682 research outputs found

    ์ €์ „๋ ฅ ๊ณ ์„ฑ๋Šฅ ๋””์ง€ํ„ธ ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ๊ณ ์‹ ๋ขฐ๋„์˜ ํด๋Ÿญ ๋„คํŠธ์›Œํฌ ์„ค๊ณ„ ๋ฐฉ๋ฒ•๋ก 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2015. 8. ๊น€ํƒœํ™˜.์˜ค๋Š˜๋‚ ์˜ ํšŒ๋กœ ์„ค๊ณ„์—์„œ ๊ณต์ •๋ณ€์ด๊ฐ€ ํšŒ๋กœ ํด๋Ÿญ์˜ ํƒ€์ด๋ฐ์˜ ๋ณ€์ด์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์€ ๋งค์šฐ ์ปค์ง์— ๋”ฐ๋ผ, ์ „ํ†ต์ ์œผ๋กœ ์‚ฌ์šฉ๋˜๋˜ ํด๋Ÿญ ํŠธ๋ฆฌ ๊ตฌ์กฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ํด๋Ÿญ ๋„คํŠธ์›Œํฌ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์€ ํ•œ๊ณ„์— ๋ถ€๋”ชํžˆ๊ฒŒ ๋˜์—ˆ๊ณ , ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ์—ฌ๋Ÿฌ๊ฐ€์ง€ ๊ธฐ์ˆ ๋“ค์ด ์ œ์•ˆ๋˜์—ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ณ€์ด์— ๊ฐ•ํ•œ ํด๋Ÿญ ๋„คํŠธ์›Œํฌ๋ฅผ ์„ค๊ณ„ํ•˜๊ธฐ ์œ„ํ•ด, ์—ฐ๊ตฌ ๋ฐ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋Š” ์„ธ ๊ฐ€์ง€ ๊ธฐ์ˆ ์— ๋Œ€ํ•ด ์†Œ๊ฐœํ•˜๊ณ , ์ด๋“ค์„ ๊ฐœ์„ ํ•œ ์—ฐ๊ตฌ๋“ค์„ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ์งธ๋กœ, ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ํด๋Ÿญ์˜ ํƒ€์ด๋ฐ ๋ฌธ์ œ๋ฅผ ํšŒ๋กœ ์ œ์ž‘ ์ดํ›„ ๋‹จ๊ณ„์—์„œ ์กฐ์ •ํ•  ์ˆ˜ ์žˆ๋Š” ํฌ์ŠคํŠธ ์‹ค๋ฆฌ์ฝ˜ ์กฐ์ • ํด๋Ÿญ ๋ฒ„ํผ๋ฅผ ๋ฐฐ์น˜ํ•˜๋Š” ๋ฌธ์ œ์— ๋Œ€ํ•ด ์„œ์ˆ ํ•œ๋‹ค. ํฌ์ŠคํŠธ ์‹ค๋ฆฌ์ฝ˜ ์กฐ์ • ๋ฒ„ํผ๋Š” ํด๋Ÿญ์˜ ์ง€์—ฐ์‹œ๊ฐ„์„ ํšŒ๋กœ๊ฐ€ ์ œ์ž‘๋œ ์ดํ›„์˜ ๋‹จ๊ณ„์—์„œ ์กฐ์ •ํ•˜ ์—ฌ ํด๋Ÿญ์˜ ํƒ€์ด๋ฐ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ์ง€๋งŒ, ๋ฒ„ํผ ์ž์ฒด์˜ ํฌ๊ธฐ ๋•Œ๋ฌธ์— ์ตœ์†Œํ•œ์˜ ๊ฐœ์ˆ˜๋งŒ ๊ฐ€์žฅ ํšจ์œจ์ ์ธ ์œ„์น˜์— ๋ฐฐ์น˜ํ•ด์•ผ ํ•˜๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด์ „์˜ ์—ฐ๊ตฌ๊ฐ€ ํšŒ๋กœ์˜ ์ˆ˜์œจ์„ ๊ณ„์‚ฐํ•  ๋•Œ ์‹œ๊ฐ„์ด ๋งŽ์ด ๊ฑธ๋ฆฌ๋Š” ๋ชฌํ…Œ-์นด๋ฅผ๋กœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์‚ฌ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํƒ์ƒ‰ ๊ฐ€๋Šฅํ•œ ํฌ์ŠคํŠธ ์‹ค๋ฆฌ์ฝ˜ ์กฐ์ • ๋ฒ„ํผ์˜ ๋ฐฐ์น˜๊ฐ€ ์ œํ•œ๋˜๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ์Œ์„ ์ง€์ ํ•œ ํ›„, ๊ธฐ์กด์— ์ œ์•ˆ๋˜์—ˆ๋˜ ๊ทธ๋ž˜ํ”„ ๊ธฐ๋ฐ˜ ํšŒ๋กœ ์ˆ˜์œจ ๊ณ„์‚ฐ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ํšจ์œจ์ ์ธ ํฌ์ŠคํŠธ ์‹ค๋ฆฌ์ฝ˜ ์กฐ์ • ๋ฒ„ํผ ๋ฐฐ์น˜๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋Š” ์ ์ง„์ ์ด๊ณ  ์ฒด๊ณ„์ ์ธ ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๋‹ค์Œ์€ ํด๋Ÿญ ์‹œ์ฐจ ์Šค์ผ€์ฅด๋ง ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์„œ์ˆ ํ•œ๋‹ค. ์ตœ๊ทผ์˜ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆ๋˜์—ˆ๋˜, ํ”Œ๋ฆฝ-ํ”Œ๋กญ์˜ ํด๋Ÿญ์—์„œ ์ถœ๋ ฅ๊นŒ์ง€์˜ ๋”œ๋ ˆ์ด๊ฐ€ ํด๋Ÿญ์˜ ์ค€๋น„์‹œ๊ฐ„๊ณผ ์œ ์ง€์‹œ๊ฐ„์— ์˜์กดํ•œ๋‹ค๋Š” ์œ ์—ฐํ•œ ํ”Œ๋ฆฝ-ํ”Œ๋กญ ํƒ€์ด๋ฐ ๋ชจ๋ธ ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์˜ ํ”Œ๋ฆฝ-ํ”Œ๋กญ์˜ ํƒ€์ด๋ฐ ํŠน์„ฑ๋“ค์ด ๊ณ ์ •๋œ ๊ฐ’์ด๋ผ๋Š” ๊ฐ€์ •์— ๊ธฐ๋ฐ˜ํ•œ ์ •์  ํƒ€์ด๋ฐ ๋ถ„์„์˜ ์ •ํ™•์„ฑ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ์ค‘์š”ํ•œ ์—ฐ๊ตฌ์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ƒˆ๋กœ์šด ๋ชจ๋ธ์„ ๊ณ ๋ คํ•˜์—ฌ, ์ด์ „์— ๊ณ ์ „์ ์ธ ํ”Œ๋ฆฝ-ํ”Œ๋กญ ํƒ€์ด๋ฐ ํŠน์„ฑ ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ง„ํ–‰๋˜์—ˆ๋˜ ํด๋Ÿญ ์‹œ์ฐจ ์Šค์ผ€์ฅด๋ง์˜ ์ตœ์ ํ™” ๋ฌธ์ œ๋ฅผ ์œ ์—ฐํ•œ ํ”Œ๋ฆฝ-ํ”Œ๋กญ ํƒ€์ด๋ฐ ๋ชจ๋ธ์„ ๊ณ ๋ คํ•˜์—ฌ ํ•ด๊ฒฐํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ฃผ์–ด์ง„ ํšŒ๋กœ์˜ ์ค€๋น„์‹œ๊ฐ„๊ณผ ์œ ์ง€์‹œ๊ฐ„์˜ ์—ฌ์œ ์‹œ๊ฐ„์„ ๋ฐ˜๋ณต์ ์ด๊ณ  ์ฒด๊ณ„์ ์œผ๋กœ ์ตœ๋Œ€ํ™”ํ•˜์—ฌ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ํด๋Ÿญ ์ŠคํŒŒ์ธ ๋„คํŠธ์›Œํฌ์˜ ํ•ฉ์„ฑ์„ ์ž๋™ํ™”ํ•˜๋Š” ๋ฌธ์ œ์— ๋Œ€ํ•ด ์„œ์ˆ ํ•œ๋‹ค. ์ „ํ†ต์ ์ธ ํด๋Ÿญ ํŠธ๋ฆฌ ๊ตฌ์กฐ๊ฐ€ ๊ณต์ •๋ณ€์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜์ง€ ๋ชปํ–ˆ๊ธฐ ๋•Œ๋ฌธ์— ํด๋Ÿญ ๋ฉ”์‰ฌ๋ฅผ ํฌํ•จํ•˜๋Š” ๋‹ค์–‘ํ•œ ๋Œ€์•ˆ์  ๊ตฌ์กฐ๊ฐ€ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ํด๋Ÿญ ๋ฉ”์‰ฌ์˜ ๊ฒฝ์šฐ ๊ณต์ •๋ณ€์ด์— ์˜ํ•œ ํด๋Ÿญ ์‹œ์ฐจ๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ์—ˆ์ง€๋งŒ ์ด๋ฅผ ์œ„ํ•ด ์™€์ด์–ด๋‚˜ ๋ฒ„ํผ ๋“ฑ์˜ ์ž์›์„ ๋งŽ์ด ์†Œ๋ชจํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋‘ ๊ตฌ์กฐ์˜ ์ค‘๊ฐ„์  ๊ตฌ์กฐ์—๋Š” ํด๋Ÿญ ํŠธ๋ฆฌ์˜ ๋…ธ๋“œ๋ฅผ ์—ฐ๊ฒฐํ•˜๋Š” ํฌ๋กœ์Šค ๋งํฌ๋ฅผ ์‚ฝ์ž…ํ•˜๋Š” ๊ตฌ์กฐ์™€ ํด๋Ÿญ ์ŠคํŒŒ์ธ ๊ตฌ์กฐ๊ฐ€ ์žˆ๋‹ค. ํด๋Ÿญ ํŠธ๋ฆฌ์— ์ ์ง„์ ์ธ ์ˆ˜์ •์„ ๊ฐ€ํ•˜์—ฌ ๋งŒ๋“œ๋Š” ํฌ๋กœ์Šค ๋งํฌ์™€ ๋‹ฌ๋ฆฌ, ํด๋Ÿญ ์ŠคํŒŒ์ธ ๊ตฌ์กฐ๋Š” ํŠธ๋ฆฌ๋‚˜ ์ดํ›„์— ์ œ์•ˆ๋œ ๋ฉ”์‰ฌ์™€๋Š” ์™„์ „ํžˆ ๋ณ„๊ฐœ์˜ ๊ตฌ์กฐ๋กœ, ์ด๋ฅผ ํ•ฉ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•๋„ ๋งค์šฐ ๋‹ค๋ฅด๋‹ค. ๊ทธ๋ ‡๊ธฐ ๋•Œ๋ฌธ์— ํด๋Ÿญ ์ŠคํŒŒ์ธ์„ ํ•ฉ์„ฑํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํ•„์ˆ˜์ ์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ์œผ๋‚˜, ํ•ฉ์„ฑ ๋ฐฉ๋ฒ•๋ก ์ด๋‚˜ ์ด๋ฅผ ์ž๋™ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋Š” ์•„์ง ์—†๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์šฐ์„ , ํด๋Ÿญ-๊ฒŒ์ดํŒ…์„ ์ง€์›ํ•˜๋Š” ํด๋Ÿญ ์ŠคํŒŒ์ธ์„ ์ฃผ์–ด์ง„ ํด๋Ÿญ ์‹œ์ฐจ ๋ฐ ํด๋Ÿญ ์Šฌ๋ฃจ ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋ฉด์„œ ์ž์› ๋ฐ ์ „๋ ฅ ์†Œ๋ชจ๋Ÿ‰์„ ์ตœ์†Œํ™”ํ•˜๋Š” ๋ฌธ์ œ์— ๋Œ€ํ•ด ์„œ์ˆ ํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ , ํšŒ๋กœ์—์„œ ์ฃผ์–ด์ง„ ํ”Œ๋ฆฝ-ํ”Œ๋กญ๋“ค์„ ํด๋Ÿญ-๊ฒŒ์ดํŒ… ์กฐ๊ฑด์—์„œ์˜ ์—ฐ๊ด€์„ฑ์„ ๊ณ ๋ คํ•˜๊ณ  ์กฐ์งํ™”ํ•˜์—ฌ ํด๋Ÿญ ์ŠคํŒŒ์ธ์„ ์‚ฝ์ž…ํ•œ ํ›„, ํด๋Ÿญ ์‹œ์ฐจ ๋ฐ ์Šฌ๋ฃจ ์กฐ๊ฑด์„ ๊ณ ๋ คํ•˜์—ฌ ๋ฒ„ํผ๋ฅผ ์‚ฝ์ž…ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ์š”์•ฝํ•˜๋ฉด, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํด๋Ÿญ์˜ ํƒ€์ด๋ฐ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํฌ์ŠคํŠธ-์‹ค๋ฆฌ์ฝ˜ ์กฐ์ • ํด๋Ÿญ ๋ฒ„ํผ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ํ…Œํฌ๋‹‰๊ณผ ํด๋Ÿญ ์‹œ์ฐจ ์Šค์ผ€์ฅด๋ง์„ ์œ ์—ฐํ•œ ํ”Œ๋ฆฝ-ํ”Œ๋กญ ํƒ€์ด๋ฐ ๋ชจ๋ธ์—์„œ ์ ์šฉํ•˜๋Š” ํ…Œํฌ๋‹‰์„ ์ œ์‹œํ•˜๊ณ , ํด๋Ÿญ์˜ ํƒ€์ด๋ฐ ๋ฌธ์ œ์™€ ์ „๋ ฅ ์†Œ๋ชจ ๋ฌธ์ œ๋ฅผ ํ•œ๋ฒˆ์— ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํด๋Ÿญ ์ŠคํŒŒ์ธ ๋„คํŠธ์›Œํฌ๋ฅผ ํ•ฉ์„ฑํ•˜๋Š” ์ž๋™ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์‹œํ•œ๋‹ค.As the process variation is dominating to cause the clock timing variation among chips to be much large, conventional clock tree based clock network is not able to guarantee the timing constraint of a digital system. To overcome the limitations of traditional clock design techniques, various techniques have been studied. This dissertation addresses three techniques that have been widely used for designing robust clock network and proposes developed methods. First, it is widely accepted that post-silicon tunable (PST) clock buffers can effectively resolve the clock timing violation. Since PST buffers, which can reset the clock delay to flip-flops after the chip is manufactured, impose a non-trivial implementation area and control circuitry, it is very important to minimally allocate PST buffers while satisfying the chip yield constraint. In this dissertation, we (1) develop a graph-based chip yield computation technique which can update yields very efficiently and accurately for incremental PST buffer allocation, based on which we (2) propose a systematic (bottom-up and top-down with refinement) PST buffer allocation algorithm that is able to fully explore the design space of PST buffer allocation. Second, clock skew scheduling is one of the essential steps that must be carefully performed during the design process. This dissertation addresses the clock skew optimization problem integrated with the consideration of the interdependent relation between the setup and hold skews, and clk-to-Q delay of flip-flops, so that the time margin is more accurately and reliably set aside over that of the previous methods, which have never taken the integrated problem into account. Precisely, based on an accurate flexible model of setup skew, hold skew, and clk-to-Q delay, we propose a stepwise clock skew scheduling technique in which at each iteration, the worst slack of setup and hold skews is systematically and incrementally relaxed to maximally extend the time margin. Lastly, clock tree with cross links and clock spine have an intermediate characteristics for skew tolerance and power consumption, compared to clock tree and clock mesh which are two extreme structures of clock network. Unlike the clock tree with links between clock nodes, which is a sort of an incremental modification of the structure of clock tree, clock spine network is a completely separated structure from the structures of tree and mesh. Consequently, it is necessary and essential to develop a synthesis algorithm for clock spines, which will be compatible to the existing synthesis algorithms of clock trees and clock meshes. To this end, this dissertation first addresses the problem of automating the synthesis of clock-gated clock spines with the objective of minimizing total clock power while meeting the clock skew and slew constraints. The key idea of our proposed synthesis algorithm is to identify and group the flip-flops with tight correlation of clock-gating operations together to form a spine while accurately predicting and maintaining clock skew and slew variations through the buffer insertion and stub allocation. In summary, this dissertation presents clock tuning techniques with consideration of post-silicon tuning, flexible flip-flop timing model, and clock-gated clock spine synthesis algorithm.Abstract i Chapter 1 INTRODUCTION 1 1.1 Clock Distribution Network . . . . . . . . . . . . . . . . . . . . . 1 1.2 Process Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Flexible Flip-flop Timing Model . . . . . . . . . . . . . . . . . . . 3 1.4 Clock Spine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.5 Contributions of This Dissertation . . . . . . . . . . . . . . . . . 6 Chapter 2 POST-SILICON TUNABLE CLOCK BUFFER ALLOCATION BASED ON FAST CHIP YIELD COMPUTATION 8 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Systematic Exploration of PST Buffer Allocation . . . . . . . . . 10 2.2.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . 15 2.2.3 Allocation Algorithm . . . . . . . . . . . . . . . . . . . . . 16 2.3 Fast Timing Yield Computation . . . . . . . . . . . . . . . . . . 17 2.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.2 Incremental Yield Computation . . . . . . . . . . . . . . . 22 2.4 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.5 PST Buffer Configuration Techniques . . . . . . . . . . . . . . . 31 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Chapter 3 POST-SILICON TUNING BASED ON FLEXIBLE FLIP-FLOP TIMING 34 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2 Preliminary and Definitions . . . . . . . . . . . . . . . . . . . . . 40 3.2.1 Flexible Flip-Flop Timing Model . . . . . . . . . . . . . . 40 3.2.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3 Motivational Examples . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4 Clock Skew Scheduling for Slack Relaxation Based on Flexible Flip-Flop Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4.1 Overall Flow . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4.2 Finding Local Clock Skew Schedule . . . . . . . . . . . . 48 3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Chapter 4 SYNTHESIS FOR POWER-AWARE CLOCK SPINES 61 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2 Preliminaries and Motivation . . . . . . . . . . . . . . . . . . . . 64 4.2.1 Clock Spine . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2.2 Activity Patterns . . . . . . . . . . . . . . . . . . . . . . . 67 4.2.3 Power Computation . . . . . . . . . . . . . . . . . . . . . 67 4.3 Algorithm for Clock Spine Synthesis . . . . . . . . . . . . . . . . 68 4.3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . 68 4.3.2 Power-Aware Sink Clustering . . . . . . . . . . . . . . . . 70 4.3.3 Spine Relaxation . . . . . . . . . . . . . . . . . . . . . . . 77 4.3.4 Spine Buffer Allocation . . . . . . . . . . . . . . . . . . . 80 4.3.5 Top-Level Tree Construction . . . . . . . . . . . . . . . . 86 4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Chapter 5 CONCLUSION 95 5.1 Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.2 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.3 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Bibliography 97 ์ดˆ๋ก 106Docto

    Paleobiological Perspectives on Early Eukaryotic Evolution

    Get PDF
    Eukaryotic organisms radiated in Proterozoic oceans with oxygenated surface waters, but, commonly, anoxia at depth. Exceptionally preserved fossils of red algae favor crown group emergence more than 1200 million years ago, but older (up to 1600โ€“1800 million years) microfossils could record stem group eukaryotes. Major eukaryotic diversification โˆผ800 million years ago is documented by the increase in the taxonomic richness of complex, organic-walled microfossils, including simple coenocytic and multicellular forms, as well as widespread tests comparable to those of extant testate amoebae and simple foraminiferans and diverse scales comparable to organic and siliceous scales formed today by protists in several clades. Mid-Neoproterozoic establishment or expansion of eukaryophagy provides a possible mechanism for accelerating eukaryotic diversification long after the origin of the domain. Protists continued to diversify along with animals in the more pervasively oxygenated oceans of the Phanerozoic Eon.Earth and Planetary SciencesOrganismic and Evolutionary Biolog

    3D Computer Modeling Offers New Insights Into Diatom Ecology

    Get PDF
    Algae supply over half of the Earthโ€™s global primary production and form the base of almost all aquatic food networks. Thus, changes in algal productivity or composition will induce profound shifts in many ecosystems. This research is guided by two questions. Herein I ask if 3D models of algae can be created accurately enough to use for research applications? If they can be accurately created, then how can these models be used to advance our understanding of functional trait evolution and paleoecology? Herein, I develop 3D computer models for estimating the volume of individual algae and their parts. I also examine pressures that influence algae biomass, resource requirements, and trait evolution. Further, I apply these to an annually resolved sediment records to reveal paleontological applications that can be used to reconstruct past ecosystems and evolutionary events. This dissertation provides the means improve historical ecological reconstructions, advance predictions of ecological changes that will occur under global climate change and allow for evolutionary cost benefit analysis of traits of microscopic organisms. For this study I exploit the sedimentary record from Herd Lake Idaho USA (44.089428, -114.173921). because it contains large (~0.5 cm) annual layers. These layers are extraordinarily abundant in the remains of the diatom Stephanodiscus niagarae. These qualities present an ideal setting to produce accurate 3D computer models of a diatom that influences a large portion of the nutrient cycles in an aquatic system. The abundance of individuals provides ample data and diversity for strong statistical interpretations of the diatom populations while the annual resolution of the sediment provides a means to compare the novel methods to weather and climate data that inform us of the ecological significance of these new methods. The bounds of this study are within the years 1927 โ€“ 2011 and pertain to aquatic environments on Earth. Although these works are constrained to the recent past and local ecosystems, future applications are bound only by the geological time frame in which algae have existed and are limited in space to wherever algae are found in the universe

    Circadian Modulation of Neurons and Astrocytes Controls Synaptic Plasticity in Hippocampal Area CA1

    Get PDF
    Most animal species operate according to a 24-h period set by the suprachiasmatic nucleus (SCN) of the hypothalamus. The rhythmic activity of the SCN modulates hippocampal-dependent memory, but the molecular and cellular mechanisms that account for this effect remain largely unknown. Here, we identify cell-type-specific structural and functional changes that occur with circadian rhythmicity in neurons and astrocytes in hippocampal area CA1. Pyramidal neurons change the surface expression of NMDA receptors. Astrocytes change their proximity to synapses. Together, these phenomena alter glutamate clearance, receptor activation, and integration of temporally clustered excitatory synaptic inputs, ultimately shaping hippocampal-dependent learning in vivo. We identify corticosterone as a key contributor to changes in synaptic strength. These findings highlight important mechanisms through which neurons and astrocytes modify the molecular composition and structure of the synaptic environment, contribute to the local storage of information in the hippocampus, and alter the temporal dynamics of cognitive processing

    Seven properties of self-organization in the human brain

    Get PDF
    The principle of self-organization has acquired a fundamental significance in the newly emerging field of computational philosophy. Self-organizing systems have been described in various domains in science and philosophy including physics, neuroscience, biology and medicine, ecology, and sociology. While system architecture and their general purpose may depend on domain-specific concepts and definitions, there are (at least) seven key properties of self-organization clearly identified in brain systems: 1) modular connectivity, 2) unsupervised learning, 3) adaptive ability, 4) functional resiliency, 5) functional plasticity, 6) from-local-to-global functional organization, and 7) dynamic system growth. These are defined here in the light of insight from neurobiology, cognitive neuroscience and Adaptive Resonance Theory (ART), and physics to show that self-organization achieves stability and functional plasticity while minimizing structural system complexity. A specific example informed by empirical research is discussed to illustrate how modularity, adaptive learning, and dynamic network growth enable stable yet plastic somatosensory representation for human grip force control. Implications for the design of โ€œstrongโ€ artificial intelligence in robotics are brought forward

    Molecular Phylogeny of Lake Baikal Amphipods

    Get PDF

    Clock Polarity Assignment Methodologies for Designing High-Performance and Robust Clock Trees

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2016. 8. ๊น€ํƒœํ™˜.In modern synchronous circuits, the system relies on one single signal, namely, the clock signal. All data sampling of flip-flops rely on the timing of the clock signal. This makes clock trees, which deliver the clock signal to every clock sink in the whole system, one of the most active components on a chip, as it must switch without halting. Naturally, this makes clock trees a primary target of optimization for low power/high performance designs. First, bounded skew clock polarity assignment is explored. Buffers in the clock tree switch simultaneously as the clock signal switch, which causes power/ground supply voltage fluctuation. This phenomenon is referred to as clock noise and brings adverse effects on circuit robustness. Clock polarity assignment technique replaces some of the buffers in the clock trees with inverters. Since buffers draw larger current at the rising edge of the clock while inverters draw larger current at the falling edge, this technique can mitigate peak noise problem at the power/ground supply rails. Second, useful skew clock polarity assignment method is developed. Useful clock skew methodology allows consideration of individual clock skew restraints between each clock sinks, allowing further noise reduction by exploiting more time slack. Through experiments with ISPD 2010 clock network synthesis contest benchmark circuits, the results show that the proposed clock polarity algorithm is able to reduce the peak noise caused by clock buffers by 10.9% further over that of the global skew bound constrained polarity assignment while satisfying all setup and hold time constraints. Lastly, as multi-corner multi-mode (MCMM) design methodologies, process variations and clock gating techniques are becoming common place in advanced technology nodes, clock polarity assignment methods that mitigate these problems are devised. Experimental results indicate that the proposed methods successfully satisfy required design constraints imposed by such variations. In summary, this dissertation presents clock polarity assignments that considers useful clock skew, delay variations, MCMM design methodologies and clock gating techniques.Chapter 1 Introduction 1 1.1 Clock Trees 1 1.2 Simultaneous Switching Noise 3 1.3 Clock Polarity Assignment Technique 4 1.4 Contributions of this Dissertation 5 Chapter 2 Clock Polarity Assignment Under Bounded Skew 7 2.1 Introduction 7 2.2 Motivational Example 9 2.3 Problem Formulation 13 2.4 Proposed Algorithm 17 2.4.1 Independence Assumption 17 2.4.2 Characterization of Noise 18 2.4.3 Overview of the Proposed Algorithm 19 2.4.4 Mapping WaveMin Problem to MOSP problem 22 2.4.5 A Fast Algorithm 26 2.4.6 Zone Sizing/Partitioning Method 27 2.5 Experimental Results 28 2.5.1 Experimental Setup 28 2.5.2 Noise Reduction 28 2.5.3 Simulation on Full Circuit 29 2.6 Effects of Clock Polarity Assignment on Simultaneous Switching Noise 34 2.6.1 Model of Power Delivery Network 34 2.6.2 Peak-to-Peak Voltage Swing 35 2.7 Effects of Decoupling Capacitors 36 2.8 Effects of Clock Polarity Assignment on Clock Jitter 40 2.8.1 Noise in Frequency Domain 40 2.9 Summary 43 Chapter 3 Clock Polarity Assignment Under Useful Skew 44 3.1 Introduction 44 3.2 Motivational Example 45 3.3 Problem Formulation 47 3.4 Proposed Algorithm 49 3.4.1 Integer Linear Programming Formulation and Linear Programming Relaxation 49 3.4.2 Formulating into Maximum Clique Problem 49 3.4.3 Scalable Algorithm for Clique Exploration 51 3.5 Experimental Results 54 3.5.1 Experimental Setup 54 3.5.2 Assessing the Performance of UsefulMin over Wavemin 56 3.6 Summary 57 Chapter 4 Extensions of Clock Polarity Assignment Methods 60 4.1 Coping With Thermal Variations 60 4.1.1 Introduction 60 4.1.2 Proposed Method 61 4.1.3 Experimental Results 66 4.2 Coping with Delay Variations 70 4.2.1 Introduction 70 4.2.2 The Impact of Process Variations on Polarity Assignment 71 4.2.3 Proposed Method for Variation Resiliency 72 4.2.4 Experimental Results 73 4.3 Coping With Multi-Mode Designs 75 4.3.1 Introduction 75 4.3.2 Proposed Method 76 4.3.3 Experimental Results 84 4.4 Orthogonality with Other Design Techniques ? Clock Gating 87 4.4.1 Introduction 87 4.4.2 Proposed Partitioning Method 87 4.4.3 Experimental Results 88 4.5 Summary 90 Chapter 5 Conclusion 92 5.1 Clock Polarity Assignment Under Bounded Skew 92 5.2 Clock Polarity Assignment Under Useful Skew 93 5.3 Extensions of Clock Polarity Assignment 93 Appendices 94 Chapter A Power Spectral Densities of ISCAS89 Circuits 95 Chapter B The Effect of Decoupling Capacitors 99 ์ดˆ๋ก 109Docto

    Ancient origins of a diverse stygofaunal group: The Australian Bathynellidae (Crustacea)

    Get PDF
    Research on subterranean fauna on all continents has highlighted often high levels of endemism, for both troglobionts (terrestrial subterranean organisms) and stygobionts (organisms living in groundwater). In Australia, particularly in the arid zones of Western Australia, a rich hypogean assemblage has been discovered in the past few decades, largely due to surveys required as part of environmental impact assessments for, and imposed conditions on, mining operations. Bathynellidae (Crustacea) are part of the stygofaunal community, but to-date they are poorly understood, mainly because their conservative morphology, small size and delicate exoskeleton make their dissection, observation and study very difficult. Additionally, the incomplete description of the type genus and species of the family (Bathynella natans) have led to misidentifications and taxonomic/systematic uncertainties. Prior to this contribution, only one species of Bathynellidae had been described from Australia, and knowledge on their morphology, species/genera and distributional boundaries, inter- intraspecific variability, and origins were very limited. The overall aim of this research is to investigate diversity, patterns of distribution, and biogeographical history of Bathynellidae in Australia, focussing on the arid zones of Western Australia (particularly on the Pilbara region).The abundance of material already collected by different companies allowed a thorough morphological and molecular examination of many specimens. The study of multiple taxa occurring in different aquifers of the same and different catchments is carried out to explore intra-interspecific variability, species and distributional boundaries, and evolutionary histories. A molecular phylogeny including representative taxa from different continents is also built to put the Australian fauna into a worldwide context. Four new species and genera (Pilbaranella ethelensis, Fortescuenella serenitatis, Anguillanella callawaensis, and Muccanella cundalinensis) have been described, clarifying morphological and molecular intra- and interspecific boundaries. These represent the first four species described for Western Australia. One new subfamily, nine new genera, and 23 new species are recognised through molecular species delineation and preliminary morphological analysis. All species and most genera studied appear restricted to single aquifer systems in particular areas of a catchment. The molecular phylogeny of the Australian Bathynellidae indicates a complex history. The molecular clock analysis suggests that aridification processes only partly influenced the diversification, while most of their diversity predate the establishment of the drought climate. The results indicate very old origins dated back to the end of Devonian-early Carboniferous, and a substantial increase in the rate of diversification during the Triassic-Jurassic period, which could represent multiple freshwater invasions, facilitated perhaps by sea level fluctuations. A consequent dispersion thanks to a much wetter climate may explain the presence of Bathynellidae in areas of the country that have not been influenced by marine transgressions since the Proterozoic. The molecular phylogeny including genera and lineages from other countries indicates that the Australian Bathynellidae form a monophyletic clade comprising different subfamilies distinct from the ones described from other continents. This better understanding will help to predict the potential diversity of this group in unstudied areas, and enable improved advice to government regulators where protection of subterranean environments and their aquifers is a priorit

    Population genetics and systematics of a species-rich clade of Neotropical reef fishes, the tubeblenny genus Acanthemblemaria

    Get PDF
    Neotropical coral reef fish communities are species-poor compared to those of the Indo-West Pacific. An exception to that pattern is the blenny clade Chaenopsidae, one of only three coral reef fish families endemic to the Neotropics. Within the chaenopsids, the genus Acanthemblemaria is the most species-rich. To understand the origin and maintenance of genetic and species diversity in these fishes, I characterized the population genetics for two Acanthemblemaria species, reconstructed the phylogeny of the group, and identified suites of correlated morphological characters responsible for the distinctive skull morphology of these fishes. By combining nuclear and mitochondrial sequence data I was able to recover the complex demographic history of two closely related Acanthemblemaria species, A. aspera and A. spinosa. Old population expansions in both species were obscured by a rapid mitochondrial substitution rate, but the mitochondrial DNA allowed the recovery of a recent expansion in A. aspera corresponding to a period of increased habitat availability. However, the older expansions that took place in both species were only recovered using the nuclear markers. Across the genus I found that mitochondrial COI is evolving nearly 100X faster than the nuclear markers and at an absolute rate of nearly 25% pairwise sequence divergence per million years. Replicate Bayesian phylogenetic analyses failed to converge on the same posterior distributions because proposals to update the rate multiplier parameter were rarely accepted, but when the tuning parameter was adjusted, all datasets converged quickly on to the same posterior distribution. When COI was included, posterior probabilities of the species tree were lower and topological estimates were worse than those from the nuclear-only dataset. The species tree that was constructed for the genus conflicted with the morphological phylogeny for the group, primarily due to the convergence of skull bones with spines. By performing phylogenetic analyses on these characters, I resolved some of the conflicts between the morphological and molecular phylogenies. Divergence time estimates recovered a mid-Miocene origin for the genus, with speciation both before and after the closure of the Isthmus of Panama. Some sister taxa were broadly sympatric, but many occur in allopatry
    • โ€ฆ
    corecore