz(u,UQ)[ 1< ! ) 2(y 2 )]
(:z;,y)NV®L v1,v2 €N (u)
~E | B S.@8.0)] - B | B SE50)] - 556
uweU | (z,y)~v®L uel a;,\,ﬂt;@L uel
Let us define p, = B, oz [Su(x)], and remark that due to regularity of A we have

Euev [Su] = 7. We claim that there is a set U’ C U, |U'| > e|U]/2 such that for every
u € U" we have S,(S,) < T',(pu) —€/2. Otherwise, we reach a contradiction by noticing that

()~ > w(S.5) = B [5(S] (1e/2) ( B Coliu] - 2/2)

ueU
> E [Tp(pu)] —e 2Tp(r) —¢,
uelU

where in the last inequality we used the fact that I', is convex.

By Theorem 15 there is 7 > 0 and § > 0 such that for every u € U’ there is a significant
coordinate i € [L] for which Inf;[Ty_5S,] > 7. For each u € U’ and for its significant
coordinate ¢, by using the fact that Inf; is convex and Markov’s inequality we conclude that
for at least 7/2 of v € N(u) we have

Inf. y[T1-55:] > 7/2, e=(u,v).
For each v € V let [L], C [L] denote a set of labels defined by
[L], = {i € [L] | Inf;[T1-sS,] > 7/2}.

By Lemma 13 we have that |[L],]| < m. Let us now pick an assignment z: YUYV —
[L] of A using the following randomized procedure. For each v € V, pick i € [L], randomly,
and set z(v) = 4. If [L], = 0, we pick i € [L] randomly. Then, for each u € U, we set z(u) =4
for the 7 that maximizes the number of edges satisfied. From the previous discussion we
conclude that this labeling satisfies  (e7* In?(1/(1 — 8))) of constraints of A in expectation.
But since this constant does not depend on  this would be a contradiction if we started
with a sufficiently small ~. <

3.1 Hardness for CC-Max-Cut

Now that we have proven Theorem 16, it is straightforward to prove the following theorem
which gives a hardness result of CC-Max-Cut.
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» Theorem 17. For any q € (0,1) and p € k(q) it is UG-hard to approzimate CC-Maz-Cut
with cardinality constraint q within B, (q, p) + & where € > 0 is arbitrary small and B, (q, p)
s given by

eo (g.p) = Lo Lol@ ~Tp(1 =)

24— @)1 - p)
Proof. By Theorem 16 there exists a family of multigraphs G = (V, E) for which it is
UG-hard to decide between the following two statements:

There is a set S C V,w(S) = ¢, such that w(S,S¢) > 2¢(1 — q)(1 — p) — 2.

For any r € [0,1] and every set T' C V,w(T') = r we have w(T,T) > T',(r) —e.
The second statement implies that for any S C V,w(S) = ¢, we have w(S,S¢) = w(V,V) —
w(S,8) —w(S¢,5°) <1-T,(q) —T,(1 — q) + 2¢. Therefore, by setting ~ sufficiently small
this shows UG-hardness of approximating CC-Max-Cut with cardinality constraint g within

1- Fp(l - Q) - Fp(Q)
2q(1 = q)(1 = p)
where ¢ > 0 is arbitrarily small. This reduction yields a weighted graph, which can be

easily converted into an unweighted multigraph, using e.g. a simple reduction from Step 1 of
Theorem 4.1. in [5]. <

+ 2¢,

3.2 Hardness for Max-k-VC

Next we give the hardness result for Max-k-VC.

» Theorem 18. Consider ¢ € (0,1) and let p € k(q). Then, it is UG-hard to approzimate
Mazx-k-VC with cardinality constraint q within BSE(q, p) + € where € > 0 is arbitrary small

C

(q, p) is given by

1*Fp(1*Q)
1+ (1-q)(1=p)

Proof. As we have shown in Theorem 16, there is a family of multigraphs G = (V, E) for
which it is UG-hard to decide between the following two statements:

There is a set S C V,w(S) = ¢, such that w(S,S°) > 2¢(1 — q)(1 — p) — 2.

For any r € [0,1] and every set T' C V,w(T') = r we have w(T,T) > T',(r) —e.
By (1), the first item implies that w(S,V) = ¢(1 + q(1 — ¢)(1 — p)) — v. The second
statement implies that for any S C V,w(S) = ¢, we have w(S,V) = w(V,V) — w(S¢, 5¢) <
1—-T,(1 — q) +e. Therefore, by letting v — 0 this shows UG-hardness of approximating
Max-k-VC with cardinality constraint ¢ within

1-T,(1-q
1+ (1 =q)1-p))
where € > 0 is arbitrarily small. As in the CC-Max-Cut case, this reduction yields a weighted

graph, which can be converted into an unweighted multigraph by using the reduction
from [5]. <

and

10; q,pP) =
(@0) q(

+ e,

3.3 Hardness as a Function of the Cardinality Contraint

As we have concluded in Theorems 17 and 18, it is UG-hard to approximate CC-Max-Cut
and Max-k-VC with cardinality constraint ¢ € (0, 1) to within

(@) = inf Beri(q,p), Bra(q) = inf Bl p),
pELR(q) pEr(q)

24:11
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respectively. For a fixed ¢ it is not clear for which p the functions 55, (g, ) and 85(q, )
are minimized. For the plots of the inapproximability curves in Figure 1, the optimization
over p was done numerically. Interestingly, numerical calculations show that the worst-case
value of the cardinality constraint ¢ < 1/2 (the value of ¢ at which the hardness ratio meets
the approximation ratio) is the same for Max-k-VC and CC-Max-Cut, and in particular
its value is ¢* ~ 0.365. The value of the correlation parameter p for which this worst-case
hardness is achieved is extremal, i.e., p = —¢*/(1 — ¢*) = —0.575. However, the local minima
at ¢ > 1/2 in the two curves do not occur at the same value of ¢q. For CC-Max-Cut the
curve is symmetric around 1/2 and the minimum occurs at 1 — ¢* &~ 0.635, but for the less
symmetric Max-k-VC problem it occurs at ~ 0.574.

Furthermore, for all ¢ < ¢* and also for ¢ > 1/2 greater than the respective local minimum,
the p minimizing both 855, (q, p) and 555(q, p) is the minimum value of £(g). On the other
hand, when ¢ is close to 1/2, the best choice of p does not equal min k(g). For example, when
q = 1/2, the hardness we obtain for CC-Max-Cut is the same as for the Max-Cut problem,

attained using the value p ~ —0.689.

4  Approximation Algorithm

In this section we recall the algorithm of Raghavendra and Tan [30], somewhat reformulated
in order to obtain explicit expressions for the approximation ratios that match the hardness
results we obtain. We keep the exposition at a high level and skip over certain technical
details, and refer the reader interested in the details to [30] or the follow-up work [4].

In order to find a good approximation for NP-hard integer optimization problems given
in Definitions 6 and 7 we use semidefinite programming (SDP) relaxations. In particular,
we extend the domain of variables {x;}? ; from {0, 1} to vectors on an n-sphere, which we
denote by v; € S™. We also introduce a vector vy € S™ which represents the value false
(corresponding value is 1 in the integer program). Then, we replace z; by the scalar product
(vo,v;) and z;x; with (v;,v;). For example, the semidefinite relaxation of the CC-Max-Cut
program is given as

1— <Ui7 ’Uj>
max | Z Yy
(i,j)=ec€E

s.t. Z<U“ vo) = rn.

1%

Furthermore, since |z; — x| < |z; — x| + |2, — x|, we also demand from the vectors v;
to satisfy the triangle inequalities ||v; — v;[|3 < ||v; — vo|3 + ||vo — v;]|3. In order to relax the
notation we define y; = (vo,v;), pij = (v, v;), and write triangle inequalities as

pi 4 p =+ pig = =1, pi = i — pij = —1,
—pi+ g = pig = =1, —pi— g+ pij > —1

The triples (u1, po, p) satisfying triangle inequalities will be called configurations. We denote
the set of all configurations as Conf C [—1,1]3. We can solve a semidefinite program up
to desired accuracy in polynomial time. Then, the main challenge is finding a rounding
algorithm which translates the vectors {v;}I, back to {—1,1} so that they satisfy the
balance constraint, and such that the rounding does not incur a big loss in the objective
value. Raghavendra and Tan used a randomized rounding procedure, which rounds vectors
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{vi}1, to £1 integers {y;}!; in the following way. First, let us define w; = v; — p;vp, and
let? w; = w;/||w;||. Then, we draw a vector g from the Gaussian distribution A'(0, I"*1) and
set the values of y; as

_ 1 if{gw) > @7t (),
i —1 otherwise.

n

It is trivial to check that E[y,] = u;, so we have E [Z yl} = rn, and therefore the solution
i=1

{y,}"_, satisfies the balance constraint in expectation. Furthermore, as shown in [30], using

additional levels of the Lasserre hierarchy we can guarantee that with probability 1 — §
the sampled solution {7} ; is O(0)-far away from satisfying the balance constraint, where
d > 0 can be chosen arbitrarily small. Therefore, we can change the values of at most O(d)n
variables 7, to get a solution y; exactly satisfying the balance constraint, while losing only
an additional small factor O(d) in the objective value. Thus, it is sufficient to show that the
objective value of the 7,’s is large.

Consider now the SDP relaxation for any of the integer programs F given in either
Definition 6 or Definition 7, and let SDPVal(F) be the optimal value of the SDP relaxation
for the instance F. We have that SDPVal(F) > OptVal(F). Finally, let us define RndVal(F)
to be the expectation of the value of the objective function after randomized rounding
procedure. The analysis of the approximation ratio for the algorithm boils down to proving
RndVal(F) > aSDPVal(F), where « is a constant that depends on the problem of interest.
The way to calculate « is to look at the loss incurred by rounding at each constraint. Let us
now show how this can be done for the CC-Max-Cut problem.

The expected value of each constraint HT”C’ after rounding the SDP solution of CC-

1-E[7,7,]

5 , and therefore at each constraint the loss factor incurred by

Max-Cut problem is

rounding is given as
1-E [7:3;] 1

2 (1= (vi,v3))/2

Thus, in order to calculate the approximation ratio, we need to bound this expression
from below. Let us first note that

1—,u1 1—/12
2 72

E[7,7,] = 45 ( > + g+ e — 1,

where p is given as

5= P — H1p2 .
V1= piv1—p3

Then, the approximation ratio is lower bounded by the quantity «

cc

c¢ defined as the solution

of the optimization problem

cc __
cut —

2 ATy (1o lop2y )
i 5 (3 72) — H2

«
(p1,p2,p)€EConf 1-p

2 We assume that ||w;|| # 0, since we can introduce a small perturbation to the values v; without affecting
the objective value too much.

24:13

APPROX/RANDOM 2019



24:14

Global Cardinality Constraints Make Approximating Some Max-2-CSPs Harder

Computing ofS, is a hard global optimization problem, and therefore we resort to numerical

computations to estimate it (we remark that the same approach is taken for a similar function
in [23] and [3]). Extensive numerical experiments show that the minimum is attained at
i1 = pio = p, while the p is on the boundary of the polytope Conf, p = —1 + 2|u|. More
precisely, the minimum is attained at u ~ 0.27, and p ~ —0.575, and it has a value of
approximately 0.858.

Assuming that the minimum is attained at the configuration of the form (u, pr, —142u), 11 >

cec

¢¢. can be found as the minimum of a function

0, constant «

1205 (352 154)

1—p

)

where p € (0,1). If we introduce ¢ = (1 — p)/2, we can reexpress this function as

2q —2I'5(q 1-T5(q) —T'5(1—¢q
o) = 2220 AW I U0 e o)

where in the last equality we used Lemma 5. Furthermore, p = —¢q/(1 — ¢). Similar analysis
for CC-Max-2-Lin shows that the approximation ratio is the minimal value of the same
function.

Straightforward calculations show that 855,(q, —¢/(1 — ¢)) from Theorem 17 equals the
value of a&,(q). Therefore, under the (mild) assumption that worst-case configurations
indeed take the special form as explained above, our hardness result is sharp and the algorithm
for CC-Max-Cut of Raghavendra and Tan is optimal on general instances of CC-Max-Cut /
CC-Max-2-Lin.

In completely analogous way, we can conclude that the approximation ratio for CC-
Max-2-Sat and Max-k-VC problems can be calculated as the minimum of the following
function

_1-T3(1-9q)

agiat(Q) - 2(] ’ qc (07 1/2)7

where p = —¢/(1 — ¢). Numerical experiments show that a55,, ~ 0.929, and that the
minimum is attained at ¢ =~ 0.365.
Again we have that the corresponding hardness expression from Theorem 18 satisfies
(¢, —q/(1 — q)) = a5%,:(q), implying (under the assumption on worst-case configurations)
that the algorithm for CC-Max-2-Sat of Raghavendra and Tan is optimal.

5 Conclusion and Some Open Questions

We studied some of the cardinality constrained 2-CSPs, and assuming the Unique Games
Conjecture derived hardness results which show that approximation ratios achieved by the
algorithm described in [30] are optimal for CC-Max-2-Sat (and its special case Max-k-VC)
and CC-Max-2-Lin (and its special case CC-Max-Cut). It would be interesting to derive
UG-hardness for related CC-Max-CSPs of arity 2, most interestingly for the Max-k-DS
problem. While super-constant hardness for Max-k-DS is currently known under the closely
related Small-Set Expansion Hypothesis [29], it is not yet known whether the UGC implies
hardness of Max-k-DS.

We also think it would be valuable to study whether we can achieve better approxima-
tion ratios or derive stronger hardness results for CC-Max-2-CSP with fixed values of the
cardinality constraint q. Can the hardness curves of Theorem 17 and Theorem 18 depicted
in Figure 1 be matched algorithmically for every ¢?
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Another interesting research direction would be to come up with hardness results for some

other well-know Max-CSPs like Max-3-Sat, or even more ambitiously to extend the results of
Raghavendra [28] and obtain tight hardness for all cardinality-constrained Max-CSPs.
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