6 research outputs found

    Scheduling language and algorithm development study. Volume 3, phase 2: As-built specifications for the prototype language and module library

    Get PDF
    Detailed specifications of the prototype language and module library are presented. The user guide to the translator writing system is included

    Nondifferentiable Optimization: Motivations and Applications

    Get PDF
    IIASA has been involved in research on nondifferentiable optimization since 1976. The Institute's research in this field has been very productive, leading to many important theoretical, algorithmic and applied results. Nondifferentiable optimization has now become a recognized and rapidly developing branch of mathematical programming. To continue this tradition and to review developments in this field IIASA held this Workshop in Sopron (Hungary) in September 1984. This volume contains selected papers presented at the Workshop. It is divided into four sections dealing with the following topics: (I) Concepts in Nonsmooth Analysis; (II) Multicriteria Optimization and Control Theory; (III) Algorithms and Optimization Methods; (IV) Stochastic Programming and Applications

    Recent Experiences in Multidisciplinary Analysis and Optimization, part 1

    Get PDF
    Papers presented at the NASA Symposium on Recent Experiences in Multidisciplinary Analysis and Optimization held at NASA Langley Research Center, Hampton, Virginia April 24 to 26, 1984 are given. The purposes of the symposium were to exchange information about the status of the application of optimization and associated analyses in industry or research laboratories to real life problems and to examine the directions of future developments. Information exchange has encompassed the following: (1) examples of successful applications; (2) attempt and failure examples; (3) identification of potential applications and benefits; (4) synergistic effects of optimized interaction and trade-offs occurring among two or more engineering disciplines and/or subsystems in a system; and (5) traditional organization of a design process as a vehicle for or an impediment to the progress in the design methodology

    Algorithms for linear and convex feasibility problems: A brief study of iterative projection, localization and subgradient methods

    Get PDF
    Ankara : Department of Industrial Engineering and Institute of Engineering and Sciences, Bilkent Univ., 1998.Thesis (Ph.D.) -- Bilkent University, 1998.Includes bibliographical references leaves 86-93.Several algorithms for the feasibility problem are investigated. For linear systems, a number of different block projections approaches have been implemented and compared. The parallel algorithm of Yang and Murty is observed to be much slower than its sequential counterpart. Modification of the step size has allowed us to obtain a much better algorithm, exhibiting considerable speedup when compared to the sequential algorithm. For the convex feasibility problem an approach combining rectangular cutting planes and subgradients is developed. Theoretical convergence results are established for both ca^es. Two broad classes of image recovery problems are formulated as linear feasibility problems and successfully solved with the algorithms developed.Özaktaş, HakanPh.D

    Large-Scale Linear Programming

    Get PDF
    During the week of June 2-6, 1980, the System and Decision Sciences Area of the International Institute for Applied Systems Analysis organized a workshop on large-scale linear programming in collaboration with the Systems Optimization Laboratory (SOL) of Stanford University, and co-sponsored by the Mathematical Programming Society (MPS). The participants in the meeting were invited from amongst those who actively contribute to research in large-scale linear programming methodology (including development of algorithms and software). The first volume of the Proceedings contains five chapters. The first is an historical review by George B. Dantzig of his own and related research in time-staged linear programming problems. Chapter 2 contains five papers which address various techniques for exploiting sparsity and degeneracy in the now standard LU decomposition of the basis used with the simplex algorithm for standard (unstructured) problems. The six papers of Chapter 3 concern aspects of variants of the simplex method which take into account through basis factorization the specific block-angular structure of constraint matrices generated by dynamic and/or stochastic linear programs. In Chapter 4, five papers address extensions of the original Dantzig-Wolfe procedure for utilizing the structure of planning problems by decomposing the original LP into LP subproblems coordinated by a relatively simple LP master problem of a certain type. Chapter 5 contains four papers which constitute a mini-symposium on the now famous Shor-Khachian ellipsoidal method applied to both real and integer linear programs. The first chapter of Volume 2 contains three papers on non-simplex methods for linear programming. The remaining chapters of Volume 2 concern topics of present interest in the field. A bibliography a large-scale linear programming research completes Volume 2

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios
    corecore