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Abstract

As the process variation is dominating to cause the clock timing variation among

chips to be much large, conventional clock tree based clock network is not able to

guarantee the timing constraint of a digital system. To overcome the limitations

of traditional clock design techniques, various techniques have been studied.

This dissertation addresses three techniques that have been widely used for

designing robust clock network and proposes developed methods.

First, it is widely accepted that post-silicon tunable (PST) clock buffers can

effectively resolve the clock timing violation. Since PST buffers, which can reset

the clock delay to flip-flops after the chip is manufactured, impose a non-trivial

implementation area and control circuitry, it is very important to minimally

allocate PST buffers while satisfying the chip yield constraint. In this disserta-

tion, we (1) develop a graph-based chip yield computation technique which can

update yields very efficiently and accurately for incremental PST buffer allo-

cation, based on which we (2) propose a systematic (bottom-up and top-down

with refinement) PST buffer allocation algorithm that is able to fully explore

the design space of PST buffer allocation.

Second, clock skew scheduling is one of the essential steps that must be

carefully performed during the design process. This dissertation addresses the

clock skew optimization problem integrated with the consideration of the inter-

dependent relation between the setup and hold skews, and clk-to-Q delay of

flip-flops, so that the time margin is more accurately and reliably set aside over

that of the previous methods, which have never taken the integrated problem

into account. Precisely, based on an accurate flexible model of setup skew,
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hold skew, and clk-to-Q delay, we propose a stepwise clock skew scheduling

technique in which at each iteration, the worst slack of setup and hold skews is

systematically and incrementally relaxed to maximally extend the time margin.

Lastly, clock tree with cross links and clock spine have an intermediate

characteristics for skew tolerance and power consumption, compared to clock

tree and clock mesh which are two extreme structures of clock network. Unlike

the clock tree with links between clock nodes, which is a sort of an incremental

modification of the structure of clock tree, clock spine network is a completely

separated structure from the structures of tree and mesh. Consequently, it is

necessary and essential to develop a synthesis algorithm for clock spines, which

will be compatible to the existing synthesis algorithms of clock trees and clock

meshes. To this end, this dissertation first addresses the problem of automating

the synthesis of clock-gated clock spines with the objective of minimizing total

clock power while meeting the clock skew and slew constraints. The key idea of

our proposed synthesis algorithm is to identify and group the flip-flops with tight

correlation of clock-gating operations together to form a spine while accurately

predicting and maintaining clock skew and slew variations through the buffer

insertion and stub allocation.

In summary, this dissertation presents clock tuning techniques with consid-

eration of post-silicon tuning, flexible flip-flop timing model, and clock-gated

clock spine synthesis algorithm.

Keywords: VLSI&CAD, post-silicon tuning, static timing analysis, flexible

flip-flop timing model, clock spine synthesis

Student Number: 2011-30237

ii



Contents

Abstract i

Chapter 1 INTRODUCTION 1

1.1 Clock Distribution Network . . . . . . . . . . . . . . . . . . . . . 1

1.2 Process Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Flexible Flip-flop Timing Model . . . . . . . . . . . . . . . . . . . 3

1.4 Clock Spine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Contributions of This Dissertation . . . . . . . . . . . . . . . . . 6

Chapter 2 POST-SILICON TUNABLE CLOCK BUFFER AL-

LOCATION BASED ON FAST CHIP YIELD COM-

PUTATION 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Systematic Exploration of PST Buffer Allocation . . . . . . . . . 10

2.2.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Allocation Algorithm . . . . . . . . . . . . . . . . . . . . . 16

2.3 Fast Timing Yield Computation . . . . . . . . . . . . . . . . . . 17

2.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 17

iii



2.3.2 Incremental Yield Computation . . . . . . . . . . . . . . . 22

2.4 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 PST Buffer Configuration Techniques . . . . . . . . . . . . . . . 31

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 3 POST-SILICON TUNING BASED ON FLEXIBLE

FLIP-FLOP TIMING 34

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Preliminary and Definitions . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Flexible Flip-Flop Timing Model . . . . . . . . . . . . . . 40

3.2.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Motivational Examples . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Clock Skew Scheduling for Slack Relaxation Based on Flexible

Flip-Flop Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 Overall Flow . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.2 Finding Local Clock Skew Schedule . . . . . . . . . . . . 48

3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Chapter 4 SYNTHESIS FOR POWER-AWARE CLOCK SPINES 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Preliminaries and Motivation . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Clock Spine . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.2 Activity Patterns . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.3 Power Computation . . . . . . . . . . . . . . . . . . . . . 67

4.3 Algorithm for Clock Spine Synthesis . . . . . . . . . . . . . . . . 68

4.3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . 68

4.3.2 Power-Aware Sink Clustering . . . . . . . . . . . . . . . . 70

iv



4.3.3 Spine Relaxation . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.4 Spine Buffer Allocation . . . . . . . . . . . . . . . . . . . 80

4.3.5 Top-Level Tree Construction . . . . . . . . . . . . . . . . 86

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Chapter 5 CONCLUSION 95

5.1 Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography 97

초록 106

v



List of Figures

Figure 1.1 Two extreme structures of clock networks in (a) and (b) and

intermediate structures in (c) and (d) with terms of the clock

skew variability and power dissipation. . . . . . . . . . . . . 5

Figure 2.1 The structure of PST buffer. The delay from Input to Out-

put is adjusted by the delay control register which selectively

switches the transistors according to the information from the

TAP point. [11] . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 2.2 The relation between the number of PST buffers allocated

and the resulting total PST area. . . . . . . . . . . . . . . . 10

Figure 2.3 Classification of PST buffer allocations: (a) overlapping PST

buffer allocation; (b) redundant PST buffer allocation; (c)

non-overlapping and non-redundant PST buffer allocation of

(a) and (b); (d) a possibly better overlapping PST allocation

than (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

vi



Figure 2.4 An example illustrating the bottom-up exploration of PST

buffer allocation. A refinement step after the last iteration

follows, which iteratively checks if some of the PST buffers

can be removed while meeting the yield constraint. . . . . . . 19

Figure 2.5 A portion of circuit with PST buffers to adjust the time to

trigger flip-flops fi and fj . . . . . . . . . . . . . . . . . . . 20

Figure 2.6 Constraint graph representing the timing relation between

flip-flops: (a) a portion of circuit instance, I, with the allo-

cation of PST buffers b1, b2, and b3 that are used to adjust

clock arrival times to flip-flips f1, f2, and f3, respectively; (b)

constraint graph G(I). . . . . . . . . . . . . . . . . . . . . 21

Figure 2.7 Enumeration of all loops in an instance of PST buffer alloca-

tion and generation of reuse relation between loops and merg-

ing candidates: (a) an instance, I, of PST buffer allocation in

a clock tree. Six PST buffers b1, · · · b4, b5,6, b7,8 are allocated;

(b) constraint graph G(I) and PST buffer merging candidates

MG1, MG2, and MG3 in G(I); (c) list L of loops in G(I); (d)

reuse table R[−,−] to represent the Tl reuse relation between

the loops and merging candidates. . . . . . . . . . . . . . . 26

Figure 2.8 Generation of a sequence for max operations. Reusable par-

tial max results for trials of merging candidates are: (a) initial

result table R; (b) max{Tl5 , Tl6} followed by max{Tl1 , Tl2},

max{Tl3 , Tl4}, and max{Tl7 , Tl8}; (c) max{T(l3,l4), Tl5 , Tl6}

(= T(l3,l4,l5,l6)); (d) max{T(l1,l2), Tl3,l4,l5,l6)} (= T(l1,··· ,l6)); (e)

max{T(l1,··· ,l6), T(l7,l8)} (= Tl1,··· ,l8). . . . . . . . . . . . . . 28

vii



Figure 2.9 Comparing the exploration space and the number PST buffers

allocated by exhaustive enumeration of all instances and our

PST-alloc. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 3.1 Description of setup skew tS , hold skew tH , and clk-to-Q delay

tQ for a flip-flop with input D and output Q [29]. The values

of tS and tH of flip-flop fi determine the value of tQ of the

flip-flop, which in turn affects the values of tS and tH of a

flip-flop that will be driven by flip-flop fi. . . . . . . . . . . 35

Figure 3.2 Relation among setup skew, hold skew, and clk-to-Q delay [29]. 36

Figure 3.3 Setup curve: the change of clk-to-Q delay tQ as the setup skew

tS changes, in which the hold skew tH is fixed to −8ps. Hold

curve: the change of clk-to-Q delay tQ as the hold skew tH

changes, in which the setup skew tS is fixed to 37ps. . . . . . 37

Figure 3.4 Three curves showing the trade-off between the setup skew tS

and hold skew tH for clk-to-Q delay tQ = 73, 77, and 92ps.

As the clk-to-Q delay is shortened, the flexibility of trading

the setup skew with hold skew is reduced. . . . . . . . . . . 38

Figure 3.5 Comparison of the conventional STAs which use nonflexible

flip-flop timing and the enhanced STAs ([33, 35, 34, 36]) using

flexible setup and hold times, but not clk-to-Q delay. . . . . . 43

viii



Figure 3.6 Conventional STAs [37, 38] which fully use flexible flip-flop

timing in which the inter-dependent relation between clk-to-

Q delay, setup skew, and hold skew are utilized. Initially, clk-

to-Q delay of a flip-flop is set (tQ(i) = 20 in this example).

Then, setup skew tS(j) = 100 − 20 − 70 = 10 and hold skew

tH(j) = 20 + 40 = 60, from which tQ(j) (= 60) is computed.

In turn, tS(i) = 100− 60− 30 = 10 and tH(i) = 60+20 = 80,

from which tQ(i) is computed to 60. This large value of tQ(i)

causes tS(j) = 100− 60− 70 = −30, which is far less than 10

(= tS0
). Thus, the STAs report a time failure at fj . . . . . . 44

Figure 3.7 Clock skew scheduling integrated with flexible flip-flop timing.

Tuning the clock arrival time at fi to −5 causes to update the

setup and hold skews, and clk-to-Q delays of flip-flops in the

circuit, resulting in all nonnegative value of setup and hold

slacks, indicating no time violation in the circuit. . . . . . . . 44

Figure 3.8 A partial circuit structure with three flip-flops fi, fj , and fk,

in which CSS-FT wants to improve the worst slack time at fj

by rescheduling clock arrival time xi at fi or xj at fj while

satisfying the three constraints in Step 2. . . . . . . . . . . . 48

Figure 3.9 Illustration of curves, derived by Case 1 in Step 2 of CSS-

FT, of the setup and hold skews (tS(i), tH(i), tS(j), tH(j)) at

flip-flops fi and fj in Fig. 3.8 with respect to xi. . . . . . . . 49

Figure 3.10 Illustration of curves, derived by Case 2 in Step 2 of CSS-FT,

of the setup and hold skews (tS(j), tH(j), tS(k), tH(k)) at

flip-flops fj and fk in Fig. 3.8 with respect to xj . . . . . . . . 50

ix



Figure 3.11 (a) Curve showing the change of the setup skew lower bound

(tS0
) as the hold skew changes. (tS0

for a value of hold skew

is used for calculating the setup slack in Eq (3.3)). (b) Curve

showing the change of the hold skew lower bound (tH0) as the

setup skew changes. (tH0 for a value of setup skew is used for

calculating the hold slack in Eq (3.5)). . . . . . . . . . . . . 51

Figure 3.12 The distribution of the numbers of setup and hold slacks of

all flip-flops for designs s1423 and s5378 before (blue curve)

and after (orange curve) the application of CSS-FT to the

initial timing analysis results produced by the flexible flip-

flop timing based STA in [37]. Tclk is set to Tclk0 × 0.95 in

Table 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 3.13 The distribution of time violations before and after the appli-

cation of CSS-FT to the timing results of s1423 and s5378

produced by the STA in [37]. The blue dots indicate flip-flops. 58

Figure 3.14 The curves showing the trade-off between the minimum clock

period and the area overhead required for clock skew reschedul-

ing used by CSS-FT where the data are extracted and aver-

aged over the results of ISCAS89 circuits. . . . . . . . . . . . 59

Figure 3.15 The distributions of clk-to-Q delays of all flip-flops for designs

s13207 and s38584 before (yellow points) and after (green

points) the application of CSS-FT to the initial timing analysis

results produced by the flexible flip-flop timing based STA in

[37]. Tclk is set to Tclk0 in Table 3.1. All the clk-to-Q delays of

s13207 are decreased and only 10 clk-to-Q delays are slightly

increased in the results of s38584. . . . . . . . . . . . . . . 60

x



Figure 4.1 Clock mesh synthesis given by Synopsys IC Compiler [53]. . . 63

Figure 4.2 Comparison among clock spine and other two clock structures.

Clock is transitted from clock source(red triangle) to every

clock sinks. Compared to clock tree which has a single clock

path for each clock source to sink, clock mesh and clock spine

structure have multiple clock paths. Buffers in clock tree only

drive their own isolated subtree but those in clock mesh and

clock spine structure drive mesh grid or spine together. . . . . 65

Figure 4.3 An example illustrating activity patterns and clock gating in

clock tree and clock spine networks. (a) The generation of

activity pattern by the bottom-up process, in a clock tree,

from the activity patterns of sinks. (b) The clock tree gating

at node n10 in (a). (c) A clock spine network with two spines

being gated separately. . . . . . . . . . . . . . . . . . . . . 66

Figure 4.4 Comparison of the structure and energy consumption for three

instances of clock spine network. (a) A clock spine network

with |R| = 3. (b) A clock spine network different from that

in (a) and |R| = 3, but less energy consumption. (d) A clock

spine network different from that in (a), but |R| = 5 and less

energy consumption. . . . . . . . . . . . . . . . . . . . . . 69

Figure 4.5 Four steps of the proposed power-aware clock spine synthesis

algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 4.6 Spine allocation and placement for covering four sinks f1, f2,

f3, f4. (a) Horizontal spine, (b) Vertical spine. . . . . . . . . 72

Figure 4.7 Two possible spines updated by attaching sink f5. (a) Before

attachment. (b) Attachment to the left spine. (c) Attachment

to right spine. . . . . . . . . . . . . . . . . . . . . . . . . . 73

xi



Figure 4.8 An example illustrating the step-by-step procedure of the

inner-loop of sink clustering in CSPINE. (a) A spine network

produced from the prior outer-loop. (b) Generation of a dummy

spine for each sink. (c) From the first four iterations, f4, f5,

and f6 are respectively attached to the dummy spines of f2,

f1, and f3 to form non-dummy spines while f7 still main-

tains a dummy spine. (d) From the next three iterations, f8,

f9, and f10 are attached to non-dummy spines. (e) The final

clock spine network. . . . . . . . . . . . . . . . . . . . . . . 76

Figure 4.9 Example illustrating the concept of isolated sink. (a) A spine

with four sinks with activation patterns. (b) The sinks to be

enabled in power mode m1. (c) The sinks to be enabled in

power mode m2. f2 is an isolated sink in m2 of the spine in

(a). The spine alone has no control to mitigate the clock skew

related to f2. (d) The sinks to be enabled in power mode m3. 79

Figure 4.10 Example showing the spine structure relaxation for two spines

to improve the clock skew variability by removing isolated

sinks. (a) Before relaxation. (b) After relaxation by temporally

connecting them. tg is a transmission gate. . . . . . . . . . . 81

xii



Figure 4.11 Example illustrating the application of dynamic programming

for solving the problem of buffer allocation. (a) The specifica-

tion of a spine with the unit-length capacitances of spine and

stub, load capacitance of sinks, buffer library L and spine po-

sition candidates. (b) Allocation of buffer b1x to position 6,

covering sub-spine r[4, 8]. (c) Allocation of buffer b2x to po-

sition 6, covering a bigger sub-spine than that in (c). (d) An

optimal allocation for the specification in (a). (e) An opti-

mal allocation for the specification in (a) with more fine spine

positions, producing a reduced cost of buffer allocation. (f)

Decomposition of problem into two subproblems. . . . . . . . 84

Figure 4.12 Comparison of clock spine and mesh structures of s13207. In

(a) black dots, red dots, black lines, and green lines represent

sinks, buffers, spines, and connection between spines. In (b)

sky blue lines represent stubs. . . . . . . . . . . . . . . . . . 92

Figure 4.13 Comparison of clock tree, clock mesh, and clock spine struc-

tures of circuit 04 for all power modes. Green lines, blue lines,

and red lines represent clock tree, clock mesh, and clock spine

networks, respectively. . . . . . . . . . . . . . . . . . . . . 93

xiii



List of Tables

Table 1.1 The characteristics of clock spine. . . . . . . . . . . . . . . 6

Table 2.1 Comparison the accuracy of yield (Y) computation by Monte-

Carlo simulation and PST-alloc. (Y (PST-alloc) - Y (MC)) . . . 29

Table 2.2 Comparison of results by [12] and our PST-alloc. . . . . . . . . 30

Table 2.3 Comparison of the number of PST buffers by [12] and our PST-

alloc (Top-down). . . . . . . . . . . . . . . . . . . . . . . . . 31

Table 3.1 Comparison of the numbers of setup and hold time violations,

for various values of clock period, before and after the appli-

cation of our CSS-FT starting from as input the timing analy-

sis results produced by the flexible flip-flop timing based STA

in [37]. Clock skew tunable range of each flip-flop is set to

[−30ps, 30ps]. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Table 3.2 Minimum clock period before and after the application of our

CSS-FT. Clock skew tunable range of each flip-flop is set to

[−30ps, 30ps]. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Table 3.3 Running time and overhead of our CSS-FT. . . . . . . . . . . 56

xiv



Table 4.1 Comparison of the clock skew variability (µ, σ), wirelength and

buffer area (WL, BA), and power consumption (PWR) of the

clock trees with clock gating by [59], the clock mesh by [58]

and a subsequent application of clock gating, and clock spines

by CSPINE. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Table 4.2 Comparison of the clock skew variability (µ, σ), wirelength and

buffer area (WL, BA), and power consumption (PWR) of the

clock trees with clock gating by [59] when its slew rate con-

straints are changed. . . . . . . . . . . . . . . . . . . . . . . 90

Table 4.3 Comparison of the clock skew variability (µ, σ), wirelength and

buffer area (WL, BA), and power consumption (PWR) of the

clock spines by CSPINE. . . . . . . . . . . . . . . . . . . . . 91

Table 4.4 The analyzed characteristics of clock spine. . . . . . . . . 92

xv



Chapter 1

INTRODUCTION

1.1 Clock Distribution Network

In a synchronous digital system, clock distribution network delivers a clock

signal to clock sinks (i.e., flip-flops and latches). The signal should be arrived

at all sinks at the same time. The objectives for clock network design is making

the difference among clock latencies called (global) clock skew as zero, and it is

very difficult task. Due to the effect of the increased variation caused by the

CMOS process technology scaling down to sub-100nm, controlling clock skew

became more challenging problem in electronic design automation (EDA).

In addition to the problem of increasing the performance of clock distri-

bution networks, the power consumption of clock network should be carefully

considered. According to the works of [1, 2], clock distribution network accounts

for up to 40% of the total power. Increased requirements for designing robust

clock network makes the power problem worse.

Traditional clock tree has been used for a long time for its simple structure.
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However, increased variations produce uncertainties and the clock tree could not

handle the problem at all. Clock mesh is proposed as an alternatives of clock

tree. The structure gives multiple clock paths to clock sinks. Signals transitted

to sinks are overlapped, thus the variation is decreased. However, multiple clock

paths accompanies large cost, various researches to minimize the overhead have

been studied.

1.2 Process Variation

The effect of process variation is one of the most important factors to be

considered in the clock tree synthesis. As CMOS scaling down to sub-100nm,

clock skew is regarded as an unpredictable value. Process variations to channel

length/width, oxide thickness, threshold voltage, and wire width/thickness af-

fect the delay variation of interconnect and it produces maximally 25% clock

skew variation [3].

Traditionally, the worst-case timing analysis is used to consider the delay

variation caused by the process variation. However, as the delay variation in-

creases, the timing margin given by designer based on the analysis occupies a

significant portion of clock timing, causing to degrade circuit performance. To

cope with the worst-case timing analysis, the statistical static timing analysis

(SSTA) has been developed.

While some researchers (e.g., [4, 5, 6]) focus on SSTA to analyze the effect

of process variation, other researchers have tried to control and reduce design

margin due to the process variation. One of the noticeable solutions is using

Post-Silicon Tunable (PST) clock buffers [7]. A PST buffer is used to adjust

clock signal delay after manufacturing. The details of PST buffer are going to

be introduced in the Chapter 2.
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1.3 Flexible Flip-flop Timing Model

Static Timing Analysis (STA) analyzes the timing paths of sequential circuit

based on flip-flop timing parameters, which are composed of setup time and

hold time, and clk-to-Q delay (delay from the clock signal to the output Q of

flip-flop). The traditional STAs specify setup and hold time as lower bounds of

setup and hold skews, to be satisfied to assure stable data propagation passing

through flip-flops. Most STAs have used a particular pair of setup and hold

times that produces a clk-to-Q delay as the lower bounds to facilitate the easy

computation of timing analysis, even though there are many pairs of setup

and hold time values for a clk-to-Q delay. To accurately analyze the timing of

circuits, full understanding and exploitation of the inter-dependent relation of

setup time, hold time, and clk-to-Q delay are required. In Chapter 3, the concept

of flexible flip-flop timing parameters is introduced and clock skew optimization

algorithm that exploits the new timing model is proposed.

1.4 Clock Spine

The role of clock distribution network is to deliver a clock signal from clock

source to the clock sinks in a synchronous digital system. Due to the high

complexity in clock distribution networks under the various variations in design

and process parameters, the latencies of the clock paths to sinks become large

in difference as the delay variation increases. The maximum imbalance among

the clock latencies is referred to as (global) clock skew and it causes harmful

effects on high performance digital systems. In general, the increase of clock

skew degrades the clock speed of circuits, eventually failing circuit functions.

Thus, it is very important for the circuit designers to reduce the clock skew or

maintain the clock skew in a certain bound in synthesizing clock networks.
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With the aim of mitigating the effect of the increased variation caused by

the CMOS process technology scaling down to sub-100nm on the clock skew,

designers and researchers have analyzed the structures of existing clock net-

works and attempted to explore alternative structures. Clock tree has been the

most widely used clock network for its simplicity of the structure. Fig. 1.1(a)

shows an example of the structure of clock tree where the yellow squares and

blue triangles represent sinks and clock buffers, respectively. Since every clock

sink receives the clock signal from the clock source through exactly one clock

path, the delay variation on the clock wire and buffers in the clock path directly

induces the variation of the clock arrival time at the sink, resulting in a high

variability of clock skew. One extreme structure as opposed to that of clock tree

to mitigate the variability is clock mesh, whose example of structure is shown

in Fig. 1.1(b), since it allows multiple clock paths to a sink through the mesh

grid [8].

Though the clock mesh has a high variation tolerance, its power consump-

tion is a big obstacle. On the other hand, clock tree with cross links, shown

in Fig. 1.1(c), offers reasonable solution that compromises power consumption

with clock skew variation by inserting cross links to proper points in the clock

tree [9]. Since the placement locations in the clock tree where links are added

greatly influence the degree of clock skew variation, most existing works have

looked for finding a minimal number of clock locations at which the links (dot-

ted lines in Fig. 1.1(c)) are inserted to satisfy the constraint of clock skew

variation. Besides clock tree with links, clock spine, shown in Fig. 1.1(d), is

another compromising solution [10], but the structure is completely different

from clock tree with links. The clock spine network contains a set of vertical

and horizontal clock wires (heavy lines in Fig. 1.1(d)), which we call spines

and every sink is attached to the spine in the closest distance. Since each spine
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(a) Structure of clock tree. (b) Structure of clock mesh.

(c) Structure of clock tree with cross links. (d) Structure of clock spine.

Figure 1.1: Two extreme structures of clock networks in (a) and (b) and intermediate

structures in (c) and (d) with terms of the clock skew variability and power dissipation.

will have more than one clock buffer to drive the sinks attached in spine, (blue

triangles in Fig. 1.1(d)), each sink can have multiple clock signal paths from the

clock source. Unlike the clock tree with cross links, no work has investigated

a systematic exploration of clock spine structures as yet. In Chapter 4, we de-

velop a methodology to automate the exploration and synthesis of clock spine

networks and fill the blanks in the Table. 1.1.
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Table 1.1: The characteristics of clock spine.

Clock tree Cross links Clock spine Clock mesh

Performance Low Medium

?

High

Cost Low Medium High

Analysis Simple Less simple Complex

1.5 Contributions of This Dissertation

In this dissertation, each chapter presents algorithms and optimization tech-

niques for solving the problems of clock network which relate to clock skew. At

first, PST buffer allocation algorithm are developed in Chapter 2. To predict

the efficiency of PST buffer in the design time, a graph-based yield computation

technique is implemented in the algorithm. In Chapter 3, clock skew optimiza-

tion with flexible flip-flop timing model is developed. Flexible timing model is

integrated in the clock skew scheduling to resolve the timing violation. Finally,

clock spine structure that is able to fix the skew problems in the early stage of

design flow is presented in Chapter 4. The contributions of this dissertation are

summarized as follows:

• Chapter 2 proposes a comprehensive graph-based PST buffer allocation

algorithm. The algorithm includes (1) a graph-based chip yield computa-

tion technique for incremental PST buffer allocations and a systematic

PST buffer allocation algorithm that is able to explore more extended de-

sign space of PST buffer allocation to minimize the number of allocated

PST buffers.

• Chapter3 analyzes flexible flip-flop timing that describes the relation of

setup time, hold time, and clk-to-Q delay. In addition, a new problem of
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clock skew optimization integrated with flexible filp-flop timing is addressed

and a step-by-step localized slack time relaxation is developed for a solution

to the problem.

• Chapter4 addresses the problem of power-aware clock spine synthesis.

In the chapter, four synthesis steps, in which the key task is to identify

and group the flip-flops with tight correlation of clock-gating operations

together to form a spine while accurately predicting and maintaining clock

skew and slew variations through the buffer insertion and stub allocation
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Chapter 2

POST-SILICON TUNABLE
CLOCK BUFFER ALLOCATION
BASED ON FAST CHIP YIELD
COMPUTATION

2.1 Introduction

The structure of a PST buffer is shown in Fig. 2.1 in which the delay is adjusted

by the capacitors, each of which is controlled i.e., switch-on or switch-off by the

control logic after manufacturing. The delay adjustment will be done through

the TAP port. Since at the post-silicon stage, all process variations already

affect the circuit, PST buffers can help fix the timing violations in the circuit,

resulting in enhancing the chip yield. Tsai et al. [12] proposed a pre-silicon clock

scheduling and a post-silicon PST buffer allocation in which they identified

the ‘timing critical’ flip-flops and allocated PST buffers at the frond of the

flip-flops. The determination of timing critical flip-flops is based on a certain

threshold value given by designer. Subsequently, Tsai et al. [13] addressed two
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Enable

20-bit delay control register
TAP I/F

Output

Input

20

Figure 2.1: The structure of PST buffer. The delay from Input to Output is adjusted

by the delay control register which selectively switches the transistors according to the

information from the TAP point. [11]

problems: one is the problem is to minimize the total tunable delay range of

PST buffers to be allocated under the target yield constraint, and the other

problem to minimize the number of PST buffers to be allocated under the target

yield constraint. The PST buffer allocation of their algorithm was performed

according to the slack values of flip-flops, and the yields are calculated by the

Monte-Carlo simulation. On the other hand, Khandelwal and Srivastava [14]

combined gate sizing into PST buffer placement algorithm for a fixed number

of PST buffers produced by the algorithm in [13]. The integrated algorithm

used Monte-Carlo simulation to compute the yields. Nagaraj and Kundu [15]

also studied PST buffer placement problem for a given number of PST buffers.

There are two critical limitations of the previous PST allocation methods

[12, 13, 14, 15], which are the use of slow Monte-Carlo simulation in computing

the chip yield and a limited design space exploration of PST buffer allocation.

This chapter overcomes the two limitations in the PST buffer allocation. Pre-

cisely, (1) we develop a graph-based chip yield computation technique which is
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Figure 2.2: The relation between the number of PST buffers allocated and the resulting

total PST area.

able to compute yields very efficiently and accurately for incremental PST buffer

allocations, and based on the technique, (2) we propose a systematic (bottom-up

and top-down) PST buffer allocation algorithm that is able to fully explore the

design space of allocation to minimize the number of PST buffers. We have con-

firmed through experiments that our proposed algorithm drastically increasing

chip yield while allocating limited number of PST buffers.

2.2 Systematic Exploration of PST Buffer Allocation

2.2.1 Observations

Due to the large area overhead of PST buffers, the use of PST buffers should be

constrained. The area overhead of PST buffers is composed of two parts. One

is the tunable range of PST buffers, the other is the number of PST buffers.

For simplicity, we assume that all the PST buffers have the same the tunable
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range. On the other hand, one of the previous research works has clarified the

relationship between the area overhead and the number of PST buffers. The

work by Kim et al. [16] provides dot curves in Fig. 2.2 that show the relation

between the number of PST buffers and the total PST buffers area, produced by

applying the PST buffer allocation algorithms proposed in the previous works

[17, 18, 19]. The curves show that the total PST buffer area is highly correlated

with the number of PST buffers allocated, implying that minimizing the number

of PST buffers to be allocated consistently leads to the least total area of PST

buffers.

A simplest way to find a minimal allocation of PST buffers is to enumerate

all the combinations of assigning PST buffers to the nodes in the clock tree,

run the Monte-Carlo simulation or SSTA to each of the allocations to estimate

the timing yield, and select the allocation which uses the least number of PST

buffers while meeting the yield constraint. However, this leads to an extraor-

dinarily long computation time, which is unacceptable in practice. Thus, it is

needed to employ a clever mechanism of exploring the space of PST buffer al-

locations. Some analyses on the three cases of PST buffer allocation illustrated

in Fig. 2.3 may incite how an ideal exploration of PST buffer allocations could

be looked like.

• Converting an overlapping allocation into a non-overlapping one: The clock

tree in Fig. 2.3(a) has five PST buffers b1, b2, and b3, b4, and b5 by which

the clock arrival times to flip-flops f1 and f2, f3 and f4, and f5 and f6 are

respectively tuned by b1, b2, and b3. However, the time to f8 is tuned by b5

and the time to f7 is tuned by both f4 and f5, which is then translated into

an independent delay control to f7 and f8. That is, the PST buffer allocation

instance in Fig. 2.3(a) can be translated into that in Fig. 2.3(c), still using five

PST buffers. This equivalence, in terms of the number of PST buffers allocated

11



f1 f2 f3 f4 f5 f6 f7 f8

b1 b2 b3

b4

b5

(a) Overlapping.

f1 f2 f3 f4 f5 f6 f7 f8

b1 b2 b3

b4

b5

b6

(b) Redundant.
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f1 f2 f3 f4 f5 f6 f7 f8

b1 b2 b3

b4 b'5

(c) Non-overlapping and non-redundant.

f1 f2 f3 f4 f5 f6 f7 f8

b1 b2

b'3

b'4

(d) Possible allocation superior to (c).

Figure 2.3: Classification of PST buffer allocations: (a) overlapping PST buffer alloca-

tion; (b) redundant PST buffer allocation; (c) non-overlapping and non-redundant PST

buffer allocation of (a) and (b); (d) a possibly better overlapping PST allocation than

(c).
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and the delay control capability, of the two PST buffer allocation instances in

Figs. 2.3(a) and (c) implies that we are able to safely exclude one of them from

our consideration of allocation space exploration.

Definition 2.1: (PST depth) PST depth, ρ(pi), of a signal path from clock

source to flip-flop fi of an PST allocation instance I in a clock tree is defined

to the number of PST buffers on pi and ρ(I) = max{ρ(pi)|pi ∈ P (I)} where

P (I) is the set of all clock signal paths in I.

Definition 2.2: (Overlapping PST allocation) An instance, I, of PST

buffer allocation in a clock tree T is said to be an overlapping PST allocation

if ρ(I) ≥ 2.

For example, for the instance of PST buffer allocation in Fig. 2.3(a), all ρ(pi) =

1, i = 1, · · · , 8 except ρ(p7) = 2. Thus, ρ(I) = 2 and it is an overlapping PST

allocation, whereas for the instance of PST buffer allocation in Fig. 2.3(c), its

ρ(I) = 1 and it is not an overlapping PST allocation.

• Converting a redundant allocation into a non-redundant one: The clock tree in

Fig. 2.3(b) has six PST buffers b1, · · · , b6, in which b5 controls the clock arrival

times to both of f7 and f8. Since the times to f7 and f8 also controlled inde-

pendently by b4 and b6, respectively, the allocation of b5 is redundant. Thus,

the PST buffer allocation in Fig. 2.3(b) can be translated to that in Fig. 2.3(c)

by removing b6, suggesting that the PST buffer allocation instances with re-

dundant PST buffer can be disregarded in the allocation space exploration.

Definition 2.3: (Redundant PST allocation) An instance, I, of PST buffer

allocation in a clock tree T is said to be a redundant PST allocation if it is an

overlapping PST allocation and there exists a PST buffer in the allocation such

that its removal from I does not cause to degrade the yield.

From the two examples of (overlapping and redundant) PST buffer allocation

instances, it is obvious that the allocations that are meaningful to explore are
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those that include non-overlapping and non-redundant ones like that shown in

Fig. 2.3(c) whose PST depth ρ(I) ≤ 1.

2.2.2 Problem Definition

The PST buffer allocation problem can be formally described as:

Problem 2.1 (PST buffer allocation) For a given buffered clock tree T ,

statistical timing distributions between sinks (i.e., flip-flops) on T , and timing

yield constraint Υ, minimize the number of PST buffers to be allocated to replace

some of the normal buffers in T so that the yield constraint Υ is met.

Based on the observations, we narrow down the exploration space of Problem

2.1 by proposing to solve Problem 2.2:

Problem 2.2 (PST buffer allocation with ρ(I) = 1) Solve Problem 2.1

with the additional constraint that the allocation instance, I, should satisfy PST

depth ρ(I) = 11

Note that since an optimal allocation for Problem 2.1 does not always mean

an optimal allocation for Problem 2.2, solving Problem 2.2 may leads to a sub-

optimal allocation for Problem 2.1. For example, the allocation in Fig. 2.3(d)

could be an optimal solution for Problem 2.1 while the allocation in Fig. 2.3(b)

could be an optimal solution for Problem 2.2. However, the merits of tackling

Problem 2.2 is that (1) the allocation exploration space can be greatly reduced

by effectively uncovering (many unnecessary) overlapping and redundant alloca-

tions; (2) the constraint of allocations with ρ(I) = 1 leads to a graph-theoretic

formalization (e.g., Lemma 2.1) that facilitates the ease of statistical timing

yield computation.

1ρ(I) = 0 refers to the allocation instance with only one PST buffer, allocating at the root
of clock tree, thus (ρ(I) = 1). But, the PST buffer can be safely removed to be ρ(I) = 0.
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2.2.3 Allocation Algorithm

Our proposed exploration of PST buffer allocations are performed in two direc-

tions: bottom-up and top-down, followed by a refinement. Fig. 2.4 illustrates

how the bottom-up exploration is carried out: Initially, we allocate a distinct

PST buffer at the front of each sink as shown in Fig. 2.4(a). Thus, timing yield

for this initial allocation will be the highest. Suppose yield constraint Υ = 93%.

Then, we compute the yield for each of the reallocations resulting from merging

the PST buffers in the siblings into one. For example, in Fig. 2.4(a) merging

PST buffers b1 and b2 into b1,2, merging b3 and b4 into b3,4, merging b5 and

b6 into b5,6, and merging b7 and b8 into b7,8, produce yields of 98%, 92.5%,

97%, and 96%, respectively. In the second iteration, we select the one with

the highest yield, which is b1,2 among the merging candidates as indicated in

Fig. 2.4(b). Then, the yields of the remaining merging candidates are recom-

puted. In the third iteration, according to the yields computed, b5,6 is selected

as shown in Fig. 2.4(c). We repeat this process as long as there is a merging

candidate whose yield is no less than Υ. Figs. 2.4(d) show the mergings in the

last iterations, in which all of merging into b7,8 and merging into b5,6,7,8 violate

yield constraint Υ. Thus, our bottom-up exploration allocates 5 PST buffers as

shown in Figs. 2.4(d). In the subsequent refinement step, we attempt to remove

each PST buffer and compute the resulting yield. Then, we eliminate the PST

buffer which has the highest yield while the yield constraint is still satisfied. We

repeat this removal until the yield constraint does not met.

Our top-down exploration is exactly towards the reverse direction of the

bottom-up, replicating a PST buffer in parent node and moving them down to

its children nodes. Thus, the final PST allocation we choose is the one with the

less number of PST buffers between the two allocation results produced by the
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bottom-up and top-down explorations.

2.3 Fast Timing Yield Computation

2.3.1 Preliminaries

A portion of input circuit with PST buffers for timing analysis is depicted

in Fig. 2.5 where the two PST buffers adjust the arrival times of clock signal to

flip-flops in the post-silicon stage so that the (setup and hold) time constraints

imposed in the circuits should be met. For simplicity, here, only the setup time

constraint is reviewed. (The hold time constraint can be similarly explained.) If

we assume that the clock signals arrive at fi and fj in Fig. 2.5 in the reference

time of zero, only the delay values of PST buffers bi and bj determine the

clock arrival times. To guarantee the setup time constraint at fj from fi, the

clock period T of a circuit must satisfying the left inequality in the following

expression:

xi +Dij ≤ T + xj − sj ⇐⇒ xj − xi ≥ wij − T (2.1)

where xi and xj are the delay of PST buffers bi and bj , Dij represents the

maximum delay from fi to fj , T is the clock period, and sj is the setup time

of fj . The inequality on the left side can be expressed into the one on the right

side one by replacing Dij + sj with wij . The delay range ri of a PST buffer, bi,

will be determined by circuit designer and can be expressed as:

−ri ≤ xi ≤ ri (2.2)

Since process variations affect Dij and sj values, these values are represented as

statistical random variables. A circuit after manufacturing is considered working

if there are values of xi and xj that satisfy Eq.(2.1) and Eq.(2.2). Then, the

delay of PST buffers bi and bj are adjusted to xi and xj . To compute the
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f1 f2 f3 f4 f5 f6 f7 f8

b1 b2 b3 b4 b5 b6 b7 b8

✓Y=98% 93.5% 97% 96%

(a) First iteration: an initial PST buffer allocation followed by computing

yield for each of mergings of sibling PST buffers.

f1 f2 f3 f4 f5 f6 f7 f8

b1,2

b3 b4 b5 b6 b7 b8

93% ✓96.5% 95%

(b) Second iteration: replacing PST buffers b1 and b2 in (a) with one

PST buffer b1,2 followed by recomputation of yields of remaining merging

candidates.
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f1 f2 f3 f4 f5 f6 f7 f8

b1,2 b5,6

b3 b4 b7 b8

93% ✓95%

(c) Third iteration: replacing b5 and b6 in (b) with b5,6 followed by

recomputation of yields of remaining merging candidates.

f1 f2 f3 f4 f5 f6 f7 f8

b1,2 b5,6 b7,8

b3 b4

Violated!!
92.5%

Violated!!
91%

(d) Last iteration: all yields of the merging candidates is less than Υ =

93.

Figure 2.4: An example illustrating the bottom-up exploration of PST buffer alloca-

tion. A refinement step after the last iteration follows, which iteratively checks if some

of the PST buffers can be removed while meeting the yield constraint.
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fi fj

bi bj

xjxi

Figure 2.5: A portion of circuit with PST buffers to adjust the time to trigger flip-flops

fi and fj .

timing yield of circuit which refers to the percentage of chips that work for

the clock period T , the previous work [20] builds a form of constraint graph

[21] first. For example, Fig. 2.6(b) shows the constraint graph corresponding

to the timing relations among three flip-flops f1, f2, and f3 in Fig. 2.6(a).

Nodes ni, i = 1, 2, 3, in the constraint graph corresponds to PST buffers bi,

i = 1, 2, 3, and the weight on the arc from ni to nj , i, j = 1, 2, 3 and i ̸= j is

the right term in xj − xi ≥ wij − T in Eq.(2.1). Node n0 is a dummy node

to be used to incorporate the inequality in Eq.(2.2). The weights on the arcs

from n0 to ni and from ni to n0, i = 1, 2, 3, are the right terms in xi ≥ −ri

and −xi ≥ −ri (= xi ≤ ri), respectively. Then, the constraints that there are

value assignments of xi, i = 1, 2, · · · , that satisfy the Eq.(2.1) and Eq.(2.2) is

equivalent to the constraint that all the loops in the corresponding constraint

graph are nonpositive. (The detailed proof of the equivalence can be found

in [21].) To solve Problem 2.2 efficiently, we extend the idea of representing

the constraints in Eq.(2.1) and Eq.(2.2) into a constraint graph for any PST

allocation instance I with ρ(I) = 1.

Lemma 2.1 Any PST allocation instance I with ρ(I) = 1 can be represented

into a constraint graph G(I) such that the following holds: there is a delay
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f1

f2

f3

b1

b2

b3
(a)

n3n1

n2
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-r1
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(b)

Figure 2.6: Constraint graph representing the timing relation between flip-flops: (a) a

portion of circuit instance, I, with the allocation of PST buffers b1, b2, and b3 that are

used to adjust clock arrival times to flip-flips f1, f2, and f3, respectively; (b) constraint

graph G(I).
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assignment to the PST buffers in I that satisfies Eq.(2.1) and Eq.(2.2) if and

only if all the loops in G(I) are nonpositive. (We leave the proof out due to the

space limitation.)

For convenience as does in [20], all arc weights in the constraint graph are

replaced by the form of wij − kijT where for arcs connected to the dummy

node wij = −ri and kij = 0, and for others kij = 1. Finding a minimal clock

period (Tmin) that meets the inequalities of Eq.(2.1) and Eq.(2.2) is equivalent

to (Step 1) finding the value of Tl for every loop l ∈ L in the constraint graph

such that

Wl =
∑
i,j

(wij − kijT ) ≤ 0⇐⇒ T ≥
∑
ij

wij/
∑
ij

kij = Tl (2.3)

where L is the set of loops and Wl is the weight of loop l ∈ L in the constraint

graph and (Step 2) compute Tmin:

Tmin = max
l∈L

Tl. (2.4)

Then, yield Y of the circuit can be derived as:

Y = prob{Tmin ≤ T}. (2.5)

2.3.2 Incremental Yield Computation

The most time consuming parts in computing yield for an instance, I, of PST

buffer allocation is (1) the derivation of the distribution of random variable

Tl in Eq.(2.3) for every loop l in G(I) and (2) the max operation on all the

random variables Tli , i = 1, · · · , |L| in Eq.(2.4) to produce the distribution of

Tmin, where L is the set of loops in G(I). However, in the framework of our

bottom-up and top-down explorations of PST buffer allocations with PST depth

ρ(·) = 1, the yield computation time can be greatly reduced. In the following, we
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describe, using an illustrative example, our fast yield computation technique for

the bottom-up allocation exploration case. (The yield computation strategy for

the top-down case is almost identical to that of the bottom-up case.) Consider

the allocation instance, I, in Fig. 2.7(a). Now, we want to find a merging which

produces the highest value of Y in Eq.(2.5) among the merging candidates.

(1) Derivation of Tl in Eq.(2.3): Fig. 2.7(b) shows the constraint graph G(I)

of the allocation instance I in Fig. 2.7(a). There exists three merging candidates

MG1, MG2, and MG3 in G(I) that correspond to merging b1 and b2, merging

b3 and b4, and merging b5,6 and b7,8 in I, respectively. In addition, all the loops

in G(I) are listed in Fig. 2.7(c). Then, for trial of each merging candidate MGj ,

we partition the set of loops L in G(I) in two subsets Lreuse and Lrecomp such

that

• Lreuse = {li|li ∈ L and no arcs between the nodes in MGj are in li}.

• Lrecomp = {li|li ∈ L and at least one arc between the nodes in MGj are

in li}.

Since Tli in Eq.(2.3) of every loop li ∈ Lreuse has already been computed in the

previous iteration and trial of merging candidate MGj does not change li, the

value of Tli can be reused in computing Tmin in Eq.(2.4) for the incremental

reallocation by MGj . Thus, only for each li ∈ L−Lreuse(= Lrecomp), Tli needs

to be recomputed for the incremental reallocation by MGj. Table R[−,−] in

Fig. 2.7(d), which we call Reuse table, contains the reuse-ability information.

For example, R[3, 1] = 0 means that Tl3 of loop l3 can be reused for the incre-

mental reallocation by MG1, while R[4, 2] = 1 means that Tl4 of loop l4 should

be recomputed for the incremental reallocation by MG2.

(2) Derivation of Tmin in Eq.(2.4): Since Tmin derived from random variables

Tl1 , · · · , Tl|L| entails repeated application of max operations, if we can keep some
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of the results by max operations, they can be reused in the trials of merging

candidates. To maximize the reuse, we exploit the information in the reuse table

R. For example, in the reuse table in Fig. 2.8(a), since loops l5 and l6 has never

been changed for any of the trial of merging candidates MG1, MG2, and MG3,

the result of max{Tl5 , Tl6} is stored to be reused for computing Tmin in Eq.(2.4)

of the incremental reallocation by any merging candidate. Once max{Tl5 , Tl6}

is computed and stored, the reuse table is updated by merging rows of l5, and

l6 into a row (l5, l6) and setting R[(l5, l6), j] = OR(R[l5,MGj ], R[l6,MGj ]),

j = 1, 2, 3, as shown in Fig. 2.8(b). In the next iteration, select the two loops

whose bitwise-OR operation to the reuse table leads to the smallest number of

1’s. The less the number of 1’s by the bitwise-OR of two rows li and lj in R

is, the more it is likely that trials of merging candidates can reuse the result of

T(li,lj) (= max{Tli , Tlj}). As a results, loops l1 and l2, loops l3 and l4, and then

loops l7 and l8 are selected and performed max{Tli , Tlj} operations as shown

in the first row of table in Fig. 2.8(b). Then, in the next iterations, bitwise-

OR operations to the pairs of rows in the reuse table produce the sequence of

max operations: max{T(l3,l4), T(l5,l6)} in Fig. 2.8(c), max{T(l1,l2), T(l3,l4,l5,l6)} in

Fig. 2.8(d), and max{T(l1,l2,l3,l4,l5,l6), T(l7,l8)} in Fig. 2.8(e).

2.4 Experimental Result

Our proposed PST buffer allocation algorithm called PST-alloc is implemented

in Python3 and C++ and tested using 2.67 GHz linux machine. We used IS-

CAS89 [22] and ITC99 [23] benchmark circuits for experiments. The devices in

the benchmark circuits are mapped to Nangate 45nm technology library [24].

We use SSTA engine developed in [5] and supplemented in [20]. We compare

the results produced by PST-alloc with that by the previous work in [12] as well
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f1 f2 f3 f4 f5 f6 f7 f8

b1 b2 b3 b4

b5,6 b7,8

(a) An instance, I, of PST buffer allocation.

n7,8n1

n2

n0

n3 n4

n5,6

(b) Constraint graph G(I) and merging candidates in G(I).
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ଵܨܨ ଶܨܨ ଷܨܨ ସܨܨ ହܨܨ ଺ܨܨ ଻ܨܨ ܨ଼ܨ

૚࢖࢕࢕ࡸ ૙࢔ → ૚࢔ → ૛࢔ → ૙࢔
૛࢖࢕࢕ࡸ ૙࢔ → ૚࢔ → ૛࢔ → ૞,૟࢔ → ૙࢔
૜࢖࢕࢕ࡸ ૙࢔ → ૛࢔ → ૞,૟࢔ → ૙࢔
૝࢖࢕࢕ࡸ ૙࢔ → ૜࢔ → ૝࢔ → ૙࢔
૞࢖࢕࢕ࡸ ૙࢔ → ૝࢔ → ૜࢔ → ૙࢔
૟࢖࢕࢕ࡸ ૙࢔ → ૠ,ૡ࢔ → ૝࢔ → 	૙࢔
ૠ࢖࢕࢕ࡸ ૙࢔ → ૠ,ૡ࢔ → ૝࢔ → ૜࢔ → ૙࢔
ૡ࢖࢕࢕ࡸ ૙࢔ → ૠ,ૡ࢔ → ૞,૟࢔ → ૙࢔

݊ଵ

݊ଶ

݊ଷ

݊଴

݊ସ

݊ହ,଺

݊଻,଼

૚ࡳࡹ ૛ࡳࡹ ૜ࡳࡹ
૚࢖࢕࢕ࡸ ૚ ૙ ૙
૛࢖࢕࢕ࡸ ૚ ૙ ૙
૜࢖࢕࢕ࡸ ૙ ૚ ૙
૝࢖࢕࢕ࡸ ૙ ૚ ૙
૞࢖࢕࢕ࡸ ૙ ૙ ૙
૟࢖࢕࢕ࡸ ૙ ૙ ૙
ૠ࢖࢕࢕ࡸ ૙ ૚ ૙
ૡ࢖࢕࢕ࡸ ૙ ૙ ૚

࢏࡯ࡹ :	Merging	candidate	࢏

૚ࡳࡹ

૛ࡳࡹ
૜ࡳࡹ

(c) Loops in G(I).

ଵܨܨ ଶܨܨ ଷܨܨ ସܨܨ ହܨܨ ଺ܨܨ ଻ܨܨ ܨ଼ܨ

૚࢖࢕࢕ࡸ ૙࢔ → ૚࢔ → ૛࢔ → ૙࢔
૛࢖࢕࢕ࡸ ૙࢔ → ૚࢔ → ૛࢔ → ૞,૟࢔ → ૙࢔
૜࢖࢕࢕ࡸ ૙࢔ → ૛࢔ → ૞,૟࢔ → ૙࢔
૝࢖࢕࢕ࡸ ૙࢔ → ૜࢔ → ૝࢔ → ૙࢔
૞࢖࢕࢕ࡸ ૙࢔ → ૝࢔ → ૜࢔ → ૙࢔
૟࢖࢕࢕ࡸ ૙࢔ → ૠ,ૡ࢔ → ૝࢔ → 	૙࢔
ૠ࢖࢕࢕ࡸ ૙࢔ → ૠ,ૡ࢔ → ૝࢔ → ૜࢔ → ૙࢔
ૡ࢖࢕࢕ࡸ ૙࢔ → ૠ,ૡ࢔ → ૞,૟࢔ → ૙࢔

݊ଵ

݊ଶ

݊ଷ

݊଴

݊ସ

݊ହ,଺

݊଻,଼

૚ࡳࡹ ૛ࡳࡹ ૜ࡳࡹ
૚࢖࢕࢕ࡸ ૚ ૙ ૙
૛࢖࢕࢕ࡸ ૚ ૙ ૙
૜࢖࢕࢕ࡸ ૙ ૚ ૙
૝࢖࢕࢕ࡸ ૙ ૚ ૙
૞࢖࢕࢕ࡸ ૙ ૙ ૙
૟࢖࢕࢕ࡸ ૙ ૙ ૙
ૠ࢖࢕࢕ࡸ ૙ ૚ ૙
ૡ࢖࢕࢕ࡸ ૙ ૙ ૚

࢏࡯ࡹ :	Merging	candidate	࢏

૚ࡳࡹ

૛ࡳࡹ
૜ࡳࡹ

(d) Reuse table R for G(I).

Figure 2.7: Enumeration of all loops in an instance of PST buffer allocation and

generation of reuse relation between loops and merging candidates: (a) an instance, I,

of PST buffer allocation in a clock tree. Six PST buffers b1, · · · b4, b5,6, b7,8 are allocated;

(b) constraint graph G(I) and PST buffer merging candidates MG1, MG2, and MG3

in G(I); (c) list L of loops in G(I); (d) reuse table R[−,−] to represent the Tl reuse

relation between the loops and merging candidates.
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as Monte-Carlo simulation in terms of run time the number of PST buffers, and

the accuracy of yield computation.

• Checking the accuracy of yield computation: To assess the accuracy of our

SSTA engine, we compared our SSTA results to compute yields during the

exploration of PST allocations in PST-alloc with the results by Monte-Carlo

simulations with 10,000 iterations. Table 2.1 summarizes the error rate between

the values by our SSTA and by Monte-Calo simulation for two circuits s382 and

s5378 in which MG[i], i = 1, · · · , 10, in the first column of the table represents

the allocation instance produced at the i − th iteration transforming from the

initial PST allocation instance INIT. In summary, the error rate of yield is

below 0.2% in the mean value and 2% in the standard deviation. It also should

be noted that the speed of our SSTA is nearly zero while that of Monte-Carlo

simulation is over 10,000 times slower.

• Comparing PST-alloc with previous work: We compare our results with that

produced by the PST buffer allocation algorithm, which we called Tsai’s, in [12].

Tsai’s repeatedly find flip-flops with the smallest slack and place PST buffers

at the front of the flip-flops. Although the slacks on flip-flops are computed

by SSTA, the PST buffer allocations are set by a certain threshold given by

designer. Furthermore, the yield computation is done by the slow Monte-Carlo

simulation. (For accurate yield computation, all yield results are replaced by

the result produced by [20].) Table 2.2 summarizes the results. The comparison

shows that PST-alloc (Bottom-up) produces the higher yield than that by Tsai’s

while the same number of PST buffers are allocated. Similarly, PST-alloc (Top-

down) increases chip yield. Due to the different directions of exploration and

converging points, results of PST-alloc (Bottom-up) and PST-alloc (Top-down)

for circuits s382, s15850, and s38584 produce different results. However, the

number of PST buffers are different, the yield results of both approaches are
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࢖࢕࢕࢒ ૚ࡳࡹ ૛ࡳࡹ ૜ࡳࡹ
૚࢒ ૚ ૙ ૙
૛࢒ ૚ ૙ ૙
૜࢒ ૙ ૚ ૙
૝࢒ ૙ ૚ ૙
૞࢒ ૙ ૙ ૙
૟࢒ ૙ ૙ ૙
ૠ࢒ ૙ ૚ ૙
ૡ࢒ ૙ ૙ ૚

࢖࢕࢕࢒ ૚ࡳࡹ ૛ࡳࡹ ૜ࡳࡹ
ሺ࢒૚, ૛ሻ࢒ ૚ ૙ ૙
ሺ࢒૜, ૝ሻ࢒ ૙ ૚ ૙
ሺ࢒૞, ૟ሻ࢒ ૙ ૙ ૙
ሺ࢒ૠ, ૡሻ࢒ ૙ ૚ ૚

࢖࢕࢕࢒ ૚ࡳࡹ ૛ࡳࡹ ૜ࡳࡹ
ሺ࢒૚, ૛ሻ࢒ ૚ ૙ ૙

ሺ	 ,૜࢒ ૝࢒ , ሺ࢒૞, ૟ሻሻ࢒ ૙ ૚ ૙
ሺ࢒ૠ, ૡሻ࢒ ૙ ૚ ૚

࢖࢕࢕࢒ ૚ࡳࡹ ૛ࡳࡹ ૜ࡳࡹ
ሺ	 ,૚࢒ ૛࢒ , ,૜࢒ ૝࢒ , ሺ࢒૞, ૟ሻሻ࢒ ૚ ૚ ૙

ሺ࢒ૠ, ૡሻ࢒ ૙ ૚ ૚

࢖࢕࢕࢒ ૚ࡳࡹ ૛ࡳࡹ ૜ࡳࡹ
ሺ	 ,૚࢒ ૛࢒ , ,૜࢒ ૝࢒ , ,૞࢒ ૟࢒ , ሺ࢒ૠ, ૡሻሻ࢒ ૚ ૚ ૙

ݔܽ݉	݈ܾ݁ܽݏݑܴ݁ → ݈ହ, ݈଺ , ݈ଷ, ݈ହ, ݈଺	 , ݈ଷ, ݈ସ, ݈ହ, ݈଺ , ݈ଷ, ݈ସ, ݈ହ, ݈଺, ݈଻ , ሺ݈ଷ, ݈ସ, ݈ହ, ݈଺, ݈଻, ଼݈ሻ

(a) Initial reuse table R

࢖࢕࢕࢒ ૚ࡳࡹ ૛ࡳࡹ ૜ࡳࡹ
૚࢒ ૚ ૙ ૙
૛࢒ ૚ ૙ ૙
૜࢒ ૙ ૚ ૙
૝࢒ ૙ ૚ ૙
૞࢒ ૙ ૙ ૙
૟࢒ ૙ ૙ ૙
ૠ࢒ ૙ ૚ ૙
ૡ࢒ ૙ ૙ ૚

࢖࢕࢕࢒ ૚ࡳࡹ ૛ࡳࡹ ૜ࡳࡹ
ሺ࢒૚, ૛ሻ࢒ ૚ ૙ ૙
ሺ࢒૜, ૝ሻ࢒ ૙ ૚ ૙
ሺ࢒૞, ૟ሻ࢒ ૙ ૙ ૙
ሺ࢒ૠ, ૡሻ࢒ ૙ ૚ ૚

࢖࢕࢕࢒ ૚ࡳࡹ ૛ࡳࡹ ૜ࡳࡹ
ሺ࢒૚, ૛ሻ࢒ ૚ ૙ ૙

ሺ	 ,૜࢒ ૝࢒ , ሺ࢒૞, ૟ሻሻ࢒ ૙ ૚ ૙
ሺ࢒ૠ, ૡሻ࢒ ૙ ૚ ૚

࢖࢕࢕࢒ ૚ࡳࡹ ૛ࡳࡹ ૜ࡳࡹ
ሺ	 ,૚࢒ ૛࢒ , ,૜࢒ ૝࢒ , ሺ࢒૞, ૟ሻሻ࢒ ૚ ૚ ૙

ሺ࢒ૠ, ૡሻ࢒ ૙ ૚ ૚

࢖࢕࢕࢒ ૚ࡳࡹ ૛ࡳࡹ ૜ࡳࡹ
ሺ	 ,૚࢒ ૛࢒ , ,૜࢒ ૝࢒ , ,૞࢒ ૟࢒ , ሺ࢒ૠ, ૡሻሻ࢒ ૚ ૚ ૙

ݔܽ݉	݈ܾ݁ܽݏݑܴ݁ → ݈ହ, ݈଺ , ݈ଷ, ݈ହ, ݈଺	 , ݈ଷ, ݈ସ, ݈ହ, ݈଺ , ݈ଷ, ݈ସ, ݈ହ, ݈଺, ݈଻ , ሺ݈ଷ, ݈ସ, ݈ହ, ݈଺, ݈଻, ଼݈ሻ

(b) max for l5 and l6, max for l1 and l2, max

for l3, and l4, max for l7 and l8

࢖࢕࢕࢒ ૚ࡳࡹ ૛ࡳࡹ ૜ࡳࡹ
૚࢒ ૚ ૙ ૙
૛࢒ ૚ ૙ ૙
૜࢒ ૙ ૚ ૙
૝࢒ ૙ ૚ ૙
૞࢒ ૙ ૙ ૙
૟࢒ ૙ ૙ ૙
ૠ࢒ ૙ ૚ ૙
ૡ࢒ ૙ ૙ ૚

࢖࢕࢕࢒ ૚ࡳࡹ ૛ࡳࡹ ૜ࡳࡹ
ሺ࢒૚, ૛ሻ࢒ ૚ ૙ ૙
ሺ࢒૜, ૝ሻ࢒ ૙ ૚ ૙
ሺ࢒૞, ૟ሻ࢒ ૙ ૙ ૙
ሺ࢒ૠ, ૡሻ࢒ ૙ ૚ ૚

࢖࢕࢕࢒ ૚ࡳࡹ ૛ࡳࡹ ૜ࡳࡹ
ሺ࢒૚, ૛ሻ࢒ ૚ ૙ ૙

ሺ	 ,૜࢒ ૝࢒ , ሺ࢒૞, ૟ሻሻ࢒ ૙ ૚ ૙
ሺ࢒ૠ, ૡሻ࢒ ૙ ૚ ૚

࢖࢕࢕࢒ ૚ࡳࡹ ૛ࡳࡹ ૜ࡳࡹ
ሺ	 ,૚࢒ ૛࢒ , ,૜࢒ ૝࢒ , ሺ࢒૞, ૟ሻሻ࢒ ૚ ૚ ૙

ሺ࢒ૠ, ૡሻ࢒ ૙ ૚ ૚

࢖࢕࢕࢒ ૚ࡳࡹ ૛ࡳࡹ ૜ࡳࡹ
ሺ	 ,૚࢒ ૛࢒ , ,૜࢒ ૝࢒ , ,૞࢒ ૟࢒ , ሺ࢒ૠ, ૡሻሻ࢒ ૚ ૚ ૙

ݔܽ݉	݈ܾ݁ܽݏݑܴ݁ → ݈ହ, ݈଺ , ݈ଷ, ݈ହ, ݈଺	 , ݈ଷ, ݈ସ, ݈ହ, ݈଺ , ݈ଷ, ݈ସ, ݈ହ, ݈଺, ݈଻ , ሺ݈ଷ, ݈ସ, ݈ହ, ݈଺, ݈଻, ଼݈ሻ

(c) max for (l3, l4) and (l5, l6)
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૚࢒ ૚ ૙ ૙
૛࢒ ૚ ૙ ૙
૜࢒ ૙ ૚ ૙
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ሺ	 ,૚࢒ ૛࢒ , ,૜࢒ ૝࢒ , ሺ࢒૞, ૟ሻሻ࢒ ૚ ૚ ૙

ሺ࢒ૠ, ૡሻ࢒ ૙ ૚ ૚

࢖࢕࢕࢒ ૚ࡳࡹ ૛ࡳࡹ ૜ࡳࡹ
ሺ	 ,૚࢒ ૛࢒ , ,૜࢒ ૝࢒ , ,૞࢒ ૟࢒ , ሺ࢒ૠ, ૡሻሻ࢒ ૚ ૚ ૙
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(d) max for (l1, l2) and (l3, · · · , l6)

࢖࢕࢕࢒ ૚ࡳࡹ ૛ࡳࡹ ૜ࡳࡹ
૚࢒ ૚ ૙ ૙
૛࢒ ૚ ૙ ૙
૜࢒ ૙ ૚ ૙
૝࢒ ૙ ૚ ૙
૞࢒ ૙ ૙ ૙
૟࢒ ૙ ૙ ૙
ૠ࢒ ૙ ૚ ૙
ૡ࢒ ૙ ૙ ૚

࢖࢕࢕࢒ ૚ࡳࡹ ૛ࡳࡹ ૜ࡳࡹ
ሺ࢒૚, ૛ሻ࢒ ૚ ૙ ૙
ሺ࢒૜, ૝ሻ࢒ ૙ ૚ ૙
ሺ࢒૞, ૟ሻ࢒ ૙ ૙ ૙
ሺ࢒ૠ, ૡሻ࢒ ૙ ૚ ૚

࢖࢕࢕࢒ ૚ࡳࡹ ૛ࡳࡹ ૜ࡳࡹ
ሺ࢒૚, ૛ሻ࢒ ૚ ૙ ૙

ሺ	 ,૜࢒ ૝࢒ , ሺ࢒૞, ૟ሻሻ࢒ ૙ ૚ ૙
ሺ࢒ૠ, ૡሻ࢒ ૙ ૚ ૚

࢖࢕࢕࢒ ૚ࡳࡹ ૛ࡳࡹ ૜ࡳࡹ
ሺ	 ,૚࢒ ૛࢒ , ,૜࢒ ૝࢒ , ሺ࢒૞, ૟ሻሻ࢒ ૚ ૚ ૙

ሺ࢒ૠ, ૡሻ࢒ ૙ ૚ ૚

࢖࢕࢕࢒ ૚ࡳࡹ ૛ࡳࡹ ૜ࡳࡹ
ሺ	 ,૚࢒ ૛࢒ , ,૜࢒ ૝࢒ , ,૞࢒ ૟࢒ , ሺ࢒ૠ, ૡሻሻ࢒ ૚ ૚ ૙

ݔܽ݉	݈ܾ݁ܽݏݑܴ݁ → ݈ହ, ݈଺ , ݈ଷ, ݈ହ, ݈଺	 , ݈ଷ, ݈ସ, ݈ହ, ݈଺ , ݈ଷ, ݈ସ, ݈ହ, ݈଺, ݈଻ , ሺ݈ଷ, ݈ସ, ݈ହ, ݈଺, ݈଻, ଼݈ሻ

(e) max for (l1, · · · , l6) and (l7, l8)

Figure 2.8: Generation of a sequence for max operations. Reusable partial max re-

sults for trials of merging candidates are: (a) initial result table R; (b) max{Tl5 , Tl6}

followed by max{Tl1 , Tl2}, max{Tl3 , Tl4}, and max{Tl7 , Tl8}; (c) max{T(l3,l4), Tl5 , Tl6}

(= T(l3,l4,l5,l6)); (d) max{T(l1,l2), Tl3,l4,l5,l6)} (= T(l1,··· ,l6)); (e) max{T(l1,··· ,l6), T(l7,l8)}

(= Tl1,··· ,l8).
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Table 2.1: Comparison the accuracy of yield (Y) computation by Monte-Carlo simu-

lation and PST-alloc. (Y (PST-alloc) - Y (MC))

Alloc.
s382 s5378

µ σ µ σ

INIT 0.052% 0.669% 0.051% 1.163%

MG[1] 0.029% 0.151% 0.130% 0.375%

MG[2] 0.044% 0.575% 0.008% 0.958%

MG[3] 0.117% 0.214% 0.080% 0.297%

MG[4] 0.049% 0.085% 0.059% 0.555%

MG[5] 0.152% 0.399% 0.095% 0.394%

MG[6] 0.063% 0.609% 0.065% 0.391%

MG[7] 0.012% 1.712% 0.035% 0.231%

MG[8] 0.031% 1.638% 0.001% 0.451%

MG[9] 0.015% 0.205% 0.053% 0.339%

MG[10] 0.059% 0.158% 0.086% 1.200%

the same. Due to the timing problems which are solved by PST buffers in

PST-alloc (Bottom-up) dominate that by additional PST buffers in PST-alloc

(Top-down), many PST buffers in design of PST-alloc (Top-down) are useless.

Table 2.3 shows the number of PST buffers when [12] produces the similar level

of chip yield to that of PST-alloc (Top-down). PST-alloc uses 26% less number

of PST buffers than that by the previous works while maintaining the similar

yield constraint. Note that the run time of PST-alloc (Bottom-up) is quite large,

but much faster than that of Tsai’s.

• Comparing PST-alloc with exhaustive enumeration: Figs. 2.9(a) and (b) show

the comparison of the size of design space explored by the exhaustive search
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Table 2.2: Comparison of results by [12] and our PST-alloc.

Circuit # FF
T Tsai’s [12]

(ps) Yield # PST

s386 20 503.193 0.97 4

s382 30 574.799 0.927 6

s1423 74 1354.41 0.942 9

s5378 247 798.285 0.09 6

s13207 482 836.713 0.905 6

s15850 235 860.383 0.452 19

s38584 1458 1396.93 0.829 33

Circuit
PST-alloc (Bottom Up)

# iter. Time (s) Yield # PSTs

s386 17 1.85 0.97 4

s382 26 14 0.995 5

s1423 103 1354.41 0.886 9

s5378 242 6128.26 0.903 6

s13207 477 1044.76 0.977 6

s15850 229 53.14 0.918 7

s38584 1444 6137.75 0.871 15

Circuit
PST-alloc (Top Down)

# iter. Time (s) Yield # PSTs

s386 3 0.01 0.97 4

s382 5 0.01 0.995 6

s1423 8 3.66 0.886 9

s5378 5 9.36 0.903 6

s13207 5 5.81 0.977 6

s15850 18 1.73 0.918 19

s38584 32 1116.46 0.871 33
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Table 2.3: Comparison of the number of PST buffers by [12] and our PST-alloc (Top-

down).

Circuit
T Tsai’s [12] PST-alloc

(ps) Yield # PST Yield # PSTs

s386 503.193 0.97 4 0.970 4

s382 574.799 0.994 7 0.995 5

s1423 1354.41 0.942 9 0.886 9

s5378 798.285 0.902 40 0.903 6

s13207 836.713 0.905 6 0.977 6

s15850 860.383 0.917 31 0.918 7

s38584 1396.93 0.829 14 0.871 15

and our PST-alloc and the numbers of PST buffers allocated. We can see that

the design space explored by PST-alloc is much smaller than the exhaustive one,

but the numbers of PST buffers allocated by PST-alloc is closer to the optimal

ones.

2.5 PST Buffer Configuration Techniques

This chapter proposed a PST buffer allocation algorithm to increase yield of

the circuit. However, the timing problem of the circuit is able to be solved when

the delay values of all PST buffers are configured after manufacturing process.

Previous works have been tried to solve the problem by using measurements

produced at post-silicon time. In this section, techniques which defined the PST

buffer delay configuration problem and proposed an algorithm to solve it. [25]

introduced Genetic Algorithm-based clock adjustement method to increase chip

yield. The work assumed that all flip-flops have their own PST buffers. Other
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reseachers proposed a technique to reduce the effect of process variation on the

same environment [26]. The work found an unique tuning setting for each die to

maximize performance. The problem of above two works is that the algorithms

find solution for a single die, so they are quite expensive. In test process, a

large number of chips should be tested and the number of applied tests is

also big. AutoRex [27] pointed out scalability issues of the previous works and

proposed the algorithm which finds a tuning setting based on information of a

batch of chips. The algorithm used Satisfiability Modulo Theory (SMT) solvers

to process large data and generate results. In addition, Lak and Nicolici [28]

extended the algorithm of Tadesse et al. to consider hold time violation.

2.6 Summary

In this chapter, we proposed a comprehensive graph-based algorithm for PST

buffer allocation to overcome the two critical limitations of the prior works,

which are (1) the use of slow Monte-Carlo simulation in computing the chip yield

and (2) a limited design space exploration of PST buffer allocation. Precisely, we

develop a graph-based chip yield computation technique which is able to compute

yields very efficiently and accurately for incremental PST buffer allocations, and

based on the technique, we developed a systematic (bottom-up and top-down)

PST buffer allocation algorithm that is able to fully explore the design space

of allocation to minimize the number of PST buffers. The speed of proposed

algorithm is much faster than the prior algorithms and it significantly improves

yield while the same number of PST buffers are allocated.
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(a) The design space explored by PST-alloc is much smaller than the
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(b) The numbers of PST buffers allocated by PST-alloc is closer to the

optimal ones

Figure 2.9: Comparing the exploration space and the number PST buffers allocated

by exhaustive enumeration of all instances and our PST-alloc.
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Chapter 3

POST-SILICON TUNING
BASED ON FLEXIBLE
FLIP-FLOP TIMING

This chapter presents a concept of flexible flip-flop timing model and clock skew

optimization technique which integrates flexible flip-flop timing model in STA.

3.1 Introduction

Definitions of setup skew, hold skew, and clk-to-Q delay are shown in Fig. 3.1.

Setup skew (tS) is the time interval ending at the clock’s active edge during

which the input data is stable and hold skew (tH) is the time interval starting

at the clock’s active edge during which the input data is stable. Clk-to-Q delay

(tQ) is the time lapse between the clock’s active edge of flip-flop and the time

to register the input data to the output of the flip-flop. See Fig. 3.1 for the

illustration.1

1Note that the value of clk-to-Q delay in a flip-flop is determined by the setup and hold
skews on that flip-flop. The delay in turn affects the values of setup and hold skews of the
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Figure 3.1: Description of setup skew tS , hold skew tH , and clk-to-Q delay tQ for

a flip-flop with input D and output Q [29]. The values of tS and tH of flip-flop fi

determine the value of tQ of the flip-flop, which in turn affects the values of tS and tH

of a flip-flop that will be driven by flip-flop fi.

Static Timing Analysis (STA) checks setup and hold time constraints for

all flip-flops. Setup time is the minimum amount of time required before the

clock’s active edge by which the input data must be stable for it to be latched

correctly, whereas hold time is the minimum amount of time required after the

clock’s active edge during which the data must be stable. If setup and hold

skews of a flip-flop are larger than setup and hold times, the flip-flop is able

to pass a correct data. While traditional STA have regarded setup time, hold

time, and clk-to-Q delay of flip-flops as static values, recent works pointed out

the interdependent relations among them.

The interdependent relationship is shown in Fig. 3.2. Clk-to-Q delay is

changed as setup skew or hold skew is changed. HSPICE simulation results

for the changes of the values of setup skew, hold skew, and clk-to-Q delay are

shown in Figs. 3.3 and 3.4. 2 Setup curve (the right-upper one) in Fig. 3.3 shows

how the clk-to-Q delay decreases as the setup skew increases while the hold skew

flip-flops that are driven by the output of the flip-flop.
2The inter-dependent relation between the values of setup skew, hold skew, and clk-to-Q

delay produced by HSPICE simulation with 45 nm Nangate Open Cell Library [24]. The short
(long) setup or hold skews cause long (short) clk-to-Q delay and there are multiple pairs of
setup and hold skews that can generate the same value of clk-to-Q delay.
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Flip-flop Timing Parameter
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T. Okumura and M. Hashimoto, “Setup time, hold time and clock-to-Q delay computation under dynamic supply noise,” 
CICC, September 2010.

Figure 3.2: Relation among setup skew, hold skew, and clk-to-Q delay [29].

= −8ps. It is seen that the shortest clk-to-Q delay to be achievable is 89.2ps at

the expense of the setup skew of around 110ps. If the setup skew is decreased to

65.9ps, the clk-to-Q delay is expected to increase by 10%. Similarly, hold curve

(the left-lower one) in Fig. 3.3 shows how the clk-to-Q delay decreases as the

hold skew increases while the setup skew = 37ps. The shortest clk-to-Q delay

is 67.1ps with hold skew of around 20ps. Further, if the hold skew decreases

from 20ps to 8.7ps. the clk-to-Q delay is expected to decrease by 10%. The

two curves in Fig. 3.3 clearly show the trade-off between the setup/hold skews

and clk-to-Q delay. On the other side, the three curves in Fig. 3.4 shows the

trade-off between the setup and hold skews when the clk-to-Q delay is set to 73,

77, and 92ps, in which the numbers at the end points of the curves indicate the

least values of setup and hold skews achievable for the corresponding clk-to-Q

delays. We can see that setup or hold time to generate a particular value of

36



103.2 1.6 38.0 117.0 -8.3

86.1 2.6 38.0 -16.7 108.8 -8.2

80.3 3.6 38.0 -5.6 104.8 -8.2

77.0 4.6 38.0 -3.4 101.9 -8.2

75.5 5.6 37.0 -1.5 100.1 -8.2

72.8 6.6 38.0 -2.6 98.6 -8.2

71.5 7.6 38.0 -1.3 97.5 -8.2

70.6 8.7 38.0 -0.9 96.6 -8.2

69.3 10.7 38.0 -0.6 95.9 -8.2

67.6 15.8 38.0 -0.3 0.0 95.2 -8.2

67.1 20.8 38.0 -0.1 94.2 -8.2

67.1 24.7 38.0 0.0 92.9 -8.2

67.1 29.8 38.0 0.0 92.0 -8.2

67.3 32.7 37.0 0.1 91.4 -8.2

67.1 34.7 38.0 -0.1 91.0 -8.2

67.1 37.7 38.0 0.0 90.6 -8.2

67.3 39.7 37.0 0.1 90.3 -8.2

67.0 42.7 38.0 -0.1 89.9 -8.2

67.2 44.7 37.0 0.1 89.8 -8.2

67.0 46.7 38.0 -0.1 89.7 -8.2

67.0 49.7 38.0 0.0 89.6 -8.2

67.3 51.7 37.0 0.1 89.5 -8.2

67.3 54.7 37.0 0.0 89.4 -8.2

67.3 55.7 37.0 0.0 89.3 -8.2

67.3 57.7 37.0 0.0 89.3 -8.2

67.0 60.7 38.0 -0.1 89.2 -8.2

67.2 62.7 37.0 0.1 89.2 -8.2

67.0 64.7 38.0 -0.1 89.2 -8.2

67.2 67.7 37.0 0.1

67.2 69.7 37.0 0.0

67.0 72.7 38.0 -0.1

67.3 74.7 37.0 0.1

67.0 76.7 38.0 -0.1

67.0 79.7 38.0 0.0

67.3 81.7 37.0 0.1

67.0 84.7 38.0 -0.1

67.3 86.7 37.0 0.1

67.2 88.7 37.0 0.0

67.2 89.7 37.0 0.0

0.7

10% clk-to-Q increase
(Hold skew = −8)

67.1 Hold curve 

10% clk-to-Q increase 
(Setup skew = 37)

89.2 Setup Curve

60

70

80

90

100

110

120

-10 20 50 80 110 140 170

C
lk

-to
-Q

 d
el

ay
 (p

s)

Setup/hold skews (ps)

Figure 3.3: Setup curve: the change of clk-to-Q delay tQ as the setup skew tS changes,
in which the hold skew tH is fixed to −8ps. Hold curve: the change of clk-to-Q delay
tQ as the hold skew tH changes, in which the setup skew tS is fixed to 37ps.

clk-to-Q delay is depended on the value of the opposite skews. 3 In short, the

curves in Figs. 3.3 and 3.4 imply that STAs should take into account the inter-

dependent relation between setup skew, hold skew, and clk-to-Q delay in their

flip-flop timing model, if we really want to avoid unnecessary late-stage ECO

(engineering change order) or high cost design change before timing sign-off due

to inaccurate analysis of the timing behavior of circuits.

Several works analyzed the inter-dependent relation of setup time, hold time

and, clk-to-Q delay, and used the time relation in their STAs [30, 31, 32, 33,

34, 35, 36, 37]. Rao and Howick [30] firstly clarified the fact that the setup and

hold times have inter-dependent relation. Then, Srivastava and Roychowdhury

[31, 32] developed a methodology of fast characterization of the time relation.

3For generating 70ps of clk-to-Q delay, the setup time is set to 8ps when the hold skew is
−8ps.
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Figure 3.4: Three curves showing the trade-off between the setup skew tS and hold
skew tH for clk-to-Q delay tQ = 73, 77, and 92ps. As the clk-to-Q delay is shortened,
the flexibility of trading the setup skew with hold skew is reduced.

They employed Euler-Newton curve tracing method to characterize the inter-

dependent setup and hold time contours. Salman et al. [33, 35] enhanced the

accuracy of STA by reflecting the inter-dependent relation of setup and hold

times, and clk-to-Q delay all together, which is commonly called ‘flexible’ tim-

ing model in the literature. In their STA, they selected several representative

pairs of setup and hold times and stored them in cell library. Then, accurate

timing analysis was performed by alternating the mapping of cells of different

times. Salman and Friedman [34] attempted to utilize the inter-dependent time

relation in tolerating delay variations, so that delay uncertainty be reduced.

Hatami et al. [36] showed by Monte Carlo simulation that using the flexible

timing model can significantly improve the time accuracy in statistical STA.

Later, Chen and Schlichtmann [37] expressed clk-to-Q delay as an analytic

function of setup and hold skews, and proposed an iterative timing analysis
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method, in which clk-to-Q delay of a flip-flop is iteratively computed, starting

from a valid clk-to-Q delay value and reports a time violation on a flip-flop if

the clk-to-Q delay value of the flip-flop does not converge. One major limitation

of the method is that if the initial delay value is improperly set, it may lead

to a false negative result. Recently, Kahng and Lee [38] proposed a sequential

linear programming method to further improve the accuracy of STA over that

in [37]. However, still the linearization of flexible timing model in their method

causes non-trivial fitting errors.

The key feature of this chapter is that unlike all the previous works, in

which they have addressed the problem of improving the accuracy of STA by

employing the flexible timing model into STA, our work integrates the task of

clock skew optimization into the flexible timing model in STA. Thus, for circuits

in which existing STAs with flexible timing model report a time violation or

a very tight time slack, our proposed technique can be applied to look for a

possible clock schedule (objective-1) to resolve the time violation or (objective-

2) to produce a more relaxed time margin. To achieve objectives-1 and 2, a

light ECO such as detouring (or snaking) clock wire or resizing clock buffers

to adjust clock skew is required (e.g., [39]). However, the reconfigurable metals

and spare cells available for ECO are limited, it is important to use the amount

of tuning resources minimally. From this viewpoint, our work is very helpful

since it constrains the range of clock skew tuning so that the tuning should

be as minimal as possible. To sum up, for the situation where there seems no

hope to resolve timing violation in the postsilicon stage whatever we apply any

conventional timing optimization technique, the timing optimization based on

flexible flip-flop timing model could be a last resort.

39



3.2 Preliminary and Definitions

3.2.1 Flexible Flip-Flop Timing Model

One noticeable expression which describes the relation of setup and hold skews,

and clk-to-Q delay in Figs. 3.3 and 3.4 has been given by [37]:

tQ = a0 +
a1

tS − tS0

+
a2

tH − tH0

(3.1)

where tQ, tS , and tH are clk-to-Q delay, setup skew, and hold skew, respectively.

tS0 and tH0 are the lower bounds of tS and tH , respectively.

We use the expression in Eq.(3.1) as a flexible flip-flop timing model in our

clock skew optimization technique.4 Note that the effect of load and data/clock

slew on clk-to-Q can also be included in the constants a0, a1, and a2 in the

expression.

3.2.2 Definitions

For two flip-flops fi and fj , let Dmax and Dmin denote the maximum and

minimum delays of the combinational logic from fi to fj , respectively, and Tclk

denote the clock period. Further, let tQ(i), tS(i), and tH(i) denote clk-to-Q

delay, setup skew, and hold skew at fi, respectively. Let xi and xj be the clock

signal arrival times to fi and fj , respectively.

• Setup skew (tS(i, j)) : it is the time interval ending at the clock’s active

edge of flip-flop fj during which the input data of fj coming from flip-flop

fi is stable and can be expressed as:

tS(i, j) = (xj − xi + Tclk)− (tQ(i) +Dmax). (3.2)

4Our proposed clock skew scheduling technique does not depends on particular forms of
flexible timing model and can accept any timing model.
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• Setup slack (slkS(i, j)) : it is the extra setup skew available beyond the

minimally required setup skew tS0 at flip-flop fj with respect to the data

input coming from flip-flop fi, i.e.,

slkS(i, j) = tS(i, j)− tS0 . (3.3)

Thus, slkS(−, j) ≥ 0 if and only if no setup time violation occurs at fj .

• Hold skew (tH(i, j)) : it is the time interval starting at the clock’s active

edge of flip-flop fj during which its input data coming from flip-flop fi is

stable and can be expressed as:

tH(i, j) = (xi − xj) + tQ(i) +Dmin. (3.4)

• Hold slack (slkH(i, j)) : it is the extra hold skew beyond the minimally

required hold skew tH0 at flip-flop fj with respect to the data input coming

flip-flop fi, i.e.,

slkH(i, j) = tH(i, j)− tH0 . (3.5)

No hold time violation occurs if and only if slkH(−, j) ≥ 0.

• Worst slack : it is the minimum value of the setup and hold slacks for all

flip-flops in the circuit:

slkworst = min{slkS(i, j), slkH(i, j),∀ i, j}. (3.6)

For brevity, if flip-flop fi is the only one whose output directly drives the input

of flip-flop fj , we use short notations tS(j), tH(j), slkS(j), and slkH(j) to

represent tS(i, j), tH(i, j), slkS(i, j), and slkH(i, j), respectively.

Note that the main role of STAs is to check whether the input circuit con-

tains no setup and hold time violations or not. In reality, it is not a simple
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matter to accurately compute the setup and hold slacks of all flip-flops in the

circuit. The conventional STAs have been progressed in a way to improve the

accuracy of the computation of the setup and hold slacks. On the other hand,

this work progresses towards another direction based on the improved STAs:

the objective of this work is to maximally relax the worst slack by using clock

skew scheduling while integrating a flexible flip-flop timing model to maintain

the accuracy of the setup and hold slack computation. Relaxing the worst slack

is very important in that (i) it could resolve the setup or hold time violations, if

exist, by a light clock skew tuning, thereby avoiding enormous effort to remove

few time violations using (relatively unplanned) ECO knobs such as trial-and-

error of gate sizing and threshold voltage swap etc. and (ii) it enables the circuit

to be highly tolerant to the delay variation, which is very likely to be exposed

in nano-scale high-speed designs.

3.3 Motivational Examples

The section describes how the previous STA approaches have been progressed,

using small examples in Figs. 3.5 and 3.6 and where our work is positioned in

Fig. 3.7. Fig. 3.5(a) depicts a circuit consisting of two flip-flops fi and fj and

combinational logics between them with the specification of their maximum and

minimum delays. The conventional non-flexible flip-flop timing model uses fixed

values as their setup and hold time constraints to be satisfied for all flip-flops.

For example, the timing model in Fig. 3.5(a) assumes tQ = 20 for all flip-flops.

Then, a pair of the values of tS and tH is chosen from the curve in Fig. 3.4

for tQ = 20. Here, tS = tH = 40 are selected. Then, the conventional STAs

set tS0 = tS(= 40) and tH0 = tH(= 40) and use them in slack computation in

Eqs.(3.3) and (3.5). In Fig. 3.5(a), it is shown that the setup slack at fj has

negative slack (= −30), reporting time violation. However, it should be noted
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fjfi

tclk = 100

Dmax

Dmin

= 70
= 40

Dmax

Dmin

= 30
= 20

tQ(j)
tS0(j)
tH0(j)

= 20 (fixed)
= 40 (fixed)
= 40 (fixed)

slkS(j) (=slkS(i,j))
slkH(j) (=slkH(i,j))
slkS(i) (=slkS(j,i))
slkH(i) (=slkH(j,i))

= (0 - 0 + 100) − (20 + 70) − 40 
= (0 - 0) + 20 + 40 − 40            
= (0 - 0 + 100) − (20 + 30) −40 
= (0 - 0) + 20 + 20 − 40            

= -30
= 20
= 10
= 0

tQ(i)
tS0(i)
tH0(i)

= 20 (fixed)
= 40 (fixed)
= 40 (fixed)

(a) Conventional STAs which use non-flexible flip-flop timing. Close to averaged values
of setup times and hold times are set to tS0 (= 40) and tH0 (= 40), respectively. Since
slkS(j) = −30 < 0, The STAs will report the setup time violation at fj , but the decision
uncertainty is high.
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slkH(i) (=slkH(j,i))

= (0 - 0 + 100) − (20 + 70) − 25
= (0 - 0) + 20 + 40 − 45
= (0 - 0 + 100) − (20 + 30) −40
= (0 - 0) + 20 + 20 − 40

= -15
= 15
= 10
= 0

tQ(i)
tS0(i)
tH0(i)

= 20 (fixed)
= 40 (flexible)
= 40 (flexible)

(b) Conventional STAs which partially use flexible flip-flop timing in which the inter-
dependent relation between setup time and hold time for a fixed clk-to-Q delay are utilized.
The STAs examines alternative valid pairs of setup and hold times that generate the same
value (= 20) of tQ to increase the accuracy of STAs. By changing tS0 and tH0 in fj to 25
and 45, the setup slack at j is improved from −30 to −15, and the decision uncertainty is
reduced compared to that in (a).

Figure 3.5: Comparison of the conventional STAs which use nonflexible flip-flop timing
and the enhanced STAs ([33, 35, 34, 36]) using flexible setup and hold times, but not
clk-to-Q delay.
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Figure 3.6: Conventional STAs [37, 38] which fully use flexible flip-flop timing in
which the inter-dependent relation between clk-to-Q delay, setup skew, and hold skew
are utilized. Initially, clk-to-Q delay of a flip-flop is set (tQ(i) = 20 in this example).
Then, setup skew tS(j) = 100 − 20 − 70 = 10 and hold skew tH(j) = 20 + 40 = 60,
from which tQ(j) (= 60) is computed. In turn, tS(i) = 100 − 60 − 30 = 10 and
tH(i) = 60 + 20 = 80, from which tQ(i) is computed to 60. This large value of tQ(i)
causes tS(j) = 100− 60− 70 = −30, which is far less than 10 (= tS0). Thus, the STAs
report a time failure at fj .
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Figure 3.7: Clock skew scheduling integrated with flexible flip-flop timing. Tuning the
clock arrival time at fi to −5 causes to update the setup and hold skews, and clk-to-Q
delays of flip-flops in the circuit, resulting in all nonnegative value of setup and hold
slacks, indicating no time violation in the circuit.
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that the existence of negative slack does not always mean a time violation in

this non-flexible timing model since tS0 and tH0 to be satisfied were set to

high values. To overcome the inaccuracy of STAs in Fig. 3.5(a), The STAs in

[33, 35, 34, 36] utilized multiple pairs of tS0 and tH0 values for the given value of

tQ as indicated in Fig. 3.5(b), in which the values of tS0 and tH0 at fj can be 25,

and 45 as well as 40 and 40, respectively. Thus, the value of setup slack slkS(j)

is computed to −15, which is more accurate value than −30 in Fig. 3.5(a). The

limitation of this STAs is that it does not consider the multiple values of tQ,

i.e., consider only the multiple pairs of the values of tS and tH .

Fig. 3.6 shows an iterative computation of setup and hold slacks used in [37],

which further improves the accuracy of STAs used in Fig. 3.5(b). The setup and

hold skew/slack computation in Fig. 3.6 is performed in the following way: flip-

flop fi is chosen and its tQ(i) is initially set to a number (here, 20). Then,

according to Eqs.(3.2) and (3.4), the setup and hold skews at flip-flop fj are

computed, from which its tQ(j) is obtained by Eq.(3.1). From the tQ(j) value,

the setup and hold skews of fi are computed again by Eqs.(3.2) and (3.4), from

which tQ(i) (red color) is obtained. Since the updated value of tQ(i) is now used

again to compute the setup and hold skews (red color) of fj . Since the setup

slack slkS(j) (= tS(j) − tS0 = −30 − 10 = −40 < 0), the corresponding STAs

report a setup time violation at fj . Like this way, the STAs iteratively update

setup and hold skews of flip-flops in the circuit until there is no further update

(converging) or a time violation occurs.

Note that all the STAs used in Figs. 3.5(a) and (b), and Fig. 3.6 assumed

that the clock signal arrival times (xi and xj) to fi and fj are all fixed
5 However,

if the clock arrival times can be tuned, the setup and hold slacks of the circuit

5Here, we assume x1, x2, · · · = 0 for all flip-flops f1, f2, · · · in the input circuit for simplifying
the presentation.
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may be improved, so that time violations previously existed (e.g., Fig. 3.6) can

be removed or the circuit can be more tolerant to time variations afterwards.

For example, in Fig. 3.7, xi is set to −5, which leads to ultimately tQ(i) = 25

of fi, which converges on the initial value of tQ(i).

3.4 Clock Skew Scheduling for Slack Relaxation Based
on Flexible Flip-Flop Timing

3.4.1 Overall Flow

Proposed technique can be applied to an analyzed result produced by any STA

and tries to enlarge the timing margins at flip-flops so that the worst slack is

maximally relaxed. Our iterative technique called CSS-FT (clock skew schedul-

ing utilizing flexible timing) consists of three steps and the core part(Step 2)

can be utilized freely.

• Step 1 (Sorting flip-flops): CSS-FT arranges the flip-flops in the circuit in a

non-decreasing order according to the value of the worst slack of the setup and

hold skews at every flip-flop. Let the sorted flip-flop list be F = {f1, f2, · · · , fn}

and the corresponding values of the slack time be S = {slkS/H(1), slkS/H(2), · · · ,

slkS/H(n)}.

• Step 2 (Locally relaxing slack times): for each fj in F , CSS-FT increases the

value of slkS/H(j) by rescheduling the clock arrival time xj at fj or the clock

arrival time(s) at the preceding flip-flops that directly drive fj . Let fi be a

preceding flip-flop of fj and fk be a succeeding flip-flop that is directly driven

by fj . (See the partial circuit in Fig. 3.8.) The procedure of finding the value of

xi or xj that maximizes the increase of the value of slkS/H(j) will be described

in detail in Sec.3.4.2. Our procedure of relaxing local slack times should satisfy

the following constraints:

1. t′S/H(j) > tS/H(j) where t′S/H(j) and tS/H(j) (= min{tS(j), tH(j)}) are
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the worst setup and hold skews at fj after and before the reschedule of

xi or xj , respectively.

2. t′S/H(j) ≤ min{t′H/S(j), t
′
S(i), t

′
H(i)} when clock arrival time of flip-flop fi

is changed, and t′S/H(j) ≤ min{t′H/S(j), t
′
S(k), t

′
H(k)} when clock arrival

time of flip-flop fj is changed.

3. γ1 ≤ xi, xj ≤ γ2 where γ1 and γ2 are the lower and upper bounds of the

amount of (decrement/increment) adjustment of clock arrival times set

by designer.

Constraint-1 ensures that the reschedule of xi or xj should improve the worst

slack at fj . Constraint-2 guarantees that the resulting target slack is not able to

exceed other related slacks. Constraint-3 constrains the decrement/increment

range of resetting xi and xj to be in a small interval. The values of γ1 and γ2

will be determined by designers through the analysis of layout congestion.

This local slack time relaxation is performed one at a time from the first

flip-flop to the last in the sorted list F . If the slack time relaxation for a flip-flop

is successfully made, i.e., satisfying all of the three constraints, CSS-FT moves

on the next iteration. If unsuccessful or all iterations are completed, CSS-FT

checks if there is at least one flip-flop whose slack has been successfully relaxed.

If it does, CSS-FT moves on Step 3. Otherwise, it stops the execution.

• Step 3 (Globally relaxing slack times): this step spreads out the gain (i.e., the

locally relaxed slack times) obtained in Step 2 over the entire flip-flops in the

circuit. We apply the technique in [37] which repeatedly propagates the setup

and hold skews until all clk-to-Q delays are converge. Then, since the setup and

hold skews of flip-flops are globally refreshed, CSS-FT goes to Step 1 to look

for a further improvement of slack times in the next iteration.
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tQ(i) tS(j)
tH(j)

tQ(j) tS(k)
tH(k)

tQ(k)

Target flip-flop

xk

Figure 3.8: A partial circuit structure with three flip-flops fi, fj , and fk, in which
CSS-FT wants to improve the worst slack time at fj by rescheduling clock arrival time
xi at fi or xj at fj while satisfying the three constraints in Step 2.

3.4.2 Finding Local Clock Skew Schedule

The worst slack time at fj in Fig. 3.8 can be improved by rescheduling the value

of xi or xj . CSS-FT in Step 2 determines the rescheduling value by analyzing

the changes of the setup and hold skews, and clk-to-Q delays of the driving

flip-flop fi and driven flip-flop fk of fj .

•Case 1 (scheduling xi of driving flip-flop fi of target fj): as shown in Eqs.(3.2)

and (3.4), xi is included in the equations of setup and hold skews of fi and

fj . Thus, by abstracting all the parameters except xi into constants, tS(−, i),

tH(−, i), tS(i, j), and tH(i, j), which are respectively specified as tS(i), tH(i),

tS(j), and tH(j) in Fig. 3.8, can be expressed as simplified equations with

respect to xi:

tS(j) = −xi − tQ(i) + C1 (3.7)

tH(j) = xi + tQ(i) + C2 (3.8)

tS(i) = xi + C3 (3.9)

tH(i) = −xi + C4 (3.10)
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Figure 3.9: Illustration of curves, derived by Case 1 in Step 2 of CSS-FT, of the setup
and hold skews (tS(i), tH(i), tS(j), tH(j)) at flip-flops fi and fj in Fig. 3.8 with respect
to xi.

where C1, C2, C3, and C4 are the abstracted constants. Precisely, C1 = xj +

Tclk−Dmax(i, j), C2 = −xj+Dmin(i, j), C3 = −xh+Tclk− tQ(h)−Dmax(−, i),

and C4 = xh + tQ(h) +Dmin(−, i), assuming flip-flop fh drives fi.

Then, substituting tQ(i) in tS(j) and tH(j) with the right term in Eq.(3.1)

reduces to:

tS(j) = −xi − (a0 +
a1

(xi + C3)− tS0

+
a2

(−xi + C4)− tH0)
) + C1

(3.11)

tH(j) = xi + (a0 +
a1

(xi + C3)− tS0

+
a2

(−xi + C4)− tH0)
) + C2

(3.12)

Fig. 3.9 illustrates the four curves of tS(j), tH(j), tS(i), and tH(i) with respect

to xi, assuming that γ1 = 0 and γ2 = 25. For example, to increase the value
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Figure 3.10: Illustration of curves, derived by Case 2 in Step 2 of CSS-FT, of the
setup and hold skews (tS(j), tH(j), tS(k), tH(k)) at flip-flops fj and fk in Fig. 3.8 with
respect to xj .

of tS(j), the candidate values of xi to be examined are the ones in the cross

points of the curve of tS(j) and the other curves, and the extreme points, and

the bound values (γ1 and γ2). Among the candidate values of xi, CSS-FT selects

the one which maximizes the value of min{tS(j), tH(j)} while meeting the three

constraints in Step 2.

• Case 2 (scheduling xj of target flip-flop fj): by checking Eqs.(3.2) and (3.4),

rescheduling xj in Fig. 3.8 may change the values of tS(j), tH(j), tS(k), and

tH(k). With the analysis similar to that in Case 1, the curves for tS(j), tH(j),

tS(k), and tH(k) with respect to xj can be obtained. Fig. 3.10 illustrates the

curves, from which CSS-FT checks the cross points, extreme points, and bound

values of xj as Case 1 does.

The time complexity of CSS-FT is bounded by O(K(n log n+nT1+T2) where

n log n is the time to sort n flip-flops in Step 1, T1 is the time to extract all
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candidate values of xi and xj by a numerical analysis method in Step 2, and T2

is the time taken by the application of the conventional STA in Step 3. K is the

number of iterations. Note that CSS-FT is designed to incrementally relax the

worst slack as well as maximize the amount of total slack by localizing the worst

slack relaxation in Step 2 at the expense of the cost of clock skew rescheduling.

Thus, designers are able to control the value of K while monitoring the trade-off

between the amount of slack relation and the scheduling (area) overhead.6

3.5 Experimental Results
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Figure 3.11: (a) Curve showing the change of the setup skew lower bound (tS0
) as the

hold skew changes. (tS0
for a value of hold skew is used for calculating the setup slack

in Eq (3.3)). (b) Curve showing the change of the hold skew lower bound (tH0
) as the

setup skew changes. (tH0 for a value of setup skew is used for calculating the hold slack
in Eq (3.5)).

Our flexible flip-flop timing based clock skew scheduling technique CSS-

FT is implemented in C++ and Python3, and run on Linux machine with

8 cores of 3.50GHz Intel i7 CPU and 16GB memory. First, we extracted an

extensive data set of the setup skew, hold skew, and clk-to-Q delay of a flip-

flop by using HSPICE simulation with 45nm NanGate Open Cell library [24],

and characterized the inter-dependent relation between them by fitting the

6Supporting results are provided in the experiments.
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data (using Matlab [40]) into the equation (in Eq 3.1) proposed by the flexible

timing based STA in [37]. We also extracted curves that show the values of the

minimum setup skew as the hold skew varies and the values of the minimum

hold skew as the setup skew varies. The curves are depicted in Figs. 3.11(a) and

(b), from which we derived accurate values of tS0 (in y-axis in (a)) for various

values of hold skew (in x-axis in (a)) and tH0 (in y-axis in (b)) for various values

of setup skew (in x-axis in (b)) for each flip-flop to check the existence of time

violation.

We tested our CSS-FT on a set of benchmark circuits in ISCAS89 (s-series

in Table 3.1) [22], ITC99 (b22 in Table 3.1) [23] and an intra-prediction circuit

(h.264 in Table 3.1) of H.264. The testcases were synthesized with Synopsys IC

Compiler with 45nm Nangate Open Cell Library [24]. We extracted the time

information on the connections between flip-flops and the location of the flip-

flops. In addition, the initial schedule of clock signal arrival times (i.e., clock

skew schedule) was obtained by using Mosek [41].

Table 3.1 shows a comparison of the numbers of setup and hold time vio-

lations before and after the application of our clock skew scheduling based on

flexible timing model to the timing analysis results produced by the STA in

[37]. The third, fourth, and fifth columns show a comparison of the numbers of

setup and hold time violations when the clock period for each design is set to

the value in the corresponding row of column Tclk0. We determined the Tclk0

value for each design to be the minimum clock period that allows no setup and

hold time violation after the application of CSS-FT. From the comparison of the

numbers of violations in the fourth and fifth columns, we can see that CSS-FT

has relaxed the worst slack significantly. The next three groups of three columns

show the comparisons of the numbers of setup and hold time violations when

the clock periods are set to Tclk0×0.95, Tclk0×0.90, and Tclk0×0.85. The com-
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Table 3.1: Comparison of the numbers of setup and hold time violations, for various
values of clock period, before and after the application of our CSS-FT starting from as
input the timing analysis results produced by the flexible flip-flop timing based STA
in [37]. Clock skew tunable range of each flip-flop is set to [−30ps, 30ps].

Circuit #FFs Tclk (ps)
# Violations

Tclk (ps)
# Violations

before after before after
s382 30 430ps (2.33GHz) 0 0 410 26 20
s386 20 450ps (2.22GHz) 0 0 420 24 17
s1423 111 1210ps (826MHz) 19 0 1150 43 23
s5378 247 610ps (1.64GHz) 305 0 580 390 57
s13207 482 460ps (2.17GHz) 244 0 440 363 111
s15850 235 560ps (1.79GHz) 0 0 530 254 254
s38417 1698 930ps (1.08GHz) 0 0 880 2150 1945
s38584 1458 1040ps (962MHz) 0 0 990 1213 1209
b22 638 1340ps (746MHz) 26 0 1280 8415 8188
h264 6665 2600ps (385MHz) 8574 0 2470 16863 15068
Avg.ratio. (1.00) 1 0 (0.95) 1 0.8328

Circuit #FFs Tclk (ps)
# Violations

Tclk (ps)
# Violations

before after before after
s382 30 390 29 27 370 33 32
s386 20 400 28 27 380 31 30
s1423 111 1090 82 63 1030 121 109
s5378 247 550 506 351 520 611 470
s13207 482 420 410 362 390 513 447
s15850 235 500 292 286 480 305 304
s38417 1698 840 3354 3207 790 4899 4725
s38584 1458 940 1398 1389 890 1577 1576
b22 638 1210 13086 12977 1140 14459 14375
h264 6665 2340 22947 20473 2210 32397 29771
Avg.ratio. (0.90) 1 0.8755 (0.85) 1 0.92
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Table 3.2: Minimum clock period before and after the application of our CSS-FT.
Clock skew tunable range of each flip-flop is set to [−30ps, 30ps].

Circuit # FFs
Tclk (ps)

before after

s382 30 428.56 423.61
s386 20 440.53 440.53
s1423 111 1221.86 1200.86
s5378 247 632.02 609.02
s13207 482 468.1 459.96
s15850 235 553.69 553.69
s38417 1698 928.77 924.8
s38584 1458 1037.42 1037.42
b22 638 1344.42 1337.63
h264 6665 2629.28 2599.27

parisons show that as the clock period constraint is close to Tclk0, the number

of time violations produced by the application of CSS-FT is relatively much less

than that of the initial circuit before the application. In summary, CSS-FT re-

laxes the worst slack of circuits, so that the minimum clock period of the input

circuits with no time violation is reduced to the clock period (Tclk0), which is

4.2% shorter on average. To put it in another way, the clock speed of the tested

designs in Table 3.1 is improved from 369MHz∼2.23GHz to 385MHz∼2.33GHz.

It also reduces the total numbers of setup and hold time violations by 27.7%,

9.5%, and 6.5% on average when the clock periods are set to 95%, 90%, and 85%

of the value of Tclk0, respectively. This trend is well understood by examining

the distribution graphs of setup and hold slacks before and after the application

of CSS-FT shown in Fig. 3.12. Figs. 3.12(a) and (b) show the distributions of

the numbers of occurrences of the setup and hold slacks of all flip-flops with

respect to the change of the values of their setup and hold slacks for designs

s1423 and s5378 when Tclk is set to Tclk0 × 0.95 in Table 3.1, respectively.

Table. 3.2 shows the reduced minimum clock period after CSS-FT is applied
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Figure 3.12: The distribution of the numbers of setup and hold slacks of all flip-flops for
designs s1423 and s5378 before (blue curve) and after (orange curve) the application
of CSS-FT to the initial timing analysis results produced by the flexible flip-flop timing
based STA in [37]. Tclk is set to Tclk0 × 0.95 in Table 3.1.
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Table 3.3: Running time and overhead of our CSS-FT.

Circuit #FFs
Run time (s) Overhead
[37] + Ours (µm2)

s382 30 0.001 0.798
s386 20 0.001 0.798
s1423 111 0.001 18.354
s5378 247 0.001 123.69
s13207 482 0.001 138.852
s15850 235 0.001 < 0.798
s38417 1698 0.06 122.892
s38584 1458 0.01 14.364
b22 638 0.04 87.78
h264 6665 13.99 5208.546

to the circuits. The third and forth columns show a comparison of the minimum

clock period before and after CSS-FT is applied. The fifth and sixth columns

are the maximum clock frequency. We can see that the minimum clock period

is decreased up to 30.01ps that is critical to designer.

Table 3.3 show the run time of CSS-FT where [37]+Ours indicates the total

time consumed by CSS-FT in which the STA in [37] is used in the global time

refresh step (i.e., Step 3) of CSS-FT, and the buffer area overhead used to

reschedule the clock arrival times. For example, for design with about 6660 flip-

flops, CSS-FT takes 14 seconds and uses area of 5200µm2, which amounts to

only 0.0052% of 1cm× 1cm die area.

Figs. 3.13(a) and 3.13(b) show the distribution of setup and hold time vio-

lations of s1423 with Tclk = 1150ps (i.e., 870MHz clock speed) before and after

the application of CSS-FT to the result produced by the STA in [37], respec-

tively. In addition, Figs. 3.13(c) and 3.13(d) show the distribution of setup and

hold time violations of s5378 with Tclk = 580ps (i.e., 1.72GHz clock speed)

before and after the application of CSS-FT, respectively. Finally, Fig. 3.14 show

the trade-off between the minimal clock period and the area overhead required
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to reschedule clock times produced by CSS-FT where the data are extracted

and averaged from the test results of ISCAS89 circuits. It is shown that by con-

trolling the range of clock tuning interval [−γ, γ], CSS-FT is able to reschedule

clock skew with minimal area overhead while meeting clock period constraint.

Fig. 3.15 shows the distributions of clk-to-Q delay of all flip-flops before and

after CSS-FT is applied. CSS-FT also decreases clk-to-Q delays of most of flip-

flops. In the flexible flip-flop timing model curve of Fig. 3.1, the sensitivity of clk-

to-Q delay is decreased when the value is decreased. Therefore, the application

of CSS-FT is able to decrease the problem of process variation.

3.6 Summary

Recent works have consistently claimed and validated the importance of in-

corporating the flexible flip-flop timing, which describes the inter-dependent

relation of setup skew, hold skew, and clk-to-Q delay of flip-flops, into static

timing analysis (STA) tools in order to analyze the circuit timing more re-

liably and accurately. In the light of the importance, this work addressed a

new problem of clock skew optimization integrated with flexible flip-flop timing

to complement the conventional flexible timing based STAs. We showed that a

step-by-step localized slack time relaxation was possible by devising a careful

clock skew tuning technique that exploited the inter-dependent time relation and

able to incrementally and effectively increase the time margins of circuits.
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(a) The distribution of setup and hold time
violations (red lines) of s1423 with Tclk =
1150ps (870MHz) before the application of
CSS-FT for the result produced by the STA
in [37].

(b) The distribution of setup and hold time
violations (red lines) of s1423 with Tclk =
1150ps (870MHz) after the application of
CSS-FT for the result produced by the STA
in [37].

(c) The distribution of setup and hold time
violations (red lines) of s5378 with Tclk =
580ps (1.72GHz) before the application of
CSS-FT for the result produced by the STA
in [37].

(d) The distribution of setup and hold time
violations (red lines) of s5378 with Tclk =
580ps (1.72GHz) after the application of
CSS-FT for the result produced by the STA
in [37].

Figure 3.13: The distribution of time violations before and after the application of
CSS-FT to the timing results of s1423 and s5378 produced by the STA in [37]. The
blue dots indicate flip-flops.
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Buf 0.798

Tclk Wire Buffer Tclk Wire Buffer Tclk

5 427.563 901.649 2 439.534 784.951 1 1217.86

10 424.563 3722.26 4 435.534 1152.26 1 1212.86

15 421.563 4360.74 5 435.082 552.229 1 1209.86

20 423.069 1453.04 2 435.067 693.296 1 1205.86

25 423.063 1641.84 2 440.533 659.313 1 1202.86

30 423.605 726.521 1 440.533 659.313 1 1200.86

35 423.605 693.296 1 440.533 659.313 1 1197.86

40 423.605 693.296 1 440.533 659.313 1 1195.86

45 423.605 693.296 1 440.533 659.313 1 1192.86

50 423.605 693.296 1 440.533 659.313 1 1187.86

5 1 1 1 1 1 1 1

10 0.992983 4.128281 2 0.990899 1.467939 1 0.995894

15 0.985967 4.836405 2.5 0.989871 0.70352 1 0.993431

20 0.989489 1.611536 1 0.989837 0.883235 1 0.990147

25 0.989475 1.82093 1 1.002273 0.839942 1 0.987683

30 0.990743 0.805769 0.5 1.002273 0.839942 1 0.986041

35 0.990743 0.76892 0.5 1.002273 0.839942 1 0.983578

40 0.990743 0.76892 0.5 1.002273 0.839942 1 0.981936

45 0.990743 0.76892 0.5 1.002273 0.839942 1 0.979472

50 0.990743 0.76892 0.5 1.002273 0.839942 1 0.975367

5 1 1 1

10 0.994041 2.418078 1.472146

15 0.992729 2.659671 1.719637

20 0.991929 2.684094 1.752221

25 0.992049 3.155071 2.158102

30 0.991481 3.588914 2.568818

35 0.990588 3.945381 2.887979

40 0.989324 4.213634 3.145077

45 0.988117 4.847749 3.785831

50 0.986812 5.166652 4.123957
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Figure 3.14: The curves showing the trade-off between the minimum clock period and
the area overhead required for clock skew rescheduling used by CSS-FT where the data
are extracted and averaged over the results of ISCAS89 circuits.
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Clk-to-Q Delay Distributions

 The distribution of clk-to-Q delay (s38584)
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 Only 10 clk-to-Q delays are increased when CSS-FT is 
applied

(a) s13207 before.

Clk-to-Q Delay Distributions

 The distribution of clk-to-Q delay (s38584)
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 Only 10 clk-to-Q delays are increased when CSS-FT is 
applied

(b) s13207 after.

Clk-to-Q Delay Distributions (tight)

 The distribution of clk-to-Q delay (s38584)

15

before after

 256 clk-to-Q delays are slightly increased (# sinks = 1458)

60

62

64

66

68

70

72

74

g1
00

2_
re

g
g1

15
2_

re
g

g1
30

68
g1

42
01

g1
53

2_
re

g
g1

66
86

g1
75

2_
re

g
g1

80
95

g1
93

57
g2

07
9_

re
g

g2
22

7_
re

g
g2

37
59

g2
52

3_
re

g
g2

64
8_

re
g

g2
80

3_
re

g
g2

92
13

g3
05

_r
eg

g3
21

1_
re

g
g3

34
3_

re
g

g3
44

7_
re

g
g3

54
2_

re
g

g3
69

4_
re

g
g3

92
9_

re
g

g4
09

8_
re

g
g4

24
2_

re
g

g4
40

5_
re

g
g4

51
9_

re
g

g4
65

3_
re

g
g4

87
1_

re
g

g5
07

7_
re

g
g5

23
6_

re
g

g5
47

1_
re

g
g5

62
3_

re
g

g5
89

7_
re

g
g6

14
4_

re
g

g6
31

1_
re

g
g6

56
5_

re
g

g6
72

3_
re

g
g7

54
0

g8
41

6
g9

49
7

60

62

64

66

68

70

72

74

g1
00

2_
re

g
g1

15
2_

re
g

g1
30

68
g1

42
01

g1
53

2_
re

g
g1

66
86

g1
75

2_
re

g
g1

80
95

g1
93

57
g2

07
9_

re
g

g2
22

7_
re

g
g2

37
59

g2
52

3_
re

g
g2

64
8_

re
g

g2
80

3_
re

g
g2

92
13

g3
05

_r
eg

g3
21

1_
re

g
g3

34
3_

re
g

g3
44

7_
re

g
g3

54
2_

re
g

g3
69

4_
re

g
g3

92
9_

re
g

g4
09

8_
re

g
g4

24
2_

re
g

g4
40

5_
re

g
g4

51
9_

re
g

g4
65

3_
re

g
g4

87
1_

re
g

g5
07

7_
re

g
g5

23
6_

re
g

g5
47

1_
re

g
g5

62
3_

re
g

g5
89

7_
re

g
g6

14
4_

re
g

g6
31

1_
re

g
g6

56
5_

re
g

g6
72

3_
re

g
g7

54
0

g8
41

6
g9

49
7

(c) s38584 before.

Clk-to-Q Delay Distributions (tight)

 The distribution of clk-to-Q delay (s38584)

15

before after

 256 clk-to-Q delays are slightly increased (# sinks = 1458)

60

62

64

66

68

70

72

74

g1
00

2_
re

g
g1

15
2_

re
g

g1
30

68
g1

42
01

g1
53

2_
re

g
g1

66
86

g1
75

2_
re

g
g1

80
95

g1
93

57
g2

07
9_

re
g

g2
22

7_
re

g
g2

37
59

g2
52

3_
re

g
g2

64
8_

re
g

g2
80

3_
re

g
g2

92
13

g3
05

_r
eg

g3
21

1_
re

g
g3

34
3_

re
g

g3
44

7_
re

g
g3

54
2_

re
g

g3
69

4_
re

g
g3

92
9_

re
g

g4
09

8_
re

g
g4

24
2_

re
g

g4
40

5_
re

g
g4

51
9_

re
g

g4
65

3_
re

g
g4

87
1_

re
g

g5
07

7_
re

g
g5

23
6_

re
g

g5
47

1_
re

g
g5

62
3_

re
g

g5
89

7_
re

g
g6

14
4_

re
g

g6
31

1_
re

g
g6

56
5_

re
g

g6
72

3_
re

g
g7

54
0

g8
41

6
g9

49
7

60

62

64

66

68

70

72

74

g1
00

2_
re

g
g1

15
2_

re
g

g1
30

68
g1

42
01

g1
53

2_
re

g
g1

66
86

g1
75

2_
re

g
g1

80
95

g1
93

57
g2

07
9_

re
g

g2
22

7_
re

g
g2

37
59

g2
52

3_
re

g
g2

64
8_

re
g

g2
80

3_
re

g
g2

92
13

g3
05

_r
eg

g3
21

1_
re

g
g3

34
3_

re
g

g3
44

7_
re

g
g3

54
2_

re
g

g3
69

4_
re

g
g3

92
9_

re
g

g4
09

8_
re

g
g4

24
2_

re
g

g4
40

5_
re

g
g4

51
9_

re
g

g4
65

3_
re

g
g4

87
1_

re
g

g5
07

7_
re

g
g5

23
6_

re
g

g5
47

1_
re

g
g5

62
3_

re
g

g5
89

7_
re

g
g6

14
4_

re
g

g6
31

1_
re

g
g6

56
5_

re
g

g6
72

3_
re

g
g7

54
0

g8
41

6
g9

49
7

(d) s38584 after.

Figure 3.15: The distributions of clk-to-Q delays of all flip-flops for designs s13207
and s38584 before (yellow points) and after (green points) the application of CSS-FT
to the initial timing analysis results produced by the flexible flip-flop timing based STA
in [37]. Tclk is set to Tclk0 in Table 3.1. All the clk-to-Q delays of s13207 are decreased
and only 10 clk-to-Q delays are slightly increased in the results of s38584.
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Chapter 4

SYNTHESIS FOR
POWER-AWARE CLOCK
SPINES

This chapter presents a methodology to automate the exploration and synthesis

of clock spine networks.

4.1 Introduction

Minimizing the amount of power consumed by the clock network is an important

concern in the synthesis of clock structures. Clock gating, which prunes the clock

network to disable portions of circuit by preventing the flip-flops in them from

switching states, is a popular technique in synchronous circuits for reducing

dynamic power dissipation. Several researchers have attempted to apply the

clock gating technique before synthesizing clock networks. Some representative

works include [42] in the register-transfer-level (RTL), [43] in the architecture

level, and [44] in the logic level. The objective of the clock gating at these levels
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is minimizing the number of switching activities at the sinks. One drawback of

clock gating at the stages is that since the placement information of the sinks

is unavailable, the clock gating results often yield unnecessary detours and

wire snaking afterward [45]. To overcome the limitation, many work attempted

to integrate the clock gating into the framework of clock network synthesis.

Tellez et al. [46] built a clock tree topology by using the placement information

and pre-defined activity patterns of the clock sinks in a way to minimize a

weighted sum of the total wirelength of clock tree and (estimated) total number

of activities of the sinks. The activity pattern of a sink used in the work refers

to a sequence of the per-cycle enable/disable (i.e., 1/0) status of the sink. They

captured the activity patterns of sinks from the results of high-level synthesis.

Once a clock tree topology is obtained, they properly insert clock gating cells

to the clock tree. Chen, Kang, and Sarafzadeh [47] elaborated the procedure of

inserting clock gating cells used in [46]. They recursively, from the sinks of clock

tree toward the root, performed a bitwise-OR operation for the activity patterns

of every pair of child nodes in the clock tree. The computed activity pattern at

the corresponding parent clock node represents the sequence of enable/disable

status of the portion of circuit driven by the clock signal from the parent node.

They used the activity patterns to determine if clock gating cells are inserted at

the corresponding clock nodes. Oh and Pedram [48, 49] utilized an instruction

stream to extract a probabilistic information of activity patterns on clock nodes,

based on which they calculated the switched downstream capacitance of each

node to relatively estimate the amount of power consumed by the portion of

clock tree driven by the node. Chao and Mak [50] improved the previous works

in [48, 49] by constructing low-power gated clock trees with zero clock skew.

Later, Lu, Chow, and Sham [51] proposed fast algorithms for low-power gated

clock tree with clock skew and slew constraints.
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Clock source Premesh tree Mesh driver Mesh Integrated clock gates,
Flip-flops

Figure 4.1: Clock mesh synthesis given by Synopsys IC Compiler [53].

While there are lots of clock tree synthesis algorithms considering clock

gating technique, research on other gated clock structures is rarely announced.

To our knowledge, the work by Lu, Mao, and Taskin [52] is the only one which

has addressed gated clock network other than clock tree. They proposed a

synthesis algorithm for clock mesh that enables clock gating on their local sub-

trees attached to the mesh. The proposed algorithm includes flip-flop clustering

and placement to form the local sub-trees. Even though the synthesis algorithm

deployed gated local sub-trees under the clock mesh to save power, since the

clock mesh should be enabled even when exactly one sink is to be activated

in a clock cycle, the overall power saving is inherently very limited. Synopsys

IC Compiler is able to handle integrated clock-gating cells which are generated

by RTL or Gate-level design flow (i.e. Synopsys Power CompilerTM ) and offers

clock mesh structure that is similar to the design of [52]’s work. Fig. 4.1 shows

the structure of clock meshes which are supported by IC Compiler In the same

manner, the structure cannot locate the clock gate over the clock mesh grid,

the power reduction is limited. In this chapter, we first propose a synthesis
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algorithm for clock spines with the capability of clock gating. The clock spine

structure offers a higher tolerance to the delay variation over that of clock trees

while it allows an opportunity to reduce more power over that of the clock

meshes.

The rest of the chapter is organized as follows. Section 4.2 includes some

preliminaries and motivation of the work. Section 4.3 describes our proposed

algorithm for the synthesis of gated clock spine networks. Then experimental

results to check the effectiveness of our method are provided in Section 4.4.

Lastly, we summarize the chapter in Section 4.5.

4.2 Preliminaries and Motivation

4.2.1 Clock Spine

Clock spine structure is composed of a set of vertical and horizontal clock

wires. Though it has similarities with other clock structures, its distinguished

characteristics separate it from others.

In Fig. 4.2, the differences among clock tree, clock mesh and clock spine

structure are presented. Clock sources in clock mesh and clock spine structure

are able to give multiple clock paths to clock sinks while that in clock tree only

gives single path (clock path with red colored). Since subtrees in clock tree are

driven and isolated by a single buffer, the analysis of clock tree is easier than

that of clock mesh and clock spine structure. When compared to clock mesh,

buffer insertion of clock spine structure is only limited on each local spine, while

clock mesh should insert buffers to a global mesh grid. Surely, mesh grid in clock

mesh can be removed and spines in clock spine structure can be connected.1

Eventually, structures of clock mesh and clock spine structure are equalized.

1The merging technique will be presented in the following sections.
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(a) Clock tree.

(b) Clock mesh.

(c) Clock spine.

Figure 4.2: Comparison among clock spine and other two clock structures. Clock is
transitted from clock source(red triangle) to every clock sinks. Compared to clock tree
which has a single clock path for each clock source to sink, clock mesh and clock spine
structure have multiple clock paths. Buffers in clock tree only drive their own isolated
subtree but those in clock mesh and clock spine structure drive mesh grid or spine
together.
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m1m2m3m4
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(a)

enable_g

n7

f1 f2 f3 f4

n8

n11

n10
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(b)
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f1

f2 f3
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f6r1
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(c)

Figure 4.3: An example illustrating activity patterns and clock gating in clock tree
and clock spine networks. (a) The generation of activity pattern by the bottom-up
process, in a clock tree, from the activity patterns of sinks. (b) The clock tree gating
at node n10 in (a). (c) A clock spine network with two spines being gated separately.
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4.2.2 Activity Patterns

Clock gating is a technique to block the activation of a portion of circuit by

disabling the flip-flops (i.e., sinks) in the sub-circuit. Thus, it is essential to

know the power modes at which individual sinks require clock signal for launch-

ing/capturing data. Such information can be expressed by activity patterns [54].

Activity pattern of a sink is a sequence of binary numbers where value-1 in po-

sition i means the sink should be enabled at the power mode mi and vaule-0

means it does not need to be enabled. For example, Fig. 4.3(a) shows the ac-

tivity patterns of 6 sinks in the circuit with four power modes m1, m2, m3, and

m4, in which sink f5 has activity pattern of [0010], indicating f5 can be idle in

m1, m2 and m4, and f6 has [0011], indicating f6 can be idle only in m1 and m2.

Thus, by inserting gating cell at n9, it is possible to let both f5 and f6 be idle

in m1 and m2, as shown in Fig. 4.3(b). Likewise, the activity pattern of a spine

can be extracted by performing bitwise-OR operations for all patterns of the

sinks attached to the spine. Fig. 4.3(c) shows an example of generating activity

patterns of spines, in which two gating cells are inserted to gate the sinks f1,

f2, f3, and f4 in spine r1 and to gate the sinks f5 and f6 in r2.

4.2.3 Power Computation

The amount of power, P tot
mi

, consumed by the activation of circuit with a gated

clock spine network S at power mode mi can be expressed as:

P tot
mi

=
∑
rj∈R

PClk
mi

(rj) + PnonClk
mi

(4.1)

where R is the set of spines, PClk
mi

(rj) is the power dissipated at mode mi by

the spine rj together with the sinks and buffers in rj , and PnonClk
mi

represents

the total power dissipated at mi by the circuit other than the clock resources.
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Let Di be the total time duration in which the circuit is activated in power

mode mi. Then, the total energy, Etot, we want to minimize is the quantity of

Etot =
∑

mi∈M
P tot
mi
·Di (4.2)

where M represents the set of power modes.

Fig. 4.4 shows the computation of power and energy consumption for three

instances of clock spine network, assuming that the Di value for every power

mode equals 10. The comparison of the clock spine structures in Figs. 4.4(a) and

(b) indicates that the energy consumption can vary according to the grouping of

sinks to form spines even though the same number of spines is used to maintain

the clock skew. On the other hand, the comparison of the clock spine structures

in Figs. 4.4(a) and (c) implies that allocating more spines is likely to dissipate

more power, but offers a better control of clock skew. The goal of this work is to

explore the structures of clock spine network and find the one with a minimal

energy consumption while satisfying the clock skew and slew constraints.

4.3 Algorithm for Clock Spine Synthesis

4.3.1 Problem Definition

The clock spine synthesis problem we want to solve is described as:

Problem 4.1 (Clock spine synthesis): Given an activation pattern set A for

sinks, a power mode set M with activation duration, and the values of PnonClk
mi

(Eq.4.1) in a circuit C, generate a clock spine structure S which has the least

amount of Etot (Eq.4.2) while satisfying the clock skew and slew constraints.

An instance of clock spine structure is uniquely defined by specifying:

• spec-1 the number of spines allocated and their activation patterns;2

2Clock gating is applied per-spine basis in this work for simplicity. Clock gating for multiple
spines will be considered at the stage when a top-level clock tree is constructed. (See the “spine
gating” at Step 4 in Fig. 4.5.)
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r1

r2

r3

: active
: idle

m1m2m3m4

m1m2m3m4

m1m2m3m4

m1m2m3m4

(a) A clock spine network with |R| = 3. P tot =
30+45+71 =146, Etot = 30×0.5+45×0.75+
71× 1 =119.75.

r1
r2

r3

(b) Another clock spine network with |R| = 3.
P tot = 61 + 44.5 + 41.25 =146.75, Etot = 61×
0.5 + 44.5× 0.75 + 41.25× 0.5 =84.5.

r1

r2 r5r3
r4

(c) A clock spine network with |R| = 5. P tot =
30+30+25+43+41.25 =169.25, Etot = 0.75×
(30 + 30 + 25 + 43 + 41.25 =126.94.

Figure 4.4: Comparison of the structure and energy consumption for three instances of
clock spine network. (a) A clock spine network with |R| = 3. (b) A clock spine network
different from that in (a) and |R| = 3, but less energy consumption. (d) A clock spine
network different from that in (a), but |R| = 5 and less energy consumption.
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• spec-2 the length and (vertical or horizontal) shape of the spines;

• spec-3 the location at which the spines are placed;

• spec-4 the sinks attached to the spines;

• spec-5 the number of clock buffers that drives the spines;3

• spec-6 the location at which the spine buffers are placed.

Note that the power consumption of a clock spine instance is directly affected by

spec-1, 2, 4, and 5, while the clock skew and slew are affected by spec-4, 5, and 6.

Since the specification items are tightly related each other and it is practically

very timing consuming to explore all feasible clock spine candidates, we solve

the problem of clock spine synthesis by performing four steps. Precisely, our

proposed power-aware clock spine synthesis called CSPINE consists of four steps:

(Step 1) Clustering clock sinks, (Step 2) Relaxing spines, (Step 3) Inserting spine

buffers, and (Step 4) Constructing a top-level clock tree. Fig. 4.5 shows the flow

of the four steps, which will be described in detail in the next four subsections.

4.3.2 Power-Aware Sink Clustering

The sink clustering in CSPINE consists of two loops, one loop nesting the other.

Every iteration of the outer-loop produces a clock spine structure S whose

description is given by the data on spec-1, 2, 3, and 4. The outer-loop iterates

until there is no further reduction in Etot in Eq.4.2. Then, before moving on the

inner-loop, CSPINE computes, for each spine ri ∈ R of S, the mean location,

(xi, yi) of the sinks attached to ri, and nullifies the sink attachment in S. Each

of the mean locations is assumed to have a dummy spine with no physical size.

The inner-loop performs the following three actions.

3Buffer sizing is also considered in this work.
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Constructing a 
top-level clock tree4.

Inputs:
  - Activity patterns
  - Sink information
  - Power mode set

Gated clock 
spine network

Clustering clock sinks1. spec-1, 2, 3, 4

Relaxing spines2. spec-5, 6

Inserting spine buffers3. spec-5, 6

spine gating

Figure 4.5: Four steps of the proposed power-aware clock spine synthesis algorithm.
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f1

f4

f2

f3

(a) Horizontal spine.

f1

f4

f2

f3

(b) Vertical spine.

Figure 4.6: Spine allocation and placement for covering four sinks f1, f2, f3, f4. (a)
Horizontal spine, (b) Vertical spine.

1. The inner-loop iteratively assigns the sinks to the existing dummy or

non-dummy spines, one sink at an iteration. Whenever a sink is assigned

to a spine, the spine is updated to a power-minimal spine. For example,

Fig. 4.6 shows the two possible updates of spine when sink f4 is attached

to a spine with sinks f1, f2, and f3. It is seen that the right one is superior

to the left one in terms of wirelength and power consumption.

2. At each iteration of the inner-loop, the selection of spine to A which a

sink, say fk, is to be attached is determined by computing the value of

∆Etot(fk, rj), which indicates the increase of total energy in Eq.4.2 caused

by attaching fk to an existing spine rj . For example, Fig. 4.7(a) shows

the situation in which sink f5 is to be attached to one of the two spines

r1 and r2. Fig. 4.7(b) shows the updated power-minimal spines. CSPINE
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f1

f4
f2

f3
f5r1

r2

(a) Before attachment.

f1

f4
f2

f3
f5

(b) Attachment to the left spine (∆Etot =
5).

f1

f4
f2

f3
f5

(c) Attachment to the right spine (∆Etot =
3).

Figure 4.7: Two possible spines updated by attaching sink f5. (a) Before attachment.
(b) Attachment to the left spine. (c) Attachment to right spine.

assigns f5 to r2 since ∆Etot(f5, r1) = 3 < 5(= ∆Etot(f5, r2)).

3. CSPINE commits the actions 1 and 2 only if the attachment of a sink fk

does not require a power-minimal spine whose the longest length between

the sinks exceeds Lsink or the spine length exceeds Lspine where Lsink

and Lspine are threshold parameters to control the tolerance of clock skew.

(The tolerance of clock slew will be maintained mainly by the spine buffer

insertion step.) If no spine is able to meet the Lsink and Lspine bound

constraints, the sink fk itself becomes a new spine.

Fig. 4.8 illustrates the step-by-step procedure of sink clustering in CSPINE.

Fig. 4.8(a) shows a spine S produced by the prior iteration of the outer-loop,
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(a) Initial cluster (Etot = 40).
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(b) f1 ∼ f3 are attached to dummy spines.
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(c) f4 ∼ f6 are attached to non-dummy spines and f7 becomes a new
spine.
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f8

f10

f6

f7

(d) f8 ∼ f10 are attached to non-dummy spines.
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f2
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f1

f9

f5f8

f10

f6

f7

(e) New clock spine structure has been generated (Etot = 31.8).

Figure 4.8: An example illustrating the step-by-step procedure of the inner-loop of
sink clustering in CSPINE. (a) A spine network produced from the prior outer-loop.
(b) Generation of a dummy spine for each sink. (c) From the first four iterations, f4,
f5, and f6 are respectively attached to the dummy spines of f2, f1, and f3 to form
non-dummy spines while f7 still maintains a dummy spine. (d) From the next three
iterations, f8, f9, and f10 are attached to non-dummy spines. (e) The final clock spine
network.
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in which S consists of three spines r1, r2 and r3 and total energy Etot = 40.

Then, Fig. 4.8(b) shows the dummy spines, marked by ‘×’, and the revocation

of sink attachment. Figs. 4.8(c) and (d) show the assignment of sinks f4 ∼ f10

and its energy costs for the two spine shapes in Fig. 4.6 and 4.7. No spine is

able to meet the Lsink and Lspine constraint for f7, it generates a new spine

itself. Fig. 4.8(e) shows the clock spine structure produced by the inner-loop,

in which the total energy is reduced from 40 to 31.8.

Note that the principle of our sink clustering algorithm is identical to the

well-known K-mean clustering algorithm [55]. The key difference is that ours

automatically determines the value of K (i.e., the number of spines) that min-

imizes the energy cost in Eq.4.2 while the K-mean clustering assumes K to

be a fixed number. The application of our sink clustering algorithm produces

a clock spine with spec-1, 2, 3, and 4. Step 2 will refine the structures of the

spines obtained in this step to facilitate the derivation of spec-5 and 6, and

Step 3 will near-optimally determine spec-5 and 6 while meeting the clock skew

and slew tolerance. Step 4 completes the clock spine synthesis by constructing

a top-level clock tree to deliver clock signal to the clock buffers inserted to the

spines in Step 3. The pseudo-code of our sink clustering algorithm is described

in Algorithm. 1.

4.3.3 Spine Relaxation

In comparison with the clock mesh structure, the clock spine structure is not

as strong as the clock mesh in mitigating clock skew variation. This is because

every ‘spine’ is sticked to either a vertical or horizontal line and nothing else.

This step relaxes the restriction of the spine shape, so that the potential cause

of the clock skew violation can be removed.

For example, Fig. 4.9(a) shows a spine that attaches four sinks f1, f2, f3,
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Algorithm 1 Power-aware sink clustering

1: procedure Clustering(F )
2: Construct initial spine structure;
3: i← 0;
4: while i < I do ▷ outer-loop
5: Calculate mean location (xi, yi);
6: Nullify the sink attachment in S;
7: for fk ∈ F do ▷ inner-loop
8: Synthesize a power-minimal spine, ri, under skew/slew tolerance

constraint;
9: if ri ̸= Null then

10: Attach fk to ri;
11: Etot = Etot +∆Etot(fk, ri);
12: else
13: Generate a new spine ri;
14: Etot = Etot +∆Etot(fk, ri);
15: end if
16: end for
17: Save the spine structure of minimum Etot;
18: end while
19: return R; ▷ A spine structure of minimum cost
20: end procedure

and f4. It is seen that according to the activity patterns of the sinks, the spine

will be enabled in power modes m1, m2, and m4. Figs. 4.9(b), (c), and (d) show

the sinks enabled in m1, m2, and m4, respectively. In view of the clock skew

variability, the spine contributes to mitigating the potential clock skews between

the sinks f1, f2, and f4 in mode m1, as shown in Fig. 4.9(b) and between the

sinks f1 and f3 in mode m1, as shown in Fig. 4.9(d). However, since in mode

m2, only f2 will be enabled, as shown in Fig. 4.9(c), the spine alone makes no

contribution to reducing the potential clock skew associated with f2.

Definition 4.1 (Isolated sinks): If a sink fk on a spine ri is the only one,

among the sinks on ri, to be enabled in a power mode, it is said to be an isolated

sink of ri.
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f1

f2
f3

f4
(a) Spine with four sinks.

: active

: idle

f1

f2

f4
(b) Power mode m1.

f2

(c) Power mode m2.

f1

f3

(d) Power mode m4.

Figure 4.9: Example illustrating the concept of isolated sink. (a) A spine with four
sinks with activation patterns. (b) The sinks to be enabled in power mode m1. (c) The
sinks to be enabled in power mode m2. f2 is an isolated sink in m2 of the spine in (a).
The spine alone has no control to mitigate the clock skew related to f2. (d) The sinks
to be enabled in power mode m3.

Definition 4.2 (Isolation counts): Niso sk(fk) is defined to the number of

distinct power modes in which sink fk is an isolated sink and Niso spn(ri) is

defined to the total sum of the values of Niso sk(·) for all sinks in spine ri.

The spine relaxation problem we want to solve in this step is to relax the

restriction of the spine shape so that multiple spines can be connected, if needed,

to remove all the isolated sinks from the clock spine network. Our CSPINE

applies a greedy approach for a spine network S obtained from Step 1:

Step 2.1 Extract all isolated sinks for each spine in S, and compute the values of
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Niso sk(fk) and Niso spn(ri) for all sinks and spines in S. Pick a spine, ri,

which has the largest value of Niso spn(·). If there are ties, select the one

which has the larger maximum among the Niso sk(·) values.

Step 2.2 If no spine is extracted in Step 2.1, terminate the process. Otherwise,

search a neighbor spine, rj , that can be connected to the target spine ri

extracted in Step 2.1 with minimal cost of wire, and connect them.

Step 2.3 Update the values of Niso sk(·) and Niso spn(·) values in ri and rj . Go to

Step 2.1.

For example, Fig. 4.10 shows how two spines are temporally connected to

mitigate the clock skew variation, in which the left and right two spines in

Fig. 4.10(a) has isolated sinks f2 in mode m2 and f6 in m4, respectively. The

blue wire in Fig. 4.10(a) connects the two spines. The transmission gate switches

on in modesm2 andm4, which enables the two sinks f2 and f6 not to be isolated

sinks any longer.

4.3.4 Spine Buffer Allocation

Placing a buffer on a location in a spine can drive a clock signal to a certain

range. The range is determined the by driving strength by the buffer and the

amount of the capacitance of the driven spine, stubs, and sinks. For a spine

with sinks, the driving range of a buffer can be extracted. For example, the red

dotted circle in Fig. 4.11(b) indicate the driving range of buffer b1x in the circle;

the buffer equally drives 30 strength-units to the left and right, driving 10 of

the 30 in the left side to f3 and its stub and 10 of the 30 in the right side to f4

and its stub.

The spine buffer allocation problem can be stated as: Given a buffer

library L, a spine r with the capacitances of unit-length spine and stub, and the
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f1

f2
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f6

f7

f8

: active

: idle

(a) Two spines with isolated sinks.

f1

f2
f3

f4

f5
f6

f7

f8

tg

(b) Two spines are connected by transmission gate.

Figure 4.10: Example showing the spine structure relaxation for two spines to improve
the clock skew variability by removing isolated sinks. (a) Before relaxation. (b) After
relaxation by temporally connecting them. tg is a transmission gate.

input load capacitances of the sinks on r, determine the locations on r and the

types of buffers in L to be placed on the locations so that all the capacitances

of r, the stubs in r, and the inputs to sinks are covered by the allocated buffers

while minimizing the total cost of buffers to be used.

Let us assume that the candidate spine positions at which buffers can be

placed have already been determined by the designers, and the input capaci-

tances of all sinks are the same, for simplicity. First, by using a spine example
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: 2 /unit
: 2 /unit
: 5 unit

n

: b2x, 140,  13
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(a) A spine with 6 sinks and its buffer location
candidate.

f1

f3

f4

f2

f6

f5

n1
20

10
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20

fL(i, b1x) fR(i, b1x)

6

(b) Buffer type b1x is inserted on point 6 and it
covers only part of spine.
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(c) Buffer type b2x is inserted on point 6 and it
covers sinks f3, f4 and part of spine.
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1 2 1

(d) Buffers are inserted, Total cost is 25.
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f1

f3

f4

f2

f6

f5

n' (>n)1
111

(e) Buffers are inserted in more discretized spine, Total
cost is 18.

n1

None
b1x
b4x
b8x

Subproblem1

Subproblem2

(f) Dynamic programming based buffer insertion prob-
lem.

Figure 4.11: Example illustrating the application of dynamic programming for solving
the problem of buffer allocation. (a) The specification of a spine with the unit-length
capacitances of spine and stub, load capacitance of sinks, buffer library L and spine
position candidates. (b) Allocation of buffer b1x to position 6, covering sub-spine r[4, 8].
(c) Allocation of buffer b2x to position 6, covering a bigger sub-spine than that in (c).
(d) An optimal allocation for the specification in (a). (e) An optimal allocation for the
specification in (a) with more fine spine positions, producing a reduced cost of buffer
allocation. (f) Decomposition of problem into two subproblems.
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shown in Fig. 4.11, we illustrate how the spine buffer allocation can be re-

cursively solved. Besides the spine description, Fig. 4.11(a) summarizes the

unit-length capacitances, Cspine and Cstub, of spine and stub, the input load,

Csink, of a sink, and the driving strength of buffers in L. Fig. 4.11(d) shows an

optimal buffer allocation of the spine with capacitance data, a set of candidate

positions, and L in Fig. 4.11(a). Further, Fig. 4.11(e) shows an optimal buffer

allocation of the same spine in Fig. 4.11(a), but different set of positions. Let

{1, · · · , n} be the spine position, from the left or the top, at which buffers can

be placed, and r[i, j] be the sub-spine of spine r from positions i to j on r. In

addition, let bopt(i, j) be an optimal solution of buffer allocation for r[i, j] and

C(bopt(i, j)) be its buffer cost. By updating L′ = L ∪ {ϕ} where ϕ means no

buffering, an optimal buffer allocation for r can be recursively expressed as:

C(bopt(1, n)) = min{C(bopt(1, fL(i, bx)))

+ C(bopt(fR(i, bx), n)) + C(bopt(i, bx))

+ size(bx), ∀bx ∈ L′} (4.3)

in which fL(i, bx) and fR(i, bx) represent the closest spine positions to the left

(or to the top) and to the right (or to the bottom) that are not driven by bx. (If

bx = ϕ, fL(i, bx) = i − 1 and fR(i, bx) = i and area(ϕ) = 0.) (See Fig. 4.11(f)

for an illustration of the problem decomposition)

The recursive expression can be solved by using dynamic programming. The

termination condition is, for every i ∈ {1, 2, · · · , n}, C(bopt(i, i)) = area(bmin)

where bmin ∈ is the minimum sized buffer that can drives the sum of load

capacitance from the middle position of i−1 and i to i and the middle position

of i and i+ 1 to i.
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4.3.5 Top-Level Tree Construction

To complete the structure of clock spine, a top-level clock tree that drives the

clock buffers placed on the spines in Step 3. We can use any clock tree synthesis

algorithm for this job by treating the clock buffers with sink nodes. However,

since a post-stage clock gating on the internal nodes of the top-level clock tree

may further reduce the power consumption, a kind of clock-gating aware clock

tree synthesis is preferred in this step. In this work, we use the power-aware

clock tree synthesis algorithm PACTS proposed by Lu, Chow, and Sham [51].

4.4 Experimental Results

The proposed clock spine synthesis methodology CSPINE is implemented in

C++ and Python3, and tested by HSPICE simulation. The simulation is run

on Linux machine with 8 cores of 3.5GHz Intel i7 CPU and 16GB memory. The

tested benchmark circuits are from ISCAS89 [22] and ISPD2010 [56]. Since

there is no logical information in ISPD benchmarks, the activity pattern of

clock sinks are randomly generated according to the method proposed in [46].

ISCAS89 testcases (s-series in Table 4.1) are synthesized with Synopsys IC

Compiler with 45nm Nangate Open Cell Library [24]. Clock gating is applied to

those circuits to extract activity patterns. The Elmore delay model are imported

to simulate the circuit and unit resistance and unit capacitance of the wire are

0.1Ω/µm and 0.2fF/µm. The characteristics of buffers and gates are the same.

We compare the structure of clock spine network produced by our CSPINE

with the structures of clock tree and clock mesh. Since there exists no clock

tree algorithm combined with clock gating in the HSPICE simulation level, we

generate clock trees in which we used the clock topology generated by the near-

est neighbor algorithm in [57]. (Note that the previous power-aware clock tree
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synthesis algorithms (e.g., [51]) performed SPICE level simulation. However,

they considered skew values only.) For the comparison with the results of clock

mesh, the synthesis algorithm in [58] is used for the generation of clock meshes.

The clock meshes produced for comparison in the experiments have local trees

from the meshes and clock gating cells are inserted at the roots of the local

trees.

Table. 4.1 summarizes the comparison of the results for clock trees produced

by [59] with clock gating, clock meshes produced by [58], subsequently applying

clock gating, and clock spines produced by CSPINE. Skew results of clock spines

are shown in the middle of that of clock trees and clock meshes. It is observed

that the standard deviation of clock spine is closer to that of clock mesh than

that of clock tree. Nevertheless, its power consumption is not much larger than

that of tree.

Table. 4.2 shows the comparison of the results when the slew constraints

of clock tree synthesis algorithm are 100fF and 200fF (The constraint of tree

results in the Table. 4.1 is 300fF ). Average ratio is computed by setting the

value of tree results in the Table. 4.1 as 1. The results show that the standard

deviation of skew is decreased when the slew rate constraint is decreased. But,

the number of inserted buffers is larger than that of clock spine structure while

the amount of skew reduction is smaller than that of clock spine structure.

Table. 4.3 shows the comparison of the results when the number of allocated

spines is changed. The standard deviation of skew is decreased when the number

of spines is reduced. Due to transmission gates which are inserted by the spine

relaxation, the power consumption is also decreased.

Fig. 4.12 shows the synthesized clock mesh and clock spine structures for

circuit s13207. It is shown that clock spine structure consists of spines of various

shapes and lengths while clock mesh consists of regular mesh wires. This flexible
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Table 4.1: Comparison of the clock skew variability (µ, σ), wirelength and buffer area
(WL, BA), and power consumption (PWR) of the clock trees with clock gating by [59],
the clock mesh by [58] and a subsequent application of clock gating, and clock spines
by CSPINE.

Tree

Circuit # sinks
Skew (ps) WL BA PWR
µ σ (µm) (µm4) (mW )

s1423 74 12.04 4.03 718.31 132.16 32.23
s13207 330 31.77 13.05 3294.29 446.04 125.37
s15850 134 9.9 5.19 1017.73 165.5 21.41
s38417 1564 50.84 6.78 17917.96 2864.73 866.11
s38584 1168 40.42 4.84 18707.4 1453.76 695.92
03 1200 58.43 9.59 79411.3 1329.86 846.68
04 1845 41.52 11.02 138833 1928.71 1140.65
05 1016 20.59 4.28 60647.1 929.25 541.98
06 981 97.04 34.31 56328.4 1474.41 355.68
Avg.ratio 1 1 1 1 1

Mesh

Circuit Grid
Skew (ps) WL BA PWR
µ σ (µm) (µm2) (mW )

s1423 3×3 5.47 1.32 2083.52 204.424 48.65
s13207 5×5 4.35 1.5 8444.79 1255.59 177.64
s15850 3×3 6.31 3.77 2036.12 422.44 27.87
s38417 6×6 6.6 2.06 39531.6 5551.74 1276.43
s38584 10×10 5.33 1.6 32076.1 4413.42 1051.13
03 22×12 27.93 2.93 118489 5064.17 2048.22
04 20×20 61.63 4.15 262776 8881.42 3562.25
05 20×20 51.58 4.78 181908 9056.57 1421.69
06 19×8 40.68 2.29 116317 2844.98 612.4
Avg.ratio 0.71 0.41 2.20 3.55 1.90
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Tree

Circuit
Skew (ps) WL BA PWR
µ σ (µm) (µm2) (mW )

s1423 12.04 4.03 718.31 132.16 32.23
s13207 31.77 13.05 3294.29 446.04 125.37
s15850 9.9 5.19 1017.73 165.5 21.41
s38417 50.84 6.78 17917.96 2864.73 866.11
s38584 40.42 4.84 18707.4 1453.76 695.92
03 58.43 9.59 79411.3 1329.86 846.68
04 41.52 11.02 138833 1928.71 1140.65
05 20.59 4.28 60647.1 929.25 541.98
06 97.04 34.31 56328.4 1474.41 355.68

Avg.ratio 1 1 1 1 1

Spine

Circuit
Skew (ps) WL BA PWR
µ σ (µm) (µm2) (mW )

s1423 6.31 1.51 929.97 176.29 35.99
s13207 8.53 2.15 3577.96 745.236 139.78
s15850 8.22 4.74 1567.39 290.156 22.53
s38417 13.02 3.76 16762.6 3337.47 968.43
s38584 12.49 2.77 13555.5 2502.56 751.9
03 19.7 4.38 66521.3 1910.41 1150.78
04 24.33 5.61 124829 2791.77 1519.9
05 33.68 2.75 89497.7 1689.6 437.76
06 25.27 4.43 58119.5 1566.06 437.34

Avg.ratio 0.56 0.48 1.09 1.49 1.13
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Table 4.2: Comparison of the clock skew variability (µ, σ), wirelength and buffer area
(WL, BA), and power consumption (PWR) of the clock trees with clock gating by [59]
when its slew rate constraints are changed.

Tree (slew=200fF )

Circuit
Skew (ps) WL BA PWR
µ σ (µm) (µm2) (mW )

s1423 20.78 2.41 716.308 177.59 37.73
s13207 32.63 2.56 3434.97 578.2 135.2
s15850 9.9 1.97 1017.73 165.2 21.41
s38417 44.3 3.7 25763 2606.03 999.6
s38584 46.21 2.71 18330.6 1932.84 770.24
03 59.99 5.23 80709.5 1618.96 928.59
04 35.66 7.38 152250 2535.82 1390.88
05 20.57 4.22 66746.4 1379.42 335.79
06 99.25 7.04 55977.7 1734.6 388.81

Avg.ratio 1.08 0.78 1.05 1.19 1.10

Tree (slew=100fF )

Circuit
Skew (ps) WL BA PWR
µ σ (µm) (µm2) (mW )

s1423 29.55 1.71 752.103 272.58 46.06
s13207 42.98 2.95 3546.64 1015.98 171.1
s15850 37.27 2.73 1096.16 408.87 28.62
s38417 59.72 3.36 26596.4 4621.47 1199.46
s38584 57.28 4.06 19459.1 3452.68 936.08
03 53.65 3.23 78527.7 2734.06 1229.55
04 46.83 6.45 139071 3745.91 1648.73
05 34.32 6.17 69396 1829.59 402.71
06 92.18 8.07 68872.7 2717.54 542.27

Avg.ratio 1.64 0.83 1.10 2.02 1.39
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Table 4.3: Comparison of the clock skew variability (µ, σ), wirelength and buffer area
(WL, BA), and power consumption (PWR) of the clock spines by CSPINE.

Circuit # spines
Skew (ps) WL BA PWR
µ σ (µm) (µm2) (mW )

s13207

62 9.72 2.12 3063.44 701.326 127.94
31 5.33 1.42 2966.35 614.227 115.98
8 2.63 1.53 3250.54 602.905 115.48

s15850

18 7.85 1.05 1384.77 257.226 20.8
13 3.6 0.9 1453.87 248.917 20.01
4 0.5 0.66 1348.93 233.994 19.06

s38417

271 14.2 2.22 19361.1 3235.82 944.49
85 11.06 3.3 18121.6 2945.59 878.37
37 20.57 1.85 31058.5 3003.99 951.04

s38584

196 14.27 2.09 15455.1 2329.31 717.19
107 4.25 1.53 13309.8 2118.59 648.99
30 4.37 1.52 13309.8 2118.59 649.14

structure of clock spine network decreases the resource usage significantly as

well as decreases power dissipation.

Fig. 4.13 shows the skew and power consumption for circuit 04 for all power

modes. In most cases, the clock spine network produced by CSPINE uses smaller

skew than that of clock tree network. Further, the clock gating on clock spine

network decreases a significant amount of power consumption compared to the

clock mesh network. For all tested results, it is clear that the clock spine struc-

ture is outstanding for achieving the clock skew tolerance, clock power saving,

and clock wirelength reduction under multi-power mode designs, in comparison

with the clock mesh and clock tree structures.

4.5 Summary

This work addressed the problem of automating the synthesis of power-aware

(clock gated) clock spine networks, which has been semi-automated or never

been automated in academia and industry so far, even though the usefulness and
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(a) Clock spine: µ = 8.53, σ = 2.15, WL =
3577.96, BA = 745.236, PWR = 139.78

Layer1

(b) Clock mesh: µ = 4.35, σ = 1.5, WL =
8444.79, BA = 1255.59, PWR = 177.64

Figure 4.12: Comparison of clock spine and mesh structures of s13207. In (a) black
dots, red dots, black lines, and green lines represent sinks, buffers, spines, and connec-
tion between spines. In (b) sky blue lines represent stubs.

Table 4.4: The analyzed characteristics of clock spine.

Clock tree Cross links Clock spine Clock mesh

Performance Low Medium High Very high
Cost Very low Medium Low High

Analysis Simple Less simple Less Complex Complex

impact have been clearly noticed for a long time. In this chapter, we solved the

problem by developing four solid synthesis steps, in which the key task was to

identify and group the flip-flops with tight correlation of clock-gating operations

together to form a spine while accurately predicting and maintaining clock skew

and slew variations through the buffer insertion and stub allocation. Through

experiments with benchmark circuits, it was confirmed that our power-aware

synthesis for clock spines used significantly less power consumption compared

to that of the conventional clock mesh synthesis algorithm at the expense of a

little relaxed or the same constraint of clock skew. Together with the structure
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Power Modmean Clock spineClock spinemean Clock meshClock meshmean

0 24.16 4.97 95.13 61.5 3.74 222.22 52.86

1 22.95 3.93 94.94 63.12 3.72 224.06 50.77

2 24.61 5.94 95.03 61.5 4.77 224.09 36.74

3 23.97 5.7 94.99 62 3.63 223.2 35.42

4 24.64 5.07 94.92 60.38 4.27 221.62 57.09

5 24.89 4.97 94.98 63.38 2.34 224.74 32.89

6 25.87 5.04 95.17 59.25 2.17 220.93 33.92

7 24.27 6.15 95.08 62.71 1.28 224.49 39.23

8 23.18 5.12 94.98 61.14 2.1 224.23 53.4

9 24.03 4.86 95.08 61 3.02 224.13 33.89

10 23.36 6.64 95.06 61.86 5.11 222.89 46.39

11 24.75 5.79 94.85 63.86 4.55 222.94 43.88

12 24.28 5.63 94.93 61.43 3.54 220.41 40.83

13 26 7.99 94.95 61 3.89 221.54 34.64

14 24.58 5.54 94.99 62.57 3.96 216.21 36.16

15 23.78 4.11 94.84 61 2.67 224.94 36.33
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(a) Standard deviation of skew of 04 in each power mode.
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1 22.95 3.93 94.94 63.12 3.72 224.06 50.77

2 24.61 5.94 95.03 61.5 4.77 224.09 36.74

3 23.97 5.7 94.99 62 3.63 223.2 35.42

4 24.64 5.07 94.92 60.38 4.27 221.62 57.09

5 24.89 4.97 94.98 63.38 2.34 224.74 32.89

6 25.87 5.04 95.17 59.25 2.17 220.93 33.92

7 24.27 6.15 95.08 62.71 1.28 224.49 39.23

8 23.18 5.12 94.98 61.14 2.1 224.23 53.4

9 24.03 4.86 95.08 61 3.02 224.13 33.89

10 23.36 6.64 95.06 61.86 5.11 222.89 46.39

11 24.75 5.79 94.85 63.86 4.55 222.94 43.88

12 24.28 5.63 94.93 61.43 3.54 220.41 40.83

13 26 7.99 94.95 61 3.89 221.54 34.64

14 24.58 5.54 94.99 62.57 3.96 216.21 36.16
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(b) Power consumption of 04 in each power mode.

Figure 4.13: Comparison of clock tree, clock mesh, and clock spine structures of circuit
04 for all power modes. Green lines, blue lines, and red lines represent clock tree, clock
mesh, and clock spine networks, respectively.
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of clock tree, our automation of synthesizing clock spines would provide a fast

and diverse exploration of the structures of hybrid clock networks to trade-off

between the clock skew/slew and power consumption.
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Chapter 5

CONCLUSION

The contributions of this dissertation are summarized as follows:

5.1 Chapter 2

In the chapter, a comprehensive graph-based algorithm for PST buffer allo-

cation to overcome the critical limitations of the prior works. The proposed

PST-alloc explores PST buffer allocations systematically and finds minimized

number of PST buffer allocation. Experimental results through benchmark de-

signs show that the proposed PST-alloc uses 26% less number of PST buffers

than that by the previous works while meeting the same yield constraint.

5.2 Chapter 3

In the chapter, we proposed a careful clock skew tuning technique that exploited

the inter-dependent time relation and able to incrementally and effectively in-

crease the time margins of circuits. The effectiveness of the CSS-FT is shown

through experiments with benchmark circuits, demonstrating that our method
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relaxes the worst slack of circuits, so that the clock period (Tclk) is shortened by

4.2% on average, namely the clock speed is improved from 369MHz∼2.23GHz

to 385MHz∼2.33GHz with no time violation. In addition, it reduces the total

numbers of setup and hold time violations by 27.7%, 9.5%, and 6.7% when the

clock periods are set to 95%, 90%, and 85% of the value of Tclk, respectively.

5.3 Chapter 4

The chapter shows four solid synthesis steps to synthesize power-aware clock

spine networks, and the produced clock spine network minimize the energy con-

sumption while satisfying clock skew and slew constraints. Through experiments

with benchmark circuits, it is shown our power-aware synthesis for clock spines

uses significantly 60% less power consumption compared to that of the conven-

tional clock mesh synthesis algorithm at the expense of 17% relaxed constraint

of clock skew.

96



Bibliography

[1] P. Gronowski, W. Bowhill, R. Preston, M. Gowan, and R. Allmon, “High-

performance microprocessor design,” IEEE Journal of Solid-State Circuits,

vol. 33, no. 5, pp. 676–686, May 1998.

[2] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez,

“Reducing power in high-performance microprocessors,” in Proceedings of

ACM/IEEE Design Automation Conference, June 1998, pp. 732–737.

[3] Y. Liu, S. Nassif, L. Pileggi, and A. Strojwas, “Impact of interconnect

variations on the clock skew of a gigahertz microprocessor,” in Proceedings

of ACM/IEEE Design Automation Conference, June 2000, pp. 168–171.

[4] H. Chang and S. Sapatnekar, “Statistical timing analysis considering

spatial correlations using a single pert-like traversal,” in Proceedings of

IEEE/ACM International Conference on Computer Aided Design, Novem-

ber 2003, pp. 621–625.

[5] C. Visweswariah, K. Ravindran, K. Kalafala, S. Walker, S. Narayan,

D. Beece, J. Piaget, N. Venkateswaran, and J. Hemmett, “First-order in-

cremental block-based statistical timing analysis,” IEEE Transactions on

97



Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 10,

pp. 2170–2180, October 2006.

[6] Z. Feng, P. Li, and Y. Zhan, “Fast second-order statistical static tim-

ing analysis using parameter dimension reduction,” in Proceedings of

ACM/IEEE Design Automation Conference, June 2007, pp. 244–249.

[7] S. Rusu and S. Tam, “Clock generation and distribution for the first IA-64

microprocessor,” in Proceedings of IEEE International Solid-State Circuits

Conference, February 2000, pp. 176–177.

[8] P. J. Restle, T. G. Mcnamara, D. A. Webber, P. J. Camporese, K. F. Eng,

K. A. Jenkins, S. Member, D. H. Allen, M. J. Rohn, M. P. Quaranta,

D. W. Boerstler, C. J. Alpert, C. A. Carter, R. N. Bailey, J. G. Petrovick,

B. L. Krauter, and B. D. Mccredie, “A clock distribution network for mi-

croprocessors,” IEEE Journal of Solid-State Circuits, vol. 36, pp. 792–799,

2001.

[9] D.-J. Lee and I. Markov, “Multilevel tree fusion for robust clock networks,”

in Proceedings of IEEE/ACM International Conference on Computer-

Aided Design, November 2011, pp. 632–639.

[10] C. kok Koh, J. Jain, and S. F. Cauley, Synthesis of clock and power/ground

networks, In L.-T. Wang, Y.-W. Chang, and K.-T. Cheng, editors, Elec-

tronic Design Automation: Synthesis, Verification, and Test, chapter 13.

Morgan Kauffman, 2009.

[11] S. Tam, S. Rusu, U. N. Desai, R. Kim, J. Zhang, and I. Young, “Clock gen-

eration and distribution for the first IA-64 microprocessor,” IEEE Journal

of Solid-State Circuits, vol. 35, no. 11, pp. 1545–1552, November 2000.

98



[12] J.-L. Tsai, D. H. Baik, C.-P. Chen, and K. Saluja, “A yield improvement

methodology using pre- and post-silicon statistical clock scheduling,” in

Proceedings of IEEE/ACM International Conference on Computer Aided

Design, November 2004, pp. 611–618.

[13] J.-L. Tsai, L. Zhang, and C. Chen, “Statistical timing analysis driven

post-silicon-tunable clock-tree synthesis,” in Proceedings of IEEE/ACM

International Conference on Computer-Aided Design, November 2005, pp.

575–581.

[14] V. Khandelwal and A. Srivastava, “Variability-driven formulation for si-

multaneous gate sizing and postsilicon tunability allocation,” IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 27, no. 4, pp. 610–620, April 2008.

[15] K. Nagaraj and S. Kundu, “A study on placement of post silicon clock

tuning buffers for mitigating impact of process variation,” in Proceedings

of Design, Automation Test in Europe Conference Exhibition, April 2009,

pp. 292–295.

[16] J. Kim, D. Joo, and T. Kim, “An optimal algorithm of adjustable delay

buffer insertion for solving clock skew variation problem,” in Proceedings

of ACM/IEEE Design Automation Conference, May 2013, pp. 1–6.

[17] Y.-S. Su, W.-K. Hon, C.-C. Yang, S.-C. Chang, and Y.-J. Chang, “Value

assignment of adjustable delay buffers for clock skew minimization in multi-

voltage mode designs,” in Proceedings of IEEE/ACM International Con-

ference on Computer-Aided Design, November 2009, pp. 535–538.

[18] ——, “Clock skew minimization in multi-voltage mode designs using ad-

justable delay buffers,” IEEE Transactions on Computer-Aided Design of

99



Integrated Circuits and Systems, vol. 29, no. 12, pp. 1921–1930, December

2010.

[19] K.-H. Lim and T. Kim, “An optimal algorithm for allocation, placement,

and delay assignment of adjustable delay buffers for clock skew minimiza-

tion in multi-voltage mode designs,” in Proceedings of IEEE Asia and South

Pacific Design Automation Conference, January 2011, pp. 503–508.

[20] B. Li, N. Chen, and U. Schlichtmann, “Fast statistical timing analy-

sis for circuits with post-silicon tunable clock buffers,” in Proceedings of

IEEE/ACM International Conference on Computer-Aided Design, Novem-

ber 2011, pp. 111–117.

[21] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to

Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.

[22] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of sequen-

tial benchmark circuits,” in Proceedings of IEEE International Symposium

on Circuits and Systems, May 1989, pp. 1929–1934 vol.3.

[23] F. Corno, M. Reorda, and G. Squillero, “RT-level ITC’99 benchmarks and

first ATPG results,” IEEE Design Test of Computers, vol. 17, no. 3, pp.

44–53, July 2000.

[24] “Nangate 45nm open cell library,” http://www.nangate.com/.

[25] T. Susa, M. Murakawa, E. Takahashi, T. Furuya, T. Higuchi, “Post-

Fabrication Clock-Timing Adjustment for Digital LSIs Ensuring Opera-

tional Timing Margins,” in Proceedings of International Conference on

Hybrid Intelligent Systems, September 2008, pp. 907–910.

100

http://www.nangate.com/


[26] K. Nagaraj and S. Kundu, “An Automatic Post Silicon Clock Tuning Sys-

tem for Improving System Performance based on Tester Measurements,”

in Proceedings of IEEE International Test Conference, October 2008, pp.

1–8.

[27] D. Tadesse, J. Grodstein, and R.I. Bahar, “AutoRex: An automated post-

silicon clock tuning tool,” in Proceedings of IEEE International Test Con-

ference, November 2009, pp. 1–10.

[28] Z. Lak and N. Nicolici, “A Novel Algorithmic Approach to Aid Post-Silicon

Delay Measurement and Clock Tuning,” IEEE Transactions on Computers,

vol. 63, no. 5, pp. 1074–1084, May 2014.

[29] T. Okumura and M. Hashimoto, “Setup time, hold time and clock-to-Q

delay computation under dynamic supply noise,” in Proceedings of IEEE

Custom Integrated Circuits Conference, September 2010, pp. 1–4.

[30] G. Rao and E. Howick, “Apparatus for optimized constraint characteriza-

tion with degradation options and associated methods,” U.S. Patent App.

10/465,123. November 24, 2003.

[31] S. Srivastava and J. Roychowdhury, “Interdependent latch setup/hold time

characterization via Euler-Newton curve tracing on state-transition equa-

tions,” in Proceedings of ACM/IEEE Design Automation Conference, June

2007, pp. 136–141.

[32] ——, “Independent and interdependent latch setup/hold time character-

ization via Newton-Raphson solution and Euler curve tracking of state-

transition equations,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 27, no. 5, pp. 817–830, May 2008.

101



[33] E. Salman, A. Dasdan, F. Taraporevala, K. Kucukcakar, and E. Fried-

man, “Pessimism reduction in static timing analysis using interdependent

setup and hold times,” in Proceedings of IEEE International Symposium

on Quality Electronic Design, March 2006, pp. 159–164.

[34] E. Salman and E. Friedman, “Utilizing interdependent timing constraints

to enhance robustness in synchronous circuits,” Microelectronics Journal,

vol. 43, no. 2, pp. 119–127, February 2012.

[35] E. Salman, A. Dasdan, F. Taraporevala, K. Kucukcakar, and E. Friedman,

“Exploiting setup−hold-time interdependence in static timing analysis,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 26, no. 6, pp. 1114–1125, June 2007.

[36] S. Hatami, H. Abrishami, and M. Pedram, “Statistical timing analysis of

flip-flops considering codependent setup and hold times,” in Proceedings of

ACM Great Lakes Symposium on VLSI, May 2008, pp. 101–106.

[37] N. Chen, B. Li, and U. Schlichtmann, “Iterative timing analysis based on

nonlinear and interdependent flipflop modelling,” IET Circuits, Devices

Systems, vol. 6, no. 5, pp. 330–337, September 2012.

[38] A. Kahng and H. Lee, “Timing margin recovery with flexible flip-flop tim-

ing model,” in Proceedings of IEEE International Symposium on Quality

Electronic Design, March 2014, pp. 496–503.

[39] K.-H. Ho, X.-W. Shih, and J.-H. Jiang, “Clock rescheduling for timing

engineering change orders,” in Proceedings of IEEE Asia and South Pacific

Design Automation Conference, January 2012, pp. 517–522.

102



[40] MATLAB, version 8.3.0.532 (R2014a). Natick, Massachusetts: The Math-

Works Inc., 2014.

[41] MOSEK ApS, “The MOSEK C optimizer API manual Version 7.1 (Revi-

sion 32),” http://docs.mosek.com/7.1/capi/index.html, 2015.

[42] M. Donno, A. Ivaldi, L. Benini, and E. Macii, “Clock-tree power optimiza-

tion based on RTL clock-gating,” in Proceedings of ACM/IEEE Design

Automation Conference, June 2003, pp. 622–627.

[43] Y. Luo, J. Yu, J. Yang, and L. Bhuyan, “Low power network processor de-

sign using clock gating,” in Proceedings of ACM/IEEE Design Automation

Conference, June 2005, pp. 712–715.

[44] C.-M. Chang, S.-H. Huang, Y.-K. Ho, J.-Z. Lin, H.-P. Wang, and Y.-S. Lu,

“Type-matching clock tree for zero skew clock gating,” in Proceedings of

ACM/IEEE Design Automation Conference, June 2008, pp. 714–719.

[45] D. Garrett, M. Stan, and A. Dean, “Challenges in clockgating for a low

power ASIC methodology,” in Proceedings of IEEE International Sympo-

sium on Low Power Electronics and Design, August 1999, pp. 176–181.

[46] A. Farrahi, C. Chen, A. Srivastava, G. Tellez, and M. Sarrafzadeh,

“Activity-driven clock design,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 20, no. 6, pp. 705–714,

June 2001.

[47] C. Chen, C. Kang, and M. Sarrafzadeh, “Activity-sensitive clock tree con-

struction for low power,” in Proceedings of IEEE International Symposium

on Low Power Electronics and Design, August 2002, pp. 279–282.

103

http://docs.mosek.com/7.1/capi/index.html


[48] J. Oh and M. Pedram, “Gated clock routing minimizing the switched

capacitance,” in Proceedings of Design, Automation and Test in Europe,

February 1998, pp. 692–697.

[49] ——, “Gated clock routing for low-power microprocessor design,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, vol. 20, no. 6, pp. 715–722, June 2001.

[50] W.-C. Chao and W.-K. Mak, “Low-power gated and buffered clock network

construction,”ACM Transactions on Design Automation of Electronic Sys-

tems, vol. 13, no. 1, pp. 20:1–20:20, February. 2008.

[51] J. Lu, W.-K. Chow, and C.-W. Sham, “Fast power- and slew-aware gated

clock tree synthesis,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 20, no. 11, pp. 2094–2103, November 2012.

[52] J. Lu, X. Mao, and B. Taskin, “Clock mesh synthesis with gated local

trees and activity driven register clustering,” in Proceedings of IEEE/ACM

International Conference on Computer-Aided Design, November 2012, pp.

691–697.

[53] Synopsys, IC Compiler Implementation User Guide Version J-2014.09-

SP4, 2014.

[54] G. Tellez, A. Farrahi, and M. Sarrafzadeh, “Activity-driven clock design

for low power circuits,” in Proceedings of IEEE/ACM International Con-

ference on Computer-Aided Design, November 1995, pp. 62–65.

[55] J. MacQueen, “Some methods for classification and analysis of multivari-

ate observations,” in Proceedings of Berkeley Symposium on Mathematical

104



Statistics and Probability, Volume 1: Statistics. Berkeley, Calif.: University

of California Press, 1967, pp. 281–297.

[56] C. N. Sze, “ISPD 2010 high performance clock network synthesis contest:

Benchmark suite and results,” in Proceedings of International Symposium

on Physical Design, March 2010, pp. 143–143.

[57] M. Edahiro, “A clustering-based optimization algorithm in zero-skew rout-

ings,” in Proceedings of Conference on Design Automation, June 1993, pp.

612–616.

[58] G. Venkataraman, Z. Feng, J. Hu, and P. Li, “Combinatorial algorithms

for fast clock mesh optimization,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 18, no. 1, pp. 131–141, January 2010.

[59] T.-Y. Kim and T. Kim, “Clock tree embedding for 3D ICs,” in Proceedings

of Asia and South Pacific Design Automation Conference, January 2010,

pp. 486–491.

105



초록

오늘날의 회로 설계에서 공정변이가 회로 클럭의 타이밍의 변이에 미치는 영향은

매우 커짐에 따라, 전통적으로 사용되던 클럭 트리 구조를 기반으로 한 클럭 네

트워크를 사용하는 것은 한계에 부딪히게 되었고, 이를 극복하기 위한 여러가지

기술들이제안되었다.본논문에서는변이에강한클럭네트워크를설계하기위해,

연구 및 사용되고 있는 세 가지 기술에 대해 소개하고, 이들을 개선한 연구들을

제안한다.

첫째로, 이 논문에서는 클럭의 타이밍 문제를 회로 제작 이후 단계에서 조정할

수 있는 포스트 실리콘 조정 클럭 버퍼를 배치하는 문제에 대해 서술한다. 포스트

실리콘 조정 버퍼는 클럭의 지연시간을 회로가 제작된 이후의 단계에서 조정하

여 클럭의 타이밍 문제를 해결할 수 있지만, 버퍼 자체의 크기 때문에 최소한의

개수만 가장 효율적인 위치에 배치해야 하는 문제가 있다. 본 논문에서는 이전의

연구가 회로의 수율을 계산할 때 시간이 많이 걸리는 몬테-카를로 시뮬레이션을

사용하기 때문에 탐색 가능한 포스트 실리콘 조정 버퍼의 배치가 제한되는 문제가

있음을 지적한 후, 기존에 제안되었던 그래프 기반 회로 수율 계산 기법을 사용하

여 효율적인 포스트 실리콘 조정 버퍼 배치를 찾을 수 있는 점진적이고 체계적인

방법을 제시한다.

다음은 클럭 시차 스케쥴링 방법에 대한 연구를 서술한다. 최근의 연구에서

제안되었던, 플립-플롭의 클럭에서 출력까지의 딜레이가 클럭의 준비시간과 유

지시간에 의존한다는 유연한 플립-플롭 타이밍 모델 연구는 기존의 플립-플롭의

타이밍 특성들이 고정된 값이라는 가정에 기반한 정적 타이밍 분석의 정확성 문

제를 해결할 수 있는 중요한 연구이다. 본 논문에서는 새로운 모델을 고려하여,

이전에 고전적인 플립-플롭 타이밍 특성 모델을 기반으로 진행되었던 클럭 시차

스케쥴링의 최적화 문제를 유연한 플립-플롭 타이밍 모델을 고려하여 해결하였
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다. 본 연구에서는 주어진 회로의 준비시간과 유지시간의 여유시간을 반복적이고

체계적으로 최대화하여 문제를 해결하였다.

마지막으로 클럭 스파인 네트워크의 합성을 자동화하는 문제에 대해 서술한

다. 전통적인 클럭 트리 구조가 공정변이 문제를 해결하지 못했기 때문에 클럭

메쉬를 포함하는 다양한 대안적 구조가 제안되었다. 클럭 메쉬의 경우 공정변이에

의한 클럭 시차를 줄일 수 있었지만 이를 위해 와이어나 버퍼 등의 자원을 많이

소모하는 문제를 가지고 있다. 두 구조의 중간적 구조에는 클럭 트리의 노드를

연결하는 크로스 링크를 삽입하는 구조와 클럭 스파인 구조가 있다. 클럭 트리에

점진적인 수정을 가하여 만드는 크로스 링크와 달리, 클럭 스파인 구조는 트리나

이후에제안된메쉬와는완전히별개의구조로,이를합성하는방법도매우다르다.

그렇기 때문에 클럭 스파인을 합성하는 알고리즘은 필수적이라고 할 수 있으나,

합성 방법론이나 이를 자동화하는 방법에 관한 연구는 아직 없다. 본 논문에서

는 우선, 클럭-게이팅을 지원하는 클럭 스파인을 주어진 클럭 시차 및 클럭 슬루

조건을 만족하면서 자원 및 전력 소모량을 최소화하는 문제에 대해 서술한다. 그

리고, 회로에서 주어진 플립-플롭들을 클럭-게이팅 조건에서의 연관성을 고려하고

조직화하여 클럭 스파인을 삽입한 후, 클럭 시차 및 슬루 조건을 고려하여 버퍼를

삽입하는 알고리즘을 제안한다.

요약하면, 본 논문에서는 클럭의 타이밍 문제를 해결하기 위해 포스트-실리

콘 조정 클럭 버퍼를 사용하는 테크닉과 클럭 시차 스케쥴링을 유연한 플립-플롭

타이밍 모델에서 적용하는 테크닉을 제시하고, 클럭의 타이밍 문제와 전력 소모

문제를 한번에 해결하기 위한 새로운 클럭 스파인 네트워크를 합성하는 자동화

알고리즘을 제시한다.

주요어: VLSI&CAD, 포스트 실리콘 조정 클럭 버퍼, 정적 타이밍 분석, 유연한

플립-플롭 타이밍 모델, 클럭 스파인 합성

학번: 2011-30237
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