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Abstract
This paper initiates the study of I/O algorithms (minimizing cache misses) from the perspective
of fine-grained complexity (conditional polynomial lower bounds). Specifically, we aim to answer
why sparse graph problems are so hard, and why the Longest Common Subsequence problem
gets a savings of a factor of the size of cache times the length of a cache line, but no more. We
take the reductions and techniques from complexity and fine-grained complexity and apply them
to the I/O model to generate new (conditional) lower bounds as well as faster algorithms. We
also prove the existence of a time hierarchy for the I/O model, which motivates the fine-grained
reductions.

Using fine-grained reductions, we give an algorithm for distinguishing 2 vs. 3 diameter and
radius that runs in O(|E|2/(MB)) cache misses, which for sparse graphs improves over the
previous O(|V |2/B) running time.
We give new reductions from radius and diameter to Wiener index and median. These
reductions are new in both the RAM and I/O models.
We show meaningful reductions between problems that have linear-time solutions in the RAM
model. The reductions use low I/O complexity (typically O(n/B)), and thus help to finely
capture the relationship between “I/O linear time” Θ(n/B) and RAM linear time Θ(n).
We generate new I/O assumptions based on the difficulty of improving sparse graph problem
running times in the I/O model. We create conjectures that the current best known algorithms
for Single Source Shortest Paths (SSSP), diameter, and radius are optimal.
From these I/O-model assumptions, we show that many of the known reductions in the word-
RAM model can naturally extend to hold in the I/O model as well (e.g., a lower bound on
the I/O complexity of Longest Common Subsequence that matches the best known running
time).

∗ A full version of the paper is available at https://arxiv.org/abs/1711.07960.
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34:2 Fine-grained I/O Complexity via Reductions

We prove an analog of the Time Hierarchy Theorem in the I/O model, further motivating
the study of fine-grained algorithmic differences.
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1 Introduction

The I/O model (or external-memory model) was introduced by Aggarwal and Vitter [5] to
model the non-uniform access times of memory in modern processors. The model nicely
captures the fact that, in many practical scenarios, cache misses between levels of the memory
hierarchy (including disk) are the bottleneck for the program. As a result, the I/O model
has become a popular model for developing cache-efficient algorithms.

In the I/O model, the expensive operation is bringing a cache line of B contiguous words
from the “main memory” (which may alternately represent disk) to the “cache” (local work
space). The cache can store up to M words in total, or M/B cache lines. Computation on
data in the cache is usually treated as free, and thus the main goal of I/O algorithms is to
access memory with locality. That is, when bringing data into cache from main memory in
contiguous chunks, we would like to take full advantage of the fetched cache line. This is
preferable to, say, randomly accessing noncontiguous words in memory.

When taking good graph algorithms for the RAM model and analyzing them in the I/O
model, the running times are often very bad. Take for example Dijkstra’s algorithm or the
standard BFS algorithm. These algorithms fundamentally look at an adjacency list, and
follow pointers to every adjacent node. Once the new node is reached, the process repeats,
accessing all the adjacent nodes in priority order that have not previously been visited. This
behavior looks almost like random access! Unless one can efficiently predict the order these
nodes will be reached, the nodes will likely be stored far apart in memory. Even worse, this
optimal order could be very different depending on what node one starts the algorithm at.

Because of this bad behavior, I/O-efficient algorithms for graph problems take a different
approach. For dense graphs, one approach is to reduce the problems to matrix equivalent
versions. For example, APSP is solved by (min,+) matrix multiplication [34, 37]. The
locality of matrices leads to efficient algorithms for these problems.

Unfortunately, sparse graph problems are not solved efficiently by (min,+) matrix
multiplication. For example, the best algorithms for directed single-source shortest paths in
sparse graphs take O(n) time, giving no improvement from the cache line at all [16, 18, 8].
Even in the undirected case, the best algorithm takes O(n/

√
B) time in sparse graphs [32].

The Diameter problem in particular has resisted improvement beyond O(|V |/
√
B) even

in undirected unweighted graphs [30], and in directed graphs, the best known algorithms still
run in time Ω(|V |) [17, 8]. For this reason, we use this as a conjecture and build a network
of reductions around sparse diameter and other sparse graph problems.

In this paper we seek to explain why these problems, and other problems in the I/O
model, are so hard to improve and to get faster algorithms for some of them.

In this paper we use reductions to generate new algorithms, new lower bounds, and a
time hierarchy in the I/O model. Specifically, we get new algorithms for computing the
diameter and radius in sparse graphs, when the computed radii are small. We generate novel
reductions (which work in both the RAM and I/O models) for the Wiener Index problem (a
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graph centrality measure). We generate further novel reductions which are meaningful in the
I/O model related to sparse graph problems. Finally, we show that an I/O time hierarchy
exists, similar to the classic Time Hierarchy Theorem.

1.1 Caching Model and Related Work
Cache behavior has been studied extensively. In 1988, Aggarwal and Vitter [5] developed the
I/O model, also known as the external-memory model [25], which now serves as a theoretical
formalization for modern caching models. A significant amount of work on algorithms and
data structures in this model has occurred including items like buffer-trees [7], B-trees [13],
permutations and sorting [5], ordered file maintenance [14], (min,+) matrix multiplication
[34], and triangle listing [33]. Frigo, Leiserson, Prokop and Ramachandran [27] proposed the
cache-oblivious model. In this model, the algorithm is not given access to the cache size M ,
nor is it given access to the cache-line size B. Thus the algorithm must be oblivious to the
cache, despite being judged on its cache performance. Some surveys of the work include
[42, 6, 25].

When requesting cache lines from main memory in this paper we will only request the
B words starting at location xB for integers x. Another common model (which we do not
follow in this paper) allows arbitrary offsets for the cache line pulls. This can be simulated
with at most twice as many cache misses and twice as much cache.

1.2 Fine-grained Complexity
A popular area of recent study is fine-grained complexity. The field uses efficient reductions
to uncover relationships between problems whose classical algorithms have not been improved
substantially in decades. Significant progress has been made in explaining the lack of progress
on many important problems [10, 44, 2, 3, 15, 1, 36] such as APSP, othogonal vectors (OV),
3-SUM, longest common subsequence (LCS), edit distance and more. Such results focused
on finding reductions from these problems to other (perhaps less well-studied) problems
such that an improvement in the upper bound on any of these problems will lead to an
improvement in the running time of algorithms for these problems. For example, research
around the All-Pairs Shortest Paths problem (APSP) has uncovered that many natural,
seemingly simpler graph problems on n node graphs are fine-grained equivalent to APSP, so
that an O(n3−ε) time algorithm for ε > 0 for one of the problems implies an O(n3−ε′) time
algorithm for some ε′ > 0 for all of them.

1.3 History of Upper Bounds
In the I/O model, the design of algorithms for graph problems is difficult. This is demonstrated
by the number of algorithms designed for problems like Sparse All Pairs Shortest Paths,
Breath First Search, Graph Radius and Graph Diameter where very minor improvements
are made (see Table 1 for definitions of problems). Note that dense and sparse qualifiers in
the front of problems indicate the problem defined over a dense/sparse graph, respectively.

The Wiener index problem measures the total distance from all points to each other.
Intuitively, this measures how close or far points in the graph are from each other. In this
respect, Wiener index is similar to the radius, diameter and median measures of graph
distance.

The history of improvements to the upper bound of negative triangle in the I/O model is
an important example of the difficulty in the design of I/O efficient algorithms for graph
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34:4 Fine-grained I/O Complexity via Reductions

Table 1 Fine-grained problems definitions.

Problem Name Problem Definition

Orthogonal Vector (OV) Given two sets U and V of n vectors each with
elements {0, 1}d where d = ω(log n), determine whether there
exist vectors u ∈ U and v ∈ V such that

∑d

i=1 ui · vi = 0.
Longest Common Subsequence (LCS) Given two strings of n symbols

over some alphabet Σ, compute the length of the longest sequence
that appears as a subsequence in both input strings.

Edit Distance (ED) Given two strings s1 and s2, determine the minimum
number of operations that converts s1 to s2.

Sparse Diameter Given a sparse graph G = (V, E), determine if maxu,v∈V d(u, v)
where d(u, v) is the distance between nodes u and v in V .

2 vs. 3 Sparse Diameter Given a sparse graph G = (V, E), determine if maxu,v∈V d(u, v) ≤ 2
where d(u, v) is the distance between nodes u and v in V .

Hitting Set (HS) Given two lists of size n, V and W , where the elements are taken
from a universe U , does there exist a set in V that hits (contains an

element of) every set in W.
Sparse Radius Given a sparse graph G = (V, E), determine

minu∈V (maxv∈V d(u, v)) where d(u, v)
is the distance between nodes u and v in V .

2 vs. 3 Sparse Radius Given a sparse graph G = (V, E), determine if
minu∈V (maxv∈V d(u, v)) ≤ 2 where d(u, v)
is the distance between nodes u and v in V .

3 vs. 4 Sparse Radius Given a sparse graph G = (V, E), determine if
minu∈V (maxv∈V d(u, v)) ≤ 3 where d(u, v)
is the distance between nodes u and v in V .

Median Let d(u, v) be the shortest path distance between nodes
u and v in a graph G. The median is the node v that minimizes

the sum
∑

u∈V
d(v, u).

3-SUM Given a set of n integers, determine whether the set
contains three integers a, b, c such that a + b = c.

Convolutional 3-SUM Given three lists A, B and C each consisting of n numbers,
return true if ∃i, j, k ∈ [0, n− 1] such that

i + j + k ≡ 0 mod n and A[i] + B[j] + C[k] = 0.
0 Triangle Given a graph G, return true if ∃a, b, c ∈ V such that

w(a, b) + w(b, c) + w(c, a) = 0 where w(u, v) is the weight
of the edge (u, v).

All-Pairs Shortest Paths (APSP) Given a directed or undirected graph with integer weights,
determine the shortest distance between all pairs of

vertices in the graph.
Wiener Index Let d(u, v) be the shortest paths distance between nodes u

and v in a graph G. The Wiener Index of G is∑
u∈V

∑
v∈V

d(u, v).
Negative Traingle Given a graph G, return true if ∃a, b, c ∈ V

such that w(a, b) + w(b, c) + w(c, a) < 0 where w(u, v) is the weight
of the edge (u, v).

(min, +)-Matrix Multiplication Given two n by n matrices A

and B, return C[i, k] = minj∈[1,n] (A[i, j] + B[j, k]).
Sparse Weighted Diameter Given a sparse, weighted graph G = (V, E), determine

maxu,v∈V d(u, v) where d(u, v) is the distance
between nodes u and v in V .
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Table 2 History of APSP upper bounds. ∗ This is an extension of [29] see e.g. [33].

Dense APSP Sparse Weighted Diameter Sparse-4

Õ(n3) [naive] Õ(n2) [naive] Õ(n1.5) [naive]

Õ(n3/(
√

M)) [29] Õ(n2/
√

B) [9] Õ(n + n1.5/B) [31]

Õ(n3/(
√

MB)) Extension∗ Õ(n2/
√

B) [19] Õ(n1.5/B) [26]

Õ(n1.5/(
√

MB)) [33]

problems (see Table 2 for a summary). For a long time, no improvements in terms of M
were made to the upper bound for negative triangle. A key was re-interpreting the problem
as a repeated scan of lists.

We feel that the history of negative triangle has taught us that upper bounds in the I/O
model on graph problems are best achieved by creating efficient reductions from a graph
problem to a non-graph problem. Hence the study of fine-grained reductions in the I/O
model is crucial to using this approach in solving such graph problems with better I/O
efficiency. Graph problems tempt the algorithmic designer into memory access patterns that
look like random access, whereas matrix and array problems immediately suggest memory
local approaches to these problems. We consider the history of the negative triangle problem
to be an instructive parable of why the matrix and array variants are the right way to view
I/O problems.

1.4 Our Results
We will now discuss our results in this paper. In all tables in this paper, our results will be
in bold. We demonstrate the value of reductions as a tool to further progress in the I/O
model through our results.

Our results include improved upper bounds, a new technique for lower bounds in the I/O
model and the proof of a computational hierarchy. Notably, in this paper we tie the I/O
model into both fine-grained complexity and classical complexity.

1.4.1 Upper Bounds
We get improved upper bounds on two sparse graph problems and have a clarifying note to
the community about matrix multiplication algorithms.

For both the sparse 2 vs 3 diameter and sparse 2 vs 3 radius problems, we improve the
running time from O(n2/B) to O(n2/(MB)). We get these results by using an insight from a
pre-existing reduction to two very local problems which have trivial O(n2/(MB)) algorithms
that solve them. Note that this follows the pattern we note in Section 1.3 in that we produce
a reduction from a graph problem to a non-graph problem to obtain better upper bounds in
terms of M .

Furthermore, previous work in the I/O model related to matrix multiplication seems to
use the naive matrix multiplication n3 bound, or the Strassen subdivision. However, fast
matrix multiplication algorithms which runs in nω time imply a nice self-reduction. Thus,
we can get better I/O algorithms which run in the most recent fast matrix multiplication
time. We want to explicitly add a note in the literature that fast matrix multiplication in the
I/O model should run in time TMM (n,M,B) = O(nω′/(Mω′/2−1B)) where ω′ is the matrix

ITCS 2018



34:6 Fine-grained I/O Complexity via Reductions

multiplication exponent, if it is derived using techniques bounding the rank of the matrix
multiplication tensor. The current best ω′ is ω′ < 2.373 [41, 28] giving us the I/O running
time of TMM (n,M,B) = O(n2.373/(M0.187B)). We give these results in Section 2.3.

1.4.2 I/O model Conjectures
In the I/O model a common way to get upper bounds is to get a self-reduction where a large
problem is solvable by a few copies of a smaller problem. We make the small subproblems so
small they fit in cache. If the problem is laid out in a memory local fashion in main memory
then it will take M/B I/Os to solve a subproblem that fits in memory M .

In Section 2.2, we give an I/O-based Master Theorem which gives the running time for
algorithms with recurrences of the form T (n,M,B) = αT (n/β,M,B) + f(n,M,B) (like
the classic Master Theorem from [24]) and T (n,M,B) = g2T (n/β,M,B) + f(n,M,B) (self-
reduction). The running times generated by these recurrences match the best known running
times of All-Pairs Shortest Paths (APSP), 3-SUM, Longest Common Subsequence (LCS),
Edit Distance, Orthogonal Vectors (OV), and more. Thus, if we conjecture that a recursive
algorithm has a running time that is optimal for a problem, we are able to transfer this
bound over to the I/O model using our Master Theorem and self-reduction framework in a
natural way.

1.4.2.1 Lower Bounds From Fine-Grained Complexity Assumptions

We demonstrate that many of the reductions in the RAM model between problems of interest
and common fine-grained assumptions give lower bounds in the I/O model. We generate
reasonable I/O conjectures for these problems and demonstrate that the reductions are
I/O-efficient. First, we begin with the conjectures.

I Conjecture 1 (I/O All-Pairs Shortest Paths (APSP) Conjecture). APSP requires
n3−o(1)

M1/2+o(1)B1+o(1) I/Os.

I Conjecture 2 (I/O 3-SUM Conjecture). 3-SUM requires n2−o(1)

M1+o(1)B1+o(1) I/Os.

I Conjecture 3 (I/O Orthogonal Vectors (OV) Conjecture). OV requires n2−o(1)

M1+o(1)B1+o(1) I/Os.

I Conjecture 4 (I/O Hitting Set (HS) Conjecture). HS requires n2−o(1)

M1+o(1)B1+o(1) I/Os.

From these conjectures we can generate many lower bounds. Many of our lower bounds
are tight to the fastest known algorithms. These reductions have value even if the conjectures
are refuted since many of these reductions also give upper bounds for other problems–leading
to better algorithms for many problems even if the conjectures are refuted.

1.4.3 Lower Bounds from Sparse Graph Problems
In addition to the upper, lower bounds, and reductions presented in the I/O model for the
standard RAM problems listed in Table 3, we introduce novel upper, lower bounds, and
reductions between graph problems. The reason for this focus is the fact that, more than
in the RAM model, the I/O model has a history of particularly slow algorithms in graphs.
In particular, sparse graph problems have very slow algorithms. We make novel reductions
between sparse graph problems, many of which apply to the RAM model as well, such that
solving one of these problems will solve many other variations of hard sparse graph problems
in the I/O model.
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Table 3 Previous results and our results on upper and lower bounds of problems. Sparse (Sprs.)
means that |E| = O(|V |).

Problem Upper Bound UB source Lower Bound LB from LB source

OV Õ(n2/(MB)) Lem 49 Ω̃(n2/(MB)) IO OV Conj By Def

LCS Õ(n2/(MB)) [20] Ω̃(n2/(MB)) IO OV Conj Lem 52

Edit Distance Õ(n2/(MB)) [21] Ω̃(n2/(MB)) IO OV Conj Lem 51

Sparse Diameter Õ(n2/B) [9] Ω̃(n2/(MB)) IO OV Conj Lem 50

2 vs. 3 Sprs. Diameter Õ(n2/(MB)) Full Paper Ω̃(n2/(MB)) IO OV Conj Lem 50

Hitting Set Õ(n2/(MB)) Lem 54 Ω̃(n2/(MB)) IO HS Conj By Def.

Sparse Radius Õ(n2/B) [9] Ω̃(n2/(MB)) IO HS Conj Lem 55

2 vs. 3 Sparse Radius Õ(n2/(MB)) Full Paper Ω̃(n2/(MB)) IO HS Conj Lem 55

3 vs. 4 Sparse Radius Õ(n2/B) [9] Ω̃(n2/(MB)) IO HS Conj Lem 55

Sparse Median Õ(n2/B)a [9] Ω̃(n2/(MB)) IO HS Conj Thm 17

Sparse Median Õ(n2/B)b [9] Ω̃(n2/B) 3 vs. 4 Sprs. Radius Thm 17

3-SUM Õ(n2/(MB)) [12] Ω̃(n2/(MB)) IO 3-SUM Conj By Def

Conv. 3-SUM Õ(n2/(MB))c [12] Ω̃(n2/(MB)) IO 3-SUM Conj Lem 30

0 Triangle Õ(n3/(
√

MB)) Lem 48 Ω̃(n2/(MB)) IO 3-SUM Conj Thm 33

APSP Õ(n3/(
√

MB)) [34] Ω̃(n2/(
√

MB)) IO APSP Conj By Def

Wiener Index Õ(n3/(
√

MB))d [34] Ω̃(n2/(
√

MB)) IO APSP Conj Thm 18

0 Triangle Õ(n3/(
√

MB)) Lem 48 Ω̃(n2/(
√

MB)) IO APSP Conj Thm 47

− Triangle Õ(n3/(
√

MB)) Thm 45 Ω̃(n2/(
√

MB)) IO APSP Conj Thm 40

(min,+) MM Õ(n3/(
√

MB)) [34] Ω̃(n2/(
√

MB)) IO APSP Conj Thm 40

a Upper bound comes from APSP in general graphs.
b Upper bound comes from APSP in general graphs.
c The upper bound is a trivial extension of the 3-SUM upper bound for explanation see Lemma 34.
d This upper bound comes directly from applying the algorithm for APSP, solving APSP, and summing

the results.

We provide reductions between problems that currently require Ω(n/
√
B) time to solve.

Thus, these problems specifically require linear time reductions. We show equivalence between
the following set of problems for undirected/directed and unweighted graphs: (s, t)-shortest
path, finding the girth through an edge, and finding the girth through a vertex.

We additionally generate a new reduction from sparse weighted Diameter to the sparse
Wiener Index problem in Section 3.1. This reduction holds in the RAM model as well as the
I/O model.

1.4.4 Hierarchy
The time and space hierarchy theorems are fundamental results in computational complexity
that tell us there are problems which can be solved on a deterministic Turing Machine with
some bounded time or space, which cannot be solved on a deterministic Turing Machine
which has access to less time or space. See notably the famous time and space hierarchies
[38]. For some classes, for example BPP, no time hierarchy is known to exist (e.g., [43, 11]).
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34:8 Fine-grained I/O Complexity via Reductions

In Section 5.3, we show similar separation hierarchies exist in the I/O model once
again using the simulations between the RAM and I/O models and our complexity class
CACHEM,B(t (n)) defined in Section 5.2 as the set of problems solvable in O (t (n)) cache
misses.

I Theorem 5. If the memory used by the algorithm is referenceable by O(B) words (i.e. the
entire input can be brought into cache by bringing in at most O(B) words), then

CACHEM,B(t (n)) ( CACHEM,B((t (n)B)1+ε).

Notably, this theorem applies any time we use a polynomially size memory and our word
size is w = Ω(lgn), which is the standard case in the RAM model.

This separation is motivation for looking at complexity of specific problems and trying to
understand what computational resources are necessary to solve them.

1.4.5 Improved TM Simulations of RAM Imply Better Algorithms
In the full version, we show that improved simulations of RAM machines by Turing Machines
would imply better algorithms in the I/O model. Specifically, if we can simulate RAM more
efficiently with either multi-tape Turing machines or multi-dimensional Turing machines,
then we can show that we can gain some cache locality and thus save by some factor of B,
the cache line size.

1.5 Organization
In this paper, we argue that the lens of reductions offer a powerful way to view the I/O model.
We show that reductions give novel upper and lower bounds. We also define complexity
classes for the I/O model and prove a hierarchy theorem further motivating the analysis of
the I/O model using fine-grained complexity.

We begin with faster algorithms obtained through reductions which are collected in
Section 2. Section 2.1 develops such algorithms for small diameter and radius. Section
2.2 develops the I/O Master Theorem, which is more broadly a useful tool for analyzing
almost all cache-oblivious algorithms. Section 2.3 uses this theorem to show how all recent
improvements to matrix multiplication’s RAM running time also give efficient cache-oblivious
algorithms.

One can get new lower bounds, by using the techniques from fine-grained complexity.
Some fine-grained reductions from the RAM model also work in the I/O model, we show
examples in Sections 4.1, 4.2, 4.3. We also get new reductions that work in both the RAM and
I/O model related to the Wiener Index problem in Section 3.1. Some reductions in the RAM
model do not work in the I/O model; thus, in Section 3.1, we give novel reductions between
several algorithms which take O(n2/B) and O(n2/(MB)) time. We also get reductions
that are meaningful in the I/O model which are not in the RAM model, notably, between
problems whose fastest algorithms are O(n/

√
B) and O(n), respectively, in Section 3.2.

One can also use reductions and simulation arguments to prove a hierarchy theorem for
the I/O model, explained in Section 5.

2 Algorithms in the I/O Model

In this section, we discuss our improved algorithms, algorithm analysis tools, and how
reductions generate algorithms. As is typical in the I/O model, we assume that all inputs
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are stored in disk and any computation done on the inputs are done in cache (after some
or all of the inputs are brought into cache). Section 2.1 gives better algorithms for the 2
vs 3 Diameter problem and the 2 vs 3 Radius problem in the I/O model. Section 2.3 gives
improved algorithms for Matrix Multiplication in the I/O model.

Self-reductions are commonly used for cache-oblivious algorithms, because dividing until
the subproblems are arbitrarily small allows for the problems to always fit in cache. In the
RAM model, self-reductions allow for easy analysis via the Master Theorem. Despite the
amount of attention to analyzing self-reductions in the I/O model, no one has written down
the I/O-based Master Theorem. In Section 2.2, we describe and prove a version of the Master
Theorem for the I/O model. We present a proof of this theorem to simplify our analysis and
to help future papers avoid redoing this analysis.

Finally, in the full version of the paper we explain how some reductions in the RAM
model imply faster algorithms in the I/O model.

2.1 Algorithms for Sparse 2 vs 3 Radius and Diameter
For both the radius and diameter problems on unweighted and undirected graphs, we can
show distinguishing between a graph with a diameter or radius of 2 and one with a larger
diameter or radius can be solved efficiently. Our algorithm relies on the reinterpretation
of the 2 vs 3 problem as a set-disjointness problem. Every node, v, has an associated set,
Sv, its adjacency list union itself. If two nodes have disjoint sets Sv and Su, then they are
distance greater than 2 from each other. Our algorithm for 2 vs 3 diameter and radius save
an entire factor of M from the previously best known running times.

This is a similar idea to the reduction from 2 vs 3 diameter to OV and from 2 vs 3
radius to Hitting Set in the RAM model. These reductions were introduced by Abboud,
Vassilevska-Williams and Wang [4]. While these reductions exist in the RAM model, they
don’t result in faster algorithms for 2 vs 3 diameter and radius in the I/O model because they
use a hashing step that results in BFS being run from |E|

∆ nodes for some parameter ∆ that
can be set that gives the orthogonal vectors instance a dimension of ∆2. In the I/O model,
BFS is quite inefficient: we would need to set ∆ u M to get an efficient algorithm using
the approach in [4]. But, with a dimension of M2 the OV algorithm will run very slowly.
Therefore, below we present a solution to the set disjointness problem with no hashing into a
smaller dimension.

Below we present the cache-aware algorithm for distinguishing 2 vs 3 diameter in an
undirected, unweighted graph which runs in O

(
|E|2
MB + sort(|E|)

)
time where sort(|E|) is

the time to sort the elements in |E| in the I/O model and sort(|E|) = O
(
|E| log |E|

B

)
. We

leave the proofs of cache-oblivious 2 vs 3 diameter and radius in the full version. For both 2
vs 3 diameter and radius we get running times of O

(
n2

MB + |E| lg(|E|)
B

)
. The algorithms and

proofs for cache-obliviousness are finicky, but fundamentally are self-reductions of the form
T (n) = 4T (n/2) + n/B. We leave the proofs to the full version of the paper.

We will start by giving a non-oblivious algorithm which relies on a recursive self-reduction.
We will then show how to make this oblivious. It is easier to explain the analysis and
algorithm when we can rely on the size of cache, but we can avoid that and get an oblivious
algorithm anyway. The previous best algorithm is from Arge, Meyer and Toma which achieves
O(|V |sort(|E|)) = O

(
|V ||E| log |E|

B

)
[9]. We get an improvement over the previous algorithm

in terms of running time whenever |E||V | = o(M).
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I Theorem 6. Determining if the diameter of an undirected, unweighted graph is 1, 2 or
greater than 2 can be done in O

(
|E|2
MB + sort(|E|)

)
time in the I/O-model.

See full version of the paper for proof.
The proofs of cache-oblivious 2 vs 3 Diameter and 2 vs 3 Radius are included in the full

version.

2.2 Master Theorem in the I/O Model
In this section, we formally define our Master Theorem framework for the I/O model and
provide bounds on the I/O complexity of problems whose I/O complexity fits the specifications
of our framework. In addition, we also describe some example uses of our Master Theorem
for the I/O model.

The Master Theorem recurrence in the RAM model looks like T (n) = aT (n/b) + f(n).
We will use a similar recurrence but all functions will now be defined over n, M and B. The
I/O-Master Theorem function f(n,M,B) includes all costs that are incurred in each layer of
the recursive call. This includes the I/O complexity of reading in an input, processing the
input, processing the output and writing out the output. In this section, we assume that
f(n,M,B) is a monotonically increasing function in terms of n in order to apply our Master
Theorem framework. What this means is that for any fixed M and B we want the number
of I/Os to increase or stay the same as n increases. Given that f(n,M,B) specifies the I/O
complexity of reading in the inputs and writing out the outputs, we prove the following
version of the Master Theorem in the I/O model.

I Theorem 7 (I/O Master Theorem). If f(n,M,B) contains the cost of reading in the input
(for each subproblem) and writing output (after computation of each subproblem), then the
following holds. Given a recurrence of T (n,M,B) = αT (n/β,M,B)+f(n,M,B), where α ≥
1 and β > 1 are constants, and a base case of T (n/x,M,B) = t(x,M,B) (where t(x,M,B) =
Ω(1)) for some x ≤ n and some function t(x,M,B). Let A(n,M,B) =

(
n
x

)logβ(α)
t(x,M,B),

C(n,M,B) =
(
n
x

)logβ(α)+ε1
t(x,M,B) and D(n,M,B) =

(
n
x

)logβ(α)−ε2
t(x,M,B) for some

ε1, ε2 > 0, then we get the following cases:
Case 1: If f(n,M,B) = O (D(n,M,B)) then T (n) = Θ

(
A(n,M,B) + n

B

)
.

Case 2: If C(n,M,B) = O (f(n,M,B)) and αT (n/β,M,B) ≤ cf(n,M,B) for some con-
stant c < 1 and all sufficiently large n, then T (n) = Θ

(
f(n,M,B) + n

B

)
.

Case 3: If f(n,M,B) = Θ(A(n,M,B)), then T (n,M,B) = Θ(f(n,M,B) log
(
n
x

)
+ n

B ).
Case 4: If f(n,M,B) has a constant number of terms, f(n,M,B) = Ω

(
n
B

)
, and none of

the previous cases are satisfied, then
T (n,M,B) = O

(
A(n,M,B) + f(n,M,B)

(
n
x

)logβ α + n
B

)
(note that this includes if A

and f are incomparable), with tighter upper bounds provided in our proof (in the full
version of the paper) depending on characteristics of the actual function, f(n,M,B).

See full version of the paper for proof.

One-Layer Self-Reductions

We state a relationship between one-layer self-reductions and our Master Theorem framework
above. We refer to the process of solving a problem by reducing to several problems of
smaller size each of which can be solved in cache and one recursive call is necessary as a
one-layer self-reduction. Suppose the runtime of an algorithm in the RAM model is nlogβ α,
then by dividing the problems into nlogβ α

M subproblems each of which takes M/B I/Os to



E.D. Demaine, A. Lincoln, Q. C. Liu, J. Lynch, and V. V. Williams 34:11

process, the I/O complexity of the algorithm is Θ
(

nlogβ α

M logβ α−1B

)
which is the same result we

obtain via our Master Theorem framwork above when t(x,M,B) = M/B.
We now prove formally the theorem related to one-layer self-reductions.

I Theorem 8. Let P be a problem of size n which can be reduced to g(n/M) sub-problems, each
of which takes T (M,M,B) I/Os to process. The runtime of such a one-layer self reduction for
the problem P is T (n,M,B) = g(n/M)T (M,M,B) + f(n,M,B) where f(n,M,B) = Ω

(
n
B

)
.

See full version of the paper for proof.

2.3 Faster I/O Matrix Multiplication via I/O Master Theorem

As we mentioned above, any I/O algorithm that has a self-reduction to one of the forms
stated in Section 2.2. Using our I/O Master Theorem, we can show a comparable I/O matrix
multiplication bound to the matrix multiplication bound based on finding the rank of the
Matrix Multiplication Tensor in the RAM model.

Recent improvements to matrix multiplication’s running time also imply faster cache
oblivious algorithms. Recent work has improved the bounds on ω where ω is the constant
such that for any 0 < ε < 1 there is an algorithm for n by n matrix multiplication that runs
in nω+ε. The most recent improvements on these bounds have been achieved by bounding
the rank of the Matrix Multiplication Tensor [41, 28].

The I/O literature does not seem to have kept pace with these improvements. While
previous work discusses the efficiency of naive matrix multiplication and Strassen matrix
multiplication, it does not discuss the further improvements that have been generated.

We note in this section that the modern techniques to improve matrix multiplication
running time, those of bounding the rank of the Matrix Multiplication Tensor, all imply
cache-efficient algorithms.

I Theorem 9 (Matrix Multiplication I/O Complexity[23]). Let TMA(n) = O
(
n2

B

)
be the time

it takes to do matrix addition on matrices of size n by n. If the matrix multiplication tensor’s
rank is bounded such that the RAM model running time is nω′+ε for any 0 < ε < 1 then the
following self-reduction exists for some constant α,

TMM (n) = O
(
αω
′+εTMM

(n
α

)
+ αω

′
TMA

(n
α

))
.

Self-reductions feed conveniently into cache oblivious algorithms. Notably, when we
plug this equation into the I/O Master Theorem from Section 2.2, we obtain the following
bound as given in Lemma 10. Recursive structures like this tend to result in cache-oblivious
algorithms. After all, regardless of the size of cache, the problems will be broken down until
they fit in cache. Then, when a problem and the algorithm’s execution fit in memory, the
time to answer the query is O(M/B), regardless of the size of M and B.

I Lemma 10. If the matrix multiplication tensor’s rank is bounded such that the RAM model
running time is nω′+ε for any 0 < ε < 1 and Theorem 9 holds with base case TMM (

√
M) = M

B ,
then the running time for cache-oblivious matrix multiplication in the I/O model is at most

O

(
nω
′+ε

M
ω′+ε

2 −1B
+ n2

B

)
for any 0 < ε < 1.

See full version of the paper for proof.
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3 Novel Reductions

In this section we cover reductions related to Wiener Index, Median, Single Source Shortest
Paths, and s-t Shortest Paths. We first cover our super linear lower bounds, then cover the
linear lower bounds.

3.1 Super Linear Lower Bounds
We present reductions in the I/O model which yield new lower bounds. We have as corollaries
of these same reductions related lower bounds in the RAM model. Many of these reductions
relate to the problem of finding the Wiener Index of the graph.

We show diameter reduces to Wiener Index, APSP reduces to Wiener Index, and we
show 3 vs 4 radius reduces to median.

I Definition 11 (Wiener Index). Given a graph G = (V,E) let D[i, j] be the shortest path
distance between node i and node j in the graph G, where D[i, i] = 0), n = |V |, and m = |E|.
The Wiener index of the graph is

∑
∀i∈V

∑
∀j∈V D[i, j].

I Lemma 12. If (directed/undirected) Wiener index in a (weighted/unweighted) graph,
G = (V,E), is solvable in T (n,m,M,B) time then for any choice of sets X ⊂ V and T ⊂ V
the sum

∑
x∈X

∑
t∈T δ(x, t) is computable in O

(
T (n,m,M,B) + m

B

)
time.

See full version of the paper for proof.

I Lemma 13. If undirected Wiener index in an unweighted graph, G = (V,E), is solvable
in T (n,m,M,B) time then for any choice of sets X ⊂ V and T ⊂ V the sum∑

x∈X
∑
t∈T max{min{δ(u, v), k+ 1}, k} is computable in O

(
T (kn, km,M,B) + k|E|

B

)
time.

See full version of the paper for proof.

I Theorem 14. If undirected Wiener index in an unweighted graph is solvable in
T (n,m,M,B) time then counting the number of pairs x ∈ X and t ∈ T in a directed/undirec-
ted, unweighted graph where δ(x, t) = k and computing the number of pairs where δ(x, t) ≥ k
is computable in O

(
T (kn, km,M,B) + km

B

)
time.

See full version of the paper for proof.
We now show that Wiener index, in sparse graphs, can efficiently return small diameters.

Notably, this means that improvements to the sparse Wiener index algorithm will imply
faster algorithms for the sparse diameter problem than exist right now.

I Corollary 15. If Wiener index is solvable in T (n,m,M,B) time then returning
min{diameter, k} is solvable in O

(
log(k)T (kn, km, kM, kB) + km

B

)
time.

See full version of the paper for proof.

I Corollary 16. If Wiener index is solvable in T (n,m,M,B) time then returning the number
of nodes at distances in [1, k] from each other can be done in O

(
kT (kn, kM, kB) + k2m

B

)
time.

See full version of the paper for proof.
Next, we prove that improvements to median finding in sparse graphs improve the radius

algorithm, using a novel reduction. Notably, in the I/O model 3 vs 4 radius is slower than 2
vs 3 radius; whereas, in the RAM-model, these two problems both run in n2 time. The gap
in the I/O model of a factor of M is what allows us to make these statements meaningful.
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I Theorem 17. If median is solvable in T (n,m,M,B) time then 3 vs 4 radius is solvable in
O
(
T (n,m,M,B) + n2

MB + E log(E)
B

)
time.

See full version of the paper for proof.
It has previously been shown that Wiener Index is equivalent to APSP in the RAM

model. Here we show this also holds in the I/O-model.

I Theorem 18. If Wiener Index is solvable in n3−ε time in a dense graph then APSP is
solvable in Õ(n3−ε + n2/B) time.

See full version of the paper for proof.

3.2 Linear-Time Reductions
In fine-grained complexity, it often does not make sense to reduce linear-time problems to
one another because problems often have a trivial lower bound of Ω(n) needed to read in
the entire problem. However, in the I/O model, truly linear time—the time needed to read
in the input—is Θ(n/B). Despite significant effort, many problems do not achieve this full
factor of B in savings, and thus linear lower bounds of Ω(n) are actually interesting. We can
use techniques from fine-grained complexity to try to understand some of this difficulty.

In the remainder of this section, we cover reductions between linear-time graph problems
whose best known algorithms take longer than O(|E|/B) time. This covers many of even the
most basic problems, like the s-t shortest path problem, which asks for the distance between
two specified nodes s and t in a graph G. The sparse s-t shortest paths problem has resisted
improvement beyond O(|V |/

√
B) even in undirected unweighted graphs [30], and in directed

graphs, the best known algorithms still run in time Ω(|V |) [17, 8].
Notably, the undirected unweighted s-t shortest path problem is solved by Single Source

Shortest Paths (SSSP) and Breadth First Search (BFS). Further note that for directed graphs
the best known algorithms for SSSP, BFS, and Depth First Search (DFS) in sparse, when
|E| = O(|V |), directed graphs take O(|V |) time. Which is a cache miss for every constant
number of operations, giving no speed up at all. SSSP, BFS, and DFS solve many other
basic problems like graph connectivity.

By noting these reductions we want to show that improvements in one problem propagate
to others. We also seek to explain why improvements are so difficult on these problems.
Because, improving one of these problems would improve many others, any problem which
requires new techniques to improve implies the others must also need these new techniques.
Furthermore, any lower bound proved for one problem will imply lower bounds for the other
problems reduced to it. We hope that improvements will be made to algorithms or lower
bounds and propagated accordingly.

We show reductions between the following three problems in weighted and unweighted as
well as directed and undirected graphs.

I Definition 19 (s-t-shortest-path(G, s, t)). Given a graph G and pointers to two verticies s
and t, return the length of the shortest path between s and t.

I Definition 20 (Girth-Containing-Edge(G, e)). Given a graph G and a pointer to an edge e,
return the length of the shortest cycle in G which contains e.

I Definition 21 (Girth-Containing-Vertex(G, v)). Given a graph G and a pointer to a vertex
v, return the length of the shortest cycle in G which contains v.
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We now begin showing that efficient reductions exist between these hard to solve linear
problems.

I Theorem 22. Given an algorithm that solves (undirected/directed) s-t-shortest-path in
f(n, |E|,M,B) time (undirected/directed) Girth-Containing-Edge can be solved in
O(f(n, |E|,M,B) +O(1)) time.

See full version of the paper for proof.

I Theorem 23. Given an algorithm that solves (undirected/directed) Girth-Containing-Edge
in f(n, |E|,M,B) time (undirected/directed) s-t-shortest-path can be solved in
O(f(n, |E|,M,B) +O(1)) time.

See full version of the paper for proof.

I Theorem 24. Given an algorithm that solves (undirected/directed) Girth-Containing-
Vertex in f(n, |E|,M,B) time (undirected/directed) s-t-shortest-path can be solved in
O(f(n, |E|,M,B) +O(1)) time.

See full version of the paper for proof.

I Theorem 25. Given an algorithm that solves (undirected/directed) Girth-Containing-
Vertex in f(n, |E|,M,B) time (undirected/directed) Girth-Containing-Edge can be solved in
O(f(n, |E|,M,B) +O(1)) time.

See full version of the paper for proof.

I Theorem 26. Given an algorithm that solves directed Girth-Containing-Edge in
f(n, |E|,M,B) time then directed Girth-Containing-Vertex is solvable in O(f(n, |E|,M,B) +
n/B) time.

See full version of the paper for proof.

I Theorem 27. Given an algorithm that solves directed s-t-shortest-path in f(n, |E|,M,B)
time then directed Girth-Containing-Vertex is solvable in O(f(n, |E|,M,B) + n/B) time.

See full version of the paper for proof.
When solving Girth-Containing-Vertex in the directed case, we know which direction

the path must follow the edges and can perform this decomposition. Unfortunately this no
longer works in the undirected case and a more complex algorithm is needed, giving slightly
weaker results.

I Theorem 28. Given an algorithm that solves undirected s-t-shortest-path in f(n, |E|,M,B)
time then undirected Girth-Containing-Vertex is solvable in O((f(n, |E|,M,B) + n/B) lg(n))
time.

See full version of the paper for proof.

I Theorem 29. Given an algorithm that solves undirected Girth-Containing-Edge in
f(n, |E|,M,B) time then undirected Girth-Containing-Vertex is solvable in
O((f(n, |E|,M,B) + n/B) lg(n)) time.

See full version of the paper for proof.
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4 Lower Bounds from Fine-Grained Reductions

The fundamental problems in the fine-grained complexity world are good starting points for
assumptions in the I/O model because these problems are so well understood in the RAM
model. Additionally, both APSP and 3-SUM have been studied in the I/O model [9, 34, 35].
These reductions allow us to propagate believed lower bounds from one problem to others,
as well as propagate any potential future algorithmic improvements.

4.1 Reductions to 3-SUM
We will show that 3-SUM is reducible to both convolution 3-SUM and 0 triangle in the
I/O-model.

I Lemma 30. If convolution 3-SUM is solved in f(n,M,B) time then 3-SUM is solved in
O(g3f(n/g,M,B)) + n2/(gMB)) time for all g ∈ [1, n].

See full version of the paper for proof.

I Corollary 31. If convolution 3-SUM is solved in time O(n2−ε/(MB)) or O(n2/(M1+εB))
or O(n2/(MB1+ε)) then 3-SUM is solved in O(n2−ε′/(MB)) or
O(n2/(M1+ε′B)) or O(n2/(MB1+ε′)) time, violating the I/O 3-SUM conjecture.

See full version of the paper for proof.

I Lemma 32. If 0 triangle is solved in f(n,M,B) time then convolution 3-SUM is solved
in O(

√
nf(
√
n,M,B) + n1.5 lgM/B(n)/B) time.

See full version of the paper for proof.

I Theorem 33. If 0 triangle is solved in time O(n3−ε/(MB)) or O(n3/(M1+εB)) or
O(n3/(MB1+ε)) then 3-SUM is solved in O(n2−ε′/(MB)) or
O(n2/(M1+ε′B)) or O(n2/(MB1+ε′)) time, violating the I/O 3-SUM conjecture.

See full version of the paper for proof.

I Lemma 34. If 3-SUM is solved in f(n,M,B) I/Os then Convolution 3-SUM is solvable
in O(f(n,M,B) + n/B) I/Os.

See full version of the paper for proof.

I Corollary 35. Convolution 3-SUM is solvable in O(n2/(MB) + n/B)

Proof. Given Lemma 34 J

4.2 APSP Reductions in the IO-Model
I Definition 36 (All-Pairs-Shortest-Path(G)). Given a fully connected graph G with large
edge weights (weights between −nc and nc for some constant c) return the path lengeths
between all pairs of nodes in a matrix D where D[i][j] = the length of the shortest path
from node i to node j).

Another related version of APSP requires us to return all the shortest paths in addition
to the distances. To represent this information efficiently, one is required to return an n by
n matrix P where the P [i][j] is the next node after i on the shortest path from i to j. The
matrix P allows one to extract the shortest path between two points by following the path
through the matrix P . This problem is also called APSP.
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I Definition 37 (Three-Layer-APSP(G)). Solve APSP on G where G is promised to be a
bipartite graph G which has partitions A, B, and C, such that there are no edges within
A,B or C and no edges between A and C.

I Definition 38 (Negative-triangle-detection(G)). Given a graph G, retuning true if there is
a negative triangle and false if there is no negative triangle. This problem is also called −4
detection.

I Definition 39 ((min,+)-Matrix-Multiplication(A,B)). This problem is a variant on matrix
multiplication.Given an n by n matrix A and an n by n matrix B return an n by n matrix
C such that C[i][j] = min ({A[i][k] +B[k][j]|∀k ∈ [1, n]}) .

The motivation for showing I/O equivalences between these problems is two fold. First,
just as in the RAM model, these reductions can provide a shared explanation for why some
problems have seen no improvement in their I/O complexity for years.

The set of reductions

I Theorem 40. If (min,+) runs in time f (n,M,B), then APSP runs in
O (lg (n) f (n,M,B)).

See full version of the paper for proof.

I Theorem 41. If All Pairs Shortest Paths runs in time f (n,M,B), then negative weight
triangle detection in a tripartite graph runs in O (f (n,M,B)) cache misses.

See full version of the paper for proof.

I Theorem 42. If negative weight triangle detection in a tripartite graph runs in time
f (n,M,B), then three layer APSP with weights in the range [−W,W ] runs in
O
(
lg (W )n2f

(
n1/3,M,B

))
cache misses.

See full version of the paper for proof.

I Corollary 43. If negative weight triangle detection in a tripartite graph runs in time
f (n,M,B), then three layer APSP over weights in the range [−poly (n) , poly (n)] runs in
O
(
lg (n)n2f

(
n1/3,M,B

))
cache misses.

See full version of the paper for proof.

I Lemma 44. If All Pairs Shortest Paths runs in time f (n,M,B), then three layer APSP
runs in O (f (n,M,B)) cache misses.

See full version of the paper for proof.

The equivalences

I Theorem 45. The following problems run in time Õ( N3
√
MB

+ n2

B ) cache misses:
1. All Pairs Shortest Paths
2. (min,+) matrix multiplication
3. Negative triangle detection in a tripartite graph
4. Three layer APSP

See full version of the paper for proof.



E.D. Demaine, A. Lincoln, Q. C. Liu, J. Lynch, and V. V. Williams 34:17

I Corollary 46. The following solve APSP faster.
1. If (min,+) matrix multiplication is solvable in f(n) time then APSP is solvable in

O(lg(n)f(n,M,B)) time.
2. If negative triangle detection in a tripartite graph is solvable in f(n) time then APSP is

solvable in O(lg(n)n2f(n1/3,M,B)) time.

See full version of the paper for proof.

I Lemma 47. If 0 triangle is solved in f(n,M,B) time then −4 over numbers in the range
of [−W,W ] is solved in O(lg(W )f(n,M,B) + lg(W )n2/B).

See full version of the paper for proof.

I Lemma 48. Zero triangle is solvable in O(n3/(
√
MB) + n2/B) I/Os.

See full version of the paper for proof.

4.3 Orthogonal Vectors (OV)
I Lemma 49. OV is solvable in O(n2/(MB) + n/B) I/Os cache obliviously.

See full version of the paper for proof.

I Lemma 50. If sparse diameter is solvable in f(n,M,B) I/Os then OV is solvable in
Õ(f(n,M,B) + n/B) I/Os.

See full version of the paper for proof.

I Lemma 51. If Edit Distance is solvable in f(n,M,B) time then OV is solvable in
Õ(f(n,M,B) + n/B) I/Os.

See full version of the paper for proof.

I Lemma 52. If Longest Common Subsequence is solvable in f(n,M,B) time then OV is
solvable in Õ(f(n,M,B) + n/B) I/Os.

See full version of the paper for proof.

4.4 Hitting Set
Abboud, Vassilevska-Williams and Wang define a new problem, called Hitting Set [4].

I Definition 53 (Hitting Set). Given an input of a list A and B of d dimensional 1 and 0
vectors return True if there ∃a ∈ A such that ∀b ∈ B a · b > 0.

I Lemma 54. Hitting Set is solvable in Õ(n2/(MB) + n/B) I/Os.

See full version of the paper for proof.

I Lemma 55. If sparse radius is solvable in f(n,M,B) I/Os then Hitting Set is solvable in
Õ(f(n,M,B) + n/B) I/Os.

See full version of the paper for proof.
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5 I/O Model Complexity Classes

In this section we examine the I/O model from a complexity theoretic perspective. Section 5.1
provides some necessary background information. In Section 5.2 we define the classes
PCACHEM,B and CACHEM,B (t (n)) describing the problems solvable in a polynomial
number of cache misses and O (t (n)) cache misses respectively. We then demonstrate that
PCACHEM,B lies between P and PSPACE for reasonable choices of cache size. In the full
version we provide simulations between the I/O model and both the RAM and Turing machine
models. In Section 5.3 we prove the existence of a time hierarchy in CACHEM,B (t (n)). The
existence of a time hierarchy in the I/O model grounds the study of fine-grained complexity
by showing that such increases in running time do provably allow more problems to be solved.
The techniques to achieve many of the results in this section also follow in the same theme
of reductions, although the focus of the problems examined is quite different.

5.1 Hierarchy Preliminaries: Oracle Model
Oracles are used to prove several results, most notably in the time-hierarchy proof. The
oracle model was introduced by Turing in 1938 [40]. The definition we use here comes from
Soare [39] and similar definitions can be found in computational complexity textbooks.

In the Turing machine oracle model of computation we add a second tape and correspond-
ing tape head. This oracle tape and its oracle tape head can do everything the original tape
can: reading, writing and moving left and right. This oracle tape head has two additional
states ASK and RESPONSE. After writing to the oracle tape, the tape head can go into
the ASK state. In the ASK state the oracle computation is done on the input written to
the oracle tape and then the tape head is changed to the RESPONSE state. All of this is
done in one computational step. If the oracle is the function language L : {0, 1}n → {0, 1}∗,
then the output is written on the tape for the input i is L(i). This allows the Turing machine
to make O(1) cost black box calls to the oracle language and get strings as output.

The notation AB describes a computational class of the languages decidable by an oracle
Turing machine of A with a B oracle. The oracle language will be a language decidable in
the function version of B. The oracle machine will then be resource limited as A is resource
limited.

In this paper we will also talk about RAM machine oracles. This is a simple extension
of the typical Turing machine oracle setup. The RAM machine will have two randomly
accessible memories. One will be the standard RAM memory. The other memory will be the
oracle memory, the RAM can read and write words to this memory and can additionally
enter the ASK state. One time step after entering the ASK state the RAM will be returned
to the RESPONSE state and the contents of the oracle memory will contain the oracle
language output, L(i).

5.2 PCACHEM,B and its relationship with P and PSPACE
First we define the class of problems solvable given some function, t(n), the number of cache
misses, up to constant factors.

I Definition 56. Let CACHEM,B (t (n)) be the set of problems solvable in O (t (n)) cache
misses on a IO-model machine with a cache of size O(M) and a cache line size of size O(B).

Next, we consider the class of problems solvable by any polynomial number of cache
misses.
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I Definition 57. Let PCACHEM,B be the set of problems solvable in polynomial numbers
of cache misses on a IO-model machine with a cache of size O(M) and a cache lines of size
O(B).

PCACHEM,B =
∞⋃
i=1

CACHEM,B(ni)

First, let us note that the CACHE class can simulate the RAM class. The IO-model is
basically a RAM model with extra power.

I Lemma 58. RAM(t(n)) ⊆ CACHEM,B(t(n))

See full version of the paper for proof.
Now we introduce a complexity class MEM. Note that this class is very similar to

SPACE.

I Definition 59. We define the class MEM(s(n)) to be the set of problems solvable in
SPACE(s(n)) when the input is of size O(s(n)).

Why MEM and not SPACE? We want to use the MEM class as an oracle which will
model computation doable on a cache machine in one cache miss. When t(n) = Ω(n) then
MEM(t(n)) = SPACE(t(n)); however, these classes differ when we have a small work space.
A SPACE(o(n)) machine is given a read-only tape of size n and compute space o(n). This
extra read-only tape gives the SPACE machine too much power when compared with the
cache. Notably, we can scan through the entire input with one step with a SPACE(lg(n))
oracle. A cache would require n/B time to scan this input.

I Lemma 60. MEM(Mw) ⊆ CACHEM,B(M/B).

See full version of the paper for proof.
Now we prove that a RAM machine with oracle access to our MEM oracle can be simulated

by a cache machine. We simulate the MEM machine and RAM machine together efficiently
in cache.

I Corollary 61. RAM(t(n))MEM(Mw) ⊆ CACHEM+3,B(t(n)).

See full version of the paper for proof.
The class PCACHEM,B is equivalent to a polynomial time algorithm with oracle access

to a MEM oracle. Intuitively, in both cases we get to use a similarly powerful object (the
cache or the MEM oracle) a polynomial number of times.

I Theorem 62. If Bw = O (poly (n)), then PCACHEM,B = PMEM(Mw)

See full version of the paper for proof.
We then note that in many cases MEM and SPACE are equivalent.

I Corollary 63. If Bw = O (poly (n)) and Mw = Ω (n), then
PCACHEM,B = PSPACE(Mw).

See full version of the paper for proof.
Finally, we note that P is a subset of PCACHEM,B .

I Lemma 64. If Mw = Θ (poly (n)), then PCACHEM,B ⊆ PSPACE

See full version of the paper for proof.

I Lemma 65.
⋃∞
c=1

PCACHEnc,B = PSPACE

See full version of the paper for proof.
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5.3 CACHEM,B Hierarchy
In this section we prove that a hierarchy exists in the IO-model. The separation in the CACHE
hierarchy is B times the separation for the RAM hierarchy. We know that RAM machines
given polynomially more time can solve more problems than those given polynomially less.

I Theorem 66. For ε ≥ 0,

RAMO(t(n)) ( RAMO((t(n))1+ε). [22]

Let s(n) be the space usage of the algorithm running on the RAM machine. Let
α = B+dlg(s(n))/we

B , which is the number of cache lines needed to represent both a cache line
and its memory address. Note, in the case where one word is large enough to address all of
the memory used by the algorithm (a standard assumption) α = 1 + 1/B ≤ 2. We now give
a simulation of a CACHE machine by a RAM machine with MEM oracle.

I Lemma 67. CACHEM,B(t (n)) ⊆ RAM (t (n) (B + α))MEM(Mwα)

See full version of the paper for proof.
Plugging our simulation into the RAM hierarchy gives a separation result for the CACHE

complexity classes.

I Theorem 68. For all ε > 0

CACHEM,B(t (n)) ( CACHEMα,B((αt (n)B)1+ε).

See full version of the paper for proof.
Under reasonable assumptions about the values of input and word sizes, we can construct

a cleaner version of the above theorem.

I Corollary 69. When s(n) = 2O(wB), in other words the memory used by the algorithm is
referenceable by O(B) words,

CACHEM,B(t (n)) ( CACHEM,B((t (n)B)1+ε).

Proof. Note α = 1 + 1/B = O(1), and thus is a constant with respect to the time and size
of memory which are defined asymptotically. Thus this factor disappears. J
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