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Abstract
Many real-world problems can be formulated as geometric optimization problems in high dimensions,
especially in the fields of machine learning and data mining. Moreover, we often need to take into
account of outliers when optimizing the objective functions. However, the presence of outliers could
make the problems to be much more challenging than their vanilla versions. In this paper, we study
the fundamental minimum enclosing ball (MEB) with outliers problem first; partly inspired by the
core-set method from Bădoiu and Clarkson, we propose a sub-linear time bi-criteria approximation
algorithm based on two novel techniques, the Uniform-Adaptive Sampling method and Sandwich
Lemma. To the best of our knowledge, our result is the first sub-linear time algorithm, which has
the sample size (i.e., the number of sampled points) independent of both the number of input points
n and dimensionality d, for MEB with outliers in high dimensions. Furthermore, we observe that
these two techniques can be generalized to deal with a broader range of geometric optimization
problems with outliers in high dimensions, including flat fitting, k-center clustering, and SVM with
outliers, and therefore achieve the sub-linear time algorithms for these problems respectively.
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1 Introduction

Geometric optimization is a fundamental topic that has been extensively studied in the
community of computational geometry [1]. The minimum enclosing ball (MEB) problem is
one of the most popular geometric optimization problems who has attracted a lot of attentions
in past years, where the goal is to compute the smallest ball covering a given set of points in
the Euclidean space [11, 50, 32]. Though its formulation is very simple, MEB has a number
of applications in real world, such as classification [68, 20, 21], preserving privacy [59, 31],
and quantum cryptography [38]. A more general geometric optimization problem is called
flat fitting that is to compute the smallest slab (centered at a low-dimensional flat) to cover
the input data [42, 60, 71]. Another closely related important topic is the k-center clustering
problem, where the goal is to find k > 1 balls to cover the given input data and minimize the
maximum radius of the balls [35]; the problem has been widely applied to many areas, such as
facility location [18] and data analysis [67]. Moreover, some geometric optimization problems
are trying to maximize their size functions. As an example, the well known classification
technique support vector machine (SVM) [17] is to maximum the margin separating two
differently labeled point sets in the space.
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Real-world datasets are often noisy and contain outliers. Moreover, outliers could seriously
affect the final optimization results. For example, it is easy to see that even one outlier could
make the MEB arbitrarily large. In particular, as the rapid development of machine learning,
the field of adversarial machine learning concerning about the potential vulnerabilities of
the algorithms has attracted a great amount of attentions [45, 51, 9, 36]. A small set of
outliers could be added by some adversarial attacker to make the decision boundary severely
deviate [8, 48]. Furthermore, the presence of outliers often results in a quite challenging
combinatorial optimization problem; as an example, if m of the input n data items are
outliers (m < n), we have to consider an exponentially large number

(
n
m

)
of different possible

cases when optimizing the objective function. Therefore, the design of efficient and robust
optimization algorithms is urgently needed to meet these challenges.

1.1 Our Contributions
In big data era, the data size could be so large that we cannot even afford to read the
whole dataset once. In this paper, we consider to develop sub-linear time algorithms for
several geometric optimization problems involving outliers. We study the aforementioned
MEB with outliers problem first. Informally speaking, given a set of n points in Rd and
a small parameter γ ∈ (0, 1), the problem is to find the smallest ball covering at least
(1− γ)n points from the input. We are aware of several existing sub-linear time bi-criteria
approximation algorithms based on uniform sampling for MEB and k-center clustering with
outliers [7, 46, 29], where the “bi-criteria” means that the ball (or the union of the k balls) is
allowed to exclude a little more points than the pre-specified number of outliers. Their ideas
are based on the theory of VC dimension [69]. But the sample size usually depends on the
dimensionality d, which is roughly O

( 1
δ2γ kd · polylog(

kd
δγ )
)
, if allowing to discard (1 + δ)γn

outliers with δ ∈ (0, 1) (k = 1 in the complexity for the MEB with outliers problem). A
detailed overview on previous works is shown in Section 1.2.

Since many optimization problems in practice need to consider high-dimensional datasets,
especially in the fields of machine learning and data mining, the above sample size from [7,
46, 29] could be very large. Partly inspired by the core-set method from Bădoiu and
Clarkson [11] for computing MEB in high dimensions, we are wondering that whether
it is possible to remove the dependency on d in the sample size for MEB with
outliers and other related high dimensional geometric optimization problems.
Given a parameter ε ∈ (0, 1), the method of [11] is a simple greedy algorithm that selects 2

ε

points (as the core-set) for constructing a (1 + ε)-approximate MEB, where the resulting
radius is at most 1 + ε times the optimal one. A highlight of their method is that the core-set
size 2

ε is independent of d. However, there are several substantial challenges when applying
their method to design sub-linear time algorithm for MEB with outliers. First, we need to
implement the “greedy selection” step by a random sampling manner, but it is challenging
to guarantee the resulting quality especially when the data is mixed with outliers. Second,
the random sampling approach often yields a set of candidates for the ball center (e.g., we
may need to repeatedly run the algorithm multiple times for boosting the success probability,
and each time generates a candidate solution), and thus it is necessary to design an efficient
strategy to determine which candidate is the best one in sub-linear time.

To tackle these challenges, we propose two key techniques, the novel “Uniform-Adaptive
Sampling” method and “Sandwich Lemma”. Roughly speaking, the Uniform-Adaptive
Sampling method can help us to bound the error induced in each “randomized greedy
selection” step; the Sandwich Lemma enables us to estimate the objective value of each
candidate and select the best one in sub-linear time. To the best of our knowledge, our result
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is the first sub-linear time approximation algorithm for the MEB with outliers problem with
sample size being independent of the number of points n and the dimensionality d, which
significantly improves the time complexities of existing algorithms.

Moreover, we observe that our proposed techniques can be used to solve a broader
range of geometric optimization problems. We define a general optimization problem called
minimum enclosing “x” (MEX) with Outliers, where the “x” stands for a specified
kind of shape (e.g., the shape is a ball for MEB with outliers). We prove that it is able
to generalize the Uniform-Adaptive Sampling method and Sandwich Lemma to adapt the
shape “x”, as long as it satisfies several properties. In particular we focus on the MEX with
outlier problems including flat fitting, k-center clustering, and SVM with outliers; a common
characteristic of these problems is that each of them has an iterative algorithm based on
greedy selection for its vanilla version (without outliers) that is similar to the MEB algorithm
of [11]. Though these problems have been widely studied before, the research in terms of
their sub-linear time algorithms is still quite limited.

1.2 Related Work
Sub-linear time algorithms. The research on sub-linear time algorithms design has a long
history [63, 25]. For example, a number of sub-linear time clustering algorithms have been
studied in [47, 56, 57, 24]. Another important application of sub-linear time algorithms is
property testing on graphs or probability distributions [34].

As mentioned before, the uniform sampling idea can be used to design sub-linear time
algorithms for the problems of MEB and k-center clustering with outliers [7, 46, 29], but
the sample size depends on the dimensionality d that could be very large in practice. Note
that Alon et al. [7] presented another sub-linear time algorithm, which has the sample
size independent of d, to test whether an input point set can be covered by a ball with a
given radius; however, it is difficult to apply their method to solve the MEB with outliers
problem as the algorithm relies on some nice properties of minimum enclosing ball, but these
properties are not easy to be utilized when inliers and outliers are mixed. In [26], we proposed
a notion of stability for MEB and developed the sub-linear time MEB algorithms for stable
instance. Clarkson et al. [21] developed an elegant perceptron framework for solving several
optimization problems arising in machine learning, such as MEB. For a set of n points in
Rd, their framework can solve the MEB problem in Õ( nε2 + d

ε ) 1 time. Based on a stochastic
primal-dual approach, Hazan et al. [44] provided an algorithm for solving the SVM problem
in sub-linear time.

MEB and k-center clustering with outliers. Core-set is a popular technique to reduce the
time complexities for many optimization problems [2, 61]. The core-set idea has also been
used to compute approximate MEB in high dimensional space [20, 13, 50, 60, 49]. Bădoiu
and Clarkson [11] showed that it is possible to find a core-set of size d2/εe that yields a
(1 + ε)-approximate MEB. There are also several exact and approximation algorithms for
MEB that do not rely on core-sets [32, 64, 6]. Streaming algorithms for computing MEB
were also studied before [4, 16].

Bădoiu et al. [13] extended their core-set idea to the problems of MEB and k-center
clustering with outliers, and achieved linear time bi-criteria approximation algorithms (if
k is assumed to be a constant). Several algorithms for the low dimensional MEB with

1 The asymptotic notation Õ(f) = O
(
f · polylog(ndε )

)
.
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outliers problem have been also developed [5, 30, 39, 54]. A 3-approximation algorithm for
k-center clustering with outliers in arbitrary metrics was proposed by Charikar et al. [18];
Chakrabarty et al. [15] proposed a 2-approximation algorithm for k-center clustering with
outliers. These algorithms often have high time complexities (e.g., Ω(n2d)). Recently, Ding
et al. [29] provided a linear time greedy algorithm for k-center clustering with outliers based
on the idea of the Gonzalez’s algorithm [35]. Furthermore, there exist a number of works on
streaming and distributed algorithms, such as [19, 55, 72, 53, 37, 14, 52].

Flat fitting with outliers. Given an integer j ≥ 0 and a set of points in Rd, the flat fitting
problem is to find a j-dimensional flat having the smallest maximum distance to the input
points [41]; obviously, the MEB problem is a special case with j = 0. In high dimensions,
Har-Peled and Varadarajan [42] provided a linear time algorithm if j is assumed to be fixed;
their running time was further reduced by Panigrahy [60] based on a core-set approach. There
also exist several methods considering flat fitting with outliers but only for low-dimensional
case [43, 3].

SVM with outliers. Given two point sets P1 and P2 in Rd, the problem of Support Vector
Machine (SVM) is to find the largest margin to separate P1 and P2 (if they are separable) [17].
SVM can be formulated as a quadratic programming problem, and a number of efficient
techniques have been developed in the past, such as the soft margin SVM [22, 62], ν-
SVM [65, 23], and Core-SVM [68, 20]. There also exist a number of works on designing
robust algorithms of SVM with outliers [70, 40, 66, 28].

2 Definitions and Preliminaries

In this paper, we let |A| denote the number of points of a given point set A in Rd, and
||x− y|| denote the Euclidean distance between two points x and y in Rd. We use B(c, r) to
denote the ball centered at a point c with radius r > 0. Below, we give several definitions
used throughout this paper.

I Definition 1 (Minimum Enclosing Ball (MEB)). Given a set P of n points in Rd, the MEB
problem is to find a ball with minimum radius to cover all the points in P . The resulting ball
and its radius are denoted by MEB(P ) and Rad(P ), respectively.

A ball B(c, r) is called a λ-approximation of MEB(P ) for some λ ≥ 1, if the ball covers
all points in P and has radius r ≤ λRad(P ).

I Definition 2 (MEB with Outliers). Given a set P of n points in Rd and a small parameter
γ ∈ (0, 1), the MEB with outliers problem is to find the smallest ball that covers (1 − γ)n
points. Namely, the task is to find a subset of P with size (1− γ)n such that the resulting
MEB is the smallest among all possible choices of the subset. The obtained ball is denoted by
MEB(P, γ).

For convenience, we use Popt to denote the optimal subset of P with respect toMEB(P, γ).
That is, Popt = argQ min

{
Rad(Q) | Q ⊂ P, |Q| = (1− γ)n

}
. From Definition 2, we can see

that the main issue is to determine the subset of P . Actually, solving such combinatorial
problems involving outliers are often challenging. In Section A.1, we present an example
to show that it is impossible to achieve an approximation factor less than 2 for MEB with
outliers, if the time complexity is required to be independent of n. Therefore, we consider
finding the bi-criteria approximation. Actually, it is also a common way for solving other
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optimization problems with outliers. For example, Mount et al. [58] and Meyerson et al. [56]
studied the bi-criteria approximation algorithms respectively for the problems of linear
regression and k-median clustering with outliers before.

I Definition 3 (Bi-criteria Approximation). Given an instance (P, γ) for MEB with outliers
and two small parameters 0 < ε, δ < 1, a (1 + ε, 1 + δ)-approximation of (P, γ) is a ball that
covers at least

(
1− (1 + δ)γ

)
n points and has radius at most (1 + ε)Rad(Popt).

When both ε and δ are small, the bi-criteria approximation is very close to the optimal
solution with only slight changes on the number of covered points and the radius.

We also extend Definition 2 to the problem called minimum enclosing “x” (MEX)
with Outliers, where the “x” could be any specified shape. To keep the structure of
our paper more compact, we state the formal definition of MEX with outliers and the
corresponding results in Section 5.

2.1 A More Careful Analysis for Core-set Construction in [11]
Before presenting our main results, we first revisit the core-set construction algorithm for
MEB of Bădoiu and Clarkson [11], since their method will be used in our algorithms for
MEB with outliers.

Let 0 < ε < 1. The algorithm in [11] yields an MEB core-set of size 2/ε (for convenience,
we always assume that 2/ε is an integer). However, there is a small issue in their paper.
The analysis assumes that the exact MEB of the core-set is computed in each iteration,
but in fact one may only compute an approximate MEB. Thus, an immediate question is
whether the quality is still guaranteed with such a change. Kumar et al. [50] fixed this
issue, and showed that computing a (1 +O(ε2))-approximate MEB for the core-set in each
iteration still guarantees a core-set with size O(1/ε), where the hidden constant is larger
than 80. Clarkson [20] systematically studied the Frank-Wolfe algorithm [33], and showed
that the greedy core-set construction algorithm of MEB, as a special case of the Frank-Wolfe
algorithm, yields a core-set with size slightly larger than 4/ε. Note that there exist several
other methods yielding even lower core-set size [12, 49], but their construction algorithms
are more complicated and thus not applicable to our problems. Increasing the core-set size
from 2/ε to α/ε (for some α > 2) is neglectable in asymptotic analysis. But in Section 4, we
will show that it could cause serious issue if outliers exist. Hence, a core-set of size 2/ε is still
desirable. For this purpose, we provide a new analysis which is also interesting
in its own right.

For the sake of completeness, we first briefly introduce the idea of the core-set construction
algorithm in [11]. Given a point set P ⊂ Rd, the algorithm is a simple iterative procedure.
Initially, it selects an arbitrary point from P and places it into an initially empty set T . In
each of the following 2/ε iterations, the algorithm updates the center of MEB(T ) and adds
to T the farthest point from the current center of MEB(T ). Finally, the center of MEB(T )
induces a (1 + ε)-approximation for MEB(P ). The selected set of 2/ε points (i.e., T ) is
called the core-set of MEB. To ensure the expected improvement in each iteration, [11]
showed that the following two inequalities hold if the algorithm always selects the farthest
point to the current center of MEB(T ):

ri+1 ≥ (1 + ε)Rad(P )− Li; ri+1 ≥
√
r2
i + L2

i , (1)

where ri and ri+1 are the radii of MEB(T ) in the i-th and (i+ 1)-th iterations, respectively,
and Li is the shifting distance of the center of MEB(T ) from the i-th to (i+ 1)-th iteration.

ESA 2020
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qq

oioi

cici

ci+1ci+1≤ ri+1≤ ri+1

> (1 + ϵ)Rad(P)> (1 + ϵ)Rad(P)

= Li= Li

≤ ξri≤ ξri

Figure 1 An illustration of (2).

As mentioned earlier, we often compute only an approximate MEB(T ) in each iteration.
In the i-th iteration, we let ci and oi denote the centers of the exact and the approximate
MEB(T ), respectively. Suppose that ||ci − oi|| ≤ ξri, where ξ ∈ (0, ε

1+ε ) (we will see why
this bound is needed later). Using another algorithm proposed in [11], one can obtain the
point oi in O( 1

ξ2 |T |d) time. Note that we only compute oi rather than ci in each iteration.
Hence we can only select the farthest point (say q) to oi. If ||q − oi|| ≤ (1 + ε)Rad(P ), we
are done and a (1 + ε)-approximation of MEB is already obtained. Otherwise, we have

(1 + ε)Rad(P ) < ||q − oi|| ≤ ||q − ci+1||+ ||ci+1 − ci||+ ||ci − oi|| ≤ ri+1 + Li + ξri (2)

by the triangle inequality (see Figure 1). In other words, we should replace the first inequality
of (1) by ri+1 > (1 + ε)Rad(P )−Li − ξri. Also, the second inequality of (1) still holds since
it depends only on the property of the exact MEB (see Lemma 2.1 in [11]). Thus, we have

ri+1 ≥ max
{√

r2
i + L2

i , (1 + ε)Rad(P )− Li − ξri
}
. (3)

This leads to the following theorem whose proof can be found in Section A.2.

I Theorem 4. In the core-set construction algorithm of [11], if one computes an approximate
MEB for T in each iteration and the resulting center oi has the distance to ci less than
ξri = s ε

1+εri for some s ∈ (0, 1), the final core-set size is bounded by z = 2
(1−s)ε . Also, the

bound could be arbitrarily close to 2/ε when s is small enough.

I Remark 5. We want to emphasize a simple observation on the above core-set construction
procedure, which will be used in our algorithms and analysis later on. The algorithm always
selects the farthest point to oi in each iteration. However, this is actually not necessary. As
long as the selected point has distance at least (1 + ε)Rad(P ), the inequality (2) always holds
and the following analysis is still true. If no such a point exists (i.e., P \B

(
oi, (1+ε)Rad(P )

)
=

∅), a (1 + ε)-approximate MEB (i.e., B
(
oi, (1 + ε)Rad(P )

)
) has already been obtained.

3 Two Key Lemmas for Handling Outliers

In this section, we introduce two important techniques, Lemma 6 and 7, for solving the
problem of MEB with outliers in sub-linear time; the proofs are placed in Section 3.1 and
3.2, respectively. The algorithms are presented in Section 4. Moreover, these techniques can
be generalized to solve a broader range of optimization problems, and we show the details in
Section 5.

To shed some light on our ideas, consider using the core-set construction method in
Section 2.1 to compute a bi-criteria (1 + ε, 1 + δ)-approximation for an instance (P, γ) of
MEB with outliers. Let oi be the obtained ball center in the current iteration, and Q be the
set of (1 + δ)γn farthest points to oi from P . A key step for updating oi is finding a point
in the set Popt ∩Q (the formal analysis is given in Section 4). Actually, this can be done
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l̃′il̃
′
i

lili

l̃ĩli

Figure 2 The red points are the sampled n′′ points in Lemma 7, and the
(
(1 + δ)2γn′′ + 1

)
-th

farthest point is in the ring bounded by the spheres B(oi, l̃′i) and B(oi, li).

by performing a random sampling from Q. However, it requires to compute the set Q in
advance, which takes an Ω(nd) time complexity. To keep the running time to be sub-linear,
we need to find a point from Popt ∩Q by a more sophisticated way.

Since Popt is mixed with outliers in the set Q, simple uniform sampling cannot realize
our goal. To remedy this issue, we propose a “two level” sampling procedure which is called
“Uniform-Adaptive Sampling” (see Lemma 6). Roughly speaking, we take a random
sample A of size n′ first (i.e., the uniform sampling step), and then randomly select a point
from Q′, the set of the farthest 3

2 (1 + δ)γn′ points from A to oi (i.e., the adaptive sampling
step). According to Lemma 6, with probability at least (1 − η1) δ

3(1+δ) , the selected point
belongs to Popt ∩Q; more importantly, the sample size n′ is independent of n and d. The key
to prove Lemma 6 is to show that the size of the intersection Q′ ∩

(
Popt ∩Q

)
is large enough.

By setting an appropriate value for n′, we can prove a lower bound of |Q′ ∩
(
Popt ∩Q

)
|.

I Lemma 6 (Uniform-Adaptive Sampling). Let η1 ∈ (0, 1). If we sample n′ = O( 1
δγ log 1

η1
)

points independently and uniformly at random from P and let Q′ be the set of farthest
3
2 (1 + δ)γn′ points to oi from the sample, then, with probability at least 1− η1, the following
holds∣∣∣Q′ ∩ (Popt ∩Q)∣∣∣

|Q′|
≥ δ

3(1 + δ) . (4)

The Uniform-Adaptive Sampling procedure will result in a “side-effect”. To boost the
overall success probability, we have to repeatedly run the algorithm multiple times and each
time the algorithm will generate a candidate solution (i.e., the ball center). Consequently we
have to select the best one as our final solution. With a slight abuse of notation, we still
use oi to denote a candidate ball center; to achieve a (1 + ε, 1 + δ)-approximation, its radius
should be the

(
(1 + δ)γn + 1

)
-th largest distance from P to oi, which is denoted as li. A

straightforward way is to compute the value “li” in linear time for each candidate and return
the one having the smallest li. In this section, we propose the “Sandwich Lemma” to
estimate li in sub-linear time (see Lemma 7). Let B be the set of n′′ sampled points from P

in Lemma 7, and l̃i be the
(
(1 + δ)2γn′′ + 1

)
-th largest distance from B to oi. The key idea

is to prove that the ball B(oi, l̃i) is “sandwiched” by two balls B(oi, l̃′i) and B(oi, li), where l̃′i
is a carefully designed value satisfying (i) l̃′i ≤ l̃i ≤ li and (ii)

∣∣∣P \ B(oi, l̃′i)
∣∣∣ ≤ (1 +O(δ))γn.

See Figure 2 for an illustration. These two conditions of l̃′i can imply the inequalities (5)
and (6) of Lemma 7. Further, the inequalities (5) and (6) jointly imply that l̃i is a qualified
estimation of li: if B(oi, li) is a (1 + ε, 1 + δ)-approximation, the ball B(oi, l̃i) should be a
(1 + ε, 1 +O(δ))-approximation. Similar to Lemma 6, the sample size n′′ is also independent
of n and d.

ESA 2020
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I Lemma 7 (Sandwich Lemma). Let η2 ∈ (0, 1) and assume δ < 1/3. If we sample
n′′ = O

( 1
δ2γ log 1

η2

)
points independently and uniformly at random from P and let l̃i be the(

(1 + δ)2γn′′ + 1
)
-th largest distance from the sample to oi, then, with probability 1− η2, the

following holds

l̃i ≤ li; (5)∣∣∣P \ B(oi, l̃i)
∣∣∣ ≤ (1 +O(δ))γn. (6)

3.1 Proof of Lemma 6
Let A denote the set of sampled n′ points from P . First, we know |Q| = (1 + δ)γn and
|Popt ∩ Q| ≥ δγn (since there are at most γn outliers in Q). For ease of presentation, let
λ = |Popt∩Q|

n ≥ δγ. Let {xi | 1 ≤ i ≤ n′} be n′ independent random variables with xi = 1
if the i-th sampled point of A belongs to Popt ∩Q, and xi = 0 otherwise. Thus, E[xi] = λ

for each i. Let σ be a small parameter in (0, 1). By using the Chernoff bound, we have
Pr
(∑n′

i=1 xi /∈ (1± σ)λn′
)
≤ e−O(σ2λn′). That is,

Pr
(
|A ∩

(
Popt ∩Q

)
| ∈ (1± σ)λn′

)
≥ 1− e−O(σ2λn′). (7)

Similarly, we have

Pr
(
|A ∩Q| ∈ (1± σ)(1 + δ)γn′

)
≥ 1− e−O(σ2(1+δ)γn′). (8)

Note that n′ = O( 1
δγ log 1

η1
). By setting σ < 1/2 in (7) and (8), we have∣∣∣A ∩ (Popt ∩Q)∣∣∣ > 1

2δγn
′ and

∣∣∣A ∩Q∣∣∣ < 3
2(1 + δ)γn′ (9)

with probability 1− η1. Note that Q contains all the farthest (1 + δ)γn points to oi. Denote
by li the

(
(1 + δ)γn+ 1

)
-th largest distance from P to oi. Thus

A ∩Q = {p ∈ A | ||p− oi|| > li}. (10)

Also, since Q′ is the set of the farthest 3
2 (1 + δ)γn′ points to oi from A, there exists some

l′i > 0 such that

Q′ = {p ∈ A | ||p− oi|| > l′i}. (11)

(10) and (11) imply that either (A ∩Q) ⊆ Q′ or Q′ ⊆ (A ∩Q). Since
∣∣A ∩Q∣∣ < 3

2 (1 + δ)γn′

and |Q′| = 3
2 (1 + δ)γn′, we know

(
A ∩Q

)
⊆ Q′. Therefore,(

A ∩
(
Popt ∩Q

))
=
(
Popt ∩

(
A ∩Q

))
⊆ Q′. (12)

Obviously,(
A ∩

(
Popt ∩Q

))
⊆
(
Popt ∩Q

)
. (13)

The above (12) and (13) together imply(
A ∩

(
Popt ∩Q

))
⊆
(
Q′ ∩

(
Popt ∩Q

))
. (14)

Moreover, since Q′ ⊆ A, we have(
Q′ ∩

(
Popt ∩Q

))
⊆
(
A ∩

(
Popt ∩Q

))
. (15)
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Consequently, (14) and (15) together imply Q′ ∩
(
Popt ∩Q

)
= A ∩

(
Popt ∩Q

)
and hence∣∣∣Q′ ∩ (Popt ∩Q)∣∣∣

|Q′|
=

∣∣∣A ∩ (Popt ∩Q)∣∣∣
|Q′|

≥ δ

3(1 + δ) , (16)

where the final inequality comes from the first inequality of (9) and the fact |Q′| = 3
2 (1+δ)γn′.

3.2 Proof of Lemma 7
Let B denote the set of sampled n′′ points from P . For simplicity, let t = (1 + δ)γn. Assume
l̃′i > 0 is the value such that

∣∣∣P \ B(oi, l̃′i)
∣∣∣ = (1+δ)2

1−δ γn. Recall that li is the
(
t+ 1

)
-th largest

distance from P to oi. Since (1 + δ)γn < (1+δ)2

1−δ γn, it is easy to know l̃′i ≤ li. Below, we aim
to prove that the

(
(1 + δ)2γn′′ + 1

)
-th farthest point from B is in the ring bounded by the

spheres B(oi, l̃′i) and B(oi, li) (see Figure 2).
Again, using the Chernoff bound (let σ = δ/2) and the same idea for proving (9), since

|B| = n′′ = O
( 1
δ2γ log 1

η2

)
, we have∣∣∣B \ B(oi, l̃′i)

∣∣∣ ≥ (1− δ/2)(1 + δ)2

1− δ γn′′ > (1− δ) (1 + δ)2

1− δ γn′′ = (1 + δ)2γn′′; (17)∣∣∣B ∩Q∣∣ ≤ (1 + δ/2) t
n
n′′ < (1 + δ) t

n
n′′ = (1 + δ)2γn′′, (18)

with probability 1 − η2. Suppose that (17) and (18) both hold. Recall that l̃i is the(
(1 + δ)2γn′′ + 1

)
-th largest distance from the sampled points B to oi, so

∣∣∣B \ B(oi, l̃i)
∣∣∣ =

(1 + δ)2γn′′, and thus l̃i ≥ l̃′i by (17).
The inequality (18) implies that the

(
(1 + δ)2γn′′ + 1

)
-th farthest point (say qx) from B

to oi is not in Q. Then, we claim that B(oi, l̃i) ∩ Q = ∅. Otherwise, let qy ∈ B(oi, l̃i) ∩ Q.
Then we have

||qy − oi|| ≤ l̃i = ||qx − oi||. (19)

Note that Q is the set of farthest t points to oi of P . So qx /∈ Q implies

||qx − oi|| < min
q∈Q
||q − oi|| ≤ ||qy − oi|| (20)

which is in contradiction to (19). Therefore, B(oi, l̃i)∩Q = ∅. Further, since B(oi, li) excludes
exactly the farthest t points (i.e., Q), B(oi, l̃i) ∩Q = ∅ implies l̃i ≤ li.

Overall, we have l̃i ∈ [l̃′i, li], i.e., the
(
(1 + δ)2γn′′ + 1

)
-th farthest point from B locates

in the ring bounded by the spheres B(oi, l̃′i) and B(oi, li) as shown in Figure 2. Also, l̃i ≥ l̃′i
implies∣∣∣P \ B(oi, l̃i)

∣∣∣ ≤ ∣∣∣P \ B(oi, l̃′i)
∣∣∣ = (1 + δ)2

1− δ γn = (1 +O(δ))γn, (21)

where the last equality comes from the assumption δ < 1/3. So (5) and (6) are true in
Lemma 7.

4 Sub-linear Time Algorithm of MEB with Outliers

Recall the remark following Theorem 4. As long as the selected point has a distance to the
center of MEB(T ) larger than (1 + ε) times the optimal radius, the expected improvement
will always be guaranteed. Following this observation, we investigate the following approach.

ESA 2020



38:10 A Sub-Linear Time Framework for Geometric Optimization with Outliers

Suppose we run the core-set construction procedure decribed in Theorem 4 (we should
replace P by Popt in our following analysis). In the i-th step, we add an arbitrary point from
Popt \ B(oi, (1 + ε)Rad(Popt)) to T . We know that a (1 + ε)-approximation is obtained after
at most 2

(1−s)ε steps, that is, Popt ⊂ B
(
oi, (1 + ε)Rad(Popt)

)
for some i ≤ 2

(1−s)ε .
However, we need to solve two key issues in order to implement the above approach:

(i) how to determine the value of Rad(Popt) and (ii) how to correctly select a point from
Popt \ B(oi, (1 + ε)Rad(Popt)). Actually, we can implicitly avoid the first issue via replacing
(1 + ε)Rad(Popt) by the t-th largest distance from the points of P to oi, where we set
t = (1 + δ)γn for achieving a (1 + ε, 1 + δ)-approximation in the following analysis. For the
second issue, we randomly select one point from the farthest t points of P to oi, and show
that it belongs to Popt \ B(oi, (1 + ε)Rad(Popt)) with a certain probability.

Based on the above idea, we present a sub-linear time (1+ε, 1+δ)-approximation algorithm
in this section. To better understand the algorithm, we show a linear time algorithm first
(Algorithm 1 in Sections 4.1). Note that Bădoiu et al. [13] also achieved a (1 + ε, 1 + δ)-
approximation algorithm but with a higher complexity. Please see more details in our
analysis on the running time at the end of Sections 4.1. More importantly, we
improve the running time of Algorithm 1 to be sub-linear. For this purpose, we need to
avoid computing the farthest t points to oi, since this operation will take linear time. Also,
Algorithm 1 generates a set of candidates for the solution and we need to select the best one.
This process also costs linear time. By using the techniques proposed in Section 3, we can
remedy these issues and develop a sub-linear time algorithm that has the sample complexity
independent of n and d, in Section 4.2.

4.1 A Linear Time Algorithm

Algorithm 1 (1 + ε, 1 + δ)-approximation Algorithm for MEB with Outliers.

Input: A point set P with n points in Rd, the fraction of outliers γ ∈ (0, 1), and the
parameters 0 < ε, δ < 1, z ∈ Z+.

1: Let t = (1 + δ)γn.
2: Initially, randomly select a point p ∈ P and let T = {p}.
3: i = 1; repeat the following steps until i > z:
(1) Compute the approximate MEB center oi of T .
(2) Let Q be the set of farthest t points from P to oi; denote by li the (t+ 1)-th largest

distance from P to oi.
(3) Randomly select a point q ∈ Q, and add it to T .
(4) i = i+ 1.

4: Output the ball B(oî, l̂i) where î = argi min{li | 1 ≤ i ≤ z}.

In this section, we present our linear time (1 + ε, 1 + δ)-approximation algorithm for MEB
with outliers (see Algorithm 1). For convenience, denote by ci and ri the exact center and
radius of MEB(T ) respectively in the i-th round of Step 3 of Algorithm 1. In Step 3(1), we
compute the approximate center oi with a distance to ci of less than ξRad(T ) = s ε

1+εRad(T ),
where s ∈ (0, 1) as described in Theorem 4 (we will determine the value of s in our following
analysis on the running time). The following theorem shows the success probability of
Algorithm 1.

I Theorem 8. If the input parameter z = 2
(1−s)ε (we assume it is an integer for convenience),

then with probability (1− γ)( δ
1+δ )z, Algorithm 1 outputs a (1 + ε, 1 + δ)-approximation for

the MEB with outliers problem.
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Before proving Theorem 8, we present the following two lemmas first.

I Lemma 9. With probability (1 − γ)( δ
1+δ )z, after running z rounds in Step 3, the set

T ⊂ Popt in Algorithm 1.

Proof. Initially, because |Popt|/|P | = 1− γ, the first selected point in Step 2 belongs to Popt
with probability 1− γ. In each of the z rounds in Step 3, the selected point belongs to Popt
with probability δ

1+δ , since

|Popt ∩Q|
|Q|

= 1− |Q \ Popt|
|Q|

≥ 1− |P \ Popt|
|Q|

= 1− γn

(1 + δ)γn = δ

1 + δ
. (22)

Therefore, T ⊂ Popt with probability (1− γ)( δ
1+δ )z. J

I Lemma 10. In the i-th round of Step 3 for 1 ≤ i ≤ z, at least one of the following
two events happens: (1) oi is the ball center of a (1 + ε, 1 + δ)-approximation; (2) ri+1 >

(1 + ε)Rad(Popt)− ||ci − ci+1|| − ξri.

Proof. If li ≤ (1 + ε)Rad(Popt), then we are done. That is, the ball B(oi, li) covers (1 −
(1 + δ)γ)n points with radius li ≤ (1 + ε)Rad(Popt) (the first event happens). Otherwise,
li > (1 + ε)Rad(Popt) and we consider the second event. Let q be the point added to T in
the i-th round. Using the triangle inequality, we have

||oi − q|| ≤ ||oi − ci||+ ||ci − ci+1||+ |ci+1 − q|| ≤ ξri + ||ci − ci+1||+ ri+1. (23)

Since li > (1+ ε)Rad(Popt) and q lies outside of B(oi, li), i.e, ||oi−q|| ≥ li > (1+ ε)Rad(Popt),
(23) implies that the second event happens and the proof is completed. J

Proof of Theorem 8. Suppose that the first event of Lemma 10 never happens. As a
consequence, we obtain a series of inequalities for each pair of radii ri+1 and ri, i.e., ri+1 >

(1 + ε)Rad(Popt)− ||ci − ci+1|| − ξri. Assume that T ⊂ Popt in Lemma 9, i.e., each time the
algorithm correctly adds a point from Popt to T . Using the almost identical idea for proving
Theorem 4 in Section 2.1, we know that a (1 + ε)-approximate MEB of Popt is obtained after
at most z rounds. The success probability directly comes from Lemma 9. Overall, we obtain
Theorem 8. J

Moreover, Theorem 8 implies the following corollary.

I Corollary 11. If one repeatedly runs Algorithm 1 O( 1
1−γ (1 + 1

δ )z) times, with constant
probability, the algorithm outputs a (1 + ε, 1 + δ)-approximation for the problem of MEB with
outliers.

Running time. In Theorem 8, we set z = 2
(1−s)ε and s ∈ (0, 1). To keep z small, according

to Theorem 4, we set s = ε
2+ε so that z = 2

ε + 1 (only larger than the lower bound 2
ε by 1).

For each round of Step 3, we need to compute an approximate center oi that has a distance
to the exact one less than ξri = s ε

1+εri = O(ε2)ri. Using the algorithm proposed in [11], this
can be done in O( 1

ξ2 |T |d) = O( 1
ε5 d) time. Also, the set Q can be obtained in linear time by

the algorithm in [10]. In total, the time complexity for obtaining a (1+ε, 1+δ)-approximation
in Corollary 11 is

O
(C
ε

(n+ 1
ε5

)d
)
, (24)

where C = O( 1
1−γ (1 + 1

δ ) 2
ε+1). As mentioned before, Bădoiu et al. [13] also achieved

a linear time bi-criteria approximation. However, the hidden constant of their running
time is exponential in Θ( 1

εµ ) (where µ is defined in [13], and should be δγ to ensure a
(1 + ε, 1 + δ)-approximation) that is much larger than 2

ε + 1.
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4.2 Improvement on Running Time

In this section, we show that the running time of Algorithm 1 can be further improved to
be independent of the number of points n. First, we observe that it is not necessary to
compute the set Q of the farthest t points in Step 3(2) of the algorithm. Actually, as long
as the selected point q is part of Popt ∩ Q in Step 3(3), a (1 + ε, 1 + δ)-approximation is
still guaranteed. The Uniform-Adaptive Sampling procedure proposed in Section 3 can help
us to obtain a point q ∈ Popt ∩ Q without computing the set Q. Moreover, in Lemma 7,
we show that the radius of each candidate solution can be estimated via random sampling.
Overall, we achieve a sub-linear time algorithm (Algorithm 2). Following the analysis in
Section 4.1, we set s = ε

2+ε so that z = 2
(1−s)ε = 2

ε + 1. We present the results in Theorem 12
and Corollary 13. Comparing with Theorem 8, we have an extra (1 − η1)(1 − η2) in the
success probability in Theorem 12, due to the probabilities from Lemmas 6 and 7.

Algorithm 2 Sub-linear Time (1 + ε, 1 +O(δ))-approximation Algorithm for MEB with Outliers.
Input: A point set P with n points in Rd, the fraction of outliers γ ∈ (0, 1), and the

parameters ε, η1, η2 ∈ (0, 1), δ ∈ (0, 1/3), and z ∈ Z+.
1: Let n′ = O( 1

δγ log 1
η1

), n′′ = O
( 1
δ2γ log 1

η2

)
, t′ = 3

2 (1 + δ)γn′, and t′′ = (1 + δ)2γn′′.
2: Initially, randomly select a point p ∈ P and let T = {p}.
3: i = 1; repeat the following steps until j = z:
(1) Compute the approximate MEB center oi of T .
(2) Sample n′ points uniformly at random from P , and let Q′ be the set of farthest t′

points to oi from the sample.
(3) Randomly select a point q ∈ Q′, and add it to T .
(4) Sample n′′ points uniformly at random from P , and let l̃i be the (t′′ + 1)-th largest

distance from the sampled points to oi.
(5) i = i+ 1.

4: Output the ball B(oî, l̃̂i) where î = argi min{l̃i | 1 ≤ i ≤ z}.

I Theorem 12. If the input parameter z = 2
ε + 1, then with probability (1− γ)

(
(1− η1)(1−

η2) δ
3(1+δ)

)z, Algorithm 2 outputs a (1 + ε, 1 +O(δ))-approximation for the problem of MEB
with outliers.

To boost the success probability in Theorem 12, we need to repeatedly run Algorithm 2
and output the best candidate. However, we need to be careful on setting the parameters.
The success probability in Theorem 12 consists of two parts, P1 = (1− γ)

(
(1− η1) δ

3(1+δ)
)z

and P2 = (1− η2)z, where P1 indicates the probability that {o1, · · · , oz} contains a qualified
candidate, and P2 indicates the success probability of Lemma 7 over all the z rounds.
Therefore, if we run Algorithm 2 N = O( 1

P1
) times, with constant probability (by taking

the union bound), the set of all the generated candidates contains at least one that yields a
(1 + ε, 1 +O(δ))-approximation; moreover, to guarantee that we can correctly estimate the
resulting radii of all the candidates via the Sandwich Lemma with constant probability, we
need to set η2 = O( 1

zN ) (because there are O(zN) candidates).

I Corollary 13. If one repeatedly runs Algorithm 2 N = O
(

1
1−γ

( 1
1−η1

(3 + 3
δ )
)z) times with

setting η2 = O( 1
zN ), with constant probability, the algorithm outputs a (1 + ε, 1 + O(δ))-

approximation for the problem of MEB with outliers.
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The calculation of running time is similar to (24) in Section 4.1. We just replace n by
max{n′, n′′} = O

( 1
δ2γ log 1

η2

)
= O

( 1
δ2γ log(zN)

)
= Õ

( 1
δ2γε

) 2, and change the value of C to

be O
(

1
1−γ

( 1
1−η1

(3 + 3
δ )
) 2
ε+1
)
. So the total running time is independent of n. Also, to covert

the result from (1 + ε, 1 +O(δ))-approximation to (1 + ε, 1 + δ)-approximation, we just need
to reduce the value of δ in the input of Algorithm 2 appropriately.

5 The Extension: MEX with Outliers

In this section, we extend Definition 2 and define a more general problem called minimum
enclosing “x” (MEX) with Outliers. We observe that the ideas of Lemma 6 and 7 can
be further extended to deal with MEX with outliers problems, as long as the shape “x”
satisfies several properties. To describe a shape “x”, we need to clarify three basic
concepts: center, size, and distance function.

Let X be the set of specified shapes in Rd. In this paper, we require that each shape
x ∈ X is uniquely determined by the following two components: “c(x)”, the center of x, and
“s(x) ≥ 0”, the size of x. For any two shapes x1, x2 ∈ X , x1 = x2 if and only if c(x1) = c(x2)
and s(x1) = s(x2). Moreover, given a center o0 and a value l0 ≥ 0, we use x(o0, l0) to denote
the shape x with c(x) = o0 and s(x) = l0. For different shapes, we have different definitions
for the center and size. For example, if x is a ball, c(x) and s(x) should be the ball center and
the radius respectively; given o0 ∈ Rd and l0 ≥ 0, x(o0, l0) should be the ball B(o0, l0). As a
more complicated example, consider the k-center clustering with outliers problem, which is to
find k balls to cover the input point set excluding a certain number of outliers and minimize
the maximum radius (w.l.o.g., we can assume that the k balls have the same radius). For
this problem, the shape “x” is a union of k balls in Rd; the center c(x) is the set of the k
ball centers and the size s(x) is the radius.

For any point p ∈ Rd and any shape x ∈ X , we also need to define a distance function
f(c(x), p) between the center c(x) and p. For example, if x is a ball, f(c(x), p) is simply
equal to ||p − c(x)||; if x is a union of k balls with the center c(x) = {c1, c2, · · · , ck}, the
distance should be min1≤j≤k ||p− cj ||. Note that the distance function is only for ranking
the points to c(x), and not necessary to be non-negative (e.g., we define a distance function
f(c(x), p) ≤ 0 for SVM). By using this distance function, we can define the set “Q” and the
value “li” when generalizing Lemma 6 and 7 below. To guarantee their correctnesses, we
also require X to satisfy the following three properties.

I Property 1. For any two shapes x1 6= x2 ∈ X , if c(x1) = c(x2), then

s(x1) ≤ s(x2)⇐⇒ x1 is covered by x2, (25)

where “x1 is covered by x2” means “for any point p ∈ Rd, p ∈ x1 ⇒ p ∈ x2”.

I Property 2. Given any shape x ∈ X and any point p0 ∈ x, the set

{p | p ∈ Rd and f(c(x), p) ≤ f(c(x), p0)} ⊆ x. (26)

I Property 3. Given any shape center o0 and any point p0 ∈ Rd, they together determine
a value r0 = min{r | r ≥ 0, p0 ∈ x(o0, r)}; that is, p0 ∈ x(o0, r0) and p0 /∈ x(o0, r) for any
r < r0. (Note: usually the value r0 is just the distance from p0 to the shape center o0; but
for some cases, such as the SVM problem, the shape size and distance function have different
meanings).

2 The asymptotic notation Õ(f) = O
(
f · polylog( 1

η1δ(1−γ) )
)
.
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Intuitively, Property 1 shows that s(x) defines an order of the shapes sharing the same
center c(x). Property 2 shows that the distance function f defines an order of the points to a
given shape center c(x). Property 3 shows that a center o0 and a point p0 can define a shape
just “touching” p0. We can take X = {all d-dimensional balls} as an example. For any two
concentric balls, the smaller one is always covered by the larger one (Property 1); if a point
p0 is inside a ball x, any point p having the distance ||p − c(x)|| ≤ ||p0 − c(x)|| should be
inside x too (Property 2); also, given a ball center o0 and a point p0, p0 ∈ B(o0, ||p0 − o0||)
and p0 /∈ B(o0, r) for any r < ||p0 − o0|| (Property 3).

Now, we introduce the formal definitions of the MEX with outliers problem and its
bi-criteria approximation.

I Definition 14 (MEX with Outliers). Suppose the shape set X satisfies Property 1, 2, and 3.
Given a set P of n points in Rd and a small parameter γ ∈ (0, 1), the MEX with outliers
problem is to find the smallest shape x ∈ X that covers (1− γ)n points. Namely, the task
is to find a subset of P with size (1 − γ)n such that its minimum enclosing shape of X is
the smallest among all possible choices of the subset. The obtained solution is denoted by
MEX(P, γ).

I Definition 15 (Bi-criteria Approximation). Given an instance (P, γ) for MEX with outliers
and two small parameters 0 < ε, δ < 1, a (1 + ε, 1 + δ)-approximation of (P, γ) is a solution
x ∈ X that covers at least

(
1 − (1 + δ)γ

)
n points and has the size at most (1 + ε)s(xopt),

where xopt is the optimal solution.

It is easy to see that Definition 2 of MEB with outliers actually is a special case
of Definition 14. Similar to MEB with outliers, we still use Popt, where Popt ⊂ P and
|Popt| = (1− γ)n, to denote the subset covered by the optimal solution of MEX with outliers.

Now, we provide the generalized versions of Lemma 6 and 7. Similar to the core-set
construction method in Section 2.1, we assume that there exists an iterative algorithm Γ to
compute MEX (without outliers); actually, this is an important prerequisite to design the
sub-linear time algorithms under our framework (we will discuss the iterative algorithms
for the MEX with outliers problems considered in our paper, including flat fitting, k-center
clustering, and SVM, in the appendix). In the i-th iteration of Γ, it maintains a shape center
oi. Also, let Q be the set of (1 + δ)γn farthest points from P to oi with respect to the
distance function f . First, we need to define the value “li” by Q in the following claim.

B Claim 16. There exists a value li ≥ 0 satisfying P \ x(oi, li) = Q.

Proof. The points of P can be ranked based on their distances to oi. Without loss of generality,
let P = {p1, p2, · · · , pn} with f(oi, p1) > f(oi, p2) > · · · > f(oi, pn) (for convenience, we
assume that any two distances are not equal; if there is a tie, we can arbitrarily decide their
order to oi). Therefore, the set Q = {pj | 1 ≤ j ≤ (1 + δ)γn}. Moreover, from Property 3, we
know that each point pj ∈ P corresponds to a value rj that pj ∈ x(oi, rj) and pj /∈ x(oi, r) for
any r < rj . Denote by xj the shape x(oi, rj). We select the point pj0 with j0 = (1 + δ)γn+ 1.
From Property 2, we know that pj ∈ xj0 for any j ≥ j0, i.e., (a) P \Q ⊆ xj0 . We also need
to prove that pj /∈ xj0 for any j < j0. Assume there exists some pj1 ∈ xj0 with j1 < j0.
Then we have rj1 < rj0 and thus pj0 /∈ xj1 (by Property 3). By Property 2, pj0 /∈ xj1 implies
f(oi, pj0) > f(oi, pj1), which is in contradiction to the fact f(oi, pj0) < f(oi, pj1). So we have
(b) Q ∩ xj0 = ∅.

From the above (a) and (b), we know P \ xj0 = Q. Therefore, we can set the value
li = rj0 and then P \ x(oi, li) = Q. C
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I Lemma 17 (Generalized Uniform-Adaptive Sampling). Let η1 ∈ (0, 1). If we sample n′ =
O( 1

δγ log 1
η1

) points independently and uniformly at random from P and let Q′ be the set of
farthest 3

2 (1 + δ)γn′ points to oi from the sample, then, with probability at least 1− η1, the
following holds∣∣∣Q′ ∩ (Popt ∩Q)∣∣∣

|Q′|
≥ δ

3(1 + δ) . (27)

Proof. Let A denote the set of sampled n′ points from P . Similar to (9), we have∣∣∣A ∩ (Popt ∩Q)∣∣∣ > 1
2δγn

′ and
∣∣∣A ∩Q∣∣∣ < 3

2(1 + δ)γn′ (28)

with probability 1− η1. Similar to (10), we have

A ∩Q = {p ∈ A | f(oi, p) > f(oi, pj0)}, (29)

where pj0 is the point selected in the proof of Claim 16. By using the same manner of
Claim 16, we also can select a point pj′0 ∈ A with

Q′ = {p ∈ A | f(oi, p) > f(oi, pj′0)}. (30)

Then, we can prove(
A ∩

(
Popt ∩Q

))
=
(
Q′ ∩

(
Popt ∩Q

))
. (31)

by using the same idea of (14). Hence,∣∣∣Q′ ∩ (Popt ∩Q)∣∣∣
|Q′|

=

∣∣∣A ∩ (Popt ∩Q)∣∣∣
|Q′|

≥ δ

3(1 + δ) , (32)

where the final inequality comes from the first inequality of (28) and the fact |Q′| =
3
2 (1 + δ)γn′. J

I Lemma 18 (Generalized Sandwich Lemma). Let η2 ∈ (0, 1) and assume δ < 1/3. li is the
value from Claim 16. We sample n′′ = O

( 1
δ2γ log 1

η2

)
points independently and uniformly at

random from P and let q be the
(
(1 + δ)2γn′′ + 1

)
-th farthest one from the sampled points to

oi. If l̃i = min{r | r ≥ 0, q ∈ x(oi, r)} (similar to the way defining “r0” in Property 3), then,
with probability 1− η2, the following holds

l̃i ≤ li; (33)∣∣∣P \ x(oi, l̃i)
∣∣∣ ≤ (1 +O(δ))γn. (34)

Proof. Let B denote the set of sampled n′′ points from P . By using the same manner
of Claim 16, we know that there exists a value l̃′i > 0 satisfying

∣∣∣P \ x(oi, l̃′i)
∣∣∣ = (1+δ)2

1−δ γn.
Similar to the proof of Lemma 7, we can prove that l̃i ∈ [l̃′i, li]. Due to Property 1, we know
that x(oi, l̃i) is “sandwiched” by the two shapes x(oi, l̃′i) and x(oi, li). Further, since x(oi, l̃′i)
is covered by x(oi, l̃i), we have∣∣∣P \ x(oi, l̃i)

∣∣∣ ≤ ∣∣∣P \ x(oi, l̃′i)
∣∣∣ = (1 + δ)2

1− δ γn = (1 +O(δ))γn, (35)

where the last equality comes from the assumption δ < 1/3. So (33) and (34) are true. J
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Due to the space limit, we place other parts to the full version of our paper [27]. We
propose the sub-linear time bi-criteria approximation algorithms for three different MEX
with outlier problems: k-center clustering, flat fitting, and SVM with outliers. All of these
problems have important applications in real world, and our results significantly reduce their
time complexities comparing with existing approaches.
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A Appendix

A.1 The Lower Bound of Sample Size for MEB with Outliers
Actually, it is easy to obtain a sub-linear time randomized 2-approximation algorithm for
MEB with outliers (if only returning the center): one can randomly select one point p ∈ P ,
and it belongs Popt with probability 1− γ; thus, with probability 1− γ, the point p yields a
2-approximation by using the triangle inequality. Below, we consider an example and show
that it is impossible to achieve a single-criterion λ-approximation for any λ < 2, if the time
complexity is required to be independent of n.

Let qa, qb, and qc be three colinear points in Rd, where ||qa − qb|| = x and ||qb − qc|| = y

(see Figure 3). Let γ ∈ (0, 1) and the point set P = Pa ∪ Pb ∪ Pc, where Pa contains a single
point located at qa, Pb contains (1− γ)n− 1 points overlapping at qb, and Pc contains γn
points overlapping at qc. Consider the instance (P, γ) for the problem of MEB with outliers.
Suppose x� y. Consequently, the optimal subset Popt should be Pa ∪ Pb and the optimal
radius is x/2.
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Figure 3 ||qa − qb|| = x and ||qb − qc|| = y.

If we take a random sample S of size m = o(n) from P , with high probability, Pa ∩S = ∅
(even if we repeat our sampling a constant number of times, the single point Pa will still be
missing with high probability). Therefore, S only contains the points from Pb and Pc. If we
run an existing algorithm on S, the resulting ball center, say o, should always be inside the
convex hull of S, i.e., the segment qbqc. Let B(o, r) be the ball covering (1− γ)n points of P .
We consider two cases: (1) qa ∈ B(o, r) and (2) qa /∈ B(o, r). For case (1), since o ∈ qbqc, it is
easy to know that the radius r ≥ ||qa − qb|| = x and therefore the approximation ratio is at
least 2. For case (2), since |Pb| = (1− γ)n− 1, B(o, r) must cover some point from Pc and
therefore r = y/2; because x� y, the approximation ratio is also larger than 2.

A.2 Proof of Theorem 4
Similar to the analysis in [11], we let λi = ri

(1+ε)Rad(P ) . Because ri is the radius of MEB(T )
and T ⊂ P , we know ri ≤ Rad(P ) and then λi ≤ 1/(1 + ε). By simple calculation, we know

that when Li =
(

(1+ε)Rad(P )−ξri
)2
−r2

i

2
(

(1+ε)Rad(P )−ξri
) the lower bound of ri+1 in (3) achieves the minimum

value. Plugging this value of Li into (3), we have

λ2
i+1 ≥ λ2

i +
(
(1− ξλi)2 − λ2

i

)2

4(1− ξλi)2 . (36)

To simplify inequality (36), we consider the function g(x) = (1−x)2−λ2
i

1−x , where 0 < x < ξ. Its
derivative g′(x) = −1− λ2

i

(1−x)2 is always negative, thus we have

g(x) ≥ g(ξ) = (1− ξ)2 − λ2
i

1− ξ . (37)

Because ξ < ε
1+ε and λi ≤ 1/(1 + ε), we know that the right-hand side of (37) is always

non-negative. Using (37), the inequality (36) can be simplified to

λ2
i+1 ≥ λ2

i + 1
4
(
g(ξ)

)2

= λ2
i +

(
(1− ξ)2 − λ2

i

)2

4(1− ξ)2 . (38)

(38) can be further rewritten as( λi+1

1− ξ

)2
≥ 1

4

(
1 + ( λi

1− ξ )2
)2

=⇒ λi+1

1− ξ ≥ 1
2

(
1 + ( λi

1− ξ )2
)
. (39)

Now, we can apply a similar transformation of λi which was used in [11]. Let γi = 1
1− λi

1−ξ
.
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We know γi > 1 (note 0 ≤ λi ≤ 1
1+ε and ξ < ε

1+ε ). Then, (39) implies that

γi+1 ≥ γi

1− 1
2γi

= γi
(
1 + 1

2γi
+ ( 1

2γi
)2 + · · ·

)
> γi + 1

2 , (40)

where the equation comes from the fact that γi > 1 and thus 1
2γi ∈ (0, 1

2 ). Note that λ0 = 0
and thus γ0 = 1. As a consequence, we have γi > 1 + i

2 . In addition, since λi ≤ 1
1+ε , that is,

γi ≤ 1
1− 1

(1+ε)(1−ξ)
, we have

i <
2

ε− ξ − εξ
= 2

(1− 1+ε
ε ξ)ε

. (41)

Consequently, we obtain the theorem.
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