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FOREWORD 

The lnternational lnstitute for Applied Systems Analysis i s  a nongovernmental, multi- 
disciplinary, international research institution whose goal i s  to bring together scientists 
from around the world to work on problems of common interest. 

IlASA pursues this goal, not only by pursuing a research program at the lnstitute in col- 
laboration with many other institutions, but also by holding a wide variety of scientific 
and technical meetings. Often the interest in these meetings extends beyond the concerns 
of the participants, and proceedings are issued. Carefully edited and reviewed proceedings 
occasionally appear in the International Series on Applied Systems Analysis (published by 
John Wiley and Sons Limited, Chichester, England); edited proceedings appear in the 
IIASA Proceedings Series (published by Pergamon Press Limited, Oxford, England). 

When relatively quick publication is desired, unedited and only lightly reviewed proceed- 
ings reproduced from manuscripts provided by the authors o f  the papers appear in this 
new IIASA Collaborative Proceedings Series. Volumes in this series are available from the 
lnstitute at moderate cost. 





PREFACE 

During the week of June 2-6, 1980, the System and Decision Sciences Area of the Inter- 
national Institute for Applied Systems Analysis organized a workshop on large-scale linear 
programming in collaboration with the Systems Optimization Laboratory (SOL) of Stan- 
ford University, and cosponsored by the Mathematical Programming Society (MPS). The 
participants in the meeting were invited from amongst those who actively contribute to 
research in large-scale linear programming methodology (including development of algo- 
rithms and software). Although primarily methodologically oriented scientists attended 
the workshop, i t s  theme was the improvement of the long range applicability of linear pro- 
gramming (LP) techniques. Besides the exchange of ideas and experience - and sugges- 
tions for future research directions and international cooperation - fostered by the meet- 
ing, it wasa general feeling of the participants that a proceedings would reflect the current 
state of large-scale linear programming in both East and West. 

To this end, it was considered important to produce the proceedings volumes in a lecture 
note format as quickly as possible, so as to secure a complete record of the papers presented 
at the workshop - including those destined for publication elsewhere - together with 
several papers solicited by the editors in order to  extend coverage. In some cases, papers 
presented at llASA have been revised by their authors in the two months following the 
meeting; in others, no revisions have been made. Although a standard title page format 
has been used, the papers have been largely reproduced from camera-ready copy supplied 
bytheirauthors.Most have not been refereed, edited or proofread for typographical errors. 
Papers are grouped together in chapters by topic and are listed in alphabetical order by 
author in each cha~ter. 

The first volume of these Proceedings contains five chapters. The first i s  an historical 
review by George 6. Dantzig of his own and related research in time-staged linear program- 
ming problems. Chapter 2 contains five papers which address various techniques for exploit- 
ing sparsity and degeneracy in the now standard LU decomposition of the basis used with 
the simplex algorithm for standard (unstructured) problems. The six papers of Chapter 3 
concern aspects of variants of the simplex method which take into account through basis 
factorization the specific block-angular structure of constraint matrices generated by 
dynamic and/or stochastic linear programs. By means of these techniques it i s  hoped to 
extend the size of solvable LP's beyond the range of current commercial codes for specific 
problems in the fields of energy, resource and macro/economic modeling (including eco- 
nomic planning models). In Chapter 4, five papers address extensions of the original 
Dantzig-Wolfe procedure for utilizing the structure of planning problems by decomposing 
the original LP into LP subproblems coordinated by a relatively simple LP master problem 
of a certain type. Two of these papers concern the recent idea of applying this approach re- 
cursively to the subproblems themselves. Chapter 5 contains four papers which constitute a 
mini-symposium on the now famous Shor-Khachian ellipsoidal method applied to both real 
and integer linear programs. This completes the description of the contents of Volume 1. 



The first chapter of  Volume 2 contains three papers on non-simplex methods for linear 
programming. This chapter concludes reports in the mainstream of current research on 
solution algorithms in large-scale linear programming. The remaining chapters of Volume 
2 concern more peripheral - but no less important -topics of present interest i n  the field. 
Techniques for exploiting network structure in LP problems are the topic of the three 
papers of Chapter 7. In the next chapter, the emphasis turns t o  the practically crucial and 
inter-related issues of automatic LP model generation and structure identification. The 
seven papers of this chapter discuss software both for model and matrix generation and 
for model reduction through detection of imbedded special constraint structure. The final 
chapter, 9, contains a number of applications of large-scale LP techniques to  practical 
problems in industrial and agricultural production and economic planning. Some of these 
involve multi-criteria optimization, and two of the eight papers deal explicitly with imple- 
mentations of new approaches to  the multi-criteria problem. A bibliography of large-scale 
linear programming research completes Volume 2. 

The editors wish to take this opportunity on behalf of the participants to  thank I IASA, 
SOL and MPS for their cooperation and to  thank IlASA as well as various Academies of 
Sciences and governmental agencies of several countries for making the resources available 
to  hold the Large-scale Linear Programming Workshop and to  publish these Proceedings, 
In particular, we are grateful to  the Communications Department at I IASA for their cheer- 
ful cooperation in expediting publication of this record of an important and memorable 
international meeting. 

George B. Dan tzig 
M.A. H. Dernpster 

Markku Kallio 

Stanford, California 
August 1980 
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TlhrlESTAGED METHODS IN LINEAR PROGRAMMING: COMMENTS 
AND EARLY HISTORY 

George B. Dantzig 

Department of Operations Research 
Stanford University 

The Workshop on Large-scale Linear Programming reflects the active research taking place 
in many parts of the world along a very broad front, namely on: 

the theory of solution, 
software development, 
experiments on representative problems, 
application to  real problems, 
matrix input generators, 
matrix analyzers, 
output report generators, 
alternative methods of formulation. 

This paper i s  a historical review of the author's interest in one important facet of this 
field - the solution of time-staged programs. Indeed it was dynamic LP that initiated the 
linear programming field back in 1947. Over the years, many good ideas have been pro- 
posed, some that still merit serious consideration. This Workshop may provide the answer 
to the question whether or not we have begun at last to achieve the efficiency of solution 
necessary for successful application. 



This paper is a more polished version of the talk which I 
delivered opening the International Institute for Applied Systems 
Analysis Workshop on Large-Scale Linear Programming at Laxenburg 
Austria, June 2-6, 1980. Except for a short review of large- 
scale methods also presented, but omitted here, my perspective is 
historical. 

TIME-STAGED STAIRCASE SYSTEMS 

The first formal papers about the new field of linear pro- 
gramming (that started in 19U7) appeared in Econometrica July - 
October 19U9. At the very beginning, the emphasis was on solving 
time-staged (dynamic) linear programs. That this is so, is clear 
from the following quote from [ I ] :  

T h i s  paper  is  concerned w i th  improved techn iques  of program 
p lanning,  p a r t i c u l a r l y  a s  they  app ly  t o  t h e  schedu l ing  of 
a c t i v i t i e s  over  t ime w i th in  an  o r g a n i z a t i o n  o r  economy i n  
which t h e  a c t i v i t i e s  must s h a r e  i n  t h e  use  of l i m i t e d  amounts 
of va r ious  c o m o d i t i e s .  The contemplated use  of e l e c t r o n i c  
computers f o r  r a p i d l y  computing programs and t h e  assumpt ions 
under l y ing  t h e  mathemat ica l  model a r e  d i scussed .  The paper 
is conclu{ed by an  i l l u s t r a t i v e  example, [ B e r l i n  A i r l i f t ,  -4 
Time-Staged Dynamic L inear  Program]. 

The Xathemat ica l  Xodel d i scussed  he re  i s  a  g e n e r a l i z a t i o n  
of t h e  Leont ie f  I n t e r - I n d u s t r y  Model. I t  is  c l o s e l y  r e l a t r d  
t o  t h e  one found i n  von Neumann's paper  "A Yodel of General  
Economic Equi l ibr ium". I t s  ch ie f  p o i n t s  of d i f f e r e n c e  l :e 
i n  i t s  emphasis on dynamic, r a t h e r  than equ i l i b r i um o r  s teady  
s t a t e s .  I ts purpose is c l o s e  c o n t r o l  of an  organizat ion- -  



hence i t  must be q u i t e  d e t a i l e d ;  i t  i s  des igned t o  handle  
h igh ly  dynamic problems--hence g r e a t e r  smphasis on t ime 
l a g s  and c a p i t a l  equipment; i t  t akes  i n t o  c o n s i d e r a t i o n  the  
many d i f f e r e n t  ways of do ing things--hence i t  e x p l i c i t l y  
i n t roduces  a l t e r n a t i v e  a c t i v i t i e s ;  and i t  recogn izes  t h a t  
any p a r t i c u l a r  cho ice  of a dynamic program depends on t h e  
"ob jec t i ves "  of t he  "economy", --hence t h e  s e l e c t i o n  and 
t ypes  of a c t i v i t i e s  a r e  made t o  depend on t h e  maximizat ion 
of a n  o b j e c t i v e  func t ion .  

In the companion paper [ 2 \ ,  the time staged staircase model 
is displayed and its relationship to Leontief Input-Output model 
and continuous-time models is discussed: 

where t h e  x ( ~ )  a r e  v e c t o r s  of nonnegat ive e lements .  

. When t h e  m a t r i c e s  and 9 ( t )  ( t=1,2,. .  ,T) a r e  square  
and nons ingu la r ,  a d i r e c t  s o l u t i o n  is p o s s i b l e  t h a t  may l e a d ,  
however, t o  n e g a t i v e  and nonnegat ive a c t i v i t y  l e v e l s  ( i n  
which c a s e  no f e a s i b l e  s o l u t i o n  e x i s t s ) .  

I t  shou ld  be noted t h a t  t h e  genera l  mathemat ica l  problem 
reduces i n  t h e  l i n e a r  programming c a s e  t o  c o n s i d e r a t i o n  of 
a system of equa t ions  of nonnegat ive v a r i a b l e s  vhose mat r i x  
of c o e f f i c i e n t s  is composed most ly  of b locks of z e r o s  except  
f o r  submat r i ces  a long and j u s t  o f f  t h e  "diagonal".  Thus any 
good compucat ional technique f o r  s o l v i n g  programs would prob- 
a b l y  t a k e  advantage of t h i s  f a c t .  

Having fomulated the time-staged model, it soon became clear 
that the techniques at hand at the time were inadequate. In a 
companion paper [ 3 1 ,  first presented in 1949 ,  appeared the follow- 
ing statement: 

Computing techn iques  a r e  nov a v a i l a b l e  f o r  s o l u t i o n  of sma l l  
l i n e a r  programming problems. However, f o r  a c c u r a t e  o v e r - a l l  
A i r  Force p lann ing,  t h e  s i z e  of t h e  requ i red  model i s  such 
t h a t  conven t iona l  punched ca rd  computing equipment, o r  even 
t h e  i n t e r i m  e l e c t r o n i c  computer be ing b u i l t  f o r  t h e  A i r  Force 
by t h e  Nat iona l  Bureau of Standards,  is not  s u f f i c i e n t l y  
powerful  t o  cope s a t i s f a c t o r i l y  v i t h  t h e  problem of choos ing 
t h e  optimum a c t i v i t i e s  and a c t i v i t y  l e v e l s  ove r  t ime. 



I n  o r d e r  t o  o b t a i n  a programming procedure which would be 
immediately u s e f u l  w i th  p r e s e n t l y  a v a i l a b l e  computing equip- 
ment, we have been forced t o  use a d e t e r m i n a t e ,  and hence 
l e s s  g e n e r a l  f o rmu la t i on  of t h e  programming problem t h a t  
p a r a l l e l s  c l o s e l y  t h e  s c a f f  p rocedure.  

( ? j  
Exogenous r _(t) _(t) -(t) 

1 - 7 - 3 - 4 

t - l  
t=2 
c=3 
t34  

I 

I n i t i a l  1 
I 
I 

We have c a l l e d  t h i s  a zrianguZar ~ o d e i  because i n  it t h e  
m a t r i x  of detached c o e f f i c i e n t s ,  when ar ragned a s  i n  t h e  
Table.  and o m i t t i n g  t h e  " i n i t i a l "  p a r t ,  assumes a t r i a n -  
g u l a r  form, w i t h  a l l  c o e f f i c i e n t s  above and t o  t h e  r i g h t  
of t h e  p r i n c i p a l  d iagona l  be ing zero .  Thus t h e  a c t i v i t i e s  
and i t ems  a r e  s o  ordered t h a t  t h e  l e v e l s  of  any one a c t i v -  
i t y  over  t ime depend on l y  on t h e  l e v e l s  of  t h e  a c t i v i t i e s  
which p recede  i t  i n  t h e  h ie ra rchy .  T h i s  means t h a t  i n  t h e  
computat ion of t h e  program we s u c c e s s i v e l y  work down t h e  
h i e r a r c h y ,  a t  each s t e p  s o l v i n g  comple te ly  f o r  t h e  l e v e l s  
of each a c t i v i t y  i n  each of t h e  t ime p e r i o d s  b e f o r e  pro- 
ceed ing t o  t h e  next  a c t i v i t y  ( s e e  f i g u r e  above ) .  

The triangular model technique is a powerful empirical method 
when there is a natural hierarchy of activities and output items. 
Certain energy models, for example, currently in vogue use such 
an approach. 



BLOCK TRIANGULARITY 

My paper  [ 4 1 ,  is  my f i r s t  on methods f o r  s o l v i n g  l a r g e  sys -  
tems : 

With t h e  growing awareness of t h e  p o t e n t i a l i t i e s  of t he  
l i n e a r  programming approach t o  both  dynamic and s t a t i c  
problems of i n d u s t r y ,  of t h e  economy, and of t he  m i l i t a r y ,  
t h e  main o b s t a c l e  toward f u l l  a p p l i c a t i o n  is t h e  i n a b i l i t y  
of c u r r e n t  computat iona l  methods t o  cope w i th  t h e  magnlt- 
ude of t h e  techno log ica l  m a t r i c e s  f o r  even t h e  s imp les t  
s i t u a t i o n s .  However, i n  c e r t a i n  c a s e s ,  such a s  t h e  now 
c l a s s i c a l  Hitchcock-Koopmans t r a n s p o r t a t i o n  model, i t  has 
been p o s s i b l e  t o  s o l v e  t h e  l i n e a r  i n e q u a l i t y  system i n  
s p i t e  of s i z e  because of s imple p r o p e r t i e s  of t h e  system. 
T h i s  sugges ts  t h a t  cons ide rab le  r e s e a r c h  be under taken t o  
e x p l o i t  c e r t a i n  s p e c i a l  matrix s t r u c t u r e s  i n  o rde r  t o  fac -  
i l i t a t e  ready s o l u t i o n  of l a r g e r  systems. 

Indeed, r e c e n t  computat iona l  exper ience  has  made i t  c l e a r  
t h a t  s tandard  techniques such a s  t h e  s implex a lgo r i t hm,  
which have been used t o  s o l v e  s u c c e s s f u l l y  g e n e r a l  systems 
invo lv ing  one hundred equa t ions  ( i n  any reasonab le  number 
of nonnegat ive unknowns), a r e  too ted ious  and leng thy  t o  
be p r a c t i c a l  f o r  e x t e n s i o n s  much beyond t h i s  f i g u r e .  Our 
purpose h e r e  w i l l  be t o  deve lop shor t -cut  computat iona l  
methods Eor s o l v i n g  an impor tant  c l a s s  of systems whose 
m a t r i c e s  may be g e n e r a l l y  desc r ibed  a s  "b lock t r i a n g u l a r " .  

By "block" t r i a n g u l a r  we mean t h a t  i f  one p a r t i t i o n s  t h e  
mat r i x  of c o e f f i c i e n t s  of t h e  technology mat r i x  i n t o  sub- 
m a t r i c e s ,  t h e  submatr ices (o r  b locks)  cons idered a s  e l e -  
ments form a t r i m g u l a r  syscsm, 

7 9 

For example, von Neumann, i n  cons ide r ing  a c o n s t a n t l y  ex- 
panding economy, developed a l i n e a r  dynamic model whose 
mat r i x  of c o e f f i c i e n t s  may be w r i t t e n  i n  t h e  form, 

where A is  t h e  submatr ix  of c o e f f i c i e n t s  of a c t i v i t i e s  in-  
i t i a t e d  i n  per iod t ,  and B is t h e  submatr ix  of output  co- 
e f f i c i e n t s  of t h e s e  a c t i v i t i e s  i n  t h e  fo l l ow ing  per iod.  



Now the main obstacle toward the f u l l  app l i ca t ion  of s tan-  
dard l i nea r  programing techniques t o  dynamic systems i s  
the magnitude of the matr ix f o r  even the s implest  s i t ua t i ons .  
For example, a t r i v i a l  15-activity--7-item s t a t i c  model, 
when s e t  up a s  a 12-period dynamic model, would become a 
180-activi ty by 84-item system, which i s  considered a la rge  
problem fo r  app l i ca t ion  of the standard simplex method. A 
fancy model involving, say, 200 a c t i v i t i e s  and 100 items 
f o r  a s t a t i c  case would become a 2000 x 1000 matr ix i f  re- 
cas t  a s  a 10-period model. I t  is c l ea r  t ha t  dynamic models 
must be t rea ted  with spec ia l  too ls  i f  any progress is t o  be 
made toward so lu t i ons  of these systems. 

From a computational point of view, there a r e  a number of 
observed cha rac te r i s t i c s  of the dynamic models which a r e  
o f ten  t r ue  f o r  s t a t i c  models a s  well .  
These a re :  

(1) The matrix (or i ts transpose) can be arranged i n  tri- 
angular form 

(2) Most submatrices A i j  a r e  e i t he r  zero matr ices o r  com- 
posed of elements, most of which a r e  zero. 

( 3 )  A bas is  f o r  the  simplex method i s  o f ten  block t r ian-  
gular  wi th i t s  diagonal submatrices square and non- 
s ingu la r  ( re fe r red  to a s  a "square block t r iangu la r "  
bas i s ) .  

(4)  For dynamic models s im i la r  type a c t i v i t i e s  a r e  l i k e l y  
t o  pe rs i s t  i n  the bas i s  f o r  severa l  periods. 

To i l l u s t r a t e ,  consider a dynamic vers ion of the Leontief 
model i n  which (a )  a l t e rna t i ve  a c t i v i t i e s  a r e  permitted 
(a simple case would be where s t e e l  can be obtained from 
d i r e c t  production o r  s t o rage ) ;  (b) inputs t o  an a c t i v i t y  
f o r  production i n  the  t t h  time period may occur i n  the  same 
or  e a r l i e r  time periods. It can be shown i n  t h i s  model t ha t  
(a )  a bas ic  so lu t ion  w i l l  have exact ly  m a c t i v i t i e s  i n  each 
time period (where n - number of time dependent equat ions) .  
(b) each s h i f t  i n  bas is  w i l l  bring i n  a subs t i t u t e  a c t i v i t y  
i n  the  same time period, and ( c )  optimization can be car r ied  
out a s  a sequence of one-period opt imizat ion problems; i . e . ,  
the optimum choice of a c t i v i t i e s  (but not t h e i r  amounts) can 
be determined f o r  the f i r s t  time period (independent of the 
l a t e r  per iods)  t h i s  permits a determination f o r  the second 
time period (independent of the l a t e r  per iods) ,  e t  ce te ra .  

When flow models a r e  replaced with more complex models which 
inc lude i n i t i a l  inventor ies,  capac i t ies ,  and the bui ld ing 
of new capac i t i es ,  the  i dea l  s t r uc tu re  of a bas i s  (see  t h i r d  
cha rac te r i s t i c  above) no longer holds. However, t e s t s  (car- 
r i ed  on s i nce  1950) on a number of cases i nd i ca te  t ha t  bases. 
whi le o f ten  not square btock t r C a p l a r  i n  the s m s e  above, 
could be nude so by changing r e l a t i ~ ~ e l y  few n o l m s  i n  the 
bcs is  (e.g.. one or  two a c t i v i t i e s  i n  small  models). This 
cha rac te r i s t i c  of near-square tZoci  t r i angu la r i t y  of the 
bas is ,  i .e..  with nonsingular square submatrices down the  
diagonal, is, of course, computational ly convenient and t h i s  
paper w i l l  be concerned with ways t o  exp lo i t  i t .  



Towards the end of the above paper can be found the following: 

Fina l l y ,  may I make a shor t  plea that  l i nea r  programmers 
pay g rea ter  a t t en t i on  t o  spec ia l  methods t o r  solv ing the  
l a rge r  matr ices t ha t  a r e  encountered i n  p rac t i ce .  The es- 
ce l l en t  work of Jacobs on the  ca te re r  problem and the work 
of Jacobs, Hoffman, Johnson on t he  production smoothing 
problem a r e  examples of what may be done with c e r t a i n  dyn- 
amic models with a simple repe t i t i ve  s t r uc tu re .  Cooper and 
Charnes have employed i n  t h e i r  work a number of shor t  c u t s  
t ha t  have permitted reso lu t ion  of ce r t a i n  l a rge  sca le  sys- 
tems. A t  RAND we have found e f f i c i en t  ways t o  hand compute 
general ized t ranspor ta t ion  problems, and Markowicz has pro- 
posed a general  procedure i n  t h i s  a rea  t ha t  is promising. 
Many models exh ib i t  a  block t r iangu la r  s t r uc tu re  and cer- 
t a i n  pa r t i t i on i ng  methods have been proposed which take 
advantage of t h i s  type of s t ruc tu re .  There is need fo r  
those of you who a r e  foresighted t o  do ser ious  research i n  
t h i s  area.  

A t  the  present  time (1955), i t  i s  possib le t o  solve rap id ly  
problems i n  the order of a hundred equations. The Orchard- 
Hays 701 Simplex Code has solved many problems of t h i s  s i z e  
wi th as  high a s  1,500 unknowns and machine times of f i v e  t o  
e igh t  hours a s  a rule--al l  with excel lent  s tandards of ac- 
curacy. However, i t  is sel f -ev ident  t ha t  no matter how much 
the general  purpose codes a re  perfected they w i l l  be unable 
t o  cope with the  next generat ion of problems which w i l l  be 
l a rge r  i n  s ize .  I t  i s  a l s o  evident t ha t  the  models cur ren t ly  
being run could have been handled more e f f ec t i ve l y  by the  
proposed spec ia l  methods. 

There a r e  c e r t a i n  cha rac te r i s t i c s  common to  many models 
which I bel ieve should be emphasized: 

(1) Host f ac to r s  i n  the coe f f i c i en t  matr ix a r e  zero. 
( 2 )  In  dynamic s t r uc tu res  the  coe f f i c i en t s  a r e  o f ten  

t he  same from one time period t o  the  next. 
(3) In dynamic so lu t ions  the  a c t i v i t i e s  employed of ten 

p e r s i s t  from one period t o  the next. 
(O) Transportat ion type submatrices a r e  common. 
( 5 )  Block t r iangu la r  submatrices a r e  common. 

Par t  of the  research i n  t h i s  a rea  should ce r t a i n l y  be de- 
voted t o  a be t t e r  understanding of the p o t e n t i a l i t i e s  of 
techniques other  than the  simplex method. 

UNCERTAINTY 

In a related paper [ 5 1 ,  published in 1956 ,  appears the following 

In  the  past  few months there  have been important developments t ha t  
point  t o  t he  sppi icat isn of l inear progruwning neshods xnder 
uncertainty. By way of background l e t  us r e c a l l  t ha t  there  
a r e  i n  connnon use two essen t i a l l y  d i f f e ren t  types of sched- 
u l ing applications--one designed f o r  the shor t  run and those 



f o r  t he  long run. For the  l a t t e r  the  e f f e c t  of p r o b a b i l i s t i c  
o r  chance even ts  is  reduced t o  a  minimum, by t h e  usua l  tech- 
n ique  of prov id ing p l e n t y  of fat i n  t h e  system. For example, 
conswrrprion razes, a t t r t z i on  raies,  wecrr-~ut rates a r e  a l l  
planned on t h e  h igh  s i d e .  7 h e s  t o  ship, time to  t ravel ,  
tz;7les zo produce a r e  always made w e l l  above a c t u a l  needs. 
Indeed, t h e  e n t i r e  system is put  toge the r  w i t h  p l e n t y  of 
slack and fat w i t h  t h e  hope t h a t  they w i l l  be t h e  shock 
dso rbe rs  which w i l l  permi t  t h e  genera l  o b j e c t i v e s  and tim- 
i n g  of t h e  p lan  t o  be executed i n  s p i t e  of unforeseen even ts .  
I n  t h e  g e n e r a l  c o u r s e  of t h ings ,  long-range p l a n s  a r e  re-  
v i s e d  f r e q u e n t l y  because t h e  s t o c h a s t i c s  e lements  of t h e  
problem have a  n a s t y  way of i n t r u d i n g .  For t h i s  reason  a l s o  
t h e  c h i e f  c o n t r i b u t i o n ,  i f  any, of t h e  long-range p lan ,  is 
t o  e f f e c t  an inmediate  decision-such a s  t h e  a p p r o p i a t i o n  
of funds o r  the  i n i t i a t i o n  of a n  impor tant  development con- 
t r a c t .  

For shor t - run schedu l ing ,  many of t h e  s l u k  and fat tech- 
n iques of i ts long-range b ro the r  a r e  employed. The p r i n c i -  
p l e  d i f f e r e n c e s  a r e  a t t e n t i o n  t o  d e t a i l  and t h e  s h o r t  time- 
hor izon.  As long a s  capubi i i t ies  a r e  w e l l  above require- 
ments ( o r  demands) o r  i f  t h e  demands can be s h i f t e d  i n  t ime, 
t h i s  approach p r e s e n t s  no problems s i n c e  it is f e a s i b l e  t o  
implement t h e  schedu le  i n  d e t a i l .  However, where t h e r e  a r e  
s h o r t a g e s ,  t h e  p ro jec ted  p lan  based on such techn iques  may 
lead  t o  a c t i o n s  f a r  from op t ima l ,  whereas t h e s e  new methods, 
where a p p l i c a b l e ,  may r e s u l t  i n  cons ide rab le  sav ings .  I 
s h a l l  s u b s t a n t i a t e  t h i s  l a t e r  by r e f e r e n c e  t o  a  problem of 
A. Ferguson on t h e  r o u t i n g  of a i r c r a f t .  

With regard t o  t h e  p o s s i b i l i t i e s  of so l v ing  l a r g e  s c a l e  l i n -  
e a r  p r o g r a m i n g  problems, one can  sound both a n  o p t i m i s c i c  
and a  p e s s i r n i a t i c ~ n o t e .  The p e s s i m i s t i c  n o t e  concerns t h e  
a b i l i t y  of t h e  problem formulacor,  e i t h e r  amateur o r  pro fes-  
s i o n a l ,  t o  deve lop models t h a t  a r e  l a r g e  s c a l e .  The pess i -  
m i s t i c  n o t e  a l s o  concerns t h e  i n a b i l i t y  of t h e  problem s o v l e r  
t o  compute models by general t e c h i p e s  when they a r e  l a r g e  
s c a l e .  I f  t h i s  is  s o ,  is  n o t  t h e  g r e a t  promise t h a t  the  l i n -  
e a r  programming approach w i l l  s o l v e  schedu l ing  and long range 
p lanning problems w i th  s u b s t a n t i a l  sav ings  t o  t h e  o r g a n i z a t i o n s  
adopt ing t h e s e  methods but  a n  i l l u s i o n  and a  s n a r e ?  Are t h e  
b i g  problems go ing t o  be so lved a s  they have always been 
solved--by a  d e t a i l e d  system of on-the-spot somewhat n a t u r a l  
s e t  of p r i o r i t i e s  t h a t  r e s o l v e  eve ry  p o s s i b l e  a l t e r n a t i v e  a s  
i t  a r i s e s ?  

The status of problems involving uncertainty as far as prac- 
tical solutions are concerned, has not changed much since 1956. 
The following, sums up the 1965 situation: 

When one c o n s i d e r s  i n s t e a d ,  a d i r e c t  a t t a c k  on u n c e r t a i n t y  
v i a  mathemat ica l  programming, it i n e v i t a b l y  l e a d s  t o  t h e  con- 
s i d e r a t i o n  of large-scale sys tms .  Problems w i th  t h e i r  s t r u c -  
t u r e ,  have proven d i f f i c u l t  of s o l u t i o n  so  f a r .  I b e l i e v e  
t h a t  they  w i l l  be t h e  s u b j e c t  of i n t e n s i v e  i n v e s t i g a t i o n  i n  
t h e  f u t u r e .  



DECOMPOSITION PRINCIPLE 

The Decomposition Principle [ 61 arose in 1958 in connection 
with a military tactical problem which was too large to handle by 
conventional linear programming problem. A good summary of  the 
approach can be found in my 1965 survey article: 

Recently t h e  au thor ,  j o i n t l y  wi th  P h i l i p  Wolfe, developed 
a new procedure t h a t  is p a r t i c u l a r l y  a p p l i c a b l e  t o  angular  
systems and mu l t i s tage  systems of t h e  s t a i r c a s e  type 
Th is  is  repor ted  i n  pre l iminary  form i n  RAND P-1544 (Nov.10, 
1958) under t h e  t i t l e ,  "A Decomposition P r i n c i p l e  f o r  L inear  
Programs?. The system c o n s i s t s  of c e r t a i n  goods shared i n  
common among s e v e r a l  p a r t s  and c e r t a i n  goods ( inc lud ing  fac- 
i l i t i e s ,  raw m a t e r i a l s )  p e c u l i a r  t o  each p a r t .  I n  s h o r t  t h e  
system is  angular  i n  s t r u c t u r e .  

Although t h e  e n t i r e  procedure is  one intended t o  be c a r r i e d  
ou t  i n t e r n a l l y  i n  an  e l e c t r o n i c  computer i t  may a l s o  be viewed 
a s  a decentratized decision making process. Each indepen- 
d e n t  p a r t  i n i t i a l l y  o f f e r s  a  poss ib le  b i l l  o f  goods (a  vec- 
t o r  o f  the  comon ou tpu ts  and suppor t ing i n p u t s  inc lud ing  
o u t s i d e  c o s t s )  t o  a  c e n t r a l  coord ina t ing  agency. A s  a s e t  
these  a r e  mutual ly f e a s i b l e  v i t h  each o the r  and t h e  g iven 
common resources  and demands from o u t s i d e  t h e  system. The 
coord ina to r  works o u t  a  system of "pr ices"  f o r  paying f o r  
each component of t h e  vec to r  p lus  a s p e c i a l  subs idy f o r  
each p a r t  t h a t  j u s t  ba lances t h e  cos t .  

The management of each p a r t  then o f f e r s ,  based on t h e s e  
p r i c e s ,  a  nev f e a s i b l e  program f o r  h i s  p a r t  w i th  lower c o s t  
' r ) i~hout regard t o  w;zetner it i s  ;^easibZe for the sgszem as 
a w k t e .  The coord ina to r ,  however, combines t h e s e  new o f f e r s  
v i t h  t h e  s e t  of e a r l i e r  o f f e r s  s o  a s  t o  p reserve  mutual fea-  
s i b i l i t y  and cons is tency  v i t h  exogeneous demand and supply  
and t o  minimize cos t .  Using t h e  improved over-a l l  s o l u t i o n  
he genera tes  a rev ised  s e t  of p r i c e s ,  s u b s i d i e s ,  and r e c e i v e s  
new o f f e r s .  The e s s e n t i a l  i dea  is t h a t  o ld  o f f e r s  a r e  never 
f o r g o t t e n  by t h e  c e n t r a l  agency (un less  us ing  "cu r ren t "  
p r i c e s  they a r e  u n p r o f i t a b l e ) ;  t h e  f o w e r  a r e  mixed w i th  t h e  
new o f f e r s  t o  form new p r i c e s .  

In the original paper [61 appears this abstract: 

A technique is  presented f o r  t h e  decomposit ion of a  l i n e a r  
program t h a t  permi ts  t h e  problem t o  be so lved by a l t e r n a t e  
s o l u t i o n s  of l i n e a r  sub-programs rep resen t ing  i t s  s e v e r a l  
p a r t s  and a coord ina t ing  program t h a t  is  obta ined from t h e  
p a r t s  by l i n e a r  t ransformat ions.  The coord ina t ing  program 
genera tes  a t  each c y c l e  new o b j e c t i v e  forms f o r  each p a r t ,  
and each p a r t  genera tes  i n  t u r n  (from i ts op t ima l  b a s i c  fea-  
s i b l e  s o l u t i o n s )  new a c t i v i t i e s  (columns) f o r  t h e  in tercon-  
nec t ing  program. Viewed a s  an  i n s t a n c e  of a  ' genera l i zed  
programming problem' whose columns a r e  drawn f r e e l y  from 
given convex s e t s .  such a problem can be s tud ied  by an  ap- 
p r o p r i a t e  g e n e r a l i z a t i o n  of t h e  duaLi ty  theorem f o r  l i n e a r  



programing ,  which permi ts  a sharp d i s t i n c t i o n  t o  be made 
betveen those  c o n s t r a i n t s  t h a t  p e r t a i n  on ly  t o  a p a r t  of t h e  
problem and those t h a t  connect i t s  p a r t s .  Th is  l eads  t o  a 
g e n e r a l i z a t i o n  of t h e  Simplex Algorithm, f o r  vh ich the  de- 
composit ion procedure becomes a s p e c i a l  case .  

The reported experience with solving structured linear pro- 
grams by means of the decomposition principle varies from very 
good to poor, In general it appears that if the decomposition 
between master and sub is a "naturaln one, it can perform very 
well. Like the simplex method, there is rapid improvement for the 
early iterations followed by a long tail except here the tail is 
much longer. 

COMPACT BASIS INVERSES 

From 1962  onwards there has been growing interest in schemes 
for compactly representing the inverse of the basis for the simplex 
method. This effort goes under various names: compact basis tri- 
angularization, LU basis factorization. One must worry not only 
about the compactness but also about the stability of the solution 
to small changes in the original data. My 1 9 6 2  paper [ 7 1  was dir- 
ected to finding a compact representation of a basis for staircase 
systems. 

Alex Orden was t h e  f i r s t  t o  po in t  ou t  t h a t  t h e  i n v e r s e  of 
t h e  b a s i s  i n  t h e  simplex method se rves  no f u n c t i o n  except 
a s  a means f o r  ob ta in ing  t h e  r e p r e s e n t a t i o n  of t h e  v e c t o r  
e r t e r i n g  t h e b a s i s  and f o r  determining t h e  new p r i c e  v e c t o r .  
For t h i s  purpose one of t h e  many forms of " s u b s t i t u t e  in-  
verses"  (such a s  t h e  we l l  known product form of t h e  inve rse )  
vould do j u s t  a s  we l l  and i n  f a c t  may have c e r t a i n  advan- 
tages  i n  computat ion. 

Harry Xarkowitz was i n t e r e s t e d  i n  developing, f o r  a s p a r s e  
matr ix ,  a s u b s t i t u t e  inve rse  wi th  a s  few nonzero e n t r i e s  a s  
poss ib le .  He suggested s e v e r a l  ways t o  do t h i s  approximately.  
For example, the  b a s i s  could be reduced t o  t r i a n g u l a r  form 
by success ive ly  s e l e c t i n g  fo r  p i vo t  p o s i t i o n  t h a t  row and 
column whose product of nonzero e n t r i e s  (exc lud ing t h e  p i v o t )  
is minimum. He a l s o  pointed ou t  t h a t ,  f o r  bases whose non- 
zeros appear  i n  a band on a s t a i r c a s e  about t h e  d iagnonal .  
proper s e l e c t i o n  of p i v o t s  could r e s u l t  i n  a compact sub- 
s t i t u t e  w i th  no more nonzeros than t h e  o r i g i n a l  b a s i s .  

We s h a l l  adopt M a r k m i t z ' s  suggest ion.  However, i n s t e a d  of 
record ing t h e  success ive  t rans fo rmat ions  of one b a s i s  t o  t h e  
next  i n  product  form. we s h a l l  show t h a t  it is e f f i c i e n t  t o  
genera te  each s u b s t i t u t e  i n v e r s e  i n  t u r n  from i ts predeces- 
s o r .  The s u b s t i t u t e  inve rse  remains compact. of f i xed  s i z e .  
Thus " re invers ions"  a r e  unnecessary (except  i n  s o  f a r  a s  
they  a r e  needed t o  r e s t o r e  l o s s  of accuracy due t o  cumula- 
t i v e  round-off e r r o r ) .  

The procedure which we s h a l l  g i ve  can be app l ied  t o  a gen- 
e r a l  s x m b a s i s  wi thout  s p e c i a l  s t r u c t u r e .  A s  such,  i t  is  



probably  compet i t i ve  w i th  t h e  s tandard  product  form, f o r  i t  
may have a l l  of i t s  advantages and none of i t s  disadvantages.  
With c e r t a i n  ma t r i x  s t r u c t u r e s ,  moreover, it appears  t o  be 
p a r t i c u l a r l y  a t t r a c t i v e .  

We s h a l l  f ocus  ou r  remarks on szaircase strucedes. The 
r e a d e r  w i l l  f i n d  no d i f f i c u l t y  i n  f i n d i n g  a n  e q u a l l y  e f f i -  
c i e n t  way t o  compact block-angular s t r u c t u r e s .  

STATUS AS OF 1967 

A summary  o f  t h e  s t a t u s  o f  so lv ing  l a r g e - a c a l e  p r o b l e m s  can 
be f o u n d  i n  my 1967 p a p e r  [ 8 ]  . 

From i ts very  i n c e p t i o n ,  i t  was env is ioned t h a t  l i n e a r  pro- 
gramming would be  a p p l i e d  t o  ve ry  l a rge .  d e t a i l e d  models of 
economic and m i l i t a r y  systems. Kan to rov i t ch ' s  1939 propos- 
a l s ,  which were be fo re  t h e  advent  o f  t h e  e l e c t r o n i c  computer, 
mentioned such p o s s i b i l i t i e s .  L inear  programming evolved o u t  
of t h e  U.S. Air  Force i n t e r e s t  i n  1947 i n  f i n d i n g  op t ima l  
t ime-staged deployment p l a n s  i n  c a s e  of war; a  problem whose 
mathemat ica l  s t r u c t u r e  is s i m i l a r  t o  t h a t  of  f i n d i n g  a n  op- 
timal growth p a t t e r n  of a  deve lop ing economy and s i m i l a r  t o  
o t h e r  c o n t r o l  problems. S t r u c t u r a l l y  t h e  dynamic problems 
a r e  c h a r a c t e r i z e d  i n  d i s c r e t e  form by s t a i r c a s e  m a t r i c e s  
r e p r e s e n t i n g  t h e  i c p u t s  and o u t p u t s  from one t ime  pe r iod  t o  
t h e  next .  T rea ted  a s  a n  o rd ina ry  l i n e a r  program, t h e  number 
of rows and columns grows i n  p ropor t i on  t o  t h e  number of 
t i m e  p e r i o d s  T and t h e  computat iona l  e f f o r t  grows by T~ and 
p o s s i b l y  h igher .  Th is  f a c t  has l i m i t e d  t h e  u s e  of l i n e a r  
programming a s  a  t o o l  f o r  p lann ing over  many t ime  pe r iods .  

At t h e  p r e s e n t  1967 s t a g e  of t h e  computer r e v o l u t i o n ,  t h e r e  
is growing i n t e r e s t  on t h e  p a r t  of p r a c t i c a l  u s e r s  of l i n e a r  
programming models t o  s o l v e  l a r g e r  and l a r g e r  systems. Such 
a p p l i c a t i o n s  imply t h a t  e v e n t u a l l y  automated systems w i l l  
o b t a i n  information from coun te rs  and sens ing  dev ices ,  pro- 
c e s s  d a t a  i n t o  t h e  proper  form f o r  op t im iza t ion  and f i n a l l y  
implement t h e  r e s u l t s  by c o n t r o l  dev i ces .  There has been 
s t e a d y  p rog ress  i n  t h i s  mechanizat ion of f low t o  and from 
t h e  computer. H i t h e r t o ,  t h i s  has been one of t h e  o b s t a c l e s  
encountered i n  se t t i ng -up  and so lv ing  l a r g e - s c a l e  systems. 
The second o b s t a c l e  has been t h e  c o s t  and t h e  t ime  r e q u i r e d  
t o  s u c c e s s f u l l y  s o l v e  l a r g e  problems. 

It is d i f f i c u l t  t o  measure t h e  p o t e n t i a l  of  l a rge -sca le  
p lann ing.  C e r t a i n  deve lop ing c o u n t r i e s  appear ,  accord ing 
t o  op t ima l  c a l c u l a t i o n s  on s i m p l i f i e d  models t o  be a b l e  t o  
grow a t  t h e  r a t e  of 15% per  yea r  implying a  doub l i ng  of 
t h e i r  i n d u s t r i a l  base i n  f i v e  yea rs .  But a d m i n i s t r a t o r s  
a p p a r e n t l y  i g n o r e  p lans  and make d e c i s i o n s  based on p o l i t -  
i c a l  expediency which r e s t r i c t  growth t o  2  o r  3% o r  some- 
t imes -2%. It is t h e  b e l i e f  of  t h e  au tho r  t h a t  t h e  mech- 
a n i z a t i o n  of d a t a  f low ( a t  l e a s t  i n  advanced c o u n t r i e s )  i n  
t h e  nex t  decade w i l l  p rov ide pathways f o r  c o n s t r u c t i n g  



l a r g e  models and the e f f e c t i v e  implementation of t h e  r e s u l t s  
of opt imizat ion.  This a p p l i c a t i o n  of mathematics t o  d e c i s i o n  
processes w i l l  even tua l l y  become a s  important a s  t h e  c l a s s i c a l  
a p p l i c a t i o n s  t o  phys ics and w i l l ,  i n  time, change t h e  emph- 
a s i s  i n  pure mathematics. 

In this paper the following unsolved problem was posed: 

I t  has been d iscovered r e c e n t l y  t h a t  the  s i z e  of t h e  inverse  
represen ta t ion  of the  b a s i s  i n  the  simplex method could have 
an  important e f f e c t  on running time. Therefore, compact- 
i nverse  schemes a long t h e  l i n e s  f i r s t  proposed by Harry 
Markovitz of RAND have become inc reas ing ly  impor tant .  Re- 
cen t l y ,  two groups working independently,  developed t h i s  
approach wi th  astounding r e s u l t s .  For example, the  Standard 
O i l  Company of Ca l i fo rn ia  group r e p o r t s  r u n n i n g - t h e  on some 
of t h e i r  t y p i c a l  l a r g e  problems c u t  t o  114. 

How t o  f i n d  the  most compact inverse  r e p r e s e n t a t i o n  of a 
sparse  mat r i x  is  s t i l l  an unsolved problem: 

CONJECTURE: I f  a non-singuLzr ,mtri.z has K non-zero zLe.rrmts, 
it i s  always possible t o  represent them as G pro- 
&cC of eZz.~mtarg  ma$rices such chat she fcral  
nunber of non-zero ensr izs ;ezcLuding t h e f r  ii- 
aooral un i t  elements) i s  as mosr i(. [ Inc*Lden~ally, 
-he -ml;ir.:zni schemes just mentioned o f f e n  have 
no more than K+IC"i i  non-zeros in the  %verse rs- 
presentation. 1 

STATUS TO THE PRESENT ( 1  980 )  

From 1967 onwards there has been an increasing interest in 
techniques for solving large-scale linear programs. A number of 
conferences have been exclusively concerned with the topic. Most 
general operations research and management science meetings have 
at least one session devoted to it. A selected reference list 
which I use in my seminars (mostly published during the period 
1970-78)  contain 237 titles which I have arranged by sub area. 

General Books 
(10 exc lus ive ly  l a r g e  s c a l e ,  2 s p a r s e  methods, 8 o t h e r )  
Survey articles 
GUB, G-GUB and the decompositioh principle 
Variants of above 
Block Triangularity 
Linear optimal control and dynamic systems 
Nested decomposition 
Column generation, convex and nonlinear programs 
Sparse matrix techniques 
Large networks and related problems 
Applications 
Software 

Total 



Some i d e a  o f  t h e  r e c e n t  r e s e a r c h  o f  t h e  Systems O p t i m i z a t i o n  
L a b o r a t o r y  o f  t h e  O p e r a t i o n s  Research Department a t  S t a n f o r d  c a n  
b e  g l e a n e d  from t h e  t i t l e s  t h a t  f o l l o w :  

Andre P e r o l d :  "Fundamenta ls  o f  a  Con t inuous  Time 
Simplex Method". 

Andre P e r o l d  and  George B. Dan tz ig :  "A B a s i s  F a c t o r -  
i z a t i o n  Method f o r  Block T r i a n g u l a r  L i n e a r  Programs".  

Bob F o u r e r :  " S o l v i n g  S t a i r c a s e - s t r u c t u r e d  L i n e a r  
Programs by A d a p t a t i o n  o f  t h e  S implex Method". 

Ron Davis :  "New Jump C o n d i t i o n s  f o r  S t a t e  C o n s t r a i n e d  
Opt ima l  C o n t r o l  Problems".  

P h i l i p  Abrahamson and George B. Dan tz ig :  "Imbedded 
Dual Decomposi t ion Approach t o  S t a i r c a s e  Systems" .  

J o h n  B i r g e :  "So lv ing  S t a i r c a s e  Systems under  U n c e r t a i n t y " .  

T h i s  Workshop may w e l l  mark t h e  p o i n t  i n  t i m e  when e f f i c i e n t  
methods f o r  s o l v i n g  l a r g e  dynamic sys tems may be more t h a n  j u s t  a 
promise.  T h i r t y  t h r e e  y e a r s  from t h e  t ime  t h e  hope was f i r s t  ex-  
p r e s s e d  t h a t  such  methods be found,  t h e y  may soon  become a r e a l i t y :  
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THE SIMPLEX METHOD FOR 
NONSTRUCTURED LINEAR PROGRAMS 





SOLVING LARGE SCALE LINEAR PROGRAMS WITHOUT STRUCTURE 

P. Huard 

Direction des Etudes et Recherches 
Electricite de France 

A variant of the simplex method is adapted for the solution of large-size linear program- 
ming problems with a very sparse constraint matrix. Instead of using the inverse of the 
basis, three sparse linear systems are directly solved at each step, using a suitable pivoting 
method. Two advantages of this variant compared to standard procedure are: 

Memory volume requirements are proportional to the number of constraints (and 

not to i t s  square). 
Calculation may be faster; the appropriate numerical tests are described in the 
paper. 



1 .  - IBTRODUCTION 

With regard to the resolution of large linear programs, the basis 

of a variant of the Simplex method, using only a snall amount of memory, 

has already been briefly described C31. 

The aim of the present paper is to give a detailed study of this 

method and of the numerical experiments that validate it. 

In its classiral form, the Simplex method uses a square matrix, the 

inverse of the basic matrix. whose value is updated at each iteration. 

The number of nonzero elements of this matrix increases rapidly as the 

iterations go along and it is necessary in practice, when using the 

explicit form of the inverse, to have on hand a number of memories equal 

to the square of its dimension, say m2 for a linear program with m 

constraints. Thus it becomes difficult to handle problems having several 

hundred constraints, without using disks or tapes; then the overhead 

time may becomes prohibitive, because of their repetitive use and the 

large number of iterations. 

Some special structures of the matrix of the linear program - like 

for example the block-angular one - allow for various interesting 

decompositions of the inverse of the basic matrix, which is similar to 

the solving of smaller linear programming problems. Then the amount of 

ncccssary mr.mory varies only lincari;. with t!ie size of the program, if 

the dirnensic>n of t h e  biocks is a co:i-,~snt. Fortuaately, such a block- 



angular structure is rather often encountered (dynamic problems, 

regionalization problems) anti various decomposition methods have been 

proposed (see for example [5 ] ) .  

However, many linear programs do not have any structures suitable 

for decomposition. This is the case for problems related to a graph - 
e.g. flow-problems - which contain the problem of electrical dispatching, 

as far as its structure is concerned. 

Large linear programs, issued from "real life", have a very sparse matrix : 

only a few percent of the elements are nonzero. Of course, this sparsity appears 

in each basic matrix, but it disappears from the inverse matrix. The variant 

of the Simplex method, which follows, uses the basic matrix itself, instead 

of its irmerse, and then eliminates the need for mL memory positions. However, 

in the calculations, products of a matrix by a vector are replaced by 

resolutions of linear systems of the same dimensionality. The complexity of 

these two operations would be of m2 and m3 order respectively, if the matrices 

were full, which would rule out the proposed variant. But, as will be seen 

below, two factors may make it competitive. One is the difference in 

sparsity betveen the basic matrix and its inverse. The other is the fact 

that generally, the basic aatrix is almost triangular, or more precisely 

"triangular-band-wise". In other words : after having performed a suitable 

permutation of rows and col,mns, nonzero elements lie bclow an extra- 

diagonal line, located at a small distance p above the diagonal. Such a 

linear system is easily solved through a specialized pivoting method that 

we call below the method of parameters. The amount of calculations is 

proportional to p  p m2, where p is the proportion of nonzero elements, 

p the width of the band located above the diagonal, and m the dimension 

of the matrix-(a large number, by hypothesis). In large problems, of real 

origin, that we have known of, p is often between p m and 2 p m. If p '  

is the proportion of nonzero elements (density) of the inverse matrix 

is normally much larger than p), the respective amounts of computatjon 
2 

for one iteration of the Simplex method are roughly in the ratio 4(p/p') m. 

For p '  - 60 p and m = l o3 ,  this is practically 1. In actual fact, numerical 

comparisons of Section 7, involving linear programs of up to 900 constraints, 

exhibit a very good speed for the proposed variant. In Section 8 the detailed 

costs for one iteration of the Simplex method are given with a comparison 

between the two variants. 
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2. - TIE RREQUIRED CALCULATIONS D U R I N G  ONE ITERATION OF THE SIW'LEX METHOD 

The l i n e a r  program t o  be solved i s  g iven i n  s tandard  form 

- 
Maximise f  x  s u b j e c t  t o  

A x P a  

X ' P  

where A i s  a  fu l l - rank  ma t r i x ;  i t s  rows a r e  indexed by M = ( I ,  2, . . ., rn] 

and i t s  columns by N = ( 1 ,  2, ..., n l .  

A t  each i t e r a t i o n ,  a  b a s i s  I i s  cons idered ,  i . e .  a  subse t  I such t h a t  : 

I c N 

Ill = 

A' i n v e r t i b l e  

where A', t he  bas i c  mat r i x  r e l a t i v e  t o  I ,  i s  composed of t he  columns 

A', j c I. 

To the  b a s i s  I i s  a s s o c i a t e d  t h e  so-ca l led  b a s i c  s o l u t i o n  of t h e  

b a s i s  I ,  de f i ned  by 

x- = 0 
I 

where 7 i s  t he  complement o f  I i n  N .  

The s l ~ c c e s s i v e  bases  genera ted  by the  Simplex method, a r e  such t h a t  

xI Z 0 ;  hence,  t he  cons idered  b a s i c  s o l u t i o n s  a r e  a l l  f e a s i b l e  ( t hey  

s a t i s f y  cond i t i ons  ( I )  and ( 2 ) ) .  



An iteration consists of changing the basis I inco a neighboring 

basis 1', that is a basis obtained by exchanging an index r € I with an 

index s E i : 

To determine r and s, one can compute, in order : 

- 
I 

where u, fl, d are row-vectors. This allows the candidate s E y, to be 

chosen with the condition dS > 0. Then : 

where xI, a, TS and AS are column vectors. This gives r c I by the 

condition 

Once r and s are determined, it remains to update the inverse of the 

basic matrix, i.e. to compute (A'')-'. This is clasiicaly done from 

(A1)-' through the relation : 

where E is an elementary matrix, explicitly known (see figure 1) 



Figure 1 

Thus the  necessary  c a l c u l a t i o n s  a r e  represented by r e l a t i o n s  ( 4 )  

t o  (9). and t h e  i nve rse  of the b a s i c  matr ix  i s  used i n  ( 4 ) .  (6 ) .  ( 7 ) .  

These l a s t  r e l a t i o n s  can be rep laced by 

i . e .  t h ree  l i n e a r  systems t o  so lve .  I n  the  f i r s t  one, the  ma t r i x  i s  the  

t ranspose of the  b a s i c  mat r ix ,  i n  t he  l a s t  two, i t  i s  the  b a s i c  mat r ix  

i t s e l f  : these systems enjoy the  s p a r s i t y  of  the  A matr ix ,  and so l v i ng  

them can be done wi thout  s t o r i n g  and us ing  the  inverse .  



3. - DIRECT RESOLUTION OF THE LINEAR SYSTEM 

The systems (4'), (6'). (7') have long been successfully solved 

directly in the case of classical transportation problems. These very 

special linear programs can be stated : 

. . 
Minimize Z cLJ xij subject to 

i j 

Z x.. = b. , i = 1.2, ..., q . 1 1 
J 

x 2 0  , Vij  
i j 

Here the A matrix has no more than 2 nonzero elements per column. 

which are equal to I ,  and the basic matrices are triangular. Thus solving 

the three linear systems is particularly easy and fast (it is not even 

necessary, here, to solve (7')). 

An extension to problems of flow with gains was proposed by MAURR4S [4] 

in 1972. In this type of linear programs, the A matrix still has no more 

than 2 nonzero elements per column, but of any real value. Systems (4'). 

(6') or (7') are almost as simple as a triangular system. The method of 

solution consists of particularizing one unknown as a parameter, and in 

expressing one after the other the (ml) remaining unknowns as functions 

of this parameter, using (wl) equations. Eliminating these (m-I)  unknowns 

from the last equation - not yet used - gives the value of the parameter. 

Plugging this value in the expression of the (m-I) unknowns completes the 

solution. The choice of the particularized unknown is guided by an 

interpretation of the structure of the A matrix, as incidence matrix of 

a graph. Of course, it is not possible to extend this theory to matrices 

with more than 2 nonzero elements per column. However, a study of many 

square matrices, very large and very sparse, issued from real problems. 

shows that they often have a triangular-band-wise structure (after 

suitable permutations of rows and columns); their band-width has the 

samc order of magnitude as the average number of nonzero elements per 

column or pcr row. Elorc .precisely, these square matrices are such that 



vhere p is the vidth of the band located above the diagonal. These matrices, 

of small thickness, correspond to linear systems that are easily solved by 

the pivoting method, called method of parameters, described in the next 

section. This method, which can be considered as an extension of that 

used by MAURRAS, uses a number of parameters equal to p. In practice, it 

reduces to solving a triangular system of dimension (m-p) vith p right-hand 

sides, and solving a p x p system. In problems of flows with gains, one 

alvays has p 5 1. 

4. - THE METHOD OF PARAMETERS 

Let the system to solve be 

vhere B is an invertible (m x m) matrix, such that 

We call p the band-vidth of the triangular-band-wise matrix B. 

The row i = 1 has at most p + I nonzero elements. We may suppose 

Bp+' + 0 ,  possibly after having exchanged column p + 1 vith some other. I 
Therefore ve can express x as a function of the variables x j = 1,2, ...,p 

P + I  j '  
considered as parameters : 

vhere E is an affine function. 
P+I  

If B;'~ 0 we can express from rhr row i = 2, xpr2 as a function of 

x and of the parameters x l  . . . . , x . Eliminating x vith (12) we 
P + I  P P + I  

obtain 



and s o  on. I f ,  a t  each s t e p  k ,  corresponding t o  the  use of the  row k,  we 

have f p  # 0, we o b t a i n  a f t e r  (m-p) s t e p s ,  t he  a f f i n e  f unc t i ons  

S to r i ng  t he  c o e f f i c i e n t s  of these  f unc t i ons  ( i nc l ud ing  t h e  a f f i n e  

terms) r e q u i r e s  a n  a r r a y  (m-p) > ( p + l ) .  

Only t he  f i r s t  (n-p) equa t i ons  have been used. Using (14) we can 

e l im ina te  t he  v a r i a b l e s  x  i = 1.2, ..., m-p from the  p  rema in i ng  
p+ i 

equa t i ons ,  and we o b t a i n  a  system of p  equa t i ons ,  where the  p  unknowns 

a r e  the  parameters x l ,  ..., x . Solv ing  t h i s  (p  x p) system g ives  t h e  
P  

va lues  of t h e  parameters ,  and then  (14) g i v e s ' t h e  o t h e r  unknowns. 

The hypothes is  ~ e f  i 0 imp l ies  t h a t  a  new unknown rk does appear 

a t  s t e p  k .  I f  t h i s  hypothes is  i s  no t  s a t i s f i e d ,  then  tllc unkr~own 5' 
does not  appear y e t  (nor any o t h e r ,  because of ( 11 ) ) ;  one parameter  can 

be e l im ina ted  between equa t i ons  k  and k-I,  whicii no longer  con ta i n  the  

unknowns x  i = 1.2, ..., (k-I),  a f t e r  use of (14) .  From then on, t h i s  
p+i ' 

e l im ina ted  parameter  w i l l  become a n  unknown, expressed a s  a  f unc t i on  of 

the  remaining parameters.  But l a t e r  on, more than one unknown may appear 

a t  some s t e p  k'  > k. It i s  then  necessary  t o  in t roduce new parameters ,  

c o n s i s t i n g  o f  the  excess  unknowns. 

Thus t he  s e t  o f  parameters may f l u c t u a t e  a long  the  s t e p s ,  i n  i t s  

d imens iona l i t y  a s  we l l  a s  i n  i t s  con ten t  - s e e  F igure  2. But i t  i s  s u r e ,  

from ( I I ) ,  t h a t  i t  has  never  more than p  e lements.  

I n  a d d i t i o n  t o  the  ma t r i x  B and the  r ight-hand s i d e  b, the  co re  

requirement  i s  a t  most m x ( p+ l )  : (m-p) x ( p+ l )  memories f o r  the  

express ions  (14) .  and p  x (p+ l )  f o r  t he  (p  x p)  system. Hence, i n  o rder  

t o  reduce the  requ i red  s t o r a g e ,  i t  i s  convenient  t o  reduce t he  band- 

width p  dovn t o  a  va lue  a s  smal l  a s  poss ib l e ,  by means of s u i t a b l e  
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rearrangements of the matrix B. Various techniques, systematically 

tested by D. FAYXRD and G. PLATEAU [I], and Y. HAUW C21, have led 

to a simple technique, described in the next section; it gives a 

band-width which, if not optimal, is a quite satisfactory approximation. 

For the sake of theoretical curiosity, as has been pointed out in 

i21, when applied to (10) with a full matrix B, the method of parameters 

leads to a pivoting method of the diagonalization type, as with the 

Jordan method. But the operations are not the same, and a precise 

inventory of the calculations shows that the respective numbers of 

multiplications, divisions and additions, are exactly the same as in 

Gauss method (which is a triangularization method, cheaper than Jordan's). 

In section 9 a detailed comparison of these operations vill be given. 

Finally, it should be noted that for the steps not including 

eliminations the pivots used are original elements of the B matrix. 

for at step k, rcvs k+l to m have not yet been modified. This fact is 

important for the stability of the computations. 

5 .  - OBTAIKING IN PRACTICE THE YINIMAL BLYD-WIDTH 

To permute rows and columns of the B-matrix reduces to choose two 

permutation functions g and h, defined on the domain M = { 1 , 2 ,  ..., m). 

The optimal permutations, which give minimal band-width, solve the 

problem 

min {max {(h(j) - g(i)) Bij I i, j r MI1 
l3.h 

where Bij = I if B: 0,  Bij = 0 otherwise. 

No exact solution is known to this combinatorial problem, except 

through exhaustive enumeration - too expensive. Various heuristic 



approaches have been proposed. to solve this problem or similar ones. 

In the case of band-matrices of minimal band-width, we mention the process 

of Tewarson [ 7 1 ,  which requires the resolution of an integer programming 

problem, without even guaranteeing an optimal solution. 

In fact, concerning large and very sparse matrices, issued from real 

problems, some simple heuristics, based on intuitive considerations, have 

proved very efficient in a large number of cases. Rule 5.2 below is one 

of them. 

5.1. - The full-rectangles rule 

The nonzero elements of the B-matrix are squared into a string 

of rectangles, which touch one another by their diagonal corners, and 

whose upper-right elements are nonzero (see Figure 3). 

Figure 3 

Any one of these which is not full can always be decomposed 

into smaller full rectangles, and this is only done by permutations which 

concern only rows and columns in that rectangle. Then the new band-width 

is not greater than the old band-width. 



Th is  p rocess  can be app l i ed  independent ly  t o  every i n i t i a l  

r ec tang le  t h a t  i s  not  f u l l .  But, a s  F igure  4 shows, i t  does no t  guaran tee  

an opt imal  s o l u t i o n .  

5.2. - Row of sma l l es t  r e l a t i v e  degree 

Le t  T .  be the  s e t  of i n d i c e s  corresponding t o  nonzero 

e lements i n  the  rov i. Having f i xed  the  f i r s t  k rows of B ,  t h e  number 

d j - 1 ~ ~ 1 - I  
k 

where P = r .  1 r .  n ( u r i )  
j J I il, 

is c a l l e d  the  degree of t he  rov j, r e l a t i v e  t o  t he  f i r s t  k rovs.  P.  
J 

r ep rcsen t s  t he  s e t  index ing  t he  e lements t h a t  a r e  nonzero i n  t he  rov j. 

but  a r e  ze ro  i n  thc  f i r s t  k rows. Thus, adding a row of 0 degree a f t e r  

t he  f i r s t  k rovs  does no t  i nc rease  t he  number of parameters.  A negat ive  

degree v i l l  decrease by I t he  number o f  parameters ( through e l i m i n a t i o n ) .  

A p o s i t i v e  degree i n c r e a s e s  t h a t  number by d 
j 

There fo re  a s imple p rocess  c o n s i s t s  of s o r t i n g  the  rows 

dovnvards : a t  each s t a g e ,  one chooses a row chat  has t he  sma l l es t  

r e l a t i v e  dcgree among t he  remain ing ones,  and t he  new columns a r e  moved 

s o  t h a t  the  nonzero e n t r i e s  i n  t he  p resen t  nev rov  a r e  regrouped on t h e  

l e f t .  

It is t h i s  s imple p rocess  t h a t  has f i n a l l y  been implemented 

i n  the code w r i t t e n  by IWUW C21, a f t e r  a number of ex tens i ve  t e s t s  v i t h  

ma t r i ces  (20 x 20) and (100 x 100) have been performed. It seems t h a t ,  

v i t h  (100 x 100) ma t r i ces ,  t he  band-width has  always been opt imized 

v i t h i n  2 o r  3. 

When s e v e r a l  rovs have the  same r e l a t i v e  degree a t  t he  same 

s t a g e ,  i t  i s  a t t r a c t i v e  t o  use a secondary c r i t e r i o n  t o  choose from among 

them. For example, t h e i r  i n f l uence  on the  remain ing rows may be cons idered .  

A f t c r  having t r i e d  more t han  a dozen such c r i t e r i a ,  none has proved 
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significant. Finally, the policy is to take the last encountered of 

the candidate rows (which leads to the easiest implementation). 

It can be checked that this process automatically satisfies 

the rule 5 .1  of full rectangles. 

5.3. - Taking into account of special structures 

Obvious permutatio* can be suggested by certain special 

structures. This is the case for example when slack variables are 

present (or, more generally, when the matrix A contains a diagonal 

submatrix). 

It is straight forward to obtain a basic matrix A' that has 

the pattern indicated on Figure 5  (where U is.a unit matrix, corresponding 

to the slack variables in the basis). In practice, the slack-r3ws are 

placed in the bottom. Then only the B-matrix is processed, and its co lum 

permutations are also applied to C. It is the new triangular-band-wise 

matrix B' that imposes the number of parameters. 

Note also that, when the basis is changed, the triangular 

band-wise pattern of the basic matrix is only slightly affected. It can 

easily be seen that, through a very simple column permutation. the 

band-widrh is changed by 1 ,  0 or - 1 .  Thus. a complete reordering may be 

applied only from time to time. 

6. - AVEPAGE THICKNESS OF A MATRIX 

An important question, before using the method of parameters, is 

to know what band-width is to be expected after reordering. 

Or course, this question has no general answer, but one can try to 

have an idea by studying first the probability distribution of this 

band-width, for matriccs whose.eleme~~ts are randomly generated. This is 

done in 6 . 1 .  Structurcd matrices are studied in the following scctions : 



Natural variables 

Slack variables 
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in 6.2, pathological cases - fortunately artificial and rare - that 

give maximum band-width; in 6.3, highly structured matrices, issued from 

problems of electrical dispatching, always giving small band-widthes. 

6.1. - Sparse matrices randomly generated 

Three samples, of 100 matrices each, have been generated. 

These matrices are (100 x 100) and their elements. 0 or I. are 

realizations of independent random variables with a probability p to 

get a 1. The samples correspond respectively to p = 0.05, 0.06, 0.03. 

Each matrix thus obtained is processed as described in 5.2, so as to 

obtain a band-width as small as possible. 

Figure 6 indicates the frequency of the minimal band-width p. 

Note the dispersion of p, and its very quick variation, as a function 

of 0 :  for p = 5%, the average p is between I8 and 19, but reduces to 

8-9 for 0 = 4 2 ,  and practically vanishes for p = 3%. 

However, the density is not the only influential factor for 

the thickness of the matrix. From a remark of W. DE LA VEGA and 

J.F. MAURRAS [ 9 ]  a randomly generated (1,000 x 1,000) matrix of exactly 

10 nonzero elements per row (and hence with a density of 0.01) may have 

a null (333 x 333) submatrix with a probability almost equal to zero. (*!  

The "absolute" value of' Ir'. I seems to play an important role. 

Lastly, notice the numerical experiments of 1.  DENEL [ B ]  

concerning random matrices with, for each row i, a randomly generated 

value of the degree IT. I between 1 and d, and randomly generated ranks 

for the nonzero elements. The sizes of these matrices vary between 50 

and 1,000, with d = 6 ,  10 and 20. The mean value of the degrees is 

thus d/2. Notice that almost all these matrices are structuraly singular. 

In the table below are given the mean values of p and p for each couple 

(d, m), corresponding to samples of 10 matrices (m < 1,000) or 20 

matrices (m = 1,000). 



It is not really possible to draw practical conclusions 

from these experiments, because basic matrices of usual linear programs 

substantially deviate from these random matrices. 

6.2. - Pathological cases 

It is possible to construct =trices in which any pair of 

r w s  (and of col- as vell) have only one nonzero element at the same 

place, i.e. : 

( r )  This t h e o r i c a l  r e s u l t  was confirmed by numerical exneriments : amonn twenty such random 
(1.000 X 1.COC) matr ices.  t h e  minimum va lue  of p was 431 (tee C81 ). 



Such (m x rn) mat r i ces ,  w i th  k nonzero e lements pe r  row end per  

column, can be found by rep resen t i ng  con f i gu ra t i ons  o r  f i n i t e  p r o j e c t i v e  

p lanes .  A s tudy  i s  g iven  i n  L61. 

These ma t r i ces  a r e  cha rac te r i zed  by the  numbers m and k 

r e l a t e d  by 

where q i s  a prime number, o r  a power of a prime number. One s e e s  t h a t  

the  dens i t y  p = k/m becomes smal l  when the  s i z e  of the  mat r i x  i nc reases  

Examples of such ma t r i ces  a r e  g iven i n  F igure  7 f o r  q = 1 ,  2 ,  3, 2 
2 

We leave  t o  t he  reade r  the  p leasure  t o  cons t ruc t  t he  case  q = 5 (m = 31, 

k  = 6) .  He w i l l  t hen  see  t h a t  cons t ruc t i ng  such ma t r i ces  i s  not  a t r i v i a l  

t ask .  I t  i s  f o r t m a t e  t h a t  t hese  ma t r i ces  a r e  somewhat " ra re" ,  because i t  

i s  easy  t o  check t h a t  t h e i r  minimal band-width i s  a t  l e a s t  k  (k-1) /2,  o r  

( a r1 ) / 2 ,  i . c .  t he  same o r d e r  of magnitude a s  m. 

6.3. - Pia t r i ces  of r e a l  mot iva t ion  

Contrary t o  random ma t r i ces ,  ma t r i ces  cor respoad ing  t o  l i n e a r  

programs coming from r e a l  problems, a r e  h igh ly  s t r u c t u r e d .  As a r e s u l t .  

f o r  the  same p ropo r t i on  of nonzero e lements,  they have narrower bands. 

Experiments w i t h  problems of e l e c t r i c a l  d i spa t ch ing ,  have 

been conducted by FAYARD, HAUW and PLATEAU [ I ] ,  [21. X f i r s t  s e r i e s  of 

12 (20 x 20) ma t r i ces  - i s sued  from l i n e a r  programs rep resen t i ng  the  CIGRE 

model of e l e c t r i c a l  network w i th  10 nodes - having many nonzero e lements 

(20% t o  35%) have g iven band-widthes ranking from I t o  5, a s  i n d i c a t e d  i n  

the t a b l e  below. The i nd i ca ted  p-values a r e  t he  sma l l es t  ones ob ta i ned  

a f t e r  var ious  t r i a l s  of permuta t ions .  But r e s u l t s  were gene ra l l y  ob ta ined  

wi th Procedure 5 .2 .  
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Note that p generally increases with p ,  but with fluctuations. 

of course due to differences in the structures. 

A second series of experiments has been conducted with 10 

(100 x 130) matrices A of the following form : 

where B' is obtained from the given matrix B by removing one column. This 

general pattern is ty~ical in problems of electrical dispatching, having 

similar constraints on rcactivc and active powers. 

The chosen B matrices had structures frequently encountered 

in this type of problems, with p-values ranking from 6% to 10%. As 

indicated in the table below. the corresponding p-values vary from 5 to 20; 

they are the smallest values obtained after various trials of permutations. 

Here again the rough increase of p with p is patent, despite 

the variety of the chosen R-structures. Just for comparison with the 

random (100 x 100) matrices of Section 6 . 1 ,  a smoothed extrapolation of 

the above results give approximately p = 3 for p = 57. ( conpare with F i g u r e b )  



7. - NL.T?IERICAL EXPERIblENTATIOh' OF THE METHOD OF P A W T T E R S  [2] 

The method of parameters has been experimented with some linear 

programs, the dimension of which ranking from 60 to 922 constraints. The 

results, displayed in the table below, show that the maximum number of 

parameters used during each resolution is always considerably smaller than 

the number of constraints; this established the interest of the method of 

parameters with respect to explicit use of the inverse of the basic matrix, 

as far as storage is concerned. 

The very simple experimental code used in the tests was written by 

Y .  H A W  [2]. It contains a switch for the computation d, T' and xI (see 

Section 2) either by "Explicit inverse" or by "Parameters". The two variants 

for a same problem normally give the same sequence of bases, except possibly 

by the end, in the case of very small values for dS and of roundoff errors 

different in either nethod. This code is written in Fortran IV, H compiler. 

The computation times indicated in the "Parameters" column arc those 

obtained with this code on a CII IRIS 80 computer. Likewise for the 

"Explicit inverse" cslumn for problems 1.2.3. For problem 4, It is the 

time obtained with the IPSL Code on IBM 3033 Ccnputer, multiplied by 

19.5 in order to compare with IRIS 80'~). 

For problem 5, it is the time obtained with the APEX IPI code on 
CDC 7,700 (although this code factorizes the basic inverse) multiplied 

by 60. It may be remarked that the parameter's variant is quite 

competitive for the first four problems. For problem 5, the analysis of 

the computation time has shown that the re-ordering of the matrix needed 

almost all of the 1 1  seconds. The sorting routine used in the experimental 

code of Y .  HAW was a m2 sequential sorting routine, which becomes prohibitive 

for large values of m. A new version of J. DENEL [a], based on an adaptation 

of the binary-tree HEAP-SORT procedure, has a cost of only N log m, N being 2 
the number of nonzero elements of the matrix. The time for ordering a 

(1,000 x 1,000) matrix is then divided by about 10, which for problem 5 

should give a time per iteration similar to the one of the APEX I11 code. 

(*) The nuc~bcr 19.5 is obtained by comparing the times needed to invert 
a matrix in double precision (CDLVILLC standard program). These times 
are respectively 2.51 aiid 69.1 secondc. 



Not ice f i n a l l y  t h a t  the  p o s s i b i l i t i e s  of sav ing  permutat ions 

when the  change of b a s i s  t akes  p l ace ,  i nd i ca ted  a t  t h e  end of s e c t i o n  

5.3. ,  have no t  y e t  been used i n  t h e  code. 

Some no tes  about  the  o r i g i n s  of t he  problems cons idered  

The dimensions a r e  those  of t h e  s tanda rd  form ( e q u a l i t y  c o n s t r a i n t s ,  

non nega t i ve  v a r i a b l e s ,  s l a c k s  inc luded,  a r t i f i c i a l  v a r i a b l e s  exc luded) .  

Problem 

No 

I 

b 

2  

3  

4  

5  

No I : A program w i t h  28 i n e q u a l i t y  c ~ n s t r a i n t s  and 32 n a t u r a l  v a r i a b l e s ,  

non nega t i ve  and upper-bdunded. The bounds a r e  taken a s  o rd i na ry  

c o n s t r a i n t s ,  hence 28 + 32 = 60 s l a c k  v a r i a b l e s ,  and 28 + 32 = 60 

c o n s t r a i n t s .  

n  

92 

120 

218 
I 

487 

1763 

m 

60 

100 

170 

249 

922 

No 2  : A s y n t h e t i c  problem, t h e  ma t r i x  being ob ta ined by doubl ing a  random 

(99 x 60) ma t r i x  - having l i n e a r l y  independent columns - and adding 

a  border ing  l i n e ,  a s  descr ibed  i n  CHARNES, M I K E ,  STUTZ and WALTERS 

(ACM volume 17 number 10 (1974) 583-586). 

K0 3  : Management of a  r e s e r v o i r .  122 i n e q u a l i t y  c o n s t r a i n t s  and 48 n a t u r a l  

v a r i a b l e s ,  non nega t i ve  acd bounded. The Sounds a r e  t r e a t e d  a s  

o rd i na ry  c o n s t r a i n t s ,  hence 122 + 48 = 170 s l a c k  v a r i a b l e s ,  and 

122 + 48 = 170 c o n s t r a i n t s .  

Nonzero e lements p  

maxi 

6  

8  

6  

4  

3 

T o t a l  

328 

600 

793 

954 

3738 

I 

6  

5  

2  

0 ~ 8  

0.23 

Mean t i m e / i t e r a t i o n  i n  s e c .  

E x p l i c i t  i n v e r s e  

0.13 

0.45 

1.36 

4.60 

I 

Parameters 

0.17 

0.41 

0.75 

1.14 

1 1  



N o  4 : Energy program, with two periods, 236 inequalities and 13 equalitiss, 

25i natural positive variables. Hence 236 + 13 = 249 constraints 

and 236 slack variables. 

N o  5 : Energy program over 8 periods, with 922 inequalities and 841 natural 

positive variables, hence 922 slack variables. 



8 .  - ANNEX I 

COMPARISON OF THE REQUIRED CALCUI.ATION, DURING ONE ITERATION OF 

THE SIMPI.FX PETHOD, BETWEEN TllE EXPLICIT USE OF THE INVERSE. AND THE 

DIRECT RESOLUTION WITH PARAMETERS 

In one iteration of the Simplex method, the matrix calculations 

that differ in the two variants are : ( 4 ) ,  ( 6 ) ,  (7). ( 9 )  for the explicit 

use of the inverse, and ( 4 ' ) ,  ( b ' ) ,  ( 7 ' )  for the solving of the linear 

systems with the method of parameters. 

In the first variant, it is of course possible to avoid ( 4 )  

by using the classical relation 

where the values of u, d,  T are those relative to the basis I, and hence 

are known. One can also ccmpure directly 

Also, in either variant, it is possible to avoid ( 6 )  or ( 6 ' ) ,  using 

the classical relation : 

where 8 is given in ( 8 ) .  

However, in large problems, with many iterations.roundoff errors 

may become important in these recursive calculations. In what follows, 

therefore, we suppose that both variants actually use ( 4 ) ,  ( 6 ) .  (7) and 

( 9 ) .  on t h ~  one hand. and ( 4 ' ) ,  ( 6 ' ) .  ( 7 ' )  on the other. 



The second variant (direct resolution) requires in addition re- 

arranging rows and columns (actually : rearrangement of pointers), i.e. 

operations that can hardly be compared with arithmetic operations. 

Nevertheless, these operations being fast, we will disregard them in the 

analysis below. 

Some more comments before going on : operations ( 6 )  and (7) cost 

the same. Operations (4'), (6') and (7') as well, but (6') and (7') 

concern the resolution of the satne linear system with two different 

right-hand sides, which is little more expensive than just one resolution. 

Solving (4') corresponds to the transpose matrix, which enjoys the same 

reordering as the basic matrix (rows are just used in reverse order). 

Therefore it suffices to detail the calculations for (6) on the 

one hand and for (6') with one and two right-hand sides. These calculations 

mainly consist of scalar products between rows and columns, so we take 

into account the zero-elements of these vectors to avoid corresponding 

multiplications : the amount of calculation is the expec:ation of the 

actual number of multiplications. The value of this number in a scalar 

product exploiting sparsity, is recalled in Sectlon 8.1. Also. operations 

vhose result is a value known in advance (0 or I )  will not be counted. 

We recall that these schematic balances count only the arithmetic 

operations : multiplication, addition, division, that they analyse only 

parts that differ in the two variants and that Lhey do not take into 

account possible computer adaptations, characteristic of each variant. 

8.1. - Scalar product of two sparse vectors 

Let u and v be two m-vectors, the components of which are 

independcnt random variables. Let p (resp. p') be the probability that 

a component of u (resp. v) is zero. We set q = 1 - p, q' = I - p'. 

Consider the scalar product 



If x is the number of multiplications with one zero at least, 

this number equals the total number of zeroes in u and v, minus the 

number of corncidences u. = V. = 0. Hence : 
1 1  

E(x) = m(l - qq') ( 8 . 4 )  

If y is the number df actual multiplications(ui and v # O), i 
one has y = m - x, hence 

E(y) = m qq' (A.5) 

8.2. - Detailed calculations in the variant "explicit inverse" 

8.2 .1 .  - l&~a~ jng-~h_e-~n~e_~~g  

I - 1  The new inverse is obtained by premultiplying (A ) 

by an elementary aatrix E. Thus, an elcment (i,j) of the new inverse 

(A")-' is calculated through the following scheme (see Figure 8). 

Figure 8 



If i f s, i.e. m(m-1) occurences : I addition and 1 multiplication. 

If i = s, i.e. m occurences : only 1 multiplication. 

The addition is done only if the element (i,j) of the old 

inverse is nonzero. The multiplication is done only if the element(i,r) 

of E and the element (r,j) of the old inverse are both nonzero. 

If p '  is the density of the basic inverse, and of the 

r-column of E (which is obtained, from the candidate column T ~ ,  through 

m divisions), we finally obtain the following account : 

8 . 2 . 2 .  - Producl-of the basic inverse by a vector 

I 
If p is the density of vectors f , a or A' (supposed 

to be equal to- that of A) we obtain 

8 . 2 . 3 .  - Total account 

Summing up operations 8.2 .1  and 8 . 2 . 2  (the latter 

being done three times) gives a total account : 



8.3. - Detailed calculations in the variant "Parameters" 

Ye study here the direct resolution of a linear system. 

m large 

2 
m (39 + P')P' 

2 
m ( 1  + 30)~' 

m p' 

x 

+ 

t 

considering simultaneously h right-hand sides. We have h = 1 when solving 

( 4 ' ) ,  and h = 2 when solving simultaneously (6') and (7'). 

m(n(3o + p') + I - p')p' 

m(m(l + 3p) - I)p' 

(m - I)p' + I 

The (m x m) matrix of the system is supposed triangular-band- 

vise, having a band of width p (above the diagonal, diagonal excluded). 

Therefore thc number of parameters to be used when solving this system 

is at most p. We will further suppose that this number is constantly 

equal to p (no temporary elimination of parameters). 

There are four distinctphases in the calculation : 

- Successive transformations of the first (m - p) lines, to express (m - p) 

unknowns as functions of the parameters. 

- Construction of the (p x p) system to compute the parameters. 

- Solving this system. 

- Calculating the (m - p) other unknowns 

It is reasonable on the long run to take for the basic matrix 

the same proportion p as for the matrix A. However we cannot take the same 

value for the row-sections that lie below the null-triangle. We have to 

modify p according to the ratio of surfaccs of the null-triangle and the 

matrix, and to take 



If m is large with respect to p. one has approximately p" = 2 . 

8.3.1. - Trrn_sfonnin_g line (k I, 2 ,  ..., r p )  

The first (k-I) rows (including the right-hand 

side(s)) have already been tra&formed by pivoting, and look like the 

sketch on the left of Figure 9 (where only one right-hand side is shown). 

We suppose in this figure that the p parameters 

correspond to the p first columns, and that no parameter has been 

eliminated. We suppose that, from the previous operations, the first 

p columns are full, as well as right-hand sides. The other elements in 

the first (k-I) first rows are : I in (i, p + i) and 0 elsewhere. 

The operations that transform the row k are : 

. p"(p + k + h - 1 )  divisions by the pivot (divisions of ;ha non-zero 

elements, excluding the pivot but including the right-hand sides). 

. p"(p + h)(k - I )  multiplications (multiplying each row k' < k, by the 

same element, to obtain aftcr addition a zero at the location (k, p + k')). 

Only the elements of the first p columns, as well as right-hand sides. 

are actually multiplied. 

. p"(p + h)(k - I) additions (to cach multiplication above, corresponds one 

addition to some element in the row k). 

Summing up from k = 1 to k = m - p, we obtain : 

(A.  10) 
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Once the  above ope ra t i ons  have reached the  row 

k  = m - p, we have a  ma t r i x  looking l i k e  t he  ske tch  on t he  l e f t  of 

F igure 10. Combining w i th  t he  f i r s t  (m - p) rows, we e l im ina te  t he  e n t r i e s  

of t h e  l a s t p r o w s ,  columns p  + I t o  m. I f  some e n t r y  i s  a l r eady  0 ,  t h e  

ope ra t i on  i s  sk ipped.  

We suppose; that  t he  submatr ix  ( i . j )  i = 1 ,  2; ... (m-p), 

j - 1 ,  2, ..., p i s  f u l l .  but  only t h e  p r o p o r t i o n p "  i s  t o  be cons idered  i n  

the  submatr ix  ( i , j ) ,  i = (m - p + I ) ,  ..., m, j = ( p + l ) ,  ..., m because 

the  t rans fo rmat ions  8.3.1.  have no t  a f f e c t e d  t he  l a s t  p  rows. Moreover, 

e l im ina t i ng  an e n t r y  of t h i s  submatr ix  does no t  change i t s  o t h e r  e n t r i e s  

( ye t  i t  mod i f ies  the  cor respond ing  row of the  (p  x p) submatr ix  of the  

parameters ) .  

We f i n a l l y  ob ta i n  a f t e r  enl imeration : 

(A. 1 1 ) 

Its mat r i x  i s  normal ly  f u l l .  A c l a s s i c a l  p i v o t i n g  

method such a s  GAUSS'S method r e q u i r e s  : 

(A. 12) 

which amounts t o  p3 o r d e r ,  and i s  n e g l i g i b l e  i f  p  i s  smal l  w i th  r espec t  

t o  m .  



8.3.4.  - h i c u l a t i p g  the  o t h e r - ~ " c g ~ ~  

To o b t a i n  t h e  k-th unknown (k = 1.2, ..., m-p) 

one has t o  mu l t i p l y  t he  p  f i r s t  e n t r i e s  of t h e  k-th row (mat r i x  on t h e  

r i g h t  i n  F igure  10) by t he  corresponding parameter  va lue  and t o  s u b s t r a c t  

the  r e s u l t s  from each r ight-hand s i d e .  Hence, f o r  t he  whole of (m-p) 

unknowns and h  r ight-hand s i d e s  : 

(A .  13) 

8.3.5.  - T o t a l  account  

I n  summary, so l v i ng  (4 ' ) .  (6'). ( 7 ' )  a s  a  r e s u l t  of 

adding (A.10) t o  (A.13) f o r  h  = 1 and h = 2, r e q u i r e s  t ne  fo l low ing  

ope ra t i ons  : 

( A .  1 5 )  

x 

+ 

t 

I f  m i s  l a r g e  i n  f r o n t  of p ,  p" % 2p and t he  o r d e r s  

of magnitude a r e  : 

( m  - p)(m + p - 1) (2  p  + 3, + 2 ( m -  p ) p  + P(P - 1) (4  p + 13) 
2  6 

( m -  p ) ( m +  p  - 1 ) (2  p  + 3)  p,, + 3 ( n -  + *P(P - I ) ( p  + 4) 
2  3 

( m -  p)(m - p + 2) + p(p + 2 )  

(A. 15) 



COMPARISON BETWEEN THE PIVOTING METHODS OF GAUSS, JORDAN AND PARMETERS 

We suppose here that the considered matrix is full. This leads, in the 

method of parameters, to use m parameters (which of course presents no 

interest from a practical point of view). In this special situation, the 

method of parameters is a pivotylg method with diagonalization, as JORDILU's 

method. However, its cost is exactly that of GAUSS'E method, which is a 

pivoting method with triangularization. 

In Figure 1 1 ,  are given the details for the k-th stage for each 

method, cogether with the comparative account of the calculations. 

GAUSS JORDAN PARAMETERS 

T ~ i ~ l ~ l a r i z a t ~ o n  Diopolloli=atla D ~ q o n d i z o t i o ~  

Figure I I 
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1. INTRODUCTION 

A linear programming basic feasible solution is said to be degenerate when it 

contains zero valued basic variables. Call these degenerate variables. A degen- 

erate iteration in the simplex method is a (feasible) change of basis with no 

improvement in the objective value. 

The presence of degenerate solutions in linear programming is troublesome 

both theoretically and computationally. In the former, the possibility of 

cycling (an infinite number of iterations) cannot be ruled out without special 

pivot selection tiebreaking rules (e.g. [I ] ,  [2]). In the latter most problems 

encountered in practice exhibit some degree of degeneracy, and even though 

the simplex method almost never cycles on such problems, it nevertheless 

usually performs a high proportion of degenerate iterations [7]. (Our own 

experience indicates that a problem with on the average 20% of its variables 

degenerate usually results in approximately 50% of its iterations being degener- 

ate.) 

In this paper we study degeneracy from the point of view of reducing the 

computational effort per degenerate iteration. We begin by viewing the simplex 

method as performing a sequence of nondegenerate iterations, with the direc- 

tion of movement at each such iteration being determined by an auxilbary linear 

program having as many rows as there are degenerate basic variables in the 

current solution. Then we show that the computations in this setting can be 

conveniently performed by means of a basis factorization method which 

achieves its savings by being able to perform degenerate iterations with only 

partial information. We indicate that this method should be best suited for use 

with multiple pricing [4], a technique that considers several candidates at once 

for introduction into the basis. 
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2. RESOLVING DEGENERACY: A SUBPROBLEM 

Let the given problem be 

minimize cTx 

subject to Ax = b; x 2 0. 

Denote a basic feasible solution generically by x = (u,v.y), where u, v and y 

are respectively the basic variables at positive level (nondegenerate variables), 

basic variables at zero level (degenerate variables), and nonbasic variables. Let 

B denote the generic basis submatrix of A. 

For a given feasible basis B, we may express the basic variables in terms of 

the nonbasic variables to obtain an equivalent problem 

minimize P ~ Y  

subject to u + Cy = q (q>O) 

v + D y = O  

(u,v,y) 2 0 

(We ignore the constant term difference between the objective values of (1) 

and (2)) .  The form of (2) will be considered generically, being equivalent to 

the usual canonical simplex tableau [2]. 

Suppose we now perform the simplex method (under a given pivoting rule) 

and that k ( 2  0) iterations occur before either a strict improvement in the 

objective value or a proof of optimality is obtained. Two observations are 

immediate: 

1. Iterations l,..,k will consist of exchanges of nonbasic variables (y) with 

degenerate basic variables (v). 



2. If iteration k + l  yields a strict decrease in the objective value, this can only 

occur if DS 5 0, where yS is chosen as the entering variable. 

From this it is clear that in order to move from one basic solution to another 

with a strict improvement in the objective value, the simplex method is indeed 

solving the subproblem 

minimize P ~ Y  

subject to v + Dy = 0 

This is a linear program whose variables all remain at zero level until an un- 

bounded solution is detected, at which point it is terminated. Once (3) has 

been solved. a change in the degeneracy structure occurs with a simultaneous 

exchange of degenerate (v) and nondegenerate (u) variables. 

We wish to regard (3) as being distinct from the original problem for the 

following reasons: 

1. Being generally much smaller in size, it may prove worthwhile to solve it on 

the side in some sense. If the simplex method performs many degenerate 

iterations or if the degeneracy structure does not vary greatly from one 

nondegenerate step to the next, then (3) represents that part of the tableau 

changing most rapidly. Exploiting this is the subject of the next section. 



2. Totally degenerate linear programs such as (3)t are in a way very different 

from their nondegenerate counterparts, and may (at least a priori) be better 

solved by methods other than the usual pivoting rules. Firstly, feasibilty is 

always assured: every nonsingular submatrix of columns. of (1.D) is a 

feasible basis for (3). Secondly, (3) can be solved by inspection if there is a 

column satisfying 

Thus if we had the updated tableau at our disposal, this should be the first 

criterion for an incoming column rather than, say, p, = min {pi]. Further, 

if no such column exists, we wish to perform an exchange of columns with 

the hope that there will be such a column at the next step: to this end, 

there seems little justification for selecting an incoming column with 

pS < 0,  or restricting the pivotal element to be positive. In the revised 

simplex method [2] where for reasons of cost the full updated tableau is 

not available, choosing the incoming column with p, < 0 may therefore be 

viewed as maximizing the probability that, in addition, D, 5 0. With the 

added use of multiple pricing, however, a few columns of the updated 

tableau are kept at hand. In particular, this can be used to advantage in 

seeking a column satisfying (4). and is well suited for use with the method 

presented next. 

Every linear program (1) may be stated in a totally degenerate 
form: maximize t subject to Ax = bt, ATw 5 ct, cTx 5 bTw, 
x 2 0 [2, p.2901. 



3. A DEGENERACY EXPLOITING BASIS FACTORIZATION METHOD 

The heart of most implementations of the simplex method is the manner in 

which the basis is represented. Usually one chooses a factorization that can be 

used efficiently and stably in solving for the prices and the representation of the 

incoming column - as required in the revised simplex method, and can be easily 

updated from one iteration to the next. 

The method proposed here is, like a great many others, based on partition- 

ing and tearing (see [3]). Consider first the following general factorization 

scheme: 

Partition 

arbitrarily but so that T is nonsingular. Then B may be factorized as the prod- 

uct 

for appropriate and H. In order to solve equations with respect to B and BT, 

it suffices to have T and G in factorized form. Typically, T is chosen to have a 

convenient form, e.g. triangular. so that most of the work centers around 
- 
G and IT, F already being part of B. To  save on storage, the requisite equations 

may also be solved without knowledge of H, an approach we favor here (see 

e.g. [5] ). For example, to  determine the representation of the incoming 

column, a, the system 



may be solved as follows: 

where w = (w', w2) and z = (z', z2) are partitioned appropriately. 

in the context of degeneracy, let B be partitioned so that B' and B2 are the 

columns corresponding to nondegenerate and degenerate variables respectivelyt. 

Observe that 5 and fi are then simply parts of the tableau updated relative to 

the basis L. In addition, 5 is the starting basis for the subproblem (3). 

Suppose next that the simplex method applied to (1)  with starting basis B 

performs some degenerate iterations followed by one that is nondegenerate. 

Since degenerate iterations involve replacements only of degenerate variables, 

the change in our factorization of B in ( 6 )  is localized to an exchange of 

columns in G alone (assuming we discard H). Further, in solving for the 

representation of the incoming column we would only partially solve (7)  in 

order to obtain z2, which is all that is needed to perform a degenerate iteration. 

(z2 here is D, in the previous section). 

z2 5 0 indicates that the current iteration is nondegenerate. We would 

then solve the third system in (7 )  for zl, and determine the leaving column by 

means of the usual minimum ratio test. At this point the update of the factori- 

For the moment we require only that T be nonsingular. 



zation ( 6 )  is more cumbersome because a change in the degeneracy structure 

occurs. Restoring ( 6 )  in conformance with the new partition into degenerate 

and nondegenerate columns will most likely be too costly, and an easier method 

(both conceptually and computationally) may be to border G appropriately, 

leaving the factor L untouched. 

More specifically, if the entering column, a, replaces a nondegenerate 

column of B, and moreover a subset a of the nondegenerate variables become 

degenerate, we would enlarge to obtain 

where r is the pivot row and w is determined in (7).  The work here is then to 

generate the required rows of H followed by an update of whatever factori- 

zation is employed for G. Note that G now represents the degenerate varia- 

bles together with the nondegenerate variables that were initially degenerate. 

Periodically we would begin the process from scratch by reinwrsion, indi- 

cated either by G requiring excessive storage or by loss of numerical accuracy. 

In the event that a large number of nondegenerate variables become degenerate 

at any one iteration, finding the rows of H for the bordering process may 

become prohibitive, and it may be profitable simply to treat these new degener- 

ate variables as being nondegenerate, then performing reinversion earlier than 

otherwise. 

Finding a row of H requires the solution of a system with respect to L and the 
inner product of this solution and B2. 



Several existing factorization algorithms (e.g. [3], [S]) attempt to reduce 

storage requirements by permuting B to bordered triangular or block triangular 

form: 

This corresponds in ( 5 )  to choosing T as large a (block) triangular matrix as 

possible, and can be adapted easily to our case by letting G initially represent 

both the degenerate variables and the bordered nondegenerate variables (called 

xpikex). L, too, is then a (block) triangular matrix which between reinversions 

remains fixed in this desirable form. 

In cases where a very sparse (or otherwise desirable) factorization of B is 

available that is not of this near (block) triangular form, the method still 

applies: Let L bg all of B (in this desirable factorized form) and begin with G 
being the identity corresponding to the degenerate variables. 



3. SUMMARY AND CONCLUSIONS 

We have proposed a basis factorization algorithm intended to exploit the 

degeneracy that has been observed to occur in linear programs encountered in 

practice. A typical simplex iteration begins with the basis represented by two 

systems (see (6)): the first, L, is of a desirable form, e.g. triangular, remains 

fixed between iterations, and is associated largely with nondegenerate variables; 

the second, G, represents most of the degenerate variables together with the 

remaining nondegenerate variables. The iteration proceeds as follows: 

1. Select an incoming column, a, by a suitable pricing mechanism or  otherwise. 

If there is none, the solution is optimal: stop. 

2. Solve the equations 

3. If the degenerate part of z2 has any positive components select the largest 

one as the pivotal element (or any other depending on the pivot rule), and 

go to step 4. Else go to step 5. 

4. This is a degenerate iteration: exchange the column w2 with the column 

leaving 5 as selected in step 3. Return to step 1. 

5. This is a nondegenerate iteration: solve the system 

6. Select the pivot row by performing the usual minimum ratio test on z and 

the updated right hand side. If none can be selected, the solution is un- 

bounded: stop. 

7. Update the right hand side and determine the new degeneracy structure. 



8. Update G by bordering it with the appropriate rows and columns deter- 

mined by this column exchange and also by the occurrence of any new 

degenerate variables (if desired). Go to step 1. 

This method should significantly reduce the time spent on degenerate 

iterations since it localizes the area of most rapid change in the basis factoriza- 

tion and allows one to execute these iterations with only partial information. 

Nevertheless the advantage gained could be offset by potentially large changes 

in the degeneracy structure of the basic variables. However, investigative test 

runs on a variety of problems have shown that the average change in the 

degeneracy structure from one nondegenerate step to the next is indeed very 

slight. Experimentation is currently under way with an adaptation of these 

ideas to the LU factorization, and will be reported in [ 6 ] .  

We remark, finally, that the advantages of this method should be sigificant- 

ly enhanced with the use of multiple pricing. This is so for two reasons: Firstly, 

the effects of being able to perform exchanges of columns cheaply are even 

more pronounced when pricing is carried out only, say, every 5 iterations. (In 

our experience it has been common to spend 50% of the iteration time comput- 

ing the prices and pricing out the nonbasic variables). Secondly, as indicated in 

section 2, having part of the updated tableau at our disposal can result in fewer 

degenerate iterations because of increased flexibility in choosing the entering 

column. Only the degenerate part of the updated tableau is required in this 

case, being precisely what this method was intended to find efficiently. 
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1. INTRODUCTION 

Implementations of the simplex method usually comprise two often inde- 

pendent aspects. The first is the manner in which the columns entering and 

leaving the basis are selected, the primary aim being a reduction in the overall 

number of iterations (e.g. Harris [7] and Goldfarb and Reid [5]). The second 

is the means of maintaining the basis in factorized form so that the requisite 

equations can solved efficiently, and therefore reduce the computational effort 

per iteration. One's choice of factorization method is usually guided by numeri- 

cal stability, the structure of the problem, and the particulars of the computer. 

For general large sparse linear programs two of the most efficient factoriza- 

tion and updating methods are due to Reid [15], [16], and Saunders [18], [19]. 

Both are implementations of the the LU factorization with Bartels-Golub 

updating [ I ] :  Reid computes the factors using a Markowitz strategy [ l o ]  with 

threshold pivoting, and performs the updating with the use of row and column 

permutations on U so as to effectively minimize the growth of nonzeros. This 

method favors having a greater proportion of nonzeros in U, and requires that 

all of U be kept in core. Saunders' method, on the other hand, is aimed at 

keeping as much as possible in secondary storage. and is ideal for problems that 

are very large or that will otherwise require excessive paging. Here the LU 

factors are determined by the "bump and spike" structure of the basis. By 

collecting the spikes after Gaussian elimination has been performed most of the 

nonzeros go into L. All that is kept in core is the small upper triangular subma- 

trix F of U which remains after deletion of the rows and columns of U corre- 

sponding to triangle pivots. Sparsity is well preserved during updating since the 

growth of nonzeros is confined to F. Recently, Gay [4] has experimented with 

an improvement over Saunders' implementation by updating F with Reid's 

method. 



This paper describes an alternative implementation of the LU factorization 

that is more intimately connected with the iteration path of the simplex method. 

The main features of this approach are: 

1. Degenerate simplex method iterations can be performed with far less 

computational effort; 

2. It can be used profitably with multiple pricing to allow increased flexibility 

in choosing the entering column and so reduce the overall number of 

degenerate iterations; 

3.  It is similar to the method of Saunders in that primary storage need be 

allocated only for its analogous F matrix. This likewise facilitates the 

efficient use of Bartels-Golub updating, particularly as implemented by 

Reid. 

Most of the underlying ideas here stem from a more theoretical discussion in 

Perold [14], although it is intended that this presentation be self contained. 



2. PRELIMINARY FACTS AND OBSERVATIONS 

The method discussed here exploits two empirically observed phenomena of 

the bases of sparse practical linear programs: a moderate number of degenerate 

columns', perhaps between ten and thirty percent of the total number of basic 

columns, and a small number of spikes', somewhere between 1 and 100. We 

shall later indicate how it can be modified so as not to be adversely affected on 

problems having a large number of degenerate columns. However, its perform- 

ance will deteriorate markedly as the numlier of spikes gets large. 

2.1 Degeneracy 

We call a column of a given feasible basis degenerare if its corresponding 

basic variable is at zero level. The presence of degeneracy is theoretically 

troublesome since the simplex method may cycle (an infinite repetition of a 

basis) without the use of special rules for selecting the entering and leaving 

columns (e.g. Dantzig [3], Bland [2]). On practical problems, however, cycling 

is rare. Nevertheless, degeneracy usually results in a great many degenerate 

iterations, these being feasible basis changes with no improvement in the objec- 

tive value. Indeed, it is typical for a problem with an average of 20% of its 

basic columns degenerate to result in 50% of its iterations being degenerate. 

Figure 1 illustrates the difference between degenerate and nondegenerate 

iterations. hX is the updated right hand side and y is the representation of the 

entering column. 



Nondeg 
part I 
part i 

a) Degenerate b) Nondegenerate 

iteration iteration 

Figure 1 

Iteration (a)  is degenerate because of the presence of a positive entry in the 

degenerate part of y. The points of note are the following: 

1. Degenerate iterations can be carried out without any knowledge of the 

nondegenerate part of y. Only if the degenerate part of y has no positive 

elements is it necessary to consider the remainder of y in order to select the 

leaving variable by means of the usual minimum ratio test. 

2. Degenerate iterations consist of replacements of degenerate columns only. 

Only during a nondegenerate iteration can (and usually does) the degenera- 

cy structure change. 

These facts lie at the heart of the method of this paper. 



2.2 Near triangularity 

Spikes are columns having nonzeros above the diagonal. These were consid- 

ered first in the context of linear programming by Hellerman and Rarick [8] 

who observed that the bases of sparse practical linear programs could usually 

be permuted to a form that is near lower triangular in the sense of having very 

few spikes. They proposed a heuristic' P3 to accomplish this, and then im- 

proved on it [9] by first determining the maximal block triangular structure of 

the basisZ (this is unique) and then applying P3 to the irreducible diagonal 

blocks, called bumps. 

Figure 2: Bump and spike structure of B 

The problem of finding the minimal number of spikes is NP-complete [17]. 
There are now very efficient algorithms to determine the block triangular struc- 
ture, e.g. Gustavson [6]. 



Observe that by moving the spikes to the end of B in a principal rearrange- 

ment, we obtain a bordered triangular form (Figure 3).  A recent efficient 

heuristic to permute a sparse matrix to this form with minimal border is due to 

Sangiovanni-Vincentelli and Bickart [17]. At the present time there are no 

comparative results with P3. 

border 

Figure 3: Bordered triangular form of B 

The advantage of preprocessing the basis in either of the above ways is that 

the growth of nonzeros during Gaussian elimination is confined to the few spike 

(border) columns. Although the row and column order given by the bump and 

spike structure usually yields sparser LU factors than the order given by the 

bordered triangular form', the latter will nevertheless be more suitable for our 

purposes since it yields a much sparser L factor. 

' The extent to which this is true is worthy of investigation. 



3. THE LU FACTORS O F  B 

From the previous section we assume that B has the bordered triangular 

form depicted in Figure 3. Performing Gaussian elimination in this preassigned 

order yields L and U of the form in Figure 4, where T is the triangular part of 

B and remains unchanged in L, and R, F, and E represent the spike columns S 

transformed by pivoting first on the diagonal of T. 

Figure 4 

Remarks 

1. Fill-in occurs in all three of R,. F and E. 

2. It can be easily seen that F here would be the same as that obtained by 

Saunders when all the spikes appear at the ends of their bumps. Since this 

is usually the case for most spikes, we can expect the two F's to be very 

similar. 



The next step is the further partitioning of U according to the degeneracy 

structure of B. The degenerate columns of B bear no relation to its bordered 

form although they will be made up mostly of triangle columns since there are 

usually so few spikes. Perform the principal permutation on U that collects all 

the rows D (say) of R corresponding to degenerate triangle columns and places 

them adjacent to F. This gives U the form depicted in Figure 5. 

where 

Figure 5 

With L and U now determined in this way, we consider performing a basis 

change. In the remainder of this paper we shall identify the columns of U and - - 
F with their corresponding columns in B. Thus we call a column of F degen- 

erate if its corresponding column in B is degenerate. 



4. PERFORMING A BASIS CHANGE 

A substantial part of the computational effort in each iteration of the 

simplex method consists of selecting the column to leave the basis - for a 

given entering column a - and then updating the current to reflect this ex- 

change. 

In order to determine the leaving column we need to solve the system 

This we do by solving the systems 

By partitioning w = (w',  w') and y = (yl, y2) according to the above partition 

of U (Figure 51, it is clear that y can be obtained from w in a two step proce- 

dure: 

Following our discussion on degeneracy in section 2.1, we see that it 

suffices to have yZ in order to perform a degenerate iteration since it contains 

all the degenerate components of y. Only if all of these are nonpositive is the 

computation of y' required. Further, since a degenerate iteration is the ex- 

change of the entering column and a degenerate column, no new degenerate 

columns are created. Thus the factorization may be updated simply by an - 
exchange of wZ for the leaving column of F (e.g. by Bartels-Golub updating). 



The update during a nondegenerate iteration needs to be performed in two 

stages: 

1. Perform the update corresponding to the exchange of columns. Unless the - 
leaving column is a nondegenerate column of F, this will result in the 

formation of an additional spike which can be handled precisely as in 
N 

Saunders' case with his F replaced by F. 

2. Update the degeneracy structure. In principle several degenerate variables 

can become nondegenerate, and several nondegenerate variables can be- 

come degenerate. In practice, it is common for no more than 2 nondegener- - 
ate variables to become degenerate, and it is easiest to border F appropri- 

ately to accommodate them (in the same way as F was bordered to obtain 
N 

the initial F), leaving untouched any degenerate columns that may have 

become nondegenerate. 

- 
Schematically the new F has the following form: 

- 
F (new) = 

.., - 
( 1 )  The rows of R corresponding to new degenerate columns not in F. - 
(2)  The row of R corresponding to the leaving column of B. 

(3 )  Subvector of w = new spike to be eliminated by Banels-Golub. 



5. DISCUSSION 

- 
5.1 Discarding R 

- 
Observe that R is required only during nondegenerate iterations: it is used - 

in the solution of y' and for the bordering of F with a few of its rows. During 

degenerate iterations it is accessed only to save the subvector wl. The above - 
steps can all be performed without knowledge of R. By looking at the rows of 

B corresponding to y1 as depicted in Figure 3, it is clear that there is a triangu- - - 
lar submatrix T of T and a submatrix S of S so that y1 satisfies 

where a = (a1,  a:) is partitioned accordingly. Thus y' may be determined by - 
solving a triangular subsystem of L. Likewise, the pth row of R may be ob- 

tained by solving the system 

- 
TTz = ep (pth unit vector) 

- 
and forming the inner product zTS. This can be used to save substantially on - - 
storage since L, T and S can be embedded as part of the constraint matrix. - 
Additional storage would then be required only for E and F. 

In an out-of-core implementation the storage aspect is not all that impor- - w 

tant, however, and we would probably store L, T and S separately so as to be - - 
more easily accessible. Nevertheless, since T and S are generally much less - 
dense than R,  it may still pay to perform the calculations with them instead. 



5.2 Excessively many degenerate columns 

The success of this method hinges on its ability to confine most of the work - - 
to the small triangular submatrix F which is to be kept in core. The order of F 

is determined primarily by the number of degenerate columns, and may become 

too large for two reasons: 

- 
1. If, say, 70% of the columns are degenerate then F constitutes most of U, 

and the savings during degenerate iterations will probably be slight. - 
2. Even if F is a proportionately small part of U, it may nevertheless require 

too much core, as may happen with extremely large problems. 

In either case, this method can still be made viable by treating sufficiently 

many degenerate columns as being nondegenerate (for the purposes of this - 
factorization only) so as to keep the core requirements of F manageable. Thus 

even though yZ no longer contains all the degenerate components of y, we still 

require y1 only if there are no positive degenerate components in yZ. A good - 
strategy would seem to be to keep F as large as possible subject to core availa- 

bility and/or to there still being some benefit over a method that keeps all of U 

in core (with perhaps sparser L and U factors) 

5.3 Large changes in the degeneracy structure 

In the rare event that a large number k of nondegenerate columns not - 
currently in F become degenerate (only possible during a nondegenerate itera- - - 
tion), updating F by bordering it with the corresponding k rows of R can 

become expensive. This would be especially so if we need to generate these - 
rows because R is not maintained. In such a case it may be better to temporari- 

ly treat these added degenerate columns as nondegenerate columns - in a 



fashion similar to the approach in section 5.2 - and then perform refactoriza- 

tion earlier than usual. 

5.4 Summary 

The procedure for performing a basis change may now be summarized 

below. We assume that the entering column a has been selected. As before, xh 
is the current updated right hand side. 

1. Solve Lw = a - 
Fy2 = w. 

2. If the degenerate part of y2 has no positive components go to step 4. Else 

select one of them as the pivot element. 

Degenerate iteration - - - 
3. Exchange w2 for the leaving column in F, and add w' to R if R is being - 

maintained. Restore F to upper triangularity (by Bartels-Golub updating). 

End of iteration. 

Nondegenerate iteration - - 
4. Solve one of Ty '  = a '  - (0, Sly2 - 

y' = W' - (0, R)y2. 

5.  Determine the leaving column by means of the usual minimum ratio test on 

hX and y. 
- - 

6 .  If the leaving column is not in F generate row p (say) of R corresponding - 
to the pivot row, either by retrieval from secondary storage, or, if R is not - - - 
being maintained, by solving TTz = ep and forming zTS. Augment F with 

this row. 

7. Proceed as in step 3. 



8 .  Update the right hand side. 

9. Determine the new degneracy structure, and generate (as in step 6) the - - 
rows of R corresponding to new degenerate columns not already in F. - 

10. Augment F with these rows and appropriate unit columns, maintaining 

upper triangularity. (This step requires no arithmetic). End of iteration. 

Remark 

Note that each iteration requires the solution of systems with respect to L - - 
and F, and the elimination of a single spike to restore F to upper triangularity. - 
As such, it is important to have L and F in as compact a form possible: permut- 

ing the spikes to the end before performing Gaussian elimination brings us 

much closer to this goal. An alternative may be to find the best bordered form 

from amongst only the nondegenerate columns (i.e. a rectangular matrix). This 

should yield a "thinner" border, but may result in much more fill-in in the 

degenerate columns. While not considered here, this approach seems worthy of 

investigation. 

5.5 Use with multiple pricing 

Computing the prices and determining the incoming column can often cost 

as much as 50% of the iteration time. Multiple pricing [12] is intended to save 

on most of this by selecting several columns at once for introduction into the 

basis. Typically between 5 and 10 columns are selected and introduced one at 

a time subject to remaining profitable. Their representations are kept in core 

and are updated as if in a tableau. In addition to the savings in pricing, one can 

reduce the overall number of iterations by choosing from amongst these, for 

example, the column yielding the greatest decrease in the objective value. 



With this factorization the savings during degenerate iterations will be even 

more pronounced when pricing is not performed at every iteration. For each of 

the 5 to 10 columns we would compute and store their w2 and y2 subvectors as 

usual and then try to select from these a column whose degenerate part is 

nonpositive. From one of these "minor" iterations to the next the w2's can be - 
updated by the transformations used to update F. During nondegenerate minor 

iterations the y2's gain additional components. These can be easily found by - - 
using the rows of R being added to F. Then the tableau updating formulae 

apply as usual. 



6. IMPLEMENTATION 

In order to investigate the behavior of this factorization algorithm, particu- 

larly with respect to the distribution of nonzeros and the relative times spent on 

degenerate and nondegenerate iterations, we implemented the foregoing propos- 

als in an experimental code DELUX (Degeneracy Exploiting LU simplex). 

DELUX was written in FORTRAN IV and run on an IBM 370/168 under VM 

(FORTHX compiler, OPT = 2). The important aspects are the following: 

1. The constraint matrix is stored column wise with row pointers. Upper and 

lower bounds on the variables are kept in two separate arrays'. 

2. The maximal bump finding algorithm and P3 were implemented as by 

Saunders in the code MINOS [ l  1 1, [19]. - 
3. T o  save on storage R is discarded. 

4. All triangle columns of B are represented by pointers into the constraint 

matrix. They are pivoted on first before any spikes are considered. Any of 

these with unacceptably small pivot elements (relative to the elements in 

the rest of the column) are rejected for pivoting at this stage and treated as 

spikes. 

5. The square "remaining matrix" of the transformed spike columns is fed to 

Reid's routine LAOSA [16] to be factorized into the product E F  (see 

Figure 4 and the remark below). LAOSA stores F row wise with column 

pointers, together with an additional set of row pointers used only to 

indicate the nonzeros column wise. - 
6. F is formed by augmenting F with the rows D (Figure 5). This involves the 

insertion of these additional nonzeros row wise at the end of the file for F, 

In this case a basic column is degenerate if its variable is at its upper or lower 
bound. 



- 
followed by an update of the column structure and a permutation array. ( F  

and F are permuted upper triangular matrices) - 
7 .  During nondegenerate iterations, L is used in place of T for the solution of - 

y' and the generation of the required rows of R. Advantage is taken of the 

fact that many of the columns of L can be skipped during these transforma- 

tions. - 
8.  During updating, augmentation of F takes place first (when necessary) as - 

mentioned in 6. Then the column swap is performed on F by Reid's 

routine LAOSC [16]. 

Remark 

Factorizing the remaining matrix in the already determined bump and spike 

pivot order may be a more efficient means of computing the initial E and F. 

However it was much easier implementationally to call on LAOSA. This also - 
has the added long run benefit of placing more weight into F: L can only grow - 
in size while F can actually shrink if a dense column is replaced by a sparse 

one; a sparser L yields a sparser transformed column w, which in turn yields a 

slower growth of nonzeros. 



7. EXPERIMENTAL RESULTS 

As our test problems we used 3 small- to medium-scale LP models. 

Table 1 : Problem statistics 

Problem 

PILOT8 

SCSD8 

L84 MAV 

The first two are time period models: PILOT8 has an 8 period staircase struc- 

ture with a few nonzeros in the lower block triangle; SCSD8 has a 39 period 

staircase structure. Earlier experience with these models on MINOS and 

LPBLK (an LP code employing a block triangular factorization of the basis) is 

reported in Perold and Dantzig [13]. L84MAV is a set covering problem and 

was chosen because such linear programs are known to be highly degenerate. 

All runs had the refactorization frequency set to 100 and were started from 

advanced feasible bases. These were the same starting bases for PILOT8 and 

SCSD8 as reported in [13]. Only PILOT8 was terminated short of optimality. 

Rows Columns Nonzeros % Density Iterations 

626 1376 6026 0.7 500 

398 2750 11334 1 .O 45 6 

114 1994 11120 4.9 1043 

7.1 The initial LU 

Two tolerances are used in determining the initial factorization: 

1. uT is the minimum acceptable ratio of the pivot element of a triangle 

column (of B) to the largest element beneath it. Triangle columns unac- 

ceptable in this way are moved to the end of B and treated as spikes. 

2. u, is the threshold used by LAOSA in conjunction with the Markowitz 

strategy. 



Refer Figures 4 and 5 in section 3. 

Embedded in the constraint matrix. 

These were not stored. 

Rows 

Nonzeros 

Density (%) 

Slacks 

Initial spikes 

Triangle rejects 

Dimension of F 

Degenerate cols 

Degenerate spikes - 
Dimension of F 

Nonzeros' 

T' 

E 

L = T + E  

F 

D - 
F = F + D  

5 

R3 

Total: L + + 

Table 2: Statistics for the initial LU 

PILOT8 SCSD8 L84MAV 

626 398 114 

3388 1552 585 

.86 .98 4.5 

3 7 1 10 

120 4 8 12 

24 0 0 

144 48 12 

5 2 117 2 1 

6 18 1 

190 147 3 2 

2076 1311 503 

2559 8 8 5 6 

4635 1399 559 

1473 203 75 

8 8 241 3 6 

1561 444 111 

3041 2575 3 42 

9237 4418 1012 . 



Problems SCSD8 and L84MAV were not very tolerance dependent. PILOT8 

on the other hand was very sensitive to the tolerance u,, having a large number 

of rejected triangle columns even with u, = .001. The best result was obtained 

with uT = .0001 and uM = . l ,  this being barely satisfactory numerically. These 

tolerances were also used for the figures reported here for SCSD8 and 

L84MAV. 

Table 2 summarizes the statistics for the initial LU. Of particular interest is - - 
the low proportion of nonzeros in F, even though the dimension of F in all 

cases is approximately one third that of B. Perhaps more remarkable, and 

indeed very surprising, is the fact that the number of nonzeros in D (i.e. what is - - 
added to F to get' F )  is far out of proportion to its size relative to R. On - 
PILOT8, for example, D has approximately 10% of the rows of R, yet less 

than 3% of its nonzeros. The only explanation for this is that the nonzeros in 

R are distibuted asymmetrically: very few at the top and a great many at the 

bottom. 

Table 3 gives the initial LU statistics for MINOS on PILOT8 and SCSD8 

from runs recorded earlier for [13]. On PILOT8 the same tolerance uT = 

.0001 was used, resulting in the same number of triangle rejects. As expected, 

the factorization performed by DELUX has: 

1. A much sparser L 

2. A denser F (due mostly to the Markowitz strategy of LAOSA) although not 

much more so in terms of the total number of nonzeros 

3. A very much denser R. 

While the total number of nonzeros in the factorization is less important for - 
DELUX (since only L and F are used for a large part of the time) it is worth 

noting that MINOS produces 24% more nonzeros on PILOT8 and 48% fewer - 
nonzeros on SCSD8. The "almost catastrophic" fill-in in R produced by 



DELUX on SCSD8 is a result of the problem's staircase structure (39 stairs 

with approximately 10 rows in each). A staircase matrix with a high degree of 

partitioning is probably a worst case example for this type of behavior. 

E here consists of the subdiagonal parts of the filled-in spike columns. 

T 

El 

L = T + E  

F 

R 

Total: L + F + R 

Table 3: Nonzeros in the initial LU of MINOS 

PILOT8 SCSD8 L84MAV 

2076 1311 

6760 675 
Not 

8836 1986 
run 

1323 68 

1255 244 

11414 2298 

7.2 Some degeneracy statistics 

The method of the paper is based in part on the assumptions that a relative- 

ly small number of degenerate columns result in a relatively large number 

degenerate iterations, and that large changes in the degeneracy structure at any 

nondegenerate iteration are rare. From Table 4 we see that the first assumption 

holds for the three test problems. 



Table 4: Degenerate columns and degenerate iterations 

PILOT8 

SCSD8 

L84MAV 

Changes in the degeneracy structure are important only in so far as they - 
affect the size of F. The frequency diagrams below summarize the distribution - 
of the growth in dimension of F. This growth is made up of a new spike and/or - 
the number of new degenerate columns that are not already in F. Note that the - 
growth will slow down as F gets larger (until the next refactorization) so that 

these figures should be interpreted as averages. From Figure 6 we see that for - 
by far the bulk of the nondegenerate iterations, the dimension of F either 

Degenerate columns 

Mean number Mean % 

52 8.3 

131 3 3 

36 3 2 

remains constant or  goes up in size by one. On SCSD8 some isolated large 

O/o Degenerate 

iterations 

40 

78 

70 

increases were reported, most notably one of size 22. 



207 

PILOT8 

89 
301 Nondegenerate iterations 

(out of 500) 

3 2 
k . I b . 4  

100 Nondegenerate iterations 
(out of 456) 

3 13 Nondegenerate iterations 
(out of 1043) 

- 
Figure 6: Frequency diagrams of the growth in dimension of F 

during nondegenerate iterations 



.., 
Table 5 indicates that the average growth in dimension of F is slow even 

for nondegenerate iterations. The (overall) average growth in dimension of 

MINOS's F was .39 on PILOT8 and .73 on SCSD8. These are expected to be 
.., 

higher than those of DELUX since F is smaller than F. 

- 
Table 5: Average increase in dimension of F 

Nondeg itns 

All iterations 

7.3 Growth of nonzeros during updating 

PILOT8 SCSD8 L84MAV 

.34 1.93 .77 

.20 .42 .23 

The figures in Table 6 show a remarkably slow growth of nonzeros in L and - 
F. This and the high proportion of iterations during which no growth took place 

in L are due both to Reid's updating method and the initial low density of L. 

With MINOS the growth rates for L were almost twice these: 18.8 for PILOT8 

and 5.8 for SCSD8; SCSD8 had no growth in L 25% of the time. (This figure 

for PILOT8 and the growth of nonzeros in F were not available). 



Table 6: Average growth of nonzeros 

PILOT8 

SCSD 8 

L84MAV 

7.4 CPU times 

% itns with no Average Average - 
growth in L growth in L growth in F 

44 9.9 16.3 

46 3.3 11.9 

50  5.4 7.6 

Table 7: Average CPU time per iteration (seconds x 10') 

Solve for prices 

Select incoming col 

1. Solve: y2 

2. Solve: y' 

3. Update: LAOSC - 
4. Augmenting F 

Degenerate basis 

change: 1 +3 

I The incoming column was selected by partial pricing, i.e. cyclic scanning of 
partitions of the constraint matrix. 3 equal partitions were used for PILOT8 
and 1 0  for SCSD8 and L84MAV. 

PILOT8 SCSD8 L84MAv 

334 162 72 

108 8 1 62 

255 9 1 5 1 

130 66 3 4 

113 4 2 4 2 

204 299 6 0 

368 133 9 3 

Nondeg basis 

change: 1+2+3+4  702 498 187 
d 



Table 7 shows nondegenerate basis changes taking twice as long as degener- 

ate ones on PILOT8 and L84MAV, and much longer on SCSD8. Note, howev- 

er, that much of the time for nondegenerate iterations went into generating the - - 
rows of R to be added to F (especially true on SCSD8). This can be improved 

upon by a more careful implementation in several ways: 

- - 
I .  Store T and S row wise (in secondary storage) instead of using all of L and 

S (stored column wise) as was the case here. 

- 
2. Do not discard R, and obtain the required rows directly from it. In addi- - 

tion, depending on the densi~y of R, use whichever method is most econom- 

ical to solve for y'. 

- 
Even with a sharp reduction in the time spent on augmenting F, the large 

savings during degenerate basis changes is nevertheless clear. With the added 

use of multiple pricing (see section 5.5) the high proportion of the iteration 

time spent in selecting the incoming column should diminish to about 10%. 

This would make the total time for degenerate iterations about 35% faster than 

that for nondegenerate iterations. 

8. CONCLUSIONS 

We have presented a new implementation of the LU factorization that 

achieves fast execution times for degenerate simplex method iterations, espe- 

cially when used in conjunction with multiple pricing. The scheme possesses a - 
major benefit of Saunders' method, viz. requiring only part of U (i-e. F) in 

core. This greatly reduces primary storage requirements while simultaneously 

facilitating the efficient use of Bartels-Golub updating, particularly as handled 

by Reid. 



Preliminary experimental runs indicate that the method might typically 

achieve a 35% savings in the run time for degenerate iterations. In so far as 

the available data allow for a comparison with Saunders' method, we conclude - 
that while this method initially requires more storage for F than his F, this is 

still only a fraction of the total number of nonzeros. This difference is in any 

event offset by a growth of nonzeros about half that of his, aside from the 

savings in time during degenerate iterations. Further testing is warranted in 

order to bring these tentative results into sharper focus. 
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CONTROLLING THE SIZE OF MINIKERNELS 

Richard D. McBride 

Finance and Business Economics Department 
University of Southern California 

In the bump triangular dynamic factorization algorithm the basis i s  partitioned in such a 
manner that the simplex method can be executed from a series of small inverses, called 
minikernels, and the basis itself. Methods are presented which can help control the size 
of the minikernels. One particular problem solved concerns the potential existence of 
bumps with a large number of spikes obtained from Hellerman and Rarick's p4 procedure. 
Artificial inverses are used to keep the minikernels small in dimension. 



INTRODUCTION 

Recen t l y ,  a  method was pub l i shed  [ 5 ]  which pe rm i t s  t h e  s implex  method 

t o  be executed from a  s e r i e s  of min i ke rne l s  o r  m in i - i nve rses .  The 

e f f i c i e n c y  of t h e  method l lepe~tds on c o n t r o l l i n g  t h e  s i z e  of t h e s e  

m i n i k e r n e l s .  The method u t i l i z e s  d i r e c t l y  t h e  b lock  t r i a n g u l a r  s t r u c t u r e  

4  
of t h e  b a s i s  induced by t le l lerman and R a r i c k ' s  [ 4 ]  P procedu re .  The 

s p i k e s  w i t h i n  each bump on t h e  d iagona l  a r e  moved t o  t h e  r i g h t  of t h e  bump 

the reby  i nduc ing  a  t r i a n g u l a r  submat r ix  and an i n v e r s e  (equa l  i n  d imension 

t o  t h e  number of s p i k e s  w i t h i n  t h e  bump) f o r  each  bump. I n  [ 5 ]  procedures  

a r e  p resen ted  which pe rm i t  t h i s  p a r t i t i o n  t o  be main ta ined from one p i v o t  

t o  t h e  n e x t .  D i f f i c u l t y  i s  encountered i n  t h i s  method i n  s o l v i n g  t h o s e  

few problems t h a t  have bumps c o n t a i n i n g  a l a r g e  number of s p i k e s .  

P a r t i t i o n i n g  p rocedu res  a r e  p resen ted  i n  t h i s  paper  which can be used t o  

reduce t h e  s i z e  of t h e  m i r i  l k t . r~ ie l s  which r e s u l t  from bumps hav ing a  l a r g e  

number o f  s p i k e s .  

S e c t i o n  2 deve lops t h e  b a s i c  p a r t i t i o n e d  i n v e r s e  and S e c t i o n  3 

p r e s e n t s  t h e  p rocedu res  t h a t  can be used t o  reduce t h e  s i z e  o f  t h e  

m in i ke rne l s .  



2 .  DEVELOPNk.N'I' O F  I'r\K'i-Il IONED INVERSE WITH f l INIKERNELS 

Consider the partitiirr~ed simplex basis after possible row and colun~n 

interchanges 

where the a-type columns correspond to the basic structural variables. 

The basis inverse corresponding to the partitioned basis (1) is 

- 1  . - 1 
A1 1 

1s the essential part of B and is called the kernel [Z]. The 

kernel can be used as the working inverse in the simplex method. Althougll 

the dimension of All may be considerably smaller than that of B, a further 

significant reduction can be made by taking advantage of the block 

triangularity of Al l  (after possible run and column interchanges) for 

large sparse L P  problems. 

4 
After the application of the P procedure [ 4 ] ,  we get the following 

partition of A . 11' 



where T  i s  lower  b lock  t r i . t r t ~ 1 1 1 ~ ~ .  The p a r t i t i o n e d  i n v e r s e  (3 )  i s :  

= A', - Ag T  - 1 
where Ho .A2. H ~ - ~  i s  c a l l e d  e i t h e r  a  r u b k e r n e l  [ 3 ]  o r  a  

- 1 
m i n i k e r n e l .  The d i m e n s ~ o n  o f  Ho w i l l  u s u a l l y  be  much s m a l l e r  t h a n  t h e  

- 1  
d imens ion  o f  A l l - ' .  Immedia te ly  a f t e r  r e i n v e r s i o n  t h e  d imens ion  o f  H o  

- 1  
is t y p i c a l l y  z e r o .  The s rmplex  method can b e  execu ted  u s i n g  H,, and T-l .  

- 1  
Due t o  t h e  bump t r i a n g u l a r i t y  o f  T  a l l  o p e r a t i o n s  r e q u i r i n g  t h e  u s e  o f  T  

c a n  be  r e p l a c e d  by s o l v i n g  bump t r i a n g u l a r  sys tems o f  l i n e a r  e q u a t i o n s  

w i t h  T  a s  t h e  c o e f f i c i e n t  m a t r i x .  

The submat r i x  T  can  be p a r t i t i o n e d  

The s o l u t i o n s  o f  t h e  L r i  a n g u l a r  sys tems 

i -i - i  T  
r e q u i r e  t h a t  t h e  subsys tems D.x = a and ( x i )  D = ( a  ) be s o l v e d .  

These subsys tems can  e a s i l y  be s o l v e d  i f  D. i s  t r i a n g u l a r .  I f  Di is n o t  



4  
t r i a n g u l a r  t h e n  i t  i s  r l l l r d  , I  blimp. I f  t h e  P p rocedu re  i s  r e p e a t e d l y  

a p p l i e d  t o  t h e  bump D .  .afLcr re1ncva.1 o f  s p i k e s ,  t h e n  Dl t y p i c a l l y  t a k e s  

t h e  f o l l o w i n g  form a t  t e r  rl:x ,and column i n t e r c h a n g e s :  

The s t r u c t u r e  o f  D .  i n  ( 5 )  is  t h e  same a s  T  i n  ( 3 ) .  I f  a l l  o f  t h e  s p i k e s  

o f  D ,  a r e  moved t o  t h e  r i g h t  o f  D .  t h e n  D .  t a k e s  t h e  f o l l o w i n g  form: 

Expe r i ence  i n d i c a t e s  t h a t  L l~e  number o f  s p i k e s  i n  D .  i s  u s u a l l y  q u i t e  

s m a l l .  The p a r t i t i o n e d  i n v e r s e  o f  each  bump D .  has  t h e  same s t r u c t u r e  a s  

- 1 
( 4 )  and y i e l d s  t h e  m i n i k e r n e l  H .  . The s t r u c t u r e  o f  D .  g i v e n  i n  ( 6 )  i s  

t h e  s t r u c t u r e  o f  D .  implemented i n  [ S ] .  As ment ioned above,  e x p e r i e n c e  

i n d i c a t e s  t h a t  t h e  number of s p i k e s  i n  D .  i s  u s u a l l y  s m a l l  3rd t h e r e i o r e  

- 1  . 
t h e  d imens ion  o f  H. i s  s m a l l .  I t  i s  v e r y  common f o r  t h e  d imens ion  o f  

- 1 
H i  

t o  r ange  f rom one t o  e i g h t .  
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I - 1  To s o l v e  t h e  subsys l  rrl I!. ic - a one must  compute 

where 

-1 . i 
klien H i  i s  a v a i l a b l e ,  we compute x by s o l v i n g  two t r i a n g u l a r  sys tems  o f  

e q u a t i o n s  r n v o l v i n g  T .  and pe r fo rm ing  some m a t r i x  a r i t h m e t i c .  The 

i T subsys tem (r ) Di = ( i i l T  i s  s o l v e d  i n  a  s i m i l a r  manner.  

Computa t iona l  e x p e r i e n c e  i s  g i v e n  i n  [ 5 ]  which i l l u s t r a t e s  t h e  

e f f e c t i v e n e s s  o f  t h e  u s e  o f  m i n i k e r n e l s  i n  r e p r e s e n t i n g  t h e  b a s r s  i n v e r s e .  

- 1 
One m i n i k e r n e l  i s  r e q u i r e d  f o r  each  bump i n  T i n  a d d i t i o n  t o  H  0 .  

Expe r i ence  i n d i c a t e s  a t  l e a s t  a r e d u c t i o n  o f  one t h i r d  i n  t h e  number o f  

nonzero  e l emen ts  needed t o  r e p r e s e n t  t h e  b a s i s  i n v e r s e  when compared t o  

Re id  [ 6 ,  71  a t  t h e  expense o f  a  s l i g h t  i n c r e a s e  i n  compu ta t i ona l  t i m e .  

The above t e c h n i q u e s  w i t h  D. p a r t i t i o n e d  a s  i n  ( 6 )  works w e l l  f o r  most  

p rob lems.  111 t h e  n e x t  s e c t i o n  we d i s c u s s  t h e  p a r t i t i o n  t h a t  car1 he  usell 

when t h a t  occc ls iona l  problem is  encoun te red  t h a t  c o n t a i n s  a  bump w i t h  3 

l a r g e  number o f  s p i k e s .  



3. PARTITION1 'I(: I:I :lrS WITH LARGE h7J'UEIBERS OF SPIKES 

When a  bump i s  ~ I I C ~ ) ! I ! I L C ~ P , I  w i t h  a  l a r g e  number o f  s p i k e s  t h e  

partition g i ven  i n  ( 6 )  t . 1  i l ~ r o l l ~ ~ c e  a  m i n i k e r n e l  l a r g e  i n  d imens ion .  I n  

t h e  PILOT1 ene rgy  mo~lel  [ I ]  i t  i s  :-ommon f o r  a  bump t o  be  encoun te red  w i t h  

more t han  100 s p i k e s .  A n ~ ~ n i k r r r l e l  o f  d imension of  more t han  100 i s  no t  

d e s i r a b l e .  I n  t h i s  c a s r  p a r l i t l o n  ( 5 )  i s  p r e f e r r e d  o v e r  ( 6 ) .  When u s i n g  

( 5 )  one would s o l v e  bump t r i a n g u l a r  sys tems o f  l i n e a r  e q u a t i o n  i n  ( 7 )  

r a t h e r  t h a n  s o l v i n g  pure1 t r i a n g u l a r  sys tems .  

I n  a  p a r t i c u l a r  PILOT1 b a s i s  s t u d i e d  a  bump was encoun te red  w i t h  

d imension 424 and 117 s p t k e s .  When t h e  21 t a l l e s t  s p i k e s  a r e  moved t o  t h e  

r i g h t  o f  t h e  bump, t h e  bump ~ ieco~nposes  i n t o :  

The bump decomposes i n t o  38 subbumps w i t h  m i n i k e r n e l s  rang ing  i r l  d i l n e n s ~ o n  

from 1  t o  24. I n  t h i s  c a s e  t h e  space  r e q u i r e d  t o  r e p r e s e n t  t h e  bump ( c a r r y  

t h e  m i n i k e r n e l s )  reduced from 13,689 t o  1 ,566 .  
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I t  i s  p o s s i b l e  L o  : I ! ; , ,  ,311 i l i . u . j t e d  form o f  ( 5 ) :  

Here we have 

C a r r y i n g  t h e  p a r t i t i o n  i n  ( 8 )  t o  i t s  ext reme would p e r m i t  

r e p r e s e n t i n g  D. by a s e r i e s  of  one by one m i n i k e r n e l s  e q u a l  i n  number t o  

t h e  number of  s p i k e s  i n  D . .  However, t h i s  would r e q u i r e  t o o  much 

compu ta t i ona l  work t o  e x e c u t e  t h e  s implex  method. 

i -i 
The subsys tem D.x  = a would b e  so l ved  u s i n g  (8 )  and t h e  i n v e r s e s  o f  

( 9 )  a s  fo l l ows :  



where 

and 

and 

I n  comput ing 2 and i n o t i c e  t h a t  z1 and z2  can  b o t h  be  computed i n  t h e  

same phase  t h rough  t h e  co l l ~mas  o f  T . .  The same is a l s o  t r u e  f o r  l 1  and 1 
2 '  

Note t h a t  t h e  n e t  e f f e c t  o f  p a r t i t i o n i n g  t h e  s p i k e s  on t h e  r i g h t  i n  D .  

r e q u i r e s  no a d d i t i o n a l  p a s s e s  t h rough  t h e  columns o f  t h e  bump t r i a n g u l a r  

subma t r i x  T . .  Using t h i s  i t e r a t e d  s t r a t e g y  i t  is p o s s i b l e  t o  r e p l a c e  a  2n 

x 2n by two n  x n  m i n i k e r n e l s  w i t h  a  r e s u l t a n t  50% r e d u c t i o n  i n  memory 

r e q u i r e m e n t s .  



' 4 .  1 ONCLUSION 

Bumps w i t h  a  l a r q e  aurnl.-r c i  s p i k e s  can be efficiently handled by a  

repea ted  a p p l i c a t i o n  o f  t-lle b a s i c  p a r t i t i o n i n g  s t r a t e g y .  I t  i s  p o s s i b l e  

t o  f u r t h e r  reduce t h e  s i z e  u f  l n i r ~ j k e r n e l s  by an r t e r a t e d  a p p l i c a t i o n  o f  

t h e  b a s i c  p a r t i t l o n i n g  S(.IIC'IIIP w l ~ i c h  y i e l d s  a  f u r t h e r  50% r e d u c t i o n  i n  

memory requ i remen ts .  C l e a r l y .  t h e  space  r e q u i r e d  t o  r e p r e s e n t  t h e  b a s r s  

i n v e r s e  ( i n  a d d i t i o n  t o  t t :e b a s i s  i t s e l f )  can  be  reduced t o  equa l  t h e  

number of  s p i k e s  i n  t h e  k e r n e l .  The p r a c t i t i o n e r  must choose t h a t  l e v e l  

o f  p a r t i t i o n i n g  t o  o b t a i n  t h e  f i n e  b a l a n c e  between h i s  p a r t i c u l a r  memory 

and e x e c u t i o n  t ime requ i remen ts .  
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ALGORITHMS FOR BLOCK TRIANGULARIZATION OF BASIS 
MATRICES AND EXPLOITATION OF DUAL DEGENERACY IN THE 
DUAL SIMPLEX METHOD 

Eugeniusz Toczytowski 

Institute of Automatic Control 
Technical University of  Warn w 

This paper studies two topics essential to largescale linear programming. First, algorithms 
used in restructuring a basis matrix to create a sparse representation of the inverse are con- 
sidered. We will show that the best strategy for block triangularization of a basis matrix i s  
in general not the execution in sequence of a maximum matching algorithm and an algo- 
rithm for finding the strong components of the directed graph associated with the basis 
matrix, but rather the multiple execution of an algorithm for finding the strongcompo- 
nents of appropriate directed graphs as a subroutine in an algorithm for finding a maxi- 
mum matching. We also present a new algorithm for finding a maximum matching based 
on the Hopcroft and Karp approach. In the second part of the paper we present a modifi- 
cation of the dual simplex algorithm efficient in the case of the dual degeneracy typically 
found with integer programming algorithms. 



1. NOTATION 

The LP pr~b lem is  
max xl 

(1 i h = b  
l & x < u  

where x=(xl ,... ,xn1* A =[a, .a2 ,. . . ,d is  m - n matrix 

w i thco lumnsa and - a g l < l i $ u f \ ( + a O  , i =  l , . . . ,~ .  
j ' 

Let JY be the index se t  f o r  the n ~ b a s i s  variables, and 

(5 = { , .. . , (3 be the index se t  f o r  the basis variables. 

The system Ax = b can be wri t ten i n  the form 



( 2  1 ax p + a,r = b  Jw j  

where B = [a 6 . . . . , a 7 is the basis  matrix and xp Om- 
t h e v e c t o r  of basic var iab les ,  3r i n  the form 

I f  a basis  matr ix B is re inver ted,  permutation matrices P 
and Q are  required such tha t  PBQ is in block t r i angu la r  

form w i t h  diagonal blocks having bordered band lower 

t r i angu la r  e t ruc t ure. 

Let ua denste by pi(qi) r ow  (column) index s f  the i - th  

r o w  $calm) of the matrix PBQ. Permutation matr ix P w i t h  
elements P ( i ,  j  ) is equivalent t o  the vextor p=(pl ,. . . .p  ' 

m '  
by tne equivalence re la t l snsh ip  P W p  i f f  ? (p i , i )= l .  

Analogously Q-q i f f  G(i,qi 1 = 1. 

We assoc ia te  w i t h  an m-square matrix B = [bij] a d i rec ted  

graph E(B) whicn cans i s t s  of a s e t  s f  m ve r t i ces  {l ,2,. . . ,a) 
and a s e t  of a rcs  { ( i , j  1: bji $ 0 4  . 

913ck t r i angu la r i z ing  of a basis matrix B can be done i n  t w o  
stages. The f i r s t  s tage is f ind ing  a maximum matching ( o r  

maximum t r a n s v e r s a l ) ,  the s e c ~ n d  stage is  f ind ing  the s t rong 

components s f  the  d i rec ted  graph asssc ia ted  w i t h  the 

matrix B. 

2.1. A n  algorithm f o r  m a x i m u m  natchicg. 

X o s t  algorithms f s r  f ind ing  a maxinun natching are baaed 

3n one devised by Hall  C4J. These algorithms are of 

Complexity O(m.t) where m is the  n w b e r  32 r o w s  and t is the 

number of nsn-zeros i n  the matrix. The Hapcraft and K a n  

a l g ~ r i t h m  [5] a l l ~ w s  t 3  simultaneously s t r e t c h  an assignment 

w i t h  severa l  paths of minimal lenght , and thus is of csmplexi- 

t y  ~(ml".t 1. 



Since t n i s  c o ~ p l e x i t y  orders a,* 2btained f r m  a 

warst-case ana lys is  , there is n3 e - r i i e ~ c g  which a l g o r i t  h~ 

is  noye e f f i c i e n t  in the t yp i ca l  p e r f ~ m ~ c e .  There i s ,  

however, very l i t t l e  published work 3n conparing these 

algorithms. I n  suck analys is  rand3mly genersted matr ices 

have often been used, th3ugh basis matr ices from r e a l  l i f e  

LP problems are  not random i n  s t ruc ture .  In a recent paper 

of Darby - Dowman and Mitra C61 an in te res t i ng  comparison 

3f t w o  vereions of each of the a lg~ r i t h rns  have been done 

based 3n the  analya is  of a  s e t  of medium-size p rzc t i ca l  

problems with the  number of r o w s  i n  the bumps ranging fr3m 

75 t o  435 and with a com?arable spars i ty .  Their  conc lus im 

was tha t  Hopcroft and Karp alg3ritpan f 3 r  f ind ing  a maximum 

matching compares unf avourably w i t h  the algorithms based 

3n ~a1 l . s  method . We nave studied,  however, sone cnaracte- 

r i s t i c s  t h a t  a re  i n p o r t a t  i n  t h i s  alg3r i t ;ms. The m z s t  
inpor tant  ind ica tors  of e f f ic iency of the a l g o r i t  hms i n  

addi t ion t o  the overal  CP time a re :  

( i  ) the number of i t e r a t i m a  i n  funct ian of tne number 3f 

rows .  By :ne i t e r a t i o n  we mean i n  :%ll algorithrc a nontr i -  

v i a l  assignment w i t h  reasignments i n  an augmenting path, 

wnile i n  H o p c r ~ f t  and Karp algorithm - f o m i n g  a graph cm-  

ta in ing  the  s e t  3f a l l  augmenting paths 3f s h 2 r t e s ~  lenght 

and performing a s e t  s f  r e a s s i ~ ~ m e n t s  resu l t i ng  frgm tne  

s e t  of sho r tes t  augmenting pathe. 

( i i )  the average CP time per  i t e r a t i o n  in funct ion af the 
number 3f rows.  
Cornparism of t h i s  cha rac te r i s t i cs  are given i n  Pig.1 and 

Pig.2. Figure l a  ind ica tes  t h a t  i n  Hal l  algorithm the  num- 

ber 3f n o n t r i v i a l  assignments, though d ras t i ca l l y  smal ler  than 

the number of r o w s ,  increases l ineary w i t h  the number of 

rows.  Figure I b  sh3ws t h a t  the analogous cha rac te r i s t i c  f o r  

Hopcroft and Karp algorithm is a sl3wer growing funct ion 

(approximately a square-r3o t fqmc t ian).  

Figure 2a and 2b i nd i ca te ,  t ha t  the  average CP time per  

it era t ion  increases approxinat ely l ineary a s  the nmber  of 

r o w s  i n c s a s e s .  Thus, the H3pcroff and Karp algorithm tends, 



100 200 300 +O" number of n u s L  

Fig. 1. Number o f  i t e r a t i o n s  i n  a)  Hall, 

b ) H3pcraI't and Karp a l g o r i t  h ? .  



CP time ' 
Imsl 

30. 

0 4 0 0  Zoo 300 100 c 
number of rout 

Fig.2. The average CP time per i t e ra t i on  

i n  a )  Hall, b ) Hopcroft and Kazp 

algor i t  hme. 



t o  be favorable w i t h  the Hall algorithm i f  the s i ze  of ma- 

trix increases. 

The minimal s i ze  of matrices f o r  which the H-K alg3- 

rithm is mDre e f f i c ien t  than the Hall algorithm depends on 

the spars i ty  o f  the matrix. It probably tends t o  decrease 

as the average number of n3nzeros per one r o w  decreases. 

In t h i s  paper we present an improvement of H-K algorithm. 

We use an obeervation that  an appropriate modification of gra- 

phs formed by H-K algorithm can considerably increase the 

number of assignments found per graph and thus reduce the 

number of H-K i te ra t ions.  The idea of the algorithm i s  t o  
form a graph containing la rger  eet  of augmenting paths, not 

only of shorteet  lenght. This can be d ~ n e  as f ~ ~ l l o w s  

(the notat ion and def in i t ions  used here may be found i n  153) 
L e t  X = 1 1  ,. . . , m i  be the s e t  of r o w s ,  and Y ={I ,. .. , mi 
be the s e t  of columns 3f the square matrix B =[b. . l . ~ h e n  

1 J 
we f3rm the b i pa r t i t e  graph G = ( V . 3 )  with vertex s e t  V 

containing X and Y ,  and the edge s e t  E such that  each edge 

of G joins a vertex coresponding t o  r o w  i in X w i t h  a vertex 

corresponding t o  c~ lumn j i n  Y i f  and only i f  b f 0 . 
i 3 

A s e t  blS E is a matching i f  there is no vertex u G V 

incident with more than one edge in M. A matcning of maximum 

cardinal i ty  i s  ca l led  a maximum matchiig. A vertex Vfi V 

is f r e e  i f  i t  is incident w i t h  no edge i n  M. 

A path (without repeated ve r t i ces )  

( Y 1 9  v 2 ) S  ( U29  u3)9 ' * *9 (  u2k-l, w2k)  

is cal led an augmenting path i f  i t s  endpoints trl a n d v z k  

are both f r e e  and i ts edges are a l te rnat ive ly  i n  E-M and 

i n  M. It i s  easy t o  veri fy [5J , tha t  i f  B! is a matching 

and PI,  ..., Pt are vertex d i s j ~ i n t  augmenting pazhs re la t ive  

t o  Bb, then - 
M = I Y I O P ~ @ P ~ @ .  ..@Pt ,(where @ denotes the symmetric 

difference) is  a matching, and 1 1 = I M  I+ t . 
Now we discuss how t o  f ind a maximal vertex-disjont 

s e t  E J ~  augmenting paths P1,...,Pt re la t i ve  t o  M. 
F i m t  we assign d i rect ions t o  the edges of G i n  such a way 
that  augmenting paths re la t ive  t o  M becone directed paths. 



This is done by d i rec t ing  each edge in  Id s o  tha t  i t runs 
from a r ow  t o  a column and each edge i n  E-Id s s  that  i t r u e  

from a column t o  a row. The resul t ing d i rected graph is denoted - 
by G = (v,;). Now assume, that  the graph a contains stron- 

gly connected components Ei =(vi ,El 1, 1.1,. . . ,K.Then the 

edges of < f a l l  i n to  2 classes. 

( i )  some are  edges joining ver t ioes of the sane component 

( i i )  other join ver t ices  of d i f fe rent  components. Theee 

are cal led cross-links. 

Theorem [lo] . I f  B C E is a maximum matching in G, then N 

does not contain cross-l inks of 5. 
Since the f inding of the strongly connected components o f  G 

can be done by the depth - f i r s t  search algorithm of Tarjan 

i n  0dEb space and time, the elimination of croes-links from 

consideration may increase the eff ic iency of the matching 

algorithm i n  the case of very large and sparse matrices. 
Assume, that  i n  block tr iangularizixlg of a basis matrix the 

Tarjan algorithm f a r  f inding the strong components of the 

directed graph associated with the basis matrix is used 

repeatedly with the maximum matching algorithm a f t e r  perfor- 
ming, s a y ,  k i t e ra t ions  of the matching algorithm. The 

eff ic iency of the block t r i angu la r i zhg  algorithm evidently 

depends on k. The optimal value of k depends on such paramete- 

rs of the basis matrices as the number of r o w s  and the 

average number of nonzeros per one row .  The m o s t  desired s t ra-  

tegy must be obt ained empirically. 

In the remaining par t  of t h i s  paragraph we w i l l  present a 

modyfication of Hopcroft and Karp algorithm f o r  maximum 

matching. In one i t e ra t i on  of the modified algorithm the 
A C 

graph C = (V,E) containing la rger  s e t  of augmenting paths - 
PI, ..., Pt f a  formulated and then the new rnatching M is 

defined by M = MePl@ P2 ..e Pt. 

bt ~ o : = { ( g , ~ ) : ( y , x ) ~  E~ f o r  some i f  . r\ 

Uow we ext rac t  fro. graph (v,$ )Aa subgraph G n i t h  

the properTy that  the directed path of G running from a 

f ree column t o  a f ree r o w  correspond one-to-one t o  an augmen- 

t i ng  path in G re la t i ve  t o  Id. This is done as follows. 



Let L3 be the s e t  sf  f ree  r3~13, and l e t  
3 

L = L 4 f ree  c~lumns 1 
Li = Li I; - 1 Ei = { (u ,v )  : ( u , v )  E ED,  v 6  Li , u & % V  Ll ... .Lit 

L ~ + ~  = f  u : f ~ r  some v , (u ,v )  E ~ ~ l j  
f o r  i = 0,1r2,... 

Then we define the graph G = (V ,E ) ,  where 
A 

V = Lo V L1 C/ ... VL u LO* 
iH-1 i 

A 4 A 

The graph G = (V,E) i n  oomparison t 3  the graph formed by the 

~ r i g i n a l  Hopcroft and Karp algorithm ([5], p. 229 ) has the 

fc~llowing propert ies : 

(i ) the graph formed by 2-K algorithm containts only the 

shortest  augmenting paths re la t i ve  t o  M and is a subgraph 

of c 
A 

(ii) G,contains a lso augmenting paths re la t ive  t a  M of 

greater  lenght . 
An alg3rithm f o r  f lnding a maximal vertex-disjaint s e t  of 

paths is  given i n  [5]. For our purp3se we shsuld order the 

s e t  3f f ree  columns i n  such a wag that  the a l g ~ r i t h m  w i l l  f ind  

f i r s t  the shortest  augmenting paths and then the augmenting 

pat he with increasing length. 

There are three character is t ics  3f the presented 

algorithm f s r  maximum rnatching,important f a r  large-scale 

graphs: ( a )  storage requirements, ( b )  CP time per one 

i te ra t ion ,  ( c )  number of i te ra t ions.  In the absence of 

actual  implementation, the f a l l w i n g  analysis w i l l  be same- 

what super f ic ia l .  
A 

( a  ) Storage requirements. Since G contains a t  mos t  a l l  

ver t ices  of G,  storage requirements in a l l  s teps of the 

alg3rithm are l i nea r  i n  number 3f ver t ices  and edges. 
A 

From numesical experience, the subgraph of G f ~ m e d  by 



H-K algorithm contains typ ica l l y  f r m  60 t 3  80 percenta- 
ges of ve r t i ces  3f C and t h i s  percentage is  vertex-size 

A 

independent. Thus G ney contain typ ica l l y  a t  m o s t  10 t 3  

40 percent more ve r t i ces  of G thac  H-K graph. 
( b )  CP time per one i t e r a t i s n .  Complexity is l i n e a r  i n  num- 

ber  of ve r t i ces  and edges. Time is increased i n  compari- 
son t o  H-K algorithm by a f a c t o r  s i m i l a r  t o  ( a )  

( c )  Number of i t e r a t i o n s  i n  comparison t 3  H-K algorithm may 

be considerably decreased. This supposi t ion fo l l lows 
from handy-made analys is  of smal l  problems and from 
ana lys is  of the cha rac te r i s t i c  of H-K algorithm 
presented i n  Pig.3. 

I - 
0 - 

400 200 300 wo number of rows 

Pig.3. The par t  of the  graph ve r t i ces  
belonging t o  ver tex  d i s jo in t  
augmenting paths . 

The f igure  shows the s i z e  of subgraph ~f which contains 
a l l  shor tes t  ver tex d i s jo in t  augmenting paths. This - 

subgraph of 5 conta ias onJy small f r a c t i ~ n  of ve r t i ces  3f G 



and moreover, t h i s  f rac t ion  i s  decreasing w i t h  the s i ze  of 

problems. Thus, a f t e r  removing from a l l  shor tes t  vertex 

d is jo in t  augmenting paths there remains a considerable part  
A 

of G containing augmenting paths ~f greater  lenght. 

We conjecture that  the number of i t e ra t ions  3f the 

presented algorithm is a slower growing function of the 

s i ze  of the problem i n  comparison t o  H-K algorithm. 

2.2. An algorithm f o r  ref inding lower block t r iangu lar  

s t ruc ture  of an updated basis matrix. 

It is now accepted that  the most e f f i c ien t  algorithm f o r  f in -  

ding strongly connected components of a directed graph is 
due t o  Tarjan [9]. However, i f  the basis matrix is updated, 

the algorithm can be modified t o  enable performing the 

search i n  a res t r i c ted  par t  of the graph of the updased 

basis. The need f o r  such an algorithm resu l t s  from the 

poss ib i l i t y  of using an addit ional ru le i n  mult iple pr ic ing 

which w i l l  resu l t  in producing a t  each i te ra t ion  basis na t r i -  

ces with the simplest "bumb and spike" structure. 

Let us assume tha t  the r-th column of the basis matrix 

B is replaced by a column ak, k€S/, The bump s t ruc ture  of 

the updated basie matrix may be created by the following mo- 
di f ica t ion  of Tarjan algorithm, i n  which the depth-f i rst  se- 

arch is res t r i c ted  t o  a part  of the updated basis. From the 

prgvious s tep  we w i l l  use the following information: f ~ r  
each row i them i s  known i ts  bumb number S ( i ) ,  where 

S ( i )  = min i  p( t  1 : t and 1 l i e  i n  the same bump 1 
t 

Algorithm 

1' Compute pk = min{S(i)  : aik f 0 1  and 4 = S ( r )  
i 

I f  ark 0 go t o  2'. otherwise denominate ay as the "free" 

column and row rk as the " f reen r o w ,  and f i nd  an augmen- 

t i ng  path i n  the graph of the basis matrix leading from 

the f ree column t o  the f ree rDw using the depth-f i rst  

search res t r i c ted  t o  the r o w s  with p ( i )  such that  

pk 6 p ( i )  < Mk- Make the reasigmnent of the rows and 
columns belonging t o  the augmenting path .GO t o  2' 



z3 In t h e  subgraph 2f t h e  b a s i s  mat r i x ,  c 2 n t a i c i n g  v e r t i c e s  
w i th  r 3 w  i n d i c e s  p ( i )  such t h a t  pk 6 ? ( i )  SK;, p e r f ~ r m  
t h e  a lgo r i thm ~f Tar jan  t h a t  f i n d s  t h e  s t r a n g k j  c ~ n n e c r e d  

components z~f t h e  subgraph. 

The complexity z~f t h e  above 
a l g ~ r i t h m  is O ( t )  , where t is  t h e  number of nonzero 
e lements q i j  of t h e  updated b a s i s  m a t r i x  w i t h  r 3 w  and 
column i n d i c e s  l y i n g  between rk and Mk. 

Suppose t h a t  i n  m u l t i p l e  p r i c i n g  we have a s e t  of c ~ l u m n s  

' J E K and we want t o  chz~ose t h e  c ~ l u m n  ak g i v i n g  t h e  

s imp les t  bump s t r u c t u r e  of t h e  updated b a s i s  matr ix .  If t h e  

p r e c i s e  a lgo r i thm f o r  updat ing  t h e  bunp s t r u c t u r e  is  t o o  

expensive,  t h e  f ~ l l o w i n g  subopt imiz ing c r i t e r i ~ n  mag be 

used: 

From t h e  s e t  of c o l u m s  a  , j  E K s e l e c t  a  column ak 
j 

such t h a t  
= min 

j 6 K  
A j  

where s ( r j  1 - min i f s ( i ) : a i j  + 
and r is t h e  i3dex  z~f t h e  c3lumn,leaving t h e  b a s i s  3 

j  
a f t e r  e n t e r i n g  a  t o  t h e  bas is .  

j 

3. E X P L O I T I N G  DUAL DEGENZRACY I N  TYE DUAL SIMPUX A L G O R I T m .  

I n  some i n t e g e r  programming a lgor i thms t h e  "power" 9 f  t h e  

succeeding i t e r a t i m e  is  usua l l y  hampered by t h e  massive 

degeneracy and/or  t h e  s e v e r e  r3und-off e r n r e .  This ~ c c u r s  i n  
t h e  c u t t i n g  p lane a lg3 r i thm 3f Fnteger  forms as w e l l  a s  

i n  t h e  c o m p ~ s i t e  i n t e g e r  a lgo r i thm having c u t e  inc3 rpora ted  

i n t o  t h e  branch-and-bound scheme. In t h i s  s e c t i o n  we d i s c u s s  

a techn ique p resen ted  i n  [11] t h a t  a l l e w i a t e s  t h i s  d i f f i c u l t y .  

3.1. A modif ied d u a l  LP a lgo r i thm 

Though c y c l i n g  r e s u l t i n g  from degeneracy is n3t  S D  s e r i o u s  

a problem in p r a c t i c e  ( i t  may be prevented b3 t h e  use 3f a 
p e r t u r b a t i o n  scheme such a s  lex i cograph ic  ~ d e r i n g  of r 3 w  

3r ca lunn v e c t 3 r s  3r by c h a ~ s i x g  t h e  s m a l l e s t  index o r  any 

s t h e r  handy r u l e  p reven t ing  c y c l i n g  a t  l e a s t  f r g m  e n p i r i c a l  



evidence) them remains the re lated prablem of s l o w  csnver- 
gence caused by many i te ra t ian8 w i t h  zer3 changes 3f the 
objective functisn. The difference between degenerate and 
nondegenerate i te ra t ions  i n  the LP algarithms resu l t s  f r ~ m  
the f ac t ,  that  i n  the absence of degeneracy the simplex 
algorithm has the s tepest  descent property, while i n  the 
presence of degeneracy the lexicographic 3rdering assures on- 
l y  f i n i tness  of the i te ra t ions.  

To reduce the number of degenerate simplex i te ra t ions  
we have incorporated in to  the dual simplex algorithm a me- 
chanizm which aesures the s tepest  descent property of the 
algorithm also i n  the case of severe degeneracy. 

Let ua c onsider the LP problem (1,2 ) and assume , tha t  
the basis is: 

T -1 (i) dual feas ib le ,  i.e. d := elB a j  3 0 , j b x  . 
1 j 

(ii) primal in feaaib le,  i.e. there i e  nonempty s e t  T of 
negative basic variables x pi, i E T ( f o r  simpl ic i ty 
we assume, that  li = 0, ui =+& ). 

We also assume, that  the basis is dual degenerate, i.e. the 
s e t  No ={j: dl = 0 $ of degenerate nonbasic variables 
is nonenpty. I.. the dual simplex method moving fr3m one 
degenerate basic solut ion t o  another is indeed solving the 
to ta l l y  degenerate subproblem 

x, 9 x j  a 0 
which has primal in feaeib le basis B. I n  order t o  solve t h i s  
subproblem we can maximize an auxi l iary function 

v 
w = Zd x ~ i  which measures the primal i n feas ib i l i t y  

i C T  
of ( 4 )  as i n  the f i r s t  phase of the Orchard-Hays composite 
simplex algorithm [a] . After solving ( 4 )  the new basis is  
updated according t o  the ordinary ru les of the dual LP algo- 
r i t h m .  Our experience s h o w s  tha t  t h i s  modification s igni f ica-  
nt ly  imprwes the performance of the dual LP algorithm i n  



the case when the number 3f nonfeasible basic variables is 
equal me,  as i t  occurs in  the GomsryOs cut t ing  plane algo- 
r i t h m  a f t e r  adding a  new cut o r  i n  the branch-and-bound algs- 
r i t h m  a f t e r  branching t o  a  new vertex. It foll3wa from the 
fac t  tha t  i n  t h i s  case, once (4 1 has been sglved, a  change 
i n  the baeis occurs w i t h  a  aimultanesus exchange of dual 
degenerate and nondegenerate variables. 
Now we w i l l  present one i te ra t ion  of the algorithm under 
assumption tha t  the dual LP algorithm uses the same data 
f 3ma t  ae the primal algorithm. 
In*ally s e t  8 : = -00 , k:=O and se lec t  r e T. 

Algorithm ( m e  i t e r a t i o n )  
1  Execute backward tranef onnation rout ine, csmpute the 

pr ic ing forme 
T -1 7rl = elB 

A- L- 

7, a dTg-l, where d  = C ei 
i t 2  T 

Go t o  2O 
2 O I f  t h e r e e x i s t a  anonbaaic columnaj,  jeN not conei- 
dered ye t ,  compute 

j 
: = nl -a  and go t o  3'; otherwise 3 

se t  j:= k and go t o  5  . 
3' If d l j >  0  then go t o  4'. Otherwise csmpute 

d 
wj 

: = a  I f  d u j >  0  go t~ 4'. Otherwise se lec t  
j  ' 

the baaic variable x  (jt reaching f i r s t  i t s  bound a f t e r  
enter ing x j  t o  the b a s i s  ( t h i s  i a  pivot select ion ru le of 
the primal simplex algsr i thm); r: = t , Go t o  5' 

4' Compute a rj : = hr. a ~f  r j  < o and e < 
j ' @ r j  

then s e t  8: = O c a  and k: = j. ( t h i s  is pivot aelect i3n 
gL 

of the dual algo$dthm). Go t o  2'. 
0  5 If j = O ,  LP is not feasible. Otherwise update the basis 

w i t h  the piv3t pa i r  (r, j ). Th is  involves creat ion new ? 
and solut ion columns. 



3.2. Computat ional  r e s u l t s .  

The modi f ied d u a l  a l g r ~ r i t h m  has been t e s t e d  by s o l v i n g  t h e  

s e t  of t e s t  I n t e g e r  p r o g r a m i n g  problems, r e l a t i v e l y  d i f f i -  

c u l t  t 3  s ~ l v e  by c u t t i n g  p lane method. The p r o b l e m  have 

been choosen f r 3 m  [2 ]  and from [ 7 ]  . 
The fo l l ow ing  a lgo r i thms  have been compared. 

LIP1 - a v e r s i 3 n  o f  t h e  methad of i n t e g e r  forms developed 

by Hald i  and I saacson  [3] known as LIP 1 

KAL - a v e r s i ~ n  of t h e  method of i n t e g e r  f 3 m  developed 

by Kal iszews k i  C7 1 
TO - t h e  method o f  i n t e g e r  forms f o r  ILP w i t h  bounded 

v a r i a b l e s  in t h e  a l l - i n t e g e r  f l o a t i n g - p o i n t  represen-  

ta t ion ,  w i t h  t h e  b a s i c  d u a l  s implex  a lg3r i thm.  and a  

source  r 3 w  s e l e c t i o n  t h a t  y i e l d s  t h e  l a r g e s t  dec rease  

i n  t h e  o b j e c t i v e  f u n c t i o n  

T O 4  - t h e  method TO wi th  two mod i f i ca t ions :  d u a l  s implex  

a lgo r i thm is rep laced  by ' t h e  modi f ied d u a l  a lgo r i thm 

descr ibed in s e c t i ~ n  3.1 and an a d d i t i o n a l  source row 

s e l e c t i o n  ( c r i t e r i o n  3 i n  [27 p. 165)  which breaks 

t h e  t i e s  i n  t h e  source row s e l e c t i o n  io t h e  a lgo r i thm 

TO 

The r e s u l t s  of t h e  a lgor i thms LIP1 and KAL were 

r e p o r t e d  i n  [2], p.380 and i n  [77 . Computations 3f t h e  

a lgor i thms TO azd TO-M were performed on t h e  computer Odra 

1325. The r e s u l t s  a r e  i n  Table 1  



Table 1 

The comparison 3f the algorithms indicate tha t :  
( i)  the choise of the c u t e l e a d i n g t o t h e e e v e r e d u a l  

degeneracy i n  the algorithm TO-M is advantageous 
from the eff ic iency point of view. 

(ii) the uee of the modified dual simplex algorithm redu- 
ces the average number of simplex i t e r a t i m s  per 3ne 
cut. 

TO-20 

TA-20 

0-1 9 

0-17 

U L  
T 0 
TO-M 

IWL 
TO 
T O 4  

KAL 
T O 4  

KAL 
TO-M 

40 
15 

1 

4 
1 
1 

>I 60 
17 

> 190 
47 

146 
69 
7 

18 
7 
7 

>613 
39 

> 518 
80  

3 -5  
4.1 
1 

3 
1 
1 

3.8 
1.8 

2.7 
1.6 
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THE SIMPLEX METHOD FOR DYNAMIC AND 
BLOCK-ANGULAR LINEAR PROGRAMS 





A RESOURCE-DIRECTIVE BASIS DECOMPOSITION ALGORITHM FOR 
WEAKLY COUPLED DYNAMIC LINEAR PROGRAMS* 

Tatsuo Aonuma 

Kobe University of Commerce 

This paper presents a decomposition algorithm for dual angular linear programs, which also 
can be extended to a wider class of structured linear programs. The method i s  closely re- 
lated to the algorithm by Martin Beale on the parameterization of the linking variables. In 
the algorithm, the linking variables are first fixed at  given values to partition the problem 
into several subproblems. Secondly an optimal setting of the linking variables i s  deter- 
mined, given that the bases for the subproblems are fixed. Then, the bases for the subprob- 
lems are changed so as to improve the entire problem. The computational experience indi- 
cates that the number of cycles to adjust the linking variables required for optiinality i s  
nearly equal to,or less than the number of the subproblems, and i s  smaller than the earlier 
computational results in the column-generation scheme, and that the computing time is  
much faster than in the direct simplex approach. 

*This is a revised version of the paper presented at the XX lV  International Meeting of the Institute of 
Management Sciences, June 18-22. 1979, in Hawaii. 



Introduct ion. A two-level algorithm fo r  two-stage l i nea r  programs has 

been presented in Aonuma [2]. The algorithm was developed with an in ten t ion  

of solving the two-stage l i nea r  programs a r i s ing  from a nested approach t o  

multi-period planning 111, in a manner of i n te rac t i ve  preference opt imizat ion 

f o r  consider ing uncertainty i n  the future. In  the present paper w e  extend the 

same decomposition approach t o  a v ide r  c lass  of s t ructured l i nea r  programs, 

espec ia l l y  t o  dual angular l i nea r  programs and a lso  repor t  computational expe- 

r ience  in using i t  f o r  weakly coupled dynamic l i nea r  programs. 

The dual angular l i n e a r  program we address is wr i t ten  a s  fol lovs: 
K 

mx r cisi + 5 y  (0.1) 
i-1 

9.t .  + y = bi (0.2) 

i 
x , Y 2 0 ( 1 , ,K) (0-3) 

We c a l l  y the l ink ing var iab les and 4 the l ink ing matr ix f o r  the i - th  block. 

In  a dynamic l i n e a r  program we get together all of the l ink ing var iab les  

between NO consecutive periods i n t o  one block. 

Our decomposition method is c lose ly  re la ted  to  Beale's approach [ 6 ]  on 

the parametr izat ion of the  l i nk ing  var iab les and is not  of column-generation 

scheme. We begin by choosing i n i t i a l  values fo r  the l i nk ing  var iab les,  and 

then the problem is decomposed i n t o  eeveral  subproblems when the y-variables 

are f ixed. Af ter  optimizing these subproblems, the optimal s e t t i n g  of the 

l i nk ing  var iab les a re  determined, given t ha t  the bases f o r  the subproblems 

a re  f ixed. For t h i s  purpose, we solve a coordination problem. Subsequently, 

a direct ion-f inding problem fo r  every non-optimal subproblem is solved fo r  

the purpose of exchanging the bas is  so  as t o  improve the e n t i r e  problem. We 

c a l l  the process "coordination" of the y-variables. The coordination process 

terminates when there  is no improving the bases fo r  the subproblems. I n  a 

sense of planning process [12], t h i s  type of coordinat ion i s  considered t o  be 



resource-direct ive [8] and of two-level. 

The time-consuming jobs throughout the whole computation i n  the algor i thm 

a r e  solv ing the subproblems a t  t h e  i n i t i a l  s tage and solv ing the coordinat ion 

problems dur ing the coordinat ion process. We c a l l  t he  number of times of solv- 

i ng  the coordinat ion problem t h  mmrbsr of coordination cycles. A bu i l t - i n  

l i n e a r  programming subrout ine is required f o r  solv ing both the subproblems and 

the coordinat ion problems. As the number of rows of the coordinat ion problem 

is equal to  t h a t  of t h e  l i nk ing  va r iab les ,  the l a r g e s t  problem to  be solved by 

the subrout ine can be the coordinat ion problem in such a case t h a t  the number 

of per iods, K, in a dynamic case i s  very la rge.  That is one of the reasons 

why weakly coupled dynamic models a r e  computationally pre ferab le  and 

e f f e c t i v e  f o r  our algor i thm f o r  the  purpose of so lv ing much larger-sca le  models, 

where "weakly coupled" impl ies t h a t  the number of t h e  l i nk ing  va r iab les  between 

two consecutive per iods is r e l a t i v e l y  small. The second reason is t ha t  it is 

possible f o r  w t o  est imate "good" i n i t i a l  values f o r  the l ink ing va r iab les  i n  

weakly coupled cases. The computational experience ind ica tes  t h a t  a good s e t t i n g  

of the y-variables makes the algor i thm work e f f e c t i v e l y  . 
An experimental code, named MLTLPS, has been v r i t t e n  in FORTRAN f o r  HITAC 

8250 i n  order  t o  so lve dynamic l i n e a r  programs having up t o  180 rows and 6 

periods. The SEXDP developed by R.E.Marsten [15] is used i n  the MJLPS as an 

LP subrout ine f o r  so lv ing the l i n e a r  programs. 

I n  the present  experiments we mainly focus on t h e  number of coordinat ion 

cycles. From our experiments the number of the cycles seems t o  be near l y  equal 

to ,  o r  l e e s  than the number of periods, and seems t o  be very smal l  i n  comparison 

with t h a t  i n  the e a r l l e r  algorithms of coluum-generation scheme. For comparison . . 

with a d i r e c t  simplex approach we ten ta t i ve ly  convert the Mm9S t o  a new l a r g e  

computer, FACOM M-160S(camparable t o  IBM 3701148) , which has v i r t u a l  s torage 



i n  its ope ra t i ng  system, a r d  we use a ve rs ion  of  t h e  o r i g i n a l  SEXOP [15] a s  

t h e  FORTRAN l i n e a r  programming code f o r  t h e  d i r e c t  method. We observe t h a t ,  

f o r  two t e s t  problems of  6 pe r i ods ,  t h e  CPU computing t ime by t he  MULPS is 

about  a q u a r t e r  of  t hose  by t h e  d i r e c t  method, and t h a t  on ly  a h a l f  of  s t o r a g e  

in t h e  d i r e c t  method is r equ i red  i n  t h e  MULPS. 

It has  been l a t e l y  suggested by s e v e r a l  r e s e a r c h e r s  t h a t  ou r  method is 

c l o s e l y  r e l a t e d  t o  Gass' dua lp lex  method [ l a ]  and Wink le r ' s  uethod [19 ] .  We 

s h a l l  d e s c r i b e  in [20]  t h a t  t h e r e  a r e  t h r e e  computa t iona l ly  d i f f e r e n t  p o i n t s  

from Gass' method. W e  happened t o  r e p o r t  be fo re  i n  [2]  t h a t  t h e  number o f  

c y c l e s  requ i red  f o r  o p t i m a l i t y  i n  ou r  a lgo r i t hm was less than t h a t  when employ- 

i n g  a s e l e c t i o n  rule of  Gass' t ype  t o  o b t a i n  an improved b a s i s  of  t h e  subproblem 

in t h e  2-stage case ,  where we compared w i th  t h e  Bea le ' s  rule [6 ]  which is a l s o  

t h e  same a s  t h e  Gass' rule. And a l s o ,  we can understand t h a t  ou r  a l go r i t hm 

g i ves  a conc re te  op t ima l  s t r a t e g y  t o  Winkler 's  framework. However, o u r  a l go r i t hm 

w i l l  be  regarded as a coo rd ina t i on  method r a t h e r  than as a s implex method f o r  

l a rge -sca le  problems. 

Sec t i on  1 p r e s e n t s  some methods on pa rame t r i za t i on  and t rans format ion  i n  

l i n e a r  programs, which w i l l  b a s i c a l l y  g i ve  a s o l u t i o n  method t o  t h e  coo rd ina t i on  

problem. I n  Sec t i on  2 t h e  decomposi t ion a lgo r i t hm i s  presented f o r  a s i m p l i f i e d  

form of our  problem above. The j u s t i f i c a t i o n  of t h e  a lgo r i t hm is shown i n  a 

c o n s t r u c t i v e  manner w i t h  s e v e r a l  theorems and i ts f i n i t e  convergence is a l s o  

proved. At t h e  end of  t h e  s e c t i o n  t h e  computat ional  procedure is summarized. 

Sec t i on  3 con ta ins  t h e  computat ional  exper ience.  



1 . Parametrization and Transformation in Linear Programs 

Consider the l i nea r  program 

LP[B:yl max cp(B)y 

9. t .  1% + \(B)Y - b(B) 

% , Y  2 0 

*ere I i a  a su i tab le  ident iy ,  \(B) is an n x n and the other  vectors  a re  
Y'  

of conformable dimensions. LP[B:y] represents the cannonical form of a l i nea r  

program with respect t o  a given bas is  B and is the analogus notat ion adopted 

i n  Marsten and Shepardson 1161 fo r  expressing conveniently a l i nea r  program 

updated with respect  t o  a given bas is .  

For the purpose of formulating the resource-direct ive coordinat ion process 

i n  our two-level algorithm we consider a transformed l i nea r  program derived 

from LP[B:y]. Suppose t ha t ,  a t  f i r s t ,  the y-variables a re  f ixed a t  given values, 

0 0 y , and then they a r e  adjusted through "new parameters", X ,  around y . We 

have the fo l lov ing transformed problem: 

0 
LPX[B:y=y + I X  I max cp(B)X + cp(B)y 0 (1.1) 

9.t.  
0 5 + \(B)X - %(Y (1.2) 

- I X +  I y - y  
0 

(1.3) 

% # Y  2 0  

0 where - b(B) - %(B)y . The 5 and y play the r o l e  of s lack  va r iab les  

f o r  the  cons t ra in ts  (1.2) and (1.3) respect ively.  Let the dual form of LP 
X 

denote as fol lows: 

0 0 
D P ~ [ I : ~ = - ~  + IX 1 min -(yo) + vy + c p ( ~ ) y  o 

9 . t .  - Iv  - cp(B) 

u , v  2 0 

where u and v a re  the  dual va r iab les  associated with (1.2) and (1.3) respect ive ly .  



Let D be a dual feasible basis for DP and let p and JI denote the cor- 
B D 

responding primal basic solution of DP and the dual one respectively; i.e., 
B 

pt l  D-l cy(B). We update DPB with respect to D to obtain the following form: 

0 0 0 
DP~[D:FI + Iai lin u{rS(yO) - \(B)$I + V{Y + + cp(B)(y + 

s.t. u %(B) (D-')' - v (0-l)' = 

u , v ; o  . 
Again, let us consider the dual of DP [Dl: 

B 

DDPB[D:A] n~ P A  + cp(B)iy 0 + 

s.t. \(B) (D-')'A %(yo) - %(~)t~ (1.4) 

0 D y + $ I ~  (1.5) 

Let the slack variables for (1.4) and (1.5) be xg and y respectively. Then, 

DDP [D:X] can be regarded as a transformed form of LPL[B]. We have- the follow- 
B 

ing obvious and useful result. 

0 
TEEOREM 1. Let D be a dual feasilbe basis for DP~[I:FY + IX] and let JID 

0 
denote the corresponding dual solution. If y is a feasible solution to 

LP[B:y], then 

1 
(1) yl- yo + tD is also a feasible solution to LP[B:y], and y becomes 

an optimal solution if D is an optimal basis. 

1 
(ii) DDPBID:l] - LPA[B:py + (D-')~A], 

1 
(iii) there are at least n zero components among the ~ ( y  ), yl, where 

Y 

n is the dimension of y and also the number of rows in DPB. The number of 
Y 

1 1  
zeros among the %(y ). y is equal to n under the non-degeneracy assumption, 

Y 

which we shall assume hereafter in the coordination problems that will be 

defined later. 

Let us define T1= TO(D-l) where To= I (identity). Then, we have the 

new relationship between the y and the parameters X 



1 1  
y - y  + T A  (1.6) 

through which t h e  y -var iab les  w i l l  b e  ad jus ted  around t h e  y1 again.  L P X [ B : y  

1 1  
y + T A] is t he  problem updated w i th  respec t  t o  t h e  new r e l a t i o n s h i p  (1.6) 

1 and' s o  is t h e  DDP [D:A]. We c a l l  T t h e  Paramet r ic  Transformat ion Matrix (P B 

TI! h e r e a f t e r )  . 

2. The Decomposition Algorithm 

We use  t h e  same n o t a l t o n  a s  i n  [16] f o r  exp ress ing  a l i n e a r  program w i th  

r e s p e c t  t o  a g iven b a s i s .  For s i m p l i c i t y  in terminology,  we r e p r e s e n t  

t h e  linear program (0.1)-(0.3) as fo l lows:  

LP[I:y] max cx 

9. t .  k + % y  = b  

X , Y L O  

where A is an m x n m a t r i x  having K b locks ,  each of  which con ta ins  m rows 
K K i 

and ni columns, i .e . ,  m = Z m and n = Z ni, % is m x n and t h e  o t h e r  
i- 1 i i=1 Y'  

v e c t o r s  a r e  o f  conformable dimensions. We a l s o  assume v i t h o u t  l o s s  of  g e n e r a l i t y  

cy= 0 Fn (0.1) ,  because we can always a l t e r  t h e  o r i g i n a l  problem t o  t h e  above 

+ - 
t ype  of  problem, by add ing  a c o n s t r a i n t  %y - z+ + ; - 0,  z , z 2 0 t o  t h e  

x-block. 

For t h e  purpose o f  proving t h e  f i n i t e n e s s  of  t h e  a lgor i thm we s h a l l  

assume some o rd ina ry  non-degeneracy assumpt ions l i k e  in Theorem 1 ( i i i )  when 

necessary .  And a l s o  we assume, f o r  s i m p l i c i t y ,  t h e  boundedness of  t h e  problem. 

INITIALIZATION STAGE 

0 Tho Subproblem. F i r s t l y ,  v e  choose i n i t i a l  va lues ,  y , f o r  t h e  y -var iab les ,  

and when y=yO is f i x e d  we have t h e  subproblem 



0 
SP[I:y=y I max cx 

s.t. Ax = b - 
x ; o  . 

Notice t h a t  the subproblem ac tua l l y  cons is ts  of K smal ler subproblems of the  

same type, each of which is of an m x ni dimension. We assume. f o r  s impl ic i ty .  
1 

t h a t  the  subproblem has a f i n i t e  optimal so lu t ion.  

Now, l e t  B. be an optimal b a s i s  and l e t  n denote the corresponding 
Bo 

d var iab les;  n - c B-' where cB is the components of c corresponding 
0 Bo O 0 

t o  the bas ic  va r iab les  5 . Then, the  subproblem updated with respect  to  B 
0 

becomes 

5 3 %  z 0  
where 5 denote the non-basicOvariables, and we have - < 0 and ~ ~ ~ ( b - ~ y O )  

=N = 

> 0 because of opt imal i ty .  Likewise, the LP[I:y] is updated with respec t  t o  

B a s  fol lows: 

LP[B~:YI max ;N 'N - n ~ o %  y 

9. t. 5 + %(Bo) 'N + jiy(Bo) y = 
0 

5 ,  3, Y 2 0  

h e r e  $ ( B ~ )  - B-' d b t ~ ~ )  - B:\. 

Ths First Coordination ProbZem. We def ine the  coordinat ion problem f o r  the  

purpose of determining an optimal s e t t i n g  of the  y-var iables,  given t h a t  the 

Bo f o r  t h e  subproblem is f i xed.  Assume t h a t  the  y-var iables a r e  ad justed 

through the  parameters, A ,  around yo according t o  t h e  l i n e a r  re la t ionsh ips  

0 0 
y = y + T A , TO = I ( i d e n t i t y ) .  (2.1) 

Then, LP[B :y] can be equiva lent ly  wr i t ten  a s  the  fol lowing transformed form, 

in  the same way a s  f o r  LPA i n  Sect ion 1: 



0 0 
LPaIB0:yry+T A 1  max e N %  - rB-* l~O~ dual  va r .  

r , S % , Y L O  

0 O o  0 0 0 
vhere  r, y - B b - y ) = B - ( B  y . Let DPB [ I : y y  + T a1 

0 0 

denote t h e  correeponding dua l  problem. 

I n  t h e  above problem, ad jus t i ng  through t h e  invo lves both ad jus t i ng  

t h e  y-var iables and t h e  b a s i c  va r iab les ,  r, , bu t  t h e  non-basic v a r i a b l e s  % 
0 

remain locked a t  zero.  Th is  mechaniem w i l l  be formulated a s  a coord inat ion  

problem. Now, t h e  coord inat ion  problem i e  def ined in a primal form as 

0 0 
CP, [ I :  y-y + T X] 0 max - nB 5 T  X dua l  var .  

0 2 0 
s t .  r, + ~ ( B ~ ) T O ~  = % ( I )  : u 

0 
0 

- T i +  y = y  
o0 

: v 

5 . 9 .  2 0 .  
0 

Notice t h a t  t h e  problem is obtained by dropping all of t he  non-basic x-var iables,  

0 0 5, from LP [B :y-y + T A]. I n  our  a lgor i thm t h e  dua l  form of t h e  coord inat ion  a 0 

problem is a c t u a l l y  solved, and simply t h e  coord inat ion  problem s h a l l  imply 

its dual  problem in t h e  f u t u r e  desc r ip t i on  o f  t h e  computational procedure. 

0 0 Let DCPB [ I : y l p  + T X ]  denote  t h e  corresponding dua l  problem. 
0 

We aeeume that CP, is bounded. I f  it is unbounded, s o  is LP[I:y]. Let D 
" 
0 

0 0 denote an opt imal  b a s i s  f o r  DCPB [I:y=y + T X I  and le t  JI denote t h e  cor res-  D 
0 ponding dua l  so lu t i on .  From m e o K  1 we have y1 = y + J I ~  a s  an opt imal  s e t t i n g  

f o r  t h e  y-var iables,  g iven t h a t  t h e  b a s i s  B f o r  LP[I:y] is f i xed.  And a l s o ,  0 

ve  have 

0 0 1 1  t h e  dua l  o f  DCPB [D:yy  + T A] = CPB [ I : y y  + T A] 

1 0 0 

vhere T denotes t h e  PTM, and 

9 - TO ( ~ - 5  = ( D - ~ )  t .  



0 0 Let uD and v be t h e  b a s i c  v a r i a b l e s  of DCPB [I:y=y + T A] f o r  t h e  d u a l  D 
0 

v a r i a b l e s ,  u and v,  respec t i ve l y .  For s imp l i c i t y ,  we assume t h a t  t hose  b a s i c  

v a r i a b l e s  a r e  placed in t h e  b a s i s ,  D ,  i n  such a n  o rde r  a s  (vD,u,,); t h i s  means 

t h a t  i f  we put  

-1 t - nB $(D = o = (oV,oU),  
0 

then t h e  corresponding b a s i c  s o l u t i o n  is 

vD P, and \ P, . 
0 0 

LP[B :y=y + T A] can be updated w i th  respec t  t o  y1 and t h e  new PTM, l'l : 

1 1  
19,[Bo:y=y + T A] max $ ( B ~ ) ~  + O X  d u a l  va r .  

x, , " N , y : O .  
0 1 W e  a l s o  have t h e  updated subproblem, SPIBo:py ] ,corresponding t o  t h e  above. 

I n  view of our non-degeneracy assumption descr ibed i n  Theorem 1 ( i i i ) ,  

1 t h e r e  a r e  exac t l y  n zeros  among t h e  16 (y  ), yl. The corresponding p o s i t i o n s  
Y 0 

a r e  assoc ia ted  w i th  t h e  uD and vD. Let  t h e  set of t h e  rows i n  which t h e  

1 
corresponding components of (y ) a r e  equa l  t o  zero  denote r .  I n  t h e  c a s e  

1 1  
%o 

of LP[B :yly + T A], we s a y  s imply t h a t  t h e  rows belong t o  t h e  r-set, o r , i n  

0 1 t h e  case  of DCP [D:y=y + T X I ,  t h a t  t h e  corresponding columns belong t o  t h e  
Bo 

r-set. The b a s i c  v a r i a b l e s ,  among t h e  5 , uh ich  a r e  i n  t h e  rows belonging 
0 

t o  t h e  r-set correspond t o  t h e  v a r i a b l e s  c a l l e d  "pseudo-basic" i n  Beale 161. 

1 1  
A l l  of t h e  rows o f  $(Bo) in LP [B :py + T A] a r e  ~ l a s s i f i e d  i n t o  e i t h e r  

t h e  r-set :or  o therwise .  W e  assume, f o r  s i m p l i c i t y ,  t h a t  a l l  of t h e  r-rows 

a r e  placed a t  t h e  bottom of %(Bo), and le t  &(Bo) denote  t h e  corresponding 

p a r t  of ;d(Bo).  The assumption above means, t oge the r  w i th  t h e  assumed o rde r  

of (vD,u,,), t h a t  t h e  updated l i n k i n g  mat r ix ,  $ ( l o )  TI, has  t h e  fo l lowing 

s t r u c t u r e :  



where E is a square matrix composed of the unit row-vectors, which correspond 

0 0 to the c o l m s  associated with the uD in DCP [D:yy + T XI; R is a kind of 
Bo 

permutation matrix and we have 8-l= Bt. 

Similarly, if we assume that all. of the zero components among the y1 are 

1 
placed at the top, the updated linLing matrix, - T . can be vritten as follovs: 

where H denotes the collection of the unit rw-vectors, which correspond to 

0 0 the columns associated with the vD in DCPB [D:yy + T XI. Bo is also a 
0 

permutation matrix and 811 - Ifo . 
OPTlMAtITY TEST 

THEOREM 2. If we have 

t - 
pu  If - $Bo) 2 0, (2.6) 

1 1 1 1  then the basic solution, xg - xg (y ), y - y , in LPXIBo:y + T XI  is optimal 
0 0 

for LP[I:y]. 

1 1  
Proof. Notice that if the basic solution is optimal for LPAIBo:y + T XI, 

it is also optimal for LP[I :~~. put u* = ( O , ~ ~ R ~ )  2 o a d  v* - (pVnE, 0) 0. 

The condition (2.6) means that the u = u*, v = v* is a feasible solution to 

1 1  DP [I:yy + T X] because of (2.3). (2.4) and (2.5). We have clearly comple- 
Bo 

mentary slackness, and the solution is optimal. I I 
CBBNGING THE BASIS OF THE SUBPROBLEM 

The Direction-finding Problem. Now suppose that - <(B~) 1 0, 

so that we are not finished. Therefore, we try to change the present basis 

B to an attractive one. Put 



We def ine the  direct ion-f inding problem: 

% 3 %  : O  

denotes the  components of xg i n  the  r-set and p lays t h e  r o l e  of 
0 

s lack  var iab les.  

1 It is very important f o r  ue t o  no t i ce  tha t  so lv ing F [I:y-y ] means 
Bo 

changing the present  basis,Bo, of SP[B :y-yL] t o  an improved b a s i s  by 

r e s t r i c t i n g  the  candidates of p i vo ta l  rows t o  t h e  r-set and by using the  

1 
modified ob jec t i ve  funct ion. We assume t h a t  t h e  degenerate program FB [I:y-y ] 

0 

is solved by t h e  per turbat ion method. Notice t h a t  the d i rect ion- f ind ing problem 

has e i t h e r  a bounded n u l l  so lu t ion  o r  unbounded so lu t ions.  

1 
I f  F L1:y-y ] has an bounded optimal so lu t ion,  t h e  assoc ia ted bas is-  

Bo 
change a l s o  induces the  basis-change f o r  the  subproblem, S P [ B ~ : ~ = ~ ' ] .  Let B1 

denote the  induced b a s i s  f o r  the subproblem: the  subproblem has been updated 

1 
v i t h  respect  t o  the  B and we have SP[B :y=y 1. 1 1 

1 
I f  F [ I : y y  ] is unbounded, we need an extra-operat ion f o r  the purpose 

Bo 
of obta in ing such a b a s i s  that,among the corresponding bas ic  va r iab les ,  the re  

is a t  l e a s t  one bas ic  va r iab le ,  the  ob ject ive c o e f f i c i e n t  of which is exact ly  

pos i t ive .  

The lktm-operat ion i n  the Unbacnded Case. Let xs denote such a va r iab le  

t h a t  its simplex c r i t e r i o n  is negat ive and a l l  t h e  components of its updated 

column a r e  non-posit ive. 

I f  xw is not a component of the  % ,.,that is, not a s lack  va r iab le ,  then 
0 

we perform a p ivot ing operat ion f o r  br inging xw i n t o  the  b a s i s  ins tead of a 



basic va r iab le  which is a component of the . t h a t  is, a s lack va r iab le  

in the bas is .  
X ~ o r  

I f  xm i t s e l f  IE a component of the %or. there is a t  l e a s t  one bas ic  

var iab le  in t h e  present  b a s i s  , t he  ob ject ive c o e f f i c i e n t  of which is pos i t i ve .  

Because t h e  corresponding ob jec t i ve  value tends to  i n f i n i t y  by l e t t i n g  t h e  xm 

increase. I n  t h i s  case we do no t  need the  extra-operat ion f o r  our purpose. 

1 Thus, in t h e  unbounded case we a l s o  have had a new b a s i s  f o r  FB r1:y-y 1. 
0 

Let B1 denote t h e  induced b a s i s  f o r  t h e  subproblem a s  we l l  a s  in t he  bounded 

1 ase. We have t h e  updated subproblem, SP[B :y-y 1, a s  well. The p o s s i b i l i t y  
1 

of performing t h e  extra-operat ion IE insured by the  fol lowing lemma. 

1 LEMMA 1. When F [I:- ] is unbounded, ve  can claim the  fol lowing f a c t s :  
Bo 

( i )  There has to be at l e a s t  one va r iab le  chosen among the 5 r-var iables 
0 

in the present  b a s i s ,  o r  e l s e  the  xm i t s e l f  is a component of the  x 
BoI" 

( i i )  Unless t h e  xm is a component of t h e  xg r-var iables,  the re  has to  
0 

be a t  l e a s t  one non-zero component in the updated column of the  xm. The non- 

zero component appears on some of the  rows of the  bas ic  xg r-var iables i n  t h e  
0 

present bas is .  

1 Proof. (1) From (2.7) ,F [I:y=y ] can be equiva lent ly  wr i t ten  as 

t 
Bo 

puQ Xr + 5 (2.8) 

s.t. I xB + ;iNr(Bo) 5 - 0 (2.9) 
0 

X B r 9 %  2 O .  

bs ve have %(Bo) : 0, t h e  problem does no t  show the  unboundedness i f  a l l  of 

the bas ic  va r iab les  and x- a r e  the  components of t h e  xN-variables. 

( i i )  I f  t h e  xm ie a component of the  %-variables, a t  l e a s t  one of the 

bas ic  % ,.-variables i n  the  b a s i s  has t o  become p o s i t i v e  by l e t t i n g  t h e  xm 
0 

increase, because of % ( B ~ )  2 0. This means t h a t  t h e  claim (11) is t rue .  1 1 



Concerning the  new bas is ,  B1, f o r  the subproblem, which is induced from 

solv ing the  d i rect ion- f ind ing problem, we have the fol lowing r e s u l t :  

1 LEMMA 2. Let 0 denote the  b a s i s  matr ix fo r  FB 1I:y-y 1, which is asso- 
0 

c ia ted  with t h e  B1-basis f o r  the  subproblem, and l e t  8 and p denote the 
0 0 

corresponding bas ic  va r iab les  and the corresponding ob ject ive coe f f i c ien ts  

reepect ive ly .  Then, there is a t  least one pos i t i ve  ccopponent, p >O, among the p 

1 
0 j 0' 

&of. In t h e  unbounded case of P 11:- 1 ,  i t  is c l e a r  owing t o  t h e  
Bo 

extra-operat ion above. So, we shall prove it in t he  bounded case. Let 8 (E )  > 
0 

0 be t h e  va lues of t h e  optimal bas ic  va r iab les  f o r  t h e  perturbed problem of 

1 
PB 1I:y-y ] f o r  s u f f i c i e n t  small E > 0,  and l im  x ~ ( E )  = 0. Suppose t h a t  p < 0. 

0 E + O  
0 = 

A case pg - 0 causes dual  i n f e a s i b i l i t y ,  because the re  is a t  l e a s t  one pos i t i ve  

component among t h e  pN(Bo): This is impossible. I f  p + 0,  we have p x (E )  < 0. 
0 0 0 

This con t rad ic ts  t h e  opt imal i ty  of x ( E ) ,  because a n u l l  so lu t ion  becomes an 
0 

f e a s i b l e  one t o  t h e  perturbed problem. ( I 
Ezpzwssing ths BI by the 6 and tho Bo. Let f(Bo) denote an enlarged matr ix 

of t h e  bas is ,B, for  LPIBo:y], i .e. ,  under t h e  assumptions f o r  s imp l i c i t y ,  we 

have 

where a denotes the  componnents ou ts ide  the r-set of LP[B :y] in t he  same 

columns a s  0. Notice t h a t  i f  some var iab les  i n  the 0 a r e  chosen from t h e  73 r p  
t h e  corresponding components of a a r e  nu l l .  Then, we have 

B i l  - i+(B0) Bil , (2.11) 

which is ca l led  Dantzig 's Factor izat ion i n  Marsten and Shepardson [16]. 



Likewise. 

; (so)  - E ( B ~ )  F-'(B~) (2.12) 
B1 B1 

h e r e  c (Bo) denote t h e  o b j e c t i v e  c o e f f i c i e n t s  of t h e  b a s i c  v a r i a b l e s  cor- 
B, 

A 1 responding t o  t h e  b a s i s  F ( B ~ )  in SPIBo:y=y 1. From (2.10) we have 

where c (B ) denote  t h e  component of 
0 0 

<(Bo) corresponding t o  t h e  0. 

1 
Let  r denote  t h e  dua l  v a r i a b l e s  assoc ia ted  w i th  t h e  B1 f o r  S P I B o : m  1. 

B1 
Then, from (2.111, (2.12) and (2.13) we have 

which was a l s o  shown in [16] .  I n  add i t i on ,  

$(B1) a r1 (B0)  $(B0) (2.15) 

Thus, we have obta ined t h e  updated LP[B :y], a s  w e l l  as t h e  subproblem. 1 
1 

SPIB1:yy I .  

THE SUBSEQUENT COORDINATION PROBLEMS 

Now, we would l ike t o  d e f i n e  t h e  subsequent coo rd ina t i on  problem f o r  t h e  

1 
updated subproblem SPIB1:yly 1.  As w e l l  a s  t h e  f i r s t  problem, t h e  purpose is 

t o  determine an opt imal  s e t t i n g  of t h e  y-var iables,  g iven t h a t  t h e  new bas i s .  

B1, f o r  t h e  subproblem is f i xed.  

F i r s t  of a l l ,  we s h a l l  d e f i n e  a new r e l a t i o n s h i p  between t h e  y -var iab les  

and t h e  A-parameters f o r  t h e  purpose of reducing t h e  amount of work requ i red  f o r  

updat ing t h e  l i n k i n g  ma t r i ces  w i th  respec t  t o  B 
1' - 

1 The 0-transfornation. Let  u s  d e f i n e  t h e  i n te rmed ia te  PTM, T *, as 

and we cons ider  t h e  fo l lowing new r e l a t i o n s h i p  : 



The linking matrices in LP [B :y=yL + TL*X] are obtained as follows: 
X 1 

by (2.4) and (2.10) , 

1 - 
0 

, (2.20) 

and by (2.3) and (2.13) 

t 
I (pV,puH 6) - (0,GB(B0)) S(Bl) TI* 

- (IY,.IY~H~B) - (o,;~(B~) , by(2.181, 

t - 
(pV,pUH B - cB(Bo)) . (2.21) 

t - We should pay attention to the component of p H B-c (B ) . Then, we:note that 
u B o  

these components associated with the slack variables fn the basis.8, are not 

1 1  
changed from the corresponding components fn LP [B :yly + T XI, because the X 0 

corresponding components of c (B ) are null. Furthermore, the other components 
B 0 

associated vith the basic variables chosen from the % are simply replaced by 

1 the corresponding components of - p (B ) in FB [I:y=y 1. 
B 0 

0 

In conclusion, the linking part can be easily updated with the new relation- 

ship between the y and the X as (2.18). (2.19) and (2.211, only by using the 

basic matrix, B, for the direction-finding problem. We call simply those trans- 

forming operations the B-transformation hereafter. 



The Second Coordination ProbZem. Now, we can def ine the coordinat ion problem 

1 1  
derived from LP [B : y y  + T * X I  a s  wel l  as  before. 

X 1 

1 -1 
Simi lar ly ,  DCP [I:y + T~*X]  denotes i ts dual f o m .  

B. 
I 

THEOREM 3. Under t h e  non-degeneracy assumption i n  Theorem 1 ( i i i )  , 

LP[I:y] is s t r i c t l y  improved a f t e r  solv ing t h e  CPB [l:g-gl+ Tl*X]. 
1 

Proof. It is s u f f i c i e n t  f o r  us t o  show t h a t  t h e  ob ject ive funct ion 

1 
f o r  13 [I:- + T'*A] has a p o s i t i v e  value. From Lemma 2 and (2.21), the re  

B, 
A 1 1  

is a t  l e a s t  one negat ive db jec t i ve  coe f f i c ien t  i n  CP [ I :y ly + T *A]. And 
B. 
I 

t ha t ,  the  corresponding component of the X belongs t o  the  r-set. This shovs 

1 1  t ha t  s t r i c t  improvement in CPB [ I : y y  + T * X I  i s  insured under the  non- 

degeneracy assumption. I l1 
1 1  

As wel l  a s  i n  the  f i r s t  coordinat ion problem, ve so lve DCP [I:y=y +T *X] 

2 2 B1 
t o  obta in  the  new y-values, y , and the nev PTM, T , and then perform the  

opt imal i ty  t e s t .  This completes one major i t e r a t i o n  of the  algorithm. 

Notice t h a t  t h e  bases f o r  the subproblem, B1, B2. ..., a r e  genera l ly  not 

dual f e a s i b l e  in t he  subproblem except B a t  the  i n i t i a l i z a t i o n  s tage.  The 

p o s s i b i l i t y  of performing the  ex t ra  operat ion in F [l:y=yk+'] is insured 
Bk 

only under the  opt imal i ty  of the  subproblem by Lemma 1. Accordingly, 

we may, on r a r e  occasions, f a i l  t o  f ind the negat ive p i vo ta l  element i n  

the unbounded column. Only when such a case happens, we need re-optimize the  

k+l subproblem f o r  y - y . 



THE ALGORITHM 

Our algor i thm may nov be sunmrarized a s  fo l lovs:  

0 
Step 0. Choose y and s e t  To-. I as  the  s t a r t i n g  PRI, and k = 0. 

k Step 1. Solve the  subproblem, SP[I:y-y 1 ,  t o  obta in  the  optimal b a s i s  %. 
k k  Step 2. Solve the  f i r s t  coordinat ion problem DCP [I:y-y + T X] t o  obta in  the 

Bk 
optimal s e t t i n g  of y ,  yH1, and t he  nev PTM, Tk+l= Tk(g-l), vhere D 

k is t h e  opt imal b a s i s  of DCP and the  corresponding so lu t ion ,  p . 
Step 3. I den t i f y  the r-set.  

%' 

k t  Step 4. If pN(Bk) I pU 6 G r ( ~ k )  - <(B,) 

optimal f o r  LP[I:y]. 

k+l Step 5. I f  t he  r-set is not  void, solve the d i rect ion- f ind ing problem F [I:y 1 .  
Bk 

I f  F 1 0 : y ~ + ~ ]  is bounded, then l e t  the  induced b a s i s  f o r  the  subproblem 
Bk .. 

be BHl, and then go t o  Step 7. I f  it is unbounded, then go t o  Step 6 

f o r  the  extra-operation. 

I f  t he  r-set is void, then s e t  k - k+l, and go So Step 1 by f i x ing  y = 

Step 6. Check the  ex is tence of a negat ive element in t he  unbounded column. 

k+l  I f  t he re  is not ,  then s e t  k - k+l, and go t o  Step 1 by f i x ing  y = y . 
Otherwise, perform t h e  ext ra-operat ion f o r  F [l:yk+'] t o  obta in  the 

Bk 
bas is ,  B ,  and l e t  Bk+l be the  induced bas is  f o r  the  subproblem. 

Step 7. Perform the  B-traneformation f o r  the  matr ices and the  RBS vector  in 

k k  DCP [D:- + T X I  t o  obta in  t h e  intermediate PTM, Tk+'*, and the 

second coordinat ion problem DCP [l:y-yk+l+ Tkfl*X]. 
%+1 

Step 8. Solve DCP [l:y=yk+'+ Tk+'*X] t o  obta in  t h e  nev y-values, yk+2, and 

%+I k+2 the  new PTM, T . Set k = k+l and go t o  Step 3. 



Finite Convergence. The f in i teness .o f  the  algorithm is insured by the follow- 

ing theorem. 

TKEOREM 4 .  The proposed algorithm terminates i n  a f i n i t e  number of the 

major i t e ra t i ons  under the  non-degeneracy assumption. 

Proof. It ie seen by Theorem 3 tha t  the problem LP[I:y] is s t r i c t l y  

improved through the  coordinat ion of the y-values and the  subsequent basis- 

change under the non-degeneracy assumption. The y-values a re  opt imal ly s e t  

with respect  t o  the  given bas is , \ ,  i n  the coordination problem. This impl ies 

a f i n i t e  terminat ion of the  algorithm, because there  a r e  only a f i n i t e  number 

k of poss ib le  bases \'s f o r  the  subproblem in a course of se lec t ing  y in the  

algorithm. ( I 
Implementation. I n  order t o  implement the  algorithm f o r  the  dynamic l i nea r  

programs, we have t o  solve K subproblems separate ly ,  and ve need t o  br ing out  

K permutation matr ices l i k e  H from the  coordinat ion problem, which a r e  used 

f o r  the 0-transformation of K blocks. The dimension of the  dual coordination 
K 

problem t o  be solved a t  every cycle becomes n x ( E mi + n  ) ,  which shows 
y 1-1 Y 

t ha t  the l i n e a r  program has extremely many columns as  compared t o  the  number 

of r m .  See [3] f o r  the deta i led procedure t o  implement the algorithm. 



3. Computational Experience 

MULPS. An experimental code, named MULPS (Multi-period Linear Programming 

System), fo r  the veakly coupled l i nea r  programs was v r i t t e n  i n  FORTRAN using 

the SEXOP[15] f o r  HITAC 8250 Computer. The computer has 160 KB main s torage 

and d i sc  s torage devices. Its operat ing system does not  have v i r t u a l  memory. 

The SEXOP is used f o r  so lv ing a l l  l i nea r  programs i n  the Mm9S. A version of 

the  SEXOP f o r  the  HITAC 8250[5] rune by overlay between the main s torage and 

the d isc  storage. The MULPS can solve dynamic l i nea r  programs having up t o  30 

l ink ing var iab les  and 6 per iods, each having up t o  30 rows and 50 columns. 

The Au.po8e of tha Rzpemhmts. The present experiment pr imari ly focuses on 

the number of cycles required f o r  opt imal i ty  by the algorithm, and a l s o  ve 

observe the  degrees of opt imal i ty throughout the whole coordination process. 

The computing time ia secondari ly observed, because the number of cycles v i l l  

have a great  inf luence on the computing time, and the MULPS has not been designed 

and coded with the in ten t ion  of invest igat ing s t r i c t l y  the computing time. 

For the purpose of comparing the algorithm with the  d i r ec t  simplex approach, 

we ten ta t i ve ly  convert the MULPS t o  a la rge  computer, FACOM M-160S(comparable t o  

IBM 370-148) having 768 main storage and v i r t u a l  memory. We use the SEXOP fo r  

the d i r ec t  simplex method. 

The Test Probtem. Our t e s t  problems vere mainly derived from ( i )  a version of 

Gilmore and Gomory's model of cu t t i ng  s tock problems[9], ( i i )  Manne's model of 

multi-period economic planning[7],  and ( i i i )  f i c t i t i o u s  re f ine ry  production 

planning models. These problems a re  l i s t e d  i n  Table 1. 

Generally speaking, in a case of multi-period models i t  is r e l a t i ve l y  

easy t o  est imate the "good" initial values fo r  the l i nk ing  var iab les,  so  tha t  

these make eas i l y  the problem feas ib le .  Hovever, in the present experiment, 

the i n i t i a l  values a re  s e t  a t  zero except fo r  R1B.  For R l B ,  the  optimal values 

of y fo r  R1.A a r e  used. 



The Results. The number of cycles required f o r  opt imal i ty  and the CPU comput- 

ing t ime a r e  summarized i n  Table 2. Table 3 i l l u s t r a t e s  the  degree of opt imal i ty  

a t  every cycle. In  Table 4 the  CPU computing time up t o  every cyc le  throughout 

the opt imizat ion is descr ibed in d e t a i l  f o r  Problem MAl. I n  Figure 1 t h e  t o t a l  

CPU computing time and tha t  per cycle a r e  p lo t ted  f o r  the  corresponding number of 

per iods f o r  the s i x  problems G3A - G6B. Notice t h a t  those problems have sub- 

problems of the  same dimension, but  a d i f f e r e n t  number of per iods. 

I n  Table 5 we compare both the  CPU computing time and the amount of s torage 

required in the system with those by the  d i r e c t  simplex method(SEX0P) f o r  MAl. 

l'he ConcZusia. Prom Table 2 we note t h a t  the'  number of cyc les required f o r  

opt imal i ty  is almost equal  to ,  o r  l e s s  than the  number of periods. For the 

purpose of comparing it with tha t  by the algorithms of column-generation scheme, 

we s h a l l  r e f e r  t o  the  e a r l i e r  r e s u l t s  of Glassey's algor i thm [ l o ]  and of Ro 

and Manne's one [14]. 

I n  Glassey [ l o ]  the  computational r e s u l t  f o r  almost the same model a s  MAL 

derived from [7] was presented. The number of cyc les was reported t o  be 31, 

which s h w s  t o  be f i v e  times l a rge r  than t h a t  f o r  W. In  Ho and Manne [14] t h e  

two t e s t  problems coded SCSOA and SC50B have 6 periods and the dimensions a r e  

ra the r  smal ler  than R1 and R 2  among our problems. The number of cyc les was 

reported t o  be between 25 and 35, vhcih s h w s  t o  be s i x  o r  e i g h t  times l a r g e r  

than ours.  However, i t  is reported in the recent  comparative study of  t h e i r  

method, Ho and Loute [13], t h a t  the number of cyc les is grea t l y  reduced. We 

could no t  t race  the same problems in the present  experiment. 

From Table 3 we note t h a t  the process of convergence is f a i r l y  f i n e  and 

the "long t a i l "  of convergence scarce ly  occurs. The degree of opt imal i ty  



a t t a i n s  a very high pos i t i on  a t  a r e l a t i v e l y  ea r l y  coordinat ion cycle.  The 

degree a t  t h e  f i r s t  coordinat ion is beyond 70% i n  almost all cases such t h a t  

the initial values f o r  the  y-variables make the  problem feas ib le  a t  the  i n i t i a l  

stage. This fea tu re  s e e m  t o  be s ign i f i can t  in a p r a c t i c a l  use, and a near- 

optimal s t r a t e g y  may work e f fec t i ve ly .  

From Table 4 we note t h a t  the  CPU computing time per cyc le  tends t o  

decrease s l i g h t l y .  A l l  subproblems a r e  optimized before so lv ing the f i r s t  coor- 

d inat ion problem. Therefore, much more time is consumed a t  the  f i r s t  cycle. 

Kxcept some s p e c i a l  occasions, so lv ing the subproblem a r e  skipped and the 

direct ion-f inding prob lem a r e  solved only f o r  the non-optimal blocks. We have 

obsermd s o  f a r  t h a t  the  number of non-optimal blocka gradual ly decreases 

according a s  the  coordinat ion proceeds. 

Table 5 shovs tha t  the MULPS is four times f a s t e r  than the d i r e c t  method 

concerning the  computing t i m e ,  and requi res only a ha l f  of memory f o r  the d i r e c t  

simplex method in the case of M(U. 
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Problem Period -- 
Gilmore-Gomory 

G3A 3 

G3B 3 

G4A 4 

G5A 5 

G6A 6 

G6B 6 

TABLE 1 

Dimensions of Test Problems 

Ent i re  Problem 

Rova Col.'a* %Density %** - 

Subproblem 

Rovs Col.'s %Density -- 

m e ' s  Model 

MAl 6 116 266 1.8 26 19-20 37-43 9.7-11.0 

Refinery Prod. 

RlA 6 60 186 2.7 30 10 26 20.0 

RZB 6 Only the l ink ing matrix is d i f fe ren t  from R l A  above. 

R2A 6 90 198 2.5 30 15 28 15.0 

* Includea s lack var iab lea.  

** L.V. denotes the number of l ink ing var iables. 



TABLE 2 

Number of Cycles and CPU Computing Time 

Problem Periods Number of Cycles CPU Computing Time -- 
min. sec. 

G3A 3 4 (o)* 5 40 

* A parenthesized figure denotes the number of times returned to Step 1 in 

Step 6. In Step 1 the subproblem is reopthized. 

TABLE 3 

Degree of Optimality and Number of Cycles 

N d e r  of Coordination Cycle 

Problem 0 1 2 3 4 5 6 7 8 

G3A 2 94.7 96.2 98.0 m.2 
G3B 2 0 18.5 71.5 71.5 E Z  

C4A 2 89.6 93.1 97.3 97.5 E Z  
G5A 2 87.7 88.6 100- 100- - 100% 

G6A 2 89.7 95.5 98.6 99.0 99.5 99.5 99.8 E X  

G6B 2 76.6 87.6 96.6 97.3 99.3 E Z  

M A l  * - 0 32.6 71.9 87.2 96.8 X.2 

glA * * * - 0 E Z  
ElB * - 0 97.1 -% 
R2A * * - 0 69.2 84.0 =I 

Note: An asterisk denotes that a feasible solutiol is not found yet. 2 denotes 
feasibility attained for the first time. 100 denotes a near 100. 



TABLE 4 

CPU Computing Time up t o  Every Cycle f o r  MA1 

Up t o  Optimization Number 'of Cycle 

of Subprob . '~  1 2 3 4 5 6 

min. sec .  
Computing 

Time 2 37 4 49 8 30 11 27 14  17 17 07 20 00 

Per Cycle - 4 49 3 41 2 57 2 50 2 50 2 53 

TABLE 5 

Conzparison of  MUUS with Direct Simplex f i t h o d  

CODE MULPS SEXOP SEXOP /MULPS 

PROBLXM CYCLES TIME ITER- TPIE RATIO I N  

No. Per iods S ize  ATIONS TPIE 

M4IN 
STORAGE USED 

1 )  The t imes repor ted are in CPU seconds on a FACOM M-160 (comparable t o  

IBM 370/148). 

i i )  The FACOM M-160 has  768 KB real memory and 16 MB v i r t u a l  memory, which is 

under OS IV/X8 (comparable t o  IBM OS/VSZ ). The FORTRAN IV HE compiler 

with OPTIMIZE(2) is used throughout (comparable t o  IBM FORTX compiler v i t h  

OPT = 2) .  



r: Per Cycle / 

Per Cycle 
min. 

3 1 5 6 7  

Number of Periods 

P ig .1  CPU Computing Time and Number of 

Periods fo r  Problems G3A-G6B. 



ASPECTS OF BASIS FACTORIZATION FOR BLOCK-ANGULAR 
SYSTEMS WITH COUPLING ROWS 

Michael Bastian 

Rheinisch 4estfaIische Technische Hochschule 
Aachen 

In the class of decomposition and factorization algorithms characterized by Winkler [9] , 
certain subinverses have to be updated by elementary column- and row-matrices. It i s  
shown how to keep a Forrest-Tomlin representation of these subinvenes in spite of the 
row transformations. 

For the case of staircase systems - viewed as nested blockangular systems - problems of 
data handling are addressed. 



1. INTRODUCTION 

Many algor i thms have been proposed over the years t o  take advantage 

o f  not iceab le  block s t ruc tures  i n  the c o e f f i c i e n t  matrices of L inear 

Programing problems. We are concerned here w i t h  riiodif i ca t i ons  of 

the  Simplex Method which are general ly  based on a f a c t o r i z a t i o n  o f  

the basis inverse t h a t  preserves the block structure.  

The general judgement of whether special LP-algorithms are useful  

o r  not  has changed dur ing the past  25 years several times. 

I n  1955. DANTZIG [ 3 I wrote: 

'Now the mzin obstacle taxmi the f i l l  application of stundard 

tinear programing techniques to dynamic systems i s  the magnitude 

of the m a t r i x  for even the simplest situation. For eccmnple, a tri- 

vial IS-activity-7item stat ic model, wou M become a l8Odct iv i ty 

by 84i tem system, which i s  considered a large problem for applica- 

t ia of the standard simplex method.. I t  i s  clear that dymn& 

models must be treated with special toots if any progress i s  to be 

made tomxi solutions of these systems'. 



With every next  generation of computers and improvements o f  general 

LP-systems people tended t o  disregard b l  ock-structures. On the 

o ther  hand, t he  s i ze  of the  problems t h a t  had t o  be solved also 

increased enormous1 y, and special  methods were reconsidered. 

Right now, i t  seems t o  me t h a t  we a re  i n  a per iod where a l o t  o f  

a t t e n t i o n  i s  paid t o  the e f f i c i e n t  so lu t i on  of b lock-structured 

Linear Programs, one of the  main reasons probably beinp the development 

of r e a l l y  huge mu1 t i - pe r iod  mult i-area energy models a t  many places 

i n  the world. 

But there a re  o ther  reasons t o  apply special  a lgor i thms also t o  

block-structured problems o f  medium size: 

- I n  many s i t u a t i o n s  one knows i n  advance t h a t  f o r  c e r t a i n  compu- 

t a t i o n s  on l y  a small number o f  ' p a r t s '  o f  the  fac to r i zed  inverse 

as wel l  as of the o r i g i n a l  data i s  used. 

By an e f f i c i e n t  b u f f e r i n g  system one might be able t o  have most 

o f  the  re levant  data i n  core dur ing these computations. 

- I n  the near f u t u r e  i t  may become q u i t e  standard t o  use programing 

languages t h a t  a1 low f o r  t he  implementation of paral  l e l  a lgor i thms. 

'There are  more poss ib i  1 i t i e s  t o  make use o f  paral  l e l  computations 

i f  block-structures a re  maintained. 

I f  t h a t  i s  so, why d o n ' t  people use f a c t o r i z a t i o n  methods f o r  so l v ing  

block-structured models today? The main reason, I th ink,  i s  t h a t  so 

f a r  most special  LP-algorithms were developed i n  an academic environ- 

ment, where implementations - i f  there  were any - served as a stand- 

alone t e s t  veh ic le  f o r  the  f a c t o r i z a t i o n a l  and decornpositional p a r t  

o f  the  problem. What should be done i s  t o  make sure t h a t  the h i g h l y  

e f f i c i e n t  procedures developed f o r  general 1 arge scale LP remain 

p a r t  o f  the system whereever t h i s  i s  possible: Fac to r i za t i on  f o r  

s t ruc tured LP should be an opt ion  no t  a separate system. To be more 

spec i f i c :  A system should have several options f o r  d i f f e r e n t  block- 

s t ruc tures  which share as many rout ines as poss ib le  and ex tens ive ly  

use standard LP-procedures . 



Af ter  g i v i n g  a b r i e f  summary on block-structures and f a c t o r i z a t i o n  

methods, I s h a l l  show how subinverses o f  a bas is - fac tor iza t ion  may 

be updated by the Forrest-Tomlin Method, even though some o f  the  

updating transformations are elementary row matr ices.  

This s i t u a t i o n  occurs f o r  example i n  the  c lass o f  a lgor i thms de- 

r i v a b l e  from Carlos Wink ler 's  u n i f i e d  theory o f  p a r t i t i o n i n g  and 

decomposition (WINKLE!? [91) .  

One of the b lock-s t ruc tures  which are most of ten encountered i n  

p r a c t i c a l  app l i ca t i ons  and hard t o  solve are s ta i rcase-s t ruc tures .  

Problems of data hand1 i n g  when us ing Wink ler 's  nested f a c t o r i z a t i o n  

approach f o r  so l v i ng  s ta i r case  s t ruc tured LP's are addressed. 

2. Block-Structured Systems 

L e t  A be an m x n-matrix w i t h  r e a l  c o e f f i c i e n t s ,  

M t he  s e t  of nonempty subsets of {1,2 ,..., m), 

N the  s e t  o f  nonempty subsets o f  {1,2,. . . ,n) , 
l< k<m and K : = {1,2, ..., k) 

Def . : 
A (row-oriented) b lock-s t ruc ture  o f  A i s  a se t  BS(A):=[(ai , y i )  l i E Kl 
o f  p a i r s  ( a i  , y i )  E M x N such t h a t  

(1) {a i  l i E k) i s  a p a r t i t i o n  of {l,..,m) ; 

( 2 )  every nonzero element Ah. * 0 of A i s  contained i n  one o f  t he  
J 

sub-matri ces 

biSyi (i E K). 

The matr ices ki ,yi ( i  E K) are c a l l e d  blocks. 

A b lock  o f  a b locks t ruc tured ma t r i x  i s  thus given by a s e t  a of 
rows and a t  l e a s t  those columns t h a t  have a nonzero element i n  

any p o s i t i v e  number of rows i n  a. 



The factorization methods under consideration keep representations 

of the basis-inverses which retain (to a large extent) the block- 

structure of the corresponding bases. The idea is that the FTRAN- 

and BTRAN-operations of the Simplex Method are simpler to perform 

if nonzeroes only appear in certain blocks, the position of which 

is apriori known. 

3. Basisfactorization for Blocktriangular Matrices 

Def. : - 
A real m x n-matrix A is called blocktriangular, if it has the 

following block-structure: 

BS(A) :={(ai syi ) E M x N I i E K, yi $ U. Ti v l<i<k) . 
j>i 

The classof blocktriangular matrices is quite large and contains 

the majority of  block-structured coefficient matrices of  'real world' 

Linear Programs. Well-known substructures are: 

a) the blockangular structure (with coupling rows and coupling 
variables) : 

BS:=((aj,~i)li E K, y,=(l, ..., n), yi I y k  V i + k, 

yinyj = yk V 1 + i + j + 1) ; 

b) the staircase structure: 

BS:=((ai ,Ti) l i E K, yinyi+l + 0 V i + k, yinyj = 0 V li-j l >I) 



I t  i s t  now twenty-f ive years ago t h a t  George Dantzig [ 3 I 
suggested t o  modify the simplex a lgor i thm when app l ied  t o  problems 

w i t h  b lock- t r iangu lar  coe f f i c i en t  matrices. The main idea o f  t h a t  

e a r l y  paper, i .e. the fac to r i za t i on  o f  b lock- t r iangu lar  bases i n t o  

a  b lock t r i angu la r  and a  very sparse fac tor ,  remains the same i n  

most o f  today's approaches. 

L e t  be a  b lock t r i angu la r  basis. By column exchanges i t  i s  possible 

t o  y i e l d  a  mat r ix  B  from w i t h  the fo l l ow ing  propert ies:  

a)  B  i s  b lock t r i angu la r  up t o  a  few 'sp ikes '  

b )  B  can be fac to r i zed  i n t o  two i n v e r t i b l e  matrices 

F  and L  such t h a t  0 - I  = L-l rl, 
where i s  b lock t r i angu la r  and L'l i s  very sparse. 

c )  The submatrices on the main diagonal o f  B  are  square. 

This s t ruc tu re  g r e a t l y  s i m p l i f i e s  the operations BTRAN and 

FTRAN o f  the  simplex method. 

The mu1 t i p l i c a t i o n  by F-1 i s  simple because o f  the s t ruc tu re  

and the m u l t i p l i c a t i o n  by L-1 i s  f a s t  because o f  the  small 

number o f  nonzeroes. 



'The main challenge i s  t o  provide an e f f i c i e n t  method f o r  maintain ing 

t h i s  s t ruc tu re  of the  inverse dur ing the i t e r a t i o n s  of the  simplex 

method. 

KALLIO and PORTEUS [ 6 I published a so lu t i on  t o  t h i s  

problem i n  1977. A d i f f e r e n t  approach was taken by PEROLD and 

DANTZIG [ 4 1. 

I n  the case of p a r t i c u l a r  b lock t r iangu lar  s t ruc tures  t h e  mat r ix  F-1 

i s  f u r t h e r  f ac to r i zed .  We sha l l  consider here Winkler 's  f a c t o r i z a t i o n  

for  blockangular s t ruc tures  w i t h  coup1 i n g  rows. 

4. Blockangular Systems With Coup1 ing  Rows 

Def. : - 
A rea l  m x n-matrix A i s  ca l l ed  blockangular (w i th  coupl ing rows), 

i f  i t  has the fo l l ow ing  block-structure:  

BS(A):=l(ai,yi) E M  x N l i  E K, y,=(l,.., n) ,y i  n y j  = B V  1 $ i * j * 11 

I n  t h i s  paragraph we sha l l  consider c o e f f i c i e n t  matr ices of the  

s t ruc tu re  j u s t  defined. 

4.1 Wink ler 's  Fac to r i za t i on  

L e t  if be a basis o f  A and 13 c11,2,.:,n), IS[ = m, i t s  se t  o f  column 

indices. 

It f o l l ows  from being i n v e r t i b l e  t h a t  there e x i s t s  a p a r t i t i o n  

@i' i E K of 13 such t h a t  

( a ) b i c y i  and l I 3 i l = l a i I  ( i  = 1,2,.. ,k) 

(b)EailDi i s i n v e r t i b l e  (i = 2,..,k) 



A rearrangement o f  the  columns o f  8 ( t o  the order B,,..,Bk) 

y ie lds :  

where the Bi are square and i n v e r t i b l e  and the f i r s t  I@, l columns 

o f  B are very sparse. 

- 1 
Le t  C i  : = -Ai - B i  fo r  i = 2,3,..,k. Then there  e x i s t s  a  

decomposition o f  B i n t o  three i n v e r t i b l e  factors BN, W and L  such 

t h a t  0 - I  = L-l W-l B i l  has the form: 

Here 
. v2 

v := [ ;, 1 
i s  very sparse and [BW] = Bi l  iOB, . v 

Notice t h a t  i n  order t o  maintain B - ~  i t  i s  s u f f i c i e n t  t o  s to re  

( i n  add i t i on  t o  the coe f f i c i en t  mat r ix  A) a sparse mat r ix  V as we l l  
-1 -1 -1 as k 'subinverses' B, , B2 , . ,Bk . 



The s i m p l i f i c a t i o n s  dur ing FTRAN and BTRAN are tremendous, 

because on ly  very few o f  the subinverses are needed. 

A s i m i l a r  statement i s  t r u e  f o r  the  ac tua l i za t i on  o f  the  inverse- 

representat ion dur ing the i t e r a t i o n s  o f  the  simplex method (META). 

There are three d i f f e r e n t  update s i t ua t i ons  depending on the  p i v o t  

row p and the e n t r i e s  o f  the  ma t r i x  V. 

Disregarding the changes performed on elements o f  the  V-matr ix 

( d e t a i l s  are explained i n  WINKLER [ 9 ]  o r  BASTIAN [ 1 1 )  an update 

consists o f :  

case 1: adding a column e ta  t o  the f i l e  o f  ql. 
case 2: adding a column e ta  t o  one of the  su6inverses By1 (1 C {2,. . ,k) ) . 
case 3: adding a column e ta  t o  one o f  the  subinverses (i C {2,..,k)), 

adding a row e ta  - and a column e ta  (which p i v o t  i n  the same row) 
-1 t o  B, . 

There are p i v o t  se lec t i on  s t ra teg ies  t h a t  tend t o  reduce the number 

of occurrences o f  case 3 and completely avoid t h i s  s i t u a t i o n  dur ing 

the f i r s t  p a r t  o f  phase 1. 

Our explanat ion o f  t he  update cases has t a c i t l y  assumed t h a t  the  

product-form o f  the  inverse (PFI) i s  used f o r  a1 1 subinverses. The 

B T ~ ,  (i = 2,3,. . ,k), could as we1 1 be kept i n  EFI using the For res t -  

Tomlin method. I n fac t ,  t h i s  should be done i n  view o f  the  advantages 

o f  t he  EFI and our aim t o  incorporate l a t e s t  LP-technology i n t o  

special  rout ines fo r  b lock-structured problems. 

For the s i t u a t i o n  i s  more complicated, as case 3 does no t  correspond 

t o  a simple column-exchange i n  Bw. For t h i s  matr ix,  however, an updat ing 

procedure which reduces the growth o f  the  e t a - f i l e  would be extremely 

desirable,  because ( i n  con t ras t  t o  the  o ther  subinverses) B;~ i s  i n -  

volved i n  each BTRAN- and i n  each FTRAN-operation. Moreover, the  

columns o f  B, a re  n o t  contained i n  the c o e f f i c i e n t  ma t r i x  A and have 

to  be computed p r i o r  t o  each reinversion.  



I n  the next  sec t ion  i t  i s  shorn t h a t  a lso Eii l  can be stored and 

maintained i n  the E l im ina t i on  Form o f  the  Inverse. The mu l t i -  

p l  i c a t i o n  by two elementary matr ices i n  update-case 3 i s  replaced 

by a modi f ied Forrest-Tom1 i n  procedure which y i e l d s  a growth of 

the  e t a - f i l e  comparable t o  the PFI ( a t  most three new eta-vectors 

have t o  be stored; one row i s  erased i n  the U- f i l e ) .  

I n  case 1, however, one enjoys a l l  bene f i t s  o f  the  c lass i ca l  

Forrest-Tomlin method which should y i e l d  considerable savings 

i n  t o t a l  computation time. 

4.2 Using the Forrest-Tomlin Method f o r  Updating B; 1 

I n  the update-s i tuat ion under considerat ion (case 3) one i s  g iven 

an m, x m,-inverse 8;' and an m,-row-vector v r 0, from which a 

nonzero component vz i s  chosen. 

Le t  EZ be obtained from the i d e n t i t i y  mat r ix  by rep lac ing i t s  

z - th  row by the vector v and def ine  

A 

L e t  8, be an i n v e r t i b l e  ma t r i x  obtained from Bw by rep lac ing 

i t s  z-th column by an m,-column d. Then there e x i s t s  an elementary 

column mat r i x  ES such t h a t  

A-l is I n  the fo l l ow ing  sections a d i f f e ren t  representat ion f o r  Bw 

der ived . 

4.2.1 Assumption 

i s  g iven by two factors U-l and L - ~  which are  stored i n  

product form 

U-1 = u 3 U p  . . . Urn, and ~'l = Ln, . Ln,-i . . . L, 



on d i f f e r e n t  f i l e s  ( t he  U - f i l e  and the L - f i l e )  i n  order  t o  

a1 low for  the  i n s e r t i o n  o f  new elementary matr ices between 

U,, and Ln,. There are no f u r t h e r  assumptions on L-1, b u t  

the existence o f  a  permutation mat r ix  P  i s  pos tu la ted such 

t h a t  P  U . i s  upper t r i angu la r .  Because o f  t h i s  

s t ruc ture ,  the  e ta  vec tor  o f  U i  may be obtained d i r e c t l y  
from the  i - t h  column o f  U.. P-1 ( i  = 1,2 ,.., m,) 

Not ice  t h a t  t he  s i t u a t i o n  d i sc r i bed  i s  f o r  example given 

r i g h t  a f t e r  an i nve rs ion  us ing  LU-decomposition. 

4.2.2 Theorem 

Le t  q1 s a t i s f y  assumption 3.2.1 and vz * 0. There e x i s t  an 

elementary column ma t r i x  T, elementary row matr ices R, and Rp, 

an e ta  column y as we l l  as a  representa t ion  

A-l - o f  the ma t r i x  Bw - ES . EZ . B,,, , such t h a t  ti1 r a t i f i e s  assumption 

3.2.1. 

The product forms of 0'' and are  e a s i l y  der ived from the re- 

presenta t ion  o f  Bil by t he  f o l  lowing mod i f i ca t i on  o f  t he  For res t -  

Tomlin method: 

(1 )  add the  e ta  vectors o f  R,, T, R, t o  the  L -F i l e  ( i n  t h a t  order) ;  

(2)  mark the  e ta  vec tor  o f  t he  U- f i le  which p i v o t s  i n  row z as 

being deleted; 

(3 )  de le te  a l l  elements of the  U-File having row index z; 

(4 )  add y t o  the  U- f i le .  



4.2.3 Out l ine  o f  the Proof 

As & and i, = L - U . Eil d i f f e r  by j u s t  one column, the same 

A 
i s  t r u e  f o r  := L ' ~  - Bw and U . E;' . 
We have: 

From P . U . P-1 being upper t r i angu la r  we conclude 

- 
Our i n t e n t i o n  i s  now t o  transform U back t o  a permuted t r i angu la r  

mat r ix  which d i f f e r s  from U j u s t  by one column and one row: 

A 

A-1 = 6- I  L - l  i s  l a t e r  obtained from t h a t  The product form o f  Bw 

representat ion completely analogous t o  the Forrest-Tom1 i n  method. 

The ro les  o f  t he  elementary transformations R,. T and Rz may be 

described using the shape o f  P . - P ' ~  sketched above: 



R, eliminates row s o f  the f i r s t  term (up t o  the diagonal 

element) ; 

T el iminates rows 1 t o  s-1 of the second term; 

Ra el iminates row s o f  the second t e n .  

We sha l l  now determine the e ta  vectors of R,, T, Ra. 

4.2.4 The Eta Vectors o f  R, , T and Ra 

R, d i f f e r s  from the u n i t  mat r ix  j u s t  by i t s  z-th row w, which 

i s  supposed t o  have the property w . U,j = 0 v j * z. Choosing 

y i e l d s  ones on the main diagonal o f  R,. 

(The nota t ion  u;! i s  used instead o f  (u-l),, i n  t h i s  sect ion).  

The e ta  column o f  T i s  a l ready ava i l ab le  i n  the U- f i le ;  i t  i s  

the e ta  vector c t h a t  p i vo ts  i n  r o w  z: 

The transformations already app l ied  t o  u lead t o  the ma t r i x  

the  elements o f  which are e a s i l y  determined (using (1),(2),(3)) 

t o  be 



The row eta  Ij + 0 o f  Ra has t o  s a t i s f y  the - 
cond i t ion  t i  . Uoj  = 0 V j + z. 

We def ine q := v . U-1 

and choose ii := q - qz . w + IZ, 

- 
As wZ = 1, we have ones on the main diagonal f o  Ra. 

4.2.5 The Representation o f  k1 = bl . t-1 

- 
Ra . i s  now a permuted upper t r i angu la r  matrix, which can be 

fac to r i zed  (as i n  the  Forrest-Tom1 i n  method) i n t o  

where G i s  obtained from U by rep lac ing the z - t h  r o w  as we1 1 as 

the z - th  column by u n i t  vectors, and Cz i s  an elementary ma t r i x  - - 
w i t h  x := Ra - U,, as i t s  z- th column. 

We have 

Iden t i f y i ng  y as the  e ta  vector o f  CI~ (obtainable from x by a 

p i v o t  on x,) t he  claims o f  theorem 3.2.2 are  proved. 

What i s  r e a l l y  stored i n  the U-File i s  yz  = l / x z  as we l l  as the 

nonzero components x i  ( i  + z )  o f  x ( c f .  FORREST-TOMLIN [51). 

It can be shown ( c f .  BASTIAN [21) t h a t  

where g,, fz and h i  ( i= l , .  ..m,) are data ava i l ab le  i n  N i n k l e r ' s  

a1 g o r i  thmic approach. 



Sumnarizing the computations necessary t o  update 41 i n  case 3 

o f  Winkler's algorithm we have 

two BTRAN-operations to compute w and q (as compared t o  

one BTRAN-operation i n  case 1, i f  the Forrest-Tom1 i n  

method i s  applied); 

two mu l t i p l i ca t i on  o f  a vector by a scalar and two 

vector addit ions to  compute ii and x. 

Update case 3 occurs i f  the sparse matr ix V has nonzero elements 

i n  the p ivo t  row p. I f  t h i s  row o f  V contains exact ly one nonzero 

element, then the whole procedure simp1 i f i e s  t o  what i s  bas ica l ly  

a standard Forrest Tomlin update: Ra i s  a u n i t  matr ix  and T i s t  not  

added to the L - f i l e  but  ra ther  used t o  modify the eta-vector o f  cil: 

A - 
6;' = (u-1 . ( ~ i 1  . T)) . (R, . L-1) 

Although the modification o f  the Forrest-Tomlin method j u s t  des- 

cr ibed was i l l u s t r a t e d  i n  the context o f  Winkler's class o f  algorithms, 

i t  may have other appl icat ions i n  s i tuat ions where an inverse i s  

frequent1 y updated by elementary column matrices and sometimes by 

elementary row matrices. 

5 .  Staircase Systems Viewed As Nested Blockangular Systems 

Any block-structured matr ix may be viewed as a permuted matr ix 

w i th  nested blockangular structure, as we know f o r  example from 

ZVIAGINA [ I01 and LOUTE [71. 

Staircase structures are a pa r t i cu l a r l y  n ice example. Let  

k = 2h - 1, h E IN ; f o r  h = 3 we have 



(The numbers i nd i ca te  the p o s i t i o n  o f  a  block i n  the o r i g i n a l  

s ta i rcase s t ruc tu re ) .  

Winkler showed t h a t  h i s  f ac to r i za t i on  a lso  extends t o  t h i s  

nested s i t ua t i on ,  where the inverse i s  g iven by k  'subinverses' 

( f o r  each i E K there  i s  one o f  dimension l a i l x l a i l )  and (k-1)/2 

V-matrices. 

A l l  data t h a t  i s  used for  a  BTRAN o r  FTRAN operat ion w i t h  the  

basis inverse i s  shown i n  the fo l l ow ing  matr ix:  

Here 
ind ica tes  a  subinverse, 
a  V-matrix and 

o r i g i n a l  data 

The fo l l ow ing  ' b ina ry  search t r e e '  i s  the  key f o r  understanding 

operations w i t h  t h i s  structure:  



With each l e a f  i we associate the inverse o f  a mat r ix  B i  whose 

columns are  drawn from block hi ,Ti o f  the o r i g i n a l  sta i rcase 

c o e f f i c i e n t  matr ix.  

Le.t i beanon-leaf-node having the two sons f and g. With i we 

associate three matrices: the  inverse o f  a mat r ix  Bwi and a 

V-matr ix V i  which may be obtained from Bi1, B j l  and o r i g i n a l  

data (as explained e a r l i e r  f o r  block-angular matr ices),  and a 

l a rge r  inverse By1 which i s  given i n  the form o f  Wink ler8s  

f a c t o r i z a t i o n  by B;! and B-l, B7 l  and V i .  Candidates f o r  columns 
9 

i n  B;: and V j  are o r i g i n a l  columns which have nonzeroes i n  a t  l e a s t  

one row p E a j  where j i s t  a node i n  the subtree w i t h  r o o t  i. 

Fina l l y ,  Bil = 8". 

The main advantage o f  a 'divide-and conquer' - approach l i k e  t h i s  

i s  t h a t  dur ing FTRAN and WRETA a t  most h << k o f  the  subinverses 

and V-matrices (associated w i t h  a path i n  the t ree )  are needed; 

t he  same holds f o r  the  BTRAN-operation i f  the  par t ia l -b lock-  

p r i c i n g  s t ra tegy i s  used. This compares t o  an average o f  k /2  i n  

many o ther  methods. 

There are, however, two serious drawbacks : 

the  data-hand1 ing, p a r t i c u l a r l y  w i t h  the V-matrices, i s  no t  

simple; 

i f  j 5 h subinverses are  involved i n  a WRETA-operation, then 

j - 1 o f  them have t o  be updated l i k e  B;' i n  case 3 d i  scussed 

e a r l i e r ;  t h i s  amounts t o  a comparatively rap id  growth o f  the  

e t a - f i  1 es . 

I sha l l  address i n  the next  sect ions some o f  the data-handling 

problems. 

5.1 S to r ing  the C o e f f i c i e n t  Ma t r i x  A 

We have K + 1 d i f f e r e n t  types o f  columns, type 1 having nonzeroes 

on l y  i n  rows p E a,, type i having nonzeroes i n  rows p E ad-1 u a i  

( i  = 2.3, ..,k), and type k + 1 having nonzeroes on l y  i n  row ak. 



The column header should contain the type o f  the column as 

well as the length o f  i t s  two parts. From tha t  information 

one can imnediately decide whether a column has nonzeroes i n  

a given set  o f  rows aj and one can read tha t  part .  I n  addit ion, 

one should store the s ta r t ing  address f o r  the f i r s t  column o f  

each type i n  order t o  have f as t  access i n  case o f  pa r t i a l  block 

pr ic ing.  

(For smaller problems i t  may be considered t o  take a l l  columns o f  a 

type i n t o  core simultaneously). 

5.2 Stor ing the V-Matrices 

As the columns t ha t  mu l t ip l y  a V-matrix i n  a BTRAN- o r  FTRAN- 

operation are expanded, there won't be any problems whether o r  

not the V-matrix may be accessed column- o r  row- wise and whether 

the ent r ies  o f  an accessed vector are sorted or  not. 

The s i tua t ion  i s  much moecomplicated during WRETA. Here, the 

fo l lowing operations may have t o  be performed: 

(a) replace a column o f  V; 

(b) determine whether a row P has a t  l eas t  one nonzero element; 

(c) update a l l  columns having a nonzero element i n  r o w  P; 

(d) get row P; 

(e) exchange two rows . 

Here (a) occurs i n  cases 1 and 3, 

(6) occurs i n  cases 2 and 3, 

(c) ,(d) and (e) occur i n  case 3 only. 

It i s  very hard t o  decide whether column- o r  row-oriented access 

i s  more frequent. But as operations t ha t  may a f f ec t  the length 

o f  a packed vector are confined t o  columns, I would suggest a 

column-oriented addressing scheme. 



The nonzero elements o f  each column should be kept sorted 

according t o  t h e i r  row indices.  This makes operations (b) ,  

(d )  and ( c )  considerably fas ter  as binary sewchcan be used. 

The on ly  disadvantage would be i n  operat ion (e)  , where several 

en t r i es  o f  a column have t o  be s h i f t e d  i f  t h a t  column has a 

nonzero element i n  exact ly  one o f  the  two rows t h a t  are ex- 

changed. 

What k ind o f  add i t i ona l  s t ruc tu re  could be introduced t o  support 

row access? 

'The s implest  one would be a b i t  vector whose e n t r i e s  correspond 

t o  the rows o f  V; b i t  i i s  se t  t o  1 i f  row i may poss ib ly  con- 

t a i n  a nonzero element. Whenever a nonzero i s  encountered i n  

(a) .  ( c )  o r  (e)  t he  corresponding b i t  i s  s e t  t o  1; i t  i s . r e s e t  t o  

0. i f  no nonzeroes have been found i n  t h a t  row dur ing a(b)-operation. 

Another p o s s i b i l i t y  i s  a b i t  ma t r i x  which contains a 1 i n  pos i t i on  

( i , j )  if V i j  + 0. 

This would y i e l d  d i r e c t  access t o  the  columns re levan t  dur ing (c) .  

(d)  and (e) a t  the  cost  o f  more complicated update-operations 

(a) ,  (c) ,  (e )  t o  maintain the b i t  matr ix.  

One o f  these approaches I would consider t o  be appropriate. 

One could o f  course s to re  a column-oriented - and a row-oriented 

representat ion o f  the  V-matrix, b u t  t h a t  would be extremely 

c o s t l y  t o  main ta in  dur ing operations (a)  and (c ) .  

I n  t h i s  contest  i t  should be pointed ou t  t h a t  searching f o r  a 

p a r t i c u l a r  row index does (on the average) on l y  have t o  be appl ied t o  

h a l f  the number of columns o f  a V-matrix: - 1 -1 -1 If ~ j ' i s  an inverse given by Bwi. Vi. Bf and B , then no column 
9 

o f  V i  ever has nonzeroes i n  rows i n  af and i n  ag. Which block app l ies  

can be seen from the  type ( index) o f  t he  column. 



6. Conclusions 

It i s  shown t h a t  f o r  updat ing an inverse w i t h  elementary column 

and row transformations the Forrest-Tomlin method can be used. 

This seems t o  be advantageous t o  do i f  row transformat ions are  

n o t  l i k e l y  t o  occur too f requent ly.  

The c lass  o f  Wink ler 's  f a c t o r i z a t i o n  algor i thms f o r  blockangular 

systems i s  considered t o  be an area o f  app l ica t ion .  

When Wink ler 's  approach i s  app l ied  ( i n  a nested way) t o  s ta i rcase 

structures,  t h e  s i t u a t i o n  i s  more complicated: 

The 'unpleasant'  update-cases occur more f requen t l y  which 

makes the standard product  form more compet i t ive f o r  about 

ha1 f the number o f  subi nverses . 

Instead o f  one there  are  several sparse 'V-matrices' involved, 

f o r  which row column access i s  necessary. 

D i f f e r e n t  ways of storage have been discussed. 
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INTRODUCTION 

Sta i rcase-s t ruc tu red  l i n e a r  programs (LPs) have been s tud ied  

about a s  long a s  l i n e a r  programming i t s e l f .  S ta i r case  LPs a rose  n a t u r a l l y  

from models of economic planning over time: a c t i v i t i e s  were run i n  a 

s e r i e s  of per iods,  and cons t r a i n t s  l i nked  a c t i v i t i e s  i n  ad jacent  per iods.  

The r e s u l t i n g  LPs, i n  t h e i r  s imp les t  form, had a s t r u c t u r e  l i k e  t h i s :  

maximize clxl + c x + c x + -- 2 2  3 3  + Ct-lxt-l + c x  
t t  

sub jec t  t o  A x 
11 1 - bl 

A x + A 2 2 ~ 2  21 1 - b2 

A x +A33~3 32 2 = b  3 

I n  the  infancy of  computers t h i s  s o r t  of s t r uc tu red  problem was 

a t t r a c t i v e  because i t  seemed t o  o f f e r  a hope of so lv ing  p r a c t i c a l  LPs 

in a reasonable amount of t ime. Thus in  1949 Dantzig observed [ 5 ]  t h a t  

. . .while the  genera l  mathematical problem is concerned with 

maximization of a l i n e a r  form of nonnegat ive va r i ab l es  

sub jec t  t o  a system of  l i n e a r  e q u a l i t i e s ,  in the  l i n e a r  

programming case one f i nds  by observing t he  above [ s t a i r c a s e ]  

system t h a t  the grand matr ix  of coe f f i c i en t s  is composed 

mostly of blocks of zeros except f o r  submatr ices along and 

j us t  of: the  "diagonal". Thus any good computational 

technique f o r  so lv ing  programs would probably take advan- 

tage of t h i s  f a c t .  



The simplex method was a s  ye t  impossibly slow f o r  l a r g e  general  problems, 

but there  was reason t o  th ink t h a t  a much f a s t e r  vers ion could be devised 

f o r  s t a i r c a s e  LPs. 

S ta i r case  l i n e a r  programs a r e  of no l e s s  i n t e r e s t t o d a y .  Along 

with economic planning, they have found app l i ca t ions  in product ion 

schedul ing, inventory, t ranspor ta t ion ,  contro l .  and design of multi- 

s t age  s t r uc tu res  [32]. Yet a recen t  survey [ l a ]  observes t h a t  

the "s ta i rcase"  model, in which s im i l a r  s e t s  of va r iab les  

and cons t ra i n t s  a r e  r ep l i ca ted  many t imes, seems no more 

t r ac tab le  today then vhen i ts importance was recognized 

over 20 years  ago. Typical  of many "time-phased" economic 

problems, i t  i s  the  s tandard model f o r  numerical ly so lv ing 

problems of optimal contro l .  Today we h o w  only hov t o  

so lve i t  a s  we would any l i n e a r  programming problem; bu t  

t h i s  type of problem requ i res  more work t o  so lve than does 

the  average problem of the same s i ze .  However, there 

should be some vay t o  take advantage of t h e i r  s imple s t r uc tu re .  

Thus the  s i t u a t i o n  has been reversed. The general  simplex method is now 

impressively f a s t  r a the r  than impossibly slow, whi le s t a i r c a s e  LPs a r e  

a troublesomely hard case ra the r  than a promisingly easy one. 

Proposed methods f o r  s t a i r c a s e  LPs 

There has ce r t a i n l y  been no shortage of a t tempts t o  so lve s t a i r -  

case LPs more e f f i c i e n t l y .  Although the  simplex method has usual ly  been 

involved i n  some guise,  ind iv idua l  proposals have var ied  considerably.  

The e s s e n t i a l  ideas of these proposals may be c l a s s i f i e d  i n  four  broad 

a reas  : 



Compact bas i s  methods employ a spec ia l  representat ion of the bas is  

o r  bas i s  inverse in conjunction with a more o r  l e s s  standard simplex 

method. This approach was f i r s t  suggested by Dantzig [6,81, and ea r l y  

va r i a t i ons  uere employed by Heesterman and Sandee [23] and Saigal  [46] .  

More recent  compact-basis schemes have been worked out  by Dantzig 191, 

Wollmer [51] ,  Marsten and Shepardson 1351, Perold and Dantzig 1421, and 

Propoi and Krivonozhko 1431. 

Nested decomposition methods apply the  Dantzig-Wolfe decomposition 

p r inc ip le  t o  generate a s e r i e s  of sub-problems a t  each period. This 

approach was suggested by Dantzig and Wolfe i n  t h e i r  o r i g i na l  paper on 

decomposition [ l o ] ,  and has been extended o r  modified by Cobb and Cord 

[4] ,  Glassey [19,20] and Ho and Manne [29]. (Ho has reported favorable 

computational r e s u l t s  i n  two spec ia l  cases [26,27] .) 

Transformation methods s t a r t  with a simpler LP tha t  can be solved 

eas i l y ,  and work toward a so lu t ion  of the o r i g i na l  s t a i r case  LP. Varied 

proposals i n  t h i s  c l ass  a r e  from Grinold [ X I ,  Aonuma [ I ] ,  and Marsten 

and Shepardson [35 I .  

Continuous methods deal  with a multi-period LP in continuous ra ther  

than d i sc re te  time. Fundamentals of a simplex method f o r  continuous-time 

LPs have been proposed by Perold [41]. 

Computational experience wi th most of these proposals is neg l ig ib le .  

A t  present  no method has proved a s  e f f ec t i ve  a s  the general simplex 

method in handl ing a wide va r i e t y  of s t a i r c a s e  problems. 



Adaptat ion of the  simplex method f o r  s t a i r c a s e  LPs 

Proposals  f o r  improving the genera l  simplex method i t s e l f  have 

been, by c o n t r a s t ,  much = r e  success fu l .  As a r e s u l t  t h e  simplex method 

has become an amalgam of f a i r l y  s o p h i s t i c a t e d  a lgor i thms.  Many of  these  

a lgor i thms a r e  o b j e c t s  o f  s tudy  i n  t h e i r  own r i g h t ,  and a r e  no t  normally 

thought of i n  connect ion with l i n e a r  programming. The simplex method has 

consequent ly become nore and more a s p e c i a l i s t ' s  domain. 

I t  is t h e r e f o r e  no t  s u r p r i s i n g  t h a t  siiudy of s t a i r c a s e  LPs has 

tended t o  d i ve rge  from study of t h e  simplex method. S t a i r c a s e  l i n e a r  

programming, t y p i f i e d  by t h e  above- l is ted papers,  h a s  become a search  

f o r  methods t o  r e p l a c e  t h e  o l d  s implex method; i n  t h e  mean t i m e  a new, 

b e t t e r  s implex method has emerged f o r  genera l  l i n e a r  p r o g r a m i n g  b u t  has 

no t  been a p p l i e d  t o  s p e c i a l  s t r u c t u r e s  such a s  s t a i r c a s e s .  

This and a companion paper [16] seek t o  r e v e r s e  t h e  t rend:  they 

a r e  concerned wi th  adapt ing t h e  modern simplex method t o  so lve  s t a i r c a s e  

LPs = r e  e f f i c i e n t l y .  Each paper looks a t  a s e t  of  a lgor i thms w i th in  t h e  

simplex method: t h i s  one d e a l s  with " inversion" of t h e  basis--more 

accura te ly ,  s o l u t i o n  of  l i n e a r  systems by Gaussian elimination--and t h e  

succeeding one cons ide rs  p a r t i a l  p r i c ing .  

Both papers  desc r ibe  ex tens ive ,  al though pre l iminary ,  computat ional  

exper ience. The r e s u l t s  a r e  q u i t e  promising: a s ta i rcase-adapted 

sfmplex method sometimes perfonns cons iderab ly  b e t t e r  than t h e  genera l  

method, y e t  on a range o f  problems i t  is never s i g n i f i c a n t l y  worse. 

Moreover, f u r t h e r  improvement appears poss ib le  in a number of respec ts .  



1. STAIRCASE LINEAR PROGRAMS 

Sta i rcase  l i n e a r  programs share two simple cha rac te r i s t i c s :  

t h e i r  var iab les  f a l l  i n t o  some sequence of d i s j o i n t  groups; and t h e i r  

cons t ra in ts  r e l a t e  only var iab les  within adjacent groups. Usually the 

sequence of groups corresponds to  a sequence of t imes, so t ha t  va r i ab les  

i n  a group represent  a c t i v i t i e s  during one time per iod.  Constra ints  

then ind ica te  how a c t i v i t i e s  i n  one period a r e  re l a ted  t o  a c t i v i t i e s  

in the next. S ta i rcase  LPs thus a r i s e  espec ia l l y  o f ten  from many kinds 

of economic planning models. 

A cons t ra in t  is s a i d  to  be i n  period 1 i f  i t  conta ins var iab les  

of period k but not  of l a t e r  periods. Typical ly some cons t ra in ts  involve 

only var iab les  of period t ,  while o thers  r e l a t e  var iab les  of per iods P. 

and k-1; the l a t t e r  a r e  l i n k i n g  cons t ra in ts ,  whereas the former a r e  E- 

l i nk ing .  Analogously, l i nk ing  var iab les  appear i n  cons t ra in ts  of periods t 

and k+l, whi le non-linking var iab les  appear only in  cons t ra in ts  of 

period k . 
A s t a i r c a s e  LP is  a l so  na tu ra l l y  viewed as  a kind of l i n e a r  d isc re te -  

time optimal con t ro l  model. Typical ly such a model minimizes a l i n e a r  

funct ion of nonnegative s t a t e  vec to rs  x, and con t ro l  vec to rs  u,, sub- 

j e c t  to  dynamic equat ions,  

and contro l  con t ra in ts ,  



This is r ead i l y  seen t o  be a s t a i r c a s e  l i n e a r  program. The s t a t e  vec to rs  

a r e  the  l i n k i ng  va r i ab l es ,  and the con t ro l  vec to rs  a r e  the non-l inking 

var iab les ;  the dynamic equat ions a r e  the l i n k i ng  cons t r a i n t s ,  whi le  the  

con t ro l  con t r a i n t s  a r e  non-l inking . 

Sta i r case  LPs of h igher  o rde r s  

A more genera l  approach says  t h a t  a s t a i r c a s e  Linear program i s  

of order  r i f  i t s  cons t r a i n t s  r e l a t e  va r iab les  t h a t  a r e  a t  most r per iods  

apa r t .  The preceding subsec t ion  thus charac te r i zed  s t a i r c a s e  LPs of 

order  one. Higher-order s t a i r c a s e  LPs a r e  no t  uncommon in complex appl i -  

ca t i ons  ( f o r  example, modeling energy systems ( 4 0 1 ) .  They a r e  analogous 

t o  l i n e a r  con t r o l  models t h a t  have r t h -o rde r  dynamic equat ions.  

This paper is predominantly concerned with f i r s t - o rde r  s t a i r c a s e  

LPs: these have the  nwst spec ia l i zed  s t r u c t u r e  and, consequent ly,  a r e  

most ameuable t o  s p e c i a l  techniques. S t i l l ,  many techniques a r e  essen- 

t i a l l y  app l i cab le  t o  higher-order s t a i r c a s e s  a s  we l l ,  with appropr ia te  

adap ta t ions  t h a t  w i l l  be pointed o u t  a s  t h e  expos i t i on  proceeds. For 

b rev i t y ,  however, the ad j ec t i ve  " f i rs t -order ' '  w i l l  usua l l y  be dropped. 

Higher-order s t a i r c a s e  LPs can a l so  be made i n t o  f i r s t - o rde r  ones, 

in e i t h e r  of two ways. F i r s t ,  r th-order  equat ions can be transformed t o  

equ iva len t  f i r s t - o rde r  ones by adding c e r t a i n  va r i ab l es  and cons t r a i n t s .  

This y i e l d s  a l a r g e r  f i r s t - o rde r  LP t h a t  has  the  same number of per iods. 

Second, every r per iods of  the r th-order LP nay simply be aggregated 

a s  one period. The r e s u l t  is a f i r s t - o rde r  s t a i r c a s e  LP of the  same 

s i z e  but  having on ly  about t / r  per iods.  The f i r s t  method is most 

p r a c t i c a l  when t h e  LP is nea r l y  f i r s t - o rde r  t o  begin with,  whi le the  

second may be f e a s i b l e  when the number of per iods is l a r ge  r e l a t i v e  t o  r. 



Sta i rcase matr ices 

The matr ix of cons t ra in t  coe f f i c ien ts  of a s ta i r case  l i nea r  

program is  a s ta i r case  matrix. Its nonzero elements a re  confined t o  

cer ta in  submatrices centered roughly on and jus t  off  the diagonal--as, 

f o r  example, 

~o rma l l y ,  one pa r t i t i ons  the rows of an m x n matr ix A i n t o  t d i s j o i n t  

subsets,  and the colunms i n to  t disjoint subsets,  so t ha t  the matr ix is 

par t i t ioned i n t o  t2 submatrices, o r  "blocks": 

A is lower s ta i r case  (as above) i f  A - 0 expcet f o r  i - j and 
i l 

i - 1 .  A is upper s ta i r case  i f  A - 0 except f o r  i = j and 
i j 

i = j-1. 

By analogy with s ta i r case  models, rows i n  the i t h  p a r t i t i o n  of 

a s ta i r case  matrix A a re  ca l led  period-i rows, and columns in the j th 

pa r t i t i on  a r e  ca l led  period-j columns. I f  a period-i row has nonzero 



elements  i n  b locks Ai, i-1 
and Aii, i t  i s a l i n k i n g  row; i f  i t  has non- 

zeroes only in Aii i t  is a non-l inking row. S im i la r l y ,  a per iod- j  

column t h a t  has  nonzeroes in A and A 
j j j+ lJ  

is a l i n k i n g  c o l u m ,  

whi le  one t h a t  has nonzeroes in A only is a non-l inking c o l u m .  
j j 

Any upper-s ta i rcase m a t r i x  may be permuted t o  lower-s ta i rcase 

form by r e v e r s i n g  t h e  o rder  of  t h e  per iods  [15]. Moreover, i f  a per iod- i  

row is e n t i r e l y  zero w i th in  A t h a t  row may b e  moved back t o  pe r iod  1-1 
ii 

wi thout  d i s r u p t i n g  t h e  s t a i r c a s e  s t r u c t u r e ;  analogously,  a per iod- j  column 

t h a t  is a l l - z e r o  w i th in  A may be moved t o  pe r iod  j + l .  Nothing is 
j j 

l o s t ,  t he re fo re ,  in assuming t h a t  A is l a v e r  s t a i r c a s e  and t h a t  i t s  

diagonal  b locks %L have no a l l - ze ro  rows o r  columns; A is then s a i d  

t o  b e  in s tandard  s t a i r c a s e  form. Henceforth i t  w i l l  be  assumed t h a t  all 

s t a i r c a s e  LPs have a c o n s t r a i n t  ma t r i x  A i n  t h i s  s tandard  form. (The 

t r i v i a l  case  in which A has an  a l l -zero row o r  column is t hus  r u l e d  

ou t .  

Following [15],  t h e  per iod- i  rows may be permuted t o  put  t h e  l i n k -  

i n g  rows f i r s t ,  and t h e  per iod- j  columns may be permuted t o  pu t  t h e  l i nk -  

i n g  columns l a s t .  Then A has t h e  fo l lowing reduced form: 



The reduced block %,k-l is j u s t  t h e  i n t e r s e c t i o n  of  the  period-k l ink-  

i n g  rows and t h e  period-(k-1) l i n k i n g  colunms. 

I f  t h e  l i n k i n g  rws of every  per iod i a r e  switched t o  per iod 1-1. 

then A ga ins  an a l t e r n a t i v e  row-upper-staircase form: 

Switching the  l i n k i n g  colunms of per iod j t o  per iod j+ l  g i ves  a d i f f e r e n r ,  

colunm-upper-staircase form. Thus a s t a i r c a s e  A in reduced s tandard form 

embodies t h r e e  s ta i rcases- lower ,  rw-upper ,  and column-upper--each corre- 

sponding t o  a d i f f e r e n t  cho ice of where t h e  per iods  begin and end. 

S t a i r c a s e  bases 

Any b a s i s  B o f  a s t a i r c a s e  l i n e a r  program n e c e s s a r i l y  i n h e r i t s  a 

s t a i r c a s e  s t r u c t u r e  from t h e  c o n s t r a i n t  ma t r i x  A; B's s t a i r c a s e  b locks,  

t-1 and BEE, may be taken t o  be the  sub-blocks of At,e-l and Apt 

t h a t  conta in  on ly  t h e  b a s i c  colunms. I f  A has a reduced form, 8t,e-l 

may l i kew ise  be taken a s  t h e  b a s i c  p a r t  of  At,e-l. 

The i n h e r i t e d  s t a i r c a s e  of  B need n o t  be i n  s tandard o r  reduced 

form, even though A is. S p e c i f i c a l l y ,  e i t h e r  
Or Bt ,t-1 may be 



zero a long some l i n k i n g  row i-- i f  i t  happens t h a t ,  i n  
Or At.t-l' 

a l l  t h e  nonzeroes a long row i a r e  i n  non-basic columns. I n  t h i s  event ,  

B may be re tu rned  t o  reduced s tandard  form by reass ign ing  c e r t a i n  rows 

and columns. Any l i n k i n g  row t h a t  is zero  i n  Bet becomes a non-l inking 

row in per iod P-1; i n  t h e  process, some l i n k i n g  c o l u m s  of pe r iod  t-1 

may become non-l inking. Any l i n k i n g  row t h a t  is zero in ,t-1 
becomes 

a non-l inking row. 

It is genera l l y  more convenient t o  d e a l  w i th  B in i ts  i n h e r i t e d  

s t a i r c a s e  form, whether s tandard,  reduced o r  o therwise.  However, b e t t e r  

results a r e  o f t e n  achieved by us ing B ' s  reduced s tandard  form i n s t e a d ,  

e s p e c i a l l y  a s  i t  has fewer l i n k i n g  rows and columns and hence a t i g h t e r  

s t r u c t u r e .  Th is  i s s u e  is cons idered f u r t h e r  subsequent ly.  

Henceforth Bet and B t , ~ - l  Bt ,~ - l  ) w f l l  rep resen t  t h e  

b locks of  B ' s  chosen s t a i r c a s e  form, whether i n h e r i t e d  o r  reduced s tandard.  

The number of  rows in per iod i w i l l  be denoted m and the  number of 
i * 

columns in per iod j w i l l  be n j ;  t h e  respec t i ve  numbers of l i n k i n g  rows 

and columns w i l l  be ^mi and For the row-upper-staircase f o m ,  t h e  
1' 

i number of  rows in per iod i w i l l  be m , and f o r  the column-upper-staircase 

1 form t h e  number of columns i n  per iod j w i l l  be n . Necessar i ly  

Lmi - l m i  = I n j  - 1.' - m, and P 
mi, G j  n j .  

Balance c o n s t r a i n t s  and square sub-s ta i rcases 

I f  t h e  s t a i r c a s e  LP has a s p e c i a l  dynamic Leont ie f  s t r u c t u r e  [ 2 ]  

then i n  each per iod  t h e  number of b a s i c  columns must e x a c t l y  equal  t h e  

number of rows: nt = me f o r  a l l  t ,  and a l l  b locks Bet a r e  square.  



This is no t  the  case in genera l ,  however. A b a s i s  B of an a r b i t r a r y  

s t a i r c a s e  LP may have ne > me f o r  some per iods e and ne < m a 
f o r  o thers .  

Since the  b a s i s  is nonsingular ,  however, i t  must obey t he  "balance 

cons t ra in ts "  developed i n  [15].  In  summary, these r e s t r i c t  the  excess of 

bas i c  colunms over  rcws in each period, ind iv idua l l y  and emulatively, 

a s  fol lows: 

In  words, the cumulat ive imbalance between rows and b a s i c  columns i n  

per iods k through e is bounded by the smal ler  dimension of 
Bk,k-l 

and 

the smal ler  dimension of Be+l,a. Hence these cons t r a i n t s  a r e  q u i t e  

s t r i c t  when t he re  a r e  r e l a t i v e l y  few l i n k i ng  rows o r  columns. 

The f i r s t  const radnt  above may a l s o  be w r i t t en  a s  the  fo l lowing 

t h ree  i nequa l i t i e s :  

These say t h a t  the  f i r s t  t per iods of the  lower s t a i r c a s e  cannot have 

more rows than columns, whi le  the f i r s t  e per iods of t he  assoc ia ted  row- 

upper o r  column-upper s t a i r c a s e  cannot have more columns than rows. 



Al l  th ree  of these re l a t i ons  a r e  equa l i t i es  when L = t ,  s ince  

B is square. I t  can a l s o  happen t h a t  equa l i t y  is achieved f o r  some 

a e 
e < t. For example, i f  ll mi - l1 ni, B must look something l i k e  t h i s :  

The rows and columns of per iods 1 through II form a square sub-staircase, 

a s  do the rows and columns of periods I1+1 through t; they a r e  l inked  

only by nonzero elements i n  the  off-diagonal block 
Ba+l,a. 

I n  a s im i l a r  

e 
way an equa l i t y  ll ni - 1: mi impl ies a pa i r  of square sub-sta i rcases 

within the row-upper s t a i r c a s e  form, and 1: ni 5 1: mi implies the  

same f o r  the column-upper form. 

Generally B may exh ib i t  any o r  a l l  of these three kinds of 

equa l i t i es ,  and each may hold f o r  severa l  values of L < t. I f  p d i f fe r -  

e n t  such equa l i t i es  hold, then B breaks i n t o  p+l d i s j o i n t  square sub- 

s ta i r cases  of various kinds. The presence o r  absence of sub-staircases 

w i l l  be of importance t o  severa l  of the techniques described f u r t he r  

on in t h i s  paper. 



2. SOLVING LINEAR SYSTEMS I N  THE SIMPLEX METHOD 

I n  so lv ing  l i n e a r  programs by t he  simplex method, a  g rea t  dea l  of 

computational e f f o r t  is  devoted t o  " inver t ing  t h e  bas is" .  More p rec i se l y ,  

a t  each i t e r a t i o n  the  simplex method so lves  two l i n e a r  systems: 

B is  the  b a s i s ,  an  m x m matr ix  of b a s i c  columns of t he  cons t r a i n t  matr ix  

A; a is a non-basic column of A; and z i g  an appropr ia te ly  chosen 

"pr ic ing form".* 

There a r e  many ways t o  so lve  such systems, bu t  no t  a l l  a r e  suit- 

ab le  t o  p r a c t i c a l  l i n e a r  programing.  Typica l ly  m is in the range of 

severa l  hundred t o  seve ra l  thousand, and the  simplex method generates 

roughly 2m d i f f e r e n t  bases B .  Hence only very  e f f i c i e n t  so l u t i on  

techniques a r e  w e f u l .  Fur ther ,  B has two very s p e c i a l  p rope r t i e s :  

Successive bases a r e  s im i l a r .  Only one column of B is 

changed a t  each i t e r a t i o n .  

Bases a r e  sparse .  For a  t yp ica l  l a r g e  app l i ca t ion ,  l e s s  than 

1% of t he  elements of an average B a r e  nonzero. 

'Ihe bes t  techniques can use these  p roper t ies  t o  advantage i n  va r ious  ways 

t ha t  a r e  ou t l i ned  i n  t h i s  sec t ion .  

* 
It is genera l  p r a c t i c e  t o  incorpora te  the  l i n e a r  ob j ec t i ve  func t ion  a s  a 
row of A. Then, when the  b a s i s  is f eas i b l e ,  the p r i c i ng  form z is a 
un i t  vec to r ;  when the b a s i s  is i n f e a s i b l e ,  z  has one nonzero element-- 
e i t h e r  +1 o r  -1--corresponding t o  each i n f e a s i b l e  b a s i c  va r i ab l e .  The 
exact  choice of z  depends on d e t a i l s  of the implementation, a s  expla ined 
i n  (39,501. 



Permutation of the b a s i s  

The var iab les  and equations of a l i n e a r  system By = a o r  

T B n - z can be v r i t t e n  i n  any order .  Each order ing of the var iab les  

corresponds t o  some permutation of the c o l m s  of B ,  while each ordering 

of the equations corresponds t o  some permutation of the rows of B.  

Any permutation of the  rows and columns of B may be wr i t ten  

T 
PBQ , where P and Q~ a r e  su i t ab l y  chosen permutation matr ices.  The 

system By = a is thus equivalent t o  the permuted system ( P B ~ ~ ) ( Q ~ )  = (Pa). 

T T T B n = z is l ikewise equiva lent  t o  (QB P ) (h) = (Qz) . 

LU f ac to r i za t i on  

A t  the hea r t  of recent  simplex implementations is a technique based 

on Gaussian e l iminat ion.  The bas i s  B is factored a s  the product of a 

lover- t r iangular  matr ix L, and an upper-triangular matr ix U. Once 

B = LU is known, t he  l i nea r  systems of importance reduce to  

Then y o r  rr may be found through solv ing two t r iangu la r  systems by 

back-subst i tut ion. 

In  p rac t i ce  Gaussian e l iminat ion is appl ied to  a chosen p e m t a -  

T 
t ion  PBQ . Choice of P and Q~ is a c ruc ia l  matter,  a s  can be seen 

by considering the computation involved i n  e l iminat ion.  Its e s s e n t i a l  

operat ions a r e  def ined by the  following recursion: 



~ ( l )  = PBQ T 

of which L and U a r e  a by-product: 

(k) The c r i t i c a l  va lues  a r e  the  "pivots" Bkk : an LU f ac to r i za t i on  e x i s t s  

i f  and only i f  a l l  p i vo ts  a r e  nonzero. Moreover, e l im ina t ion  is numeri- 

c a l l y  s t a b l e  on ly  i f  a l l  p i co ts  a r e  s u f f i c i e n t l y  l a r g e  i n  magnitude, both 

abso lu te ly  and r e l a t i v e  t o  o t he r  elements of 0 (k) 

As a consequence, p r a c t i c a l  Gaussian e l im ina t ion  looks  f o r  permu- 

t a t i o n s  P and QT such t h a t  P B ~ ~  has an acceptably  l a r g e  s e r i e s  of 

p i vo ts .  Choosing P and QT is thus commonly c a l l e d  "p ivot  se l ec t i on " .  

Once L and U a r e  computed, so lv ing the  r esu l t i ng  t r i angu la r  

systems presents  no d i f f i c u l t y .  Back-subst i tut ion i n  these  systems is 

an inheren t l y  f a s t  and s t ab l e  process. 

The jargon of LP computer codes r e f e r s  t o  so l u t i on  of  a lover- 

t r i angu la r  system a s  an FTRAN ("forward t ransformat ion") ;  so l u t i on  of an 

upper-tr iangular system is a BTRAN ("backward transformation").  Solving 

L(Uy) = a thus r equ i r es  f i r s t  an FTRANL and then a BTRANU, whi le so lv ing  

T T 
U (L n) = z requ i res  an FTRANU and a BTRANL. 



Updating the  LU f a c t o r i z a t i o n  

J u s t  a s  success ive bases a r e  s im i l a r ,  t h e i r  LU f ac to r i za t i ons  a re  

s im i l a r .  Consequently i t  is p r a c t i c a l  t o  merely update L and U a t  each 

b a s i s  change, r a t h e r  than compute the f ac to r i za t i on  from sc ra t ch  each time. 

The idea  of  an LU update is a s  fol lows. Suppose the i n i t i a l  bas i s ,  

B,, has been fac to red  a s  P ~ B ~ Q ~  = LOUO. Thus BO = ( P ~ L ~ )  (UOQO) : B0 is 

the product of a permuted lower- t r iangular  matr ix  and a permuted upper- 

T -1 
t r i angu la r  matr ix.  Equiva lent ly ,  (POLO) BO = UOQO. 

Now update Bo t o  a new b a s i s  B1, and cons ider  

- 
Uo need no t  be upper- t r iangular ;  however, i t  does have an LU f ac to r i za t i on ,  - T 
UOQO = ( P ~ L ~ )  (U1~l). Subs t i t u t i ng  i n t o  (1) and rearranging shows t h a t  

Thus B1 is fac to red  a s  the  product of permuted lower- t r iangular  

mat r i ces  and a permuted upper- t r iangular  matr ix.  Linear systems invo lv ing 

B1 a r e  then r ead i l y  solved a s  before,  but  with the  add i t i on  of some back- 

s u b s t i t u t i o n s  i n  L1. 

S im i la r  updates can be appl ied a t  subsequent b a s i s  changes. A f t e r  

k i t e r a t i o n s ,  the b a s i s  Bk is fac tored a t  



FTRANL and BRRANL perform back-subst i tut ions with Lo through Lk' 

whi le  FTRANU and BTIUWU use 
Uk. 

LU updating i n  t h i s  way i s  p rac t i ca l  because B d i f f e r s  from - 1 

B~ in only one column. Hence Uo is near ly  upper-tr iangular-- i t  d i f f e r s  

from Uo i n  on ly  one column--and, as  a r e s u l t ,  U1 is much t he  same a s  

Uo, while L1 is not  much d i f f e r e n t  from the  i d e n t i t y .  The f ac to r i za t i on  

(2) i s . thus  f a i r l y  easy t o  f i nd  and record, and the subsequent back-substi- 

t u t i ons  a r e  only marginal ly more expensive than f o r  
Bo. 

Further  updates 

a r e  equa l l y  economical, and may cont inue u n t i l  the cos t  of back-substi- 

t u t i on  i n  (3) begins t o  r i s e  appreciably-- typical ly a f t e r  50 t o  100 

i t e r a t i o n s .  A f r esh  LU fac to r i za t i on  o f  the bas i s  is then computed, and 

updating begins anew. 

Spec i f i c  algor i thms f o r  LU updates d i f f e r  p r imar i l y  i n  t h e i r  

choice of permutations P1 and Q1 f o r  the f ac to r i za t i on  UOQO = ( P ~ L ~ )  (UIQ1). 

The o r i g i na l  a lgor i thm of Bar te ls  and Golub [2,3] was designed t o  ensure 

numerical s t a b i l i t y .  Subsequent va r i a t i ons  have given more weight t o  

* 
s to rage  arrangement [14,47] o r  s p a r s i t y  [17,44] . 

* h o t h e r  technique, proposed by McBride [36], promises an espec ia l l y  

sparse update. Essen t ia l l y ,  i t  usesas  B1 a c a r e f u l l y  updated and permuted 
T T 

Bo, with t he  r e s u l t  t h a t  the product (POLO)(PIL1) may be co l lapsed t o  

a s i ng le  lower-tr iangular f ac to r ;  in e f f e c t  t h i s  technique updates t he  

lower- t r iangular  f ac to r  a t  each i t e r a t i o n ,  whereas t he  o ther  techniques 

merely augment i t .  McBride avoids Gaussian e l im ina t ion  i n  h i s  implemen- 

t a t i on ,  however, p re fe r r i ng  t o  keep the inverse  of one smal l  mat r i x  

e x p l i c i t l y .  



Stor ing  the LU f a c t o r i z a t i o n  

To b e n e f i t  from s p a r s i t y ,  an LP code must s t o r e  on ly  the nonzero 

elements i n  mat r i ces  such a s  A, L and U. The t o t a l  s to rage  requ i red  by 

a  sparse  problem is thereby d r a s t i c a l l y  c u r t a i l e d ;  indeed, l a rge -sca le  

l i n e a r  programming would be impossible i f  all zeroes  had t o  be s t o r e d .  

Moreover, s p a r s e  s t o r a g e  makes p o s s i b l e  e f f i c i e n t  p r i c i n g  and p i v o t i n g  

r o u t i n e s  t h a t  au tomat i ca l l y  s k i p  mu l t i p l y ing  and adding zeroes.  

Because bases a r e  s u b s e t s  o f  the  columns of A, i t  is  un ive rsa l  

p r a c t i c e  t o  s t o r e  A by colunm. Typ ica l l y  one a r r a y  l ists t he  nonzero 

elements of  A in column o rder ,  a  p a r a l l e l  a r r a y  lists the  row index f o r  

each element,  and a s h o r t e r  t h i r d  a r r a y  i n d i c a t e s  h e r e  each column beg ins  

in t h e  f i r s t  two a r r a y s .  A b a s i s  is represented by j u s t  a  l ist  of the  

b a s i c  columns. 

To f a c t o r i z e  a  b a s i s  B s t o r e d  i n  t h i s  way, i t  may be e f f i c i e n t  

t o  rea r range  t h e  opera t ions  of Gaussian e l im ina t ion  s o  t h a t  on ly  one 

column, b  is processed a t  a  t ime. An LU f a c t o r i z a t i o n  o f  P B Q ~  is 
1' 

then computed by e s a e n t i a l l y  t h e  fo l lowing a lgor i thm:  

1: SET L = U * I 

2: REPEAT f o r  each column b of 8QT: 
1 

2.1: SOLVE Lx * Pb f o r  x 
j  

2.2: SET U = x f o r  i = 1,. .., 
i j  i 

1 

2.3: SET L = x / x  f o r  i - j+l,..., m 
i j  

L and U a r e  produced one column a t  a  time, and s o  may be s t o r e d  l i k e  A 

a s  columnwise l ists of nonzeroes. FTRAN opera t ions  read forward through 



these l ists, whereas BTRAN operat ions s t a r t  a t  t he  end of a l i s t  and 

read backward t o  the beginning. (Hence the  terms ETRAN and BTRAN.) 

In  p rac t i ce  the s to rage  arrangement of L and U i s  c lose ly  t i e d  

t o  the  updat ing technique. Any of the previously-mentioned techniques may 

s t o r e  L columnwise, s i nce  i t  is j u s t  augmented (by P $ 1  a t  each 

i t e r a t i o n .  Only the  Forrest-Tomlin technique, however, can be adequately 

implemented wi th  U s to red  coluumwise. ~ a u n d e r s '  technique requ i res  

row-wise access  a s  we l l  t o  a (hopefu l ly  smal l )  p a r t  of U, whi le  Reid's 

technique i s  only p r a c t i c a l  w i th  row-vise access t o  all of U. Thus these  

l a t t e r  techniques have been implemented with va r ious  a l t e r n a t i v e  s to rage  

schemes f o r  U: Saunders has s to red  p a r t  of U e x p l i c i t l y  [47],  whi le 

Reid has experimented both w i th  l i nked  lists and w i th  a combination of 

row-wise and column-wise a r r ays  [45]. 

There a r e  important advantages t o  s t o r i n g  L and U by c o l u m  

only. Colwm-vise s t o rage  is simple and compact; the  assoc ia ted  FTRAN 

and BTRAN r ou t i nes  a r e  a l s o  simple and L and U may be he ld  on any 

sequen t ia l  s torage device. In  a vir tual-machine environment, sequen t ia l  

s to rage  a l s o  minimizes t he  danger o f  "thrashing"-excessive overhead 

cos t  t h a t  r e s u l t s  from t r y i ng  t o  access too many widely-separated p a r t s  

of s to rage  in a sho r t  i n t e r v a l  of time. On the  o the r  hand, i f  s t o rage  i s  

a t  a premium one may take  f u r t he r  advantage of " t r i ang le "  columns--those 

t h a t  a r e  zero above the d iagonal  of P B ~ ~ ;  a t r i a n g l e  column is essen- 

t i a l l y  t r i v i a l  i n  U and unchanged i n  L, and s o  may be represented i n  

L by j u s t  a po in te r  i n t o  A. 

Access t o  U by column only does have its disadvantages, however. 

I t  r e s t r i c t s  updat ing t o  t he  Forrest-Tomlin technique which, whi le usua l l y  



adequate, is i n f e r i o r  t o  o t h e r  techniques In numerical  s t a b i l i t y  and 

s p a r s i t y .  I n  a d d i t i o n ,  i t  s u f f e r s  from c e r t a i n  i n e f f i c i e n c i e s  i n  apply ing 

FTRAN and BTRAN t o  s p a r s e  v e c t o r s ,  a s  exp la ined f u r t h e r  below. 

Sparse LU f a c t o r i z a t i o n  

I t  is well-known [11,12.13] t h a t  when B is s p a r s e ,  some of i ts  

permutat ions have much s p a r s e r  L and U f a c t o r s  than o t h e r s .  Conse- 

quent ly  al l  LP codes implement some form of sparse  Gaussian e l im ina t ion  

in which p i v o t s  a r e  chosen t o  promote s p a r s i t y  of  L and U a s  wel l  a s  

numerical  s t a b i l i t y .  

There a r e  p r i n c i p a l l y  two techniques of s p a r s e  Gaussian el imina- 

t i o n  employed i n  l i n e a r  programming. Bump-and-spike techniques look f o r  

a b lock- t r iangular  permutat ion of B t h a t  has many small b locks  ("bumps") 

and few columns ("spikes") t h a t  ex tend above t h e  d iagonal .  Local-minimiza- 

t i o n  techniques choose each p i v o t  t o  minimize t h e  es t ima ted  number of  non- - 
zeroes added t o  L and U by t h a t  p i vo t  a lone.  These ideas  a r e  des- 

c r ibed  and compared in Sec t ion  1 of [15]. 

Each technique of  s p a r s e  e l im ina t ion  is b e s t  s u i t e d  t o  c e r t a i n  

updat ing techniques.  Saunders'  update r e l i e s  on t h e r e  be ing r e l a t i v e l y  

few s p i k e s  in U,  and s o  i t  has  been implemented with bump-and-spike 

e l im ina t ion .  Reid 's  update, by c o n t r a s t ,  b e n e f i t s  when nonzeroes f a l l  

more heav i l y  in U than in L, and is wel l -su i ted t o  e l im ina t ion  by 

l o c a l  minimizat ion. 

As noted prev ious ly ,  update techniques can a l s o  be designed t o  

promote s p a r s i t y  in t h e  updated f a c t o r s  \ and Uk. Reid's update i n  



p a r t i c u l a r  is in tended t o  preserve s p a r s i t y ,  and Gay has  a l s o  incorporated 

~ e i d ' s  i deas  Fn Saunders' technique. 

Sparse r ight-hand s i d e  v e c t o r s  

T 
The l i n e a r  systems of t h e  simplex method, By = a and B r = z, 

u s u a l l y  have n o t  on ly  a s p a r s e  mat r i x  but  a very  s p a r s e  right-hand s i d e :  

a is a column of t h e  s p a r s e  matr ix  A, and the  p r i c i n g  form z h a s  one 

nonzero when t h e  b a s i s  is f e a s i b l e  and k nonzeroes when the re  a r e  k 

i n f e a s i b i l i t i e s .  FTRAN and BTRAN r o u t i n e s  can take  advantage of t h i s  

a d d i t i o n a l  s p a r s i t y  t o  a c e r t a i n  e x t e n t ,  depending on how they access  

L and U. 

For purposes of  i l l u s t r a t i o n ,  cons ider  f i r s t  a s imple lower-tr i -  

angular  system Lx = d. I f  t h e  nonzero elements of  L a r e  a v a i l a b l e  

s e q u e n t i a l l y  by colunm, back-subst i tu t ion is c a r r i e d  o u t  a s  fo l lows:  

FTRANL : 

REPEAT FOR j FROM 1 TO m: 

SET x = d /L 
1 1 11 

REPEAT FOR L 0,  i FROM j + l  TO m: 
i j 

SET dl = dl - L x 
i j  j 

A t  t h e  j t h  pass through t h e  main loop,  i f  d = 0 then a l s o  x = 0 
1 j 

and the  inner  l oop  merely adds zero t o  va r ious  e lements  of d. Hence 

t h e  j t h  pass is super f luous  when d = 0. Moreover, i f  i t  happens t h a t  
1 

d l , - - . ,  % a r e  all zero,  then t h e  main loop does no work u n t i l  pass k+l. 

A m r e  e f f i c i e n t  a lgo r i thm is t hus  a s  fol lows: 



FTRANL : 

1: SET k - min{j:d Z 0 ) ;  SET x = 0 fo r  j = 1, ..., k 
1 1 

2: REPEAT FOR j FROM k+l TO m: 

IF d j  - 0: SET x = 0 
1 

ELSE: SET x = d /L 
1 1 11 

REPEAT FOR L Z 0, i from j+ l  TO m: 
i j  

SET dl = dl - L x 
i j  j '  

Step 1 is espec ia l l y  valuable when dl,. . . , 4, a re  knoun beforehand t o  

be zero. In  s tep  2, d tends t o  f i l l  in with nonzeroes in each pass of 

the loop; but i f  L and d a r e  both sparse then d should no t  f i l l  i n  

too quickly. 

The s i t u a t i o n  is qu i t e  d i f f e ren t  i f  instead one must so lve the 

T 
upper-triangular syetem L x - d. I f  the nonzeroes of L a re  only ava i l -  

ab le  sequent ia l l y  by co lum,  then L~ is e f fec t i ve l y  ava i lab le  only by 

row, and back-subst i tut ion must be car r ied  ou t  a s  follows: 

BTRANL : 

REPEAT FOR j FROM m TO 1: 

REPEAT FOR L Z 0, i FROM m to  j+l : 
i j  

SET d = d  - L  x 
j j i j i  

SET x = d /L 
1 1 11 

Here there is no advantage t o  knowing d - 0, s ince  d is cont inual ly  
1 1 

modified wi th in the  inner  loop and 
x j  

is not  s e t  u n t i l  a f t e r  t he  inner  

loop. The most one can say is t ha t ,  i f  d ,... . , dk a re  a l l  zero, then 

x m,..., a a r e  a l so  all zero and the main loop may be s t a r t e d  with 

j = k-1. 



For sparse  e l im ina t ion  wi th  updat ing t h e  s i t u a t i o n  is somewhat 

more complex, invo lv ing no t  one L bu t  a s e r i e s  of permuted L's.  

The conclusions a r e  t h e  same, however: i f  the lower- t r iangular  f a c t o r s  of 

t h e  b a s i s  a r e  s t o r e d  by column only-as they commonly a r e t h e n  FTRANL can 

b e n e f i t  from s p a r s i t y  in t h e  right-hand s i d e  t o  a much g r e a t e r  e x t e n t  than 

BTRANL. Moreover, the  same reasoning can be appl ied t o  U: i f  a l l  o r  p a r t  

of  t h e  upper- t r iangular  f a c t o r  i s  s t o r e d  by co lwm only ,  then BTRANU can 

e x p l o i t  r ight-hand s i d e  s p a r s i t y  much more than FTRANU. 

In p r a c t i c e  t h e s e  d i f f e r e n c e s  have va r ious  consequences. A t  a 

t y p i c a l  i t e r a t i o n ,  t h e  FTRAN andBTRAN opera t ions  a r e  c a r r i e d  o u t  once 

each, t o  so lve  systems t h a t  look l i k e  these: 

TO SOLVE By = a :  

PIB*M: (P:L~) (P:L~)- - * -  - (P:\) y ( l )  = a 

BTRANU: (UkQk) Y - Y (1)  

T 
TO SOLVE B r = z: 

T T (1) FTRANU: (QkUk)n 

Hence s p a r s i t y  of t h e  r ight-hand s i d e  can be e x p l o i t e d  in t h e  fo l lowing 

ways : 

FTRANL can f u l l y  e x p l o i t  t h e  s p a r s i t y  of a .  A smal l  a d d i t i o n a l  

advantage can be had i f  it i s  known t h a t  (Poa)l, . . . , (POali a r e  a l l  

zero f o r  some i; t h i s  knowledge i s  n o t  r e a d i l y  a v a i l a b l e  in t he  genera l  

case ,  but  it is o f t e n  a v a i l a b l e  from s t a i r c a s e  methods t o  be descr ibed.  



BTRANU can f u l l y  e x p l o i t  any s p a r s i t y  i n  y ( l ) .  Since y ( l )  is 

the s o l u t i o n  vec to r  from a s p a r s e  ETRANL, it may we l l  be s p a r s e  i t s e l f .  

Fl'RANU can e x p l o i t  t h e  cons ide rab le  s p a r s i t y  in z on ly  i f  e i t h e r  

Uk 
is a v a i l a b l e  by row, o r  (QkzIl, . . . , (QkzIi a r e  a l l  zero from some 

i. I n  many c a s e s  it is p o s s i b l e  t o  a r range  t h a t  i is q u i t e  c l o s e  t o  m 

[21;]. Indeed, w i th  some updat ing methods i t  can be guaranteed--provided 

t h e  b a s i s  is feas ib le- - that  (Qkz) l,. . . , (Qk~)m-l a r e  a l l  zero,  so t h a t  

Fl'RANU may e f f e c t i v e l y  be skipped. 

(1 )  BTRANL genera l l y  cannot b e n e f i t  from s p a r s i t y  in t . However, 

t h e  update f a c t o r s  L1, ... . Lk a r e  genera l l y  s o  s imp le  i n  form t h a t  

BTRANL handles them a s  e f f i c i e n t l y  a s  ETXANL. The s i g n i f i c a n t  e x t r a  

T 
work l i e s  e n t i r e l y  i n  p rocess ing  Lo. 

P a r t i a l  s o l u t i o n s  

It is ev ident  from t h e  preceding a n a l y s i s  t h a t  t h e  s o l u t i o n  t o  

T By - a o r  B n = z is u l t i m a t e l y  computed one element a t  a t  t ime, regard- 

l e s s  of how L and U a r e  s t o r e d .  The v e c t o r  y is produced by BTRANU 

i n  t h e  o rder  (Qky) m, . . . , (QkyI1; l i kew ise ,  t h e  v e c t o r  n is computed 

by BTRANL in t h e  o r d e r  (Pon)m,. .. , (Pon)l. 

BTRANL o r  BTRANU may t h e r e f o r e  be terminated prematurely i f  only 

p a r t  of  y o r  n needs t o  be computed. Such a p a r t i a l  s o l u t i o n  has  two 

p o t e n t i a l  uses  in l i n e a r  programming: when t h e  r e s t  of y is h o w n  t o  

b e  zero, and when only  a po r t i on  of  n is requ i red  f o r  p r i c i n g  i n  t h e  

cu r ren t  i t e r a t i o n .  



Nevertheless, in the general  case there  is  l i t t l e  t o  be gained 

from t r y i ng  t o  compute p a r t i a l  so lu t ions ,  owing t o  the  presence of permuta- 

t i o n s  Po and Qk: t he re  is no e f f i c i e n t  way t o  t e l l  &e ther  a l l  remain- 

i ng  elements of Qky a r e  zero, o r  t o  p red i c t  which elements of P o n  w i l l  

be  needed. Sect ion 6 vill show, however, t h a t  p a r t i a l  so l u t i ons  can 

o f f e r  an  economyineolving s t a i r c a s e  LPs, provlded Po and Qk a r e  chosen 

t o  r e f l e c t  t he  s t a i r c a s e  a t ruc tu re .  



3. SPARSE ELIMINATION OF STAIRCASE BASES 

Two techniques f o r  s p a r s e  e l im ina t ion  o f  s c a i r c a s e  mat r i ces  were 

proposed in [15] :  one adap ts  the  bump-and-spike approach, whi le  t h e  

o t h e r  is a kind of  l o c a l  minimizat ion. E i t h e r  o f  these  techniques may 

be app l ied  t o  t h e  s t a i r c a s e  bases t h a t  a r i s e  from s t a i r c a s e  LPs i n  t h e  

simplex method. 

This s e c t i o n  summarizes t h e  d i r e c t  ef fects--on speed, s t o r a g e ,  

and sparsi ty--of  s u b s t i t u t i n g  s t a i r c a s e  e l im ina t ion  techniques f o r  

s tandard ones i n  a s implex LP. code. Sec t ion  4 then shows how these  s t a i r -  

case techniques make poss ib le  a d d i t i o n a l  e f f i c i e n c i e s  i n  t h e  FTRAN and 

BTRAN rou t ines .  

Bump-and-spike techniques 

The s tandard  bump-and-spike technique [24,25] is a tvo-step pro- 

cedure. F i r s t  i t  determines t h e  b lock- t ra iangular  reduct ion of  the  

b a s i s  B, an e s s e n t i a l l y  unique permutat ion t h a t  p u t s  B in block- t r i -  

angular  form w i th  a s  many d iagonal  b locks ("bumps") a s  poss ib le .  Second, 

each d iagonal  block l a r g e r  than 2 x 2 is f u r t h e r  permuted by t h e  Pre- 

ass igned P ivo t  Procedure (P3),  a h e u r i s t i c  t h a t  t r i e s  t o  make each block 

lower t r i a n g u l a r  except  f o r  a smal l  number of  "spike" columns t h a t  extend 

above t h e  d iagonal .  Permuted i n  t h i s  vay, B has a good s t r u c t u r e  f o r  

sparse  Gaussian e l im ina t ion :  f i l l - i n  ( c r e a t i o n  of  new nonzeroes dur ing  

e l im ina t ion )  is conf ined t o  t h e  sp ike  c o l m s ,  and p i v o t s  w i th in  a given 

bump cannot g i ve  r i s e  t o  f i l l - i n  wi th in  o t h e r  bumps. 



A proposed s t a i r c a s e  bump-and-spike technique I151 dispenses wi th  

b lock- t r iangular  reduct ion,  and uses ins tead  the s t a i r c a s e  form of the  

bas is .  The h e u r i s t i c  P3, adapted t o  handle blocks t h a t  a r e  non-square 

o r  rank-def ic ient,  is app l ied  i n  tu rn  t o  each of t h e  diagonal blocks 

(BEE) of the  s t a i r c a s e .  Thus t he  rows of per iod 1 a r e  ass igned t o  p ivo t  

f i r s t ,  fol lowed by t h e  rows of per iod 2 ,  per iod 3, and so f o r t h  through 

per iod t. The columns a r e  a l s o  genera l l y  p ivoted i n  per iod o rde r ,  bu t  

" in te rper iod  sp ikes"  from c e r t a i n  per iods a re  p ivoted in l a t e r  per iods 

i n  order  t o  square o f f  the  oblong s t a i r c a s e  blocks. Thus f i l l - i n  is  con- 

f i ned  t o  two kinds of  sp ikes- in t raper iod sp ikes  found by P3, and inter- 

period sp ikes  ass igned t o  square o f f  diagonal blocks--and p ivo ts  w i th in  

a given per iod can on ly  g ive  r i s e  t o  f i l l - i n  w i th in  sp ikes  of t h e  same 

per iod o r  w i th in  i n t e rpe r i od  sp ikes  of preceding per iods.  The balance 

cons t r a i n t s  of Sect ion 1 guarantee t h a t  t h i s  is a workable arrangement: 

t he  number of i n t e rpe r i od  sp ikes  need no t  be  very l a rge ,  and t h e r e  a r e  

always enough i n t e rpe r i od  sp ikes  t o  square o f f  every  s t a i r c a s e  block. 

Computational experience I151 has shown t h a t  the s tandard  and 

s t a i r c a s e  bump-and-spike techniques a r e  roughly comparable. They usua l l y  

produce about the  same number of sp ikes ,  and both y i e l d  a sparse  fac to r i za -  

t i on :  the  f i l l - i n  due t o  e i t h e r  technique is seldom more than twice t h e  

f i l l - i n  due t o  the o the r .  However, each technique does appear t o  be  

super io r  in c e r t a i n  s i t ua t i ons .  

Standard bump-and-spike seems invar iab ly  b e t t e r  when a l l  bumps 

a r e  small and most a r e  1 x 1. P3 is then app l ied  cheaply t o  a few b locks,  

whereas t h e  s t a i r c a s e  technique must st i l l  apply P3 t o  every diagonal 



block of the s t a i r c a s e .  The in te rper iod  sp ikes  of t he  s t a i r c a s e  technique 

a l so  tend t o  be l a r g e r  than the sp ikes  of the  s tandard technique, and so 

the  former f i l l  i n  more: f i l l - i n  w i th in  L tends t o  be about the  same, 

bu t  the s tandard technique produces a notab ly  spa rse r  U. I n  add i t i on ,  

the s tandard technique is l e s s  prone t o  producing sp i kes  t h a t  have un- 

acceptable p ivo t  elements, and s o  l e s s  time is wasted i n  "spike-swapping" 

dur ing the e l im ina t ion .  

Staircase bump-and-spike has the  advantage when t he re  a r e  one o r  

two very l a r g e  bumps t h a t  comprise ha l f  o r  more of t he  rows and c o l ~ s  

of B. P3 becomes h igh ly  i n e f f i c i e n t  in processing these  l a r g e  bumps. 

F i l l - i n  w i th in  U is comparable, whi le  the  s t a i r c a s e  technique y i e l d s  

a spa rse r  L. Moreover, the s t a i r c a s e  technique produces s u b s t a n t i a l l y  

fewer sp ikes  t h a t  have unacceptable p ivo ts .  

Storage requirements vary somewhat with the s i z e  of the l a r g e s t  

block t h a t  must be processed, bu t  a r e  moderate i n  any case.  S ince a 

p ivo t  order  is f u l l y  chosen p r i o r  t o  e l im ina t ion ,  s to rage  requi red by 

t he  bump-and-spike'heuristics may l a t e r  be used t o  ho ld  pa r t  of L and U.  

Local-minimization techniques 

Standard local-minimizat ion techniques dynamically choose the 

k t h  p i vo t  element from the  remaining unel iminated matr ix ,  B ( ~ ) .  The 

chosen p ivo t  minimizes some "merit" funct ion over a l l  nonzero elements of 

(k) t h a t  meet c e r t a i n  numerical  to lerances.  P r a c t i c a l  mer i t  func t ions  

a r e  computed from two s e t s  of va lues:  r ( k ) ,  the number of nonzeroes i n  
i 

row i of B ( ~ ) ,  and c i k ) ,  the number of nonzeroes i n  col- j of B (k) . 



Local minimization vas f i r s t  suggested by Markowitz [ 3 4 ] ,  who proposed 

t ha t  the  mer i t  of  element (1. j) be ( r ( k )  - l ) ( c i k )  - 1 ) ;  no subs tan t i a l l y  
i 

b e t t e r  mer i t  funct ion has been found s ince.  

Proposed s t a i r c a s e  local-minimizat ion techniques [15] d i f f e r  by 

l im i t i ng  the  minimization t o  roughly one period of O(k) a t  a time. 

A s  a consequence both t h e  rows and columns of B a r e  pivoted in per iod 

order .  It can a l s o  be shown t ha t  f i l l - i n  is l im i ted  t o  a small p a r t  of 

(k) ~ ( ~ ) - - r o u g h l ~  two per iods o r  less--while the remainder of 0 i s  j u s t  

the  same a s  B. 

Sta i r case  local-minimization o f f e r s  c l e a r  economies in both 

execut ion tFme and s to rage  space. A l l  of the work a t  the  k th  pivot- 

minimizing the  . mer i t  funct ion,  updating !3(k) t o  0 (k+l), and updating 

r ( k ) ,   is confined t o  the  rows and columns of one o r  two per iods,  
i j  

whereas t he  s tandard technique must deal  v l t h  the  e n t i r e  0 (k) . Storage 

(k) is requi red only f o r  the  p a r t  of 0 . a l s o  one o r  two periods. bhat 

d i f f e r s  from B. 

For l a r g e  problems of many periods, the d i f fe rences  i n  requi red 

s to rage  may be innnense. As a r e s u l t ,  s t a i r c a s e  local-minimization may be 

ab le  t o  use simpler o r  more e f f i c i e n t  s to rage  s t r a t e g i e s  than standard 

local-minimization. During e l im ina t ion  by the s tandard technique the 

uneliminated B ( ~ )  shr inks  v h i l e  L and U grow; thus some s o r t  of 

dynamic s to rage  a l l oca t i on  is necessary when B(k), L and U a r e  too 

l a rge  t o  be s to red  f u l l y  together .  By con t ras t ,  under the  s t a i r c a s e  

technique the  a c t i v e  p a r t  of 0 (k) i s  smal l  and f a i r l y  constant  i n  s i ze ,  

and might w e l l  be kept  in a f ixed vork a rea .  



Standard l o c a l  minimizat ion does seem t o  usua l l y  produce a s p a r s e r  

L and U, a s  might be expected: i t  conducts i t s  minimizat ion over  a much 

g r e a t e r  number of p o t e n t i a l  p i v o t s .  I n  t h e  wors t  case  i n  [15] the  s t a i r -  

case technique produced about twice t h e  f i l l - i n  (47% v s  22%); i n  some 

cases i t  d i d  n e a r l y  a s  v e l l ,  however, and i n  one i t  v a s  d i s t i n c t l y  b e t t e r .  

Comparison of techniques 

Choice of  a sparse-e l iminat ion technique cannot be separa ted  from 

choice of an updat ing method (as  exp la ined p rev ious ly ) ,  and both cho ices 

a r e  s e n s i t i v e  t o  t h e  n a t u r e  and a v a i l a b i l i t y  of s to rage .  Consequently i t  

is impossible t o  recommend one c l a s s  of  techniques-bump-and-spike o r  

local-minimization-over t h e  o t h e r  c a t e g o r i c a l l y .  Each may have i t s  p l a c e  

i n  c e r t a i n  s i t u a t i o n s .  

Indeed, the evidence of [15]  sugges ts  t h a t  every  technique o u t l i n e d  

in t h i s  s e c t i o n  (s tandard  and s t a i r c a s e  bump-and-spike, s tandard and 

s t a i r c a s e  local-minimizat ion) o f f e r s  t h e  l o v e s t  f i l l - i n  f o r  c e r t a i n  bases.  

E i t h e r  of t h e  s t a i r c a s e  techniques should be acceptab ly  f a s t ,  and a l l  b u t  

t h e  s tandard  local-minimizat ion have unproblematical  s t o r a g e  requ i reuen ts .  

S t a i r c a s e  bump-and-spike techniques apply  j u s t  a s  we l l  t o  higher- 

o r d e r  s t a i r c a s e s .  S t a i r c a s e  local-minimizat ion might a l s o  be adapted t o  

handle  h igher-order  problems, bu t  t h e  ex ten t  of f i l l - i n  vould be g r e a t e r  

and hence t h e  sav ings would b e  l e s s .  



4. SOLVING LINEAR SYSTEMS UITH STAIRCASE BASES 

Both proposed s t a i r c a s e  e l iminat ion techniques order  t h e i r  row 

p ivo ts  by period: all rove i n  period 1 a r e  pivoted f i r s t ,  then a l l  rows 

in period 2, and so f o r t h .  S ta i r case  local-minimization a l s o  o rders  a l l  

columu p ivots  by period, a s  does s t a i r c a s e  bump-and-spike with t h e  excep- 

t ion  of c e r t a i n  columns ( t he  in te rper iod  sp ikes)  t h a t  p ivot  a f t e r  o ther  

columns of l a t e r  per iods. 

This sec t i on  descr ibes  how these s t a i r c a s e  p i vo t  o rders  can be 

taken advantage of t o  make the  FIXAN and BTRAN r ou t i nes  more e f f i c i e n t .  

A p a r t i t i o n  of the  L and U f a c t o r s  by period is f i r s t  def ined more 

formal ly,  a f t e r  which each so lu t ion  routine-FTRANL, BRRANU, FTRANU, BTRANL- 

is taken up in tu rn .  

Period p a r t i t i o n s  of t he  L and U f ac to r s  

In the  no ta t i on  of Sect ion 2, the  bas i s  B a t  an a r b i t r a r y  

i t e r a t i o n  is fac to red  a s  

In  terms of t h i s  f ac to r i za t i on  and t he  s t a i r c a s e  cons t ra i n t  matr ix A, 

one may def ine t he  fol lowing ind ices  f o r  any per iod 1 :  

X e  f i r s t  row of POB whose corresponding row of A is 

in period L o r  l a t e r  

T u f i r s t  column of BQk from period e o r  l a t e r  of A. 



Necessari ly X a  ( A L + l ,  pa( ue+l f o r  any f a c t o r i za t i on  a s  above. Thus 

{A1,. . . , At} and u ,  . . . , u t  p a r t i t i o n  the rows and columns, respec- 

T T 
t i ve l y ,  of POBQk by per iod.  Since the rows of POBQk correspond t o  the 

rows of Lo, t he  X's can a l s o  be thought of a s  p a r t i t i o n i n g  Lo; anal-  

oguously, the  p ' s  p a r t i t i o n  "k. 

I n  genera l  these p a r t i t i o n s  a r e  no t  p a r t i c u l a r l y  use fu l ,  a s  t h e  

A's and u ' s  a l l  tend t o  be small. In  an extreme case,  f o r  example, i f  

the f i r s t  row of POB is a period-t  row then A1 - A t  = 1. I t  is 

thus necessary t o  show t h a t  the  s t a i r c a s e  p ivot ing techniques y i e l d  worth- 

whi le p a r t i t i o n s  whose X's and u ' s  a r e  more o r  l e s s  evenly spread out .  

Consider f i r s t  a f ac to r i za t i on  wi th  no updates, P ~ B Q ~  - LOUO. 

Cer ta in ly  t he  s t a i r c a s e  techniques, appl ied t o  the s t a i r c a s e  s t r u c t u r e  

t h a t  B i n h e r i t s  from A, y i e l d  good pa r t i t i ons .  E i t he r  technique y i e l d s  

= l 1  mi + 1. For bump-and-spike ua 2 A t ,  and u a  - X a  i f  t he re  a r e  

a-1 
no a l l - ze ro  rows in B E E ;  f o r  l o c a l  minimization, pa = l1 n + 1. 

i 

The s i t u a t i o n  is s l i g h t l y  more complicated i f ,  a s  suggested i n  

Sect ion 1, B is put i n  reduced s tandard s t a i r c a s e  form before the  s t a i r -  

case p ivot ing techniques a r e  appl ied.  Some rows of B t h a t  correspond t o  

p e r i o d 4  rows of A may then be pivoted a s  i f  they were i n  per iod a-1. 
a-2 a-1 As a consequence, one can say only t h a t  l1 mi + 1 X a  ( l1 m + 1; 

i 

the X's may be smal ler ,  and the A-part i t ion l e s s  regu la r .  Nevertheless, 

the  A's a r e  st i l l  wel l  spaced and cons t i t u t e  a use fu l  p a r t i t i o n ,  par t icu-  

l a r l y  i f  the  per iods a r e  smal l  and numerous. 

A s  B changes and the  f ac to r i za t i on  is updated, Lo and the  

A -pa r t i t i on  a r e  unchanged. Uo is updated t o  Uk, however, and in the  pro- 

cess  the u -par t i t i on  is  a l t e red .  Spec i f i ca l l y ,  a l l  of the  common update 



T 
methods have t he  fol lowing ac t ion :  a column of BQk-l is  de le ted ,  and 

a new column is  i nse r t ed  a t  some point  a f t e r  the de le ted  column t o  produce 

T 
BQk. The u -par t i t i on  up t o  the  de le ted  column and a f t e r  the  i nse r t ed  

c o l m  is there fo re  unchanged; bu t  i f  uQ is  between t h e  two columns then 

i ts  value drops by 1. The u -par t i t i on  is thus slowly degraded. Degradation 

should no t  be severe,  however, f o r  l a r g e  LPs with t h e  usua l  50-100 updates 

between re fac to r i za t i ons .  

It may be concluded, then, t h a t  s t a i r c a s e  p ivo t -se lec t ion  tech- 

n iques  do y i e l d  A ' s  and u ' s  t h a t  c o n s t i t u t e  non- t r i v la l  p a r t i t i o n s  of 

L and U by per iod. 

S ta i r case  FTRANL 

A t  each i t e r a t i o n  FTRANL s t a r t s  by so lv ing  a system l i k e  

( P & ~ ) X  - a ,  o r  equ iva len t l y  L x - P a ,  where a is a col- of A. 0 0 

I f  a is from per iod 11, then i t  is zero on rows of per iods 1 through 

11-1. Consequently, 

and the  main loop of t he  FTRANL r ou t i ne  may begin a t  index 
A t  

a s  ex- 

p la ined in Sect ion 2. 

I n  sho r t ,  when FTRANL transforms a p e r i o d 4  c o l m  i t  can s t a r t  

a t  t h e  11th per iod in Lo, r a t h e r  than a t  t he  beginning. The r e s u l t a n t  

sav ings w i l l  be small, however, s i nce  FTRANL a l ready  handles right-hand 

s i d e  zeroes e f f i c i e n t l y .  

Fur ther  sav ings might be  poss ib le  i f  one kep t  t rack  of upper- 

sub-sta i rcases of Bo, as descr ibed i n  Sect ion 1. The idea  is a s  fol lows: 



i f  Bo has an upper-sub-staircase i n  pe r iods  1 through 11, and i f  a 

l i e s  i n  per iod 11 o r  e a r l i e r ,  then the  s o l u t i o n  r o f  ( P > ~ ) X  = a is 

zero i n  pe r iods  L+l and l a t e r .  Thus the  main  loop of  FTRANL may be 

terminated prematurely. As a p r a c t i c a l  ma t te r ,  however, the l o g i c  of  such 

a scheme is  f a i r l y  complex, and computat ional  e x p e r h n t s  [15] have 

shown on ly  a moderate number o f  upper-sub-staircases; s o  t h e  p o t e n t i a l  

sav ings a r e  probably n o t  worth t h e  t roub le .  

S t a i r c a s e  BTRANU 

At each i t e r a t i o n  BTRANU so lves  a system l i k e  (UkQk)y = x.. where 

x is a s o l u t i o n  v e c t o r  from FTRANL. Since FTRANL has  so lved wi th  

Lo, L1,. . . , L , ,  t h e r e  is no t e l l i n g  where zeroes may be in x. Hence 

BTRANU cannot b e n e f i t  s p e c i a l l y  from a sparse  right-hand s i d e .  

A smal l  sav ing is  poss ib le ,  however, i f  t h e  l o c a t i o n  of ( lower) 

square sub-s ta i r cases  in B is known. Suppose t h a t  the l i n e a r  system a t  

hand is By = a, t h a t  a is from per iod j ,  and t h a t  B has  a sub-s ta i r -  

11 
case  a t  per iod 11 < j t h a t  is, m i  = l ln i ) .  Then the  system can be 

p a r t i t i o n e d  a s  

where B(") and B ( ~ ~ )  a r e  the  square sub-s ta i rcases.  C lea r l y  t h e  solu- 

(1) t i o n  must have y(') = 0, y being j u s t  t h e  p a r t  of  y t h a t  corresponds 

t o  t h e  columns of B in per iods  1 through k. 
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T 
Now i f  By a is w r i t t e n  ins tead  a s  (BQk) (Qky) = a ,  the  pre- 

ceding s ta tement  is  equ iva len t  t o  t h e  fol lowing: an element of Q y k 

w i l l  be zero i f  it corresponds t o  a column of B Q ~  i n  per iods 1,. . . ,a. . 
That is, 

(Qky), = 0. i I 1, . . . ,u -1 a. 

Thus t h e  main loop  o f  BTRANU, which computes (Qky)i, i = m,.. . ,  1, can 

s t o p  a f t e r  t h e  ua.-th pass;  t h e  remainder of t h e  s o l u t i o n  is zero. 

S t a i r c a s e  FTRANU 

ETRANU s o l v e s  a t  each i t e r a t i o n  a system l i k e  (%Q~)'x = Z,  

T 
o r  Ukx = Qkz, where z is a p r i c i n g  form chosen in one of s e v e r a l  ways 

( s e e  Sect ion 2 ) .  Usual ly mst of z is zero,  and o f t e n  i t  can be deter -  

mined t h a t  z is zero i n  a l l  coltnms of t h e  f i r s t  L per iods of t h e  b a s i s ;  

du r ing  Phase I of t h e  simplex method, f o r  example, t h i s  would occur  i f  a l l  

b a s i c  v a r i a b l e s  of t h e  f i r s t  per iods were f e a s i b l e .  It would then 

fo l low t h a t  

and t h e  main loop of  FTRANU could  begin a t  ua. a s  exp la ined in Sec t ion  2. 

Th is  r e s u l t  is  analogous t o  t h e  one f o r  FTRANL above: when 

FTRANU t ransforms a z t h a t  is zero p r i o r  t o  per iod 11,  it can s t a r t  a t  

t h e  l l th per iod in Uk r a t h e r  than a t  t h e  beginning. However, t h e  

p o t e n t i a l  sav ings  a r e  g r e a t e r  since--if 
Uk is s t o r e d  on ly  by colum- 

J?TRANU cannot normal ly b e n e f i t  from s p a r s i t y  i n  z. I n  p r a c t i c e  t h e  

sav ings depend on how U is a c t u a l l y  s t o r e d  and on how z is handled. 



Sta i r case  BTRANL 

BTRANL produces a vec to r  n t ha t  is employed in "pr ic ing" non- 

bas i c  colllllns of A; spec i f i ca l l y ,  each i t e r a t i o n  computes numerous inner  

T 
products n a wi th  columns a.  I f  a is from period II then i t  is zero 

except on rows of per iods II and II+l, and so  only t he  elements of n 

T 
t ha t  correspond t o  these per iods a r e  needed t o  form n a. Since t he  

simplex method seldom considers a l l  nonbasic columns a t  one i t e r a t i o n ,  i t  

can be arranged t ha t  only c e r t a i n  per iods of n a r e  needed. (See 1161 

f o r  a more extens ive explanat ion.)  

Aeeume,therefore, t ha t  a t  the cur ren t  i t e r a t i o n  one only needs 

elements of n corresponding t o  rows of per iods k and l a t e r .  The vec to r  

T T 
n is t h e  so lu t ion  of B n = Z. o r  (POB) (Pan) - z. Thus, equ iva len t l y ,  

one needs only elements of P n t h a t  correspond t o  r o w  of POB i n  0 

per iods E and l a t e r .  It w i l l  s u f f i c e ,  there fo re ,  t o  compute (Pon)i, 

i = X e ,  ..., m. 

T T BTRANL ac tua l l y  produces t h e  elements of n by so lv ing (POLO) n =  X, 

T o r  LO(POn) - x, where x has  been obtained from preceding t ransformat ions 

of z in FTRANU and BTRANL. Each pass through BTRANL computes another 

element of Pon, in reverse order:  (Pon)m,... , (POn)l. Thus t o  compute 

the des i red par t  of n one need only  run BTRANL through t he  Xeth pass 

of t he  main loop; the remainder may be skipped. 

The po ten t i a l  savings in t h i s  instance a r e  considerable. Using 

o n e o f t h e  par t ia l -p r i c ing  schemes of [16] subs tan t i a l  amomts of computa- 

t i on  may be avoided, on t he  average, a t  each i t e r a t i o n .  This is espec ia l l y  

important a s  BTRANL is one of t he  l e s s  e f f i c i e n t  t ransformat ions,  being 

unable t o  take advantage of right-hand s ide  s p a r s i t y  when 
Lo i s  s to red  

in t h e  usual columwise fashion.  



5. COMPUTATIONAL EXPERIENCE 

This s e c t i o n  r e p o r t s  on initial computat ional  e x p e r b e n t s  v i t h  some 

of the  preceding ideas .  The r e s u l t s  i n d i c a t e  t h a t  s t a i r c a s e  adap ta t ion  of  

the  simplex method does make a s i g n i f i c a n t  d i f f e r e n c e :  genera l l y  much 

l e s s  t ime is spent  in c e r t a i n  rou t ines ,  wh i le  more t i m e  is spen t  i n  o the rs .  

Overa l l  t h e  s t a i r c a s e  runs were measurably f a s t e r ,  and i n  one case  the  

sav ings were q u i t e  s u b s t a n t i a l .  Mnreover, i t  appears  t h e r e  is st i l l  room 

f o r  improvement in subsequeat implementations. 

For t h e  t e s t  runs an e x i s t i n g  LP code, WINOS [38,48], was modif ied 

t o  recognize s t a i r c a s e  s t r u c t u r e  and t o  apply o p t i o n a l l y  t h e  s t a i r c a s e  

techniques of  Sec t ions  3 and 4. Each t e s t  LP could  then be so lved twice 

-once w i th  t h e  s t a i r c a s e  f e a t u r e s  turned o f f ,  once wi th  them on--and 

t h e  r e s u l t s  could b e  meaningful ly compared. D e t a i l s  of  t h e  t e s t  code and 

t h e  experimental  se tup  a r e  given in Appendix B. 

MINOS employs a bump-and-spike f a c t o r i z a t i o n  v i t h  Saunders' up- 

d a t i n g  technique. Consequently t h e  s t a i r c a s e  bump-and-spike technique vas  

implemented in t h e  test ve rs ion ,  and all t e s t  r e s u l t s  bear  d i r e c t l y  on ly  

upon bump-and-spike methods. Never the less,  from c e r t a i n  r e s u l t s  one may 

make q u i t e  favorab le  specu la t ions  about t h e  expected performance of s t a i r  

case  local-minimizat ion techniques,  a s  descr ibed f u r t h e r  below. 

To keep t h e  p resen ta t ion  compact,only s h o r t  t a b l e s  of r e s u l t s  a r e  

presented i n  t h i s  sec t ion .  Graphs of more ex tens ive  test d a t a  a r e  c o l l e c t e d  

i n  Appendix C.  



Overal l  r e s u l t s  

Seven mediunrto-large-scale l i n e a r  programs were used i n  the  t e s t s .  

A l l  a r e  from app l i ca t ions ,  and a r e  of d i ss im i l a r  s t r u c t u r e s  (as ide  from 

being s t a i r c a s e ) .  Thei r  dimensions a r e  a s  follows: 

PERIODS 

SCAGRZS 25 

SCRS8 16  

SCSD8 39 

SCFXM2 8 

SCTAPZ 10 

PILOT 9 

BP1 6 

ROWS - 
472 

491 

39 8 

661 

1101 

723 

822 

COLUMNS 

500 

1169 

2750 

914 

1880 

2.789 

15 71 

NONZERO 
COEFFICIENTS 

ITERATIONS TO 
SOLVE FROM 
SLACK START 

For the  sake of economy, PZLOT and BPI were tes ted  on runs of 1000 and 

750 i t e r a t i o n s ,  respec t i ve ly ,  s t a r t i n g  from advanced bases. The r e s t  

were run t o  op t ima l i t y  from an a l l - s lack  s t a r t .  Addi t ional  Information 

about t h e  t e s t  LPs is co l lec ted  in Appendix A, and Appendix B expla ins 

i n  more d e t a i l  how they were solved. 

Raw r e s u l t s  from the t e s t  runs, s tandard ized t o  seconds 

per 1000 i t e r a t i o n s ,  were a s  follows; 



TOTAL TIME 
STANDARD STAIRCASE % CHANGE 

SCFXM2 43.4 42.2 - 3% 

S CTAP 2 67.2 67.1 04 

PILOT 155.7 106.4 -32% 

BPI 181.8 189.7 + 4% 

Savings were subs tan t i a l  f o r  PILOT, and respectable f o r  SCSD8. For the  

o thers  the  gross d i f fe rence  between the standard and s t a i r c a s e  techniques 

was small, though the  l a t t e r  performed worse only on BPI. 

It is misleading t o  consider only these t o t a l s ,  however. When 

the  times a re  broken down by function-as i n  the f i r s t  s e t  of graphs i n  

Appendix C--it can be seen t h a t  gains i n  some areas  tend t o  be o f f s e t  by 

l osses  i n  others.  n ~ e  s t a i r c a s e  vers ion has an edge i n  simplex p r i c ing  

and p ivot ing,  whi le i t  is usual ly  s l i g h t l y  behind in updating the  LU 

fac to r i za t ion ;  i t  ranges from much f a s t e r  t o  somewhat s l w e r  in p ivo t  

se l ec t i on  f o r  Gaussian e l iminat ion,  but  i s  almost always slower in computing 

the L and U f ac to r s .  Miscellaneous rout ines consume a good 10-20% of 

the time, much of which could be saved in p r a c t i c a l  ( r a the r  than t e s t )  

circumstances. 

Thus much more is t o  be learned by examining the times of ind iv idua l  

rou t ines  and funct ions.  The fol lowing subsect ions consider f i r s t  the simplex- 

i t e r a t i o n  rou t ines ,  and then the LU-factorization ones. 



I t e r a t i n g  r o u t i n e s  

The simplex method spends a major i ty  of i ts  time in t a s k s  t h a t  

a r e  repeated a t  each i t e r a t i o n :  choosing a column t o  e n t e r  t h e  b a s i s  

( p r i c i n g ) ,  determining which column leaves  the  b a s i s  (p i vo t ing ) ,  and r e v i s i n g  

t h e  b a s i s  f a c t o r i z a t i o n  accord ing ly  (updat ing) .  The LP code's " i t e r a t i n g "  

r o u t i n e s  c a r r y  o u t  these  tasks .  

For the t e s t  problems, t o t a l  time spent  i n  t h e  i t e r a t i n g  r o u t i n e s  

--again, normalized t o  seconds per  thousand i terat ions--was a s  fol lowe: 

ITERATING TIME 
STANDARD STAIRCASE 4 CHANGE 

Qere the  r e s u l t s  a r e  somewhat more s t r i k i n g ,  fou r  of  the  seven shoving 

sav ings of  10-20%. 

Again more can be lea rned  from a f u r t h e r  breakdown of the  times. 

given by the  second s e t  of  graphs i n  Appendix C. The g r e a t e s t  d i f f e r e n c e  

by f a r  is in BTRANL, which is s i g n i f i c a n t l y  f a s t e r  wi th t h e  s t a i r c a s e  ve rs ion  

in every ins tance .  There is a corresponding, bu t  smal ler ,  e f f i c i e n c y  in 

F'l'&UL. The f i g u r e s  f o r  these  two r o u t i n e s  a r e  a s  fo l lows:  



FTRANL B TRANL 
STD - STAIR 4 CHNG - STD - STAIR % CHNG 

SCAGR25 2.7 1.9 -29% 6.7 3.5 -48% 

SCRS8 2.4 1.5 -36% 5.7 3.4 -41% 

SCSD8 3.9 2.9 -25% 8.2 4.7 -42% 

S CFXM2 2.6 1 .9  -28% 7.8 5.4 -32% 

S W 2  3.3 2.6 -21% 9.2 6.6 -28% 

PILOT 13.0 8.0 -38% 22.9 12.7 -45% 

BPI 14.8 12.6 -15% 32.5 26.9 -1 7% 

Roughly t h e r e  is a 30-50% sav ing  in BTRANL, and a 20-40% sav ing in J?TRANL. 

There is a smal l  bu t  no t i ceab le  tendency of  the  s t a i r c a s e  ve rs ion  

t o  run slower i n  BTRANU and FTRANU. Most l i k e l y  t h i s  behavior is a con- 

sequence of t h e  LU f a c t o r i z a t i o n :  the  s t a i r c a s e  bump-and-spike p i v o t  order  

tends t o  y i e l d  a denser U. 

S o w  of the  d i f f e r e n c e  in BTRAN and FTRAN t imings should be due 

t o  t h e  methods of  Sect ion 4. The e f f i c a c y  of these  nethods cannot be t o l d  

from t h e  above d a t a ,  however, s i n c e  t h e  same t imings a r e  s e n s i t i v e  t o  d i f f e r -  

ences i n  L and U dens i t y .  Consequently a separa te  s e t  of runs w a s  made, 

employing t h e  s t a i r c a s e  LU f a c t o r i z a t i o n  b u t  n o t  the  Sec t ion  4 enhancements. 

The d i f f e r e n c e s  were a s  fo l lows:  



TIME SAVED 
BY EFFICIENCIES 
I N  FTRAN, BTRAN 

(SECTION 4) 
X OF 

TOTAL TIME 

15% 

Thus the  e f f i c i e n c i e s  in FTRAN and BTRAN cu t  t o t a l  running times 9-15% 

in most cases;  t h e  sav ings would be more pronounced a s  a percentage of 

i t e r a t i n g  time only .  P red ic tab ly ,  LPs of many per iods tended t o  show the  

g rea tes t  d i f fe rences .  

Comparable sav ings should be r ea l i zed  i f  s t a i r c a s e  bump-and-spike 

p ivo t  se l ec t i on  is  rep laced by s t a i r c a s e  l o c a l  minimizat ion, s i nce  t he  

methods of Sect ion 4 apply equal ly  w e l l  t o  e i t h e r .  Hence l o c a l  minimization 

may w e l l  be duper ior  f o r  LPs such a s  SCAGR25 and SCFXM2 whose s t a i r c a s e  

factor izat ions--as repor ted  i n  [15]-are notably denser under bump-and-spike. 

The one sour  no te  in the t h ree  t ab l es  above is BPI, on which the  

s t a i r c a s e  i t e r a t i n g  r ou t i nes  seem t o  perform ra the r  poorly. On c l ose r  

examination, however, t h i s  is n o t  e n t i r e l y  su rp r i s i ng ,  as BP1 d i f f e r s  

s i g n i f i c a n t l y  from the o the r  Us. Whereas the o thers  a r e  f i r s t - o rde r  s t a i r -  

cases ( o r ,  in the  case of PILOT, very nea r l y  f i r s t - o rde r ) ,  BP1 has a l a rge  



number of  nonzeroes below the s t a i r c a s e ;  i t s  form is i n  f a c t  c l o s e r  t o  dual- 

angular .  BPl's bases consequent ly tend t o  be unbalanced. Hence the  s t a i r -  

case  technique produces cons iderab ly  more sp ikes,  and a much denser  U f a c t o r .  

The r e s u l t :  much more time spen t  in FTRANU and BTRANU, o f f s e t t i n g  any ga ins 

in PTRANL and BTRANL. 

I t  thus appears  t h a t  a good s t a i r c a s e  form is e s s e n t i a l  t o  success 

of t h e  s t a i r c a s e  techniques.  BPl 's s t a i r c a s e  arrangement was deduced from 

f a i r l y  s c a n t  in format ion,  and is ev iden t l y  inadequate. A b e t t e r  s t a i r c a s e  

form may e x i s t ,  b u t  a b e t t e r  knowledge of t h e  under ly ing model may be necessary  

t o  f i n d  i t .  

Fac to r i z ing  r o u t i n e s  

At i n t e r v a l s  of  t y p i c a l l y  50-100 i t e r a t i o n s  a f r e s h  f a c t o r i z a t i o n  of  

t h e  b a s i s  is computed by a s e p a r a t e  s e t  of  r o u t i n e s .  For bump-and-spike 

techniques, these  " fac to r i z ing"  r o u t i n e s  f a l l  i n t o  two c l a s s e s :  ones t h a t  

s e l e c t  a p i vo t  o rder ,  and ones t h a t  compute the  L and U f a c t o r s .  

For t h e  test problems, t o t a l  t i m e  i n  f a c t o r i z i n g  routines-normalized 

t o  seconds per  10 refactor izat ions--was a s  fol lows: 

SCAGR2S 

SCRS8 

SCSD8 

SCF2w 

SCTAP2 

PILOT 

BPI 

FACTORIZING TIME 
STANDARD STAIRCASE % CHANGE 

+IS% 

+22% 

-39% 

+4 7% 

+80% 

- 70% 

- 6% 



The outcomes appear t o  vary wi ld ly .  However, they a r e  the consequence of 

a few simple pa t t e rns  which a r e  revealed by looking a t  the p ivo t -se lec t ion  

rou t ines  and LU-computation rou t ines  separa te ly ,  with re ference t o  the  t h i r d  

s e t  of graphs i n  Appendix C. 

Pivot  s e l e c t i o n  invo lves a rou t ine  f o r  the  P3 heu r i s t i c ,  a block- 

t r i angu la r i za t i on  r ou t i ne  ( f o r  the s tandard technique on ly ) ,  and main 

rou t ines  t o  c a l l  these  and record the  se l ec ted  p ivo ts .  The s t a i r c a s e  

technique's main rou t ine  seems t o  run usual ly  somewhat longer ,  probably 

because i t  is more complicated. The o the r s '  t imes a r e  summarized below: 

STANDARD 
P3 - BLK h TOTAL 

SCAGR25 0.4 0.2 0.6 

SCRS8 0.2 0.2 0.4 

SCSD8 1.1 0.4 1.5 

SCFXMZ 0.2 0.5 0.7 

SCTAP2 0.0 0.5 0.5 

PILOT 20.4 1 .0  21.4 

BP1 13.1 2.0 15.1 

MEDIAN S I E ,  
LARGEST BUMP 

4 5 

The behavior of P3 is c l e a r l y  c r i t i c a l .  When bumps a r e  smal l  P3 is q u i t e  

f a s t ;  bu t  i t  begins t o  slow down whem bump s i z e  passes 100, and i t  is  

extremely i n e f f i c i e n t  on bumps af s i z e  400 o r  500. PILOT, the  worst case 

here,  spends 16% of its t o t a l  running t ime i n  P3 alone! By ex t rapo la t ion ,  

i t  seems l i k e l y  t ha t  P3 w i l l  be p roh ib i t i ve ly  slow f o r  l a r g e r  bumps. Thus 

a s t a i r c a s e  bump-and-spike technique (o r  e l s e  an e f f i c i e n t  local-minimiza- 

t i o n  technique) may be e s s e n t i a l  f o r  l a r g e r  ve rs ions  of models l i k e  SCSD8 

and PILOT. 



The main LU computation rou t ines  employ FTRANL and BTRANL a s  sub- 

rou t ines :  Fl'RANL so lves  f o r  the next colrrmn of L and U ( as  descr ibed Fn 

(k) Sect ion 2 ) ;  BTRANL eolves f o r  row k of 0 when a column in terchange 

("spike swap") is necess i t a t ed  by an unacceptable p ivo t  element. The t e s t  

p rob lem gave t he  fo l lowing r e s u l t s  (where SWAPS is  t he  maximum number of 

swapped sp ikes  per  f a c t o r i z a t i o n ) :  

STANDARD LU STAIRCASE LU 
MAIN FTRAN BTRAN SWAPS MAIN FTRAN BTRAN S W X  ------- 

SCAGR25 0.2 0.0 0.0 3 0.6 0.1 0.1 20 

SCRS8 0.2 0.0 0.0 1 0.4 0.1 0.1 11 

SCSD8 0.4 0.1 0.0 6 0.5 0.1 0.1 11 

S CFXH2 0.5 0 .1  0.0 2 1.0 0.2 0.1 8 

SCTAP2 0.2 0.0 0.0 0 0.7 0.1 0.4 19  

PILOT 3.3 3.8 2.4 27 3.2 1 .8  0.8 16  

BPI 3.7 3.8 2.4 28 6.4 5.8 7.2 49 

Pred ic tab ly ,  the  times a r e  s e n s i t i v e  t o  the  numbers of sp ike  swaps; each 

swap requ i res  another  BTRANL and FTRANL, p lus  e x t r a  work in t he  main 

rou t ine .  Experience wi th  PILOT and o the r  LPs [15] suggests  t h a t  t h e  s t a i r -  

case  p ivo t  o rder  may genera l l y  r equ i r e  fewer swaps when the  bumps a r e  b i g  

( a s  f o r  PILOT) and t he  s t a i r c a s e  is well-balanced (un l i ke  BPI 'S).  The 

o the r  t e s t  LPs have smal ler  bumps and requ i re  fewer swaps wi th  t he  s tandard 

p ivot  order .  

Again the  d a t a  suggest  t h a t  s t a i r c a s e  local-minimization techniques 

might be p re fe rab le  f o r  the  small-bump s t a i r c a s e  LPs. An e f f i c i e n t  imple- 

mentation of l o c a l  minimization [12,45] i n cu r s  only a smal l  e x t r a  cos t  in 

r e j e c t i n g  any unaccepatably smal l  p i vo t  element. 



Comparison wi th  a commercial code 

The PILOT model was f requent ly  solved--on t h e  same computer a s  used 

f o r  the above tests--by a commercially-marketed machine-language LP code, 

HPS I11 [37]. These runs employed the WHIZARD simplex rout ine of MPS 111, 

which incorporates a bump-and-spike f ac to r i za t i on  scheme. Various system 

parameters were s e t  from experience t o  y i e l d  f a s t  PILOT runs. 

For comparison, WIZARD was run 1000 i t e r a t i o n s  from t h e  same 

s t a r t i n g  bas i s  a s  used above with MINOS. The running times were a s  fol lows : 

MINOS, standard p ivot  se l ec t i on  155.7 sec  

MPS III/WHIZARD 114.7 sec  

MINOS, s t a i r c a s e  p ivot  se l ec t i on  106.4 sec.  

MINOS did requ i re  considerably more s torage,  pr imar i ly  because i ts s to rage  

scheme f o r  t he  U f ac to r  could not  e f f i c i e n t l y  accommodate a l a r g e  number of 

spikes. U could probably be s to red  more compactly, however, without 

s i gn i f i can t  e f f e c t  upon the  MINOS timings. 

Nothing wry  d e f i n i t e  can be i n f e r red  from these f i gu res ,  s ince  

MINOS and MPS I11 d i f f e r f nmany  ways; moreover, t he  i n t e r n a l  s t r uc tu re  

of t he  l a t t e r  is l a rge l y  mhown,  a s  is the  case wi th  many commrcia l  codes. 

Nevertheless, i t  is g ra t i f y i ng  t h a t  MINOS-which is wr i t ten  i n  FORTRAU and 

intended more a s  a t e s t  code-can compete with a supposedly f a s t  LP system. 

At t he  l e a s t ,  one may conclude t ha t  t he  t imings throughout t h i s  sec t i on  a r e  

probably qu i t e  r e a l i s t i c .  And the supe r i o r i t y  of s t a i r c a s e  MINOS t o  MPS I11 

f o r  PILOT suggests t h a t , f o r  a t  l e a s t  some l a rge  s t a i r c a s e  problems, the  tech- 

niques of t h i s  paper w i l l  o f f e r  s i gn i f i can t  savings. 



APPENDIX A: TEST PROBLEMS 

The l i n e a r  programs uaed in t h e  computat ional  exper iments of  

Sect ion 5 a r e  descr ibed i n  g r e a t e r  d e t a i l  below. The t a b u l a r  summarizes 

f o r  each LP a r e  l a r g e l y  se l f -exp lanatory ,  but a few genera l  n o t e s  a r e  

appropr ia te :  

A l l  a t a t i s t i c s  except O B J  ELEM r e f e r  on ly  t o  t h e  s t a i r c a s e  con- 

s t r a i n t  matr ix ,  exc lud ing t h e  o b j e c t i v e  rw and right-hand s ide.  I n  each 

c a s e  t h e  c o n s t r a i n t  matr ix,  A, has  been pu t  in reduced s tandard form; 

DIAGONAL BLO(XS r e f e r s  t o  t h e  s t a i r c a s e  blocka AEE, OFF-DIAGONAL BLOCKS t o  

t h e  b locks iE+l,E , and SUB-STAIR BLOCKS (when p resen t )  t o  t h e  b locks 

AE+p8 s , AtL. 

Var iab les (columns) a r e  i m p l i c i t l y  const ra ined on ly  t o  be non- 

nega t i ve ,  un less  t h e r e  is  an i n d i c a t i o n  t o  t h e  con t ra ry .  BOUNDED imp l ies  

i m p l i c i t  lower and upper bounds, FIXED imp l ies  f i x t u r e  a t  a given va lue,  and 

FREE imp l ies  no i m p l i c i t  c o n s t r a i n t s .  

M4.X ELEM and HIN ELXM a r e  t h e  l a r g e s t  and smallest magnitudes of  

elements in A; LARGEST COL RATIO is t h e  g r e a t e s t  r a t i o  of magnitudes of  

elements in t h e  same column o f  A. Where va lues  a r e  given BEFORE SCALING 

and AFTER SWING, al l  t e s t s  were conducted v i t h  A s c a l e d  a s  descr ibed 

i n  Appendix B. Otherwise NO SCALING is i nd ica ted .  



SCAGR25 

Test problem received from James K. Ho, Brookhaven National 

Laboratory, Upton, N . Y . ;  source no t  documented. 

DIAGONAL BLOCKS OFF-DIAGONAL BLOCKS OB J 

- - - - -  ROWS COLS ELEMS DENS ELPIS PERIOD ROWS COLS ELEMS DENS - - 

GRAND TOTALS 

ROWS 4 71 (300 EQUALITIES, 171 IWQUALITIES) 

COLS 500 

ELMS 1554 

DENS 0.7% 

COEFFICIENTS 
NO 

SCALING 

MAXELEM 1.3  

MIN E L M  2.0 x 10-1 

LARGEST COL RATIO 1.9 X 10-I 



SCRS8 

Derived from a model of t h e  United S t a t e s '  op t ions  f o r  a t r a n s i t i o n  

from o i l  and gas t o  s y n t h e t i c  f u e l s ;  documented i n  [27,33].  

PERIOD 

1 

2 

3- 5 

6-8 

9 

10-12 

13-15 

1 6  

DIAGONAL BLOCKS 
ROWS COLS ELEMS DENS - - - -  

OFF-DIAGONAL BLOCKS 
ROWS COLS ELEMS DENS - - - -  

GRAND TOTALS 

ROWS 490 (384 EQUALITIES, 106 INEQUALITIES) 

COLS 1169 

ELEMS 3182 

DENS 0.6% 

BEFORE AFTER 
COEFFICIENTS SCALING SCALING 

MAX ELEM 

HIN ELEM 

LARGEST COL RATIO 4.5 X 1 0  
3 1.6 x lo1 



SCSD8 

A mult i -stage s t ruc tura l  des ign problem, documented i n  [ 2 6 ] .  

This is the on ly  s ta i r case  t e s t  problem for  t h i s  paper i n  which the s tages  

do no t  represent per iods o f  time. 

DIAGONAL BLOCKS OFF-DIAGONAL BLOCKS OBJ 
PERIOD ROWS COLS ELEMS DENS -----  ROWS COLS ELEMS DENS ELEMS ---- - 

GRAND TOTALS 

ROWS 397 (ALL EQUALITIES) 

COLS 2750 

ELEHS 8584 

DENS 0 .8% 

NO 
COEFFICIENTS SCALING - 
HAX ELW 1 . 0  

KIN ELEM 2 . 4  x 10-I 

LARGEST COL RATIO 4 . 0  



s c m  

Test  problem received from James K. Ho, Brookhaven Nat ional 

Laboratory, Upton, New York; source no t  documented. 

PERIOD 

1 

2 

3 

4 

5 

6 

7 

8 

DIAGONAL BLOCKS 
ROWS COLS ELEMS DENS - - - -  

GRAND TOTALS 

Rows 
COLS 

n m  
DENS 

OFF-DIAGONAL BLOCKS 
ROWS COLS ELEMS DENS --- - 

660 (374 EQUALITIES, 286 INEQUALITIES) 

914 

518 3 

0.9% 

BEFORE AFTER 
COEFFICIENTS SCALING SCALING 

MAX ELM 1.3  x 10 2 
1.1 x 10 

1 

MIN ELM 5.0 8.7 x lo-' 
LARGEST COL RATIO 1 .3  x 10 5 

1 .3  x 10 2 



SCTAPZ 

A dynamic t r a f f i c  ass ignment  problem, documented i n  [ 28 ] .  

The LP h a s  11 o b j e c t i v e  rows; t h e  o b j e c t i v e  named OBJZZZZZ was used i n  

a l l  tests. S t a t i s t i c s  below omit  t h e  o t h e r  t e n  o b j e c t i v e s .  

DIAGONAL BLOCKS OFF-DIAGONAL BLOCKS OW 

-----  ROWS COLS ELEMS DENS ELEMS PERIOD ROWS COLS ELEMS DENS - 

GRAND TOTALS 

ROWS 1090 (470 EQUALITIES, 620 INEQUALITIES) 

COLS 1880 

ELEMS 6714 

DENS 0.3% 

COEFFICIENTS 
NO 

SCALING 
1 

MAX ELM 8 .0  x l o A  
M I N  ELEM 1.0 

IARGEST COL RATIO 8 .0  x 1 0  
1 



PIMT 

Derived from a ve l f a re  equi l ibr ium model of the  United S ta tes '  

energy supply,  energy demand, and economic growth: seeks maximum aggregate 

consumer v e l f a r e  sub jec t  t o  competi t ive market equi l ibr ium. The LP vas 

suppl ied by t he  PILOT modeling p ro jec t ,  Systems Optimization Laboratory, 

Department of Operat ions Research, Stanford Universi ty;  i t  is documented 

i n  [40]. 

DIAGONAL BLOCKS 
PERIOD ROWS COLS ELUS DENS - ---- 

OFF-DLAGONAL BMCKS 
ROWS COLS ELEMS DENS ---- 

SUB-STAIR 
BLOCKS 

ELEMS DENS -- 

GRAND TOTALS 

ROWS 722 (583 EQUALITIES, 139 INEQUALITIES) 

COLS 2789 ( 80 FREE, 296 BOUNDED, 79 FIXED) 

ELMS 9126 

DENS 0.5% 

BEFORE AFTER 
COEFFICIENTS SCALING SCALING 

MAX ELPI 4.8 x 10 2.0 x 10 1 

MIN ELPI 1 .4  4.9 

LARGEST COL RATIO 7.0 x lo6 4.2 x 10 2 



BP1 - 

Developed by B r i t i s h  Petro leum, London; s u p p l i e d  v i a  t h e  Systems 

Opt imiza t ion  Labora tory ,  Department of Opera t i ons  Research,  S tan fo rd  

Un ive rs i t y .  

T h i s  LP is approx imate ly  dua l -angu lar ,  w i t h  6 main d iagona l  b locks  

and abou t  400 c o u p l i n g  v a r i a b l e s .  For t h e  exper iments  d e s c r i b e d  i n  t h i s  

paper  i t  was t r e a t e d  as a 6-per iod,  5 th-order  s t a i r c a s e  problem. 

SUB-STAIR 
DIAGONAL BLOCKS OFF-DIAGONAL BLOCKS BLOCKS 

PERIOD ROWS COLS ELEMS DENS ROWS COLS ELMS DENS ELPIS DENS - - - - - - - - - - - 

GRAM) TOTALS 

ROWS 821 (516 EQUALITIES, 305 INEQUALITIES) 

COLS 1571  

ELPIS 20400 

DENS 0.8% 

BEFORE AFTER 
COEFFICIENTS SCALING SCALING 

I(AX ELEM 2.4 x 1 0  1 . 3  x 10  1 

M I N  ELPl 2.0 7.6 x 

OB J 
ELMS 

LARGEST COL RATIO 1 .7  x 1 0  1 . 7 ~ 1 0  
2 



APPENDIX B: DETAILS OF COMPUTATIONAL TESTS 

Computing environment 

All computational experiments were performed on t he  Tr ip lex  system 

[49] a t  t he  Stanford Linear Accelerator  Center, Stanford Univers i ty .  The 

Tr ip lex  comprises t h ree  computers l inked together :  one IBH 36(1/91, and two 

IBM 37(1/168s. Runs were submit ted a s  batch jobs i n  a vir tual-machine environ- 

ment, under t h e  con t r o l  of IBH systems OS/VS2, OS/WVT and ASP. 

Test  runs employed a spec ia l ly -modi f ied s e t  of linear-programming 

rou t ines  from the  MINOS system [38,48]. MINOS is wr i t t en  i n  s tandard 

FORTRAN. For timed NUS, MINOS was compsled with t h e  IBM FORTRAN I V  (H 

extended, enhanced) compi ler,  ve rs ion  1.1.0, a t  opt imizat ion l e v e l  3 [30]. 

Timings 

Al l  running-time s t a t i s t i c s  a r e  based on "CPU second" t o t a l s  f o r  

i nd iv idua l  job s t e p s  a s  repor ted by t h e  operat ing system. To promote 

cons is tency a l l  timed jobs were run on t h e  T r ip lex  computer des ignated 

"system A," and jobs whose t imings would be compared were run a t  about  t he  

same time. Informal experiments ind icated roughly a 1% v a r i a t i o n  i n  t imings 

due t o  varying system loads.  

More d e t a i l e d  t imings employed PROGLOOK [31],  which takes f requen t  

samples of a running program t o  es t imate  t he  propor t ion of t ime spen t  in  

each subrout ine.  To determine t he  a c t u a l  t ime in seconds f o r  each sub- 

rou t ine ,  every timed job was run twice--once wi thout  PROGUIOK t o  measure 

t o t a l  CPU seconds, and once w i th  PROGLOOK t o  es t imate  each subrou t ine 's  

propor t ion of the  t o t a l .  PROGLOOK es t imates  were based on a t  l e a s t  2300 

samples per  job. 



MINOS linear-programming environment 

MINOS was s e t  up f o r  t e s t  runs according t o  t he  de fau l t s  ind icated 

i n  [38], with t he  except ion of the  items l i s t e d  below. 

Scal ing. Problems noted a s  "scaledWin Appendix A were subjected 

t o  t he  fol lowing geometric-mean sca l i ng  (where A denotes t he  matr ix of 

cons t ra i n t  coe f f i c i en t s ,  not  including the  ob jec t i ve  o r  right-hand s i de ) :  

1: Compute po = maxl~  /A A $ 0 .  
i , j  i "  i " j  

2 :  Divide each row i of A, and i ts corresponding right-hand s i d e  

value, by [(min ( A  / (max I A  ( ) ]I/ ' ,  tak ing the minimum over 
1 il j i j  

a l l  A $ 0 .  
i l  

3: Divide each column j of A, and i t s  corresponding coe f f i c i en t  

in  t he  ob jec t i ve ,  by [(min ( A  1 )  (max I A  tak ing t he  
i i j  i i j  

minimum over a l l  A $ 0. 
i l  

4 :  Compute p = max ( A  /A A $ 0. 
i l j  i 2 j  i 2 j  

This procedure was repeated a s  many times a s  poss ib le  u n t i l ,  a t  s t e p  4 ,  

p was a t  l e a s t  90% of po. ( In o ther  words, sca l i ng  continued a s  long 

a s  i t  reduced p, t he  g rea tes t  r a t i o  of two elements i n  t h e  same column, 

by more than lo%.)  

S ta r t i ng  bas is .  A l l  LPs except PILOT and BP1 were solved wi th  

crash opt ion 0 of MINOS: t he  i n i t i a l  bas i s  was composed e n t i r e l y  of u n i t  

vec to rs ,  and a l l  nonbasic var iab les  were placed a t  zero. PILOT and BP1 

were run from i n i t i a l  bases t h a t  had been reached and saved i n  previous 

MINOS runs. 



Termination. A l l  LPs except PILOT and BP1 were run u n t i l  an opt imal 

so lu t ion  was found. PILOT and BP1 were run f o r  1000 and 750 i t e r a t i o n s ,  

respect ive ly .  

Pr ic ing.  Except f o r  SCTAPZ, the  par t ia l -p r i c ing  scheme of MINOS 

was employed--with one important change: the a r b i t r a r y  pa r t i t i on i ng  of 

the  columns normally def ined by HINOS f o r  p a r t i a l  p r i c ing  was replaced by 

the na tu ra l  s t a i r c a s e  pa r t i t i on .  Thus the  periods of the s t a i r c a s e  were 

pr iced one a t  a t ime i n  a cyc l i c  fashion. 

Pr i c ing  f o r  SCTAPZ was s im i l a r  except t ha t  the  incoming column 

was chosen from the  l a t e s t  poss ib le  period. (This choice was known t o  

produce a r e l a t i v e l y  small number of i t e r a t i o n s  from an a l l -un i t -vector  

s t a r t . )  

Refactor izat ion frequency. MINOS was i n s t r uc ted  t o  r e fac to r i ze  

the  bas i s  (by performing a f resh  Gaussian e l iminat ion)  every 50 i t e r a t i o n s ,  

except f o r  BPI (every 75) and PILOT (every 90). 

Tolerances. The "LU ROW TOL" f o r  MINOS was s e t  t o  lo-'. A l l  

o the r  to lerances were l e f t  a t  t h e i r  de fau l t  values. 

Modif icat ions t o  MINOS 

A l l  runs descr ibed in t h i s  paper were made with a spec ia l  t e s t  

vers ion of MINOS. This vers ion re ta ined  MINOS' rou t ines  f o r  standard 

bump-and-spike e l iminat ion,  and added new rou t ines  t o  implement a vers ion 

of s t a i r c a s e  bump-and-spike e l iminat ion.  Routines f o r  so lv ing l i n e a r  

systems were a l s o  modified t o  take advantage of the s t a i r c a s e  p ivot  order .  

Control rou t ines  were adjusted appropr ia te ly .  



New subrout ines i n  the t e s t  vers ion a r e  descr ibed b r i e f l y  a s  

fol lows : 

SP3--an adap ta t ion  of the P3 h e u r i s t i c  t o  f i nd  a bump-and-spike - 
s t r u c t u r e  i n  non-square o r  rank-def ic ient b locks,  a s  proposed 

i n  [15] .  Th is  rou t ine  is a modi f icat ion of the MINOS subrout ine P3. 

SP4-main rou t ine  f o r  the s t a i r c a s e  bump-and-spike pivot-sele'ction - 
technique of 1151;sorts the s t a i r c a s e  bas i s  i n t o  reduced form, and 

c a l l s  SP3 once f o r  each diagonal block. 

DSPSPK--spike-display rou t ine ;  p r i n t s  a g raph ica l  sunanary of the 

bas i s  bump-and-spike s t r u c t u r e  found by P4 ( f o r  t he  s tandard tech- 

nique) o r  SP4 ( f o r  the s t a i r c a s e  technique).  

STAIR--a s t a i r c a s e  analyzer .  Given an i n i t i a l  p a r t i t i o n  of the rows 

by per iod,  t h i s  rou t ine  permutes the  cons t r a i n t  matr ix  t o  a reduced 

s tandard s t a i r c a s e  form and s t o r e s  the s t a i r c a s e  p a r t i t i o n s  i n  a r r a y s  

that a r e  read by subsequent rou t ines .  STAIR is c a l l e d  once a t  t he  

beginning of every run. 

SCALE--implementation of the geometric-mean sca l ing  scheme descr ibed 

above; ca l l ed  op t iona l l y  a t  the  beginning of a run. 

UPDBAL--updating rou t ine  f o r  cumulative-balance counts:  a f t e r  

each i t e r a t i o n ,  r ev i ses  an a r ray  that records t he  cumulative excess 

of columns over rows a t  each per iod of the s t a i r c a s e  bas is .  (This 

a r r ay  i s  used t o  f i nd  square sub-sta i rcases. )  



In addit ion the  t e s t  version incorporates the fol loving substantial  modif i-  

cations to  MNOS subroutines: 

FACTOR e f f i c i e n t l y  handles a pivot order from e i ther  the standard 

or staircase technique, and f inds the part i t ions X L  and p L  

(defined i n  Section 4 )  for  the staircase technique. 

FTRANL, BTRANL, FTRANU and BTRANU incorporate the ideas o f  

Section 4 in a uniform vay. FlXANL and FTRANU can begin a t  a 

speci f ied L or U transformation, and BTRANL and BTRANU can stop a t  

a speci f ied transformation. BTRANZ, can also be restarted a t  a 

point where it previously stopped. 

LPITN determines a star t ing point for FTRANL and a stopping point 

for BTRANU when the staircase technique i s  used. 

S E T P I ,  fo r  the staircaae technique, determine6 a star t ing point 

for  FTRANU and a stopping point for BTRANL when it i s  f i r s t  called 

a t  an i te ra t ion .  When subsequently called a t  the same i te ra t ion  it 

determines restar t ing and stopping points for BTRANL. 

PRICE incorporates the  staircaae-oriented partial-pricing methods 

described i n  the preceding subaection o f  t h i s  appendix. When 

these methods are used wi th the staircase factor izat ion technique, 

PRICE also keeps track o f  how much o f  the price vector it requires, 

and ca l l s  SETPI accordingly. 

SPECS2 determines whether the standard or staircase technique vil l  

be used i n  a particular run, according t o  instruct ions i n  the SPECS 

input f i l e .  



Other  s u b r o u t i n e s  were mod i f ied  a s  n e c e s s a r y  t o  accommodate t h e s e  

changes.  

MPS 111 l i n e a r  programming environment 

For  purposes  o f  compar ison t h e  PILOT test problem was a l s o  r u n  on  t h e  

HPS 111 sys tem [37], as e x p l a i n e d  i n  S e c t i o n  5. 

The HPS 111 r u n  employed t h e  WHIZARD l i n e a r - p r o g r a m i n g  r o u t i n e s  

o f  v e r s i o n  8915 o f  MPS 111. The r u n  used t h e  same s t a r t i n g  b a s i s  a s  t h e  

MINOS r u n s  f o r  PILOT, and was te rm ina ted  a f t e r  1000 i t e r a t i o n s  l i k e  t h e  

MINOS runs .  Exac t  CPU t i m i n g s  were 0.56 seconds i n  t h e  compi le r  s t e p  

and 114.18 seconds in t h e  e x e c u t o r  s t e p .  

The c o n t r o l  program f o r  t h e  MPS 111 r u n  was a s  f o l l ows :  

PROGRAM 

INITIALZ 

=ROC = WROC + 6000 

XCLOCKSW = 0 

XINVERT = 1 

XFREQINV = 90  

XFREQLGO = 1 

XFREQl = 1000 

MVADR (XWFREQl, TIME) 

MOVE (XDATA, ' PILOT. WE ' ) 
CONVERT ( FILE' , INPUT' 

SETUP ('BOUND', 'BOUND', 'MAX' , 'SCALE' ) 

MOVE (XOBJ, 'OBJ') 

MOVE (XRHS , 'RHSIDE ' ) 
INSERT ('FILE',  PUNCH^') 

WHIZFREQ DC (250) 

WHIZSCAL DC (4)  

WHIZARD('FREQ', WHIZE-REQ, 'SCALE', WEIZSCAL) 

TSME PUNCH ('FILE' , 'PUNCH1 ' ) 
EXIT 

PEND 



APPENDIX C: TIMINGS 

The bar  graphs below summarize timings of the  MNOS t e s t  runs 

f o r  t h i s  paper. De ta i l s  of the t e s t  runs and timing procedures a r e  i n  

Appendix B; i nd iv idua l  MINOS subrout ines a r e  doclrmented i n  Appendix B 

and i n  [48]. 

Graphs a r e  presented i n  three groups. The f i r s t  group shows 

time i n  a l l  rou t ines ,  the  second shovs time i n  i t e r a t i n g  rou t ines  only,  

and the t h i r d  shows time i n  fac to r i z ing  rou t ines  only.  Within each 

grodp the  format is the  same: the  f i r s t  graph compares t o t a l s  f o r  a l l  

s e w n  t e s t  problems, and seven succeeding graphs-one f o r  each t e s t  

problenr-break the  times down i n t o  var ioua sub to ta ls .  

A l l  graphs show a p a i r  of bars  f o r  each t o t a l  o r  sub to ta l .  

The top bar  is f o r  the  run t ha t  w e d  standard bump-and-spike e l iminat ion 

on t he  bas is ;  the  bottom ba r  i s  f o r  the  run t h a t  used s t a i r c a s e  bump-and-spike 

e l iminat ion and the r e l a t e d  techniques described i n  t h i s  paper. 

Tota l  time 

The FORTRAN subrout ines of MINOS are c l a s s i f i e d  below a s  fol lows: 

PRICE rou t ines  choose a nonbaaic va r i ab le  t o  e n t e r  t he  bas i s ;  

they inc lude FORMC, PRICE, SETPI and FTRANU, and BTRANL when ca l l ed  

from SETPI. 

PIVOT rou t ines  choose a va r i ab le  t o  leave  the bas is ;  they 

inc lude LPIM and CHUZR, and FTRANL, BTRANU and UNPACK when ca l l ed  

from LPITN. 



UPDATE r e f e r s  t o  t h e  s u b r o u t i n e  MODLU, which updates  t h e  LU 

f a c t o r i z a t i o n  o f  t h e  b a s i s  a t  t h e  end o f  each i t e r a t i o n .  

PERM r o u t i n e s  permute the  b a s i s  o f  a bump-and-spike s t r u c t u r e .  

For t h e  s t a n d a r d  method they  i n c l u d e  P4, P3, TRANSVL, BUMPS and 

XLIST; f o r  t h e  s t a i r c a s e  method they  are SP4, SP3 and MCLIST. 

FACTOR r o u t i n e s  compute an LU f a c t o r i z a t i o n  o f  t h e  b a s i s ;  t hey  

i nc lude  FACTOR and PACKLU, and FTRANL, BTRANL and UNPACK when c a l l e d  

f rom FACTOR. 

OTHER r o u t i n e s  i n c l u d e  all o t h e r  HLNOS s u b r o u t i n e s ,  and u t i l i t y  

r o u t i n e s  i n s e r t e d  by t h e  FORTRAN compi le r .  Other MNOS r o u t i n e s  

comprise DRIVER and r o u t i n e s  i t  u s e s  (BTRANU, FTRANL, ITEROP, SETX, STATE, 

UNPACK, UPDBAL), INVERT and r o u t i n e s  i t  uses (BTRANU, DSPSPK, FTRANL, 

SETX) , and v a r i o u s  r o u t i n e s  c a l l e d  once o n l y  a t  t h e  beg inn ing  o r  end  

o f  t h e  r u n  (CRASH, GO, HASH, INITLZ, LOADB, MINOS, MOVE, MPS, MPSIN, 

NMSRCH, SAVEB, SCALE, SOLN, SOLPRT, SPECS, SPECSZ, STAIRS). FORTRAN 

r o u t i n e s  f o r  i n p u t  and o u t p u t  r e g i s t e r e d  s i g n i f i c a n t l y  (3-10% o f  

t o t a l )  in t h e  t im ings;  t h e  volume o f  i n p u t  was very small, s o  t h e s e  

r o u t i n e s  p robab ly  d i d  most o f  t h e i r  work i n  produc ing p r i n t e d  o u t p u t  

f o r  t h e  runs .  A  FORTRAN square- root  sub rou t i ne ,  c a l l e d  f rom SCALE and 

SETPI, used a n  i n s i g n i f i c a n t  a m u n t  o f  t ime. 
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I t e r a t i n g  time 

I t e r a t i n g  rou t ines  a r e  those invoked a t  each i t e r a t i o n .  They 

a r e  c l a s s i f i e d  a s  followe: 

WIN inc ludes DRIVER and miscellaneous rou t ines  invoked from i t :  

ITEROP, SETX, STATE, UNPACK and UPDBAL, and FTRANL and BTRANU when ca l l ed  

from SETX. 

PRICE r e f e r s  t o  subrout ines FORnC, PRICE and SETPI. 

FPRANU and BTBANL r e f e r  t o  the lilte-named subrout ines when ca l l ed  

from SETPI. 

PIVOT r e f e r e  t o  subrout ines LPIZN and m Z R ,  and UNPACK when 

ca l l ed  from LPITN. 

FTRANL and BTRANU r e f e r  t o  t he  like-aamed subrout ines vhen ca l l ed  

from LPITN. 

UPDATE r e f e r s  t o  subrout ine PQDLU. 
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Fac to r i z ing  t ime 

Fac to r i z ing  r o u t i n e s  a r e  those invoked a t  each r e f a c t o r i z a t i o n  

of t h e  bas is .  They a r e  c l a s s i f i e d  a s  fol lows: 

MAIN i nc ludes  INVERT and miscel laneous r o u t i n e s  invoked from i t : 

DSPSPK and SETX, and FTRANL and BTRAHO when c a l l e d  from SETX. 

PERMUTE inc ludes  t h e  d r i v i n g  r o u t i n e  f o r  bump-and-spike 

permutation-P4 wi th  t h e  s tandard method, SP4 w i th  t h e  s t a i r c a s e  method-- 

and t h e  u t i l i t y  r o u t i n e  MKLIST. 

P3 r e f e r s  t o  t h e  subrou t ine  t h a t  implements t h e  sp ike- f ind ing 

h e u r i s t i c :  P3 f o r  the  s tandard  method, o r  SP3 f o r  t h e  s t a i r c a s e  method. 

BLK A r e f e r s  t o  subrou t ines  TRNSVL and BUMPS, which f i n d  a  

b lock- t r iangular  reduct ion o f  t h e  b a s i s  ( i n  t h e  s tandard method o n l y ) .  

FACTOR inc ludes  subrout ine FACTOR, the  d r i v i n g  rou t ine  f o r  LU 

f a c t o r i z a t i o n  of t h e  b a s i s ,  p lus  r o u t i n e s  PACKLU and UNPACK invoked 

from FACTOR. 

FTRANL and BTRANL r e f e r  to the l ike-named subrou t ines  when c a l l e d  

from FACTOR. 
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PROGRAMS 
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Basis matrices of staircase linear programs can be rearranged in a block tridiagonal matrix 
with the property that it can be decomposed into a lower (L) and an upper (U) block tri- 
angular matrix. The U matrix has block diagonal submatrices consisting of identity mat- 
rices. The basic data and any representation of the inverses of the block diagonal submat- 
rices of L form a substitute for the basis inverse. 

We present an algorithm which allows updating of this basis inverse representation for any 
basic change. Our work is related to the papers of Heesterman and Sandee (1  965), Saigal 
(19661, and Wollmer (1977). Our contribution i s  threefold: we prove it i s  always possible 
to maintain the basis factorization for any basis change. We obtain better bounds for the 
worst case computational complexity of the updating algorithm. Moreover we present a 
practical method of controlling the accuracy of the basis inverse representation when it is  
updated . 
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I .  THE STAIRCASE STRUCTURED LINEAR PROGRAJ+ICIING PROGLEM 

A l i n e a r  programming problem i s  sa id  to have a s t a i r c a s e  s t r u c t u r e  of 

t o  be a s t a i r c a s e  LP problem i f  the nonzero coe f f i c i en t s  of t he  cons t ra i n t  

matr ix  a r e  confined t o  c e r t a i n  submatrices on o r  j u s t  below the  block diago- 

nal a s  i n  f i gu re  1. A pa r t i t i on i ng  of the row ind ices ,  R 1 ,  ..., can be 

assoc ia ted  to the  s t a i r c a s e  s t ruc-  

tu re .  N w i l l  be re fe r red  t o  as  the 

number of periods and the  secs  R .  

a s  periods. The s e t  R. conta ins 

mi i nd ices  and m = Z.m.. A c o l ~ n n  
1 1  

of the  matr ix  w i l l  be ca l l ed  a type 

i c o Z m  i f  i t s  nonzero elements 

Fig. I : Sta i r case  LP problem a r e  confined t o  rows i n  Ri  and R i + l  

with a t  l e a s t  one nonzero element i n  R . .  

2. STAIRCASE 8ASES 

A bas i s  matr ix  of a s t a i r -  

case  LP problem i n h e r i t s  the 

s t a i r c a s e  s t r u c t u r e  of f i pu re  1. 

This can be formalized as  fol lows : 

the nonzero coe f f i c i en t s  of the 

matr ix  a r e  contained i n  the subna- 

t r i c e s  Ai. M. and K. of f i gu re  2 ,  

these submatrices being respec t i -  

vely of dimension mi x m i ,  mi x m i + l  

and mi+, x m . .  I f  we denote by 

Fig.  2 : Sta i r case  bas i s  



e t h e  kth column of t h e  i d e n t i t y  m a t r i x  of a p p r o p r i a t e  dimension, we have 
k 

t h e  fo l l ow ing  : 

For i E (2 ,  .... N-1) and k E Ri 

Mi-l R f 0 imp l ies  K. ek = 0 .  

We deno te  by BS a b a s i s  of a s t a i r c a s e  LP problem w i th  t h e  s t r u c t u r e  of 

t h  f i g u r e  2 and vh ich s a t i s f i e s  (2.1).  Note t h a t  t h e  k column of Ai. Aiek, 

corresponds n e c e s s a r i l y  t o  a b a s i c  column o f  t ype  i - 1  o r  i. I f  Mi-lek f 0,  

t h e  column is s a i d  t o  be of t ype  (i-1)'. I f  Ki\ i 0 .  it is s a i d  t o  b e  o f  

t ype  i . 
It is k n o ~  ( s e e  e.g. WOLLMER [ 71 t h a t  through a s u i t a b l e  column 

permuta t ion  of BS between a d j a c e n t  pe r iods ,  t h e  fo l lowing n a t r i c e s ,  hence- 

f o r t h  named b lock p i v o t  o r  BP, e x i s t  and a r e  non s i n g u l a r  : 

- - - -1 
A l 9 A ,  A i g A . - K i - l A i - l ~ i - l  i = 2,  ..., N. 

The mat r i x  BS is t h e n  s a i d  under  a f e a s i b l e  form and i s  denoted by FBS. 

Such a m a t r i x  can be f a c t o r i z e d  i n  tvo mat r i ces  L and U,  t h e  f i r s t  one be ing 

F ig .  3 : Block LU decomposit ion of FBS 



lower b lock- t r iangular  and the  second one upper b lock- t r iangular  with iden- 

t i t y  mat r i ces  on the  p r i nc i pa l  diagonal (see f i gu re  3 ) .  This bas i s  inverse 

s u b s t i t u t e  and t he  re l a ted  opera t ions  of t he  rev ised simplex a lgor i thm a r e  

presented i n  WOLLMER [ 7 1 .  This f ac to r i za t i on  technique enjoys severa l  

advantages : t he  assoc ia ted  da ta  s t r u c t u r e  i s  easy t o  handle and s impler  

than i n  r e l a t e d  works where "spikes" i n  the  U matr ix  can extend beyond the 

second block d iagonal  (see  e.g. PROPOI and KRIVONOSHKO [ 51 , LOLTE [ 41 ) . 
Any opera t ion  of the  rev ised simplex algori thm can be e f f i c i e n t l y  performed 

wi th t he  o r i g i n a l  da ta  and t he  block p ivot  inverses  (BPI) only.  Updating 

t he  bas i s  inverse  reduces t o  updating the BPI's. This can be done e f f i c i e n t -  

l y  by means of dyad cor rec t ions  def ined a s  fol lows : 

I I + - hg' 
A (2.3) 

where A i s  a nonzero s c a l a r ,  I t he  i den t i t y  matr ix ,  h and g column vec to rs  

of same dimension (g' denotes t he  t ransposes of g ) .  We r e s t r i c t  ourse lves  

t o  the  use of such mu l t i p l i ca t i ve  cor rec t ions  because they lead t o  product 

form s u b s t i t u t e  f o r  the  BPI's. 

3.  THE PARTIAL UWATES 

Let us denote by v the en ter ing  column (see f i gu re  4.a) and by e the 

column vec to r  with zero elements except  t he  one of index correspondicg t o  

the  leaving column which i s  equal t o  one : t h i s  index i s  supposed t o  belong 

t o  R Let us denote it P. E R . I n  f a c t ,  when the updating begins,  t he  
9' q q 

p a r t i a l  updates of these  c o l ~ s  a r e  ava i l ab le ,  i .e .  the  vec to rs  h - L-lv 

-1 and g' = e'U (see  f i gu res  4 b ,c ) .  Their  subvectors a r e  given by 

g l q  - e k  . gp+ I - - M f o r  p > q 
P P P  (3.1) 

9 

-1 -1 
hi-l - ~ ~ - ~ d ,  hi - - K ~ ~ ) ,  h - -A K h f o r  p i. i .  (3.1) 

P+' p+l P P 



I We s h a l l  r e f e r  t o  t h e  p ivo t  element 

2 (supposedly nonzero) 5 = g 'h  as  t he  

. exchange va lue  . A s c a l a r  a is sa id  

"almost zero". noted a - 0, i f  I:I C n, 
i-l 

where n i s  a smal l  pos i t i ve  number 
i 

chosen i n  order  t o  s a t i s f y  t he  fo l lov ing  
i+l 

p rope r t i es  : 

9 2) Let  s and t be vec to rs ;  i f  s ' t  ?r 0 

9+1 then  t he re  e x i s t s  an  index k such 
I 

I i t h a t  the  components s and tk s a t i s f y  

y-l ~ i m u l t a n e o u s l ~  s ,?lo and tk C 0 .  (3.4) 

Remark on the  no ta t ion  : A t  any s tage  of I --- - ---------- --- 
t he  a lgor i thm, t he  BPI'S and the  p a r t i a l  

(a) (b) (c) updates, i .e .  the  sequences --I A j . ,  h j ,  pj. 

Fig.  4 : The en ter ing  column and j - 1,  ..., F, a r e  a t  hand and sometimes 

t h e  p a r t i a l  updates 
modified by dyad cor rec t ions .  To linit 

t he  number of symbols used, we s h a l l  not  in t roduce a new no ta t ion  a f t e r  a 

cor rec t ion .  We use t he  symbol +wh ich  means "replaced by", and which a l l ovs  

a dynamic use of t he  no ta t ion .  

For example the  fo l lowing sequence of t ransformat ions 

-1 
A. - ( I  + s t ' ) P  
-J j  

h.  - ( I  + s t ' ) h  
-I j 

-1 rl- ( I  + shl.)*.  
-j I -I 

where s and t a r e  column vec to rs ,  w i l l  be w r i t t en  

-I 
A + ( I  +  st')^' ; h + ( I  + s t V ) h  ; T I  + ( I  + s h l ) r I .  

j j j j ~  J j '  

t o  be read from l e f t  t o  r i gh t .  



4. UPDATING : CULUhlN PERI!UTATICN 

I n  the next  pages w e  o f t en  use the permutation of 
I 

.-. K? two columns i n  two subsequent BP's. Let us consi- 

de r  a s  i n  f i gu re  5,  the  columns s of type j- and t 

.- 
of type j + .  The pernu ta t ion  i s  f e a s i b l e  i f  and only 

J + I  i f  

--.- 
\ '  t : e i  5' Mjet + 0. (4.1) 

Then the sequence of computations i s  t he  fol lowing : 
Fig. 5 : Column 

Permutation 

Step P ( j )  : Compute P - I - 1 -1 
1 (A. M.e - es)e i  

e lA.  M.et 
= J  J 

-1 P2 - I - e (e '  + e '  A.  M.) 
t t  S - J  J 

; h j + l  "2 h j+ l  + e t e ' h  s j '  1 next h j  + p1hj ; g:+, j: - g j+ l  '3' 

Modify the  d e f i n i t i o n  of A M j ,  K i .  Aj,l (see  f i g u r e  5 ) .  

By "modify t he  de f i n i t i on "  we mean t o  permute the  correspondin? values 

of the  po in te r s  which a r e  used t o  p ick up the o r i g i n a l  da ta .  

The o the r  elements (except f o r  A.  and Aj+l) remain unchanged. 
J 

5. u ~ A T I N G  : CEMRAL CASES 

As llientioned be fore ,  t he  a lgor i thmic  procedures presented i n  t he  paper 

produce the  cor rec t ions  f o r  t he  BPI'S successively ,  i n  t he  na tura l  o rder  : 

1. 2, ..., N. For the  BPI'S of ind ices  between i and q ,  we d i s t i ngu i sh  



severa l  cases according t o  the  types of t he  en ter ing  and leavic;  :olumns(+). 

This i s  the  ob jec t  of Sect ion 6.  However, f o r  each case,  t he re  e x i s t s  a 

period say p, where t he  a lgor i thmic procedure can be embedded L= a general  f r a -  

mework : the  central cases where s i ngu la r i t y  may occur. These c e n t r a l  cases 

a r e  l inked a s  fol lows : the principal centrcl case genera l l y  occ2rs  a t  the  

per iod equal t o  max( i ,q) .  I t  i s  followed by the  a~-<Zicry cen:r.rI case i n  

t he  next period. This l a s t  case  then occurs repeatedly up t o  ?a r l od  N. 

5 . 1 .  ~~r - r~E-~e-a t -e - i -e - !e -? -max! i~~ !L  
At period p, the  BP has t o  be modify i n  the  fo l lov ing  way : 

N 
where A + O  and 151 - I A ~ - ~ +  Z g t E h l l l + ~ .  

P- 1 
E-P 

The input  a t  t h i s  s tage of the  a lgor i thm cons i s t s  of p and Gp-i .  

- 
We def ine  t he  value A = A 

P p-l + g; hp. The non s i ngu la r i t y  of A* depends 
? 

on the  value of A . 
P 

We simply perform the  fol lowing s tep  : 

Step A C I :  + ( I  - L h  g l ) r l  
P Ap P P  P 

and ve f i nd  t h a t  t he  fo l lov ing  BP becomes 

Therefore,  a f t e r  the  incrementation of p,  we a r e  led back t o  formula (5.1). 

(t) In  sec t ions  5 and 6,  the  type of t he  en ter ing  column w i l l  be zoted i - 1  
and t he  type of the  leaving one q. 



From (5.2). (3.1) and (3.2) we find : 

Consequently, there must exist tvo indices s and t such that 

As M e C 0 and K e $ 0 ,  we have Kp+let - 0. Yp-les - 0 and, as a conse- 
P t P 

quence, it is possible at least from a structural point of view to permute 

the columns of indices s and t, as in figure 5 with j - p. However the 

condition (4.1) is required, so let us distinguish both possibilities. 

The permutation is performed by means of the step P(p ) .  The new value of 

A - A + g'h is no longer almost zero and the algorithm is unlocked. 
P P-1 P P  

The step ACl is performed and we are led back to the situation above. 

e ' r l n  e 0 (strong singularity) g 

In this situation, it is no longer possible to permute the columns s and t; 

this operation must be splitted as illustrated in figure 6. 

s t .+t s t s 

Initial wr i t ions R i o r  substitution Posterior substiturion 

Pig. 6. : Column permutation in case of strone singularity 



The p r i o r  s u b s t i t u t i o n  induces t he  fol lowing opera t ions  

A f te r  t he  pre l iminary cor rec t ions ,  the  nev value of A - A + gihp i s  non 
p P-1 

almost zero, and the  s t e p  ACI can be performed. 

Step ACO : Compute SI - (I -LT'M e e ' )  where A - I + e; Y'M e 4 0  
A1 P P t S  I P P t  

s2 - I - e ( e ' y l ~  + 2e i )  
t S P  P 

1 S3 - 1 - - e e  + 2.;). 
A1 S P P  

.."-I 
m e n  7' - s,%'; hp - s l h p  ; - s T' 

2 p+1; 

S + e 'h  e ; g;+] - gp+, 3.  hp+ lCS2hp+ l  s p t  

F ina l l y ,  t he  pos te r i o r  s u b s t i t u t i o n  has t o  be done, t h e  r e s u l t i n g  sequence 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

is div ided i n  tvo pa r t s .  

S tep  AC2 : Update t he  d a t a  Ap, Mp,  Kp, Ap+l a s  i n  f i gu re  6.  

I -1 A* 
(I + Ap Mpete;) 5' where b2 - 1 - e1y1! i  e  - 1-*40i(5- 12) 

P S P - P t  

I (A* is the  o ld  value of b which was almost zero) .  
P P 

-I I Step AC3 : + s4 Ap+!. (5.14) 

I Compute and s t o r e  S4 - I - e ~'P 'M 
t S P  P' 

Note t ha t  t he  s t e p  AC3 i s  performed only a f t e r  the aux i l i a r y  c e n t r a l  case  

is i n i t i a t e d  f o r  p+l ( i . e .  a f t e r  the  s t e p  ACI f o r  p+l) because the log ic  

of t h i s  co r rec t i on  i s  the  fo l lov ing .  The p r i o r  s u b s t i t u t i o n  induces the  

modi f icat ion of the  BPI'S p and p+l .  The cor rec t ion  (5.3) of ACI a f f e c t s  the  

BPI p and a l l  the  fol lowing ones, inc luding p+ l .  F i na l l y  the  pos te r io r  subs- 

t i t u t i o n  i s  ca r r i ed  ou t  and modif ies the BPI'S p and p+l.  Hence, the correc-  

(5.13) 



t i o n  of t he  BPI p+l r esu l t i ng  from the  pos te r i o r  co r rec t i on  must be s to red  

and performed l a t e r .  

The flow c h a r t  of the  aux i l i a r y  c e n t r a l  case  is descr ibed i n  f i gu re  7 

We have introduced an  a r ray  of l og i ca l  va r i ab les  DEG; the value of DEGCp) 

is YES i f  s t rong  s i n g u l a r i t y  occurs i n  per iod p, i .e .  i f  t he  s tep  AC3 is 

t o  be performed a t  per iod p+l .  

5.2 .  !!&?5i&_c*-case 

The BP corresponding t o  per iod p has t o  be modif ied a s  f o l l w s . :  

1 x* P - x P [I + etp (up - *;I] {I + a [ I-  eEpup)hp + (g;hp - ( a + r ) ) e E  ]up} (5.15) 
P 

where g 'e2 C 0 ,  E 0 ,  u'eE = I , u + 0 (5.16) 
P P 

and f o r  each index t i f  M e = 0 then u 'e  
p-1 t 

= e '  e 
p t = gpet i t 

P 
N 

and (51 = 1c - zg ;heJ .  
E'P 

The input  f o r  t h i s  procedure c o n s i s t s o f p ,  E E,  a, u' .  We de f ine  A = 
P' P P 

g;hp-E: and the  s i t u a t i o n s  to be s tud ied  a r e  the  same a s  i n  the  previous 

sec t ion .  

5 .2 .1 .  A & U  (No 6LnguLwLtyJ 
-P- - --- - --- - - - - - - - -- - - - 

The BPI is  updated i n  two s t e p s .  

Step PCI.1 : Compute El = I - eL (u; - g i )  
P 

P I P  

1 
Step PC1.2 : Compute E2 = I - (hp - (a + €Ie2  ) u'  

P P P 
r1 4- ~ " r l .  



SELECTION 

Fig. 7 : Flowchart of algorithm-AC 

Remark : Y stands for YES and N for NO. 
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One of the most computationally useful ideas of the 1970's is the observation that many 
hard integer programming problems can be viewed as easy problems complicated by a rel- 
atively small set of side constraints. Dualizing the side constraints produces a Lagrangian 
problem that is easy to solve and whose optimal value i s  a lower bound (for minimization 
problems) on the optimal value of the original problem. The Lagrangian problem can thus 
be used in place of a linear programming relaxation to provide bounds in a branch and 
bound algorithm. This approach has led to dramatically improved algorithms for a num- 
ber of important problems in the areas of routing, location, scheduling, assignment, and 
set covering. This paper isa review of Lagrangian relaxation based on what has been learned 
in the last decade. 
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1. I ~ t r a d u c t ~ o n  

it is vell-icncwn t h a t  =omti?.ator ia l  c r _ ~ . n i z a t i o n  > r o b l a a s  

come i n  two v a r i e t i e s .  There is a sma l l  numjer z f  " sasy"  z r a b l e n s  

irhlch can be so ivea  in trme Sounded 3 aoiynornial i n  'Lie i n p u t  L e n g ~ !  

and an a l l - too - la rqe  c l a s s  o f  "hard" ;roblems f o r  which a l l  known 

a lgo r i thms  r e q u i r e  exponen t ia l  t ime i n  t h e  worst-case. Among t h e  hard 

problems, t h e r e  a r e  " e a s i e r  ha rd "  problems, l i k e  t h e  h a g s a c k  problem, 

t h a t  have pseudo-golynomial alqorit.Sms c h a t  run ir. >ol:momial =idle 

15 c e r t a i n  n m b e r s  i n  Lhe problem d a t a  a r e  Scundea. 

One o f  t h e  most c o n p u t a t i o n a l l y  u s e f u l  i d e a s  o f  t..e 1979's 

t h e  obserr ra t ion t h a t  many hard problems can be viewed a s  oasy prcblems 

compl icated by a r e l a t i v e l y  sma l l  s e t  of s i d e  c o n s t r a i n t s .  Dual iz ing 

the  s i d e  c o n s t r a i n t s  produces a Laqranqian problem t h a t  is easy t o  

s o l v e  and whose opt imal  v a l u e  is a lower bound ( f o r  min imizat ion 

problems) on t h e  op t ima l  va lue  of  t h e  o r i g i n a l  problem. 3 e .  

Lagrangian problem can thus be used i n  p l a c e  of a l i n e a r  p r o g r a m i n g  

r e l a x a t i o n  t o  prov ide bounds i n  a branch and bound a l g o r i t k i i .  A s  

we s h a l l  s e e ,  t h e  Laqranqian approach o f f e r s  a number of 'JJportant 

advantages over  l i n e a r  programming. 

There were 3 number o f  f o r a y s  p r i o r  t o  i970 i n t o  t h e  use of  

Lagrangian methods i n  d i s c r e t e  o g t i m i z a t i o n ,  i nc lud inq  t h e  Lor ia-  

Savage [311 approach t o  c a p i t a l  budqet ing , E v e r e t t  s proposa l  f o r  

" g e n e r a l i z i n g "  i ag ranae  m u l t i p l i e r s  [I41 and ti.e _s'ni loso~hical l~r-related 

dev ice  of  qenera t inq  columnsbv s o l v i n a  y! e a s y  c m b i n a t c r i a l  o p t i r u r a -  

t i o n  aroblem when p r i c i ~ g  o u t  Ln t h e  simr;lex ner-hod [ ? & I  . 3cwever, 



i-,e "Srr th"  of the Lagranglan approach as it e x l s t s  today occurred i n  

1970 when Held and .- [27, 28: used a Lagrangian problem based on 

;ninlmum spanning t rees  t o  devise a dramat ical ly  successful  algorithm 

for  the t rave l ing  salesman problem. Yativated by Held and ibr;,'s success,  

Lagrangian methods were applied in 'de ear l y  70s t o  scheduling problems 

(Fisher [IS] ) and t!!e general in teger programninq problem (Shapiro 

[ & 2 ] ,  Fisher and Shapiro [16;). Lagrangian methods had gained con- 

s ickrable currency by 1974 when Geoffrion [2?] coined the per fec t  

name f o r  t h i s  approach--"Lagrangian re laxat ion."  Since then the l ist 

of appl icat ions of Lagrangian re laxat ion has grown t o  L~c lude  over a 

dozen of the most infamous ccmbi.?atorial optimization problems. For 

nost  of these problems, Lagranqian re laxat ion has provided 

the bes t  ex is t ing  alqorlt!! f o r  the  9roblern and has enabled the solu- 

t ion of problems of p rac t i ca l  s ize .  

h i s  aacer i s  a review of Lagrangian re laxat ion based on . h a t  

has keen learaed in &he l a s t  decade. Fie reader is referred :O 

S?apiro !A31 f o r  mother  recent survev of  Lanranqian re laxat ion 

from a somewhat d i f fe rent  perspective. The recent book bv Shapiro 

[&&] marks the f i r s t  appearance of the :em Lagrang la  re laxat ion 

In a textbook. 

2. Basic Constructions 

We begin with a combinatorid optimization problem formulated 

as the h t e g e r  program 



Z a m i n  cx  

s . t .  .Ax = 5 

DX 5 e (2) 

x 2 0 and i n t e g r a l  

whare x is n x 1, b is m x 1, e is k x 1 and a l l  o t he r  mat r i ces  have 

conformable dimensions. Le t  (I.?) denote problem (PI wit! !  t h e  i n t e -  

g r a l i t y  c o n s t r a i n t  on x relax&, and l e t  Ztp denote t h e  o p t i a a l  va lue  

of (LP). 

We assume t h a t  t h e  c o n s t r a i n t s  of (PI have been p a r t i t i o n e d  

i n t o  t he  two s e t s  AX = b and Dx ( e so a s  t o  make i t  easv to so l ve  

t he  Lagrangian problem 

Zg(u) = rmn cx  + u (Ax - b) 

Dx 5 e 

x 2 0 and i n t e g r a l  

where u = (u l ,  . . . , u is a vec to r  o f  Lagrange m u l t i p l i e r s .  9y n 

"easy t o  so lve"  we of course mean easy r e l a t i v e  t o  (P). For a l l  appl ica-  

t i o n s  of which I am aware, t he  Lagrmgian 2roblem nas  Seen so l vab le  

in polynomial o r  peudo-polynomial  t i n e .  

For convenience w e  assume that (P) is f e a s i b l e  and cha t  t h e  

s e t  X = {x lDx r e ,  x >- 0 and i n t e g r a l )  of f e a s i b l e  s o l u t i o n s  t o  

(mu) is f i n i t e .  Then 2 (u) i s  f i n i t e  f o r  a l l  u. It is s u a i g h t -  
D 

f o w a r d  t o  extand the development when t hese  assumptions a r e  v i o l a t e d  

o r  when i nequa l i t y  c o n s t r a i n t s  are inc luded i n  t!!e set t o  be dua l i zed .  

It is we l l - ; u rm  t h a t  Z ( u ) c  Z.  Th is  is a l s o  easy  t o  show by 
D 

assuming an o p t b a l  so l u t i on  X* t o  (PI and obser r lng  t h a t  



The inequa l i ty  i n  t h i s  re la t i on  follows from the  de f i n i r i on  of  

ZD(u) and the  equa l i ty  from 2 - cx* and Ax* - b = 0. I f  Ax = b 

is replaced by & I b in (P) ,  then ve requ i re  u 2 0 and the  argument 

becomes 

ZD(u) I CX* + u(Ax* - b) 2 Z 

where the second inequal i ty  follows from Z cx*, u 2 0 and 

Ax* - b j 0. Simi lar ly ,  f o r  Ax 2 b we requ i re  u ( 0 f o r  

ZD(u) 5 Z t o  hold. 

we v i l l  d iscuss i n  a l a t e r  sec t ion  methods fordetermining u. I n  

general ,  it is  not  possible t o  guarantee f inding u fo r  which %(u)  = 

Z, but  t h i s  frequently happens fo r  pa r t i cu la r  problem instances.  

The f a c t  t h a t  ZD(u) 5 Z allows (27 ) t o  Se used i n  p lace of 

(LP) t o  ~ r o v i d e  lower Sounds in a brancn and bound algori thm f o r  (PI. 

While t h i s  is t!e most obvious use of (LRU), it has a number of o the r  

uses. I t  can be a nedium fo r  se lec t ing  branching var iab les  and choosing 

the next brancn t o  explore. Good feas ib ie  so lu t ions  t o  

(PI can f requendy be obtained by per tarb ing near ly  feas ib le  so1utior.s 

t o  (T%). Fina l ly ,  Lagrangian re laxat ion  has been used recent ly  

:10, 201 a s  an ana ly t ic  too l  f o r  es tab l ish ing  worst-case Sounds on the 

performance of c e r t a i n  heu r i s t i cs .  

3. -ample 

The generali:ed assign men^ problem is an exce l len t  e x w l e  

f o r  i l l u s t r a t i n g  Sagrangian re laxat ion because i t  is r i ch  with 

read i ly  apparent s u u c t u r e .  The general ized assignment problem (tXP1 

is t h e  in teger  roq ram 



1 

a .  x . .  s b i ,  i = l ,  ... , m  ( 3 )  
j '1 '1 

x . .  = 0 o r  1, a l l  i and j .  
'I 

( 4 )  

There a r e  tM n a t u r a l  Lagrangian r e l axa t i ons  f o r  t h e  gener- 

a l i z e d  assignment problem. The f i r s t  is obta ined by d u a l i z i n g  

c o n s t r a i n t s  (2  ) . 

s u b j e c t  t o  (31 and ( 4 )  

sub jec t  t o  ( 3 )  and ( 4 )  

This  problem reduces t o  m 3 - 1 knapsack problems and can tbus be 
m 

solved in t ime p ropor t iona l  t o  n 1 bi . 
i= 1 

The second re l axa t i on  is cb ta lned  by d u a l i z i n g  c o n s t r a i n t s  

s u b j e c t  t o  ( 2 )  and ( 4 )  

s u b j e c t  t o  ( 2 )  and ( 4 )  

This  r e l axa t i on  i s  de f ined  f o r  v  LO,  which is a necessary cond i t i on  

f o r  ZD2(v )  5 Z t o  hold. S ince cons t -a in ts  ( 2 )  a re  gene ra l i zed  upper 



Sound (GUB) consta in ts ,  we w i l l  c a l l  a problem l i k e  (UG) 

a 0 - 1 CUB problem. Such a problem is e a s i l y  solved i n  t h e  pro- 

por t iona l  t o  nm by determining min ( c .  . + v .  a .  . )  f o r  each j and 
i 1 3  1 1 3  

s e t t i n g  the  associated x .  . = 1. Remaining x .  . are s e t  t o  zero. 
11 1 3  

4. Issues 

X l i t t l e  thought about using (LRIU) o r  ( L q )  within a branch 

and bound algori thm for  t h e  general ized assignment problem quickly 

br ings t o  mind a number of i ssues t h a t  need t o  be resolved. Fo rems t  

among these is: 

(1) Row w i l l  we se lec t  an appropr iate value f o r  u? 

A c lose ly  re la ted  question is: 

( 2 )  Can w e  f i nd  a value fo r  u f o r  which Z (u )  is equal  t o  o r  
D 

near ly  equal t o  27 

The general ized assignment problem a l s o  shows t h a t  d i f f e r e n t  

Iagrangian re laxat ions  can be devised f o r  the same problem. Comparing 

(L,UU) and (LR2J, we see t h a t  the f i r s t  is harder t o  solve but  .niqht 

provide b e t t e r  bounds. There is a lso  the  question of how e i t h e r  of 

these re laxat ions  compares with the  LP re laxat ion .  This leads us 

to ask 

( 3) How :an sn choose between competing re laxat ions ,  i . e  . , 
d i f f e r e n t  Lagrangian re laxat ions  and the l i n e a r  programming 

re laxat ion? 

Lanraagian re laxat ions  a l so  can be used 

to srovide good feas ib le  so lu t ions .  For example, a so lu t ion  to  

(LRZV) w i l l  be feas ib le  in the  generalrzed assiqnment problem unless 



the  ",*eight" of items assigned t o  one 3r more of t i e  "bapsacks "  

co r res~cnd ing  t o  cons t ra in ts  ( 3 )  exceeds the capaci ty  b . .  If =h is  
1 

happens, we could reassign items from overloaded knapsacks t o  o t i e r  

knapsacks, ~ e r h a p s  using a va r i an t  o fab in -pack ing  h e u r i s t i c ,  t o  

attempt t o  achieve primal f e a s i b i l i t y .  In general  w e  would l i k e  

t o  know 

( 4 )  How can (LR ) be used t o  obta in f eas ib le  so lu t ions  f o r  (PI ? 

How good a r e  these so lu t ions  l i k e l y  t o  be? 

? ina l l y ,  w e  note t h a t  the  ultimate use of Lagranqian re laxa t ion  

Is f o r  fathoming I n  a branch and bound algori thm, which 1 e a d s . u ~  to 

ask: 

(5) How can the lover  and upper bounding c a p a b i l i t i e s  of the 

Lagrangian problem be in tegra ted  wi th in branch and bound? 

The remainder of t h i s  paper is organized around these Sive 

issues ,  which a r i s e  in any app l ica t ion  of Laqrangian re laxa t ion .  A sep- 

a ra te  sec t ion  is devoted t o  each one. In some cases ( i ssues  (1) and 

( 3 )  qeneral  t heo re t i ca l  r e s u l t s  a r e  ava i lab le .  But more o f t en .  =he 

"answers" t o  the quest ions we have posed must be extzapolatad from 

computational experience or t heo re t i ca l  r e s u l t s  t h a t  have been 

obtained f o r  s p e c i f i c  appl icat ions.  

5. Exis t ing A ~ o l i c a t i o n s  

Table 1 is a compilation of the  app l ica t ions  of Lagrangian 

re laxa t ion  of which 1 am aware. f have not  attempted to Include 

algori thms, l i k e  those given In  [ 4 ]  and [ 7 ] .  t ha t  a re  described 

d t h o u t  reference to LagrangIan re laxa t ion ,  but can be described 

In terms of LagrangIan re laxa t ion  vi th  s u f f i c i e n t  Ins igh t .  

Yor have 1 Included references descr ib ing app l ica t ions  of the 

algori thms in Table 1. For example, reference C371 descr ibes a 
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2rcblern Xeiesearchers Lagrangian Problem 

TRAVELING SALESFAN 

Held 6 xarp e7 281 Spanning Tree 
Zalb ig  Bansen h d  KraruP r261 Spanning Tree 

Bazarra & Goode [ 3) Spanrung Tree 

Symmetric Balas r C h r i s t o f i d e s  [ u  P e r f e c t  2-Matching 

Xsynrmetric a a l a s  & C h r i s t o f i d e s  [ l ]  Assiqnmbnt 

nj m Xeighted 
Tard iness F isher  [Is] 

1 :,lachine Weight 
Tard iness F isher  [I81 

?ower (Generation ~ u c k s t a d t  & Koeniq [361 
Systems 

M o u n d e d  V a r i a b l e s  P isher  & Shapi ro  [16] 

Unbounded Var iab les  Burdet 6 Johnson [51  

3 - 1 Var iab les  Ztcheberry ,  e t .  a l .  [I31 

LOCATICN 

"capaci t a t e d  Cornue j o l s  , F i s h e r ,  & 

N e k a u s e r  110 
E r l e n k o r t e t  [ll) 

Capac i ta ted  SeoZZrion 6 YcSride [23] 

Databases i n  
Computer Necworks F i s h e r  & Yochbaum [19] 

SZNERALIZED ASSICNMEXT 

ROSS & Soland [LO] 

Chalnet 6 Gelders  181 
F isher .  Jaikumar h 

Van Wasseahove 2l.J 
SET C3EPX>~G--?ARTITICNIXG 

Covering Z t c k e b e r q  [12 1 ,  
P a r t i  t ~ o n i n g  Yeahauser & Neber [381 

pseudo-?olynomial 

Dynamic Proqramming 

Pseudo-?olynomial DP 

Pseudo-Polynomial DP 

Group Problem 

Group Problem 

0 - 1 GUB 

Knapsack 

Knapsack. 0-1 GW 

Knapsack 



success fu l  app l i ca t i on  of the Lagrangian r e l axa t i on  Fd [lo] t o  

a spec i a l i zed  lmcapaci ta ted l oca t i on  2roblem invo lv ing  da ta  clustering. 

F ina l l y ,  t he  b read th  and developing a a t u r e  of 

-his f i e l d  nakes it certain t i a t  o t he r  omissions e x i s t .  I srould be 

happ? t o  l e a r n  of any app l i ca t i ons  t h a t  I have overlooked. 

his  list speaks f o r  i t s e l f  i n  t e r n s  o f  t h e  range of hazd prcblems 

t h a t  have been addressed arid t he  types of embedded s t r u c t u r e s  t h a t  have been 

exp lo i t ed  i n  Lilgrangian problems. Host of t hese  s t r u c t u r e s  a r e  vell- lmovn but  

two requ i r e  couaaent. h e  pseudo-pol*ynomial dynamic ?roqramminc 

2roblems a r i s i n g  i n  schedul ing a r e  s im i l az  t o  t h e  0 - 1 knapsack 

problem i f  we regard the  schedul ing hor izon a s  t o  t he  knapsack s i z e  

and the s e t  o f  jobs t o  be scheduled a s  t h e  s e t  o f  i tems a v a i l a b l e  

f o r  packing. The no ta t i cn  W B  s tands  f o r  " va r i ab l e  upper bound" [41] 

and deno tes  a problem s t r u c t u r e  i n  whicii some v a r i a b l e s  a r e  upper 

Sounded Sy o t h e r  0 - 1 va r i ab l es .  An example of  t h i s  s t r x t u r e  is  

given in Sect ion  7. 

6. Determining u 

It is c l e a r  t h a t  t h e  b e s t  choice f o r  u would be an opt imal  

so l u t i on  t o  L ie  d u a l  problem 

.%st schemes f o r  determin ing u have a s  t h e i r  ob j ec t i ve  f i nd ing  

opt imal  o r  neax opt imal  s o l u t i o n s  t o  (Dl 

Jroblem (0) has a number o f  impor tant  s t r u c t u r a l  p r o p e r t i e s  

t h a t  make it f e a s i b l e  t o  so lve.  We have assumed t h a t  t he  s e t  X = 

i x l 3 x  S e ,  x 2 0 and ~ n t e ~ r a l ?  of f e a s i b l e  so l u t i ons  f o r  (LR ) is 

t 
f i z i z e ,  so  ;le can represen t  :( a s  X = Cx , t = 1, ... , T?. This  



allows us t o  express (3 )  as the following l i n e a r  arogram v l t b  nany 

const ra in ts .  

?'he LP d u d  of ( D l  is a l i nea r  program with m y  columns. 

Problem (5) with \ zequired t o  be i n teg ra l  is equiYralent t o  
t 

(?)  , although (6) and (U) senera l ly  a r e  not equivalent  rob lems .  

Both (6) and (5)  have been important cons t ruc ts  in the formu- 

l a t i a n  of  algori thms fo r  (D) . Problem (E l  makes it apparent t h a t  

Z3(u) is the lover envelope of a f i n i t e  family of l i n e a r  funct ions. 

The form of Z (ul  is shown in Figuxe !. f o r  n = 1 and T = 4. m e  
D 

function Z (ul has a l l  the  nice proper t ies ,  l i ke  cont inui ty  and con- 
D 

cavity?, t h a t  nake l i f e  easy for  a hi l l -cl imbing a lgor i t ! ! ,  excepc one-- 

Si f ferenciabi l i t - I .  The funct ion is nonci i f ferentiable a t  any P where 

(L%l has mult iple optima. .Uthouqn it is d i f f e ren t i ab le  almost 

everywhere, it general ly is nondi f ferent iable a t  an optimal point .  



Figure 1 

The Form of Z (u )  
3 

- 
.An xi-vector y is ca l led  a subgradient of ZD(u) a t  u i f  i t  s a t i s f i e s  

z ( u )  5 z ~ ( E )  + y ( U  - a ) ,  f o r  a l l  u 
5 

I t ' s a p p a r e n t t h a t  Z (u) is subd i f fe ren t iab le  everyvilere. 3 e  vector  
3 

t (Axt - j) is a subgradient a t  any u f o r  which x solves 

[A). Anv other  subgradient is a convex 

comSinatlon s f  these p r i m i t ~ v e  subgradients. Kith ch i s  perspec t ive ,  

..L ,.e wel l-hewn r e s u l t  t h a t  u* and A* are optimal fo r  ( 5 )  and ( 5 )  i f  

and only i f  they are feas ib le  and s a t i s f y  a complementary slackness 

condlt lon can be seen to  be equivalent  to  the  obvious f a c t  t h a t  u* 

5s aptf_mal i n  (D) i f  and only i f  0 is a subgradient of Z (u) a t  u*. 
3 



Stimulated in l a rge  ?art by appl icaxions in Laqrangian re lax-  

a t i on ,  t he  f i e l d  of nondi f ferent iable optimizat ion using subgradients 

has recent ly  become an important t op i c  of study i n  its own r i g h t  

a l a rge  and growing l i t e r a t u r e .  Our r e d e w  

of algori thms f o r  (D) vi l l  be br ief  and l imi ted to  

the following th ree approaches t h a t  have been papular in Lagrangian 

re laxat ion  appl icat ions : (1) the subqradient method, ( 2  ) various 

versions of t he  simplex method implamented using colunm cjeneration tech- 

niques. and ( 3 )  mul t ip l ia r  adjueuaent methods. 

-3eferences [171 and [ 2 9 ]  contain general  d iscussions on the so lu t ion  

of (Dl within t he  context of Lavangian re laxat ion.  S f e r e n c e  [2] is 

a good general  source on nondi f ferent iable optimizat ion. 

The subgradient method is a brazen adaptat ion of t he  gradient  

method in which q-rd ients a re  replaced by subgradients. Given an 

i n i t i a l  value u0 a sequence i uk j  is generated by the  r u l e  

K .  where x 1s jn optimal so lu t ion  t o  (LR X)  and tk is a pos i t i ve  sca la r  
u 

s tep  s ize .  Because the subgradient method is easy t o  program and has 

worked v e l l  on many p rac t i ca l  problems, it has become the most popular 

mcthod f o r  (D) . There have a lso  bean many papers, such as CimerFni, e t  al. , C6J. 

t ha t  suggest imprwements to the  bas ic  re laxat ion  method. 

Computational perfomance and theo re t i ca l  convergence 

groper t ies  of t he  subqradient method are discussed i n  iIela. Wolfe and 

Crowder [ 2 9 !  and thei: references,  and i n  several  references on aon- 

d i f f e ren t i ab le  optimizat ion, pa r t i cu la r l y  Coff in [25].  The funda- 

k 
mental t heo re t i ca l  r e s u l t  is t ha t  ZD(u ) +ZD i f  t 0 

k 



and ; t ,  - . The s t e p  s i z e  used most commonly in 2 r a c t i c e  is 
i = O  

h e r e  i is a s c a l a r  s a t i s f y i n g  0 < X 5 2 and Z* is an upper bound on 
k k 

ZD, f r e q u e n t l y  ab ta ined  by apply ing a h e u r i s t i c  t o  (PI. J u s t i f i c a t i o n  

o f  t h i s  formula is g iven  i n  [ 2 9 ] .  Often t h e  sequence k is dete-Mned 

by s e t z l n g  X = 2 and ha lv ing  1 whenever ZD(u) has f a i l e d  t o  i n c r e a s e  
k 

in some f i x e d  number of  i t e r a t i o n s .  Th is  r u l e  has per fo raed  v e l l  

e m p i r i c a l l y ,  even though i t  is n o t  guaranteed t o  s a c i s f y  

t h e  s u f f i c i e n t  cond i t i on  g iven above f o r  opt imal  convergence. 

k 
Unless we o b t a i n  a uk f o r  which Z (u  ) e q u a l s  t h e  c o s t  of a 

D 

known f e a s i b l e  s o l u t i o n ,  t h e r e  is no vay of proving o p t h a l i t ?  i n  

t h e  subgrad ien t  aethod.  To r e s o l v e  t h i s  d i f f i c u l t y ,  t h e  ae thod  is  

u s u a l l y  te rm ina ted  upon reach ing  an a r b i t r a r y  i t e r a t i o n  lfmit. 
0 

Usual ly  u = 0 is t h e  most n a t u r a l  cho ice b u t  i n  some c a s e s  one 

can do  b e t t e r .  The qenera l i zed  asslqnment problem is  a ;ood example. 

Assuming c .  . > 0 f o r  a l l  i j , t h e  s o l u t i o n  X = 0 
11 

is opt imal  in ( L a  ) f o r  any u s a t i s f y i n g  u .  5 c f o r  a l l  i and j .  
1 i j  

S e t t i n g  uO = min c .  . is thus a n a t u r a l  cho ice .  I t  is c l e a r l y  S e t t e r  
3 1 3  

+ban u0 = 3 and, i n  f a c t ,  maximizes t h e  lower bound o v e r  a l l  u f o r  

vh ich x = 0 is opt imal  i n  (LR1 1 .  
u 

Another c l a s s  o f  algorlt.hms f o r  ( D )  is based on apply- 

i ng  a v a r i a n t  of  t h e  s i n p l e x  nethod t o  ( ? ) ,  g e n e r a t i n g  an a p p r o p r i a t e  

s n t e r i n g  v a r i a b l e  on each ~ t e r a t i o n  5.1 s o l v i n g  ( L R )  , where 5 is ~ 5 e  
u 

c v x r e n t  va lue  of  t h e  simplex m l t i p l i e r s .  O f  c o u r s e ,  us ing t h e  

-2rimal simplex method x i t h  column yenera t ion  is an approach wlt.5 a 

long h i s t o r y  [ 2 6 ] .  iiowever, t h i s  approach is known t o  converge v e r l  



slowly and does not produce monotonically increasing lower bounds. 

These def ic ienc ies  have p r o ~ t e d  researchers t o  devise col*~rm gener- 

a t ion  implementations of dual  forms of t he  simplex method, spec i f i c -  

a l l y  the  dual  sinq?lex method (Fisher [151) and the  pr iaa l -dua l  simplex 

naethod (F isher ,  No&up, Shapiro [17] ) . The primal-dual simplex 

method can a l s o  be modified s l i g h t l y  t o  b e  i t  the  method of s teepes t  

ascent  f o r  (Dl- Hog=, Marsten and Blankenship [30] and Marsten [33] 

have had success with an i n te res t i ng  modif icat ion of these s m l e x  

0 
approachesthat they  c a l l  BOXSTEP. Beginning a t  given u , a sequence 

k .  (u 1 1s generated. To obta in uk+l from uk, we f i r s t  solve (c)  ~ i t h  

k 
t he  add i t iona l  requirement t h a t  lui - u .  1 S 6 f o r  some f ixed posi- 

-k 
t i v e  6.  Let u denote the  optimal so lu t ion  t o  t h i s  problem. If 

z i k  - u < 6 f o r  all i then $ is optimal in 0 ) .  Othemise s e t  
i 
k uk+' = u + tk (8 - uk) where 4, is the  sca la r  t h a t  solves 

This l i n e  search problem is e a s i l y  solved by Fibonacci 

methods. 

General ly, t he  simplex-based methods are  harder t o  program 

and have not  perfonred qu i te  so  w e l l  computationally as t he  sub- 

gradient  matbod. They should not  be counted ou t ,  however. Fur ther  

research could produce at'cactive var ian ts .  ?Je note a l so  t h a t  '-he 

dual ,  ~ r i m a l - d u a i  and ~ I S T E P  methods can a l l  be used in  tu ldem'wi t ;~ tbe 

subqradientmetho6by i n i t i a t i n g  them with a point  determined by the 



subgradient  .nethod. Usvlg them i n  t h i s  fash ion t o  f i n i s h  o f f  a  i u a l  

o p t w i z a t i o n  ?robably bes t  s x p l o i t s  t h e i r  c o ~ a r a t i v e  advantages. 

;he  t h i r d  approach, m u l t i p l i e r  ad jusnnent  methods, a r e  

spec i a l i zed  a lgor i thms f o r  (D) t h a t  e m l o i t  t h e  s t r u c t u r e  of a  

p a r t i c u l a r  app l i ca t i on .  I n  t hese  methods, a  sequence u k 

is generated by t he  rule 

U 
k+l  = Uk 

+ tr% where t is a p o s i t i v e  scalar and 4( is k 

a d i r e c t i c a .  To derermine 5 we de f i ne  a f i n i t e  and usua l l y  

smal l  Set of p r im i t i ve  d i r e c t i o n s  S f o r  which it is easy  t o  eva lua te  

LCe d i r e c t i o n a l  d e r i v a t i v e  of z ( u ) .  TJsuallp d i r e c t i o n s  is F "mv0lve 
D 

changes fn only  one o r  t vo  mu l t i p l i e r s .  For d i r e c t i o n s  i n  S ,  i t  

should be  eany t o  determine t h e  d i r e c t i o n a l  d e r t v a t i v e  of ZD(u). 

M r e c t i o n s  I n  S a r e  scanned I n  f i xed  o rde r  and % is taken to  be e i t h e r  

the  f i r s t  d i r e c t i o n  found a long which ZD(u) Inc reases  o r  t h e  

d i r e c t i o n  of s t e e p e s t  ascen t  w i t h i n  S. The s t e p  s i z e  t;c can be 

k choeen e i t h e r  t o  maximize ZD(u + t%) o r  t o  take us t o  t he  f i r s t  

po in t  at  which t he  d i r e c t i o n a l  de r t va t i ve  changes. I f  S con ta lns  no 

Lmpmvhg d i r e c t i o n  we terminate,  which, o f  course,  can happen p r i o r  

t o  f i nd ing  an opt imal  s o l u t i o n  t o  (Dl. 

Success fu l  implementation of p r im i t i ve -d i rec t ion  ascen t  f o r  

a  p a r t i c u l a r  problem requ i r es  an a r t f u l  s p e c i f i c a t i o n  of t h e  set S. 

S should be manageably smal l ,  but s t i l l  i nc lude  d i r e c t i o n s  t h a t  

a l l w  ascen t  t o  a t  l e a s t  a nea r  opt imal  so l u t i on .  Held and Kam [27]  

experimented w i t h  p r + d t i v e - d i r e c t i o n  ascen t  i n  t h e i r  e a r l p  work 

on t h e  t r a v e l i n g  salesman problem. They had l im i t ed  success us ing  

a s e t  S cons i s t i ng  of a l l  p o s i t i v e  and nega t i ve  coord ina te  vec to r s .  

?h is  seemed t o  d iscourage o t h e r  researchers  f o r  soEe t ime, but  

r e c e n t l y  E r l enko t t e r  [nl devised a mr r l t i p l i e r  adjw-t m t h o d  

fc r  t h e  Lagrangian r e l a x a t i o n  of t h e  uncapac i ta ted  l o c a t i o n  problem 



s iven in [ lo ]  in the case where the  number of f a c i l i t i e s  located 

is  unconstrained. Although discovered independently. ~ r l e n i c o t t e r ' s  

a l g o r i t h  is a va r i a t i on  on a method of a i l d e  and Erarup t h a t  

was f i r s t  described i n  1967 i n  a Danish working paper and l a t e r  

publ ished i n  English a s  [ & I .  m i l e  t he re  has been no d i r e c t  

comparison, Er lankot te r ' s  method appears t o  p e r f o m  considerably b e t t e r  

than the  subgradient method. F isher  and Rochbaun! [ lg ]  have experimented wi th 

m l t i p l l e r  ad jus tmmt  f o r  another l oca t i on  problem and found themethod 

t o  work wel l ,  bu t  no t  qu i t e  so w e l l  as t h e  subqradiant method. 

Fisher ,  Jaikmar, and Van Wassenhove 121) have success fu l l y  

developed a mu l t i p l i e r  adjustment method f o r  the general ized 

assignment problem i n  which one m l t i p l i e r  a t  a t i m e  is 

increased. This method has l e d  t o  a subs tan t i a l l y  improved 

algori thm f o r  the general ized assignment problem. 

7. Bow Good a r e  the Bounds? 

The "answer" t o  this quest ion t h a t  is ava i lab le  i n  the  l i t e r -  

a tu re  is completely problem-specific and l a rge l y  empir ica l .  Fost  of 

the empir ica l  r e s u l t s  a re  s-rized i n  Table 2. Each l i n e  of t h i s  

t ab le  corresponds to  a paper on a p a r t i c d a r  app l i ca t ion  of Laqrangian 

re laxa t ion  and gives the problem type, the source i n  ~ h i c h  the computa- 

t i o n a l  experience is given, the umber  of problems attempted, the 

percentage of problerns f o r  vhich a u was discovered wi th ZD(u) - ZD = 2, 

and the average value of Z,,(u*) x 100 divided by the average value 

of Z,  where ZD(u*) denotes the l a r g e s t  bomd discovered f o r  each 

problem instance.  Except as noted f o r  the m n e r a l l a d  aas ignmnt  

problem, dl samples included a reasonable number of la rgc  problems. 

In some cases the  sample included s ign i f i can t l y  l a r g e r  problems than 

had been p r e d o u s l y  attempted. Frequently,  standard t e s t  p rob lem 

knovn fo r  t h e i r  d i f f i c u l t y  were included. Table 2 is based oo the 



CCSUTATICNAL EXPEXZNCZ WITH 2 G R A N G i L V  REW[.=TION 

Problem Type Source Number o f  Percentage of Ave. ZD (u * )  
Problems Problems With 100 
Solved ZD = Z Ave. Z 

TRAVEL ING sus; . lAN 

n/m weighted 
Tardiness ! 151 8 37.5 

1 rclachiqe 
Weighted 
Tardiness [ 181 6 3  19.2 

Power Gene ra t ion 
Systems i 361 15 0 . 0  

T A G 4 T I O N  

Uncapacitated [lo] 33 66 .6  

Capacitated [231 6 50 .0 

3atabases m 
Computer 
Neworits [19l 29 5 1 . 7  

GENERAL IZED ASSIGNMENT 

Laqrangian* 
Relaxation 1 [a] 249" 96.0 

Lagrangian* 
Relaxation 1 [211 15 80.0 

*See Sect ion 3 . f o r  a d e f i n i t i o n  o f  Laarangian rs l2xat icr .s 1 and 1. 

**Yostly small zroblems. The l a r o e s t  had n = 3 and n = 17. 



r e s u l t s  re?orted i n  each refsrence fo r  a l l  ?roblens f o r  which c m ? i e t e  

i n f ~ r z a c i o n  vas given. Of course. Table ?.g ives highly aggrepated Lnforaa- 

r ion. and in te res ted readers a re  urged :o c o ~ s u l t  the appro?r iat r  rz is rsnces.  

3 e s e  r e s u l t s  provide o v e ~ ~ h e l s i n a  evidencz L!at L!e Sounds 

provl&d by Lagrangian re laxat ion  are  extremely r n w .  L C  is 

natura l  co ask why Lagrangian bounds a r e  so sharp. 

I am aware of only one ana ly t i c  r e s u l t  t ha t  even begins t o  answer 

t h i s  question. This r e s u l t  was developed by Cornuejols, F isher and 

Nemhauser [IO] f o r  the  K-median problem. 

Siven n ~ o s s i b l e  f a c i l i t y  locations, m markets, and a ncn- 

negative value c . .  f o r  serving market i from a f a c i l i t y  a t  locat ion 
1 I 

j ,  the K-median,problem asks where K f a c i l i t i e s  should be located t o  

maximize t o t a l  value. Let 

( 1, i f  a f a c i l i t y  is placed i n  locat ion j  

r 1, if znarket i is served from locat ion j 

9,  otherwise 

If y .  = 5 we must have x .  . = 9 f o r  a l l  i. Thus Lqe K-median 
3 11 

problem can be formulated as  the in teger  p rogrm 

z = a w  1 1 c .  x . .  
i-1 j t l  '1 '1 



- 6 0 0 -  

I - x 5 : 2 1, f o r  a11 z and 1 
L j  J 

l a )  

x .  and y m t e q r a l ,  f o r  a l l  i and J . 
LJ I 

( 9 )  

A LagrangIan relaxation i s  obta ined  by d u a l i z i n g  const ra-mts 

subjec: t o  (71, ( 8 )  and (9) 

? I! m 
= sax ! . . + . x .  - 1 ui 

i=l jal '1 1 'I i=l 

sub jec t  t o  (71, ( 8 )  and (9 )  . 

T h i s  aroblem has t he  0 - 1 WB s t r uczu re  descr ibed  i n  

Sect ion 4.  To so l ve ,  we f i r s t  observe t h a t  t he  VUB c o n s t r a i n t s  ( 8 )  

and the objective o f  the L a e r a n e i ~  ~ r o b l e n  Imply t h a t  

, , ={" i f  Cii + ui ' " 
o , otherwise . 

- m 
Hence, de f in ing  c .  = 1 nax ( 0 ,  c .  . ui) , opt imal  y .'s must so lve  

J F a 1  ' I 3 



which is a t r i v i a l  2roblem. 

Let ZD = rain Z (u) and assume Z > 0 .  ~ o m u e j o l s ,  F isher 
u D D 

K- 1 1 and Nemhauser [ lo ]  proved t h a t  (ZD - Z)/ZD < ; and exh ib i ted  

e x w l e s  t b t  show this bound t o  be the  bes t  possib le.  

This is an i n te res t i ng  f i r s t  s t e p  towards understanding why 

Lagranqian re laxat ion  has vorked w e l l  on so many problems. ru r the r  

study of %!is type is needed t o  understand and b e t t e r  exp lo i t  the 

-wwer o f  Laqrangian re laxat ion.  

8. Select ing Beween Comp~tinq Relaxations 

Two proper t ies  a re  important in evaluat ing a rs laxat ion :  t3e  

sharpness of the  bounds produced and the  amun t  of computation required 

t o  ob ta in  these bounds. Usually se lec t i ng  a re laxat ion  involves a 

t radeof f  between these two propet t ies ;  sharper bounds require more time 

t o  compute. It is general ly  d i f f i c u l t  t o  know vhether a re laxat ion  With 

sharper bounds but g reater  computation time v i l l  r e s u l t  i n  a branch 

and bound algori thm with b e t t e r  ove ra l l  gerformance. However, l t is 

usual ly  possib le t o  a t  l e a s t  compare the  bounds and computation 

requirements fo r  d i f f e r e n t  re laxat ions.  This w i l l  be demonstrated fo r  

the general ized assignment example. 



Two Lagrangian relaxations. ( iR1 ) and (-av), were Cefined 

f o r  t i u s  probiem. ,The l i n e a r  procjranuriing re laxa t ion  of famulac ion  

(1) - ( 4 )  provides a t h i r d  re laxa t ion .  

Consider f i r s c  the computational requirements f o r  eacn relaxa- 
m 

t i on .  s e  know t h a t  so lv ing (LRL requ i res  time bounded by n 1 b .  
u i=l ' 

and solv ing ('JU requ i res  t h  ~ r o p o r t i o n a l  t o  3 a. From *>1s it v 

would seem t h a t  t he  f i r s t  re laxa t ion  requ i res  g r e a t e r  computacion, 

al though i t  i s  d i f f i c u l t  t o  know how many t imes eacn Lagrangian sroblem 

must be solved i n  opt imizing t h a  duals .  I t  is d s o  impossible t o  know 

ana l y t i ca l l y  the  time requi red to solve t h e  LP ro - laxa t~on of 

(1) - ( 4 ) .  

Reference [8] repor ts  computational t i n e s  fo r  t he  th ree  relaxa- 

t i ons  f o r  examples ranging in s i ze  from n = 4 and n = 6 t o  m = 9 and 

n = 17. 'The subgradient  method w a s  used t o  opti inize t he  dua l  r o b l e m s .  

On average,  Lhe f i r s t  re laxa t ion  requi red about 50% moro cospucat ional  

tzne chan t h e  second. This is aucn l e s s  than would be ex-,acted f r m  

=omparison of  w o r s t e a s e  b o ~ ? d s  cn times t o  so lve Laqranqian ?roblams 

because t h e  subgradient  method converqed more qu ick ly  f o r  the  f i r s t  

re laxa t ion .  Solving the  LP re laxa t ion  requi red one-fourth of the t h e  f o r  

(LR1,) f o r  smal l  ?roblems bu t  2.5 t imes f o r  la rge  ?robloms. 

Now consider  t he  re l ac i ve  sharpness of the bounds produced by 

these re laxa t ions .  Let Z = max Z (u)  , l e t  
D 1 

ZD2 = max ZJ2 (V), and 1st 
U v ', 

3.A 
ZLi denote the  cpcimal .ralue c f  the iT rc laxaclon of  (i) - (4) . 

A glance a t  t he  computational exaerlence repor ted i n  the l a s t  

?do l i n e s  of Table 2 f o r  t he  CJO Laqranglan :elaxat ions s = o n ~ l y  suqgests 



t h a t  re laxa t ion  1 produces nuch sharper  bounds than re laxa t ion  2.  

This observat ion can be ve r i f i ed  using an ana ly t i c  result given by 

Geoffrion [221. This r r s u l t  VFU also a l l o w  us to compare ZD1 and ZZ2 

a 
with ZLp. 

The r e s u l t  s t a t e s  t h a t  in general  Z 
2 ZLp. Condit ions are  D 

a l s o  given f o r  ZD = ZLp. The f a c t  t h a t  Z 2 ZLp can be established 
5 

by the  following s e r i e s  of  elations between opt imizat ion ?roblens. 

x 2 0 and integral 

(By LP dua l i t y )  = LIEU max ve - ub 
" v20 

s.t. vD 5 e + uA 

(By LP dua l i t y )  = min cx 
X 



This l og i c  a l so  reveals a s u f f i c i e n t  ccndi t ion f o r  Z = Z 
D Le' 

?lamely, ZD = Z whenever Z (u )  is not increased by removing the in-  
LP D 

t e g r a l i t y  r e s t r i c t i o n  on x from the  const ra in ts  of the Lagrangian 

problem. Geoffrion [ 2 2 )  c a l l s  t h i s  the  i n t e g r a l i t y  Broperty. 

Applying these r e s u l t s  t o  the general ized ass ignwn t  2roblern 

es tab l i shes  t h a t  Z 2 ZD2 = Z since the  second Laarangian re laxat ion  
5P 

has the  i n t e g r a l i t y  property while the f i r s t  does not. 

I t  should be emphasized t h a t  t!!e i n t e g r a l i t y  property is not 

defined r e l a t i v e  to  a given lroblern c l a s s  but  r e l a t i v e  to  a given 

in teger  programming formulation of a problem c lass .  This is an 

important distinction because a problem o f ten  has more than one form- 

u la t ion .  The Lagrangian re laxat ion of the  K-median problem given i n  

Section 7 has -he i n t e g r a l i t y  property i f  one takes (P) t o  be formu- 

l a t i o n  (5) - (9)  . This f a c t  alone is misleading s ince there  is 

another formulation of the  K-median problem i n  which const ra in ts  (9) 

are  replaced by 

0 s x . .  s 1 ,  ?or a l l  i and j 
1 3  

This formulation is much more compact than ( 5 )  - (9)  and 1s t!e one ~ lsed 

nose LZ-based branch and bound a l q o r i C h s  fo r  the K-mezian ?robleiti. 

The Laqrangian re laxat ion given previously can be defined equivalent ly  

in  terms of t h i s  formulation but re la t i ve  to  t h i s  formulat ion, i t  does 

not have =he integralit.! property. 21 f a c t ,  i: is shown i n  [ 101 tha t  



L!e Lagranoian bound Z, and the LP value of ( 5 ) ,  ( 6 ) .  C7), (a),  (9) a-e subs tan t i a l l y  

sharper than t he  LP value of (5) , ( 6 )  , (7) , ( 8 ' )  and (9) . Others 

(IJilliiuns [45,461 and Wrs, e t  a1 [321) have a l so  noted that there  a r e  

f requent ly  a l t e rna t i ve  IP f o m l a t i o n s  fo r  L3e same problem that have 

qu i te  d i f f e r e n t  LP propert ies.  

It is a lso  worth noting t h a t  many o ther  success fu l  LagrangIan 

re laxat ions ( including Held and Kaq cC7, 281, Etcheberry C123, ~ t c h e b e r r y  . 
e t  a l .  [131, and Fisher and Eochbaum [19]) have had the l n e e g r a l i q  

property. For these appl icat ions LagrangIan re laxat ion  was successfu l  

because the  LP re laxat ian  c lose ly  approximated (P I  and because L!e 

nethod. used t o  optimize (Dl (usual ly  the subqradient method) was more 

powerful L3en methods avai lable f o r  solv ing the  (general ly  l a rge)  LP 

relaxit t ian of  (P). The important message of these app l ica t ions  is 

t h a t  conbinator ia l  opt imizat ion problems 2equeu t l y  can be fo rsu la ted  

a s  a la rge IP whose '9 re laxat ion  c lose ly  approximates the IP and can 

be solved quickly by dual methods. To e q l o i t  this f a c t ,  fu tu re  

research should be broadly construed t o  ?evelop met!!ods f o r  solving 

the la rge s t ruc tured U ' s  ar i s i ng  from cornbinatorial problems and 

t o  understand the  a rope r t i es  of combinatorial problems t h a t  g ive r i s e  



co good LP approximat ions. There has a l r e a d y  been s i g n i f i c a n t  

r e s e a r c h  on methods o t h e r  than Laqranqian r e l a x a t i o n  f o r  e.xploit;n,o 

the s p e c i a l  s t r u c t u r e  of LP's de r i ved  f rom comb ina to r ia l  problems. 

Schrage [b l !  , E l l i o t i s  [31, 35 1 , and C h r i s t o f i d e s  and Whit lock b 1 

have g iven  c l e v e r  s o l u t i o n  methods t h a t  e x p l o i t  c e r t a i n  types of 

s t r u c t u r e  t h a t  a r e  connnon i n  f o rmu la t ioaso f  comb ina to r ia l  problems. 

g . F e a s i b l e  So lu t ions  

Th is  s e c t i o n  i s  conce-ned wi th  us ing (LR ) t o  o b t a i n  f e a s i b l e  

s o l u t i o n s  f o r  (PI. I t  is 2 o s s i b l e  i n  t h e  course  of  s o l v i n g  ( D l  

Lhat a s o l u t i o n  t o  (LR ) w i l l  be d iscovered  t h a t  i s  f e a s i b l e  

i n  (P). aecause t h e  dua l i zed  c o n s t r a i n t s  Xx = b a r e  e q u a l i t i e s ,  

-his s o l u t i o n  i s  a l s o  op t ima l  f o r  (P). I f  t h e  d u a l i z e d  c o n s - ~ a i n t s  

contair .  some i n e q u a l i t i e s ,  a Lagrangian 2roblem so luc ion  can 

be f e a s i b l e  b u t  nonoptimal f c r  ( P ) .  However, i t  i s  r a r e  t h a t  a 

f e a s l b l e  s o l u t i o n  of  e i t h e r  pee i s  discovcrer l .  On ?he o t h e r  hand, i t  

o f t e n  happens t h a t  a s o l u t i o n  t o  (LR ) ob ta ined  whi le  op t im iz ing  ( D l  

w i l l  be n e a r l y  f e a s i b l e  f o r  (21 and can be made f s a s i b l e  wit!! some 

jod ic ious  t i n k e r i n g .  Such a m e t h d  f ig ia t  be c a l l e d  a Laarangian 

h e u r l s t l c .  A f t e r  i l l ~ s t r a t i n g  t h i s  approacn f o r  t h e  g e n e r a l x e d  

assiqtunent groblem and (LRl 1 ,  w e  w i l l  d i s c u s s  c o m u t a t i o n a l  e x s e r i e n c e  

wl th  Lagranglan h e l l r i s t i c s  f o r  o t h e r  problems. 

I t  is convenient  t o  t !  o f  t h e  g e n e r a l x e d  assignment problem 

a s  r e q u i r i n g  a oack ina  of n i t ems  i n t o  m knapsacks usFng each i tem 
rn 

e x a c t l y  cnce.  In ( L a  ) t i e  c o n s t r a i n t s  1 X:  . = 1, j = 1 ,  - .. , 9 

i=l -1 

r e q u i r m g  t h a c  each i tem be used e x a c t l y  once a r e  d u a l i z e d  and nay be 

-r lo laced. Let  i? l e n o t e  an op tuna l  solution t o  ( L a  1 ) .  P x t i t i o n  

!J = { l ,  ... , n j  i n t o  t h r e e  s e t s  de f ined  by 



s 

si i J i i.. = o 
i=l '3 

m 
s 2 ={j i J 1 i Z .  -1) 

i=l '3 

m 
s3 =(j c J I 1 i . .  > 1 

irl '3 

The cons t ra in t s  of (P) wnich a re  v i o la ted  by 2 correspond. t o  

j E S1 u S3. 5Je wish- to modif-/ 2 s o  t h a t  these cons t ra in t s  a re  s a t -  

isf ied. This i s  easy fo r  a j E Sj. Simply renova item j from all 

but  one knapsack. X va r i e t y  of r u l es  could be used t o  eetermine in 

which kqapsack t o  leave i tem j. For example, it would be reasonable 

u .  - C . .  
1 11 t o  choose t h e  knapsack t h a t  m i m i z e s  

' i j  

To complete +_he construct ion of a f eas ib le  so lu t ion  it i s  only 

necessary t o  assign items i n  S t o  knapsacks. : ihi le there  is no 
1 

guarantee t h a t  t h i s  can be done, t he  chances of success should be 

good unless the knapsack constraints a r e  verl t i qh t .  Xany assignment 

ru les  a re  p l a u s ~ b l e , s u c h  a s  the following one tha t  is motivated bp 51n 

packing h e u r i s t i c s .  Order i tems i n  S1 by decreasing value of 

m 
1 a .  . and p lace each item in turn i n t o  a knapsack wi th s u f f i c i e n t  capaci ty  

i-1 '3 
u - c . .  i 11 

L ? a t  maximizes a 
i 1 

Several researchers have repor ted success using Lagrang ia  

problem so lu t ions  obtained during the  app l ica t ion  of the  subgradient method 

to  construct  p r i s a l  f eas ib le  so lu t ions .  For example, ch is  i s  rasv ts ds f o r  

t he  X-median prcblem. iet i ? ,  denote a feasrb le  s o l ~ t i o n  t o  %!e 



i ag rang ian  a r o b l e n  i e f i n e d  i n  Scczlon 7 f o r  t h e  K-median ?roblem. 
- 

At S = = l! and f o r  eacn i s e t  j .  = 1 f o r  a ; t h a t  so lves  
1 I  

3 - 
l~ax C .  S e t  ;.. = 0 f o r  remaining i j .  The s o l u t i o n  x ,  y is 
jeES 11" 1 3  

f e a s i b l e  and r e p r e s e n t s  t h e  b e s t  assiqnment o f  x given -. Cornue jo is ,  

F i s h e r  and Yenhauser (101 found t!!at t h i s  approach performed a s  we l l  

a s  t h e  b e s t  of  s e v e r a l  o t h e r  h e u r i s t i c s  they  t e s t e d .  

F i s h e r  [ 181 r e p o r r s  experience f o r  t h e  r o b l e m  o f  s e ~ e n c l n g  

n jobs on one machine t o  minimize a t a r d i n e s s  func t ion .  X Laarangian 

s o l u t i o n  is  a s e t  of  start tines 1 . . . , iZ f o r  t h e  n jobs t h a t  nay 

v i o l a t e  t h e  machine c o n s t r a i n t s .  A pr imal  f e a s i b l e  s o l u t i o n  is 

ob ta ined  by sequencing jobs on t h e  machine i n  o r d e r  o f  i n c r e a s i n g  2 .  
3 

va lues .  Th is  rule was t e s t e d  on 63 problems. I t  was a p p l i e d  i n  con- 

j unc t ion  wit!! t h e  subgrad ien t  nethod a f t e r  an i n i t i a l  f e a s l b l e  s o l u t i o n  

had Seen genera ted  by a greedy h e u r i s t i c .  The greedy h e u r i s t i c  

found an opr imal  s o l u t ~ o n  f o r  18 o f  Lye problems. The Laarv lg ian 

n e u r l s t l c  found opt imal  s o l u t i o n s  t o  2 1  of t h e  remaininq 45  ?rcblems. 

On average t h e  greedy va lue was :00.4% o f  the  o g t l n a l  va iue  v h i i a  :he 

va lue of t h e  s o l u t i o n  produced by t h e  Lagrangian h e u r i s t i c  was 

100.16a o f  t h e  opt imal  va lue.  



10. Usmg iagrangian Reiaxation 
in aranch and 3ound 

The issues involved in designing a Srancn and Sound algorithm 

tha t  uses a Lagrangian re laxat ion are essen t ia l l y  *e same as those that  

a r i s e  when a l i nea r  p r o g r d n g  relaxat ion is used. So- of these 

issues are i l l u s t r a t e d  here for  the general ized assignment problem and 

(LRIU) derived i n  Section 3. 

A natura l  branching t ree  for  t h i s  aroblem is  i l l u s t r a t e d  in 

Figure 2 .  This t ree  exp lo i ts  the s t ruc ture  o fcons t ra in ts  ( 2 )  by 

se lec t ing a ?a r t i cu la r  index j when branching and requir ing exact ly  one 

var iable in the  s e t  x . , ,  i = 1 ,  ... , m t o  equal 1 along each branch. 
1, 

A hgrang ian re laxat ion (presumably LBl, given the discussicm 

In Section 8) can be used a t  each noee of t h i s  t r e e  to  obtain lower 

bounds and feas ib le  solut ions.  



Tiqure 2 

P a r t i a l  Branching Tree fo r  m e  Generalized Asslqnment ?roblem ,xith m = 3 

We nore thar the Lagranpian problem defined a r  a pa r t i cu la r  

node of t h l s  t r e e  has the same st-ucture as  (W ) and is  no harder 
u 

t o  solve. nis is an obvious propecy tha t  s u s t  hold fo r  any appl ica- 

t i an .  Sometimes i t  is des i rab le  t o  design the branching ru les  t o  

achieve t h i s  groperty (e.?. ,  Held and :(ar~, [ 2 8 ] ) .  

There are several  t a c t i c a l  decis ions tha t  musc be made in any 

branch and 5ound scheme such as irhicn node t o  axplore next and what 

indices ( j l ,  and 1 in Ficure 21 t o  .lse i.7 brsnchmq. Laqrangian 

re laxat ion can be used L7 makinq these decisions i n  much the jams way 



thar: l i nea r  r o g r w n g  wouLd t e  usea. Eor example, we sighr: zkoose 

m 
t o  branch on an lndex 1 f o r  which UJ( 1 x .  . - 1) is i a rge  in t!!e curranr. 

1 =I 
Laqrangian problem so lu t ion  in  order t o  strengthen the  bounds a s  such 

M pxts ib le .  

F ina l ly ,  we note t h a t  the  method fo r  opt imizing (0) must be 

ca re fu l l y  in tegrated i n to  the  brsnch and bound clqori thm to  avoid. 

doing .mnecessary work when (D) is reoptimized a t  a new node. A 

connmn s t ra teqy  when using the  subgradient w thod  1s t o  take u3 equal 

t o  t he  terminal value of u a t  the  previous node. The subgradient 

nethod is then run f o r  a f ixed number of i t e r a t i o n s  t h a t  depends on 

the  :ype of n d e  being explored. A t  t he  f i r s t  node a large rimer 

of i t e r a t i o n s  is used. -Ahen b r a n c n i ~ g  down a small  number is . s e d ,  

and when Sacktzacking, an in termediate number. 

11. Conclusions and Future Research D i rec t ' snS  

Lagrangian re laxat ion  is an important nev couputat lonal :=chnique 

i n  the nanagement s c i e n t i s t ' s  arsenal .  This ?aper has documented a 

number of successfu l  appl icat ions of t h i s  technique, and nopeful ly 

vill i nsp i re  o ther  app l ica t ions .  aeside fu r ther  app l ica t ions ,  

what opportuni t ies fo r  f u r the r  research e x i s t  Fn t h i s  area? The 

moet obvious is derelopment of more powerful technology f o r  optimizing 

the nondi f ferent iable dual funct ion. Nondif ferentiable optimizat ion 

has become an important general  research area t h a t  sura ly  w i l l  

continue to  grow. One corner of t h i s  area tha t  seems t 3  hold grca t  

promise forLagrangian re laxat ion  is the development of n u l t i p l i e r  



ad j , l s t zenc  nethods of :he ::Te desc r ibed  a t  t h e  end 31 s e c t i o n  6. 

5 e  e n o n o u s  success  t h a t  has been ab ta ined  w i th  t h i s  approach 

on t h e  uacapac i ta ted  locac ion [11] and :he g e n e r a l i z e d  assignment 

problems [21], sugges ts  t h a t  1: should  be t r i e d  on o t h e r  problems. 

Two o t h e r  r e s e a r c h  a r e a s  t h a t  deserve  f u r t h e r  a t t e n t i o n  a r e  t h e  

development and a n a l y s i s  of Lagrangian h e u r i s t i c s  a s  desc r ibed  i n  

Sec t ion  9 and t h e  a n a l y s i s  (worst-case o r  p r o b a b i l i s t i c )  of t h e  

q u a l i t y  of t h e  bolmas produced by Lagrangian r e l a x a t i o n  a s  d iscussed  

i n  S e c t i o n  7 and [ l o ]  . 
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AN ITERATIVE LINEAR PROGRAMMING ALGORITHM BASED ON 
THE MOD1 FIED LAGRANGIAN* 

E.G. Gol'shtein 

Central Economic Mathematical lnstinrte 
USSR Academy of Sciences 
Moscow 

Current LP solution algorithms are of two types: finite - such as the simplex method - 
and iterative - which after a finite number of iterations give only an approximate solu- 
tion. The main shortcoming of iterative methods to date is their slow rate of convergence. 
This paper describes an iterative LP algorithm which seems to have a satisfactory practical 
convergence rate. Naturally, the ultimate conclusion regarding its computational efficiency 
can be reached only after i t s  widespread use in practice. 

'This algorithm has been developed at CEMl by E.P. Borisova, N.A. Sokolov and N.V. Tretyakov in 
conjunction with the author. 



1. INTRODUCTION 

Economic models developed to describe the processes of econ- 

omic activity on various levels involve many problems concerning 

choice of an optimal decision from amongst possible alternatives. 

Such problems involve a wide range of mathematical concepts amongst 

which are static and dynamical formulations, continuous and dis- 

crete variables, the constraints of simple and very complicated 

structures, and stochastic and deterministic approaches. Never- 

theless, in spite of all these complications, practical problems 

are usually given a general formulation which is linear. To a 

large extent this is due to our ignorance regarding the mechanisms 

of economic processes as well as to difficulties in obtaining re- 

liable data. In any case linear programmdng (LP) remains one of 

the most important practical techniques with which to treat 

decision problems. 

The LP algorithms of today look rather powerful and sophisti- 

cated as a result of the widespread experience of many research 

workers. 

aasically, therearetwo types of LP methods: '<nit8 and 

.:teras<ve. Finite methods provide in principle the possibility 

of finding an exzct solution of the problem (to a specified mach- 

ine precision) after a finite number of operations, while generally 

speaking, any finite number of operations by an iterative method 

gives only an approzdmase solution. The typical--and most 

famous--finite method is the s i m p l e x  nethod, which is the found- 

ation of most modern LP algorithms. The product form of the sim- 

plex method, together with special computational schemes involving 

reinversions, the rules for choosing pivot elements, prescaling 

of the initial data, and numerous additional procedures, are pre- 

sently used in all the commercial LP packages for solving sparse 

large-scale problems. The fundamental role of the simplex method 

in LP packages is due to an advanced level of computational ef- 

ficiency reached after the thirty odd years of its algorithmic 

development. However, some shortcomings of this highly popular 

method are well known. They are as follows: numerical instab- 

ility, inconsistency in, and complexity of, schemes for avoiding 

ill-conditioned bases and reducing the data representing the in- 

verse matrix, and awkwardness in taking the specific structure 



of a problem into account. 

Many attempts have been made to construct an efficient 

LP algorithm based on ideas different from the simplex method, 

in particular by using an iterative method. It is worth noting 

that algorithmic implementations of these iterative LP methods 

often do not require the computation of the inverse matrix, 

do allow compact representation and handy transformation of 

data, and are numerically stable--i.e., they obviate the short- 
comings mentioned above. Why then are iterative algorithms not 

widely used for practical LP problems? The reason lies in the 

very slow convergence of all known iterative algorithms; this is 

their main shortcoming. This report describes an iterative LP 

algorithm which seems to have a satisfactory practical rate of 

convergence. Naturally the ultimate conclusion concerning the 

efficiency of the algorithm can be reached only after obtaining 

widespread experience in practical use. 

The following research workers of CEMI have taken part in 

developing this algorithm along with the author: E.P. Borisova, 

N.A. Sokolov, N.V. Tretyakov. 

2. PROBLEM FORMULATION AND ALGORITHM OUTLINE 

We consider the general LP problem in c a n o n i c z l  form, i.e. 

in the form 

The algorithm is based on using the simplest modified 

Lagrangian of problem ( 1 ) : 
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! 
where U .  (x) = b .  - 2 a .  . x .  i =  1,2, ..., m, 

1 j=l 11 3 ' 

a = (a1,a2 ,..., zm) is a penalty vector, a i > 0 Y i 

The values ui (x) and pi lY) = max iO,pj (y) are called 

residuals of the corresponding contstraints of problem (1) and 

of the dual problem 

The vectors u(x) = (ul (x) ,u2 (x) , . . . ,u (x) ) and m 

pf (y) = (p;(y),~;(y) ,...,PA (Y)) are said to be the residual 3ecscrs 

of the primal and dual problems respectively. 

The backbone of the algorithm is the well-studied (see [ I  -41) 

dual method based on the modified iagrangian (2). In this method 

the recursions 

(4) 
s+l - x = argmax ~ % ( x , y ~ ) ,  yS+l = ys - cx u(xSC1), s = 1,2,. . . , 

x.0 0 - 

with 3 = (zO,aO,. . . ,a0), are used to construct the sequences ixSi 

and iyS}, the first converging to a solution of (1) and the second 

converging to a solution of ( 3 ) .  

The implementation of the scheme ( 4 )  involves a number of 

questions such as the following. 

Which optimization method should be used to determine xS+l 

for the fixed y = ys? 

What accuracy is required to solve the "auxiliary" problem 

of maximizing Fz(~,YS) over the positive orthant x 2 0 ? 



Nay one use t h e  vec to r  1 wi th  i d e n t i c a l  components a s  i n  ( U ) ,  

o r  should t h e s e  components be d i f f e r e n t ?  

Should t h e  vec to r  a be changed du r i ng  t h e  p rocess  of compu- 

t a t i o n  and i f  s o  how? 

The d e s c r i p t i o n  o f  t h e  a lgor i thm presented  below answers 

t h e s e ,  and some o t h e r ,  ques t i ons .  From t h e  o u t s e t  i t  is worth 

n o t i c i n g  t h a t  f o r  a lgor i thm e f f i c i e n c y  w e  must use  pena l t y  v e c t o r s  

w i th  d i f f e r e n t  components which must be changed from one i t e r a t i o n  

t o  ano the r  a s  t h e  r e s u l t s  of c u r r e n t  computat ion.  Th is  requ i re -  

ment i n  p a r t i c u l a r  d i s t i n g u i s h e s  t h e  p r e s e n t  a lgor i thm from ea r -  

l i e r  implementat ions o f  (4) ( see  [ S ]  ) . 
When so l v i ng  ( 1 )  by means of  t h e  suggested  a lgor i thm t h r e e  

ks sequences a r e  cons t ruc ted  r e c u r s i v e l y ,  namely x  E E"+ ys E E ~ ,  
t t as E i n t  ET ( w e  use t h e  n o t a t i o n  E t ,  E+ and i n t  E+ r e s p e c t i v e l y  f o r  

t h e  t - d i m e n s i o n a l  Eucl idean space,  t h e  p o s i t i v e  o r t h a n t  of E  t 

t and t h e  i n t e r i o r  of  E+) . 
The vec to r  x 

~ S + I  , 1s determined a s  t h e  r e s u l t  o f  approximate 

s o l u t i o n  of t h e  zuziZiary problem 

F ( x , ~ ' )  max, x  EE: 
CIS 

k  s  w i th  t h e  s t a r t i n g  p o i n t  x  which has  been found a t  t h e  prev ious  

i t e r a t i o n .  

The v e c t o r  yS+' i s  computed by t h e  formula 

where t h e  parameter  hS E [0 ,1 ]  is chosen t o  depend on t h e  s o l u t i o n  

process  of  t h e  a u x i l i a r y  .problem ( 5 ) .  

The pena l t y  vec to r  a is recomputed according t o  t h e  r u l e  



where 5 i s  a c e r t a l n  v e c t o r - E u n c t i o n  whose c h o i c e  s u b s t a n t i a l l y  

~ n f l u e n c e s  t h e  e f f i c i e n c y  o f  t h e  a l g o r i t h m .  

C o n s i d e r  now t h e  imp lementa t ion  o f  t h e  scheme (5-71 i n  more 

d e t a i l .  

3 .  AUXILIARY PROBLEM OPTIMIZATION 

The aLternat ing coor i inate d i rect ion method (which i s  o f t e n  

c a l l e d  SeideL's o p t i m i z a t i o n  method) was chosen  f o r  s o l v i n g  t h e  

a u x i l i a r y  problem ( 5 ) .  T h i s  c h o i c e  was made f o r  t h e  f o l l o w i n g  

r e a s o n s .  F i r s t ,  t h e  numer ica l  imp lementa t ion  o f  t h e  a l t e r n a t i n g  

c o o r d i n a t e  d i r e c t i o n  method i s  v e r y  s i m p l e  and f i t s  n a t u r a l l y  w i t h  

d a t a  p r o c e s s i n g  column by column ( a s  used  w i t h  t h e  s imp lex  method) 

--an i m p o r t a n t  f e a t u r e  f o r  l a r g e - s c a l e  LP prob lems ( 1 )  w i t h  n>>m. 

Second ly ,  t h e  c o m p u t a t i o n a l  t r i a l s  show t h a t  f o r  t h e  c a s e  o f  ?rob- 

lem ( 5 )  t h i s  method i s  n o t  much worse t h a n  methods ( s u c h  a s  t h e  

c o n j u g a t e  g r a d i e n t  method) which a r e  more e f f i c i e n t  i n  g e n e r a l .  

A s i n g l e  i t e r a t i o n  o f  t h e  a l t e r n a t i n g  c o o r d i n a t e  d i r e c t i o n  method 

e n a b l e s  u s  t o  o b t a i n  t h e  v e c t o r  xt+'  f rom xt  by s o l v i n g  n  one- 

d i m e n s i o n a l  prob lems i n v o l v i n g  o p t i m i z a t i o n  o f  t h e  f u n c t i o n  ( 2 )  
S 9 i n  c o o r d i n a t e s  x l , x Z ,  ..., xn  w i t h  f i x e d  y = y  , a = a  . The s o l u t i o n  

o f  each  problem may b e  computed from t h e  s i m p l e  r e c u r s i o n :  

t '? s t + l  t t 
t + l  

x  = m a i x  + [ p j  l Y s )  + i i l a i  a i l  u i ( x 1  , . .. , x j - l , x  ,. . . , x n )  I /  
I I 1 

where t = k s + l  and l is  t h e  c u r r e n t  i t e r a t i o n  number o f  t h e  coor -  

d i n a t e  d i r e c t i o n  method used i n  s o l v i n g  ( 5 ) .  

L e t  ls be an  i n t e g e r  s u c h  t h a t  ks+l  = ks+ls ,  t h a t  is 
k s + t  

x  is a c c e p t e d  t o  b e  x  ks+l , an  approx imate  s o l u t i o n  o f  ( 5 ) .  

The method o f  d e t e r m i n i n g  ts, which is  o f  g r e a t  impor tance  f o r  

t h e  a l g o r i t h m s ' s  e f f i c i e n c y ,  is based  on u s i n g  two c r i t e r i a :  

A and /o r  B.  



Criterion A 

4 &+I 
P (Y 

?+ 1 S where: is derived from y according to ( 6 )  , 
with hs = 1 and x ks+ 1 t 

replaced by x , 

4 
p = 1 pj/n max {i,c 1 , 

j - 1  
j 

- m 
u = 1 luil/m max {i, Jbil} , 

1x1 

FO(x,y) = Fa(x,y) , with ;r = (O,O,. . .,O) 

and ci and ci are specified positive numbers. 

Criterion A stops the solution process for ( 5 )  when the re- 

lative average residual in the constraints of the dual problem 

and the relative difference between the objective functions of 

the perturbed primal and dual problems become comparable with the 

relative average residual in the constraints of the primal problem. 

Notice that when t -. 9 the left-hand sides of the inequalities in 
t 

A tend to zero, while u(x ) converges to a positive number, since 

yS is not a solution of ( 3 )  , 

Criterion B 

t A;(X~) 2 cBii(x ) , ~ 3 x 7  < AU(X~-'I , - 
m 

where A )  = 1 uilx t I - u i l x  t-1 1 1  / m a m a x  {lplbil? 
i= 1 

and cg is a specified positive number. 



Criterion B stops the solution process for ( 5 )  when the vec- 
t 

tor u(x ) which determines the direction for adjusting the vector 

y S ,  becomes stable. 

To avoid too many iterations in solving the auxiliary prob- 

lems, the algorithm implimentation is also provided with an iter- 

ation count "cut-off" Lnax = Lmax(n), which depends on the dimen- 

sion n of the vector x. 

The number LS of alternating coordinate direction method 

iterations performed to find an approximate solution of the aux- 

iliary problem (5 )  is t the minimal number of iterations after 

which at least one of the criteria A or B holds if l <emax; 

otherwise es = L . max 

4. PENALTY VECTOR UPDATE 

The details of the method for updating the penalty vector 

3, given in general form by ( 7 ) ,  is also critical for efficiency 

of the suggested algorithm. 

Set 

After termination of the auxiliary problem (5 )  solution process, 

we transform as into as+' according to the following formulae: 



The func t i on  Q i n  ( 8 )  changes t h e  components of t h e  pena l ty  

vec to r  p ropo r t i ona l  t o  t h e  r e l a t i v e  r e s i d u a l s  i n  the c o n s t r a i n t s  

of t he  pr imal  problem. 

The r o l e  of formula ( 9 )  is t o  change t h e  norm of t h e  pena l ty  

vec tor .  The f a c t o r  rlsE [0 ,1 ]  decreases t h e  norm of a when t o o  

many i t e r a t i o n s  a r e  requ i red  i n  so lv ing  t h e  a u x i l i a r y  problem ( 5 )  

t o  t h e  accuracy determined by t h e  c r i t e r i a  A o r  8. Thus 

The func t i ons  y and (I change t h e  norm of t h e  pena l ty  vec to r  

i n  r e l a t i o n  t o ,  respec t i ve l y ,  t h e  r a t i o  of t h e  c u r r e n t  average 

r e l a t i v e  r e s i d u a l s  of t h e  pr imal  and d u a l  problems, and t h e  r a t i o  

of t h e  average r e l a t i v e  r e s i d u a l s  of t h e  pr imal  problem provided 

by two success ive  i t e r a t i o n s .  F i n a l l y ,  t h e  pena l t y  c o e f f i c i e n t s  

a r e  p ro jec ted  onto  t h e  c losed i n t e r v a l  [ c l  ,c21 denoted by t h e  pro- 
j e c t i o n  ope ra to r  1 i n  (101, t h e  p o s i t i v e  numbers c l  and c 2  being 

t h e  minimal and maximal admiss ib le  va lues  of 3; respec t i ve l y .  

The func t i ons  involved i n  ( a ) ,  (9 )  were chosen a s  fol lows: 

where 



5. CURRENT DUAL VECTOR UPDATE 

To complete the description of the algorithm implementation, 

a few comments are in order concerning the formula (6) for updating 

yS to yield ys+l . The parameter hs entering ( 6 )  is determined 

according to the conditions at termination of the auxiliary prob- 

lem (5) solution process. Namely, we set h s = l  if either criterion 

A or B is satisfied at termination (i.e., if ts <emax) and set 

hS = h E (0,l) otherwise (i.e. when tS = emax) . Thus the 

ks+l 
parameter hs decreases the step-size in the direction u(x ) 

when the solution accuracy for (5) is not high enough. 

6. COMPUTATIONAL EXPERIENCE 

Next we present the results of some trial computational ex- 

perience with the suggested algorithm. 

For all the test problems starting values of x,y and a were 

taken as follows: 

A preliminary normalization of the test problems in the form 

( 1 )  was also used. Basically it consisted of transforming each 

problem in the form (1) into an equivalent problem in the same f o m  

but having identical averages of the coefficients / a . . l ,  lbi! and 
' 1 

13 
ICj, . 

Table 1 summarizes the results of solving 5 practical L? prob- 

lems of the size given in the first column. Each of the next five 

columns of Table 1 presents the computational effort required for 

solvlng the aroblems from the initial values to within an accuracy 

of E X ,  the values of E beinq indicated in the upper positions of 

each column. 



Simplex 
n x m  1 0 - 1 5 s  5 - 8 s  3 - 5 s  2 - 3 s  - ' ' 5 X  ~ t e r a t i o n s  

Table 1 .  Computational Resu l t s  f o r  Five P r a c t i c a l  LP Problems 

The accuracy of t h e  s o l u t i o n s  has been es t imated a s  fo l lows:  

E = max IE, , E ~ , E ~ I  

I c ' x  k s 

€1 = 200 

i c ' x  ks + b 'ys  I 

The computat ional e f f o r t  requ i red  t o  so l ve  a t e s t  problem t o  

t h e  s p e c i f i e d  accuracy i s  presented i n  Table 1 i n  t h e  i n t e r s e c t i o n  

o f  t h e  corresponding column and row. I t  is  measured by t h e  num- 

ber  ks-1 o f  i t e r a t i o n s  requ i red  f o r  t he  determinat ion  of  xks us ing  

t h e  a l t e r n a t i n g  coord ina te  d i r e c t i o n  method. The number s-1 o f  

updates of t h e  vec tor  y is given i n  b rackets .  The l a s t  column o f  

Table 1 con ta ins  t h e  number o f  i t e r a t i o n s  requ i red  t o  so l ve  t h e  

same t e s t  problems us ing  a modern ve rs ion  of t h e  rev ised simplex 

a lgor i thm i n  product  form. As i s  seen by i nspec t i on  o f  Table 1 

t h e  suggested a lgor i thm enab les  us  t o  f i n d  s u f f i c i e n t l y  accu ra te  

s o l u t i o n s  of t h e  g iven problems i n  a number of i t e r a t i o n s  compar- 

a b l e  t o  t h a t  requ i red  by t h e  simplex method. (Note t h a t  an i t e r -  

a t i o n  o f  t h e  simplex method is more compl icated than one of our  



s o l u t i o n s  of t h e  g i ven  problems i n  a number o f  i t e r a t i o n s  compar- 

a b l e  t o  t h a t  r e q u i r e d  by t h e  s imp lex  method. (Note t h a t  an  i t e r -  

a t i o n  of  t h e  s imp lex  method is  more comp l i ca ted  t han  one of  o u r  

a l qo r i t hm . )  

I t  is w e l l  known t h a t  t h e  s imp lex  method h a s  wors t -case  ex- 

p o n e n t i a l  comp lex l t y .  Th l s  a r i s e s  from t h e  f a c t  t h a t  f o r  c e r t a i n  

LP problems i t  must look  th rough  a l l ,  o r  a lmos t  a l l ,  v e r t i c e s  

of  t h e  f e a s i b l e  po lyhedron.  I t  is  t h u s  q u i t e  n a t u r a l  t o  t r y  u s l n g  

t h e  sugges ted  i t e r a t i v e  a l g o r i t h m  t o  s o l v e  such  " d i f f i c u l t "  L? 

problems.  

I n  view of t h i s  a s p e c i a l  f am i l y  o f  LP problems depending on 

a p o s i t i v e  i n t e g e r  paramete r  m h a s  been cons i de red .  The problem 

co r respond ing  t o  each  f i x e d  m i n v o l v e s  2m nonnega t i ve  v a r i a b l e s  

s u b j e c t  t o  m e q u a l i t y  c o n s t r a i n t s  and i t s  f e a s i b l e  po lyhedron 

has  2" v e r t i c e s .  The problems cons i de red  have t h e  p r o p e r t y  t h a t  

s t a r t i n g  from t h e  n a t u r a l  b a s i s  t h e  s imp lex  method w i l l  look 

th rough  a l l  f e a s i b l e  v e r t i c e s .  The r e s u l t s  o f  app l y i ng  t h e  new 

a l g o r i t h m  t o  some problems o f  t h i s  f am i l y  a r e  g i v e n  i n  Tab le  2 

i n  t h e  same fo rmat  a s  i n  Tab le  1 .  

Tab le  2 .  Computa t iona l  R e s u l t s  f o r  Four S implex Method Worst -case 
Problems 



7.  CONCLUSION 

In  conclusion a few words should be s a i d  about  var ious  pos- 

s i b i l i t i e s  f o r  us ing t h e  suggested i t e r a t i v e  a lgor i thm i n  prac- 

t i c e .  

F i r s t  of a l l  t h e  a lgor i thm enab les  us  t o  g e t  approximate 

s o l u t i o n s  of p r a c t i c a l  LP problems i n  reasonab le  t ime us ing  an 

extremely smal l  amount of computer memory. 

Fu r the r ,  t h e  new i t e r a t i v e  a lgor i thm is r a t h e r  s u i t a b l e  f o r  

use t o g e t h e r  w i t h  t h e  simplex method a s  an i n i t i a l  s o l u t i o n  pro- 

cess .  A f t e r  acheiv ing a c e r t a i n  s o l u t i o n  accuracy a simplex ba- 

s i s ,  c l o s e  t o  t h e  opt imal  one,may be cons t ruc ted  us ing  informat ion 

from t h e  approximate pr imal  and dua l  s o l u t i o n s  obta ined by t h e  

i t e r a t i v e  a lgor i thm;  t h i s  b a s i s  is then improved by t h e  simplex 

method. Computational exper ience shows t h a t  t h e  i t e r a t i v e  s t a g e  

of t h e  process  should be performed wi th  a r a t h e r  low accuracy 

(no more than about  10 - l S % , a s  def ined f o r  t h e  t a b l e s  of t h e  pre- 

v ious s e c t i o n )  s i n c e  even t h i s  smal l  amount o f  p re l im inary  work 

appears t o  reduce t h e  number of simplex i t e r a t i o n s  by a f a c t o r  

o f  t e n .  

F i n a l l y ,  one could t r y  t o  use t h e  i t e r a t i v e  a lgor i thm f o r  

he lp ing  t h e  simplex method ou t  of t h e  neighbourhood of a "bad" 

b a s i s ,  b u t  no computat ional  exper ience w i th  t h i s  idea has been 

obta ined a s  ye t .  
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EXPERIMENTS WITH THE REDUCED GRADIENT METHOD FOR 
GENERAL AND DYNAMIC LINEAR PROGRAMMING" 
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This article deals with variations of the reduced gradient method for general and dynamic 
linear programming. Such methods generate a monotonically improving sequence of fea- 
sible solutions; examples are the simplex method and the standard reduced gradient meth- 
od. A class of these methods and their convergence have been discussed in a recent article 
by Kallio and Porteus. 

A version of these methods has been implemented in the SESAME system. This version 
resembles the standard reduced gradient method except that only a subset of nonbasic 
variables to bechanged is  considered a t  each iteration. We have tried out several modifica- 
tions of this basic version, experimenting with moderate sized nonstructured as well as 
dynamic problems. Compared with the simplex method. the overall performance of these 
variants appears to be about equal in the case of linear programs with no particular struc- 
ture. 

For dynamic LP we have obtained some encouraging results. Although we have been able 
to experiment with only a few problems, it appears that using a specially defined starting 
basis and an initial nonbasic solution can lead to considerable savings; in one case, the 
number of iterations required by the reduced gradient method was reduced by a factor of 
8. This starting basis i s  chosen so that i t s  columns are also likely to appear in an optimal 
basis. For the initial solution, available information, such as current lwel of activities in 
real life, may be employed. 

No fair comparison was made for dynamic LP between the simplex method and the reduced 
gradient method. However, our starting basis may be used also in the simplex method, and 
therefore the results obtained may be employed immediately in the simplex method as 
well, provided that an option for obtaining a vertex solution from a nonbasic starting solu- 
tion i s  available. 

*The authors wish to thank an anonymous reader for beneficial comments end many detailed sugges- 
tions which have significantly improved our paper. 

*Currently at: 

Energy Information Administration 
U.S. Depanment of Energy, Washington, D.C. 



1 .  I n t r o d u c t i o n  

C o n s i d e r  t h e  l i n e a r  program (LP) : 

f i n d  x  E Rn t o  

(LP1) maximize c x  

(LP2) s u b j e c t  t o  Rx = b  

( L P 3 )  O Z X ' U  , 

where c ,  u  E Rn, b  E R'", and A E R~~~ i s  o f  f u l l  row r a n k .  For  

s o l v i n g  (LP) we s h a l l  c o n s i d e r  methods,  which c a n  be c h a r a c e r i z e d  

a s  f o l l o w s :  L i k e  t h e  s imp lex  method 111, t h e s e  methods move from 

one  f e a s i b l e  s o l u t i o n  t o  a n o t h e r  a t  e a c h  i t e r a t i o n ,  t h e r e b y  i m -  

prov ing  t h e  o b l e c t i v e  f u n c t i o n .  Each f e a s i b l e  s o l u t i o n  i s  a l s o  

a s s o c i a t e d  w i t h  a  b a s i s .  However, t h i s  f e a s i b l e  s o l u t i o n  need 

n o t  be an  ex t reme p o i n t  and t h e  b a s i c  s o l u t i o n  c o r r e s p o n d i n g  t o  

t h e  a s s o c i a t e d  b a s i s  need n o t  b e  f e a s i b l e .  N e v e r t h e l e s s ,  a s  

shown i n  [ 2 ] ,  a n  o p t i m a l  s o l u t i o n ,  i f  o n e  e x i s t s ,  c a n  b e  found 

i n  a  f i n i t e  number o f  i t e r a t i o n  (under  n o n d e g e n e r a c y ) .  



In  t h e  fo l low ing ,  w e  s h a l l  f i r s t  review t h i s  c l a s s  of methods 

a s  presented  i n  [ 2 ] .  The rea f te r ,  w e  d i s c u s s  an  implementat ion o f  

such methods i n  t h e  SESAME system, an  i n t e r a c t i v e  mathematical 

programming system developed by Orchard-Hays (71.  I n  t h e  l a s t  two 

s e c t i o n s  w e  s h a l l  r e p o r t  exper iments which w e  c a r r i e d  o u t  both f o r  

nons t ruc tured  and f o r  dynamic l i n e a r  programs (LP) .  

2. The C lass  of Methods 

W e  s h a l l  now review t h e  methods i n  c o n s i d e r a t i o n  a s  presented  

i n  [21. W e  c a l l  x  a system s o l u t i o n  i f  it s a t i s f i e s  (LP2),  a 

homogeneous s o l u t i o n  i f  it s a t i s f i e s  Ax = 0,  and a f e a s i b l e  so lu -  

t i o n  i f  it s a t i s f i e s  (LP2) and (LP3). I f  x  i s  f e a s i b l e  and z is 

a homogeneous s o l u t i o n ,  t hen  x + 8z is f e a s i b l e  a s  long a s  

0 < x + 8z < u,  f o r  a l l  8 E  R .  A s  8 i n c r e a s e s ,  t h e  o b j e c t i v e  

f unc t i on  i f  and on ly  i f  cz  > 0. The simplex method chooses a s  z 

one of t h e  homogeneous s o l u t i o n s  corresponding t o  i nc reas ing  t h e  

va lue  of a nonbasic v a r i a b l e  such t h a t  c z ,  t h e  reduced c o s t ,  is 

p o s i t i v e .  The methods cons idered he re  may choose a s  z a l i n e a r  

combinat ion of such v e c t o r s ,  r a t h e r  than j u s t  one. I n  p a r t i c u l a r ,  

t h e  d i r e c t i o n  may be chosen according t o  t h e  reduced g r a d i e n t  meth- 

od,  (e.g. [ l o ] ) .  A s  i n  t h e  simplex method, a new f e a s i b l e  s o l u t i o n  

is found by i nc reas ing  9 (and t h e  o b j e c t i v e  f unc t i on )  a s  much a s  

p o s s i b l e  w i thout  l o s i n g  f e a s i b i l i t y .  

The Admissible D i rec t i ons  

Before s t a t i n g  t h e  method, w e  s h a l l  d i s c u s s  how an admiss ib le  

d i r e c t i o n  is cons t ruc ted .  Let  0 denote t h e  set of  b a s i c  i n d i c e s  

( i n d i c e s  f o r  b a s i c  v a r i a b l e s ) ,  and l e t  a and y be sets of v a r i a b l e s  



at thelr lower and upper bounds at x ,  respectively; i.e. 

= ~ ( x )  = W x .  = 0 )  and 

In the simplex method, all nonbasic variables would be in a U y, 

but this is not necessarily the case here. For convenience, 

assume that the variables have been ordered so that 0 = (1,2, ..., mj 

Let B be the corresponding basis matrix, and let aJ denote the j  
th 

column of A. For each nonbasic variable j  E (the complement of 

3)  define a column vector zJ E R" componentwise as follows: 

! O 
otherwise . 

-1 j  ' Clearly, zJ is a homogeneous solution, since A Z ~ = B  (-B a ) +a3=0.  

As mentioned before, zJ serves as the direction of change in the 

simplex method, when changing the value of a nonbasic variable j. 

For the methods considered here, linear combinations of such vec- 

tors serve as such directions z; i.e., if Z = z (z3) is the na (n-m) 

matrix having vectors zJ as its columns and w is an (n-m)-vector 

of weights, then 

We shall index the components of w by nonbasic variables rather 

than the first n - m integers. Thus, reference to w .  always 
3 

carries the convention that j E 3. Taking (2) into account, the 

components w .  indicate the direction of change in the space of 
I 



nonbasic v a r i a b l e s  whi le z  is t h e  d i r e c t i o n  i n  t h e  space Rn of 

a l l  va r i ab les .  

I n  gene ra l ,  c e r t a i n  cond i t i ons  a r e  t o  be met by an admiss ib le  

d i r e c t i o n  i n  o rde r  f o r  t h e  method t o  converge: ( i ) F o r  t h e  d i rec -  

t i o n  t o  be f e a s i b l e ,  we r e q u i r e  ( f o r  a  nonbasic v a r i a b l e  j  

c u r r e n t l y  a t  i ts  bound) t h a t  w > 0 f o r  j  E a and w. < 0 f o r  
j  - I - 

j  Y . (ii) I n  o rde r  t o  improve t h e  o b j e c t i v e  func t i on ,  w e  must 

have cZw > 0. ( i i i I F i n a l l y ,  i n  o rde r  t o  prevent  zig-zagging, we 

r e q u i r e  t h a t  cz jw.  > 0 i f  w. # 0. I f  no w E R " ' ~  s a t i s f i e s  
3 3 

cond i t i ons  (i) - (iii), then t h e  c u r r e n t  s o l u t i o n  is opt ima l  f o r  

(LP) . (For a  proof ,  s e e  re fe rence  (21  J 

I n  t h e  simplex method, an admiss ib le  d i r e c t i o n  w i s  a u n i t  

vec to r  f o r  which cZw is p o s i t i v e  o r  nega t i ve  depending on whether 

t h e  p a r t i c u l a r  nonbasic v a r i a b l e  is c u r r e n t l y  on i ts  lower o r  

upper bound. For t h e  reduced g r a d i e n t  method, w i s  given by 

i 0 i f  j  E a , and czJ  < 0 , o r  

W .  = 
3 

j  E y , and czJ  > 0 , 

[czj  o therwise  . 

That is,  nonbasic v a r i a b l e s  a r e  ad jus ted  i n  p ropor t ion  t o  t h e i r  

reduced c o s t s  un less  they  a r e  c u r r e n t l y  a t  a  bound and a  f e a s i b l e  

movement o f f  from t h e  bound w i l l  not  i nc rease  t h e  o b j e c t i v e  

func t ion .  

The Basis Chanqe 

I n i t i a l l y ,  any b a s i s  can be chosen independent ly  of t h e  i n i -  

t i a l  so lu t i on .  A t  an i t e r a t i o n ,  i f  a  nonbasic v a r i a b l e  moves t o  

its bound, then we simply leave t h e  b a s i s  unchanged. Otherwise, 

a t  l e a s t  one b a s i c  v a r i a b l e  reaches its lower o r  upper bound. 



We may a r b i t r a r i l y '  s e l e c t  one of  t h e s e  t o  be t h e  l eav ing  v a r i a b l e  

L. For t h e  e n t e r i n g  v a r i a b l e ,  t h e r e  may be many cand ida tes :  any 

v a r i a b l e  e i s  a cand ida te  i f  it is c u r r e n t l y  o f f  from i t s  bounds 

( i . e .  0 < x  < ue) and 3 '  = B U {e l  - {k} i s  a l e g i t i m a t e  set of  

b a s i c  v a r i a b l e s .  I t  has  been shown i n  [ 2 ] ,  t h a t  i f  (LP) is 

nondegenerate,  t hen  such a  v a r i a b l e  e  always e x i s t s .  Implemen- 

t a t i o n  of t h e  b a s i s  change r u l e  w i l l  be d i cussed  i n  S e c t i o n  3 

i n  d e t a i l .  

The Method 

The s t e p s  of t h e  methods i n  c o n s i d e r a t i o n  can be s t a t e d  a s  

f o l l ows  : 

l o  I n i t i a l i z a t i o n :  Spec i f y  an i n i t i a l  b a s i s  ( s e t  of b a s i c  

v a r i a b l e s  3 ) .  an i n i t i a l  f e a s i b l e  s o l u t i o n  x  and t h e  co r -  

responding sets a = a ( x )  and y = y ( x ) .  

2' Spec i fy  d i r e c t i o n :  Determine a  v e c t o r  w of we igh ts  

s a t i s f y i n g  c o n d i t i o n s  (i) - (iii) above. I f  none e x i s t s ,  

t hen  s t o p  ( t h e  c u r r e n t  s o l u t i o n  x  i s  o p t i m a l ) .  

3' Determine s t e p  s ize:  Le t  be t h e  l a r g e s t  5 f o r  which 

x  + d Z w  i s  f e a s i b l e .  I f  5 = = , t hen  s t o p  ( (LP )  is  un- 

bounded) . 
4' Update: Replace x  by x  + 8 ~ w .  T h e r e a f t e r ,  

4.1' i f  any of t h e  nonbasic  v a r i a b l e s  moved t o  i t s  upper 

o r  lower bound, update  a  and y ,  and r e t u r n  t o  2 '  

(w i thou t  a  b a s i s  change) ;  

4.2' o the rw i se ,  update  a  and y , and p ick  any k E B n ( a 9 )  

' ~ c t u a l l y ,  s t anda rd  p i v o t  s e l e c t i o n  r u l e s  a r e  used. 



(a basic variable on its bound) as leaving vari- 

able. Pick e E 3 r (a nonbasic variable off 

from its bounds) such that 8 '  = 0 u (el - is a 

legitimate set of basic variables. Replace 0 by 8' 

and return to 2'. 

3. Implementation: The Basic Version 

The SESAME system was modified for adopting the features of 

the method described above. We shall describe an implementation 

which later will be referred to as the basic version. In subse- 

quent sections we report computational experience with the basic 

version as well as with several of its modifications. 

Shortly stated, the basic version is just the reduced gradient 

method modified so that only a certain subset of nonbasic vari- 

ables is considered for changing at each iteration. We shall 

first give a brief overview of the SESAME system. Thereafter, 

following the steps listed for the method in Section 2, we shall 

discuss details of our implementation. Such a discussion ought 

to be useful when we consider alternative implementations for 

these particular steps in subsequent sections. 

The SESAME System 

The SESAME mathematical programming system is a large out- 

of-core MPS with simplex algorithms and supporting procedures in 

traditional style. Its grandparentage is partly IBM's MPS/360 

and its parentage partly Management Science System's (now Ketron) 

MPS-I11 [ E l .  SESAME includes an elaborate data management exten- 

sion, called DATAHAT, which has very similar external (but not 

internal) specifications to MPS-111's DATAFORM. Both these exten- 

sions are the outgrowth of several lines of development going back 

as far as 1959 [ 6 ] .  



SESAME was designed from the beginning for use only on an 

interactive host, namely an IBM/370 operating under VM/C#S. 

While this restricts its portability, specialization to one type 

of computer enhances efficiency as with all other large MPS's. 

Both SESAME and, particularly, DATAMAT have been enhanced and ex- 

tended at IIASA, utilizing the IBM 370/168 at the CNUCE center in 

Pisa, Italy. SESAME is controlled by the user through and only 

through a remote terminal. There is no such thing as "submitting 

a job". Instead the user creates standard sequences of instruc- 

tions--at various levels--in the form of files which are then in- 

voked by a command at the terminal. The creation, modification 

and invocation of these "run" and "program" files are all performed 

interactively, as is ad hoc use of various system facilities. 

The main simplex algorithm in SESAME combines the primal, 

dual, generalized upper bounding (CUB) and separable grogramming 

all in one grocedure. It also includes bounds and ranges of 

all types, multiple and partial pricing, and a number of algo- 

rithm control switches. (Multiple pricing and suboptimization 

is permanently limited to seven columns, which becomes important 

below). Both standard MPS input and MPS-I11 extensions as well 

as another better but little-used format are accepted. Most 

models, however, are created with DATAMAT which enfiles them 

directly without an intermediate card-image form. Standard 

output of the various usual kinds is provided and, additionally, 

LP results may be enfiled directly for subsequent use with 

DATAMAT functioning as a report generator or master algorithm 

control. The system includes a number of other features which 

are of no particular pertinence here. 



Initialization of the Method 

We shall now turn our discussion to the implementation of 

our basic version of the reduced gradient method in the SESAME 

system. For the basic version, either an all logical starting 

basis (i.e. a basis consisting of slacks and artificials only) 

can be constructed or an advanced basis is loaded. The latter 

alternative is available if a basis from previous runs has been 

saved or if such a basis has been generated by other means. 

However, no crash algorithm has been employed. 

The initial solution of the basic version is the basic 

solution corresponding to the initial basis. If this solution 

is not feasible, we start Phase I in the usual way for minimizing 

the sum of infeasibilities. Thus in this case, the objective 

function coefficient is set to -1  for all variables above their 

upper bound (including artificial variable at a positive value), 

1 for all negative variables and to 0 in other cases. 

Specifying Direction 

At each iteration we consider at most k = 7 nonbasic variables 

to be changed simultaneously. In the following, this set is 

called the k-set. The maximum number of elements in the k-set 

was due to an implementation similar to one employed for a 

multiple pricing procedure in the SESAME system. In such a 

case, the alpha columns (the columns aj premultiplied by the 

basis inverse) for nonbasic variables j to be moved are stored 

explicitly, and core limitation soon becomes prohibitive for 

larger k. 

While choosing the k-set we cycle through the nonbasic vari- 

ables in a similar manner to one of the standard partial pricing 



schemes in the simplex method. We need to find, if possible, a 

set of t (standard value of t =  12) nonbasic variables, called the 

t-set, for which formula (4) of the reduced gradient method yields 

a nonzero weight w Among the t-set we choose, when possible, 
1 -  

k variables with the largest weights in absolute value. The opti- 

mum for (LP) has been obtained if the t-set is empty. 

After choosing in this way the k-set from the set of all non- 

basic variables, compute the alpha-columns for the k-set (all in 

one FTRAN pass), we set the weights according to (4) and move in 

this direction. If a nonbasic variable (one or more) encounters 

a bound, we redefine its weight according to (4) and leave the 

k-set unchanged. Otherwise, a basic variable Q having moved to 

~ t s  bound is replaced by a variable e of the k-set. Thereby the 

slze of the k-set is reduced by one element, and the alpha-columns 

and reduced costs are updated. We repeat such iterations until 

either the k-set becomes empty or the weights for all variables 

in the k-set are equal to zero. Therafter, a new k-set (of at 

most 7 variables) is chosen among the nonbasic variables as de- 

scribed above. 

Remark. Alternatively, the composite direction may be computed 

applying FTRAN on the composite column 1 w.aJ (where summation 
j I 

is taken over the k-set). This approach has been adopted in the 

nonlinear programming system MINOS by Murtagh and Saunders !U,51. 

The advantage is that the alpha-columns need not be stored nor 

computed for each j in the k-set. For large k, this is superior 

to the approach we have taken. However, for small k, this approach 

is likely to require mor work per iteration because normally a 

second FTRAN is needed to compute the alpha-column for the vari- 

able entering the basis. A fair comparison of these two alter- 

natives remains a topic of future research. 



Determining the step size 

As indicated above, the alpha-columns for all nonbasic 

variables in the k-set are stored explicitly. When a new k-set 

is chosen, an FTRAN pass is needed to compute these alpha-columns. 

Otherwise, the existing alpha-columns are just updated in the 

usual way utilizing the alpha-column of the entering variable. 

Given the alpha-columns, a composite column is computed as a 

weighted sum of these vectors, the weights being those given 

by the direction w. 

For Phase 11, the minimum ratio test is carried out using 

the composite vector as usual to determine the step size. For 

Phase I, however, there are several alternatives. The rule 

adopted in our basic version is to move as far as (i) a cur- 

rently feasible variable reaches its bound, or (ii) an infeasible 

variable, moving towards feasibility, reaches its farthest 

finite bound, whichever occurs first. 

Updating the basis inverse 

The basis inverse is stored in a product form and, given a 

leaving and an entering variable, updated exactly as in the sim- 

plex algorithm of the SESAME system. In our case, however, there 

is some freedom in choosing the entering variable. As shown by 

the following result,we may exclude from consideration all non- 

basic variables which are not in the k-set. 

Lemma. Let L E 8 be a basic variable becoming binding at the cur- 

rent iteration. Then there exists in the current k-set a variable 

e such that 8 '  = 8 U {el - {Ll is a legitimate set of basic vari- 

ables, and such that the updated price vector corresponding to 

.B' is (dual) feasible for column L. 



Proof: Let d .  be the reduced cost and 2; the element of the alpha- 
I 

column j in pivot row L ,  for each j in the k-set. If basic vari- 

able !L 1s forced to 1ts lower bound, then there must be a variable 

j in the k-set for which either d > 0 and 3; > 0 or d < 0 and 
j I 

a; < 0. O n  the other hand, if 2. is forced to its upper bound, 

there exists variable j, for which either d .  > 0 and a; < 0 or 
3 

d < 0 and a! > 0. In each case one can readily check that the 
I 

result follows.[/ 

Among all candidates e implied by this Lemma, we choose as 

the entering variable the one off bound with the largest pivot 

element. If this element is within the range of a pivot toler- 

ance (standard threshhold is 1  o - ~ )  the variable with the largest 

pivot element among all columns suggested by our Lemma is 

chosen. If both fail, this can only be due to digital difficul- 

ties, and no provision has been implemented to avoid this, 

except the possibility to change the tolerance. 

4 .  Computational Experience: General LP 

4 . 1  Test Problems 

The following test problems were considered: a tiny oil re- 

finery model (A), agricultural planning models (B) , (C) and (Dl, 

an energy supply model (E) ,  and dynamic forest sector models (F) 

and (G) . All models (B) to (G) have been developed in conjunction 

with research projects at IIASA. The forest sector models (F) and 

(GI, which have been tested more extensively in this paper, have 

been reported in [ 3 ] .  Statistics concerning these test problems 

are given in Table 1 below. 



Table 1. Sunrmary of test problems. 

Problem Rows Columns Density ( 5 )  

U . 2  Results with the basic version 

Table 2 below shows computational results of our basic ver- 

sion compared with the simplex method (as implemented in the 

SESAME system). 

In each case, we have started with an all logical basis and 

the initial solution is the corresponding basic solution. The 

initial number of infeasibilities is shown, and the number of 

iterations required for reaching a feasible solution as well as 

an optimal solution is given. Furthermore, a measure for primal 

degeneracy is given for the initial and optimal solution in terms 

of the number of basic variables equal to zero. We shall refer 

to this measure in subsequent sections. 

As a measure for computational efficiency, the number of 

iterations, or rather the number of basis changes, may be used. 

For the reduced gradient method we did not count the minor iter- 

ations when a nonbasic variable moves to its lower or upper 

bound (the case without a basis change). On the other hand, an 

iteration is counted for the simplex method, when a nonbasic 

variable is moved from one bound to another. A set of experiments 



Table 2 .  Experience with the basic version of the 
reduced gradient method compared with the 
simplex method of SESAME. 

Reduced gradient method 

Problem A B C D E F 

Initialization: 

Infeasibilities 4  5  8  0  32 13 8 1  

Basic variables 
equaltozero 13 266 48 93  21 362 

Feasible solution: 

At iteration 26 - 1700' 288 47 976  

Optimal solution: 

At iteration 28 400*  444 106 1462 

Basic variables 
equal to zero 0  3  16  10 20 

Nonbasic vari- 
ables not on 1  15 il 1  25 
bound 

Simplex method 

Problem A B C D E F 

Feasible solution: 

At iteration 23 - 1175 171 40 818  

Optimal solution: 

At iteration 25 360*  1688 293  105  1085  

*the problem was found to be infeasible. 
+run was interrupted without finding a feasible solution. 



was c a r r i e d  ou t  on Problem F ,  which showed t h a t  t h e  average CPU 

t ime pe r  i t e r a t i o n  f o r  t h e  reduced g r a d i e n t  method i s  . 8  t imes 

t h a t  f o r  t h e  simplex method. Thus, t o  make t h e  number of i t e r a -  

t i o n s  comparable measures f o r  computat ional  e f f i c i e n c y ,  t h e  i t e r a -  

t i o n  numbers i n  Table 2 f o r  t h e  reduced g r a d i e n t  method should be 

mu l t i p l i ed  by a f a c t o r  of . 8 .  

I n  o r d e r  t o  exp la in  t h i s  f a c t o r  we may cons ider  two t ypes  of 

i t e r a t i o n s :  f i r s t ,  t hose  where t h e  k-set  is  s e l e c t e d  from among 

t h e  nonbasic v a r i a b l e s ,  and second, t h e  r e s t  of  t h e  i t e r a t i o n s  

( i . e . ,  t hose  where only t h e  v a r i a b l e s  i n  t h e  k-set  a r e  cons ide red ) .  

The f i r s t  type of i t e r a t i o n  occurs  i n  t h e  s implex method when a 

mu l t i p l e  p r i c i ng  pass is c a r r i e d  ou t .  Obviously, t h e  second type 

of i t e r a t i o n  i s  cheap compared w i th  t h e  f i r s t  t ype ,  because FTRAN 

and BTRAN a r e  unnecessary ( t h e  a lpha columns and t h e  reduced c o s t s  

of nonbasic va r i ab les  i n  t h e  k-set can be updated i n  a more s imple 

and s t ra igh t fo rward  manner).  

The reason f o r  an RGM i t e r a t i o n  ( i n  our  implementat ion) t o  

be cheaper on t h e  average than a simplex i t e r a t i o n  r e s u l t  from t h e  

observa t ion  t h a t  t h e  propor t ion  of t h e  second type of i t e r a t i o n s  

is l a r g e r  f o r  t h e  reduced g r a d i e n t  method than f o r  t h e  simplex 

method. Th is  i n  t u r n  r e s u l t s  from t h e  s t r a t e g i e s  implemented. In 

t h e  simplex method a new k-set  having a t  most 7 columns is  chosen 

when t h e  reduced c o s t s  i n  t h e  c u r r e n t  k -se t  a r e  equa l  t o  ze ro  

w i th in  a to le rance.  The a c t u a l  number of columns chosen t o  t h e  

k -se t  is determined by a h e u r i s t i c  r u l e .  I n  t h e  reduced g rad ien t  

method we choose always 7 columns t o  t h e  k-set  ( i f  p o s s i b l e ) ,  and 

a new s e t  is  chosen when t h e  k -se t  is empty o r  when t h e  reduced 

c o s t s  i n  t h e  c u r r e n t  k-set  a r e  equa l  t o  ze ro  (w i th in  ze ro  to le rance ,  

which is much smal le r  than t h e  to le rance  used f o r  t h e  simplex method). 



According t o  Table 2 ,  t h e  o v e r a l l  performance of t h e  b a s i c  

ve rs i on  of t h e  reduced g r a d i e n t  method is  about  equa l  compared 

w i t h  t h e  s implex method of t h e  SESAME system. (The d i f f i c u l t y  

i n  f i n d i n g  a  f e a s i b l e  s o l u t i o n  t o  problem C  is unexpla ined.  The 

sou rce  of  t h e  model is  obscure  and no i n v e s t i g a t i o n  was p o s s i b l e ) .  

U.3. Choosing a  Nonbasic S t a r t i n g  S o l u t i o n  

Because t h e  r i g h t  hand s i d e  v e c t o r  b  normal ly  i s  a  r e l a t i v e l y  

s p a r s e  v e c t o r ,  t h e  i n i t i a l  s o l u t i o n  is h igh l y  degene ra te ,  when an  

a l l  l o g i c a l  s t a r t i n g  b a s i s  is  chosen. Th i s  i n  t u r n  r e s u l t s  i n  a  

l a r g e  number of  i t e r a t i o n s  w i t h  a  s t e p  s i z e  equa l  t o  ze ro .  The 

r a t i o  of such i t e r a t i o n s  f o r  problems B and D, f o r  i n s t a n c e ,  was 

more t han  50 pe rcen t ,  most of which occured du r i ng  t h e  e a r l y  iter- 

a t i o n s  f o r  both of t h e  methods. I n  t h e  fo l low ing  w e  r e p o r t  a  l i t t l e  

s tudy ,  where w e  cons ide r  an approach f o r  avo id ing  t h i s  phenomenon 

and i n v e s t i g a t e  whether something can be ga ined  i n  doing so.  

B a s i c a l l y ,  our  approach i s  t o  s t a r t  t h e  reduced g r a d i e n t  

method w i t h  a nonbasic  s o l u t i o n .  W e  t r y  t o  p rov ide  some motiva- 

t i o n  f o r  t h i s  approach through an  example, which h a s  been pre-  

sen ted  i n  F igu re  1. 

The o r i g i n  ( x l ,  x2 )  = ( 0 ,  0 )  i n  t h e  p i c t u r e  cor responds  t o  

t h e  b a s i c  s o l u t i o n  f o r  an a l l  l o g i c a l  s t a r t i n g  b a s i s  which i s  com- 

p r i s e d  by t h e  (columns of  t h e )  s l a c k s  si. Th is  s o l u t i o n  i s  h igh l y  

degene ra te  a s  n ine  o u t  of t e n  of t h e  b a s i c  v a r i a b l e s  a r e  equa l  t o  

zero .  There i s  on ly  one i n f e a s i b i l i t y  (s l  = - 1 0 ) .  When t h e  s tan -  

dard  s implex method o r  our  b a s i c  ve rs i on  i s  used,  e i t h e r  2 ,3 ,4 ,5 ,6 ,  

o r  7 i t e r a t i o n s  a r e  requ i red ,  depending on t h e  cho ice  of a l t e r n a -  

t i v e  p i v o t  pa ths ,  t o  reach  t h e  op t ima l  s o l u t i o n  ( x , ,  x2 )  = (10,  1 0 ) .  

For a l l  t h e  i t e r a t i o n s ,  excep t  t h e  l a s t  one,  t h e  s t e p  s i z e  i s  equa l  

t o  ze ro  and t h e  r e s u l t i n g  s o l u t i o n  i s  t h e  same a s  t h e  s t a r t i n g  s o l u t i o n .  



minimize - X1 + s1 = -10 

subject to  - 5xl + x 2  + s2 0 

- 4x1 + X2 + s3 = 0 

3x1 - X 2  + s4 = 0 

5x2 - 2x2 + s5 = 0 

2x1 - X2 + S6 = 0 

5x1 - 3x2 + 5, = 0 

3x1 - 2x2 + sg = 0 

X1 - X2 + s9 = 0 

2x1 - X2 + Q 0 

X I ,  x 2  2 0 , s > 0 for all i. i - 

Figure 1. An example of a degenerate, all logical starting basis. 



For the reduced gradient method, we may choose a nonbasic 

starting solution. For instance, we may choose the starting basis 

as above, set the nonbasic variables to any nonnegative value, and 

solve (LP2) for the basic variables to obtain a nonbasic system 

solution to start with. In particular choosing any such point, 

other than the origin, the number of iterations to reach the 

optimum is either 2 or 3, depending on the choice. Thus, it seems 

likely that starting with a nonbasic solution results in a decrease 

in.the number of iterations in this example. Notice, that the 

number of infeasibilities at such a starting solution ranges 

between 0 and 7. (For brevity, we shall not discuss the possible 

pivot paths here). 

We shall now add to our basic version the possibility of 

setting nonzero values to the nonbasic variables at the starting 

solution (given that the initial basis has already been chosen). 

Because, in general, no indication may be available as to which 

values should be used, we have implemented the possibility of 

setting the same arbitrarily chosen nonnegative value for all 

nonbasic variables. 

Table 3 below shows the effect of starting with such non- 

basic solutions. As a general observation, we may conclude that 

setting all nonbasic variables initially to a given nonzero value 

indeed yields a slight improvement (but not in that degree which 

might be suggested by our example). The number of iterations 

with a stepsize equal to zero was decreased dramatically, and 

thereby the functional value both in Phase I and in Phase I1 

improved smoothly. 
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4 .4  Improving t h e  Funct ional  Value i n  Phase I 

The f a c t  t h a t  t h e  f e a s i b l e  s o l u t i o n  generated i n  Phase I 

i s  o f t e n  a  r e l a t i v e l y  poor s o l u t i o n ,  l e d  us t o  t r y  t o  take  i n t o  

account a l s o  t h e  func t i ona l  when choosing t h e  d i r e c t i o n  i n  Phase I. 

We s h a l l  r e p o r t  such an experiment a s  we l l  a s  another  at tempt 

aimed a t  improving Phase I i n  t h e  fo l lowing.  

Our i n t e n t i o n  now is t o  spec i f y  t h e  vec to r  of  weights w f o r  

t h e  d i r e c t i o n  z = Zw i n  such a  way t h a t ,  i n  Phase I ,  improvement 

i s  made f o r  t h e  func t i ona l  value cx a s  we l l  a s  f o r  t he  sum o f  

i n f e a s i b i l i t i e s .  

1 Let  c  x  denote t h e  o b j e c t i v e  func t ion  of an ord inary  Phase I. 

We s h a l l  now rep lace  t h i s  ob jec t i ve  by (c'  + Xc)x, where A is  a 

p o s i t i v e  parameter. Each t ime, when op t ima l i t y  has been reached 

wi th  t h i s  ob jec t i ve  func t ion ,  and t h e r e  a r e  s t i l l  i n f e a s i b i l i t i e s  

l e f t ,  w e  switch back t o  t h e  ord inary  Phase I r o u t i n e  and s t a y  t h e r e  

a s  long a s  t h e  s o l u t i o n  remains opt imal  s u b j e c t  t o  t h e  modif ied 

ob jec t i ve .  Thus, t h e  technique is one ve rs ion  of t h e  "composite 

ob jec t i ve "  opt ion  ava i l ab le  i n  some of t h e  commercial MPS's. , 

The r e s u l t s  of our experiments were negat ive :  our genera l  

observat ion  was t h a t  t h e  t o t a l  number of i t e r a t i o n s  f o r  reaching 

op t ima l i t y  increased considerably;  e .g . ,  by f i f t y  per  cen t  f o r  

Problem F when t h e  s tandard  vers ion was used. Typ ica l ly ,  t h e  

pr imal  ob jec t i ve  func t ion  improved we l l  a long t h e  Phase I i t e r -  

a t i o n s ,  even reaching t h e  neighborhood of t h e  opt imal  value,  bu t  

then a  swi tch t o  t h e  ord inary  Phase I r e s u l t e d  i n  a  l a r g e  degrad- 

a t i o n  i n  t h e  func t iona l  value.  

A s  another at tempt t o  improve Phase I we implemented a pro- 

cedure f o r  choosing t h e  s t e p  s i z e  a t  each i t e r a t i o n  i n  such a  way 



that the sum of (the values for) infeasible variables is minimized. 

For the simplex method such a step-choosing technique is uncommon, 

but not new. (It has been implemented in MPS 111, for instance.) 

We denote the sum of infeasible variables as a funciton of step 

size tl by ~ ( 8 ) .  A typical picture of such a function is shown in 

Figure 2. It is a convex, piece-wise linear function whose deriv- 

ative is discontinuous at points eO, e,, e2, et cetera. At each 

of these points one or more variables become either feasible or 

infeasible. The minimization of this function, subject to the 

requirement that the nonbasic variables are not allowed to become 

infeasible, can be done easily because the information needed to 

compute the slope changes at each of the points ei, is readily 

available in the composite vector z = Zw. 

Somewhat surprisingly, the approach was also a setback com- 

pared with the basic version: suboptimization over 3 caused an 

increase in the number of iterations for reaching feasibility. 

Fiqure 2. Sum of infeasible variables as a 
function of step size. 



5. Specialization for Dynamic Linear Programminq 

In this section, further elaboration is made on choosing an 

initial nonbasic solution as well as an initial basis in the 

case of dynamic linear programming. 

5.1 The Dynamic Linear Programming Problem 

The dynamic linear programming problem (DLP) is an important 

special case of (LP). At the same time, it is known as a par- 

ticularly difficult class of LP problems. The problem can be 

stated as follows [9] : 

find x(t) and u(t), for all t, to 

(DLP1) maximize Ti1 (a(tlx(t) + b(tju(t)) + a(T)x(T) 
t=O 

S.t. 

(DLPUI u(t) > 0, x(t1 > 0 , for all t 

Here x(t) E Rnt is the vector of state variables at the beginning 

of period t, for t = 0, 1,.  . . , T, and u(t) E Rrt is the vector of 

control activities during period t, for t = 0, I , . . . ,  T-1. For 

each t, a(t) E Rnt, b(t) E Rrt, s(t) E Rmt and f (t) E Rkt are 

exteraally given vectors, and A(t), B(t), ~ ( t )  and ~ ( t )  are exter- 

nally given matrices of appropriate dimension. The initial state 

of the system is described by the vector x0 E Rn0. The objective 

function in (DLP1) is a linear function of state variables x(t) 



and c o n t r o l  v a r i a b l e s  u ( t ) .  Cons t ra in t s  (DLP2) may be c a l l e d  

t h e  s t a t e  equat ions ,  a s  they determine t h e  S t a t e  x ( t + l )  a t  t h e  

end of a  per iod  t (beginning of t h e  subsequent per iod  t + l )  g iven 

t h e  i n i t i a l  s t a t e  x ( t )  and t h e  c o n t r o l  a c t i o n  u ( t )  f o r  t h a t  per iod .  

C lea r l y ,  (DLP) i s  a s p e c i a l  case  o f  (LP). The c o n s t r a i n t  

mat r ix  A f o r  (DLP) has been i l l u s t r a t e d  i n  F igure  3 f o r  T = 3. 

Figure  3 .  A dynamic LP wi th t h r e e  t ime per iods  

Zn t h e  fo l lowing,  w e  s h a l l  experiment w i th  i d e a s  of choosing 

an i n i t i a l  b a s i s  and an i n i t i a l  s o l u t i o n ,  when t h e  reduced grad- 

i e n t  method i s  app l i ed  t o  (DLP). 

5.2. An Advanced Bas is  f o r  Dynamic LP 

For dynamic l i n e a r  programs, i t  may seem i n t u i t i v e l y  

appea l ing  t h a t  most o f  t h e  s t a t e  v a r i a b l e s  appear i n  t he  opt imal  

b a s i s .  In  f a c t ,  f o r  var ious  ve rs ions  o f  DLP Problems F and G ,  

over  90% of t h e  s t a t e  v a r i a b l e s  appear i n  t h e  opt ima l  b a s i s .  

Furthermore, w e  be l i eve  t h a t  i n  a  t y p i c a l  dynamic LP fo rmula t ion ,  

bes ides  t h e  s t a t e  equat ions  (DLPZ), t h e r e  a r e  only a  r e l a t i v e l y  

smal l  number of c o n s t r a i n t s  of e q u a l i t y  type;  i .e. ,  mbst of t h e  



c o n s t r a i n t s  (DLP3) a r e  j u s t  i n e q u a l i t i e s  which have been conve r t ed  

t o  e q u a l i t i e s  th rough  add ing  t h e  s l a c k  v a r i a b l e s .  For  Problem F ,  

95% o f  c o n s t r a i n t s  [DLP3) a r e  conve r t ed  i n e q u a l i t i e s .  For  problem 

G t h i s  r a t i o  i s  80%. 

These remarks l e d  u s  t o  c o n s t r u c t  an advanced t r i a n g u l a r  b a s i s  

which c c n s i s t s o f  (i) columns o f  a l l  s t a t e  v a r i a b l e s ,  (ii) columns 

o f  s l a c k s  f o r  i n e q u a l i t y  t y p e  c o n s t r a i n t s  i n  (DLP31, and (iii) 

a r t i f i c i a l  columns f o r  e q u a l i t y  t y p e  c o n s t r a i n t s  i n  (DLP3). An 

example o f  such  a b a s i s  co r respond ing  t o  o u r  example i n  F i g u r e  3 

is g i ven  i n  F i gu re  4 .  

F i g u r e  4 .  An advanced b a s i s  f o r  dynamic LP. 

When t h e  b a s i c  v e r s i o n  was used  f o r  Problem F and t h e  above 

c o n s t r u c t e d  b a s i s  was used a s  a s t a r t i n g  b a s i s ,  t h e  number o f  it- 

e r a t i o n s  was reduced from 1462 co r respond ing  t o  an  a l l  l o g i c a l  

s t a r t i n g  b a s i s  t o  583. When t h e  same b a s i s  was used  f o r  t h e  s i m -  

p l e x  method, o n l y  363 i t e r a t i o n s  were needed. However, when t h e  

c o n s t r u c t e d  i n i t i a l  b a s i s  was combined w i t h  an  i n i t i a l  nonbas i c  

s o l u t i o n  where a l l  t h e  nonbas ic  v a r i a b l e s  were set t o  one ,  t h e  

number o f  i t e r a t i o n s  was reduced t o  260. For  t h e  nonbas i c  v a r i -  

a b l e s  e q u a l  t o  10 and 100, t h e  r e s p e c t i v e  numbers o f  i t e r a t i o n s  



were 313 and 399. This may support our earlier conjecture in 

Section 4.3 concerning possible advantages in starting with a 

nonbasic solution. In any case, the result seems promising as 

the total number of iterations was reduced by a factor of four 

to five. 

5.3 Initial Solutions for Dynamic LP 

We already obtained a relatively encouraging result while 

using initially the constructed basis and setting the nonbasic 

variables to a constant value. We shall now experiment further 

with some straightforward ideas for setting initial values to the 

controls. 

Setting Controls to the Same Level at Each Period 

Typically in a DLP the same or almost the same set of control 

variables [as well as state variables) repeat from one period to 

another. Let us concentrate on those controls which are common 

to all periods. Initially, we may set these controls to the 

same level at each period and the rest of the controls to zero. 

At least the following two approaches may be used to determine 

an initial value for the joint set of controls: (i) We adopt the 

real current levels for those controls (provided that the system 

described by DLP already exists), or (ii) we solve first a one- 

period problem (perhaps with appropriate bounds for the final 

state variables) and adopt the values for the joint set of con- 

trols from this optimal solution. 

For the two dynamic problems F and G, exactly the same set of 

controls appear at each time period. As both of the models de- 

scribe a real forest sector, the current rates for controls were 

easily available. When the constucted basis was used initially 

and all the controls were set to their current values it took 240 



iterations to solve Problem F representing a reduction by a fac- 

tor of about 6 compared with the basic version. We should note 

that the initial solution constructed this way was not feasible: 

there were 34 infeasibilities for Problem F initially. 

The other approach (ii) for constructing initial values for 

controls was applied as well. For the first period model we re- 

quire the final state to be at least as good as the initial state; 

i.e., for each state variable for which a large value is desireable 

(e.9. wood in the forest, production capacity, etc.) the initial 

value sets a lower bound for the final value, and for other state 

variables (e.9. amount of long term external financing) the initial 

value sets an upper bound for the final value. Starting with 

the constructed basis for DLP and the controls set to the optimal 

level of the one period model resulted in 213 iterations for Prob- 

lem F, thus yielding a slight improvement over the previous ap- 

proach. Again the initial solution was infeasible. This approach 

was also applied to the larger DLP model G. The optimal solution 

was found in 3050 iterations. 

Constructing a Feasible Solution 

A relative drawback was notable in both of the previous 

attempts in trying to construct an initial nonbasic solution. 

As the inltial solution was not feasible, it appeared that the 

relatively good initial functional value got substantially worse 

during the Phase I procedure. Thus we concluded that it would be 

desirable to construct an initial solution which is also feasible. 

Indeed, as described below, we were easily able to carry out this 

task for the two test problems F and G. Of course, the generality 

of such an approach may be doubtful. However, it is the authors' 

belief that a similar approach is applicable to most dynamic 

linear programs. 



W e  s h a l l  now t u r n  t o  a case  of c o n s t r u c t i n g  a f e a s i b l e  

s t a r t i n g  so lu t i on .  For Problem F,  w e  f i r s t  set t h e  c o n t r o l s  of 

a l l  per iods  t o  t h e  op t ima l  l e v e l  of t h e  one pe r i od  model. The 

p r i n t o u t  of t h i s  s o l u t i o n  i nd i ca ted  on ly  two t y p e s  o f  i n f e a s i b i l -  

i t i e s :  one s t a t e  v a r i a b l e ,  cash ,  became nega t i ve  f o r  most t i m e  

p e r i o d s ,  and t h e  on ly  e q u a l i t y  t ype  of cons t ra in t - -o the r  t han  t h e  

s t a t e  equations--was v i o l a t e d  f o r  a l l  excep t  t h e  f i r s t  t i m e  per iod ,  

i .e. ,  t h e  corresponding a r t i f i c i a l  v a r i a b l e  appeared a t  a non- 

ze ro  l e v e l .  Th i s  e q u a l i t y  c o n s t r a i n t  d e f i n e s  t h e  p r o f i t  ( f o r  each 

t ime p e r i o d ) .  Taking i n t o  account  t h e  o b j e c t i v e  f unc t i on  it 

became c l e a r  t h a t  a p r o f i t  a s  l a r g e  a s  p o s s i b l e  was d e s i r e d  f o r  

an  op t ima l  so lu t i on .  Th i s  a l lowed us  t o  r e p l a c e  t h e  e q u a l i t y  by 

an i n e q u a l i t y ,  and consequent ly  t h e  a r t i f i c i a l  v a r i a b l e  i n  t h e  

cons t ruc ted  b a s i s  was rep laced  by a s l a c k  v a r i a b l e .  For  b r i ng ing  

t h e  nega t i ve  cash  t o  a f e a s i b l e  range w e  simply a d j u s t e d  a c o n t r o l  

v a r i a b l e  determin ing t h e  l e v e l  o f  e x t e r n a l  f i nanc ing .  A f t e r  t h e s e  

changes,  t h e  cash  was brought  t o  a f e a s i b l e  range,  a l l  t h e  new 

s l a c k s ,  corresponding t o  t h e  rowdef in ing  p r o f i t  were nonnegat ive,  

and no new i n f e a s i b i l i t i e s  appeared: i . e . ,  t h e  i n i t i a l  s o l u t i o n  

was f e a s i b l e .  

S t a r t i n g  wi th t h i s  f e a s i b l e  (nonbas ic )  s o l u t i o n  f o r  Problem 

F ,  and w i th  t h e  advanced b a s i s ,  it took 161 i t e r a t i o n s  f o r  f i n d i n g  

an  op t ima l  s o l u t i o n .  A s i m i l a r  p rocess  was c a r r i e d  o u t  f o r  Prob- 

l e m  F t o  c o n s t r u c t  a f e a s i b l e  i n i t i a l  s o l u t i o n  based on t h e  

c u r r e n t  l e v e l s  of c o n t r o l s .  The r e s u l t i n g  number of i t e r a t i o n s  

f o r  f i n d i n g  an  op t ima l  s o l u t i o n  was 180. 

Thus, when t h e  advanced s t a r t i n g  b a s i s  was used toge the r  

w i t h  a f e a s i b l e  i n i t i a l  s o l u t i o n ,  t h e  number o f  i t e r a t i o n s  f o r  

f i n d i n g  an op t ima l  s o l u t i o n  by t h e  reduced g r a d i e n t  method was 



reduced by a factor of eight to nine compared with starting with 

an all logical basis and the corresponding basic solution. 

As was noted above, an initial basis can provide a good 

starting point for the simplex method. We should point out that 

the nonbasic values could be used with the simplex method as well, 

in some cases. This is true for some commercial MPS's that have 

an option for obtaining a vertex solution from a given nonbasic 

solution. Thus our initialization strategies could be employed 

immediately by the users of such existing systems. The SESAME 

system, however, did not allow us to experiment with the simplex 

method when a nonbasic starting solution was used. 

6. Summary and Conclusions 

This paper may be seen as consisting of three parts: 

First, details of a variation of the reduced gradient method and 

its implementation is discussed in Sections 2 and 3. Second, 

computational experience as applied to general linear programs 

is reported in Section U .  Third, specialization to dynamic linear 

programs is presented in Section 5. In the following we shall 

briefly discuss each part in turn. 

(i) The SESAME system was adopted as a basis for implement- 

ation. A basic feature of our implementation is to  compute ex- 

plicitly the alpha-columns for each nonbasic variable being charged. 

Because of core limitations and for the sake of computational ef- 

ficiency, we restrict to seven, the number of nonbasic variables 

allowed to change simultaneously. If a larger number is desired, 

an alternative approach to implementation would be preferred, 

where the weighted sum of the nonbasic columns is computed prior 

to the composite alpha-column. This in turn can be inefficient 



for a small number of nonbasics variables being changed simul- 

taneously. As a topic for future study remains the question, which 

one of the two approaches is more efficient, taking into account 

both the average computational effort per iteration and the number 

of iterations (which may be influenced by the number of nonbasics 

being changed). 

(ii) In the first part of computational experiments we pre- 

sent a comparison with the simplex method for general linear pro- 

grams starting with an all-logical basis. The test problems being 

used are mainly medium sized sectoral economic models (energy, 

agricultute, etc.) developed at IIASA. According to our results, 

the overall performance of both methods is approximately the same. 

We have tested also some further modifications concerning the 

choice of an initial (nonbasic) solution and strategies for Phase I. 

Even though these did not, in general, yield an improvement for 

the reduced gradient method we felt that it would be of interest 

to report briefly our negative experience as well. In fact, fur- 

ther tuning of such strategies could well reverse the conclusions. 

(iii) The most interesting practical results have been ob- 

tained in the final part where the special structure of dynamic 

linear programs is taken into account in starting the reduced 

gradient method. We observe first that the state variables in 

practical problens are likely to appear in optimal bases. This 

suggests to initiate with all state variables in the bases. Our 

experience shows that, when such a basis is completed with logical 

variables, considerable savings can be obtained indeed. 

According to another abservation, most control variables in 

practical problems appear in all time stages. Thus we might start 

with such controls being set to the same value for each time period. 



Suitable values may easily be obtained from empirical knowledge, 

or from a single-period model (e.g., a steady-state model). A 

few experiments have been reported, where such strategies are com- 

bined with the initial basis mentioned above. Also these results 

were encouraging in that considerable further gains in computational 

effort were obtained. Using an example, we have also demonstrated 

that the controls may actually easily be chosen to yield a feas- 

ible initial solution. Because Phase I is not needed, still fur- 

ther gains can be achieved. Of course, the procedure of generating 

such feasible controls is model-specific and may not always be 

possible. 

No comparison is given with the simplex method in the case 

of dynamic LP. However, an example demonstrates a good perfor- 

mance of the simplex method when the initial basis involving the 

state variables is employed. It is likely that further irnprove- 

ment is achieved, as above, when the simplex method is initiated 

with a nonbasic solution as described. This, of course, would 

require an option to obtain a basic solution from a given non- 

basic solution. Because such an option is available in some 

commercial MPS's, the strategies we have suggested for dynamic 

LP may be immediately employed by the users of such systems. 
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T h e  Problem 

we cons ider  a t r a f f i c  network represented by a d i rec ted  graph, 

a s  i n  Fig.  1. One of t h e  nodes is designated a s  t h e  des t i na t i on .  

The planning hor izon is divided i n t o  a f i n i t e  number of d i s c r e t e  

t ime per iods.  For each t ime pe r i od ,  e x t e r n a l  i npu ts  a r e  al lowed 

a t  any node except  t he  des t i na t i on .  For each a r c ,  t h e r e  is an 

e x i t  func t ion  which r e l a t e s  t h e  amount of t r a f f i c  en te r i ng  and 

leav ing t h e  a r c  dur ing a t i m e  per iod.  Congestion is modelled ((cf. [ S ' J )  

by assuming t h e  e x i t  func t ions  t o  b e  nondecreasing, cont inuous and 

concave, a s  i n  Fig.  2. The o b j e c t  is t o  f i n d  t h e  f e a s i b l e  t r a f f i c  

flow t h a t  minimizes a c o s t  func t ion  which, t o  express the d i s u t i 1 j . t ~  

of congest ion,  is  assumed t o  be  t h e  sum of  nonnegative, nondecreasing, 

continuous convex funct ions i n  t h e  a r c  f lows.  To formulate  t h e  problem, 

w e  use t h e  fol lowing notat ion:  

G = (??,a a d i rec ted  graph: 

??= set of nodes of G; 

a= set of  d i rec ted  a r c s  o f  G; 

N = planning hor izon; 

i = index of t i m e  per iod ;  i = 0 ,  l , . . . ,N; 

j = index of  a r c  i n e ;  j = l , . . . ,a: 

q = index of node inn; q = 1, ..., n; 

n = index of des t i na t i on  node; 

~ ( q )  = ( j c g l  a r c  j leaves node q}; 

~ ( q )  = {jcgl a r c  j en te r s  node q ] ;  



~ ~ ( q )  = external input a t  node q in period i; 

x . .  = amount of t r a f f i c  (or flow) on a r c  j a t  the beginning 
l3 of period i ;  

h . . ( x . . )  = cost  of x . .  ( t h e  sum of t hese  terms i s  t o  be min im ized) ;  
1 3  1 3  1 3  

di 
= amount of t r a f f i c  admitted t o  a rc  j i n  period i: 

g . ( x . . )  = amount of t r a f f i c  t o  e x i t  from a rc  j i n  period i. 
3 13  

The basic flow equations in  the  model a r e  then 

For a piecewise l inearization1, we par t i t i on  the nonnegative 

segment of the  r e a l  l i n e  by ~ ( j )  gr id points f o r  each a rc  jclf. 

Denote these gr id points by ck so  tha t  c1 = 0 and c = -. See 
j j j 

Fig. 3 .  Let lk be the interpolat ion weight on gr id  point  k i n  
i j 

pe r i od  i ,  and g k  hk t h e  v a l u e s  o f  g  and h  a t  t h a t  p o i n t  3 '  11 j i j 
r e s p e c t i v e l y .  Then r e d e f i n i n g  c ? ( j ) =  1  , and t a k i n g  each  o f  g  K ( j )  

J j 

h K ( j )  t o  be t h e  s l o p e  o f  t h e  l a s t  segment o f  t h e  approx imat ion t o  
i j 

t h e  corresponding f u n c t i o n ,  we can exp ress  

1 
In  [ 5 ] ,  a sum-of-intervals represention of t h e  piecewise l inear-  
izat ion is used. The grid-point-interpolatibn representation 
in t h i s  paper is equivalent but is preferable fo r  data generation 
and LP solut ion considerations. . For example, exp l i c i t  upper bounds 
on a l l  variables a r e  necessary in the former but none appears in 
the  l a t t e r  formulation. 



K(j )  
x  3 t ck 

i j  =  I ij 

K(j) k k  
g .  (x. .) s t g j  ' i j  

3 l 3  k = l  

for some 2 0 ,  k = 1,  ..., K( j ) ,  with 
'i j  

and > 0 for a t  most two k;; which furthermore are 'ij 
consecutive. 

Subst i tut ing (3) i n to  (1) and (2)  w e  a r r i v e  a t  the following 

problem (P) 

minimize 

subject  to  
k=l  k=1 

+ di j  

i n 0  ,..., N - 1 ,  j P L  ,... , a (LP .1) 

i = O , . . . ,  N - 1, V q  # n (LP.2) 



and > o fo r  a t  most two k, which 
' i j  

fur thermore a r e  c o n s e c u t i v e .  

(LP -3) 

(LP. 4) 

To obtain theoret ica l  resu l ts ,  the following assumptions are 

made. 

( ~ 1 )  The arcs a re  not expl ic i t ly  capacitated. This is modelled i n  

(P) by le t t i ng  cx!j)= 1 and excluding kK( j )  from the convexity 
13 i j  

constraint in  (LP -5) . 
( ~ 2 )  dg. ( x ) / d x  = 0 for  "large" x and a l l  a rcs ,  i.e. saturation is 

3 

modelled by le t t i ng  gK(J)  = 0. 
3 

(A3) For each j. the gr id points a re  chosen such that  the nm-negative 

olopea of the piecewise linear approximation to  g are s t r i c t l y  decreasing. 
-1 

(A4) For the convex c o s t  funct ionf ,  we assume khat 

k 
(a) 0 * hij g hij k+l fo r  a l l  i, j  and k;  

(b) For each simple path containing arcs  jl and j 2 such that  



K ( j Z )  
j2 is the  a rc  c l ose r  t o  the s ink,  

hi r h1 fo r  a l l  i. 
2 

i j  1 

Such cos t  funct ions provide incent ive t o  move t r a f f i c  e f f i c i en t l y  

toward the  sink. Although condi t ion (b) may be q u i t e  r e s t r i c t i v e ,  it 

does accomodate f o r  a r b i t r a r y  network topology two c o s t  funct ions 

l i ke ly  to be usefu l  fn  practice, namely 

= 1 f o r  a l l  i, j a n d k ,  ( i )  h i j  

which g ives t h e  t o t a l  c o s t  a s  t h e  amount of t r a f f i c  

i n  t r a n s i t  summed over t h e  planning horizon; and 

which g ives t h e  t o t a l  cos t  a s  t he  amount o f  t r a f f i c  

remaining i n  t he  network by the  end of t he  planning 

horizon . 



Agreement o f  G loba l  Optima 

Except fo r  t he  l a s t  cons t ra in t  (OSP) which is ca l l ed  the  ordered 

so lu t ion  property, (P) is a l i nea r  programming (LP) problem (cf.  [l] .) . 
However, due t o  (OSP) t h e  problem is nonlinear and nonconvex. ~f 

(LP.0-LP.5) i s  s o l v e d  a s  a  LP b u t  t h e  o p t i m a l  s o l u t i o n  d c e s  n o t  

s a t i s f y  (OSP), t hen  i t  migh t  a p p e a r  t h a t  one  must  r e s o r t  e i t h e r  

t o  b r a n c h  and bound t e c h n i q u e s  ( s e e  e . g . [ 2 ] )  which a r e  c o m p u t a t i o n a l l y  

v e r y  exp5ns i ve .  o r  t o  o r d e r e d  b a s i s  e n t r y  p r o c e d u r e s  i n  t h e  s i m p l e x  

method ( s e e  e .g .  [ 3 ] )  which do n o t  g u a r a n t e e  g l o b a l  o p t i m a l i t y .  T h i s  

p a p e r  p r e s e n t s  a  more e f f i c i e n t  app roach .  

Based on assump t i ons  A1-A4, t h e  f o l l o w i n g  r e s u l t s  a r e  i n f e r r e d  

f rom r e p e a t e d  a p p l i c a t i o n  o f  Lemma 1 i n  [S ] .  

k 
Lemma a. I f  y = [ A i j ,  d 1 is a feas ib le  solut ion t o  (IP -1 - LP. 5) 

i j  

t h a t  v io la tes  (OSP) f o r  i = r and j  a ,  then the re  e x i s t s  a feas ib le  

-k 
so lu t ion  y = (Aij, . . t o  (LP.1 - IP.5) t h a t  d i f f e r s  from y only 

11 

f o r  i 2 r and f o r  a r c s  j on p a t h s  beg inn i ng  v i t h  a r c  s. x g i v e n  b y '  
rs - 

X i n  ( 3 )  e q u a l s  Zrs g i v e n  by A .  y s a t i s f i e s  (OSP) f o r  i-r and j-s a s  

w e l l  a s  t h e  c o n d i t i o n s  in'Lemma B  and Lemma C.  

Lemma B. For a l l  q c a  and i = 0,1 , .  . . , N ,  t he  t o t a l  flow t h a t  reaches 

node q on o r  before period i is a t  l e a s t  a t  g rea t  f o r  y a s  f o r  y i n  

Lemma A. 

Lemma C. The c o s t  (LP.0) f o r  3 is no greater  than t h a t  f o r  y i n  

Lemma A. 



From repeated appl icat ions o f  Lemmas A and C,  it fo l lows 

that there exists on opt imal solut ion t o  (LP.0-LP.5) that  sat isf ies 

(OSP),  hence is an opt imal so lu t ion  to (PI. This  agreement of 

the g loba l  opt imum value for the two prob lems shows, in part icular,  

that  (P)  a t ta ins  a global  opt imum. 



A S u f f i c i e n t  Cond i t ion  f o r  Opt i rnal i ty  

W e  now show how a  s o l u t i o n  t o  (P) can b e  o b t a i n e d  by s u c c e s s i v e  

o p t i m i z a t i o n  o f  a t  most N+l o b j e c t i v e  f u n c t i o n s  s u b j e c t  t o  (LP.1 - 
LP.5). 

L e t  S  b e  t h e  s e t  o f  op t ima l  s o l u t i o n s  t o  (LP. 0 - LP. 5) .  S 

is nonempty because  t h e  a r c s  a r e  n o t  e x p l i c i t l y  c a p a c i t a t e d  and t h e  

c o s t  is bounded from below by ze ro .  S .has  i n  g e n e r a l  more than one 

e lement  because  w i t h o u t  e n f o r c i n g  (OSP) t h e  g r i d  p o i n t  i n t e r p o l a t i o n  

is n o t  unique. L e t  SNc S b e  t h o s e  s o l u t i o n s  i n  S which maximize 

N a K ( j )  Lk 
G ~ ( A )  5 C C C g . c  

i=1 j=l k=1 J j i j '  

I n  g e n e r a l ,  l e t  S c o n s i s t  o f  t h o s e  s o l u t i o n s  i n  S which maximize 
t t +  1 

G (A) r e p r e s e n t s  t h e  t o t a l  amount o f  t r a f f i c  l e a v i n g  a l l  t h e  a r c s  t 

up t o  t h e  end o f  t i m e  p e r i o d  t. m u i v a l e n t l y ,  it g i v e s  t h e  t o t a l  

amount o f  t r a f f i c  reach ing  a l l  t h e  nodes d u r i n g  o r  b e f o r e  p e r i o d  t. 

BY the l ineari ty of (LP.0-LP. 5)  and Gt w e  have 

k Theorem. If y = [ A i  j, d .  . I  c S1, t h e n  y  is a  s o l u t i o n  to (P) . 
1 3  

k Proof .  It s u f f i c e s  t o  show t h a t  YES i m p l i e s  t h a t  [X . .) s a t i s f i e s  
1 11 

(oSP). Suppose n o t ,  and t ha t  f I :  v i o l a r e s  (oSP) f o r  1 = 1 ,  j = I .  



Then by  Lemma A ,  t he re  e x i s t s  = ~ t ~ ,  z. . ]  t h a t  s a t i s f i e s  (OSP) 
11 

f o r  i - r ,  j - s, such t h a t  X P z  where  
r s  rs 

By Lemmas B and C ,  Yesl = ... Sr 5 ... ,SN E S. 
-- 

K ( j 1  
k k  is piecewise l i n e a r  concave, v i o l a t i on  o f  S ince  C g j  c j  i j  

kol 
(oSP) under assumption ( ~ 3 )  always s t r i c t l y  underest imates its value. 

Therefore 

L e t  q be t he  node t o  which a r c  s po in ts .  By Lemma A, y and y 
8 

do no t  d i f f e r  on o the r  a r c s  po in t i ng  t o  qS i n  per iod  r, nor on any 

a r c  f o r  i C r. Hence 

con t rad i c t i ng  t he  hypothes is  t h a t  yoS1, C Sr. 



An Example 

Consider the fo l low ing  numerical example of (P) wi th  

= l  
hij 

; a l l  i , j , k  

I 100 ; i = O , q = l  ri (q) = ; otherwise. 



Three solutions to (LP.0 - LP.5) are taburated belo.4, where an 

asterisk denotes an optimal value. 

Y3 Y2 Solution 
Y1 

X 
1 
11 

X 
2 
11 

X 
1 
12 

X 
2 
12 

X 
1 
13 

X 
1 
2 1 

50 

50 

0 

0 

0 

50 

50 

0 

50 

0 

0 

0 

0 

50 

0 

50 

0 

50 

X 
2 
21 

0 
I 

0 

O 

0 

50 

200' 

150 

50 

YES 

0 

I 
50 

0 

0 

200* 

100 

0 

NO 

X 
1 
22 

X 
2 
2 2 

X 
1 
2 3 

G3 

G2 

G1 

OSP 

0 

0 

100 

200* 

200* 

loo* 

YES 



W e  remark that  a l l  th ree so lu t i ons  opt imize (Lp.0). ylcS1, 

hence s a t i s f i e s  OSP. y#S1 and v i o l a t e s  OSP. However, y&S1 but 

st i l l  s a t i s f i e s  OSP. Th is  i l l u s t r a t e s  tha t  t h e  condi t ion o f  the 

theorem is s u f f i c i e n t  but not  necessary.  



A Successive Linear O~ t im iza t i on  A 1 c ; o r i t h m  

TO obtain a global  minimum of ( P I ,  the  fol lowing algori thm can 

be used. An as te r i sk  denotes an op t i na l  value. 

Step 1. Minimize G subject  t o  (LP.1 - LP.5) t o  obta in G* 
N+ 1 

N+ 1 
S e t  t = N+1. 

Step 2. Test fo r  OSP), s top  if sa t i s f i ed .  

Step 3. Add new const ra in t  

(c.. ti) 

maximize Gt-l sub jec t  t o  (LP.l - LP.5) and (c.t - c.bT+l) 

* 
t o  obtain G 

t-1 ' 
Set  t = t-1 and re tu rn  t o  Step 2. 

Note t h a t  the  so lu t ion  obtained a t  t h e  end of each s t e p  provides 

a feas ib le  s t a r t i n g  solut ion for t he  next s t e p  i n  the  above algorithm. 



Computational Ex~e r ience  

Implementation of t h e  algorithm is very simple,as any ava i lab le  

LP code can be adapted t o  perform the  successive optimization6. The 

e f f i c iency  of t he  algorithm can be measured by the amount. of computation 

i n  Steps 2 and 3 r e l a t i v e  t o  t h a t  i n  Step 1. Admittedly, even wi th 

good s t a r t i n g  f e a s i b l e  so lu t ions ,  t h e  so lu t ion  of N addi t ional  LP's 

may sti l l  be  cos t l y  when N is large. To gain some ins igh t  i n to  t h i s  

aspect  of t he  algorithm we repo r t  compntational experience on a t e s t  

problem w i t h  t h e  f o l l o w i n g  c h a r a c t e r i s t i c s :  

number of nodes n = 7  

number of a rcs  a = 12 

number of per iods N = 10 

number of g r i d  po in ts  K ( j )  = 4, j = 1, ..., 12 

The network f o r  t h e  t e s t  problem is  d e p i c t e d  i n  F igu re  1 .  The e x i t  

funct ions f o r  t h e  a rcs  a r e  given i n  T a l e  1. Five cases a r e  con- 

s idered by varying t h e  ex te rna l  inputs t o  t he  nodes a s  given in Table 2- 

Each case g ives rise t o  a LP with 

311 rows 

791 columns 

3683 nonzero coef f i c ien ts  , and 

1.5% density.  



A For t ran  implementation o f  t h e  r e v i s e d  simglex method w i th  inve rse  

i n  product  form ( s e e  e.g. [41)  has been adapted t o  t e s t  f o r  (oSP) 

and t o  c o n t r o l  t h e  success ive  opt imizat ions. .  Table 3 records  t h e  

number o f  s t e p s  requ i red  be fo re  a s o l u t i o n  w i th  (OSP) is obtained. 

Tab le  4 records  t h e  number of s implex i t e r a t i o n s  and CPU t i m e  in-  

volved in each s tep .  I n  each case ,  s t e p  1 was i n i t i a t e d  wi th  an 

a l l - l o g i c a l  (o r  a r t i f i c i a l )  .bas is .  A l l  CPU t imes repor ted  a r e  on 

a CDC 7600, excluding d a t a  i n p u t  b u t  i nc lud ing  (OSP) t e s t i n g .  

Based on t h e s e  computat ional  r e s u l t s ,  t h e  fo l lowing observa t ions  

are made. It i s  only when t h e  network is extremely over loaded t h a t  

a s i g n i f i c a n t  number of  success ive op t im iza t ions  is requ i red  

t o  o b t a i n  a s o l u t i o n  wi th (OSP). I n  such cases  (e.g. I and I1 f o r  

our test model), s o  much t r a f f i c  never reaches t h e  s i n k  t h a t  it mat ters  

l i t t l e  whether c e r t a i n  a r c s  move t h e i r  charges a long according t o  t h e  

wit  f unc t ions ,  o r  l e t  them s t a l l  t hus  v i o l a t i n u  (OSP). I n  more 

r e a l i s t i c  c a s e s ,  even wi th s u b s t a n t i a l  congest ion i n  t h e  a r c s  o v e r  

va r ious  t i m e  per iods ,  very few s t e p s  a r e  requ i red.  ~ y p i c a l l y ,  

maximization of  t h e  t o t a l  t r a f f i c  throughput (G ) s u f f i c e s ,  a s  w i t h  N 

cases  111, IV, and V f o r  ou r  t e s t p r o b l e m .  In  any case ,  one can expedt 

t h e  t o t a l  computat ional  e f f o r t  t o  b e  very  s igni-r ' icant ly l e s s  than 

N + 1 t i m e s  t h a t  f o r  t h e  i n i t i a l  LP. Exper ience w i th  o t h e r  more 

complex t e s t p r o b l ~ s ( u p  t o  25  nodes. 65 a r c s  and 10 per iods )  agrees 

wi th  t h e  above observat ions and sugges ts  t h a t  success ive  l i n e a r  op- 

t im iza t ion  is an e f f i c i e n t  approach t o  t h e  dynamic t r a f f i c  assignment 

problem. 



F ig .  1. Network for the T e s t  Problem 



Fig.  2.  A t yp ica l  exit funct ion for  an arc 

F ig .  3 .  Piecewise l i near i za t ion  o f  an e x i t  function 
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Table 1 

Exit Functions for Test Problem 

Table 2 

Node Input for the F i v e  Cases. 

CASE 

I' 

1- I1 

I11 

N 

v 

r i (q) ,  i=l,. . . , 10, -1,. - -, 6 

30 

2 0 

17.5 

15 

10 



OSP \ 
Violations 
A f t e r  O p t i m i r  i n h  

Tab le  3 

The N u m b e r  of S t e p s  R e q u i r e d  to O b t a i n  O S P  



Tab le  4. 

S o l u t i o n  S t a t i s t i c s  
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AN EFFICIENT ALGORITHM FOR UPDATING THE BASIS I N  
BICOMPONENT LINEAR PROBLEMS 

K.V. Kim, B.R. Frenkin, B.V. Cherkassky 

Central Economic Mathematical Institute 
USSR Academy of Sciences 
Moscow 

In this report we consider the bicomponent problem of linear programming. In such prob- 
lems each variable enters not more than two constraints. A basis updating procedure of 
maximal efficiency is suggested for the problem. Special list structures used in the proce- 
dure enable us to scan only those basis elements whose characteristics are updated. 



1. INTRODUCTION 

This paper reports on an efficient algorithm for basis 

manipulation in generalized transshipment problems of linear 

programming (LP). These b i c o m p o n e n t  problems form a special 

class containing not only flow problems but also LP problems 

having not more than two non-zero elements in each column of 

the constraint matrix. The paper suggests an algorithm for 

updating the basis for these problems with maximal efficiency. 

The development of basis-updating algorithms is based on 

the assumption that the matrix of constraints is sparse. At 

first we tried to develop a basis-updating procedure requiring 
2 0 (m) instead of 0 (m operations, where m is the number of con- 

straints. If the size of a problem increases, the percentage 

of nonzero elements of its matrix usually decreases, and only 

a small part of the basis variables change during one simplex 

iteration. Thus in solving large-scale problems it would be 

desirable to have a basis-updating procedure requiring fewer oper 

ations than O(m). It is however evident that a lower bound for 

the number of operations in basis-updating procedures exists. Let 

X,Y denote primal and dual variables and AX, AY denote increments 

of these variables during one simplex iteration. Let d be the 



number of nonzero elements in vectors AX and AY. It is evident 

that we need no less than O(d) operations to update the basis. 

An algorithm requiring O(d) operations may be called vz i rna l -e f f ic tmt .  

It is interesting to know whether maximal-efficient algorithms 

for different classes of linear problems exist. The efficiency of 

the algorithm depends of course on the data structure used. Thus if 

AX and AY are stored as simple vector arrays, the algorithm with 

such data structure cannot be maximal-efficient because we need 

no less than O(m) operations to find nonzero elements of these 

arrays. 

Bicomponent problems form a class of LP problems for which 

a maximal-efficient algorithm for updating the basis exists. 

In this paper we present this algorithm. 

2. THE STRUCTURE OF THE BASIS GRAPH 

The design of efficient algorithms is based on the graphic 

representation of bicomponent problems. The nodes of  the basis 

graph correspond to the rows of the basis matrix and the edges 

to the columns. Thus all basis information may be presented as 

basis graph characteristics. The endpoints of the basis edge 

are the row numbers of nonzero elements of the corresponding 

column. Vectors X and AX also correspond to edges. Dual vari- 

ables Y and 5Y correspond to nodes of the basis graph. Scanning 

the vectors and all computations connected with these vectors may 

be interpreted as scanning the nodes and edges of the basis graph. 

Updating the basis information during one simplex iteration 

begins with computation of the vector AX. Its nonzero elements 

form the set of edges we must scan; we shall call them working 

edges.  At the end of the simplex iteration we compute the vector 

AY for changing the vector Y. The nonzero elements of AY form 

the set of nodes we must scan; we shall call them working nodes.  

We need to have direct access to working nodes and edges, 

and can realize this direct access using the special structure 

of the basis graph. Generally, the basis graph of a bicomponent 

problem contains m nodes and m edges. The basis graph does not 

contain isolated nodes and the endpoints of each edge belong to 



our  s e t  of nodes. The b a s i s  graph t h u s  c o n t a i n s  one o r  more 

connected components, and each connected component c o n t a i n s  j u s t  

one cyc le .  The case  where we have a one-element column i n  t h e  

source  problem ( f o r  example, t h e  u n i t  column of t h e  a r t i f i c i a l  

b a s i s )  may be reduced t o  t h e  g e n e r a l  case .  For t h e  purpose of  

t h i s  r educ t i on  we must t a k e  an a r t i f i c i a l  node i0 and form an 

a r t i f i c i a l  c y c l e  w i th  t h e  he lp  of t h e  l oop  ( iO,iO). I n  t h i s  c a s e  

one of  t h e  connected components w i l l  always c o n t a i n  t h e  a r t i f i -  

c i a l  node. I n  a pure  t ranssh ipment  problem t h e  a r t i f i c i a l  node 

is u s u a l l y  t h e  r o o t  of  t h e  b a s i s  t r e e .  F igure  1 shows t h e  

gene ra l  s t r u c t u r e  of  t h e  b a s i s  graph.  

F igu re  1 .  The s t r u c t u r e  of t h e  b a s i s  graph 

3.  THE SET OF WORKING EDGES 

The set of working edges  is d e f i n e d  i n  a unique way a f t e r  

f i n d i n g  t h e  new b a s i s  column. The new b a s i s  column cor responds  

t o  t h e  new b a s i s  edge ( k , j ) .  I n  t h e  b a s i s  graph t h e  working 

edges  form a 5 I - 2 c l z  s t r u c t u r e  c l osed  by t h e  new edge. The b i -  

c y c l e  is a connected subgraph c o n t a i n i n g  two c y c l e s  and t h e  new 

edge and no t  having t e rm ina l  nodes (F igu re  2 ) .  

F i gu re  2. Forming a b i cyc le  



Nonzero elements of X must be computed and t h e  vector  X 

must be changed dur ing a  l i n e a r  scan of t h e  b icyc le  edges. For 

performing such a  scan, the  s t r u c t u r e  of t h e  b a s i s  graph i s  re-  

presented by a  forward List ( a l s o  c a l l e d  a  predecessor L i s t ) .  This 

i s  an a r ray  of re ferences p ( i ) ,  where i and p ( i )  a r e  t h e  endpoints 

of the b a s i s  edge. I f  i does no t  belong t o  t h e  cyc le ,  then p ( i )  

is t h e  nearest  node on t h e  path from i t o  t h e  cyc le .  I f  i belongs 

t o  t h e  cyc le ,  then p ( i )  is  t h e  next  node on t h e  cyc le  according 

t o  a  p a r t i c u l a r  cyc le  o r ien ta t i on .  The re ference p ( i )  po in ts  

ou t  t h e  p a r t i c u l a r  o r i e n t a t i o n  of t h e  bas is  edge ( i , p ( i l )  

(F igure 3 ) .  

Figure 3. The o r i e n t a t i o n  of b a s i s  edges 

We a r e  in te res ted  i n  t h e  a lgor i thmic  sense of t h i s  o r ien ta t i on .  

Stor ing t h e  bas is  graph wi th t h e  help of t h e  forward l i s t ,  we 

point  ou t  d i r e c t l y  on ly  one endpoint of t h e  b a s i s  edge, i . e . ,  

p ( i ) .  The o the r  endpoint i i s  ind ica ted by t h e  i - t h  pos i t i on  i n  

t h e  a r ray  p. The edge ( i , p ( i ) )  thus becomes connected wi th t h e  

i - t h  node; t h a t  is, a l l  information connected with t h i s  edge is 

addressed by t h e  index i. This i nd ica t ion  ensures d i r e c t  access 

t o  t h e  b icyc le  edges when w e  go down t h e  re ferences of t h e  forward 

l ist.  L e t  ( k , j )  be a  new edge added t o  the  b a s i s  graph. We begin 

t o  scan t h e  b icyc le  from the node k. We l a b e l  t h e  node k equal  

t o  l : t ( k ) : = l .  Going down t h e  forward l i s t ,  w e  execute t h e  s t a t e -  

ment i : = p ( i ) .  The node i = p ( k )  is  thus t h e  next node t h a t  we 

should scan. This node g e t s  a  l a b e l  equal  t o  2 : t ( i ) : = 2 ,  and so  

on, u n t i l  we t r y  t o  scan a  node labe led e a r l i e r .  We s h a l l  c a l l  



this node s the f i r s t  c t o s u r e .  We then begin to scan nodes from 

the node j going down the forward list up to the first labeled 

node denoted by t. The node t is the second c l o s u r e .  In this 

case the nodes being scanned get negative labels: E(j):=-1; 

2(p(j) I:=-2, and so on. Depending on the relation between L(s) 

and E(t), we have three variants of the bicycle structure 

(Figure 4) . 

k j 
(a) C(t) < 0 e=- 

s t k j 

Figure 4. Three variants of the bicycle structure 

Before constructing the bicycle, the new basis variable is 

given unit value. Other nonzero elements of AX are computed from 

the constraint equations when we scan the bicycle edges. These equa- 

tlons are not satisfied at the closures. Hence we must correct the 

vector AX on the edges of the cycle. To perform this correction, we 

must scan the cycles again. The remaining work necessary for 

changing basis variables and deleting an old edge from the basis 

graph may be performed by repeatedly going down the forward list 

from nodes k and j to closures s and t. It can easily be shown 

that for all the work described we need no more than 0 (dl) 

operations, where d, is the number of bicycle edges. To update 



t he  forward l is t ,  we must change t h e  o r i e n t a t i o n  of b a s i s  edges 

on the  pa th  from t h e  new edge t o  t h e  edge t h a t  has  been d e l e t e d  

(F igu re  5 ) .  

F igu re  5. The r e o r i e n t a t i o n  of t h e  b a s i s  edges 

U. THE SET OF WORKING NODES 

A t  t h e  end of a simplex i t e r a t i o n  w e  must change t h e  vec to r  Y .  

The elements of AY may d i f f e r  from ze ro  on ly  i n  t h e  nodes preceding 

t h e  new edge: t h a t  i s ,  going from these  nodes down t h e  forward 

l i s t ,  w e  must pass  t h e  new edge. I f  w e  want t o  change t h e  v e c t o r  Y 

e f f i c i e n t l y ,  w e  must s t o r e  in fo rmat ion  about  t h e  predecessors  i n  

each node. S to r i ng  t h e  in fo rmat ion  i n  d i r e c t  form does  n o t  s o l v e  

t h e  problem because w e  need too  much t ime t o  update  t h i s  in fo rmat ion .  

Spec ia l  information about  t h e  predecessors  incorpora ted  i n  a backward 

: t s z  is used i n  e f f i c i e n t  a lgor i thms.  Let  u s  cons ide r  t h e  back- 

ward l is t  f o r  one connected component. A t  f i r s t  it c o n t a i n s  an  

a r r a y  of r e fe rences  q ( i ) ,  which enab les  u s  t o  scan a l l  t h e  nodes 

of the  component. Beginning from a node i and execut ing  t h e  

s ta temen t  i : = q ( i ) ,  w e  should f i r s t  scan t h e  p redecesso rs  o f  i: 

t h l s  must be e f f e c t e d  f a r  each node. F iqure  6 show3 an admissible 

orde r  of scannlnq.  One can c o n s t r u c t  t h i s  o rde r  by moving 

i n  t h e  b a s i s  graph according t o  t h e  l a b y r i n t h  r u l e  and d e l e t i n g  

t h e  nodes being passed f o r  t h e  second time on t h e  way back. 



F igu re  6 .  Going down t h e  backward l i s t  

Let  ( k , p ( k ) )  be a new edge i n  t h e  updated b a s i s  graph. The set 

of working nodes precedes  t h i s  edge. Thus w e  must s t a r t  from 

node k t o  scan a l l  working nodes. I f  t h e  new edge belongs t o  

t h e  c y c l e ,  t hen  a l l  nodes of  ou r  connected component a r e  working. 

I n  t h i s  c a s e ,  w e  must go down t h e  backward l is t  back t o  t h e  s t a r t i n g  

p o i n t  k. I f  t h e  new edge does  no t  belong t o  t h e  c y c l e ,  t hen  t h e  

s e t  of  working nodes forms a branch roo ted  i n  k. I n  t h i s  c a s e ,  

w e  w i l l  e v e n t u a l l y  be a b l e  t o  s t o p  going down t h e  backward l i s t  

be fo re  reach ing  k. To s o l v e  t h i s  problem, t h e  backward l i s t  must 

c o n t a i n  n o t  on ly  t h e  a r r a y  of r e f e r e n c e s ,  b u t  a l s o  an a u x i l i a r y  

a r r a y  f ( i ) .  There a r e  many v a r i a n t s  of  in fo rmat ion  s t o r e d  i n  t h i s  

a r r a y ,  i nc l ud ing ,  f o r  example, 

( a )  f ( i) -- t h e  number of t h e  l a s t  node of t h e  branch 

roo ted  a t  i 

( b )  f ( i )  -- t h e  number of nodes i n  t h i s  branch 

( c )  f ( i) -- t h e  d i s t a n c e  from i t o  t h e  cyc le .  

I n  our  a l go r i t hm,  f ( i l  is t h e  degree  of node i dec reased  by two. 

I t  can e a s i l y  be shown t h a t  t h e  sum of  f ( i )  on t h e  branch roo ted  

a t  i i s  g r e a t e r  than o r  equa l  t o  zero  i f  t h e  branch is  n o t  com- 

p l e t e l y  scanned and becomes l e s s  t han  ze ro  i f  t h e  l a s t  node of 

t h e  branch is scanned. Going down t h e  backward l is t ,  w e  must 

t h u s  sum up t h e  va lues  of  f ( i )  and s t o p  when t h e  sum becomes less 



than zero. Significantly, updating this backward list does not 

take more than O(d,) operations during one simplex iteration. 

Let d2 denote the number of working nodes. Changing the vectors 

X and Y and updating the forward and backward lists thus takes 

O(dl) + O(dZ) operations. Hence our algorithm may be called 

maximal-efficient. 

5. AN AVERAGE OPERATION NUMBER HYPOTHESIS FOR PIVOTING IN 

LARGE-SCALE PROBLEMS 

The time required to solve large-scale problems depends on 

the number of simplex iterations. Generating a good starting 

solution for a bicomponent problem is not a very important dif- 

ficulty because values of dl and d2 for an artificial basis are 

very small and starting iterations are performed quickly. One 

simplex iteration consists of selecting an incoming variable by 

pricing and updating the basis. By using efficient algorithms, 

the time required to update the basis decreases considerably. 

The choice of pricing strategy is also important. As pointed 

out in [4], the choice of a good pricing strategy is an art for 

large-scale problems. We believe that this problem requires 

special research. For example, everyone knows that selecting 

the "most negative" variable to enter the basis is bad because 

we spend too much time on pricing. 

It is interesting to estimate the average number of operations 

involved in a pivot. We suppose the number of operations depends 

on the branching of the basis graph. If the basis graph is a 

cycle, then it has no branches and dl  + d2 = O(m), i.e., the 

estimation is bad. If the basis graph is a star, then d l  + d2 

does not depend on m and the estimation is good. In speaking 

about "average branching", we imagine a complete binary tree. 

If we suppose a complete binary tree to be a basis graph, then 

an average number of working edges is O(log m). It can easily 

be shown that an average number of working nodes is also O(log m). 

Thus we suggest the hypothesis that an average number of opera- 

tions for pivoting in maximally efficient algorithms grows like 

log m. 



6. THE NONCYCLING MODIFICATION OF THE ALGORITHM 

we can easily exclude the possibility of cycling in flow 

problems. Transshipment and generalized transshipment problems 

are flow problems. The bicomponent problem is a flow problem if 

in each column one nonzero element is positive and the other is 

negative. In this case, the variables may be interpreted as a 

network flow with gains. The nonzero elements of AX may be 

interpreted as the correcting flow on the bicycle edges. The 

orientation of the correcting flow depends on the orientation of 

the new edge. The source and the sink of the correcting flow are 

the possible algorithm closures. The closures come at the source 

or the sink because of circulation in the basis cycle. If we go 

down the entire cycle with a certain orientation, then the flow 

increases and the closure is at the source. If we go down the 

entire cycle with another orientation, then the flow decreases 

and the closure is at the sink. As shown in Figures 7(a) and 7(b), 

if the new edge is oriented from k to j ,  then the closure s must 

be the source and the closure t must be the sink. Let us move 

around the bicycle from the source to the sink. Then cycling is 

impossible if two rules are followed: 

1 .  In the starting basis, all degenerate flows are 

oriented to the cycle: 

2. If we have several edges that we may delete, then we 

delete the first edge encountered in moving around the 

bicycle from the source of the correcting flow to its 

sink (Figures 7 (a) and 7 (b) ) . 

Figure 7. The order of search for the edge deleted 

from the basis graph 



Rule 2 can be simplified for pure transshipment problems. In 

such cases, the basis graph is a tree and the correcting flow 

circulates in the cycle formed by the new edge. Thus we have 

just one closure, which is simultaneously the source and the 

sink of the correcting flow. In this case, Figure 7 shows the 

order of search for the deleted edge. 

7. CONCLUSION 

The algorithms described for the pure transshipment problem 

were developed in the USSR in 1972 for soliing large-scale prob- 

lems in the development and placement of plants, taking into 

account the cost of transportation. Linear and nonlinear prob- 

lems were considered. Sometimes it was necessary to modify 

supplies, demands, and cost coefficients and to reoptimize many 

times. The maximal-efficient primal code was good for these 

applications. In 1974 the general description of maximal-efficient 

algorithms for bicomponent problems was presented in [ I ] .  These 

algorithms are now used in many codes. In particular, they are 

implemented in a code library for solving transportation problems 

in PL/1 and FORTRAN. This library is popular in the USSR. The 

design of a noncycling algorithm [ 21  is more interesting from 

the theoretical than from the practical point of view: however, 

it guarantees the finiteness of the code execution. Similar 

efficient algorithms for pure transshipment problems have been 

presented independently in other papers, as, for example, [ 3 1  

and [Y]. 
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SOME TECHNIQUES TO IMPROVE THE EFFICIENCY OF SOLVING 
LINEAR PROGRAMMING PROBLEMS* 

U.H. Malkov, G.G. Padchin, N.A. Sokolov 

Central Economic Mathematical Institute 
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Moscow 

Further improvements to the simplex algorithm with the multiplicative form of the inverse 
and in obtaining greater efficiency in solving LP problems are possible in the following 
directions: 

Reducing the required iterations by using new fast algorithms to obtain an initial 
solution. We use an iterative algorithm which seeks a saddle point of the augmented 
Lagrangian and uses a vector of updated penalty coefficients. 

Taking into account the specific features of particular problems. 

In this paper we first construct a special algorithm for obtaining an initial solution to an 
irrigation model. Second, in the framework of the multiplicative form of the inverse we 
implemented a specific simplex algorithm for the problem. 

'Paper presented to the Workshop by K.V. Kim. 



The simplex method is currently a rather efficient technique 

(in terms of running time, reliability, and the size of problems 

to be solved) for solving linear programming (LP) problems. Ac- 

cording to specialists, the best algorithm (as far as running 

time, compactness, and accuracy are concerned) is based on tri- 

angular (LUI decomposition of the basis matrix and on the trian- 

gular multiplicative factorization of the inverse basis matrix. 

We believe that it is possible to improve the multiplicative 

algorithm and to solve LP problems more efficiently by: 

1. reducing the number of iterations required through 

using more powerful algorithms to obtain initial 

solutions 

2. taking into account the specific features of a problem 

3. increasing the reliability of the algorithm through 

using more efficient techniques to handle "ill- 

conditioned" problems. 

One promising approach for obtaining a good initial solution 

is based on iterative algorithms. Professor E. Gol'shtein and 

his colleagues are studying iterative methods of solving LP prob- 

lems at the Central Economical Mathematical Research Institute 

(CEMI) of the Academy of Sciences of the USSR. 



Good r e s u l t s  a r e  achieved by using an i t e r a t i v e  algori thm 

which seeks the saddle po in ts  of the  augmented Lagrangian 

where 
n 

x,  y  a r e  primal and dua l  so lu t i ons ,  and ( a 1 , a 2 ,  ..., am) a r e  vec to rs  

of pena l ty  c o e f f i c i e n t s .  

An important d e t a i l  i n  t h i s  a lgor i thm is t he  use of a pena l ty  

c o e f f i c i e n t  vector  a  ins tead of an ord inary  s c a l a r  c o e f f i c i e n t .  

The pena l ty  vector  i s  recomputed dur ing the  i t e r a t i o n s  using in- 

formation about the  cu r ren t  so lu t i on  of t h e  primal and dual  

problems. 

The s teps  of the  i t e r a t i v e  algor i thm fol low. A vector  xS+l 

is determined a s  an approximate so lu t i on  of an a u x i l i a r y  problem 

by means of the  a l t e r n a t i v e  coordinate d i r e c t i o n s  algor i thm. The 
s+  1 vector  y i s  recomputed from 

The vector  as is then recomputed. A more d e t a i l e d  desc r ip t i on  

of t h e  algor i thm is given i n  [ I ] .  

The algor i thm i n  quest ion enables us t o  f i nd  an approximate 

so lu t i on  t o  the  primal and dua l  problems wi th an accuracy of up 

t o  1 %  by a  number of i t e r a t i o n s  comparable t o  t h a t  of t h e  simplex 

method. 

The i t e r a t i o n  of an i t e r a t i v e  algori thm i s  much simpler  than 

t h a t  of a  m u l t i p l i c a t i v e  algori thm: the re  i s  no need t o  s t o r e  t h e  

inverse i n  t h e  i t e r a t i v e  algor i thm. 



Table 1 compares the iterative algorithm with the simplex 

method. 

Table 1 

- - -- 

Size of problem 1 The Number of Iterations 
- -- - 

Iterative algorithm* Simplex Method 

*cf and ER are the objective function and constraint tolerances, 
respectively. 

The number of iterations for the simplex method is obtained 

starting from an all-slack basis. 

To obtain an exact solution, it is possible to use the 

multiplicative simplex algorithm starting from the point given 

by the iterative one. 

The question of how to construct an initial basis associated 

with the iterative solution for the multiplicative algorithm is 

not yet completely solved, but there is no need for a more ac- 

curate iterative solution. Improving an initial point by means 

of the iterative algorithm does not however at present always 

give fast convergence to an optimal solution in the multiplicative 

algorithm. 

Evidently the subroutine for obtaining the initial solution 

must be fast and efficient. We have used a simple method to 

obtain an initial (usually infeasible) solution. We first bring 

all slack variables of a model into the basis. Then we pivot 

in the columns having nonzero elements in the iterative solution. 



Even i n  such cases, the number of i t e ra t i ons  required t o  obta in  

the optimal so lu t ion may be reduced t o  ha l f  t h a t  required using 

standard simplex pivot ru les  from the i n i t i a l  a l l - s lack  bas is .  

The spec ia l  features of a problem may be taken i n t o  account 

i n  two ways. F i r s t ,  it is possible t o  const ruct  a spec ia l  algo- 

r i thm t o  obta in  a f a s t  i n i t i a l  so lu t ion.  Second, i n  the frame- 

work of a mul t ip l icat ive algorithm we can use spec ia l  features 

of a problem--generating the columns, f o r  instance, ins tead of 

s to r ing  them. 

These ideas were implemented i n  an optimal i r r i ga t i on  model. 

Generating the columns enabled us t o  increase the s i z e  of the 

solvable problems by four times and t o  decrease the running time 

by a s im i la r  amount. A spec ia l  approximate algorithm f o r  f ind- 

ing an i n i t i a l  so lu t ion decreased the number of i t e ra t i ons  by an 

order of magnitude. 

Let us consider the rectangular f i e l d  with a mesh on it (see 

Fig. 1 ) .  

Figure 1 

The values H are  heights (evaluat ions) of the  i n i t i a l  sur -  
j 

face. 

I t  is possible t o  f ind a f eas ib l e  surface t h a t  gives t!!e mini- 

mum t o t a l  amount of ground t ranspor ta t ion work (from the po in ts  of 

cu t t ing  t o  the points of f i l l i n g )  by solv ing the  following mathe- 

mat ical  programming problem. 



The ob jec t i ve  func t ion  

j # i  

must be minimized s u b j e c t  t o  t he  fo l lowing c o n s t r a i n t s :  

- - long i tud ina l  ( v e r t i c a l )  s l ope  c o n s t r a i n t s  

c1 ( z j  - z , + ~  ( d l ,  j  = l,...,nm, j S 0 (mod n )  

- - t ransversa l  (ho r i zon ta l  ) s lope  c o n s t r a i n t s  

E < 2 .  - z ~ + ~  5 d2 ,  j  = 1 ,..., nm-n 
2 -  3 

- - t ranspor t  va r i ab le  value c o n s t r a i n t s  

nm - 1 t j i ,  otherwise  

H .  a r e  i n i t i a l  he igh t  marks, z .  a r e  p r o j e c t  h e i g h t  marks, t h e  
3 3 

values z l ,  d l ,  E ~ ,  d2 de f i ne  f e a s i b l e  i n t e r v a l s  o f  t h e  long i tu -  

d i n a l  and t r a n s v e r s a l  s l o p e s ,  and y de f i nes  the  balance of c u t t -  

ings  and f i l l i n g s  . 
The f i e l d  may be p a r t i t i o n e d  i n t o  s e v e r a l  s u b f i e l d s ,  each 

s u b f i e l d  having i ts  pro jec t i on  parameters E:, d:, E:, d i .  

The problem under cons ide ra t i on  comes up i n  p r o j e c t i n g  

i r r i g a t e d  f i e l d s  and bu i l d ing  sites. 

This  l i n e a r  programming problem has the  s t r u c t u r e  

where x: = z - H. 



Here A has two nonzero c o e f f i c i e n t s  i n  each row (+I o r  -11 ,  

t h e  matr ix  A is diagonal ,  and D is a matr ix  of t h e  t ranspor ta t i on  

problem. 

P r a c t i c a l  d i f f i c u l t i e s  a r e  of considerable s i z e .  For example, 

a f i e l d  of 100 acres  gives rise t o  t h e  problem of about 4000 rows 
and 500000 columns. 

A good i n i t i a l  so lu t i on  may be obta ined i n  t h e  fol lowing man- 

n e r  (41, tak ing i n t o  cons idera t ion t h e  s p e c i f i c s  of the problem. 

F i r s t ,  we so lve an a u x i l i a r y  problem 

by t h e  group balancing algor i thm [ 2 1  t o  de f ine  t h e  i n i t i a l  values 

of t h e  va r iab les  x and y. 

The group balancing algor i thm c o n s i s t s  of t h e  fo l lowing s teps .  
W e  scan the  f i e l d  c y c l i c a l l y ,  bu i ld ing t h e  group f o r  t h e  next  j - th 

po in t  of the f i e l d .  A l l  the nodes around the  j- th one are included 

i n  the group i f  they s a t i s f y  the  s lope c o n s t r a i n t s  a s  e q u a l i t i e s .  

Then w e  attempt t o  move the j - th  node wi th  i ts  group upward i f  2 . - H . < O  
3 3 

o r  downward i f  z  - H .  > 0. I f  a new c o n s t r a i n t  comes i n t o  equal- 
j  I 

i t y  and does not  allow f u r t h e r  movement (upward o r  downward), a 

corresponding node is inc luded i n  the group. We cont inue t o  move 

the j - th node wi th  its group u n t i l  a balance of c u t t i n g s  and f i l l -  

i ngs  i n  the  qroup is reached. During t h e  f i r s t  scanning of the 

f i e l d ,  w e  inc lude i n  the  group t h e  nodes t h a t  v i o l a t e  t h e  con- 

s t r a i n t s .  The given algor i thm converges f a s t ,  i n  3-6 scamings .  

I n i t i a l  values of t ranspor t  va r iab les  a r e  determined using quant i -  
t i e s  of t obtained by solv ing t h e  fol lowing problem: 

min { c t  I Ax - D t  , t ) 01 . 

The approximate so lu t i on  obtained is usual ly  w i th in  5% of 

t h e  optimal one. The l e s s  r i g i d  t h e  c o n s t r a i n t s ,  t h e  b e t t e r  the 

so lu t i on  is. Further opt imizat ion by the m u l t i p l i c a t i v e  algo- 

rithm requ i res  fewer i t e r a t i o n s  (by a f a c t o r  of ten )  than i f  w e  

s t a r t e d  from the  "zero",  i . e .  a l l - s l a c k ,  bas is .  



A s p e c i a l i z e d  m u l t i p l i c a t i v e  a l g o r i t h m ,  w i t h  a c o e f f i c i e n t  

m a t r i x  and c o s t  v e c t o r  a l l  k e p t  a l g o r i t h m i c a l l y ,  i s  used t o  o b t a i n  

t h e  op t ima l  s o l u t i o n .  The m a t r i x  columns a r e  s p l i t  i n t o  f o u r  p r i -  

o r i t y  s u b s e t s .  W e  look f o r  t h e  c a n d i d a t e  t o  e n t e r  t h e  b a s i s  f i r s t  

among t h e  y-columns; i f  t h e r e  i s  none, w e  t h e n  look  among t h e  t r a n s -  

p o r t  columns t .  . such  t h a t  xi (x i  < 0 )  and x ( x  > 0 )  a r e  i n  a c u r r e n t  
1) j  j  

b a s i s ,  among t h e  x-columns, and f i n a l l y  among a l l  t h e  t r a n s p o r t  

columns. Such r e g u l a t i o n  of t h e  column g e n e r a t i n g  p rocedu re  h a s  pro-  

duced s i g n i f i c a n t  q a i n s , a s  s e a r c h i n g  f o r  c a n d i d a t e s  t o  e n t e r  t h e  

b a s i s  i s  t h e  most expens i ve  o p e r a t i o n  i n  t h e  m u l t i p l i c a t i v e  a l go -  

r i t hm .  

The code has  a low runn ing  t ime  and t h e  p r o c e s s  is r e l i a b l e  

i n  o b t z i n i n g  a f e a s i b l e  s o l u t i o n .  These p r o p e r t i e s  a r e  e s p e c i a l l y  

impo r t an t  when d e a l i n g  w i t h  a n  i l l - c o n d i t i o n e d  problem, where one 

cou ld  e a s i l y  g e t  o u t  o f  t h e  f e a s i b l e  s o l u t i o n  set. Our e x p e r i e n c e  

h a s  demons t ra ted  t h a t  t h e  a l g o r i t h m  where v a r i a b l e s  o f  an i n t e r -  

med ia te  b a s i s  can  be i n f e a s i b l e  is  more r e l i a b l e .  Such an  a l g o r i t h m  

is  n o t  much more complex t han  a n  o r d i n a r y  one ;  it d i f f e r s  from t h e  

l a t t e r  o n l y  i n  t h e  p i v o t i n g  r u l e s .  

We have used t h e  f o l l ow ing  v a r i a n t  of t h e  s imp lex  method [ 5 1 .  

L e t  Jj ,  J q  be sets of  v a r i a b l e s  t h a t  a r e  n e g a t i v e  o r  ove r  t h e  

upper  bound, r e s p e c t i v e l y .  When a c u r r e n t  b a s i s  is i n f e a s i b l e ,  

w e  use t h e  f o l l ow ing  o b j e c t i v e  func t ion : ,  

max 
j  X ~ k  

- i 
j EJ Xjk  

k u 

i n s t e a d  o f  t h e  i n i t i a l  one and t h e  f o l l ow ing  r u l e  f o r  choos ing  

t h e  p i v o t  row: 

G = min i o ,  , a,, 



j i  is the number of a b a s i s  v a r i a b l e ,  xi is the  va lue  of a b a s i s  

va r i ab l e ,  and 2 .  is t he  upper bound of t he  va lue  of a va r i ab l e  x . .  
1 3 

is the t ransformat ion of a column a e k  en te red  i n  the b a s i s .  
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the World Bank, a unified effort by the entire modeling community and software industry 
i s  needed to finally deliver a significant improvement in the quality and success of strategic 
modeling applications. 
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1. Introduction 

The audience a t  which this paper is directed cons is ts  of both 

the mdel ing  c o d c y  and the  developers of algorithms and software. 

'bperienced m a e l  bui lders vill acknawledga the f rus t ra t i ons  they have 

suf fered prac t is ing  the i r  trade, while students of m d e l  bui lding VFU 

beconm b e t t e r  avare of soma of the resource cormtraints encountered i r i  

applied mdr lFng mrCiSeS.  All of them w i l l  have a d e f i n i t e  i n t e r e s t  

in recognizing vays to re lax  thwie resource canstra lnts.  Algorithm and 

software developers a re  a l so  an important par t  of the audience aa t h e i r  

j o i n t  but uni f ied contr ibut ions v l l l  be required fo r  the eventual reso lu t ion  

of the f u n a n t a l  i ssuss  ra ised i n  chis papar. 

Tha mnFnfocueof the paper is on modeling in a s t r a t e g i c  pJ.anaing 

enrlronment. Section 2 w i l l  e laborate on w h a t  ve mean by such an enviroruncnc. 

and what is amant by "succese" in the application of m d e h  i n  s t ra teg i c  

3l&ag. In sect ion  3 we examhe the current  M e a t i o n s  on mdel lng,  

emphasizing not only the artarrsivo resource requiremuits in terms of techoi- 

cal skills, nmney and t ime,  but a lso  such in tang ib le  i s e u u  a s  the law 

r e l l a b i l i c y  aseociated with our preeent m d e l  generat ing software, and the 

;rvesom c o d c a t i o n  problem aseociated v i t h  the d i s e ~ t i o n  of m d e l s  

and t h e i r  resul ts .  Section 4 s e t s  out soma fundamental s teps  tha t  w i l l  be 

required fo r  a s ign i f i cant  increase in succaesful nmdeUng, v h i l e  sec t ions  3 

and 6 elaborate on some of tbe d e v e l o p ~ l l t s  tha t  w e  have begun in m k h g  

chese s teps .  



2. The b l e  of Mathematical % d e b  in a St ra teg ic  Planning Emirommut 

In  order to ham a coxmum understanding of vhat ve aean by 

"mathematical models" and a "s t ra teg ic  planning urvirorunaut," ve need to 

c laas l fy  modals i n  re la t ion  to the arrvfroameat in vhich they a r e  uaed. We 

view mathematical mod& essenc ld l y  aa mappings: each model tramforma 

a s e t  of input data i n to  a s e t  of output data. With such a general 

definition i n  mind, it is no easy task to  c l a m s i e  modela and the i r  use. 

Anyone punching a calculator  is u a i w  a model. A Unur program to  nm a 

ref inery is a model. h management F P f o n ~ e i o n  sys taa~ is a modal. A mathe- 

matLcal program capable of evaluating vater-related FnPcscments i n  a third- 

w r l d  country is a model. These examples represent models tha t  a re  used i n  

d i f fe rent  appl icat ion euvirormrants, and each model has its w charac ter is t ics .  

One can ident i fy  a v ide spectmm of models with operational nodels 

on tha m e  extrem, and s t ra teg i c  planning models on the other. Operational 

sod& can be characterized aa "black boxes." Thdr users a re  not in teres ted 

in the model i t s e l f .  Only the resu l t s  produced by the model a re  of in tares t .  

Operational models are used over and w e r  agl in,  each time with d i f fe rant  

paramtor  inputs. 230 s t ruc tu ra l  changes a re  ever made to  t h u s  models, 

vhich makes them e s s m t i a l l y  s t a t i c  in nature. S t ra teg ic  planning models, on 

the othnr hand, can be characterized as "open boxes." Their users a r e  

pr-ily in teres ted in how the model is comtructed. StrategLc planning 

mod& a re  used only once. and the l r  resu l t s  serve to  fu r ther  the understandtag 

of the del .  Struc tura l  changes a re  continuaUp made, vhich m a k a ~  these 

models d w c  in nature. 



The u l c u l a t o r  is c lenr ly  an e m l e  of an operat ional  model. 

It is an hard-vired device ( u s u d l y  contained in a black box), vhlch can 

perform a s e t  of vell-defined tasks. A t yp ica l  user is i n te res ted  i n  the 

r e s u l t s  it produces, and v a t s  to use i t  over and w a r  v i t h  d i f f e ren t  input 

data. No mndifications a re  even made to the ca lcu la to r  i t s e l f .  The l i n e a r  

program to run a re f inery  is mostly an operat ional  model. Its s t ruc tu re  

is f ixed most of the t i m e ,  and it is used over and over again t o  determine 

the operat ion of the ref inery.  The managemant information system is soma- 

vhere in the middle of the spectzum. Whenever i t  is used to provide fac tua l  

information to  managenant i t  represents an operat ional  model. Whenever it 

funct ions aa a decls ion support systam, capable of analyzing information, i t  

represents a strategic plarrPing model. The sathemat ica l  program capable of 

evaluat ing vater- re lated hvascnonts F p  a third-world country is c lea r l y  an 

examplo of a s t r a t e g i c  planning sodel .  a e  understanding of t!e node1 is 

mch =re important than the r e s u l t s  i t  produces. S t ruc tu ra l  changes to the 

m a e l  v i l l  be made as  a result of d a n c e d  ins igh ts  h t o  both the model 

itself and the real irorld i t  is designed to capture. 

Xu thFP chapter ve vant to focus on the r o l e  of modeh Fn a s t r a t e p i c  

planning envl romaut .  Such an anviroument is character ized by long-corm, o f ten  

U - d e f i n e d  and poorly understood issues vhlch requi re near FrPmedlate decis ion 

making. I t  is the long-cers *act of :he decisions chat m k e  them important. 

hamples of s t r a t e g i c  planning environments a r e  government planning agencies. 

corporate planning o f f i ces  and in te rna t iona l  organizat ions. 



T h u s  planning envi romants have comaon characrer is t i cs .  The 

Fseuee under considerat ion a r e  usual ly exumiely  complex, and need to be 

sor ted through. Tha amount of poaeibly re levant  Fpfo=tion is vaat.  I n  

addi t ion,  the c o ~ e q u e n c e s  of any d e d s i o n  a r e  not  necessar i ly  l imi ted to  

one person o r  one l n a t i t u t i m ~ .  Sor are a l l  o ther  aapecrs of the  decis ion 

necessar i l y  undnr the  j u r i sd i c t i on  of one peraon or  one organizat ion. I n  

ouch an arrvirompmt, mathauatic modela play a o p e d a l  ro le.  They are  used 

aa a framework f o r  analys is ,  f o r  data co l lec t ion  and f o r  discuseion. They 

a r e  created to lmprove one's conceptual understanding of the problem. If 

o w n r a l  decis ion makars and/or i ns t i t u t i ons  a r e  involved in a f i n d  decis ion 

o r  set of recommendations, ande3.s can be used aa neu t ra l  soderators 

t o  guide the  discussions. Di f ferent  viewpoints can be tes tad  and e e d .  

I n  such a n  mviromomt the ac tua l  d u e s  of model results a r e  not so  important, 

but t he  r e l a t i v e  values resu l t i ng  from tes t i ng  d i f f e ren t  scenar io 's  a r e  of 

interest. The andel is a learn ing device, and should never be expected t o  

produce f i n a l  decisions. Because of this i nd i rec t  importance of a modal i n  

a s t r a t a g i c  p l a m b g  m r o - t ,  there  Fs ao dear vay to measure the 

benef i t s ,  although it is ao t  too d i f f i c u l t  to  keep t rack  of the (usual ly high) 

coats. It Fs precisely  this lack of vel l -def ined monetary benef i t s  and the 

f a c t  t ha t  p lam ing  models a r e  continuously changing that diseinguish them 

and t h a i r  envi ro~ment  from the operat ional  mod& discuseed previously. 

Eaving character ized models and t h e i r  r o l u  in a s t ra teg ic :p lannbg 

environmmat, ve  can nov define the meaning of success of a modal. An 

operat ional  model is succeseful ff i t  producae r a l i a b l e  results, and i t  



ia easy t o  operate .  A s t r a t e g i c  p lann ing m d e l  Is s u c c e s s f u l  i f  it is 

easy to. understand the  model. I f  Its s t r u c t u r e  and con ten t  can be c d -  

ca ted  e f f e c t i v e l y  t o  o the rs .  I f  t h e  r e s u l t s  produced by che model can be 

exp la ined,  and Ff model exper iments can be e a s i l y  repea ted  o r  v e r i f i e d  by 

expar ts  o t h e r  than t h e  o r i g i n a l  model bu i lde rs .  Re fe r r ing  t o  tvo of  ou r  

p r e o i o w  examples, t h e  c a l c u l a t o r  should be easy to  use, and t h e  r e f i n e r y  

model should  be a b l e  t o  c o n t r o l  t h e  r e f i n i n g  process e f f e c t i v e l y  f o r  them 

t o  be s u c c e s s f u l  models. The requirements f o r  t h e  success  of strategic 

? lann ing  nodels  a r e  mch h igher  chan t h e  ones f o r  t h e  success o f  o p e r a t i o n a l  

models. Tbl,s has undoubtedly con t r ibu ted  t o  t h e  l i m i t e d  r o l e  t h a t  mathematical  

models have played t h w  f a r  Fn a s t r a t e g i c  p lann ing environment. The 3-t 

s e c t i o n  w i l l  h i g h l i g h t  some s e l e c t e d  aspec ts  of  ou r  c u r r e n t  modeling technology 

co i l l u s t r a t e  this po in t .  

3. Current L i a i t a t i o n s  on Modeling A ~ ~ l i c a t i o n s  I n  a S t r a t e q i c  P lann ing  
Znvironrnen t 

kr t h e  e a r l y  days of nathemat ica l  m d e l l n g ,  l a r g e  a p p l l c a t f o n s  

ware a o e t l y  of a d l i t a r y  o r  i n d u s t r i a l  nature.  Yodels were used t o  desc r ibe  

and s o l m  wal l -def ined problems I n  t h e  areas of product ion and d i s t r i b u t i o n .  

and they v e r e  employed on a r o u t i n e  bas is .  i n  m y  f n s t s n c e s  It was cons idered 

c o s t - e f f e c t i v e  t o  e s t a b l i s h  a small group of t e c h n i c a l  people  vhose s o l e  

r u p o n s i b i l i q  va.6 t o  adncaln and co Improve t h e  e r i s t i n g  package of m d e l s .  

kr r e c e n t  years  t h e  scope of mathematical  modeling applications has widened. 

and aode l lng  enr l ronmsnts d i f f e r e n t  from those descr ibed above have emerged 

(11, [ 2 ] ,  and [ 3 ] .  The U.S. Government, f o r  fns tance ,  has supported t h e  



development of a Large number of s t r a t e g i c  nodels, and many planning agencies 

arovnd che world use mathematical m d e l s  aa chair  major t oo l  f o r  analysi9. 

La these planning or iented enviroprpcnts we have observed tha t  the cos t  of 

bui lding and maintaining machamat id  models is high, while the benef i ts  

a re  not alvays d a o r l y  defined. 

A study by the National Sciance Foundation on the development and 

use of mathematical modah within the U.S. Gm-t provides some i n te res t ing  

f igures  [ Z ] .  The t o t a l  development cos t  OF the 650 m d e l s  s w e y e d  vie 

USS100 m i U o n  ($L51,000 per model), and i t  took on the average 17  moatha 

to make a model operat ional.  I t  vae obsened  that  75% of all models can be 

operated only by the or ig ina l  development team, desp i te  st rong e f f o r t s  in 

model and program documentation. k t u d  poUcy usa of t h u e  models by groups 

other  than the m o d e l  designers han been m i a i n d .  Given the ~ d i a n  s i z e  of 

25 equations (oaly 6 models had more than 1,000 equat ions) ,  the above f i gu rm 

look ra the r  depressing as i t  takas 3 veeks and $6,000 to  develop one equation 

on the average. 

O u r  o m  experienca in the World Bank indicate6 &at  a la rge port ion 

of t o t a l  resources c u r r m t l y  spent on Large m o d e b g  ererc lses  Fs f o r  cha 

generat ion, manipuktion. +od report ing or' t h m e  models. I t  is evident tha t  

this percentage must be reduced s ign i f i cant ly  i f  m d e l s  a re  to  become 

e f fec t i ve  too ls  Fn p- and decision making. 

Buridem chase extensive resource requiremaats w e  have encountered 

severa l  o ther  problem arms, most of them s t d g  f r m  at t - ts  t o  dis- 

seminate previous and ongoing research in a plarming environmnt. The docu- 

mantatian of l u g e  models and t h e i r  modif icat ions is one such problem. I f  

a pro ject  is l u g e ,  and continues f o r  one o r  two years, &a cost  of complete 



documentation becomes horrendous. A decision is usual ly made to maintain 

a fev versions of a model. In pracrfce this means tha t  scme baaic experiments 

can be repeated. Ln the Long run, hwever,  the value of the avai lable 

sof t v r re  become essent ia l l y  zero as people change jobs, and any changes 

to  edsting versions require extensive set-up t ime .  

h re la ted  problem is the  cowmmication of models to in te res ted 

persons tha t  a re  not par t  of the developmmt tw. As there a re  no standards 

in notat ion, i t  is of ten U f i c u l t  t o  fudge from any vrite-up what exactly 

the m d e l  is. Experimentation v i t h  the model my enhance one's understauding, 

but this requirae the use of both the model and report  generators. bs these 

prograzns are  nont r iv ia l ,  they in turn require the  use of a technical  person. 

The extensive t i m e  and money requirements prohib i t  many outs iders frcm evan 

a t t e u q t h g  to s a t i s f y  t he i r  cur ios i ty  v i t h  regard to  the modal. No 

d f e c t i v a  dissemination of Lnovledge can therefore take place. 

Another major obstacle to successfu l  modeling i n  a pl lnning 

enviromnenc is *at there does not exist a commn in ter face v i t h  the various 

so lu t ion  rout ines modelers can use fo r  t h e i r  family of models. rle each 

solut ion package usual ly requires U f c r e n t  data s t ruc tures ,  i t  becomes both 

tima and mey consumlag to switch back and fo r th  between solut ion algorithms. 

Ae a result models tend to ge t  Locked i n to  one so lu t ion  package which a t  

tinus limits t h e i r  development. There is d s o  no general-purpose sof tvare 

fo r  the l inking of models, an ac t i v i t y  tAht haa became -re prevalent v i t 5  

the increased w e  of models. 

The heart  of the problem is the fac t  tha t  so lu t ion  algorltinus 

need a daca s t ruc ture  and a problem representat ion which Fs izpossib le to 



comprehend by hmans. A t  the same t h o ,  problem rep rwen ta t i oas  that are 

m e a n i n g f u l  to hummm, are uot acceptable t o  machinu. The wo t r ans la t i on  

pmcossea required un be i d e n t u i e d  aa the  & source of d i f f i c u l t i e s  

and ar ro r r .  W i t 3  today's technology, each translation p r o c u s  b broken 

do- in to  a n d u  of i n ta r re la ted  s teps  vhero most of the coordinat ion 

d cont ro l  haa t o  ba dona by h-, and b therefore sub jac t  to  a n o r .  

That's why cnturr ivo the, skUl and -nay rasourcrcl a ro  raquirad f o r  ehe 

completion of la rge-su la  modeling e x c o r h e s .  In addi t ion,  it is not 

su rp r i r i ng  t ha t  becaure of t h i s  m e n a i v e  hm8u input  tho werzll r a l l a b i U t y  

(th. p robab i l l t y  of no mistakes) of our mad.llng prac t ica  b e&urassiag.Ly 

llm. 

U e  would l ike t o  i l l luatratm th. above paragraph by uaing linear 

programing aa an -10, sure ly  the -st vidaly rued and beat  developed 

too l  m a i l a b l e  today. &st studanta involved i n  q ~ t i t a d v o  s t u d i m  are 

axposed to  Llno8.r pro- and its a p p l i c l t i o w  t h o u g h  t u t b o o k  exmplae,  

vhfch cnn b. cumprrhended quit. w i l y .  S t i l l ,  many of them f ind tremendous 

d i f f i c u l t i e s  in bmdUag r u l - y o r l d  l i naa r  pm8-g applicaciozml The 

reason f o r  chis b r w l y  sit.. If on. uses cu rbook  mthodology, o m  

f in& tht the camplaxit ies asaociatod vlth the gsrurat ion and maaipuladon 

of modolr grw utronomicaUy v i t h  sir.. Cowidor a small pmblem v l t h  

10 equations and 10 e l m .  This can bo neat ly  p r in ted  in mtrir 

form on one pago. Uo cau d i rec t l y  inspact  each of the  100 a m r i d  

encr ies and tho i r  pos i t ion  re la t i vo  to so& o t h u .  To p r i n t  th. mat* of 

a "standard" size agr i cu l t u ra t  sec tor  model v i t h  1,000 e q u t i o ~ ~  and 



2,000 var iables,  on the other  hand, vould requi re 3,200 pagea of computer 

paper. Realizing t h r  of the 2 U o n  possib le en t r i es  oply 80,000 o r  so 

are  d i f f e ren t  from zoro, ve could labe l  m e  and colmns and p r i n t  these 

labe ls  together v i t h  the no-zero en t r ies .  Although t h i s  way of representing 

the m a t e  reducm the r lqui rad pagw to 1,230, w e  a r m  er rsent id ly  l e f t  

v i t h  a list of seemingly random numbers, unable t o  discover any ma~n ing fu l  

model. Unfortunately, t h i s  is exact ly the  way wa have to  comtmicate with 

today's software. 

Table 1 is a fu r the r  e laborat ion on hear prograsming technology. 

The soluclon pmcese 9 broken down i n to  I 2  d i f f e ren t  ursk o r  pmcesse8 

and 15 c lasses  of assoda ted  doomma% o r  &uz ,r'iles. As an i l l u s t r a t i o n  

of how to i n te rp re t  the tab le ,  consider the t h i rd  rw. The ta8k is 

described as  "design cumpurer program to generate colunm/rov/valua records 

correspondlag to  m d c l  i n  matr ix form." It can ooly be pe~fo-d by a 

huaun, and i t  requi res three inputs and one output f o r  its cmtpletion. 

One necessar7 input  is the descr ipt ion of daca and w d e l  i n  conventional 

notat ion. On the banis of this input. one haa t o  design X P S  naming 

convmtioas that vill be wad in the naming of rows and calms of the 

h e a r  programing cab luu .  Added to this input  vill be a data  s e t  coded 

in a program acceptable form. W i t h  tho le  inputs the task  can be executed, 

and the f i n a l  output, a monr i r  ganerator program wr i t ten  i n  solno Language, 

vill r r s u l t .  Remember that each ingut and output in the  t ab le  requi res 

h- intemanclon. The f i n a l  goal, of course, is the soluclon repor t  

vh i l e  the 13 intermediate docrnnants a re  an axpensioa and error-prone 

detour. i t  is lzpor tant  to  note that the f f r s t  7 tasks a r e  performed by 

h-. The Last 5 t a s k  a r e  perforned by the machine, but need add i t iona l  





control  instructions to coordinata input and output. This again is 

a source of er ror ,  even tho@ cha execution of these 5 cash is f o r  a l l  

prac t i ca l  p q o a u  e r ro r  f raa. Many e r ro rs  chat a ra  made a re  usually of 

a vary i n t r i c a t e  nature, and do not bacomm apparent a a d F a t e l y  a f t e r  

chay have been committad. They a re  of ten car r ied on throughout cha process 

v i thout  having f a d  e f fec ts  on so lu t ion procedures. 

Alchough cur prwant  modeling tadnology han pruvm to be adequate 

in mrny modeling auvirommro, it b c lea r l y  inadequate in m a t i n g  cha naada 

of modal bui lders in a s t r a t e g i c  planning envFrorrmcnt. A new genarrt ion 

of modeling cachnology b needed in order co maka a s ign i f i can t  improvement 

in che t!us f a r  l imited success of plaPolng modals. 

I r .  Relaxing Current 3oundarias on Successful Hodelinq i n  S t ra teg ic  Pl~lninq 

Unthwat ica l  modals a r e  a potent ia l ly  powerful too l  i n  a s t r a t a q i c  

planning emrirorrmcat, but t h e i r  e f fec t i ve  use and dissemination hnva b a a  

hamparad ser ious ly  thus f a r  by excessive resource requiremieats in carps of 

t ip. ,  money and cechnlcal s U ,  and by the d i f f i c u l t i e s  associatad with 

&a comrmmiution and zapeatab i l i ty  of modal exper-ncs. E a t i n g  nodd ing  

technology is a major iFmitiag Factor in t h i s  e n r i r o ~ t  vhera mda ls  a re  

always subject to structural durrgaa, and a t  moat one run of any modal 

version b of i n t a r m t .  &I vc noted in che premious sect ion,  :ha hear t  of 

the ?roblam b the fac t  that  two rapresantat ioaa of d o  same modal a re  naeciad 

before any solut ioaa can be obtained, and chat the required cranslat ioaa 



a r a  labor in tens ive and a m r  prona. I n  our opinion thara a re  NO b u i c  

requiremauu L&C vlU a v e a o u l l y  laad to  t&a succe8s of s t ra ta%c nodeling. 

F i r s t  of all va need a Im iva rsd ly  accapted, highly s o p h i s t i u t a a  

notat ion, a formal r d a l i n g  h a g u g o ,  vhich is a u i l y  d a t s t w d  by both 

h- and tha =china. Secondly uu need a MivarsPl ly  available soforare 

sp tm with a lw l e v d  intarnal data s t ruc tu ra  so chat, a t  1-t Fn 

principla,  i t  un in tar faca with any dnta b a a  and so lu t ion r lgor i thm th t  

i. available. It g o u  C1PDst without s.yLng chat t h u a  a r a  nace8aary and 

wt su f f i c ien t  c o n d i t i o ~  f o r  succe8sful modalfag. although their f u l i i l b s n t  

should great ly  enhance our mdalfag u p a b i l l t g .  

Detarmlnlng a ganaml m d a h g  lauguaga irr wt an a u y  task,  but 

its mautual de f in i t i on  should ba guidad by obaermd mads. %at  p r o b l m  

aaaoclatad with m d d  bul ld ing un ba reduced to a b u i c  quaation concunlng 

m i c a t i o n .  Bov cur one c m c a t a  data and its cusoda tad  complex 

mmthematicrl s t r u c t u r u  whm tha hman mind irr l h d t a d  Fn its p w a r  to  grasp 

and c c q r a h m d  many irrsuaa s ~ t a n e o u s l y .  Tha only too l  a v d h b l a  to  w 

is our power 02 a b a a a c t i o n  vhich aid8 w in d u s t m d i n g  the complaxity 

of r u l  w r l d  phmomao.. It all- w to def ina par t i t ion ings,  mappings, 

aac ingn .  and shor t -bnd n o u d o n .  A m d r l l n g  languaga should provide w 

with such a short-h.nd notat ion, allaving f o r  t&a rpaci f icacion of p u t i -  

cionizqm, mmppwa a d  ne8tlags in a unifylag but say t o  us. m a r .  A. 

-st evaryana h.r bean expoad to  s m  r lgabra ic  notat ion during &air 

f o r m l  education. tha hnguga should adopt aa much aa poss ib la  tha ex is t i ng  

r lgobra ic  c o a v e n t i o ~ ,  v i t h  perhapa a f .v  addir iorv to  handla tha inhareat 



complaxltiea of la rge modela. Since the l-ge vill only be urad to  

represurc models, it should not be an algorithmic programing languaga, 

but inatand rescmbla mora the Imgruga of a sophis t icatad data b u e  capnbla 

of handling symbolic a lgabrr ic  relat ionships. 

The u l s t e n c a  of such a general purpose modeling language carries 

severa l  Lmporrmc i a p l l u c l o u a  v i t h  it. As it is mnchina readnble. only 

on* document is medad. This document scrpw also as tha complata documan- 

taclon of tha modal. SFnca i t is easy to  inspact,  c o ~ c a c i o n  beevaan 

parsous is grant ly enbmcad. In addi t ion, tha mnchina can be of great halp 

to tha m d a l  buFldar Fn discovering mlsspecif icntiona. espacial ly a t  tha 

s y n c a c t i d  leval .  

A u n i v u a a l l y  a v p i k b l a  s o f e v u a  ryscem vhich can in ter face v i t h  

dntn b u e a  and roluclon a lgo r i thm a lso u r r i e a  Lmportant tmp l lu t i oua  f o r  

tha r m d e h g  c-unity. A l l  of a suddaa, many taaks t h a t  are  current ly 

parformad by humans during tha sodel building process, a r e  automatically 

parformed by tha machine. This lands to  a dr-clc lmprovemeat Fn tha 

r e U b i l i t p  of our m d e h g  sofwnre. Solutious and r e p o r u  vill ba 

automrt ical ly generated a# soon u a ccmpleta m d a l  reprasaacaclon hna baau 

speci f ied. No rmre h i m y  rLil1.d compucer techniciaru a re  naeded. Tha 

t h a  thnt L raquirad to  a c c q l l s h  any s t r u c t u r a l  c!mnges ia a modal 

raprwautat ion L ruddauly becoming negligent. Ln addit ion. u many h w  

arrors  a r e  prevaacad by chis n.v machhc in ta ru iva  t cchno log~ ,  the ovcraU 

coat per sodal  should decrease. 



& Fmporunt byproduct of an algebraic modding system Is 

chat tho r lgobra ic  rap rasenu t ion  c o n u i n s  s t r u c t u r a l  i n fomat ion  about 

tha m&l vhich can bo rocognizod by tha systam. Tha automntic detection 

of 1-r and nod inur  oqrutiorrr UI o m  exampla. Tho a u t m t i c  dotoction 

of block s t ructuraa Fn tho Fnd&nco matrix b anothor -la. A genornl 

mde l lng  systom w i l l  also a i d  tha & v o l o ~ t  of a l g o r i t h  vhan it c ~ m u  

t o  tasting and -.ring them. Ln addit ion, tha system can bo wad  M a 

mukot ing d o d c o  f o r  wall-implamntad a l g o r i c h s ,  thoroby raducing the 

diat.rrca b a m m  softvaro davolopon and modd b u i l d a n .  

It UI ovidmnt t h a t  c o l l b o r a t i o n  by various p ro fass ionds  and 

o r ~ P n i t o t l o a s  is oaodod t o  rr l t invtr ly accomplish tho oro b m i c  tab o u t h o d  

Fn t h i s  sact ion. A t  cho Davmloplunt Buer rch  Canter va hme made the  f i r s t  

s tqs  t a d  tha davalopmu~t of a g rnar r l  a lgobraic modollng lilngunqc and 

a g o n a r d  algobraic modrlFng system wN& vo rs fo r  to  as G A S .  We hop. 

thPt th la  d o ~ d o p m m t ,  vhich hau born undar wuy f o r  severa l  y u r s ,  w i l l  

bocoma r t a k m f f  point f o r  fucura c o l h b o r a d o n  and possibly standardizat ion 

Fn drllng sofcvare. 

5. Tho Davelopmmt of a Couoral U g o b r l l c  Hodaling System (GUS) 

Tho m d r l l n g  andro-t within cha World B a n k  can in g o n e a l  bo 

cimract.TFTed aa a s t ra tag ic  planning urviromnurt, vhorc mod& a r m  b u i l t  

and u o d  u a l u r n i n g  a m c o  m d  a framnrcrk f o r  analysis [ l ] .  OPar tha pu r r s  

va h m  bosn r r a o c i n t d  vith many modaling e x o r c i s u ,  and havo racognizod 

tho U t a d o r u  of our c u r r m t  modrllng soffxara. I t  ln tha oood fo r  a 



basic change ln nudeling technology that  harr led to  che incept ion of 

che G A S  project .  Thh project  hae progreased co &a point  vhere va 

represent complete nudah v i th in  GUS, and execute a l l  data !UmipU&tions. 

Links vich se lected so lu t ion algorithms a r e  s t i l l  under devdopmmt. 

The sysccm is current ly ilcled co foamdata and document severa l  

of our models. I c  guides and chocks tho u8.r ln the spec i f ica t ion of a 

c o q l e c e  model. thareoy accelarat ing tho f o m u h t i o n  process. In  addit ion. 

dl data rP.nipuLtiona can be performed by the system. and t h e i r  results cau 

be displayed i n  the form of v e l l - d o c w t e d  reports.  The layouc of chase 

reports a re  automatically generated by chr system. An e a e n s i v a  aaalys is  

of the lnput data  can therefore ba made p r io r  to any acteqac to solve the 

nudel. Ln our q a r i a n c e  the daca preparacfon and analys is  have always 

bean cha nuat cFM c o n s d n g  aspaccs of any nudeling u a r c i s e .  The e f f o r t s  

required f o r  ch is  phase a r e  reduced substant ia l ly  .dch the use of the system. 

For those solucion routinea tfiat a re  noc l inked to G A S  as yet ,  ve use the 

Cbl3S nocation as a guide for vrLcing che nudel generator ( i .e.. cha program 

that  generates cha n u d d  represantat ion an i t  1s required by a spec i f i c  

so lver ) .  This has resulced Fn an Fncreasad r a U a b i U t y  of the nudel 

generators. 

The choice of nouc lon  i n  GUS g r w  from an F n u e ~ s e d  understanding 

of both the nee& of the andel bui lder and the shortcomings of ava i lab le  

cmputar  languages. Ynsc cammon prograumdng langruges a r e  designed co 

laplamuzt algorickms, and do not allow f o r  a si-1 and eaay co read 



reprasenu t ion  of Large and complu modah. Thue  are. hovaver. some 

s p a U z a d  m d a l  pnmratiElg la-gas. wua l l y  d o s i ~ d  around a s p a d f i c  

algorithm. Tha DYAdPg kngurgo, f o r  i as tmca ,  v u  deaigaad around an ef f i -  

c iant  algorithm to  in tagrata dyuunic system. Tha WOU system vas dosignad 

around a Gauss-Saidal p rocus  co solve awncmatric d a b .  Languages such am 

U G R l  and M X  m r a  duignad uormd tha s l m p l u  method fo r  linear propama. 

00th U A M  and M X  arm ensant ial ly a short-hand r rout ion f o r  gmnarating the 

UPS tape (cha indur t rpv ida  r t m d r r d i z d  input for U n u r  p r o g m g  

so fo l ua ) ,  a d .  u such, u a  l h l t a d  i n  scope. Thay a re  r igh t fu l l y  u l l a d  

" m a  genamtom," u ehay ara only su i tad fo r  l i near  problems. In 

addition. s inca chair mrFn 0.k Fs t o  amnipdata charactam (s t r ings)  co put 

cogothar - fo r  an EIPS cape. thoy a lso  & not a l low fo r  a m i n b d  and anry 

t o  r u d  raprearnu t ion  of l u g e  models. Thoy ara, hwovar. a s tep fomard 

-&m c q o r a d  t o  or- progr-g h q u a g w .  and have b.an usad succass- 

fu l l y  In onPironnvnts other than s t ra teg ic  plrrming. 

I n  our exparienca. &a typ ica l  modal bui ldar v a t s  to ba fraod from 

any burdaru that  a ra  bp0s.d by solut ion a lgor i thm.  Us b u i c  naad. a ra  

ramad by both a nou t i on  that  al l -  him to v r i t a  dom a modal in a 

s t r a i g h t f o ~ o r d  mamar. and a syatam chat ukea ovar tho steps rnquirad 

fo r  &a gararat ion of cha m d a l  axd iu results. KnovLrrg that  perrow from 

nvny dbc ip l lnea  have bamn Fnaoducad to so- mthsnu t i ca l  notation. and 

c h ~ t  e l a r n u r p  data b a a  w d o a a  a m  s u y  to  rmdarsund, va have choaan 

for  m algebraic longuaga v i t h  data b a a  concapts intlrvovsll. Tha reau l t  

Fs a f l d b l a  and aasy to w a  nout ion.  t ha t  Fs powerful -ugh to  hmdla 

complu =dab. In  addit ion, i t un ba wad fo r  m8ay typar of mathamatical 

mdab both linaar and aoa l lnau .  



iha  data modal used i n  G A S  is daoigned to take advan tae  

of spusensse .  Oply tha w n z u o  o r  tha e x p l i c i t l y  defined dements 

a ra  stored i n t e d y .  idith t h i s  d a m  s t ruc tu re  tha e f f o r u  raquirad 

t o  puform any log ica l  and algebraic d a u  d p u l a t i o n r  can ba raducad 

to  the sor t ing and merging of umltidimm.9ional f i l e s .  

n a r a  a re  savera l  t a k a  that  ve envision tha systun t o  parform. 

Beaidaa tha capabi l i ty  to intarfacm v i t h  o u y i d e  daca baa- m d  so lu t ion 

routinam. the sy8t.m should f a c i l i t a t e  tha coupling of models. Simulations 

over t h e  may be such that the so lu t ion of a modal i n  ona pariod is used t o  

datarmfna a parameter of tha modal in tha o u t  pariod. This capabi l i ry  t o  

l i ak  m d e h  411 reduce tha excaasiva set-up t h e  that  is requirad vich 

c u r r m t  rmdeldng technology. Othar casks that va =vision cha system to  

perform a re  autonut ic un i t  d y s i s  and automatic scal ing. Espada l l y  cha 

lattmr one . A l l  bacomn w o r t r o t  u the d i s w c a  beorean tha m d a l  bu i ldar  

and tha so lu t ion algorithm vill grow v i t h  t h e .  

Bigura 1 g i v u  a s m l a  schematic ovarviev of the s t ruc tu ra  of 

G A S .  Cantral Fn this f igura is tha CAtS t rans la tor .  Folloving tha trans- 

l a t i on  tha system e i the r  creatae o r  continuso a CUS Pro jact  Fi le.  This 

U o v e  a user to  add o r  m d i f y  an ex is t ing model v i thout  requir ing the 

system to rapeat pravioru operations. The r u p o n s i b i l i t y  for  the pro jact  

data  f i l e  l i e s  thareiora v i t h  the user. 211. responsibility f o r  tha GAM 

Daca BUR. on cha other haud, lfa v i t h  the system. I t  contains infornut ion 

t h t  tr r P o i k b l a  and of intarmat to a m r i e t y  of u r u s  and models. The 

tachnicr l  no- that  a d a t  f o r  each proceas i n  tha fa r tFUzar  industry 

daacribing the input quant i t iae requirad for one unit of ourput f o t s  one 

asample. The GAMS Executor i n t a r f a c u  v i t h  both the Pro ject  F i l e  m d  a 



large var ie ty  of strangor sy8ttms. -10s of stranger systems are  tho 

G U S  ovalrutor (which ovalrutor all dam a r p r u a i o ~ ) ,  tho GUS Mods1 

AndySer and the U u r  Prob~-n Executor. Each of tham mop in turn 

in tor face v i t h  0tb.r such stranger s y s t a .  Tho ovmrall GUS s y a t m  i?, 

s e t  up such eht it cm Jways w a n d  an the nood ar isor .  

Wi!i Project F i le  

Piqure 1: Schematic Ovemiev of GUS 

Polloving t h b  goneral d i s c w s i m  on tho devoloprmat of C A B ,  

ve vill devote tho n u t  section to r m  -re dotai1.d aspacts of tho m~dol ing 

languag. in w. 



6. Selected Asoects of t h e  Yodeling Language i n  G M  

This sact ion is d i f fe ren t  i n  f lavor  from the pravioua sacdona 

i n  tha t  it doer not concern i t s e l f  v i t h  g e n e r ~ t i a a .  I n s c ~ d  it concentrates 

on knguaga d a t r i l s  to pmvida tha reader v ich soma incuic lve foa l  of w h a t  

the languaga is a l l  abouc. For i l l u r c r a t i v a  purposas, consider tha curnarp 

cranaportacion problam taken from the book, Unaar  Proqranunlng and Prtensions 

by G. 3. Daaczig. h company demires co supply its threa w a r e h o u a  from 

NO canneries v l t h  given Inventories i n  cach, and manu to mFPimiza the t o t a l  

shipping cost. The computer readable CAMS represantat ion of chis problem is 

s ta tad  In Figure 2. 

.Is can ba weed from tha model dascripcion, va have res t r i c ted  

o u r s a l v u  to a s d  character s a t  which is a v d l a b l a  on most c o q u t a r s .  In  

addit ion, wa have assumed chat thare is M carr iaga coat-01 avoi labla (i.e., 

M subscr ipts or  superscr ip ts) ,  and tha t  thara are o d y  cap i ta l  l e t t e r s .  

V i t h h  chase fmv l imi ta t ions,  we have adhared a6 such as possibla to  esLstiag 

math-tical convcncions. 

'llih m d a l  statemaat un be viewed ad an integrated data base. 

In  addi t ion to  tha data cables and usignmcnt s ta rmmnu.  there a re  che 

symbolic equmtiona which reprasant &ca that  can only ba obtained v i a  some 

so lu t ion algorithm. Both &u and symbolic equaciom a r e  naadad for  a complete 

'hare ara savaral  key vorda ured In the md.l ducr ipc iun.  They 

are ( in  order of occurrmca) SET. PARAMETER. *TABLE, VARIABLE(S), ~UBTTON(S). 

SW, S D E L ,  SOLVE.. U S ~ G . . ~ I X G ,  and DISFLAY. Ua vill conmmnt on ach 

of them. 
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Sacs are  used as  dr iv ing indices i n  many mathematical models. 

They usual ly have a snort  aame f o l l w e d  by a descript ion. Folloving the  

descr ipt ion is a l i s t i n g  of the s e t  elements contained beewean two "siasnes." 

Each nanm can have an associated descr ipt ion Ff needed (e.g., the element 

KANSAS has a descr ipt ion KANSAS CITY). 

A parameter can be defined i n  a s imi la r  Fashion, k i t h  a nunber 

fo l lov ing each Label aa ve did fo r  paranmter A. An algebraic de f i n i t i on  

uaing an assignment statement is a lso  possible, and this w a s  dona f o r  

parametar R (each varehouae requirenmnt is 300 un i t s ) .  A t h i rd  way to 

def ine a pararpater L soma tabular  arrangement as va.9 done fo r  the 

parameter DTCOST. Both row and calm descr ipt ions of the  parameter a re  

required. Aa va s h d l  sea l a t e r  t.Vs two-dimeasimal framework can be 

used to represeut parameters v i t h  more &an two dlmeneions attached t o  

them. 

Variable and equation names must be defined f i r s t  before they 

can appear in any symbolic equations. One can recognize a syaboUc equation 

by the two dots fo l lov ing the equation nnms. Hote t h a t  the a v a i l a b f i t y  

constra int  SUPPLY L defined over the domain ( se t )  C. It la a short-hand 

notat ion fo r  two avaF labUcy  coaatra ints,  namely one fo r  each carmery. The 

stnumation i n  the SUPPLY equadon ts ind icated by SUM, and followed by the 

s e t  rmm U to  vhich the sumnation operat ion is t o  be applied. Each spmbolic 

equation in GAkS haa a type. I n  the example we have =L- (a less than o r  

equal t o  const ra in t ) ,  -+ (a  greater  than o r  equal to  const ra in t ) ,  and 

WE- (an equal icy coaatra int )  . 



P modal in GAH fa the se lec t ion  of a subset of the symbollc 

equations. In the  cannery e w l e  all equations a r e  included in the  

model. Once a model is defined, a par t lcu lax algori thm must be choaen. 

In chis case Unau  prosama.lng (LP) is selected to m inb i ze  the var iab le  

TBCOST in the model CANICE. Display statements un b e  wed  to  get  

selected pieces of data. ae re  ve have asked f o r  t he  ac t i v i t y  leve ls  associated 

with the var iables (&a), and the shadov pricoe (marginal cos ts )  associated 

- d t h  the  ava i l ab i l i t y  c ~ l u t r a i n t s  (SUPPLY .X) . 
The cannery m d e l  serves as a quick ove&ev of severa l  important 

aapects of tha language in G A M .  The uarnple does not portray some of the 

complexlcies associated v i t h  the representation of large-scale models. That 

is vhy a more extensive descr ipt ion of the notat ion in ClMS is presented 

n-. 

6.1 Sets and Set Yaovings 

A simple (one-dimarrsionol) s e t  i n  W fa a f i n i t e  co l lec t ion  of 

labels.  These s e t s  play au important ro le  i n  the indazing of a lgebraic 

statements. The cannery example contziins two such simple s e t s  ( m l y ,  

C and W), and both the i r  syntax and w e  a re  iUurr t rated there. Several 

one-dinmasional s e t s  can be re la ted  to  each other  in the sense tha t  there 

is a correspondence between &am. .%a an esarnple conaider the corraspondence 

batvaan corrntrlee and ragiona. Depending on one's vievpoint,  this fa a one- 

t m n y  o r  one-to-one correspondanca. To each country corresponds a 

spec i f i c  s e t  of regions, vh i la  each region corresponds to  one s p e c i f i c  

country only. ke we shall see, these correspondences play an important 



r o l e  i n  CIMS s i n c e  they can be used t o  c o n t r o l  the domain of d e f i n i t i o n  

Fn assignment statenmu and symbolic equat ions. 

The s p l t a x  f o r  s a c  co r respondencu  is much l i k e  t h e  one f o r  

s f n g l e  s e a .  Colrsider the f o M n g  U u s t r a t i o n .  

LNWNESIA. N-SUHBTRA 
INWNES u. AH- JAVA 
HhLdYSIA.W-WIb 

o r .  

SFT CR COUNTRY-REGION CORRESPOND~CE / 

INDONESIA. (N-SUMATRA, E-JAVA), HAUPSM.U+ULAYSU, . ../; 

Note tbat t he  per iod Fs used ae an opera to r  to  r e l a t e  t h e  elements 

of t h e  d i f f e r m c  sets, and t h a t  t h e  o r d e r  of t h e  alements Fn t h e  conespon-  

dance is f i xed  (in this case  country f i r s t ,  reg ion  second).  I n  o r d e r  t o  

reduce m n e c w s a r y  r e p e t i t i o n ,  the parenchesea can be used when s e v e r a l  

e lanan ts  Fn oue set c o r r u p m d  t o  a s i n g l e  element of t h e  o t h e r  set. There 

can be any number of s e u  in a conespondence. The fo l lowing fw l i n e s  

FL luscrata  a M l m e n a i o n a l  set mapping. 

SFT RZD REGION ZONE DISTRICT MAPPING / 

NO=. IRRIGATED. (U-NORTH, C-HOBTB, E-E1ORTB) 
CEFJZAL. ( IBBICaTED. (NU-UPPER, XE-UPPER) 

m. (S-UPPER, !+LOWER, E-LOWEB) 

1 i 

There ara ways to  change t h e  Fnformacion con ton ts  of sets and set 

mappings. This can be done vla a l g e b r a i c  a s s i p a n t  s t a t m e n c s ,  which r e q u i r e  

all seca t o  be indexed. h s u m e  t h a t  a s e t  R of reg ions  haa been def ined,  and 



t b t  a copy of t h i s  s e t  is des i red.  Then one can v r i t e  t h e  fo l lowing ClMS 

s t a t a n e a r s .  

SIX R COPY OF SET R ; RR(R) = R(R) ; 

The next  exampla is a rede f i r r i t i on  of RR on t h e  b a s i s  of t h e  above 

s e t  correspondence ap). Aseumc that t h e  ncv s e t  RR should  con ta in  all reg ions  

t h a t  a r e  n o t  rain-fed. The Fns t ruc t ioo  SUM, a l ready  mentioned i n  t h e  cannery 

erypple ,  denotes a union i n r t n a d  of a suzmation when app l ied  t o  sets. 

BB(R) = R(R) - SUM(D, BZD(R, 'TROPICAL', Dl) ; 

Yote t h a t  t h e  3-dimansional correspondence RZD r e q u i r e s  3 drivFng 

ind ices .  S ince  t h e  middle i n d e s  Fs i n v a r i a n t ,  we have used t h e  quotes t o  

i n d i c a t e  a s p e c i f i c  elemant r a t h e r  than t h e  e n t i r e  set. 

6.2 Data Tables 

Tabular arrangements of d a t a  a r e  a very conveniant vay t o  d e s c r i b e  

dti-dimensional parameters. The unit c o s t  t a b l e  in t h e  cannery s a d e l  is an 

ararnple of a 2-dimeusionrl parameter. The fo l lowing t a b l e  i l l u s t r a t a  a 

4 - d ~ i o p p l  parameter, where 3 d h a n s i o n s  a r e  captured in t h e  rw d e ~ c r % p t i o a r .  

wh i le  t h e  f o u r t h  dimension Fs conta ined In t h e  column l a b e l .  

TABLE L LABOR ODEFFICIENTS EJ EOURS PER RAI 
* BY SCION, CBOP ROTATION, TECHNOLOCII AND MNTB 

JANUARY FEBRUARY APRIL 

MAX JUNE JULY AUGOST 



Notm tha t  w e  have speci f ied tha units f o r  the  e n t i r e  t ab le  in 

the t ab la  heading. A ~ I  i t  stands a t  the  moment, un i t  a n d p s i s  han to  be 

dona by the model bui lder ,  although one of our g o a h  is t o  mak. automatic 

un i t  ana lys is  an i n teg ra l  par t  of t he  da ta  base system in G U S .  The order  

of the s a t s  used in the row and colrnnn dcscr ipt iona i n  the  t ab le  statement 

murt be maintained in later ref e r e n c u  to  the  parameter. For the a b w e  

exawple tUs vil l  be L(R,C,T,?I) vhere R, C, T and M rder t o  the s m l a  

sacs. 

6.3 .Asaignntent and Eauation Seacements 

*st of the syntax uaad in aasigmaent statements and equations a r e  

the same, a l a o u g h  it is stra ight fozvard t o  de tec t  Ff a CdMS statement is an 

assigfunaut o r  an equation. 

An a s a i ~ e n t  statement in CAMS is an i ns t ruc t i on  t o  perfoxm same 

data  manipulation and s t o r e  the result. It can ba cmparad to  a FORTBAN 

stat-t vhere the resu l t  of the opera t iom perfoxmad is stored under the 

aama that  appears on the l e f t  s i d e  of the equal sign. Aa an exawpla consider 

the parameter DIST(1.J) l n d i u t i n g  rha d i s t m c a  from loca t ion  I t o  l o u t i o n  J ,  

vhere the elenants in the s a t s  I and J ore  ident ica l .  baeuma tha t  i n i t i a l l y  

only tha h e r  t r b n g u l a r  par t  of DIST vaa spec i f ied  i n  a TABLE s t a t ~ a n t ,  and 

t h a t  w e  arm i n t e r e s t e l  in specifying the antlrm laotrix. W e  can v r i t e  tha 

fo l lov ing sautenca 

DIST(1,J) - DIST(1.J) + DIST(J,I) ; 



The right-'nand s ide  is defined f o r  each &tup le  of the C a r t c s i ~ ~ ~  

product of the  s e t s  I and J. h copy of DIST(1,J) is s tored  in a temporary 

vork a r ray ,  and the  en t r f es  in DIST(1,J) a r e  replaced v i t h  the r e s u l t s  from 

the  addi t ions f o r  a l l  pa i rs  (1,J) in a p a r a l l e l  fashion. Note that all 

dues of DIST(1,J) tha t  ve re  not  def ined in the  TABLE s ta tauents  a r e  

assumed to  be zaro. An a l te rna t i ve  but equivalent GAMS statement f o r  the 

above replacement Fs aa fo l la rn .  

DIST(1,J) - MAX(DIST(I,J), DIST(J,I)) ; 

Bare the  .W operator se lec t s  the  l a rges t  o i  the  two values i ns ide  the  

parcntheaes. 

An equation in GAMS is a symboUc representat ion of one o r  w r e  

cons t ra in ts  co be uaed as par t  of a simultaneous system of equations, o r  an 

optimizat ion model. It alvaya begins v i t h  the  equation name, possibly 

indexed, f o l l o w d  by tvo dots (per iods) .  We again r e f e r  co the equations 

In the cannery arample. 

6.4 The 5 Operator 

Pa t t i t i oo ing  la rge  m ~ d o l s  by using dr iv ing indices providw an 

d a g a n t  short-hand notation. C o m p l ~ t i e s ,  hwever ,  a re  Introduced vhen 

t t e r e  a r e  r e s t r i c t i o n s  Fmposed on che pa t t i t ion ings .  As these complexities 

a r i s e  cont inual ly  in large-scale models, ve have s t r i v e d  f o r  an elegant and 

e f f ec t i ve  vay to incorporate tham i n  a model s t a t m e n t .  



Lat us bagin v i t h  au example. Define the  sets R and D as regions 

and d i s t r i c t s  raspect ively. APs- t ha t  f o r  each d i s t r i c t  in a region va know 

the level of incoma YD(R,D), and t h a t  v e  vrnt to  determine the regional  

inccam YX(R) f o r  each of the regions. Writ* the assigmaant statement 

YB(R) = SWD,  YD(R,D) ; 

is maaniagless aa not every d i s t r i c t  is contained i n  each region. We need to 

use, therefore,  the  re la t ionsh ip  betveaa the sets R and D. Let RD be the 

s e t  correspondence betv-n these two sets. Than va  can mite t he  following 

anslgnmant statement 

PR(R) - SUH(DSRD(R+D), YD(R,D)) ; 

Here the do l l a r  s ign Is used as a condi t ional  operator.  For each s p e d f i c  

region R it r e s t r i c t s  the sum t o  be over those dements of D fo r  vh i& the  

correspondence RD(R.D) is defined. 

Let A be a name or  an expression i n  &US. a d  l e t  B be a m e  o r  

a t r u e f a l s e  arpreasion. Then the  phrase A $ B is a condi t ional  statement 

in CAMS vhere the  name A Is considered o r  the expression A is evaluated if 

aud only If the aam 3 is defined o r  the  m r e s s i o n  B is true. 

When the do l l a r  operator  Is used in an assignment statement, it can 

appear both oa the r i g h t  and on the l e f t  of the equal sign. When it appears 

on the l e f t ,  it contro ls  the domain over w h i c h  the aaeigmnent is defined. 

lihanavar the condit ion following the asme on the  l e f t  is not erua,the ex is t ing  

data v a l u ~  contained under that name tannin unaffected. I f  on the  o ther  hand, 

t h a t  same condit ion is applled t o  the r i g h t  of the  e q u d  sign, the &s t ing  



values contained Fn che name on the  l e f t  vill be s e t  t o  zaro whenever :he 

condit ion is  not true. 

I n  order t o  i l l u s t r a t e  the conjunct ive use of the  d o l l a r  operator  

and l o g i d  p h r a s e s  contl ined Fn an assignment stat-t, conaider the 

next example. Let the s e t s  P, I and H denote processes, p lan ts  and machines 

r u p e c t i v a l y .  The pa rme te r  K(H.1) denotes the nmber of rmits of ava i l ab le  

capacity of machine M in  plant  1, v h l l e  the parameter B(M,P) descr ibes the  

required nmber  of cmits of capacity of machine M per cmit level of p r o c u s  P. 

We vant  t o  d e f h e  a zero-one parmeter ,  PPOSS @ , I ) ,  ind icat ing which processes P 

need t o  be considered f o r  p lant  I. We can wr i t e  t he  following s e t  of l og i ca l  

r a t t i o n s  always resu l t ing  in e i the r  a zero o r  one. 

PPOSS(P,I) - Sm(M $ (K0f.I) EQ 0).  B(M,P) NE 0) EQ 0 ; 

Here the expression B(M,P) NE 0 w i l l  conta in a value 1 i f  process P is dependent 

on machine 23, and 0 otharvise. T h u e  values a re  sunnned over a l l  machinu H 

tha t  a r e  nnt ava i lab le  Fn p lant  I. I f  the  resu l t ing  sum is zero f o r  process ? 

then the  procsss Fs nntdependent  on unavai lable machines, and should there fore  

be considered. Note t ha t  PPOSS Fs one Fn t h  case. I f  the  resulting sum Fs 

nnt 0, che process is dependent on a t  least one unavai lable machine, and 

should thera fore  not be considered. The parameter PPOSS, is s e t  t o  zero Fn 

t h i s  case. 

When the do l l a r  operator appears Fn an equation statement, i t  is 

used t o  cont ro l  the  generat ion of equations and/or variables. A s  an i l l u s t r a -  

t i on  l e t  CAP be an equation name re fe r r i ng  to capacity cons t ra in ts ,  and let 2 

be a var iab le  name raferr ing t o  l eve l s  of process operat ion. U s i n g  che 



not lc ion of the previous paragraph, ve can vrf ca the folio-g symbolic 

equation. 

CBP(H,I) $ (KCH,I) O ) . .  

SUM@ $ PPOSS(?,I), B O f , ) )  * Z(PsI) KRI,I) ; 

I n  t h i s  -la the s y s t m  w i l l  generate an equation f o r  a spec i f i c  

pa i r  of machines and p k n t s  only vhen the capaci ty  of t h a t   chine in t h a t  

p h t  Fs s t r i c t l y  posit ive. SincFlrrly, only those var iab les  t h a t  refer t o  

procasacs vhich can be operated a t  a pos i t i ve  l e v e l  v i l l  be generated. 

6.5 Tha Lag and Lead Operators 

Mort sets m l o y e d  i n  mathematical n u d e b  a re  co l lec t ions  of 

labe ls  vhoea only purpose Fs t o  ident i f y  objects,  p roper t ies  o r  even- tha t  

are re levant  t o  the nudal dmcr ipt ion.  There a r e  sew, hwever ,  fo r  which 

the order of the e l a n t s  is crucia l .  One fraquencly used n x a q l e  Fs any 

s e t  erpreasing soma nocion of tims. For these s e t s  it la of ten  important 

i o  reference elements re la t i ve  t o  each other .  A forward reference Fs 

usual ly re fa r red  to  aa a "lead" v h i l e  a backward raferenca is re fe r red  to  

aa a "lag." La GA2-S i t  is possib le t o  perform Lag and lead operat ions on 

any s e t  vhenever the elarnents in tha t  s e t  have never been used in a p r e v i o u  

s e t  de f in i t ion .  The order of entry is then the re levant  order. I n  the case 

tha t  they have been used i n  provlous s e t s ,  t he i r  mutual order should be 

unaltered. k'hmever a set is generaced or  modified vFa an assignment 

statement, tho syatem wi l l  not execute any lag o r  lead operat ions using 

this set .  



In t he  language w e  make a d i s t i nc t i on  between two mea of 

lead and l ag  operat ions. If the lead operator is + and points t o  an 

element beyoad the last e l m a n t  i n  the s e t ,  the corresponding operat ion 

is not perfonnad. If the lead operator is ++ , i t  w i l l  a c t  as a 

c i r c S r  operator ,  and consider the kth el-t beyond the last element 

in the s a t  t o  be the kth clement in the se t .  Tha l a g  operators - and 

- are  def ined Fn a s ~ h r  m e r .  W e  w i l l  give an -le of each. 

SET H MONTES / J A W ,  FEBRaABP, !hLEE, APBIL, HAY, .... 
DE-R / ; 

P W T E R  NSALE PROdTCTED CUMULATIVE S U E S  OF XITROCLNOUS FERTILIZERS; 
* (M 1000's OF KILOGRAMS) 

In this -1e a f o m r d  pro jec t ion  is mde.on b e  bas is  of the 

s t a r t i n g  value of the f i r s t  month. The term NSALE('DECEMER' + 1)  vill be 

considered aa vacuous. ilote t ha t  the looping devlce is necesearg f o r  the  

above assignment s t a t m n t .  Without i t* dJ .ope ra t i ons  w i l l  be performed 

in a p a r a l l e l  faahion, vhich w i l l  r e s u l t  in a proper de f i n i t i on  of the 

parameter NSALE ('FEBRUARY') only. A l l  other  valuea of NSALE w i l l  be 

equal t o  the implied de fau l t  v a l u  of zero. 

In some agr i cu l t u ra l  modals, the constant s e t  of months has been 

used Fn a c i r cu la r  fashion, where JANUAX is the one-period lead of DECEMBEB 



and DECESEB Ls the one-period l ag  of JANUARY. As an example ass- t ha t  

ve  v a t  t o  determine &e f ive-dimensional parameter CLaB denot ing t he  labor  

requirenmnt coe f f i c i en t  by d i s t r i c t ,  crop, technology, month and p lan t ing  

date.  Assumo a l so  chat the p lan t ing  da tes  a r e  EARLY and LATE, and t h a t  

tho c o e f f i c i e n t  v a l u a  f o r  both a r e  t he  sanm w e p t  t h a t  they d i f f e r  by 

a m n t b .  Lot the paramater LABREQ be the  Labor requirement coe f f i c i en t s  

by d i s t r i c t ,  crop, technology and month, obtainod via a TABLE statement.  

The CIA can be generated from U B R E Q  aa fo l lova.  

7. Sumam and Conclusion 

In t!ds paper we have described tha  limitations of our cur ren t  

nodal ing technology vnen employed in a scza teg ic  planning environment. For 

modeling t o  becom successfu l ,  =e nave proposed the  f o l l av i ng  NO bas ic  

changes in modeUng technology. F i r s t  ve  need a un iversa l l y  accepted, eaey 

t o  use, genera l  purpose modeling Language vhfch is readable by both man and 

machine. Secondly ve need a modelfng system t h a t  can r ead i l y  i n t e r f a c e  

with data baaas, so l u t i on  algori thms and repor t  generators ,  and t ha t  cau 

perform such task aa the  linking af nodels,  un i t  ana lys is  and automatic 

scal ing.  

Fol lovfng this discuaeion, the paper descr ibes t he  development 

of a Ganeral Algebraic Hodeling System (GAMS), which v e  view as a f i r s t  

s t ep  toward a nev technology in modeling. Although modelers i n  the  



Research Canter of  the World sank have grea t ly  beneficed from a system such 

aa CIMS, a uni f ied e f f o r t  by the e n t i r e  mde l ing  conummlty and so fmare  

industry Fs needed to  br ing about a universal  change in wde l i ng  capab i l i t i es .  

O u r  predict ion Fs t ha t  there vill be a tremendow incrcase in 

model-bu;Lldlag a c t i v L t i u  over the next decade o r  so i f  s o f m a r e  manufacturers 

provide the technology fo r  modeling exerc ises t o  become successfu l  in a 

s t r a t e g i c  plrnning anviroummnt. It is our s incere  v i sh  t h a t  they vill all 

share tha sama modellng language. Without such a standard, models w i l l  not 

be por table,  which lMts t h e i r  succesa. In  addi t ion,  the burden of having 

to  learn  w y  d i f f e ren t  aocacions b h p o r e d  on the growing group of model 

bui lders.  We hope tha t  this paper vill become a stapping stone fo r  the 

developmmnt of a universal ly  ava i lab le  modaling Language, and tha t  the 

general topic  -All gain the a t t en t i on  of the modeling c o d t g  as a 

vhole. 
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AUTOMATIC IDENTIFICATION OF GENERALIZED UPPER BOUNDS 
IN LARGE SCALE OPTIMIZATION MODELS 

Gerald G. Brown and David S. Thomen 

Naval Postgraduate School 
Monterey, California 

To solve contemporary large scale linear, integer and mixed integer programming prob- 
lems, it is  often necessary to exploit intrinsic special structure in the model a t  hand. One 
commonly used technique is  to identify and then to exploit in a basis factorization algo- 
rithm a generalized upper bound (GUB) structure. This report compares several existing 
methods for identifying a GUB structure. Computer programs have been written to permit 
comparison of computational efficiency. The GUB programs have been incorporated in 
an existing optimization system of advanced design and have been tested on a variety of 
large scale real life optimization problems. The identification of GUB sets of maximum 
size is shown to be among the class of NP-complete problems; these problems are widely 
conjectured to be intractable in that no polynomial-time algorithm has been demonstrated 
for solving them. All the methods discussed in this report are polynomial-time heuristic 
algorithms that attempt to find, but do not guarantee, GUB sets of maximum size. 
Bounds for the maximum size of GUB sets are developed, in order to evaluate the effective- 
ness of the heuristic algorithms. 



1. INTRODUCTION 

Contemporary mathematical programming models are often so large that direct 

solution of the associated linear programming (LP) problems with the classical 

simplex method is prohibitively expensive. if not impossible in a practical sense. 

It has been found that most of these problems are sparse, with relatively few non- 

zero coefficients, and usually possess very systematic structure. These probleas 

exhibit inherent structural characteristics that can be exploited by specializa- 

tions of the simplex procedure. 

Methods:oexploit special model structure can be categorized generally as 

i n d i n e c t  (e.g.. decomposition), where a solution to the original prcblem is 

achieved by dealing with related models which are individually easier t o  solve, 

or as d i n e d ,  when the original problem is solved by a nodified simplex algcrirhm. 

Among the direct methods, the most frequently used technique is called bad i s  

6 a c t o h i z a t i o n  [ 7 ] ,  where the reflection of special problem structure appears x d  

is used to good benefit in the intermediate LP bases. Basis factorization can 

be dyi~(UILic, where the algorithm deals with each basis sequentially and/or inde- 

pendently in an attempt to extract as much specialized basis structure as possible. 

or but, where the algorithm depends upon certain types of special structure 

being present in & bases. 

Static basis factorizations include ~ i m p e e  uppot bou tds ,  _~c) le t&;ed 

uppen bounds (CUB), and cmbedded ~ r a ' o a b  aou~b. among many others. Simple uppcr 

bounds are a set of  rows for which each row has only one non-zero coefficicnt. 

Generalized upper bounds are a set of rows for wliich each column (restricted to 

those rows) has at most one non-zero coefficient. Setwork rows are a set of 

rows for which each column (restricted to those rows) has at most two non-zcro 

coefficients of opposite sign. 



Each of these  f a c t o r i z a t i o n s  permi ts  t h e  s implex a lgo r i thm t o  d e a l  w i th  

t h e  s t a t i c  s u b s e t s  of t h e  rows (and columns) of a l l  bases  encountered w i th  p r i o r  

knowledge t h a t  they w i l l  s a t i s f y  v C t y  r e s t r i c t e d  r u l e s .  Most of t h e s e  methods 

work b e s t  when l o g i c  can be s u b s t i t u t e d  f o r  a r i t h m e t i c  ( a s  is t h e  c a s e  w i t h  t h e  

c o e f f i c i e n t s  2 1 ) .  For t h i s  reason,  s t a t i c  f a c t o r i z a t i o n s  o f t e n  r e s t r i c t  t h e  

s p e c i a l  s t r u c t u r e  t o  possess  on ly  2 1, o r  t o  be b c d e d  s o  a s  t o  produce an 

equ iva len t  r e s u l t .  

The concept of g e n e r a l i z e d  upper  bounds was in t roduced  i n  1964, t h e  r e s u l t  

of work by Dantzig and Van Slyke ( 5 1 .  The name is der i ved  from analogy t o  t h e  

s imple upper bound s t r u c t u r e .  Craves and HcBride [ 7 ]  r e f e r  t o  S - t d c  Signed 

I d e n t i t y  F a c t o h i z d o n  a s  a term more sugges t i ve  of t h e  impl ied b a s i s  s t r u c t u r e .  

S ince  t h e i r  i n t r o d u c t i o n ,  some form of GUB has been implemented i n  many 

commercial LP systems. There is o f t e n  confus ion between t h e  mathemat ica l  

c h a r a c t e r i z a t i o n  of GUB and t h e s e  v a r i o u s ,  widely used implementat ions of GUB, 

i n  t h a t  t h e  l a t t e r  o f t e n  r e s t r i c t  t h e  GUB s e t  sembersh ip r u l e s  t o  permi t  uncompli- 

ca ted  s implex l o g i c .  A l l  of t h e  methods repor ted  h e r e  address  t h e  f u l l  g e n e r l  

a l i t y  of GUB s e t s  but can be modi f ied t o  produce r e s t r i c t e d  CUB s e t s  a s  necessary .  

The d e t a i l s  o f  how CUB can be e x p l o i t e d  t o  reduce t h e  computat ions of 

t h e  s implex a lgo r i thm a r e  n o t  d i scussed  here .  See [1 ,5 .7 ,11,131.  The under- 

l y i n g  concept  i s  t h a t  t h e  CUB s t r u c t u r e  enab les  t h e  s implex a lgo r i thm t o  manipu- 

l a t e  t h e  GUB rows i m p l i c i t l y ,  w i th  l o g i c  r a t h e r  than f l o a t i n g  p o i n t  a r i t h m e t i c .  

thus  reduc ing t h e  e f f e c t i v e  s i z e  and s o l u t i o n  t ime f o r  t h e  problem. The more GiJB 

rows one is a b l e  t o  i d e n t i f y ,  t h e  fewer rows one has t o  c a r r y  e x p l i c i t l y  through 

t h e  s implex opera t ions .  I n  l a r g e  problcms t h e r e  e x i s t s  a  huge number of s u b s e t s  

of rows t h a t  s a t i s f y  the  GUB c r i t e r i a .  I t  is g e n e r a l l y  regarded t h a t  thosc  

s u b s e t s  w i th  more rows a r e  " b e t t e r "  CUB s e t s  s i n c e  thcy  imply a  more con- 

t r a c t e d  e x p l i c i t  bas is .  The impl ied problem, thcn,  is t o  f i n d  t h e  rnczxhm 

CUB s e t .  



Optimal algorithms to find a maximum GUB set do exist. These entail 

enumeration schemes and cannot be guaranteed to be efficient in a practical 

sense. Conceivably, zm-m sets of rows might have to be searched before a 

maximum GUB structure is found: as the problem size Srovs, the number of possible 

sets that need to be checked increases apone r r t i&g .  As will be shovn later. 

the hope of finding an efficient algorithm to find the maxmm GL'B set for any 

general problem is dim. 

Therefore, researchers and practitioners have concentrated on con- 

structing efficient IIW&.~& algorithms that attempt to identify, but do not 

guarantee, a maximua GUB set. A few of these methods shoving great prom is^ hzve 

been reported, but they have not been tested vith large scale problems. 

This report (abstracted from [ & I )  outlines several automatic heuristic 

GLB-finding procedures that have been developed and published in the recent 

literature. These procedures are tested on a suite of large scale, real life 

optimization p r o b l e m ,  and are modified to improve their behavior. Comparative 

pe r fomance  of the methods is given both in  terns of the computational effort 

to identify a GUB set, as vell as the size of the GUB set achieved. 

Identification of GUB sets of maximum row dimension is shovn in  

Section 7 to be among the class of NP-complete problems. Hovever, easily 

computed uppeh b0lutds on the size of the maximum GL'B set are developed and used 

to evaluate objectively the quality of  heuristic CtB algorithms, shoving that 

very nearly maximum GUB sets are routinely achieved. 

2. PROBLEY DEFLVITION AND XEPRES~TXTIOYS 

The Linear P r o g r a m i n g  problem is defined as 

(range conscrnints) 

(simple b o m d s )  



where and ; a r e  m-vectors, x, c ,  b and 6 a r e  n-vectors  and A is an 

m x n matr ix .  The c o n s t r a i n t s  a r e  sometimes de f ined  a s  equa t ions ,  but  f o r  t h e  

genera l  c a s e  of CUB t r e a t e d  here c o n s t r a i n t s  can be equa t ions .  i n e q u a l i t i e s  

o r  a  mix ture.  The immediate d i s c u s s i o n  w i l l  be d i r e c t e d  a t  (L) ;  i n t e g e r  and 

mixed i n t e g e r  problems a r e  t r e a t e d  l a t e r .  

Tvo rows of A a r e  s a i d  t o  con@ict i f  t h e r e  e x i s t s  a t  l e a s t  one column 

w i t h  non-zero c o e f f i c i e n t s  i n  both rows. The CUB problem can be r e s t a t e d  a s  t h a t  

of f i n d i n g  a subse t  of t h e  rovs  t h a t  do n o t  c o n f l i c t .  

There a r e  s e v e r a l  ways one can  model t h e  maximum CUB problem. Three 

approaches a r e  p resen ted  t o  a i d  i n  t h e  unders tand ing  of t h e  t h e o r e t i c a l  con tex t  

of t h e  h e u r i s t i c  methods examined and t o  h i g h l i g h t  t h e  formal  complex i ty  of t h e  

o r i g i n a l  problem. 

Graph Theory Represen ta t ion  

A g r a p h i c a l  r e p r e s e n t a t i o n  of t h e  mat r i x  A can be cons t ruc ted  through 

t h e  f o l l o v i n g  mapping r u l e ,  f .  Let  each row o f  A be a v e r t e x  of t h e  graph. 

Should two rovs of A c o n f l i c t  then  t h e  t vo  v e r t i c e s  of t h e  graph a r e  jo ined  

by an  edge. Th is  mapping r e t a i n s  a l l  t h e  necessary c o n f l i c t  i n fo rmat ion .  I f  

two v e r t i c e s ,  a  and b, a r e  jo ined  by an  edge, e ,  then a and b a r e  a d j a c e n t .  

and a ( o r  b) is i n c i d e n t  w i t h  e .  I f  a  and b a r e  n o t  a d j a c e n t ,  t h i s  

i n d i c a t e s  t h a t  t h e  corresponding two rows i n  A do n o t  c o n f l i c t .  

Th is  i n t roduces  t h e  no t ion  of indcpurdence. Given a graph C = (V,E) , 

a s u b s e t  V '  c V is s a i d  t o  be an i n d e p o t d u ~ t  b e t  i f . n o  t vo  of i ts elements 

a r e  ad jacen t .  It f o l l ows  t h a t  i f  an  independent s e t  of v e r t i c e s  can be found 

i n  C then  t h e  corresponding rows of t h e  mat r i x  A do not  c o n f l i c t  and t h u s  

d e f i n e  a GUB s e t .  Conversely,  a  CUB s e t  f o r  A d e f i n e s  an  independent set 

f o r  t h e  graph G. I t  is a l s o  c l e a r  t h a t  an independent s e t  f o r  C is maximum 

i f  and on ly  i f  t h e  corresponding CUB s e t  f o r  A is maximum. 



Consider the s e t  Am, the s e t  of a l l  A-type matr ices having m rows. 

The above mapping fac tors  t h i s  s e t  i n t o  a d e f i n i t e  number of h 4 u .  Two 

matr ices,  Al and A2 a r e  sa id  t o  belong t o  the same c lass .  C, i f  and only i f  

each is mapped i n t o  the  same graph. Cc. 

Figure 1 

Thus, an independent s e t  of ve r t i ces  of Cc correspond t o  a CUB row s e t  f o r  

w e r y  matr ix  i n  the c l a s s  C. 

The incidence matrix N is defined v i t h  n - 1 i f  ver tex  i is 
il 

inc ident  with edge j, and n - 0 otherv ise .  There e x i s t s  one, and only one 
il 

incidence matrix f o r  each graph of G, vhere G is the s e t  of a l l  graphs having 

m ve r t i ces .  

Since the s e t  of a l l  N-type matr ices v i t h  m rows is a subset  of A m ,  

w e r y  c l r s s  of A contains one and only one incidence matrix. In  general,  f o r  

the  CUB problem, every m row matrix is equivalent  t o  one of a f i n i t e  number 

of inc idence matrices. Super f i c ia l l y  t h i s  may seem t o  be a s imp l i f i ca t ion .  

But a s  shorn in Sect ion 7 the CUB problem on N is a s  d i f f i c u l t  a s  the  independent 

s e t  problem on C. The equivalent  s ta temen tso f t he  CUB problem do, however, o f f e r  

d i f f e r e n t  views of the problem which a r e  he lp fu l  in considering a l g o r i t h m  f o r  

and ana lys is  of the problem. (NOTE: In  Carey and Johnson (61 it is sham tha t  

two other graph problems, the "vertex cover" and the "clique" problem, a r e  

equivalent  t o  the independence problem, and hence the CUB problem. These problems 

do not seem t o  o f f e r  any add i t iona l  i ns igh t  f o r  the CUB problem.) 



Conf l ic t  Matrix Representation 

The con6fict rn& M I s  defined with mij - 1 i f  row i c o n f l i c t s  with 

row j i n  ( L ) ,  and m - 0 otherwise. Note t ha t  t h i s  matrix is symmetric. The sun 
1-1 

f o r  any row (or  column) ind ica tes  the  number of o ther  rows i t  is i n  con f l i c t  with, 

p lus one. This sum ind ica tes  fo r  any pa r t i cu la r  row how many o ther  rows would be 

subsequently excluded from a  CUB s e t  by its addi t ion.  

The rows of a  C'JB s t ruc tu re  can be rearranged t o  form an embedded 

i den t i t y  matrix i n  M. 

Vector Space Representation 

Yet another heu r i s t i c  approach can be modelled using vec tors  i n  an n- 

dimensional vector  space, where n  is the number of var iab les  i n  the problen (L). 

Consider each row of A a s  a  vector  in  t h i s  space. having uni t  length i n  those 

"dimensions" corresponding with i t s  non-zero coe f f i c i en t s .  

R, the resu l t an t  vector  from the sum of a l l  vec tors  of the  rws of A, 

i nd ica tes  the number of con f l i c t s ,  p lus one, assoc ia ted  with each var iab le  of (L). 

A hypercube i n  n-space s i t ua ted  i n  the f i r s t  o r t h a n t a t  the or ig in  with length 1 

i n  a l l  pos i t i ve  d i r ec t i ons  denotes the f eas ib le  CUB region. Should R extend 

beyond t h i s  a rea ,  then the s e t  of rows corresponding t o  the vec tors  determining 

R does not cons t i t u te  a  CUB s t ruc tu re .  

A gradient  vector  can be ca lcu la ted  ind ica t ing  the d i rec t i on  of the  

shor tes t  d is tance t o  the @ u i b l e  kegion. I t  can be used t o  determine which row 

t o  remove from the se t  t o  obta in the l a rges t  movement i n  the desired d i rec t i on .  

When R f a l l s  within the feas ib le  region. the s e t  of rows determining R 

cons t i t u tes  a  CUB s e t .  

3. EARLIER LITERATURE 

Two papers dcal ing with e f f i c i e n t  CUB f ind ing  methods a re  worthy of 

spccln l  note.  



Brear ley ,  Mi t ra  and Wil l iams [ 2 ]  e s t a b l i s h  a  very  u s e f u l  framework f o r  

s tudy of methods f o r  f i n d i n g  CUB s t r u c t u r e ,  a s  w e l l  a s  an i n s i g h t f u l  d i s c u s s i o n  

of t h e s e  nethods and a  taxonomy f o r  t h e i r  c l a s s i f i c a t i o n .  

They d e f i n e  t h r e e  s e t s  c o n s i s t i n g  of t h e  rows of t h e  techno log ica l  ma t r i x  

A. The f i r s t  s e t ,  t he  d i g i b L e  jet. is made up of every  row of A t h a t  is i n d i -  

v i d u a l l y  e l i g i b l e  t o  belong i n  the CUB set. The J h D f l ~ t e  i s  a  subse t  of the 

e l i g i b l e  s e t  and inc ludes  a l l  t hose  rows c u r r e n t l y  cons idered a s  members of the  

CUB s e t .  The candidrzte b e t  c o n s i s t s  of those  rows of t h e  e l i g i b l e  s e t  t h a t  a r e  

cand ida tes  f o r  i n c l u s i o n  ( o r  re - inc lus ion )  i n  t h e  CUB s e t .  Every one of the  

methods examined i n  [ 2 ]  i s  desc r ibed  i n  terms of manipu la t ion of t h e s e  s e t s .  

Each method of b u i l d i n g  a CUB s e t  employs one of two b a s i c  s t r a t e g i e s .  

The koW-d&Jhvn s t r a t e g y  begins w i t h  an empty s t r u c t u r e  s e t .  Then, based on 

a  p a r t i c u l a r  c r i t e r i o n  f o r  i n c l u s i o n ,  rows a r e  removed from the  cand ida te  s e t  

and e i t h e r  added t o  the s t r u c t u r e  s e t  o r  dropped from f u r t h e r  c o n s i d e r a t i o n .  

Th is  procedure con t inues  u n t i l  t he  cand ida te  s e t  i s  empty. The rows i n  the 

s t r u c t u r e  s e c  form an admiss ib le  CUB s t r u c t u r e .  

The tow-d&&clt s t r a t e g y  takes  t h e  oppos i te  approach and i s  d iv ided  

i n t o  two phases.  Yethods of t h i s  t ype  i n i t i a l l y  p l a c e  a l l  e l i g i b l e  rovs  i n  

the  s t r u c t u r e  s e t .  Th is  normal ly l e a d s  t o  an i n f e a s i b l e  CUB s e t  w i th  many con- 

f l i c t i n g  rows. Based upon the  p a r t i c u l a r  d e c i s i o n  r u l e s ,  rows a r e  removed from 

the structure s e t  and p laced i n  the  cand ida te  s e t .  The f i r s t  phase of t h i s  

s t r a t e g y  ends when a f e a s i b l e  s t r u c t u r e  is  ob ta ined .  

A second phase invo lves  examining thc  removed rows i n  t h e  cand ida te  s e t .  

Those t h a t  do no t  c o n f l i c t  w i th  any of t h e  members of t h e  c u r r e n t  s t r u c t u r e  s e t  

a r e  taken from t h e  candidace s e t  and re inc luded  i n  t h e  s t r u c t u r e  s e t .  Those 

t h a t  do c o n f l i c t  a r e  d e l e t e d  from t h e  cand ida tc  s e t  and dropped from f u r t h e r  

cons ide ra t ion .  The second phasc cnds when tllc cand ida te  s e t  i s  empty. Ac t h i s  

po in t  the  rows of the s c r u c t u r c  s e t  c o n s t i t u t c  an admiss ib l c  CUB s e t .  



Brear ley ,  U l t r a ,  and W i l l i ~ m s  examine over 1 8  d i f f e r e n t  methods. These 

approaches d i f f e r  i n  the  pr imary and secondary d e c i s i o n  c r i t e r i a  f o r  i nc lud in?  

(o r  removing) a rw i n  t h e  CL'B s t r u c t u r e  set. The h e u r i s t i c  d e c i s i o n  r u l e s  

examined a r e  based on t h e  fo l lowing model e n t i t i e s  and combinat ions t h e r e o f :  

Inc lude  o r  remove a row based upon: 

a )  the  number of non-zero e lements i n  t h e  given row. 

b) t h e  number of rows i n  c o n f l i c t  w i t h  the  g iven row, 

C )  the  number o f -  non-zero e lements i n  rows t h a t  c o n f l i c t  wi th  tt.c 

g iven row. 

d )  t h e  row's r e l a t i v e  weight ob ta ined  by t h e  inner  product of a  

vec to r  r e p r e s e n t a t i o n  of the row and a d i r e c t i o n a l  g r a d i e n t .  

These methods were implemented wi th  an ALGOL program run on an  ICL 4133 

computer. Twelve l i n e a r  programming problems ranging i n  s i z e  from 12 rows ur 

t o  166 rows v e r e  used f o r  computat ional  t e s t s .  The r e s u l t s  show t h a t  those 

r o r a d d i t i o n  methods us ing  h e u r i s t i c  (d)  above " c o n s i s t e n t l y  performed very :.-r:l" 

[Z ] .  S i m i l a r l y ,  t h o s e  methods us ing  h e u r i s t i c  (b )  were found t o  perform near::: 

a s  w e l l  a s  ( d l .  

McBride [15]  compares t h e  d i r e c t i o n a l  g r a d i e n t  method (d)  w i th  an a p y r ~ ~ c ' n  

suggested but no t  t e s t e d  by Greenberg and Rar ick [ a ] .  The l a t t e r  method uses r t e  

c o n f l i c t  mat r i x  a s  does h e u r i s t i c  ( b ) .  However, i t  focuses  on f i n d i n g  a maxi:;li 

embedded i d e n t i t y  mat r i x  w i t h i n  the  c o n f l i c t  mat r i x ,  r a t h e r  than us ing  t h e  cc:- 

f l i c t  mat r i x  t o  determine c o n f l i c t  counts.  app ly ing  a s p e c i a l i z a t i o n  of t h e  r e -  

3 assigned p ivo t  procedure (P ) normally used f o r  r e i n v e r s i o n  ( 9 1 .  H c B r i d e ' ~  

r e s u l t s  i n d i c a t e  t h a t  h e u r i s t i c  (d)  is s i g n i f i c a n t l y  f a s t e r .  However, neithi-7 

method c o n s i s t e n t l y  ach ieves  a l a r g e r  CUB s e t .  

McBridc a l s o  c o m e n t s  on t h e  no t ion  of a  :good" CUB set. lie f i n d s  - ? r i t  

i n  s e l e c t i n g  a s e t  of GUB rows t h a t  minimizes t h e  non-zero build-up i n  t h e  r i - r e -  

s e n t n t i o n  of t h e  inverse  t rans fo rmat ion  of t h e  e x p l i c i t  b a s i s  dur ing  a c t u a l  

op t im iza t ion .  R e s u l t s  a r e  a l s o  given l o r  o r c s t r i c t c d  CUB s e t  s r l c c t i o n  thnr 



gives p r i o r i t y  to equa l i t y  cons t ra i n t s .  Since equa l i t y  cons t ra i n t s  a r e  always 

binding i n  f eas ib l e  so lu t ions ,  the  subset of the  bas i s  assoc ia ted  with binding 

cons t ra in ts .  o r  kernel  [ 7 ] , i s  expected t o  have fewer e x p l i c i t  non-zero elements. 

Based upon the  r e s u l t s  i n  these  papers, and on independent computational 

experience with automatic CUB f ac to r i za t i on  reported by Brown and Craves [ 3 ] .  

the present  research i n i t i a l l y  concentrated on those approaches u t i l i z i n g  the  tvo 

most success fu l  heu r i s t i c s  based on c o n f l i c t  and d i r e c t i o n a l  g rad ien t  ( i .e .  

methods 1.2. 11.2, 11.9 and 11.10 of ( 2 1 ) .  

The models studied i n  t h i s  repor t  a r e  of much l a r g e r  s c a l e  and inc lude 

mixed i n tege r  problems as  wel l  a s  models f o r  which p r i o r  CUB rov s e t s  have been 

manually spec i f ied .  

4.  DETERMINATION OF THE ELIGIBLE SET 

The implementation of CUB i n  simplex a lgor i thms usua l l y  admits only 2 1 

a s  non-zero coe f f i c i en t s  i n  the  CUB rows. In l i n e a r  programming, a column sca l i ng  

can make each non-zero element i n  a CUB row + 1. For va r i ab les  of an i n t ege r  o r  

mixed i n tege r  programing problem, the  columns of matr ix A t h a t  correspond t o  

i n t ege r  va r i ab les  cannot be scaled without inconvenience f o r  o the r  opt imizat ion 

funct ions depending upon the  i n t e g r a l i t y  condi t ion.  Therefore, non-zero elements 

i n  columns corresponding t o  i n t ege r  var iab les  w i l l  be modified by row sca l ing .  

I f  i t  is impossible t o  ob ta in  the  necessary + 1 non-zero coe f f i , c ien ts  by rw 

sca l i ng  and column sca l i ng  of columns corresponding t o  continuous-valued va r i ab les .  

the rov is deemed not  e l i g i b l e  f o r  inc lus ion  i n  a CUB s e t .  

I t  is an ob jec t i ve  of t h i s  research tha t  the procedures examined f o r  

loca t ing  a GUB s e t  i n  a l i n e a r  programming problem be designed t o  be incorporated 

a s  an automatic, i n t eg ra l  p a r t  of a contemporary opt imizat ion system of advanced 

design. 



Each method i s  implemented a s  a f ea tu re  of t he  read rou t ine  (wr i t ten  t o  

accept input  i n  the standard MPS format, a s  we l l  a s  ed i t i ng  information i nd i ca t i ng  

integer va r i ab les ,  sca l ing ,  and known p r i o r  GUB s t r u c t u r e ) .  Each method auto- 

mat ica l l y  examines the rovs of the  input  and spec i f i es  a CUB s e t .  Thc appro- 

p r i a t e  rovs and columns a r e  then sca led  a s  necessary t o  obta in t he  proper CUB 

s t ruc tu re ,  and passed on t o  the opt imiz ing por t ion  of the system. (Note t ha t  the  

ed i t i ng  information p laces condi t ions t h a t  must be s a t i s f i e d  f o r  any achievable 

GUB s e t . )  

In  determining the  s e t  of e l i g i b l e  rows, the  fol lowing f ac to r s  have t o  

be considered. 

a .  Through the ed i t i ng  process,  have some of the  rovs been dropped from the  

problem? I f  so, these "masked" r w e  a r e  no t  e l i g i b l e  f o r  inc lus ion  i n  t he  

GUB s t r u c t u r e  and a re  thus dropped from the  s e t  of e l i g i b l e  r w s .  

b. Through the e d i t i n g  process, have any rows been predesignated t o  be i n  t he  

CUB s t r u c t u r e ?  Large segments of the  cons t ra i n t s  can o f ten  be se lec ted  fo r  

the  CUB s e t  e i t h e r  v i sua l l y  o r  by recogn i t ion  of a member of a convenient 

c l a s s  of models. Any rovs t ha t  c o n f l i c t  v i t h  these  rows a r e  not  e l i g i b l e  

f o r  subsequent inc lus ion.  

c. A l l  rows designated "nonconstrained" (which inc lude the ob jec t i ve  funct ion)  

a r e  i n e l i g i b l e  f o r  inc lus ion  i n  the  GUB s t ruc tu re .  

d. I f  there  a re  any integer-valued var iab les ,  an add i t iona l  check i s  performed. 

A roo i n  the  CUB s e t  must eventual ly  be capable of being sca led  t o  2 1 

non-zero coe f f i c i en t s .  This is achieved. i f  necessary,  through a combination 

of row and column sca l ing .  Hovever, wi th i n t ege r  var iab les ,  column sca l i ng  

is no longer advisable.  Therefore any row with a non-zero element i n  in teger  

columns t ha t  is not  a +1 or -1. o r  capable of being rendered i n t o  a 2 1 

in  those pos i t i ons  through row sca l i ng  alone. must be mnrked a s  inc1.igible 

f o r  inc lus ion  i n  the CUD s t ruc tu re .  



Once the  above r e s t r i c t i o n s  have been cons ide red ,  t h e  r e s u l t i n g  s e t  o f  

e l i g i b l e  rows is  then a v a i l a b l e  f o r  search  i n  o rder  t o  c o n s t r u c t  t h e  d e s i r e d  GCB 

s t r u c t u r e .  

5. LMPLMENTATION OF AUTOPLATIC CUB HEURISTICS 

C o n f l i c t  Hethods 

These employ the n o t i o n  of  a  c o n f l i c t  measure f o r  each  row. Consider  t h e  

c o n f l i c t  ma t r i x ,  M, of t h e  corresponding t e c h n o l o g i c a l  m a t r i x  A. f o r  which a  GCB 

s e t  is t o  be found. An i n d i v i d u a l  element,  mik is 1 i f  row i and row k of t h e  

o r i g i n a l  ma t r i x  have a t  l e a s t  one column j such t h a t  a i j  + 0 and a,j Z 0. I f  

t h e  two rows have no non-zero c o e f f i c i e n t s  i n  a  common column then t h e  co r re -  

sponding mik of t h e  c o n f l i c t  ma t r i x  i s  0. Summing a c r o s s  a  rw of t h e  con- 

f l i c t  ma t r i x  can thus  g ive the  measure of t h e  number of rows p l u s  one t h a t  a r e  

i n  c o n f l i c t  w i t h  a  given row. For a  g iven row. t h i s  sum l e a s  one,  c a l l e d  t h e  

row's de le t i on  p o t e u ,  i n d i c a t e s  e x a c t l y  how many o t h e r  rows would be immedi- 

a t e l y  excluded from t h e  CUB s e t  by i n c l u s i o n  of t h i s  row. 

c o n i t i c t  t o w - w o n  p l a c e s  a l l  t h e  e l i g i b l e  rows on a  cand ida te  list. 

From t h e  c a n d i d a t e  l i s t ,  i n d i v i d u a l  rovs a r e  s e l e c t e d  by rnbhnum d e l e t i o n  p o t e n t i a l  

and removed t o  be added t o  t h e  s t r u c t u r e  s e t .  Other rows t h a t  a r e  i n  c o n f l i c t  

v i t h  t h e  s e l e c t e d  row a r e  inrmediately removed from t h e  c a n d i d a t e  l ist and d i s -  

carded.  The s e l e c t i o n  of rows f o r  t h e  s t r u c t u r e  s e t  and t h e  d i s c a r d i n g  of con- 

f l i c t i n g  rows con t inues  u n t i l  t h e  cand ida te  l ist is exhausted.  The r e s u l t i n g  

s t r u c t u r e  s e t  forms a  CUB s e t .  

A modi f i ca t ion  t o  t h e  above h e u r i s t i c  is p o s s i b l e  which baeahd t i t i e b  among 

rows s h a r i n g  t h e  minimum d e l e t i o n  p o t e n t i a l  by ( f o r  i n s t a n c e )  s e l e c t i n g  t h e  

row hav ing the  most non-zero e lements f o r  i n c l u s i o n  wi th  t h e  CUB s t r u c t u r e  set. 

The program used t o  t e s t  t h i s  h e u r i s t i c  approach is adapted from an 

e a r l i e r  v e r s i o n  made a v a i l a b l e  by Graves. 



Con6fic€ Row-Addition 

Step 1. I d e n t i f y  E l i g i b l e  Rows. S e t  Bi  - 1 i f  row i is an e l i g i b l e  row, and 

e q u a l  t o  0 otherwise.  

Step 2. Detennine De le t ion  P o t e n t i a l .  Scan each e l i g i b l e  row i and increment 

Bi by t h e  number of o t h e r  e l i g i b l e  rows k where 
ai j  and a k j  are 

bo th  non-zero f o r  at l e a s t  one column j. (Bi is  t h e  d e l e t i o n  p o t e n t i a l ,  

p l u s  one. ) 

Step 3. Stopping Condit ion. I f  any B i  is g r e a t e r  than  0, go t o  t h e  next  s t e p .  

Otherv ise.  s top .  At te rm ina t ion ,  t h e  s t r u c t u r e  s e t  is a CUB row set. 

Step 4. ROW Se lec t ion .  S e l e c t  row i having t h e  minimum p o s i t i v e  ( "de le t ion  

po ten t ia l " )  Bi and add i t  t o  t h e  s t r u c t u r e  s e t .  

Step 5. Exclude Rows i n  C o n f l i c t  w i th  Selected Row. Locate t h e  (Bi-1) rows 

i n  c o n f l i c t  w i th  t h e  s e l e c t e d  row. For each of  t h e s e  rows k ,  l o c a t e  

t h e  (Bk-1) rows t h a t  they  a r e  i n  c o n f l i c t  w i t h  and decrement Bi f o r  

t h o s e  rows by one. 

Step 6. Marking Selected and Excluded Rows l n e l l g i b l e  f o r  Fur ther  Consideration. 

S e t  Bi  and t h e  B 's  equa l  t o  ze ro .  Go t o  s t e p  3. k 

CondLic€ R o w d d e t i o n  is a two-phase method which i n i t i a l l y  p l a c e s  a l l  

t h e  e l i g i b l e  rows i n  t h e  s t r u c t u r e  s e t .  From t h i s  set i n d i v i d u a l  rows a r e  

s e l e c t e d  d u r i n g  Phase 1 and p laced on t h e  c a n d i d a t e  l ist  by rnarimum d e l e t i o n  

p o t e n t i a l .  During Phase 2 ,  remaining cand ida te  rows t h a t  d o  n o t  c o n f l i c t  w i th  

t h e  s t r u c t u r e  s e t  can be recons ide red  i n  LOFI o r d e r  [ 2 ] .  A mod i f i ca t ion  of  

phase 2 is used i n  t h i s  r e s e a r c h  which s imply  exc ludes  from f u r t h e r  cons ider-  

a t i o n  a l l  c o n f l i c t i n g  rows, r e i n c l u d e s  any remaining cand ida te  rows, and r e p e a t s  

phase 1. u n t i l  no f u r t h e r  n o n c o n f l i c t i n g  c a n d i d a t e s  remain. 

Gradient  Methods 

G d &  * o w - d d e t i o n  employs a h e u r i s t i c  method suggested by Senju and 

Toyoda [17 ]  f o r  approximate s o l u t i o n  o f  c e r t a i n  l i n e a r  programming problems w i th  



0 , l  v a r i a b l e s .  The o b j e c t i v e  is  t o  o b t a i n  a  maximum number of rows i n  t h e  CU3 

s t r u c t u r e  whi le  s a t i s f y i n g  the  s t i p u l a t i o n  t h a t  the  CUB rows be d i s j o i n t .  

(S) Max Z = sl + x2 + ... + x 
m 

where xi e f 0.1) 

m is  t he  number o f  cand ida te  rows i n  (L), 

n  is t h e  number o f  v a r i a b l e s  i n  (L). 

xi 
is t h e  v a r i a b l e  vh ich determines whether row i is i n  the  

GUB s e t  o r  n o t ,  and 

Z is t h e  o b j e c t i v e  func t ion .  

Using t h e  v e c t o r  space v i e v p o i n t  o u t l i n e d  e a r l i e r .  cons ide r  each row of (S) as  

a  vec to r  i n  n-space. A r e s u l t a n t  v e c t o r  R is  d e t e m i n e d  by the  s u n  of a l l  t he  

inc luded rows and. i n  g e n e r a l ,  ex tends  beyond the  f e a s i b l e  space  denoted by =he 

u n i t  hypercube. A g r a d i e n t  v e c t o r  i s  c a l c u l a t e d  from t h i s  i n f e a s i b l e  p o i n t  i a  t h e  

d i r e c t i o n  o f  the s h o r t e s t  d i s t a n c e  t o  t h e  f e a s i b l e  reg ion.  An i n n e r  product  of 

t h i s  g r a d i e n t  wi th  each of t h e  row v e c t o r s  r e s u l t s  i n  a  r e l a t i v e  weight f o r  each 

rov. which can be viewed a s  i n d i c a t i n g  t h e  r e l a t i v e  c o n t r i b u t i o n  t h a t  removal of 

t h e  row would have towards o b t a i n i n g  a  f e a s i b l e  s t r u c t u r e  s e t .  

Rows a r e  removed from the  s t r u c t u r e  s e t  accord ing  t o  t h e i r  r e l a t i v e  

weight ,  the  l a r g e s t  weight be ing  removed f i r s t .  Th is  p rocess  i s  cont inued u n t i l  

a  f e a s i b l e  s e t  of CUB rows has been ob ta ined .  (The g r a d i e n t  v e c t o r  is no t  re- 

computed a s  t h e  method proceeds. )  

Next, a  phase 2 procedure examines each of t h e  i n i t i a l l y  removed rows t o  

s e e  i f  any can be re inc luded  i n t o  the s t r u c t u r e  s e t  wi thout  v i o l a t i n g  t h e  CUB 

r e s t r i c t i o n s .  Upon completion of phase 2 ,  t he  s e l c c t c d  rows c o n s t i t u t e  a  CUB s e t .  

A v a r i a t i o n  on thc  nbovc procedure r e c n l c u l n t e s  t h e  s h o r t e s t  d i s t a n c e  

t o  thc  l e n s t b l e  r e ~ t o n  a f t c r  t h e  rcmovnl of r s c h  row. X t th  t h e  new g r a d i e n t ,  



a new set of relative veights for the remaining rows is then calculated and used, 

if necessary, to determine which of the subsequent rows will be removed. 

Another modification is possible whenever two rows are found with equal 

weights. As a tie-breaking rule, the row found to have the least number of non- 

zero coefficients may be discarded first. 

GaadietU RowD&etion 

Phase 1: Delet ion o f  I n feas ib l e  Rows 

Step 0. I n i t i a l i z e  Sets. Add all eligible rows to the structure set. 

The candidate set is empty. 

Step 1. Detennine the Vector R. For each column j, define p as the 
j 

number of rows in the structure set having non-zero elements in column j. 

Step 2. Detennine Re la t ive  Weight o f  Each Row. For each row i, define 

vi as the sum of (p -1) of every column j, for which a f 0. 
j ij 

Step 3. F e a s i b i l i t y  Condit ion. If for every column, p < 1, then go to 
j - 

step 6; else find a colurrm j such that p > 1. 
j 

Step 4.  Detennine Row f o r  Exclusion. Examine the rows in the structure 

having non-zero elements in column j. Select the row i with the largest v 
i' 

Step 5. Remove Selected Row. Remove row i from the structure set. decre- 

menting pj by one for every column j with a f 0 .  Add row i to the 
ij 

candidate set and return to step 3. 

Phase 2: Improve Feasible GUB Set Found by Re-including Excluded Rows 

Step 6 .  El iminate Rows i n  Candidate Set t ha t  Con f l i c t  w i t h  the Feasible Set. 

For every row i of the candidate set that has at least one aij Z 0 in a 

column with p - 1. remove that row from the candidate set. 
j 

Step 7. Re-inclusion o f  Rows. If any rows remain in the candidate set, 

then'find row i having the smallest 
vi. Remove row i from the candidate set 

and rc-include it in thc structure set. Increment o j  by one for every 

column j whcrc a i j  + 0. 



Step 8. Stopping Condi t ion.  I f  t h e  cand ida te  s e t  is empty, s t o p ;  

e l s e  go t o  s t e p  6. 

To modify t h e  a l g o r i t h m  i n  o r d e r  t o  compute a  n e v  g r a d i e n t  v e c t o r  a f t e r  

t h e  r e c o v a l  of each row i n  phase 1, s t e p  5 is chanced a s  f o l l o w s :  

Step 5*. Remove Selected ROW. Remove rw i from t h e  s t r u c t u r e ,  dec re -  

ment ing P by one f o r  eve ry  column j  such t h a t  a  # 0. Locate  e a c h  
1 i j  

r o v  k t h a t  is i n  c o n f l i c t  v i t h  row i. Decrement vk  by t h e  number of 

c o n f l i c t s  be tveen  t h e  t v o  rows. Add row i t o  t h e  c a n d i d a t e  s e t  and 

r e t u r n  t o  s t e p  3. 

These  two b a s i c  methods have been implemented a s  i n t e g r a l  modules of  a  

l a r g e  s c a l e  o p t i m i z a t i o n  sys tem.  The re fo re .  e x p l i c i t  c o n f l i c t  m a t r i c e s  a r e  n o t  

b u i l t .  (To have done s o  would have consumed too  much computer  t ime and s p a c e . )  

I ns tead .  a l l  t h e  i n f o r m a t i o n  is  s t o r e d  i n  t h e  v e c t o r s  3 ,  3 ,  and 'J. L o g i c a l  

f l a g s  a s s o c i a t e d  w i t h  each r o v  i n d i c a t e  whether  i t  is e l i g i b l e ,  and v h e t h e r  i t  

is i n  t h e  c a n d i d a t e  s e t  o r  i n  t h e  s t r u c t u r e  s e t .  

The problem d a t a  is  expressed  i n t e r n a l l y  i n  t e rms  o f  on l y  t h e  u n i q u e  non- 

z e r o  e lemen ts .  T h i s  i n p u t  is  s t o r e d  i n  a  doubly  l i n k e d  l i s t  hav ing both  a  r o v  

and a  column t h r e a d .  Thus, a long  v i t h  any non-zero c o e f f i c i e n t  a i j .  t h e  l o c a -  

t i o n  of  a d j a c e n t  non-zero e lemen ts  i n  bo th  t h e  row i and column j  a r e  a l s o  

i nmed ia te l y  a v a i l a b l e .  T h i s  c r u c i a l  f e a t u r e  pe rm i t s  e f f i c i e n t  row a c c e s s  f o r  

v a r i o u s  o p e r a t i o n s  (e.g. .  t o  l o c a t e  a l l  rows t h a t  c o n f l i c t  v i t h '  a  g iven row a t  

a  p a r t i c u l a r  column).  

6. COMPUTATIONAL RESULTS 

The h e u r i s t i c  methods have been t e s t e d  on 15  prob lems t h a t  vary i n  s i z e  

from 92 c o n s t r a i n t s  t o  4 , 6 4 8  c o n s t r a i n t s .  A  d c s c r i p t i o n  o f  each  of t h e  prob lems 

is g iven  i n  F i j iu rc  2.  A s  can be scen.  f o u r  of t h c  problems a r e  n ixed i n t e g e r  and 

two a r e  p u r e  i n t c g c r .  



Problem Number Number Integer 
of rows' of columns Columns Non-Zeros 

VANN 92 1.324 1,324 2.648 

NElTING 103 247 103 494 

AIRLP 171 3,040 0 6,023 

COAL 171 3.753 0 7,506 

TRUCK 239 4,752 4.752 30.074 

CUPS 415 619 145 1.341 

FERT 606 9,024 0 40.484 

PIES 663 2.923 0 13,288 

PAD 695 2.934 0 13.459 

ELEC 785 2,800 0 8.462 

GAS 799 5.536 0 27,471 

FOAM 1.017 4,020 42 17,187 

LANG 1,238 1,425 0 22,028 

JCAP 2.487 3,849 560 9,510 

ODSAS 4.648 4,683 0 30,520 

Figure 2 

The r e s u l t s  of these experiments a re  given i n  Appendix A. The f i r s t  

two columns give the rws and non-zero column elements, respect ively.  of the 

GUB s t ruc tu res  found. The time given i n  column th ree  is the time required t o  

loca te  the CUB s e t  once the  s e t  of e l i g i b l e  rovs has been determined. The f i n a l  

columns give add i t iona l  information r e l a t i n g  t o  the two vers ions of the  grad ien t  

methods examined and represents  t o t a l  time i n  phase 1 and the number of rovs re- 

included i n  the CUB s t ruc tu re  dur ing phase 2. 

A s  v i t h  the e a r l i e r  work c i ted .  the Senju and Toyoda methods vere  found 

t o  be cons is ten t ly  the  f as te r .  Gradient row-deletion vhich updates the gradient  

a f t e r  each rov is removed takes longer i n  phase 1 than i t s  non-updating counter- 

par t .  However, i t  so se lec t i ve l y  de le tes  the  rows, tha t  few i f  any rove a r e  

ever added back i n t o  the s t r u c t u r e  dur ing phase 2. This suggests t h a t  i t  be 

implemented a s  s t r i c t l y  a one phase mechod. 



A l l  methods a r e  robus t  i n  t h a t  they c o n s i s t e n t l y  f i n d  l a r g e  CUB s e t s .  The 

c o n f l i c t  approaches genera l l y  f i n d  a l d r g e r  number of v a r i a b l e s  v i t h  non-zero 

c o e f f i c i e n t s  i n  t h e  GUB rovs.  Hovever, they d e f i n i t e l y  become r e l a t i v e l y  

i n e f f i c i e n t  vhen l a r g e r  problems a r e  ana lyzed ,  r e g a r d l e s s  of t h e  r e l a t i v e  s i z e  

of t h e  CUB s t r u c t u r e  i n  t h e  problem. 

There i s  some d iscrepancy betveen t h e s e  r e s u l t s  and those  pub l i shed  

e a r l i e r  [2 ] .  The wide v a r i a t i o n  betveen g r a d i e n t  rov-de let ion v i t h ,  and v i t h o u t .  

g r a d i e n t  upda t ing  has no t  been observed i n  t h e  c u r r e n t  exper iments .  I t  is 

hypothes ized t h a t  t h i s  is due p a r t i a l l y  t o  d i f f e r e n c e s  i n  implementat ion of t h e  

v a r i o u s  approaches and p a r t i a l l y  t o  problem s i z e  and s t r u c t u r e  v a r i a t i o n s  betveen 

t h e s e  s t u d i e s .  

The comptex i t y  of a problem is s a i d  t o  be polynomial i f  an a lgo r i thm 

e x i s t s  f o r  which t h e  fundamental o p e r a t i o n s  a r e  l i m i t e d  by a polynomial f u n c t i o n  

of i n t r i n s i c  problem dimensions. Such an  a lgo r i thm vould be c a l l e d  a p o t y n o n i d  

t ime  o r  good algor i thm.  The c l a s s  of a l l  problems f o r  v h i c h  such a lgo r i thms  

e x i s t  is denoted (P). I f  an  a lgo r i thm is n o t  polynomial t i m e ,  t hen  i t  is d e f i n e d  

t o  be an e x p o n e n t i d  h e  algor i thm.  The d isadvan tage  o f  an exponen t ia l  a lgo r i thm 

is t h e  exp los ive  g rov th  of t h e  maximum s o l u t i o n  t ime a s  t h e  dimensions of t h e  

problem i n c r e a s e  (141. 

A problem x is s a i d  t o  be t e d u c i b t e  t o  a problem y i f  each good 

a lgor i thm f o r  s o l v i n g  y can be used t o  produce i n  polynomial t i m e  a good 

a lgo r i thm f o r  s o l v i n g  x (121. Note t h a t  t h i s  does n o t  n e c e s s a r i l y  r e q u i r e  

t h a t  a good a lgo r i thm f o r  x and y a c t u a l l y  e x i s t .  T h i s  r e q u i r e s  on ly  t h a t  

i f  one e x i s t s  f o r  y ,  then one a l s o  e x i s t s  f o r  x. 



An  actable problem is one fo r  which i t  i s  known tha t  no polynomial 

time algorithm ex i s t s .  In between t h i s  c l a s s  of problem, and the c l a s s  P, 

is a vas t  number of problems whose s t a t u s  is uncerta in.  Among these i s  a 

c l a s s  of no~rddenminid.t ic p o l y n o d - h c  problems (NP) f o r  which a polynomial 

cime algorithm can be shown t o  e x i s t  t h a t  can vehidy a guessed so lu t ion ,  but 

f o r  which the  ex is tence of a (de termin is t i c )  polynomial cime a lgor i t lm t o  

ac tua l l y  so lve  a problem has not  ye t  been demonstrated. 

I f  every problem of the  c l a s s  NP is reduc ib le  t o  the  problem y,  then 

y is sa id  t o  be N P - h d .  In add i t ion ,  i f  y i t s e l f  belongs t o  NP, then y 

is NP-complete [6.121. 

The fol lowing problem is known as t he  independetd .let deo id ion  p t o b l m  (ISD) 

It belongs t o  the  s e t  of NP-complete problems. 

(ISD) Civen a graph C - ( V , E )  and an in teger  t ,  decide whether C contains 

an independent s e t  of s i z e  c o r  more. 

The CUB decis ion problem (CUED) can be def ined a s  Follows: 

(CUED) Civen an i n tege r  p and an m x n matrix K def ined as  K = 1 i f  a . .  # 0. 
il 11 

and K = 0 otherwise, decide whether K contains a s e t  of p o r  more 
il 

rows il, i2, ... . iq such t h a t  

9 
(* 1 kiel 5 I f o r  every column; q 2 p . 

e l  1 

Given an ins tance of the  ISD problem, t h e  inc idence matr ix  N can be constructed.  

This matrix along v i t h  the  in teger  t i s  an ins tance of t he  CUED problem. The 

fol lowing theorem proves the  cor rec tness  of t h i s  reduction: 

Theorem: The incidence matr ix  N has c rows s a t i s f y i n g  (*) i f  and only i f  

thc rc  a r e  t ve r t i ces  i n  C tlrac a r e  independent. 



Proof. - 
a) Assume there exists t rows of N that satisfy (*). They correspond to 

vertices v , v ,..., v in G. If any two of these vertices are adjacent, 
i2 i t  

then 

where j is the column in N that corresponds to the edge connecting the two 

vertices. This is a violation of the assumption, hence the t vertices in 

C are not connected to one another. 

b) Assume there exists t vertices v . v , ... , v. in G that are 
i2 It 

independent. Since no t w  are adjacent. the corresponding rows in N satisfy 

(*) 1191. Q.E.D. 

Since the ISD problem. a problem known to be NP-complete. is reducible 

to the GUBD problem. it follows that the CUBD problem itself is NP-complete. (It 

is clear that the reduction is polynomial time and it is also clear that CUBD is 

in NP.) The related problems of finding a maximum independent set and a maximum 

GUB set are not in NP, hovever, they are NP-hard. It is therefore unlikely chat 

a polynomial-time algorithm will be found for these problems. Only exponential- 

time algorithms are presently available. 

The above analysis of CUB algorithms has only addressed the wo/rd2 c u e  

bound. No conclusions are made about the average performance of an algorithm. 

In other words. the possibility of the existence of an algorithm with good 

average performance. but having an exponential worst case bound, has not been 

ruled out. 

8. UPPER BOUNDS FOR TllE SIZE OF ,HAXIEILIM CUB SET 

The intrinsic difficulty of identifying a maximum CUB sec has been shown to 

be csscntially impossible for problcms of chc scalc at hand. However, the cfficicnt 



h e u r i s t i c  procedures have been shown t o  provide very la rge  CUB s e t s ,  whose s i r e  

appears t o  be r e l a t i v e l y  s t a b l e  f o r  each problem regard less  of t h e  p a r t i c u l a r  necboP 

appl ied.  This suggests t h a t  these  l a rge  CUB s e t s  may be. i n  f a c t ,  very near ly  

maximum, although there  is no p r a c t i c a l  way t o  v e r i f y  t h i s  d i r e c t l y .  

Although the  problem of determining t he  s i z e  of the  maximum CUB s e t  IS  a l s o  

NP-hard, i t  is poss ib le  t o  develop an e a s i l y  computable uppm bound on the  maximum 

CUB s e t  s i ze .  This bound can. then  be used t o  ob jec t i ve l y  eva lua te  t he  qualit:: of 

the CUB s e t s  produced by h e u r i s t i c  a lgor i thms.  

It is c l e a r  t h a t  t he  number of rows of a CUB s e t  can be no grea ter  thzn t he  

number of rows i n  the  problem. Also any one rov by i t s e l f  can form a CUB s e t .  

But these bounds a r e  of l i t t l e  p r a c t i c a l  use where consider ing t h e  problem of 

i den t i f y i ng  a maximum CUB s e t .  U t i l i z i ng  informat ion t ha t  is a l ready  ava i lab le  i n  

the  h e u r i s t i c  procedure, i t  is poss ib le  t o  cons t ruc t  i n  polynomial time an upser 

bound on t he  s i z e  of the  maximum CUB s e t .  ( I t  is a l s o  poss ib le  t o  cons t ruc t  a l ove r  

bound on the  s i z e  of the  maximum GL3 s e t ,  but  t ha t  top ic  i s  not pursued i n  t h i s  

repor t .  ) 

For the  purpose of developing a b e t t e r  bound, the  inc idence matr ix r e y e -  

s e n t i a t i o n  (N) of the  problem is used. Let si be the number of 1's i n  row i .  

Note t ha t  si is the  number of edges inc iden t  t o  ver tex  i i n  G. Also note t h a t  

si = Bi-1. The number of columns i n  N represents  the number of d i s t i n c t  

c o n f l i c t s  chat  e x i s t  between the rows of the o r i g i n a l  problem. This number i s  

denoted as  c ,  and can be found by t he  fol lowing formula 

I f  c is g rea te r  than 0 ,  a l l  the rows of N cannot simultaneously belong t o  a 

CUD s e t .  which impl ies the cardin.1l i ty of tlle CUB s e t  is l e s s  than m. A8 c 

becomes l a rge r ,  the  fol lowing argument s h m s  tha t  the  uppcr bound of the maxiaum 

CUB s c t  dccrcases.  



I f  c  is p o s i t i v e ,  but  s t r i c t l y  l e s s  than m ,  i t  is p o s s i b l e  f o r  a l l  t h e  

c o n f l i c t s  t o  invo lve one row. Removal of t h a t  row would then leave  m-1 rows t h a t  

form a  CUB s e t .  Thus f o r  c  i n  t h e  range  from 1 t o  m-1,  an upper bound on t h e  

s i z e  of the  maximum G U B  s e t  i s  m-1.  Since  one row can c o n f l i c t  v i t h  a t  most m-1 

o t h e r  rows, once c ,  m. a t  l e a s t  two rows have t o  be removed t o  form a  CUB s e t .  

For m ( c  ( [(m-1) + (m-2)] i t  is p o s s i b l e  t o  c o n s t r u c t  a  inc idence  mat r i x  such 

t h a t  a l l  t h e  c o n f l i c t s  a r e  between a p a i r  of rows and t h e  remaining s e t  of rows. 

Removal of t h e  p a i r  would r e s u l t  i n  a  GUB s e t  of m-2 rows. Th is  c o n s t r u c t i v e  

argument con t inues  u n t i l  c  - [ (m)(m-l) ] /2.  which occurs  when each row c o n f l i c t s  

wi th  every  o t h e r  row. A t  t h a t  po in t .  t h e  max maximum GUB - min maximum CUB = one row. 

I n  genera l .  f o r  any problem v i t h  an m x c  inc idence  mat r i x ,  t h e  l a r g e s t  

maximum GUB s e t  t h a t  can be ob ta ined  is: 

vhere  L i n d i c a t e s  t r u n c a t i o n  t o  an i n t e g e r .  

The above bound is paob le~n - iudep t f i dea t  and a  bhahp bound i n  t h a t  mat r i ces  

v i t h  a GUB s e t  t h e  s i z e  of the  bounding va lue  can be cons t ruc ted .  

With a d d i t i o n a l  i r~ fo rmat ion  about  a  s p e c i f i c  problem a  b e t t e r  bound can be 

cons t ruc ted .  S ince s  is t h e  number of o t h e r  rows t h a t  c o n f l i c c  w i th  row i ,  
i 

removing row i from the s e t  of rovs  reduces t h e  number of c o n f l i c t s ,  c ,  by si. 

Let  y  denote max s f .  Since y  is t h e  l a r g e s t  rov c o n f l i c t  coun t ,  c  

can be reduced by not more than y  w i t h  t h e  removal of each row. The minimum 

number of r w s  t h a t  would have t o  be removed t o  reduce t h e  number of row c o n f l i c t s  

10 0 ,  is r e l y .  Therefore.  g iven m, c  and y ,  t h e  bound can be inproved t o  

c  5 (Ul-y)y - 
1 . J  + i . 2 5  + y(2m-y-1) - 2. . c > ( r y ) y  ; 

where r i n d i c a t e s  t11e neares t  h igher  i n t e g e r .  



In  order t o  determine y, t he  e n t i r e  0 vec tor  must be examined. 

A t h i r d ,  even b e t t e r  bound can be obtained v i t h  add i t i ona l  information 

on the  dhequency of the con f l i c t  counts from 1 t o  y. The procedure is the same 

a s  above, i n  t ha t  vhen a row is removed with y c o n f l i c t  count, c decreases by 

y. However. instead of continuing t o  decrease c by y ,  i t  is decreased by 

the next l a r g e s t  si. This procedure continues u n t i l ,  once again,  c becomes zero. 

This bound is named u 3' 

The bounds developed can be used t o  ob jec t ive ly  eva lua te  t he  s i z e  of a CUB 

s e t  found by h e u r i s t i c  methods. In  two problems examined, VANN and AIRLP. the 

number of rovs i n  the  CUB s e t  equal an upper bound on the  maximum CUB s e t  f o r  the  

problem. Therefore. f o r  those problems, the h e u r i s t i c  methods a r e  ve r i f i ed  t o  have 

located maximum CUB se ts .  

Manual spec i f i ca t i on  of a CUB s e t  from v i s u a l  inspect ion can u t i l i z e  these 

bounds a s  an exce l len t  measure of t he  maximum add i t i ona l  rows t o  be found. This 

information is a l s o  an a id  i n  decid ing whether t o  sub jec t  the  problem t o  add i t i ona l  

automatic search f o r  CUB. 

The upper bounds developed i n  t h i s  repor t  vary from a problem-independent 

bound t o  t i g h t e r  problem-dependent bounds. It is speculated t h a t  add i t iona l  informa 

t ion can be e a s i l y  ex t rac ted  from the  ac tua l  con f l i c t  s t r uc tu re  of the problems tha t  

can be used t o  t igh ten  the  ex i s t i ng  bounds even fu r t he r .  This is s t rong ly  suggested 

by manual ana lys is  of problems v i t h  pa r t i cu la r l y  loose bounds f o r  which the  c o n f l i c t  

s t r uc tu re  seems t o  have higher order pathology. In add i t ion ,  lower bounds have 

been developed by s imi la r  methods. 

Another a res  tha t  var ran ts  f u r t h e r  study is the spec ia l  s t r uc tu re  of the  

incidence matrix representat ion of the  o r i g i n a l  problem. It is noted tha t  f o r  an 

incidence matr ix ,  N. the r e l ~ t i v e  ve igh ts  generated f o r  cach rov a r e  (except f o r  a 



constant)  i den t i ca l  fo r  both the c o n f l i c t  and the  gradient methods studied. Th is  

impl ies that  f o r  a matrix N ,  the  row-deletion heur is t ics  w i l l  i d e n t i f y  the  same 

CUB s e t .  

As th ings now stand. CUB-finding demands fa r  l ess  cost  than the  b e n e f i t s  

derived during model opt imizat ion.  Bet ter  CUB-finding methods may resu l t  from 

simple extensions ar is ing from relaxat ions o f  (S), use o f  c o n f l i c t  informat ion o f  

higher order,  l imi ted appl icat ion o f  backtracking enumeration, or exp lo i ta t icn  o f  

conditioned bounds on the  remaining candidate rows to  a l locate  heur is t ic  e f f o r t .  

Final ly. research i s  continuing on automatic locat ion  o f  network rov 

structure (e.g. ,  Husalem [16 ]  and Wright [ l a ] ) .  As one i l l u s t r a t i o n  o f  an immediate 

general izat ion o f  the  CUB r e s u l t s ,  a CUB set  fo r  a problem can be i d e n t i f i e d  and 

then another GUB set  o f  an e l i g i b le  subset o f  remaining rows can be found. Thus, 

a d i - p a h t i t e  ne7kvd-t &OW iactohization can be achieved (e.g. .  t ransportat ion or 

assignment rows). 

10. CONCLUSIONS 

The computational b e n e f i t s  o f  a large CUB se t  fo r  an LP problem are widely 

recognized. This report shows tha t  the  i d e n t i f i c a t i o n  o f  a maximum CUB se t  i s  a 

d i f f i c u l t  problem. essen t i a l l y  as hard as many other widely known d i f f i c u l t  problems. 

The use o f  heu r i s t i cs  seems inescapable. This report has examined two 

promising heu r i s t i cs  (w i th  two vers ions o f  each) applied t o  a se r i es  o f  

real  l i f e ,  large scale models. Al l  versions are robust i n  t h e i r  a b i l i t y  t o  f ind 

large CUB row se ts .  However the two vers ions that  use the Senju and Toyoda method 

are consisccnt ly  the f a s t e s t .  These two methods are essen t i a l l y  equal i n  t h e i r  

e f f i c i e n c y  and e f f e c t i v e n e s s .  Since the  vers ion which recalculates the  gradient 

a f t e r  the rcmoval o f  each row so se lec t i ve l y  removcs the rows during the f i r s t  

phase tha t  few i f  any rows are re-included i n  the CUR se t  during the  second phase, 

Tliis suggests that  the l a t t e r  phase be omit ted.  



The representa t ion  of an i n f i n i t e  number of m-row mat r i ces  by a f i n i t e  number 

of inc idence matr ices o f f e r s  a p w e r f u l  and concise way of examining the CUB 

problem. Under t h i s  representa t ion ,  both bas i c  h e u r i s t i c  methods inves t iga ted  

assign (wi th in a constant)  t he  same r e l a t i v e  se lec t i on  weights t o  each r w .  

F ina l l y ,  the a b i l i t y  t o  de f i ne  upper bounds on the  maximum s i z e  of the  CUa 

s e t  g ives  a new poverfu l  t o o l  i n  t h i s  a rea .  It enables one t o  eva lua te  the  qua l i t y  

of CUB s e t s  found even i n  very l a rge  problems, f o r  which the  a lgor i thmic i den t i -  

f i c a t i o n  of a maximum CUB s e t  is probably impossible i n  general .  I n  some cases ,  

v e r i f i c a t i o n  of a h e u r i s t i c a l l y  achieved maximum CUB s e t  is n w  poss ib le .  Further. 

the  bounds developed may be f u r t he r  enhanced i n  f u tu re  research,  and may be app l i -  

cable t o  r e l a ted  problems of equivalent  complexity. 
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APPENDIX A 

This appendix conta ins computational r e s u l t s  f o r  f i f t e e n  

l i n e a r ,  mixed in teger  and in teger  models. A l l  execution t imes 

repor ted  a r e  expressed i n  a c t u a l  CPU seconds. accura te  t o  t he  p rec i s i on  

d isplayed f o r  IBX 360167 and FORTRrtY H (Extended). 

For c l a r i c y ,  the fo l lowing terms a r e  def ined:  

E l i g i b l e  rove: The number of r w e  of t he  model i n i t i a l l y  e l i g i b l e  

f o r  i nc l us i on  In a s e t  of CL!B rows. 

C o n f l i c t  cpunt: The nrrmber o f  columns of t he  inc idence motr lx  f o r  

che problem. 

Conf l i cc  densi ty :  The r a t i o  of t h e  c o n f l i c t  counc t o  t h e  m a x i m a  

c o n f l i c t  count f o r  t h a t  problem s i z e  (1.e.. d m - 1 ) / 2  I .  

Time t o  f i nd  El ig :  The t ima I n  CPU seconds t o  determine the set 

o f  e l i g i b l e  r w e .  

I W :  The maximum of s  
i' 

U1,U2,U3: Bounds def ined i n  Sect ion 8.  

The methods a r e  labe l led :  

CRA Conf l i c t  Row-Addition 

CRD Conf l i c t  Row-Deletion 

GRD* Gradient Row-Deletion (with g rad ien t  update) 

GRD Gradient Row-Deletion 



Problem : VANN Description : Fleet Dispatch hfodcl 
Pows : 92 El i~b le  rows : 69 L M U  : 0 
2olumnr : 132.1 'conflict count : 0 U1 : 69 
lnteger : 1325 Conflict dens18 : 0 U2 : 69 
Non-zero : 2648 Time to Iind Elig : . l 5 l  rec U3 : 69 

Method R o w  in Columns in Time to r id  Timein Number add& 
CUB set CUB set CUB set (sec.) Phvc 1 in P h a  2 

CRA 69 1324 2 3 7  

CRD 69 1324 .I25 

GRD 69 1324 .202 .I98 0 

Problem : NETTING Description : Currency Exchange Model 
Rorn : 103 Eligible rows : 71 M A X  : 5 
Columns : 247 Conflict count : 46 Ul  : 70 
Integer : 103 Cocflict density : 1.85% U2 : 59 
Non-zero : 194 Time to f i id Elig : .022sec U3 : 46 

Method Rows in Columna in Time to find Time in Number addti 
CUB set CUB set CUB set (sec.) Phve 1 in Phase 2 

CRA 36 &4 .I69 

GUD * 36 77 .047 .042 0 

Problem:  AIRLP Description : Fleet Dispatch hlodel 
Roar : 171 Eligible row* : 170 IMAX : 150 
Columrrs : 3040 Conflict count : 2983 U1 : 151 
Integer : 0 Conflict dens~ty : 20.7740 U2 : 150 
Non-zero : 6023 Time to find Elig : .076rec U3 : 150 

Method Roar in Columns in Time to find T h e  in Number addtd 
CUBwt GUBset CUB set (xc.) Phase 1 in Phase 2 

CRA 150 3000 

CUD 150 3000 

GRD * 150 3000 

GRD 150 3000 



Roblem : COAL Dacrjption : Energy Dcveloprnent ~ iodc l  
R o w  : 171 Eligible rows : 170 I M U  : 111 
Columns : 3753 Conflict count : 3753 Ul  : 146 
Integer : 0 Conflictdens~ty : 26.13% U3, : 136 
Non-zero : 7506 Time to r i d  Elig : .lo6 SF u3  : 121 

Method Rows in Coiumns in Time to  Gnd Time in Number added 
GUBset GUBset CUB set (sec.) P h w  1 in Phase 2 

CRA 111 3753 1.38 

CRD 111 3753 1.24 

GRD ' 111 3753 .920 .912 0 

GRD 100 2568 .641 .631 0 

RobIan : TRUCK Description : F l e t  DLpatch Model 
Roar : 239 Eligible rows : 221 IMAX : 171 
Columnr : 4752 Connict count : 10438 U1 : 165 
Integer : 4752 Conilict density : 4294% U2 : 159 
Non-zero : 30074 Time to fmd Elig : .I16 KC u3 : 144 

Method R o w  in Columnr in T i e  to r i d  Time in Number added 
CUB set CUB set CUB set (sec.) P h w  1 in Phase 2 

CRA 32 1069 6118 

CRD 30 1099 7.095 

GRD 30 867 5.00 4.95 2 

GRD 32 986 1.70 158  8 

Problem : CUPS Dacliption : Production Scheduling &lode1 
R o n  : 416 Eligible rows : 390 MAX : 48 
Columns : 619 Connict count : 744 Ul  : 388 
Integer : 145 Coni l ic tdedty : .98% u 2  : 374 
Non-zero : 1341 T i e  to rmd Elig : .042sce u 3  : 294 

blethod Rows in Columns in Time to  flnd Time in Number added 
CUB set CUB set CUB set (sec.) Phace 1 in P h u  2 

CRD 214 442 3.15 

GRD 214 466 ,212 

GRD 200 394 .384 



Problem : FERT Description : Production Sr Distribution .Clodel 
Rows : 606 Elibible rows : 605 [MAX : 580 
CoIumnr : 9024 Confict count : 16455 U1 : 677 
Inkger : 0 Conflict density : 9.01% '02 : 676 
Non-zcro : 40484 Time to find Elig : .257 sec ~3 : 567 

Melhod Rowr in Columns in Time to  find 'KJD~ in Number added 
GUBset GUBset CUB set (rec.) Phare 1 in Phase 2 

C RA 559 9024 15.8 

CRD 559 9024 10.5 

GRD 559 9024 6.73 6.71 0 

GRG 559 9024 2.52 2.50 0 

Problem : PIES Dacnption : Energy Reduction & Consumption Model 
Roar : 663 Eligible rows : 662 MAX : 21 
Columru : 2923 Conflict count : 4116 U1 : 655 
Integer : 0 Conflict density : 1.88% U2 : 466 
Non-zero : 13288 Time to fmd Elig .: 366 xc u3 : 422 

Method Rows in Columns in Time to find Time in Number added 
CUB set CUB set CUB set (sec.) Phase 1 in Phase 2 

CRA 180 1848 10.8 

CRD 169 1693 13.5 

Roblem : PAD Dueription : Energy Production & consumption Model 
BOWS : 695 Eligible rows : 694 IPIfAX : 23 
Columns : 2934 Conllict count : 4116 U l  : 687 
Integer : 0 Conflict density : 1.84% u2 : 502 
Non-zero : 13.159 Time to fmd EM : .lo4 ~f u3 : 449 

Method Rows in Columns in Time to  6nd Time in Number added 
GUBset GUBset CUB set (sec.) Phase 1 in Phve  2 

CRA 200 1864 13.1 

CRD 189 1771 16.6 

GRD* 188 1708 3.34 3.26 2 

GRD 189 1275 1.35 .928 21 



Problem : ELEC Description : Energy Production & Consumption Blodel 
Row¶ : 785 Eligible r o w  : 784 IMAX : 22 
Columru : 2800 Conflict count : 6167 U1 : 776 
Integer : 0 Conllict density : 2.01% U2 : 503 
Non-zero : 8462 Time to f i id  Elig : 489 sec ~3 : 492 

Metbod Roar in Columns in Time to  h d  Tfme in Number alded 
GUBset GUBret CUB set (sec.) Phase 1 in Phase 2 

C RA 309 2461 11.4 

CRD 210 2791 16.1 

GRD 309 2641 1-15 1.12 0 

GRD 309 2605 .842 .579 14 

Problem : G M  Description : Production Scheduling hlodel 
Rorn : 799 Elidble roan : 789 MAX : 608 
Colurrrru : 5536 Conflict count : 22220 U1 : 760 
Integer : 0 Conflict density : 7.1590 U2 : 752 
Non-zero : 27474 Time to f i d  Elig ': .15l sec U3 : 652 

Method RO& in Col- in Time to 6nd Timein Number added 
CUB set CUB set CUB set (sec.) Phase 1 in Phase 2 

CRD 639 5536 10.4 

Problem : FOAM Description : Reduction Scheduling hlodel 
Row¶ .: 1017 Eligible rows : 1006 LMAX : 261 
Columns : 4020 Conflict count : 8186 U1 : 997 
Integer : 42 Conflict density : 1.6290 u2 : 974 
Non-zero : 17187 T i e  to h d  Elig : 196 sec ~3 : 934 

Method Roar in Columns in Time to find Tfme in Number added 
CUB set , CUB set GUB set (sec.) Phase 1 in Phase 2 

CRA 932 4020 23.4 

CRD 932 4020 9.47 

GRD* 917 3981 173 

GRD 917 3981 .902 



RoLl ra  : Dacription : Equipment & Sfanpower Scheduling >lode1 
ROWS : 1236 Eiigiblc r o w  : 1235 L h l a  : 181 
Columns : 1.425 c o n a c t  count : 46424 U1  : 1196 
Integer : 0 . Conact dcnsity : 6.093 u 2  : 982 
Non.zem : 22023 The to rind Elip : .072 sw ~3 : 973 

hicthod Rom in Columnsin Time to Lind Time in Number added 
GUBset GUBset GUB set (scc.) P h w  1 in Phur? 3 

CRA 382 1207 46.2 

CRD 338 908 64.2 

GRD* 342 923 14.9 14.8 2 

GRD 342 922 1 2 4  1.13 234 

Problem : J C S  Dar ip t ion : Production SchedulL~g hlodel 
Rowa : 2487 Eligible rows : 2416 IMkY : 488 
Columns : 3849 Conflict count : 16578 U1 : 2439 
Integer : 560 'Confiict density : .5:jP. ~2 : 2412 
Non-zero : 9510 TIme to find ELig : .2ti5 sec u3 : 1812 

Method Rows in Columnr in Time to find Time in Number acled 
GUB set GUB set CUB set (see.) Phze 1 in Phase 2 

CRA 529 2072 104 

CRD 612 W86 153 

GRD* 629 2087 223 1.87 6 

GRD 623 1393 3.98 1.10 59 

Problem : ODSAS Daeription : Manpower Planning Model 
R o w  .: 4648 Eiitjblerows : 46.17 LMAX : 4194 
Columns : 4683 Conact count : 5220 U1 : 4645 
Integer : 0 Conflict density : .05% u 2  : 4645 
Non-zero : 30520 T i e  to f i d  Elig : .263 sac u3 : 4024 

Method Roar in Columns in Time to 6nd Time in Number added 
GUBwt GUBset CUB sct (sec.) Phve 1 in Phvc 2 

C RA 751 3116 369 

CRD 721 3846 651 

GRD 749 4436 7.12 6.88 0 
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AUTOMATIC IDENTIFICATION OF EMBEDDED STRUCTURE IN 
LARGESCALE OPTIMIZATION MODELS 

Gerald G. Brown and William G. Wright 

Naval Postgraduate School 
Montere y, California 

This  paper discusses automatic detection and exploitation of embedded structure in Large- 
Scale Linear Programming (LP) models. We report experiments with real-life LP and mixed- 
integer (MIP) models in which various methods are developed and tested as integral mod- 
ules of an optimization system of advanced design [61. We seek to understand the model- 
ing implications of these embedded structures as well as to exploit them during actual 
optimization. The latter goal places heavy emphasis on efficient, as well as effective, iden- 
tification techniques for economic application to large models. Several (polynomially 
complex) heuristic algorithm are presented from our work. In addition, bounds are de- 
veloped for the maximum row dimension of the various factorizations. These bounds are 
useful for objectively estimating the quality of heuristically derived structures. 



I .  INTRODUCTION 

Automat ic  d e t e c t i o n  and e x p l o i t a t i o n  o f  s p e c i a l  s t r u c t u r e  

in. l a r g e - s c a l e  LP ( o r  MIP) models h a s  been  t h e  s u b j e c t  o f  a  con-  

t r n u i n q  r e s e a r c h  program c o n d u c t e d  a t  t h e  Naval P o s t g r a d u a t e  

School  and UCLA o v e r  t h e  p a s t  d e c a d e .  T h i s  p a p e r  d raws  from 

v a r l o u s  r e s u l t s  i n  t h i s  e f f o r t ,  and r e f e r s  ( s p a r i n g l y )  t o  s i g n i -  

f i c a n t  work by o t h e r  r e s e a r c h e r s .  The r e f e r e n c e s  c o n t a i n  c o m p l e t e  

d e s c r i p t i o n s  o f  t h e s e  r e s u l t s  f o r  t h e  i n t e r e s t e d  r e a d e r .  

Our s c o p e  i s  i n t e n t i o n a l l y  l i m i t e d  t o  au tomated  methods 

o f  s u f f i c i e n t  e f f i c i e n c y  t o  e n a b l e  u s  t o  e c o n o m i c a l l y  a p p l y  them 

t o  r e a l - w o r l d  o p t i m i z a t i o n  p rob lems.  Thus,  w e  c o n s i d e r  o n l y  

t h o s e  a p p r o a c h e s  showing g r e a t e s t  p romise  f o r  immediate  p r a c t i c a l  

a p p l i c a t i o n .  A l though t h e  i n t e r p r e t a t i o n s  o f  embedded model 

s t r u c t u r e  c a n  l e n d  p ro found  i n s l g h t s  i n  t h e i r  own r i g h t ,  w e  a r e  

e q u a l l y  i n t e r e s t e d  i n  d e t e c t i n g  e r r o r s  i n  d a t a  p r e p a r a t i o n  a n d  

model g e n e r a t i o n - - m a t h e m a t i c a l l y  mundane i s s u e s  o f  fundamenta l  

impor tance  t o  t h e  p r a c t i t i o n e r .  

The s h e e r  s i z e  o f  con tempora ry  l a r g e - s c a l e  LP models  p re -  

s e n t s  s i g n i f i c a n t  c o m p u t a t i o n a l  d i f f i c u l t i e s ,  e v e n  f o r  o t h e w i s e  

e l e m e n t a r y  f a c t o r i z a t i o n s .  Imp lementa t ion  o f  e f f e c t i v e  s t r u c -  

t u r a l  a n a l y s i s  p r o c e d u r e s  i s  primarily a m a t t e r  o f  e x e r c i s i n g  

l a r g e - s c a l e  d a t a  s t r u c t u r e s  e f f i c i e n t l y .  A s  w e  s h a l l  s e e ,  though ,  

t h e s e  p r a c t i c a l  c o n s i d e r a t i o n s  c a n  g i v e  s i g n i f i c a n t  t h e o r e t i c a l  

g u i d a n c e  i n  t h e  s p e c i f i c a t i o n  o f  e f f i c i e n t l y  a c h i e v a b l e  c l a s s e s  

o f  model t r a n s f o r m a t i o n s .  

T h a t  d e t e c t i o n  o f  embedded s p e c i a l  s t r u c t u r e  c a n  b e  o f  

p r a c t i c a l  impor tance  i n  a c t u a l  model s o l u t i o n  is  u n d i s p u t e d .  I t  



i s  widely known t h a t  e x p l i c i t  s imp lex  o p e r a t i o n s  can be m a t e r i a l l y  

improved i n  e f f i c i e n c y  by i nco rpo ra t i on  o f  b a s i s  f a c t o r i z a t i o n  

methods (e .g .  [ 6 ] ,  ( 9 1 ,  and r e f e r e n c e s  o f  (71  1 .  The d e t a i l s  o f  

such mod i f i ca t i ons  of t h e  s imp lex  procedure a r e  n o t  g i ven  he re .  

However, t h e  under ly ing  themes o f  s imp lex  f a c t o r i z a t i o n  a r e  t h e  

s u b s t i t u t i o n  of l o g i c  f o r  f l o a t i n g  p o i n t  a r i t h m e t i c ,  and separa-  

t i o n  of  t he  appa ren t  problem monol i th  i n t o  more manageable 

components. 

Th i s  paper  d e a l s  e x c l u s i v e l y  w i t h  row f a c t o r i z a t i o n s .  

The pe rvas i ve  imp l ied  problem f o r  row f a c t o r i z a t i o n  i s  t h e  

i d e n t i f i c a t i o n  of t h e  beet embedded s t r u c t u r e  from a l l  t h o s e  

t h a t  may l i e  a t  hand i n  any p a r t i c u l a r  model. Convent ional  

wisdom d i f f e r s  a s  t o  t h e  c r i t e r i o n  f o r  t h i s  d i s c r i m i n a t i o n  among 

f a c t o r i z a t i o n s  o f  t h e  same c l a s s .  However, it is g e n e r a l l y  

accepted  t h a t  t he  row d imens iona l i t y  o f  t h e  f a c t o r i z a t i o n  

s e r v e s  a s  an e x c e l l e n t  measure of e f f e c t i v e n e s s .  I n  t h i s  s e n s e ,  

embedded s p e c i a l  s t r u c t u r e s  f a l l  n a t u r a l l y  i n t o  a taxonomy imp l ied  

by t he  i n t r i n s i c  complexi ty  of t h e  a s s o c i a t e d  maximum row i d e n t i -  

f i c a t i o n  problems. 

W e  proceed w i th  a d i s c u s s i o n  o f  s e v e r a l  t y p e s  of embedded 

s p e c i a l  s t r u c t u r e s  d e t e c t a b l e  by e f f i c i e n t  po lynomia l l y  complex 

a lgor i thms.  These s t r u c t u r e s  a r e  cons ide red  i n  i n c r e a s i n g  o r d e r  

o f  maximum row i d e n t i f i c a t i o n  complexi ty .  W e  emphasize t h a t  

efficient polynomial a l go r i t hms  a r e  o p e r a t i o n a l l y  d e f i n e d  he re  

a s  low-order polynomial i n  terms o f  i n t r i n s i c  problem dimensions 

(e .9 .  number of rows, columns, and non-zero e l e m e n t s ) ,  and n o t  

i n  terms o f  t h e  t o t a l  volume o f  model in fo rmat ion  ( e . g .  t o t a l  

number o f  b i t s  i n  a l l  c o e f f i c i e n t s ,  ad nauseam). 



2. SIMPLE REDUCTIONS 

LP models often exhibit simply detected structural 

characteristics which permit a reduction in row dimensionality 

without loss of  model information. Several such reductions are 

possible in evidently polynomial complexity. These include: 

a )  Void Rows 

b) Void Columns 

c )  Singleton Rows (simple upper bounds) 

d )  Singleton Columns 

e )  Fixed Variables 

£ 1  Rows that F i x  Variables 

g)  Null Variables 

h) Non-extremal Variables 

i )  Redundant Rows. 

Some o f  these reductions do  not obviously decrease row 

dimension. However, the reductions may be applied repeatedly 

t o  the model, revealing a t  each iteration more rows which can 

be removed. Thus, the cyclic application o f  reductions continues 

until a minimal model results. 

Experiments with some of these reductions have been 

reported by Brearley, Mitra and Will iams ( 5 1 .  More extensive 

work at large-scale has been done by Bradley, Brown and Graves 

[ 3 ]  and by Krabek [lo]. 

Detection of . I L L  redundant LP rows requires complete 

solution of  equivalent LP problems, and is thus equivalent in 

complexity to LP. (We hesitate to say polynomial in the sense 

of Khachian's recent result.) Thus, we  restrict redundant row 



de tec t ion  t o  o r t h o g o r i l l  redundancy, revea led by s u b s t i t u t i o n  o f  

bounds f o r  problem va r iab les .  An e f f i c i e n t  d e t e c t i o n  a lgor i thm 

r e s u l t s  . 
W i t h  r e a l - l i f e  LP and MIP models, a  remarkably l a r g e  

f r a c t i o n  o f  model rows can be removed by these  simple techniques.  

For some cases ,  models have been near l y  8 o l v e d  t h i s  way. 

We note t h a t  i n t e g r a l i t y  cond i t i ons  can be superimposed 

on these simple reduct ions (e .g .  t i g h t e n  bounds on i n t e g e r  v a r i -  

a b l e s  by t runca t ion )  t o  s t reng then  them. Nonlinear models a l s o  

b e n e f i t  from these  reduct ions,  and from o t h e r s  n o t  addressed i n  

t h i s  paper. 

Table 1 conta ins  t h e  c h a r a c t e r i s t i c s  o f  s e v e r a l  r e a l - l i f e  

l i n e a r  and mixed i n t e g e r  models. Table 2 d isp lays  t h e  r e s u l t s  

o f  simple reduct ions app l ied  t o  these  models [ 3 ] .  Mul t ip le  

; a s s a s  a r e  made f o r  each model u n t i l  no mre reduct ions a r e  

poss ib le .  The t imes given a r e  f o r  execut ion on an IBM 360/67 

using FORTRAN H (Extended) wi thout  code opt imizat ion.  



TABLE 1 

MODEL 

NETT ING 

A 1  RLP 

COAL 

TRUCK 

CUPS 

FERT 

P I E S  

PAD 

ELEC 

GAS 

P I  LOT 

FOAM 

LANG 

J C A P  

PAPER 

ODSAS 

ROWS - 

9 0  

1 7 1  

1 7 1  

220 

3 6 1  

606  

663 

695  

7  8  5  

799 

976  

1 ,000  

1 ,236 

2,487 

3,529 

4,648 

SAMPLE LP ( H I P )  MODELS 

COLUMHS 

TOTAL INTEGER 

177  114 

3,040 0  

3,753 0  

4,752 4,752 

58 2  145  

9 ,024 0  

2,923 0  

3,934 0  

2,800 0  

5 ,536 0  

2,172 0 

4,020 4  2  

1,425 0  

3,849 560  

6,543 0  

4,683 0  

NON-ZERO 
COEFFTCIENTS 

375 

6,023 

7,506 

30,074 

1 , 3 4 1  

40,484 

13,288 

13,459 

8,462 

27,474 

13,057 

13,083 

22,028 

9 ,510 

32,644 





3 .  GENERALIZED UPPER BOUNDS 

Rows for which each column has at most one non-zero 

coefficient (restricted to those rows) collectively form a 

generalized upper bound (GUB) set. Usually, we additionally 

require that the coefficients in these rows be capable of being 

rendered to 1 by simple row or column scaling. 

The problem of identifying a GUB set: of m a z i r n u m  row 

dimension is NP-hard 1 7 1 ,  making optimal GUB factorization 

algorithms hopelessly inefficient for our purposes. Heuristics 

adapted from work by Graves and by Senju and Toyoda (see [131, 

and references of [ 5 ]  and [ ? I )  work very effectively and 

dependably at large-scale to find r n a z i m a l  GUB sets. 

Unfortunately, the problem of determining just the s i z e  

of the maximum GOB set is also NP-hard. However, Brown and 

Thomen 171 have developed bounds on the size of the maximum GUB 

set which are sharp and easily computed. These bounds have been 

used to show, in some cases, that maximum GUB sets Have been 

achieved via heuristic methods. In any case, the bounds pro- 

vide excellent objective measure of the quality of any CUB set, 

regardless o f  the means of its derivation. Frequently, manual 

GUB analysis will suffice for models with amenable structure. 

The bounds are developed in terms of the number of dis- 

tinct . - , ? n f l i o t s  present in the model. Two rows are in conflict 

i f  they each have a non-zero element in a common column, making 

them mutually exclusive in a CUB set. If s i  is the number of 

rows in conflict with row i, then the total problem conflict 

count for a model with m rows is 



A problem-independent bound on t h e  s i z e  o f  t h e  maximum 

GUB set i s  [ 71  

where L i n d i c a t e s  t r u n c a t i o n  t o  an  i n t e g e r .  

A t i g h t e r ,  problem-dependent bound is 

where 

y  = max s 
i i ' 

T igh te r  upper bounds have been de r i ved  f o r  t h e  s i z e  of t h e  

maximum CUB set, a s  w e l l  a s  lower bounds. 

Table 3 c o n t a i n s  t h e  r e s u l t s  o f  au tomat ic  GUB f a c t o r i z a t i o n  

app l i ed  t o  t h e  benchmark models 171. R o w  e l i g i b i l i t y  is  based on 

t h e  c a p a b i l i t y  t o  s c a l e  t h e  row t o  c o n t a i n  o n l y  0, 2 1  c o e f f i c i e n t s .  

S I J B  qualit? is t h e  number of GUB rows found, expressed a s  a  per-  

centage o f  t h e  b e s t  known upper bound on maximum CUB row dimension 

( a c t u a l  GUB q u a l i t y  may be b e t t e r  than t h i s  conse rva t i ve  e s t i m a t e ) .  

The r e s u l t s  were ob ta ined  us ing  FORTRAN H (Extended) w i t h  code 

op t im iza t i on .  



TABLE 3 

GUB FACTORIZATION 171 

MODEL 

NETT I NG 

AIRLP 

COAL 

TRUCK 

CUPS 

PERT 

PIES 

PAD 

ELEC 

GAS 

PILOT 

FOAM 

LANG 

JCAP 

PAPER 

ODSAS 

ROWS-GLIB 
ELIGIBLE 

ROW CONFLICTS 

COUNT DENSITY 

4 6  1 . 8 5 %  

CUB 

ROWS QUALITY - 
3 6  7 8 . 2 6 %  



4. IMPLICIT NETWORK ROWS 

Implicit network rows are a set of rows for which each 

column has at most two non-zero coefficients (restricted to those 

rows) and for which columns with two non-zero coefficients (in 

those rows) can be converted by b i m p l e  row and column scaling 

such that the non-zero coefficients have oppoeite sign. Such 

rows in LP are commonly called networks with gains. 

Pure network rows (NET) can be converted by d i m p l e  row 

and column scaling such that all non-zero coefficients (restricted 

to those rows) have value '1, and such that columns with two 

non-zero coefficients (in those rows) have one +1 and one -1. 

Such rows in LP are called pure networks (e .g. 14 1 ) . 
Simple row and column scaling is restricted such that 

application of each scale factor renders an entire row, or column, 

to the desired sign (and unit magnitude for pure NET) . 
The problem of identifying a NET factorization of m a x i m u m  

row dimension is NP-hard 1141, making optimal NET identification 

algorithms practically useless. The problem of determining just 

the b i : e  of the maximum NET set is also NP-hard. Thus, heuristic 

identification methods are mandated. 

An extension of GUB heuristics can be used to achieve NET 

factorizations. First, a GUB set is determined by methods men- 

tioned in Section 3. Then, a second GUB set is found from an 

eligible subset of remaining rows. The second GUB set is con- 

ditioned such that its row members must possess non-zero coeffi- 

cients o f  opposite sign in each column for which the prior GUB 

set has a non-zero coefficient. 



This double-GUB (DGUB) factorization yields a b t p a r t i t e  

NET factorization. Thus, DGUB heuristically seeks the maximum 

embedded transportation or assignment r w  factorization. Pure 

network equivalents derive from proper editing of eligible rows. 

Generalizing on the theme of Senju and Toyoda (131, a 

more general method has been developed by Brown and Wright [ 8 ]  

for direct NET factorization of implicit network rows. Pure 

NET rows can be identified with the same procedure by simple 

screening of admissible candidate rows. 

This heuristic is designed to perform a network factoriza- 

tion of a signed elementary matrix (0,+1 entries only). It is a 

deletion heuristic which is feasibility seeking. The measure 

of infeasibility at any point is a matrix penalty computed as 

the sum of individual row penalties. The algorithm is two-phased, 

one pass, and non-backtracking, The first phase yields a feasible 

set of rows, while the second phase attempts to improve the set 

by reincluding r w s  previously excluded. Each iteration in Phase 

I either deletes a row or  reflects it (multiplies it by -1) and 

guarantees that the matrix penalty will be reduced. Thus, the 

number of iterations in Phase I is bounded by the initial value 

of the matrix penalty, which is polynomially bounded. 

Let A = 
1 be an m x n matrix with a . .  = O, t lV i , j .  

11 

Problem: Find a matrix N = In. . l with (m-k) rows and n 
1 I 

columns which is derived from A by 



1. Dele t ing  k rows o f  A where k L O ,  

2 .  Mul t ip ly ing  ze ro  o r  more rows o f  A by -1, 

where N has t h e  p rope r t y  t h a t  each column of N has 

a t  most one +1  element and a t  most one -1 element.  

We wish t o  f i n d  a  " l a rge "  N i n  t h e  sense  o f  con- 

t a i n i n g  a s  many rows a s  p o s s i b l e ,  i . e .  minimize k .  

Terminology and Nota t ion :  

1. E i s  t he  s e t  o f  row i n d i c e s  f o r  rows e l i g i b l e  f o r  i n c l u s i o n  

i n  N and is  c a l l e d  t h e  e l i g i b l e  set. 

2.  C i s  t h e  s e t  o f  row i n d i c e s  f o r  rows removed from E i n  

Phase I  ( D e l e t i o n ) .  Some rows i n  C may be readmi t ted  t o  

E i n  Phase 11. C is c a l l e d  t h e  c a n d i d a t e  set. 

3 .  The ph rase  " r e f l e c t  row i '  o f  A" means t o  m u l t i p l y  each 

e lement i n  row i '  by -1, i . e .  a  + - a i , j  V j .  
i ' j  

4.  Other  n o t a t i o n  w i l l  be d e f i n e d  i n  t h e  a l g o r i t h m  i t s e l f .  

ALGORITHM: 

Phase I  - DeLe t ion  u f  I n f e a s i b i e  R o w s  

S t e p  0: T n i t i d L i z n t i o n .  S e t  E = (1 ,2  ,..., m), C = 4 . 
For each column j o f  A compute t h e  + p e n a l t y  (K:) 

3 
and t h e  - p e n a l t y  ( K - 1  a s  fo l lows:  

3 

These p e n a l t i e s  r e p r e s e n t  t h e  number o f  e x c e s s  +1 and -1 

e lements ,  r e s p e c t i v e l y ,  i n  column j which p reven t  t h e  rows 



whose i n d i c e s  remain i n  E f rom fo rming  a  v a l i d  N m a t r i x .  

A p e n a l t y  v a l u e  o f  -1 f o r  K+(K;I i n d i c a t e s  t h a t  t h e  
3 3 

column does  n o t  c o n t a i n  a 1 - 1  e lemen t .  

S t e p  1 : Def' inc ?. 7 ; -  Penal  t i e s .  Fo r  e v e r y  i C E ,  compute a  row 

p e n a l t y  ( p i )  a s  f o l l o w s :  

T h i s  is s imp l y  t h e  sum o f  + p e n a l t i e s  f o r  a l l  co lumns i n  

which row i h a s  a +1 p l u s  t h e  sum o f  - p e n a l t i e s  f o r  

a l l  columns i n  which row i h a s  a  -1. 

S t e p  2 :  ? S  j i w e  H a t r i t  P e n a l t y .  Compute t h e  p e n a l t y  ( h )  f o r  

t h e  ma t r i x  by s u m i n g  t h e  row p e n a l t i e s  a s  f o l l ows :  

I f  h  = 0, t hen  go t o  S t e p  7 .  Othe rw i se ,  go  t o  S t e p  3 .  

S t e p  3: Row S e l e c t i o n .  F ind  t h e  row i '  6 E w i t h  t h e  9 - a t e s t  

p e n a l t y ,  i .e. 

F ind  i '  C E such  t h a t  p i ,  = max p  . 
~ F E  

( I f  t h e r e  is a t i e ,  choose  i '  from among t h e  t i e d  v a l u e s . )  
- 

Compute t h e  r e f l e c t e d  row p e n a l t y  p i ,  f o r  i e  a s  f o l l o w s :  



( K T + ~ )  + 1 + 
P i l a  1 IK j+ l )  . 

j :a > O  3 j : a  < O  
i ' j  i ' j  

T h i s  would be  t h e  row p e n a l t y  f o r  row i 1  i f  it were t o  

be r e f l e c t e d .  

S t e p  4 :  U a L u t ~ ,  o r  / f r f l ~ a t  H w d .  

c a s e  i )  ,  p i  . L e t  E + E -  { i ' ) ,  C  + C U { i t ) .  G o  

t o  S t e p  5.  

Case i i )  p i ,  < p i ,  . R e f l e c t  row i t .  G o  t o  S t e p  6. 

S t e p  5: h r . d u ~ . e  c o l u m n  p c n a L  t i ~ * e  a s  f o l l ows :  

For  a l l  j such  t h a t  a i ,  > 0 ,  K; + K; - 1 

For a l l  j s u c h  t h a t  a .  < 0 ,  K- + K - -  1 
~ ' j  j j  

G o  t o  S t e p  1. 

S t e p  6: S h a n j r  c o l u m n  p r n a l t i z s  a s  f o l l o w s :  

Us ing t h e  a  v a l u e s  a f t e r  r e f l e c t i o n  o f  row i ' ,  

For  a l l  j  s u c h  t h a t  a  0  K + K 1 and  K -  + K - -  1 
j I I 3 

For a l l  j such  t h a t  a i l  < 0 ,  K; + K? - 1 a n d  K -  + K - +  1 
3 j j  

G o  t o  S t e p  1. 

Phase I 1  - H e i n c l r c e i o n  u j '  R o d s  j ' r o m  (.' 

S t e p  7 .  E 'L im i r l  l t e  C o n f Z i , ~ t i n : j  H o w e .  The rows w i t h  i n d i c e s  i n  E ,  

some p o s s i b l y  r e f l e c t e d  from t h e  o r i g i n a l  A m a t r i x ,  form a  

v a l i d  N m a t r i x .  However, some o f  t h e  rows removed from E 

and p l a c e d  i n  C  may now be r e i n c l u d e d  i n  E i f  t h e y  d o  n o t  

make h  > 0 .  Remove from C (and  d i s c a r d )  a l l  row i n d i c e s  

f o r  rows which,  i f  r e i n c l u d e d  i n  E i n  p r e s e n t  o r  r e f l e c t e d  

form, would make h > 0.  



i.e. Remove i from C rf 

a) 3 jl such that a.  . 0 and Kf  = 0 
l31 31 

- 
or a , .  < O  and K = 0 

l31 11 

a& 

b) 3 j2 such that a. . > 0 and K- = 0 
l J 2  3 2 

or a . .  < 0 and K +  = 0 
l32 3 2 

If C = @, STOP, otherwise go to Step 8. 

Step 8. S e l e c t  400 for R e i n c l u s i o n .  At this point a row from 

C may be reincluded in E. There are several possible 

schemes for selecting the row. After the row is reincluded, 

the column penalties are adjusted. Then go to Step 7 .  

No dominating rule has been discovered for breaking ties 

in maximum row penalty encountered in Step 3. The rule used 

for the computational results presented herein is to select 

the row with the minimum number of non-zero entries in an 

attempt to place a larger number of non-zero entries in the 

network set. Other possible rules are "first-come, first- 

served," maximum number of non-zero entries, type of con- 

straint, or modeler preference. 

Modifications can be made to Step 0 to allow for 1) Matrices 

including non -0,+1 entries and/or 2) Pre-specified network rows. 

The modifications are: 



1. U = ( i  / a . .  = 0 , ? 1  for a l l  j l  
1 3  

2. Let P = ( i  1 row i is prespecified) 

E * E -  P 

After computation of K +  and K: find for all j 
3 1' 

if 3 i e P  such that a .  = 1 then K+ + K ? + l ,  
1 1  j I 

if 3 i6P such that a .  . = -1 then K- + K T  + 1 . 
1 I j I 

~t termination of the algorithm, the rows in N are given by 

E UP. 

One easily obtained upper bound on the maximum row dimen- 

sion of the network factorization is: 

This bound is easily computed and evidently sharp. It 

can be used to objectively evaluate the quality of a heuristically 

derived network factorization. The bound may also be used to 

preemptively terminate factorization effort. 

Another, generally tighter, bound has been developed which 

is based on the reflection and deletion potentials for each row 

in the eligible set. Using this information it is possible to 

obtain a lower bound on the number of rows which must be deleted 

to achieve a feasible network set. The upper bound is then: 

uZ = m -  lower bound on rows deleted. 



This bound is also evidently sharp and is the bound used 

to compute NET quality in the following table. 

Table 4 displays the results of DGUB and NET factorizations 

of the benchmark models. Row eligibility is determined by the 

capability to scale each row, by row scaling alone, to contain 

only O , + 1  entries. The NET a k u l i c y  is the number of NET rows 

found, expressed as a percentage of the upper bound on maximum 

NET rpw dimension given above (actual NET quality may be consider- 

ably better than this estimate). 



TABLE 4  

MODEL 

NETTING 

A1 RLP 

COAL 

TRUCK 

CUPS 

PERT 

PIES 

PAD 

ELEC 

GAS 

P I LOT 

FOAM 

LANG 

JCAP 

PAPER 

ODSAS 

ROWS NET 
ELTG1BI.E 

NET PACTORTZATION ( 8 1  

N U B  NET 

ROWS - S EC ROWS - - QUALITY 

54 0.07 5  4  94.740 

150 0 . 4 1  150 1000 

11 1 0 . 5 0  111 100% 

4  7 8 . 4 0  4  6  33.58% 

2  5  1 0.29 295 99.330 

572 6 .03  572 100% 

128 0 .56  128 96 .97% 

160 0 . 5 8  160  97 .56% 

272 0 . 9 9  286 93 .460  

682 5 .00  668 94.080 

109  0 . 9 2  109  1000 

9 5 1  1 .89  9 5 1  99.580 

585 3.74 6 6 1  87.200 

874 2.50 917 83.97% 

1,484 7 .24  1 ,627  78 .529  

317 3.39 286 77.510 



5. HIDDEN NETWORK ROWS 

Hidden network rowst are a set of rows which satisfy NET 

row restrictions after linear transformation of the model. That 

is, realization of these (LNET) rows may require a general linear 

transformation of the original model. 

The discrimination between i m p l i c i t  and h i d d e n  network 

rows is not (necessarily) in their use, but rather in their 

detection. The transformation group associated with implicit 

network rows involves on ly  permutations and simple scaling of  

individual rows and columns. The hidden network rows require 

a completely general linear transformation and partial ordering. 

Thus, identification of hidden networks requires significant 

computation just to identify eligible rows, since any siven row 

may conflict with subsets o f  its cohorts after transformation. 

This problem has been solved for c o m p l e t e  hidden network 

factorization, where all rows are shown to be LNET or the algo- 

rithm fails. Bixby and Cunningham [ 2 ]  and Muslem [ 1 2 ]  have given 

pol ynomially complex methods for complete LNET conversion. (The 

complete GUB problem is polynomial as well.) 

Strategically, the complete hidden LNET factorization 

requires two steps: 

D E T E C T T O N :  necessary conditions for existence of  a complete 

LNET factorization must be established, and 

S C A L T N G :  a linear transformation to achieve the NET 

structure must be determined, if one exists. 

t ~ e  have coopted the term h i ~ i d e n  from Bixby [ l ] ,  but his defini- 
tion r~lay not superficially appear to be equivalent. 



Cunningham and Bixby a t t e m p t  d e t e c t i o n ,  f o l l owed  by s c a l i n g .  

Musalem tr ies s c a l i n g ,  t hen  d e t e c t i o n .  T h i s  is  a c r u c i a l  d i f f e r -  

e n c e  between methods, s i n c e  prob lems which c a n  n o t  be  comp le te l y  

NET f a c t o r i z e d  may f a i l  i n  e i t h e r  s t e p .  

B r i e f l y ,  Cunningham and Bixby d e t e c t  by showing t h a t  t h e  

i n c i d e n c e  m a t r i x  o f  t h e  model rows c a n  b e  c o n v e r t e d  t o  a  g r a p h i c  

mat ro id .  They employ a  method by T u t t e  (see r e f e r e n c e s  o f  [ 2 ] ) .  

Given s u c c e s s ,  t h e  g r a p h i c  r e c o r d  o f  t h e  d e t e c t i o n  is used  t o  

a t t e m p t  t o  s c a l e  t h e  model t o  NET, o r  to  show t h a t  no  such  

s c a l i n g  e x i s t s .  

Musalem s c a l e a  t h e  model t o  a  t1 m a t r i x ,  and  t h e n  u s e s  

a  method by I r i  (see r e f e r e n c e s  o f  [12 ]  ) to b u i l d  a  tree, e d g e  

by edge ,  which r e v e a l s  t h e  p a r t i a l  o r d e r i n g  c o i n c i d e n t  w i t h  com- 

p l e t e  h idden  LNET f a c t o r i z a t i o n .  

Both methods a r e  po l ynom ia l l y  complex. However, comp le te  

LNET f a c t o r i z a t i o n  is r e l a t i v e l y  expens i ve  by e i t h e r  method i n  

t h a t  q u i t e  a  l a r g e  amount o f  r e a l  a r i t h m e t i c  and  l o g i c  is r e q u i r e d  

Under ly ing d a t a  s t r u c t u r e s  have n o t  been sugges ted  f o r  e i t h e r  

method. Both methods f a i l  i f  comp le te  LNET f a c t o r i z a t i o n  i s  

imposs i b l e ,  and n e i t h e r  l e a v e s  t h e  i n v e s t i g a t o r  w i t h  much in forma-  

t i o n  u s e f u l  i n  s a l v a g i n g  a  p a r t i a l  LNET f a c t o r i z a t i o n .  W e  con- 

j e c t u r e  t h a t  r i s k  o f  p reempt ive  f a i l u r e  nar row ly  f a v o r s  t h e  

Musalem approach ,  s i n c e  he d e f e r s  t h e  r e l a t i v e l y  i n vo l ved  d e t e c -  

t i o n  s t e p .  



Locat ing a hidden LNET f a c t o r i z a t i o n  o f  mazimal row 

dimension has been sugges ted  by Bixby 111 and by Musalem !12l, 

but  no c o n c r e t e  method is  g i v e n  and no computat iona l  t e s t i n g  i s  

repor ted .  Ev iden t l y ,  t h e  mazimum LNET problem i s  NP-hard, and 

i ts maximal r e l a x a t i o n  remains unsolved i n  t h e  p r a c t i c a l  s e n s e  

o f  this r e p o r t .  



6. CONCLUSION 

The techn iques  repo r ted  h e r e  have been used w i t h  g r e a t  

success  on a  wide v a r i e t y  o f  l a r g e  LP (MIP) models. The c o n t e x t  

of  t h i s  resea rch  is c e r t a i n l y  a t y p i c a l  in t h a t  t h e  models which 

w e  work w i th  a r e  o f t e n  s e n t  t o  u s  f o r  a n a l y s i s  and s o l u t i o n  pre-  

c i s e l y  because they  have a l r e a d y  f a i l e d  e lsewhere .  I n  these 

c a s e s ,  o u r  mot ives a r e  t o  q u i c k l y  d iagnose suspec ted  t r o u b l e  

be fo re  op t im iza t i on ,  p r e s c r i b e  remedies,  and per form t h e  a c t u a l  

op t im iza t i on  r e l i a b l y  and e f f i c i e n t l y .  

Th i s  has  undoubtedly b i a s e d  o u r  view o f  s t r u c t u r a l  de tec -  

t i o n  methods. P r a c t i c a l  c o n s i d e r a t i o n s  a r i s i n g  From tu rnaround 

dead l i nes  and the  s p e c i f i c  advantages  o f  o u r  own o p t i m i z a t i o n  

system [61t have c o l o r e d  ou r  judgment. Many p rovoca t i ve  sugges- 

t i o n s  f o r  f u r t h e r  r e s e a r c h  have n o t  been pursued,  e i t h e r  due  t o  

l a c k  o f  oppo r tun i t y ,  t o  poor i n t u i t i o n ,  o r  t o  s h e e r  economics. 

Whether o r  n o t  by e q u i v a l e n t  p r e j u d i c e ,  Krabek (101 r e p o r t s  some 

s i m i l a r  methods f o r  s imp le  reduc t i ons  a p p l i e d  t o  l a r g e  :UP'S. 

A g r e a t  d e a l  o f  i n s i g h t  has  been ga ined  from t h e s e  e x p e r i -  

ments. The c o s t  o f  f a c t o r i z a t i o n  is t r u l y  i n s i g n i f i c a n t  r e l a t i v e  

t o  t h e  in fo rmat ion  and ( p r i m a r i l y )  s o l u t i o n  e f f i c i e n c y  ga ined 

thereby .  Reve la t ions  have ranged from o u t r i g h t  r e j e c t i o n  o f  

absurd  fo rmula t ions  t o  s u b t l e  i n f e r e n c e s  on t h e  i n t e r - p e r s o n a l  

t ~ h e  X - S y s t e m  (XS) d i f f e r s  i n  many ways from c l a s s i c a l  l a rge -  
s c a l e  mathemat ica l  programming systems;  it s imu l taneous l y  sup- 
p o r t s  s imple and gene ra l i zed  upper bounds, g e n e r a l  b a s i s  f a c t o r -  
i z a t i o n ,  MIP, non l i nea r ,  and decomposi t ion f e a t u r e s .  I n  a d d i t i o n ,  
t h e  fundamental LP a lgo r i t hm has  been enhanced t o  i n t r i n s i c a l l y  
i nco rpo ra te  elastic range r e s t r i c t i o n s .  XS i s  p a r t i c u l a r l y  
s u i t e d  f o r  s o l u t i o n  i n  l i m i t e d  t i m e  of l a r g e  models w i t h  
comp l i ca t i ng  f e a t u r e s .  



conflicts of model proponents. Very few models fail to reveal 

some totally unsuspected structural curiosity. Indeed, it is 

often some minor aberration that proves most revealing. Some- 

times, the combined effects of several minor features collec- 

tively contribute to a discovery of significant model attributes. 

Our general operational guideline has been to avoid 

heavy computational investment in factorization. Rather, 

highly efficient methods are used r e p e a t e d l y  on variations of 

each model. Manual and i n t u i t i v e  analysis o f  these results 

usually reveal much more than could be reasonably expected from 

any totally automated method applied to problems of  exponential 

complexity. Interactive analysis of large-scale models is 

uncompromisingly challenging in a technical sense and equally 

rewarding. 

Accordingly, we have not yet implemented maximal hidden 

network heuristics, or block-angular clustering methods. In 

the former case, we find intrinsic NET factorization to unerr- 

ingly reveal more g e n e ~ a l  network forms. Also, reformulation 

to a NET factorization commonly requires more than a linear 

transformation; variables and constraints must frequently be 

z u g m e n t e d  to achieve the desired arc and node interpretation. 

In the case of block-angular and attendant structures, we 

require a great deal more information than row and column 

index subsets and aggregate relations to develop an effective 

and economically sensible mathematical decomposition scheme; 

further, even for unfamiliar models such structure is usually 

apparent in those cases that invite decomposition. 



Large f a c t o r i z a t i o n s  a r e  r o u t i n e l y  found a s  i n t r i n s i c  

f e a t u r e s  i n  r e a l - l i f e  models. However, we f e e l  t h a t  it i s  an 

abominable p r a c t i c e  t o  p r o s e l y t i z e  i n  f a v o r  of some p a r t i c u l a r  

model s t r u c t u r e  a t  t h e  expense o f  model rea l i sm o r  common 

sense.  

For i ns tance ,  network models have r e c e n t l y  rece ived 

unprecedented a t t e n t i o n  i n  t h e  l i t e r a t u r e .  The imp l i ca t i on  has  

o f t e n  been t h a t  s i n c e  networks a r e  u s u a l l y  found i n  models, 

networks should be used a s  t h e  e x c l u s i v e  model. Th is  i s ,  of  

cou rse ,  p a t e n t  nonsense, smacking o f  a  s o l u t i o n  i n  sea rch  o f  a 

problem. An a n a l y s t  shou ld  view f a c t o r i z a t i o n s  a s  s p e c i a l i z a -  

t i o n s  of models, r a t h e r  than f o r c i n g  models t o  f i t  c e r t a i n  

popular  f a c t o r i z a t i o n s  1 4 1 .  
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In this paper some general concepe of hierarchical blockstructure are presented. Previ- 
ously considered structures are included as particular cases. The scheme of basis matrix 
factorization and a way of using this structure in nonlinear minimization are outlined. 



INTRODUCTION 

Two approaches a r e  involved i n  developing computat ional  

methods t o  opt imize la rge-sca le  l i n e a r  systems. The f i r s t  

t akes  i n t o  account t h e  s p a r s i t y  of t h e  d a t a  mat r ix ;  methods 

of t h i s  k ind preserve  s p a r s i t y  through a pre l im inary  rearrangng 

of t h e  rows and columns a t  a s u i t a b l e  phase i n  t h e  a lgor i thm.  

The second agproach e x p l o i t s  t h e  s p e c i a l  s t r u c t u r e  o f  t h e  d a t a  

matrix-- f o r  example, h i e r a r c h i c a l  block s t r u c t u r e ;  methods 

of t h i s  k ind use t h e  regu la r  con f i gu ra t i on  o f  ze ros  i n  t h e  d a t a  

mat r ix  f o r  a s p e c i a l  p resen ta t i on  of t h e  i nve rse  mat r ix .  Th is  

paper d e s c r i b e s  some genera l  concepts of h i e r a r c h i c a l  block 

s t r u c t u r e  and o u t l i n e s  a method f o r  t ak ing  t h e  s t r u c t u r e  i n t o  

account. 

The s tandard  way of de f i n ing  a nes ted s t r u c t u r e  is t o  choose 

an e lementary block s t r u c t u r e  and then t o  a l low s e v e r a l  b locks 

(except  t h e  l i n k i n g  one) t o  have t h i s  s t r u c t u r e  recu rs i ve l y .  

The elementary s t r u c t u r e  used i n  t h i s  paper is more genera l  than 

usua l .  I t  is based on Bulavskiy and Zryagina, 1977, 1978. 



2.  DEFINITION OF HIERARCHICAL BLOCK STRUCTURE 

To in t roduce t h e  gene ra l  concept ,  w e  s h a l l  cons ide r  a few 

t y p i c a l  s i t u a t i o n s  t h a t  a r e  t r a d i t i o n a l l y  d i scussed .  I n  F ig .1  

t h r e e  s imple b lock-s t ruc tu red  ma t r i ces  a r e  p resen ted ,  w i t h  

shaded a r e a s  i n d i c a t i n g  t h e  a l l o c a t i o n  of nonzero va lues .  A l l  

t h e s e  s i t u a t i o n s  can be descr ibed by a t r e e - l i k e  graph whose 

r o o t s  r e p r e s e n t  t h e  e n t i r e  ma t r i x ;  o t h e r  v e r t i c e s  correspond 

t o  t h e  l i nked  b locks and must be connected t o  t h e  r o o t  by 

d i r e c t e d  edges,  which symbolize t h e  b lock submiss ion.  However, 

each of t h e  s t r u c t u r e s  i n  F ig .1  have t o  be t r e a t e d  d i f f e r e n t l y .  

To decompose t h e  f i r s t  two ma t r i ces ,  it is s u f f i c i e n t  t o  remove 

t h e  l i n k i n g  s t r i p ,  which c o n s i s t s  of e i t h e r  rows o r  columns. 

Th is  o p e r a t i o n  does no t  a l t e r  t h e  c o n d i t i o n  p r o p e r t i e s  of t h e  

o r i g i n a l  mat r i x .  I n  case  ( a )  t h e  rows of each d iagona l  b lock 

a r e  l i n e a r l y  independent t o  a t  l e a s t  t h e  same degree a s  a r e  

t hose  of t h e  e n t i r e  mat r ix .  Thus we can,  w i thout  l o s s  of 

accuracy,  d i v i d e  each b lock independent ly  i n t o  b a s i c  and nonbasic 

columns. The former group is t h e  l o c a l  b a s i s  of t h e  co r res -  

ponding b lock ;  t h e  l a t t e r  is inc luded i n  t h e  b a s i s  of t h e  l i n k i n g  

b lock.  

W e  can t r e a t  case  (b )  i n  t h e  same way, b u t  t h e  t h i r d  ma t r i x  

must be decomposed d i f f e r e n t l y .  Its l i nked  b locks  may be more 

i l l - cond i t i oned  than is t h e  whole ma t r i x .  To avo id  l o s s  of 

numerical accuracy,  w e  d i v i d e  t h e  mat r ix  i n  two s t e p s .  F i r s t ,  

f o r  example, w e  remove t h e  h o r i z o n t a l  l i n k i n g  s t r i p  a s  i f  c a s e  

( a )  had occur red  w i t h  on ly  one d iagona l  b lock.  Div id ing t h i s  

b lock i n t o  l o c a l  b a s i c  and nonbasic p a r t s ,  we o b t a i n  t h e  diagram 

on the l e f t  i n  Fig.2. The l o c a l  b a s i s  is  p laced i n  the upper 

r ight-hand co rne r .  A s  this l o c a l  b a s i s  is a square  nons ingu la r  

ma t r i x  o f  type ( a ) ,  it can be d i v i ded  i n  t u rn ;  t h e  diagram on 

t h e  r i g h t  r ep resen ts  t h e  r e s u l t i n g  p a r t i t i o n .  

Thus we needcons ider  on l y  t h e  two k inds  of submiss ion 

p resen ted  i n  c a s e s  ( a )  and (b )  of F ig.  1 .  A s  both  k i nds  may 

occur  i n  one mat r ix ,  we must, t o  avoid confus ion ,  i d e n t i f y  and 

l a b e l  t h e  corresponding edges on t h e  graph. I t  is conven ien t  

f o r  us  t o  l a b e l  t h e  edges of t h e  f i r s t  k ind (on t h e  l e f t )  wi th 



a minus sign and those of the second kind (on the right) with 

a plus sign. This conventionis illustrated in Fig. 3, where 

cases (a), (b) and (c) correspond to those in Fig. 1.  

It seems reasonable to introduce a symmetrical structure 

that is a generalization of both principal structures. Such a 

structure and its g r a ~ h  are presented in Fig. 4. This structure 

is treated as elementary and each of the linked blocks 
is allowed to have this structure. Thus we come to the following 

general concept of h i z r a r c h i c a l  b lock  s t r u c t u r e .  

Let G(P,Q) be a graph with vertex set P and edge set Q. We 

assume that the graph is a tree with the root at the vertex 0 

and that each of its edges is directed away from the root and 

denoted by the pendant vertex of the edge. Thus, Q = P\(o}. 

All edges are assumed to be labeled with a plus sign (for 

edges belonging to the set Q+) or with a minus sign (for those 

from Q-). The graph G is used as a skeleton of a structure. To 

define the structure, we must assign a block to each vertex. 

For this purpose we introduce the index sets 

The meaning of these sctsis clear from Fig. 4: Mk and IJk cor- 

respond to the entire block, while fik and L!k describe its 

linking part. It is assumed that fik C Mk, fik C Nk for k E  P and - - 
Mk = Xk, Nk = Nk for terminal blocks. 

For our purposes, the following relations must hold. If 

vertices s and t are subordinated immediately to vertex kr, then 

1 .  the sets MS and Mt, as well as tJs and Nt are disjoint 

To complete the matrix determination, we must specify the 

blocks ~[%,f j~l  for all k. The information introduced is not, 

of course, minimal. It is sufficient to have only the sets ik 
and Nk for each k E P, but the sets Mk, Nk, and the graph G 

demonstrate the hierarchical structure in explicit form. 



4. BASIS FACTORIZATION 

To describe the method of factorizing structured matrices, 

we consider some particular cases. If all the edges are labeled 
with a minus sign (that is, Q+ = O), we have a purely Ror izonaZ 

structure. An example is presented in Fig. 5. We use two 

principal operations when decomposing a structured basis matrix: 

1 .  select a maximal linearly independent set of columns 

for the matrix of full row rank 

2. select a similar set of rows for a matrix of full 

column rank . 
These operations are equivalent if we ignore the structure 

of the matrix, but in our case they are essentially different. 

Given the purely horizontal structure, we can implement the first 

procedure beginning with terminal blocks and advancing to the 

root. For example, in Fig. 5 we first select the local bases in 

four terminal blocks and for K = 3,4,5,6 obtain the following 

representation of these blocks: 

where the set Jk represents the basic columns in the block k, 

Sk represents nonbasic columns, and matrices Bk are the local 

bases. If we construct the matrices Hk as in Fig. 6 for 

K = 3,4,5,6 and multiply them by the entire matrix on its right- 

hand side, we exclude the nonbasic part of the terminal blocks. 

We can treat the transformed blocks 1 and 2 in the same way. As 

a result of these transformations, we obtain the decomposition 

in Fig. 7, where multipliers Hk must be ordered in accordance 

with block submission. Deeper hierarchies can clearly be treated 

in the same way. To eliminate the right-hand part of Fig. 7, we 

must multiply the right-hand side of this equality by the 

corresponding matrix H o. 

In the case under consideration the use of horizontal 

structure to a maximal degree does not affect the stability 

of the computations. This is not the case if the columns are 



linearly independent and we must select a row basis; this 

situation is presented in the diagram on the left in Fig. 8. 

We can begin with the terminal blocks again, but for 

computational stability we must choose some barrier 6 and take 

care that the absolute value of the leading elements of the 

transformations is greater than 5. Thus in several blocks some 

rows will be free, as illustrated in the diagram on the right in 

Fig. 8, where the free rows are placed at the top. 

In fact, we make the transformations as we made them 

previously, but the leading elements are chosen only from the 

lower part of the diagram. If this part is square, we obtain 

a local basis for this matrix. To eliminate the upper nonbasic 

part, we must now multiply the matrix on the right in Fig.8 by the 

appropriate matrix H o t  and this multiplication must also be 

effected on the left-hand side. If the lower part of the 

right matrix in Fig. 8 is not to be square, we must either de- 

crease 6 or note that the matrix to be decomposed is i l l -  

~ o n d i t i o n e d  (if 6 is already sufficiently small). 

When all the edges are labeled with a plus sign, we have 

a purely v e r t i c a l  structure. This case may be considered in 

the same way; the two situations that we previously encountered 

replace each other. Note that multipliers Hk in.this case are 

on the left-hand side of the matrix A[M O t N o l  : 

( n  Hk)- A is (lower) block-triangular. 

k E Q +  

In the nore general case presented in Fig. 9, we assume that the 

matrix to be decomposed is square and nonsingular. This 

structure is composed of t w  pure structures, one of which is 

horizontal and the other vertical. We may successively make use 

of both previously presented algorithms to give 



where BT is a (lower) block-triangular matrix whose diagonal 

submatrices are the local bases of the blocks. Note that if 

natrix A is not square but has more columns or more rows, the 

matrix BT is trapezoidal. 

To use the decomposition obtained we must have the inverses 

8;' for all local bases. It is not our aim to discuss this 

matter. The inverses may be in a convenient form. If the - 1 
inverse BT is available, the inverse for this mouetache-like 

structure can be presented as 

where the product is computed in the same order as the edge 

labelling of the graph in Fig.9. 

The general case of hierarchical block structure can be 

reduced to these moustache-like structures. For this purpose, 

consider the example in Fig. 10, where the graph of a structured 

matrix is presented. If we ignore the structure of blocks 

1 , 2 , 3 , U ,  then we have the moustache-like factor structure in 

Fig. 11, and we can write the decomposition in (lower) block- 

triangular form as 

The diagonal blocks are represented on the right-hand side of 

the equality . 
The diagonal blocks E1,E2,i3 ,g4 can be reduced in turn to 

lower triangular matrices. For example, by multiplying El by 

the matrices H7,H6 on the left-hand side and by the matrix H5 

on the right-hand side, we arrive at the lower block-triangular 

matrix 



For the natrix g,, we must take yet another step. Thus we 

obtain a decomposition in which the order of multipliers is 

defined by the submission of blocks in each moustache-like 

structure and by the partial order in which these structures 

are nested. F7e shall not go into details in this discussion. 

4. BASIS UPDATE 

With regard to updating the decomposition, an algorithm 

exists for stable recomputation of the decomposition as one 

column is replaced by another, but the rules are ccmplicated 

and we shall not consider them here. Similarly, it does not 

seem rational to apply these rules unless the structure has 

a low depth. It generally seems more reasonable for the 

modifications of the basis to be accumulated in either product 

form or in the form 

Here the (pxn) - matrix T consists of the unit rows indicating 

the basic columns to be changed, the columns of the (nxp) 

-matrix S are the corresponding corrections, and p is the number 

of modifications. The new column of A"S is calculated by the 

simplex method. The necessary modifications of the (pxp) 

-matrix [I + TA-'s]-' are clear from the diagrams: 

There are three reasons for using this approach. First, a 

hierarchical structure allows partition of data, and each part 

of the information can be handled separately. In the above 

algorithm for handling the next block, we need the multipliers 

Hk of subordinate blocks only. Second, the use of a standard 

procedure for calculating the product (or any other) form of 



the inverse implies preliminary rearrangement of the rows 

and columns (in this case, it can be done for each block 

separately). Third. the hierarchical structure need be taken 
into account while updating the inverse only after every few 

iterations. Since the multipliers corresponding to different 

branches of the graph are commutative, we need implement the 

updating not for the entire matrix but rather only for those 

branches that have already accumulated a sufficiently large 

number of substitutions. 

5 .  EXTENSIONS TO NONLINEAR OPTIMIZATION OVER LINEAR CONSTRAINTS 

In conclusion, we may consider how to use the defined struc- 

ture in nonlinear minimization subject to linear constraints. In 

many descent methods it is necessary to project some vectoron the 

subspace defined by the system A, = 0. To compute this projection, 

the matrix (AA~) "  is needed. The rows of A are assumed to be 

linearly independent. Two cases may occur. 

If A is an mx (m+d) - matrix and a is sail, then we may 
use the previously discussed algorithm and decompose the matrix 

in the form A = Ba [ I  31, where B is square and nonsingular. Then 

the following equality holds: 

The middle matrix can be rewritten 

The order of the matrix [I + R'R] is a. As it is small, computing 

and storing the matrix is easy. The matrix B-' may be decomposed 

according to the structure of matrix A, as stated above. 

Note that this case occurs when the objective function 

differs from a linear one along directions in a low-dimensional 

subspace. If this is not the case, then a may be large and the 

above method becomes too expensive. 



If our structure is purely horizontal, then either 

Householder or orthogonalization methods are convenient. Consider 

for example, the latter method. If in the course of orthogonali- 

zation we involve the rows beginning from the terminal blocks 

and moving to the root, then we obtain the decomposition 

A = L-Q,  where L is a lower triangular matrix, Q has orthogonal 

rows, and both matrices have the same structure as the matrix A. 

Then we can use the formula A A ~ =  L L ~ .  
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CONSTRUCTING LARGE LINEAR INPUT-OUTPUT SYSTEMS WITH 
RECURSIVELY GENERATED MATRICES 
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A modelling technique is  proposed that allows recursive construction of large-scale systems. 
The process-flow-transition structure introduced allows the integration of several poly- 
hedral input/output (I/O)-processes. Such a structure can be transformed into a single I/O- 
process. A simple computer language is  constructed which is  oriented to this recursive 
definition of the input and output matrices of an I/0-process. All instructions required to 
generate these matrices as datafiles and their associated names as textfiles can be expressed 
in this language. The textfiles generated are part of the input of a reportwriter. 



Part iculary in the modelling of large economic or  large production systems 

it is extremely important t o  maintain a s t r ingent  systematic in the form of 

a modular s e t  up which is - a t  l eas t  from a logical  view-pohit - invar iant 

with respect t o  the complexity of the system. In par t icu lar ,  it appears tha t  

a module with a recursive nature o f fe rs  excel lentprospects for organizing 

data bases, numr ica l  methods and reporting . resu l t s  in a transparant manner. 

In addit ion it can be a natural  s ta r t i ng  point fo r  computer-aided model design 

system. Central theme of t h i s  study is a modelling method based on three 

elemants: the polyhedral Input/Output process - being a special  case of the 

more generalconcept (concave) Input/Output process, proposed elsewhere C11 - 
t rans i t ion points,  and commodity flows. After having introduced the concept 

I/O-process, an example w i l l  show how t o  integrate several  I/O-processes 

with the help of " t rans i t ion points" and "f lovs" in to  one single "process- 

f low-transit ion" structure.  I t  w i l l  appear tha t  t h i s  s t ructure can be taken 

- a f t e r  a self-evident transformation - as  one single process w i t h  the same 

logical  s t ructure as our Input/Output process, implying that  t h i s  modelling 

system possesses the desired recursive propert ies,  indeed. 

From an abstract  physical view-point, an economic process can be characterized 

by a se t  of " feasible" Input/Output combinations, say: S c prn xiRn . where mm 

represents the conrmodity space of the inputs,and where mn stands for the 

camrodity space of the outputs. Next, a preference ordering can be postulated 

by a u t i l i t y  functlon p on S. In t h i s  context, an Input/Output process (or  

1 br ie f ly  I/O-process) is defined as a (bi-)  function p:S c iRm x m n + ~  , sa t i s -  

fying the following hypotheses: 



- S c IRtxEtn (being a "minimal* hypothesis in order  t o  support  the  d is -  

t i n c t i o n  between inputs and ou tpu ts ) ,  
- 

- f o r  every x,; 6 mrn,  y c IRn s o  t h a t  (x,y) c S, x 2 x,  it holds ( x , ~ )  6 S, 

,, (x; Y )  2 ,, (x;y) (being a " f r ee  d isposa l "  hypothesis concerning t h e  inputs ) .  

Within t he  c o n t q t  of a p a i t i c u l a r  mwel  forrnulatlng t he  I/o-process may b r i ng  

ou t  t h a t  t he  Colllpodity spaces of t he  inputs  and/or ou tpu ts  a r e  composed o f  

mz m 
seve ra l  differWaf c o m i t y  spaces. For ins tance (bl x P  x. .  . x * ) wi*  

n n 
respect  to t h e  inputs  and ( R  x P  x . . . x mn 5 f o r  t h e  outputs.  Then, ins tead 

k 1 2  e of a s i ng le  Input/Output p a i r  (x ,y)  , we have ( (xl ,x2,.  . . , X  ) ,  (y , y  , . . . .Y ) , 
r n .  

w i t h  x' c IR , y j  e mnj . Of course,  t h i s  does no t  a f f e c t  t h e  na ture  of  our  

Below we s h a l l  introduce the  not ion o ia  process-f low-transi t ion s tuc turo  . with 

t he  help of a simple (perhaps somewhat cherch4) &e l ,  represented by t h e  

" p r o c e s s - f l o r t r a n s i t i m "  diagram: 

I n  t h i s  example we have: t h ree  I/O-processes P c m: x (Et: XR:) , 

C c XR: , D c IR: x(Et; XR+" ), w i t h  a u t ~ l i t y  funct ion p on C only. We have 

s i x  " t r ans i t i on  po in ts "  numbered 1 to 6, w e  have e igh t  i n t e r n a l  commodity 



"flow vec tors" ,  th ree  of them x1 12,  x2 '  l ,  x313 a r e  Input  flows, t he  o thers  

y4", y S r 2 ,  y6 '3 ,  y3I1,  y l ' l  a r e  output flow vec tors ,  and f i n a l l y  there  a re  

s l x  "external  flows" represented by t h e  dotteci arrows. Economical ly-af ter  

a s u i t a b l e  specification of the  s e t s  P ,  C, D - one may th ink  about a 

conf igurat ion cons is t ing  of a production process (PI, a consumption 

process (C) , a d i s t r i bu t i on  process (D) , and two kin& o f  c d i t y  

stocks: the s tocks  f o r  consumption and f o r  productive purposes. A l l  Of 

these c d i t i e s  may have a ce r ta i n  " l i fe- t ime",  Ln such a manner t h a t  

t he  remaining p a r t  of t he  inputs  x1'2 ( resp.  x3'3) a f t e r  "passing" t he  

production ( resp ,  consumption) process i .s AP x112 (resp.  ~ ~ ' ~ 1 ,  where 

AP ( resp.  A') is a diagonal matrix with diagonal elements between 0 and 1.  

A p a r t  of t he  outputs of t he  production process ( y 5 ' 2 ) ,  together  wi th 

the "imports" to t r a n s i t i o n  point  numbered 2, can be added t o  the  s tocks  f o r  

product ive purposes o r  t o  t h e  stock f o r  consumptive purposes. This leads 

t o  the "d i s t r i bu t i on  s e t "  D :I ( ( x 2 ' 1 , ( y 1 ' 1 , y 3 r 1 ) )  c p ~ x ( p ~ x p l ~ )  ~ y ' "  + 

+ y311 2 x2"). In  t h i s  context  it i s  na tura l  t o  pu t  the  u t i l i t y  funct ion 

on P and D i d e n t i r a l z e r o , a n d t o t a k e  t he  u t i l i t y  Function u on C a s  the  

only i n t e r n a l  bas is  f o r  t he  valuat ion of flow r e a l i s a t i o n s  in the system. 

Concerning t h e  formal s t r u c t u r e  of the  example we obviously have the  

cons t i t u t i nq  elements: commdity s-paces, I/O-processes, t r a n s i t i o n  po in t s  

and flows. With each t r a n s i t i o n  po ln t  only one commodity space is associated; 

thus ,  r e f e r ~ n g  t o  t h i s  commodity space,  w e  s h a l l  speaic about t he  dimension 

of a t r a n s i t i o n  point .  I n te rna l  flows a r e  located only between a t r a n s i t i o n  

p o u t  and an I/O-process; of caurse , the  corresponding f l w  vector  has the  

same dimension a s  the  t r a n s i t i o n  point .  Th i s  assumption impl ies t h a t  f lows 

can be ind ica ted  by assoc ia t ing  w ~ t h  each I/O-process the C O M ~ C ~ E ~  t r ans i -  

t i o n  po in ts ,  both f o r  the  input  s i d e  and f o r  the  output s ide .  Further,  the  



order has t o  be speci f ied how the complete input  and output  f l ovso feach  

I/+process a r e  composed of the  separa te  f l w s ;  t he  formal s e t  up w i l l  

be def ined with the  help of set C := I ((if:-,) 1 m = I ,2 , .  . . , . Thus, 

apa r t  from f l w  f a c i l i t i e s  between the  system a s  a whole and sane "outs ide 

world", w e  def ine a process-f low-transit ion s t ruc tu re  a s  a f i n i t e  (o r  

countable i n f i n i t e )  number of: 

- t r a n s i t i o n  po in ts ,  indicated by a countable nonempty set U and a funct ion 

E:n+{1,2, ... f ,  re fer inq  t o  the  dimensions, 
C W - I/-processes u j  : sj c R ' j X R  j + 1 ~ '  , j E N ,  N noneunpty countable, 

- input  f l w s ,  associated with each I/-process j c N by a funct ion 

0j :n-r  {O , I  , 2 , .  . . ),  w i t h  +'(i) + o f o r  some i c n, and w i t h  

( { @ j ( i ) I i  
Oj( i )  + ,,I c C, 

- output f l w s ,  associated with each I/-process j c N by a funct ion 

* j : n - (0 ,1 ,2  ,... 1, w i t h  * j ( i )  + o f o r  s- i c n ,  and with 

sa t i s f y i ng  t h e  fol lowing hypotheses: 

1 K .  W .  - For each !.I':s' +1 , j r N,  the ccmmdity spaces 1R ' , 1R ' , possess the  

propert ies:  (i) K = ( L  E ( i ) ,  over i c n ( ~ ' ( i )  + O ) ,  
j 

w j  = ( L  C ( i ) ,  over 
K W. 5 i c: n ( O' ( i l  f 0 ) .  (ii) sj c 1+' xl+! (iii) f o r  every x, x c m , 

y c mu',  so t h a t  (x,y)  c s'. ; 2 x, it 1 s :  i ~ , ~ )  6 sJ,  u j ( ~ : y )  2 u j ( x i Y ) .  

- For each i c M ,  thare  is a j c N ,  s o  t h a t  4 j ( i )  + + j ( i )  > 0 (1.e. each t rane i -  

t i on  point  is comecced w i t h  a t  least one I/-process). 

In t h i s  context  0 j : f4+(0.1 ,... and ~l':FI-r(0,1, ... ) w i l l  be ca l l ed  t h e  input  

and output incidence funct ions of process j. 



In the example one may def ine M := ( 1 . 2 . .  . . ,61, N := ( 1 , 2 , 3 ) ,  s 1  := D, 

1 2  u (x ;y)  :- 0 f o r  a l l  (x .y)  f D, s 2  :=  P.  P ( x ; y )  := 0 f o r  a l l  (x ,y )  f P ,  

3 
s 3  =: C,  p (x ;y)  : =  u(x ;y )  f o r  a l l  (x ,y )  6 C ,  

In case the re  a r e  flows between the  system and sane "ou ts ide  world", the  

flows cowards t he  system w i l l  be ca l l ed  -port flows and t he  flows in  

the opposrte d i r ec t i on ,  export flows. I t  is na tu ra l  t o  assoc ia te  these flows 

wlth t he  t r a n s i t i o n  p o u t s ,  o r  formally with the  elements of s e t  n. Thus. 

the  import and export flow s t ruc tu re  w i l l  be i nd ica ted  by the  elements 

of s e t s  M+ c n,  M - c M ,  resp. (poss ib le  M+ := 0 o r  l4- := 8 ) ,  on the  under- 

standrng t h a t  the  following "import/export flow" hypotheses a r e  sa t i s f i ed :  

- f o r  every i 6 M+, there  is a j E N so t h a t  Q 3 ( i l  + 0 ,  

- f o r  every i t M-, there  is a j E N so  tha t  $ ' ( i )  + 0; 

in  words: imports (expor ts  resp . )  a re  re l a ted  t o  t he  m p u t s  (outputs resp . )  

f o r  a t  l e a s t  one of the  i n te rna l  processes.  Summarizing: in the  presence of 

Fmport and/or export f a c i l i t i e s ,  t he  corresponding f lows a r e  considered a s  

being a pa r t  of the  process-f low-transrt ion s t ruc tu re ,  provided the  "import/ 

export flow" hypotheses are  s a t i s f i e d .  



Next we focus our a t t en t i on  t o  the problem h m ~  the  magnitude of t he  

f l w s  between t r a n s i t i o n  po in ts  and the  I/O-processes is r e l a ted  t o  

t he  cmposed input  and output  flows of t h e  procesees and t o  t he  import 

and axport f l w r .  Let us denote: 

- t he  f l w  vmctor f r m  t r a n s i t i o n  po in t  i f M towards I/O-process j N 

by xi'' f m E ( i ) ,  with xi'' :- 0 i f  ('(i) - 0 ,  

- t he  f l w  vec tor  f r a o  I/O-process j f N towards t r a n s i t i o n  po in t  i f I4 

by y i . j  , m E ( i )  , w i t h  y i v j  :- o i f  q l ( i )  = 0 ,  

- t he  input  vec tor  of I/O-process j E N by xf j c R'? , where r . : = (E E (i) , 
3 

over i n I + j ( i )  + 0 ) .  

- t h e  output  vec tor  of I/O-process j L N by y*' f nu' , where w . := ( z  C ( i ) ,  
I 

over i c n l e j ( i 1  z 0 1 ,  

- the  imports towards t r a n s i t i o n  po in t  i c n by xi* f R " ~ )  with xi* := 0 

- the  exports fram t r a n s i t i o n  po in t  i E M by yi* E with yif :* 0 i f  

i ti n-. 

Provided, the order  har t h e  input  and output  flow vec to rs  xf', y*' a r e  

c-sed of  (xi'') n, ( y  i, j l i  is spec i f ied  by the inc idence 

funct ions +' and ~j resp. ,  we s h a l l  r e l a t e  xf3 t o  (xi"li and y*' 

t o  (yi"li Y, with the  he lp  of func t ions  F: i r n, assigninq t o  a l l  

p a i r s  ( ( x f j .  ( j l l j  d { (y f ' ,  A l j  N, vec tors  P~ (xf j ;  9') c IR ( i )  

and pi (y f j ie ' )  c mS(') resp. in t h e  ~ o l l o w i n g  manner: 

I pi ; '  :- (<:*ll,X$, ... ,<:c(i,), where: 

k :- o - i f  + j ( i )  = 1 o r  otherwise, 

1 k : - ( C r ( l ) ,  over t c n ( 0 < + j ( l )  < + j ( i ) ) ,  



and B' ( y *J ; y j )  being defined s imi la r ly .  Given t h e  formal s t ruc tu re  

a s  introduced before. P~ w i l l  be ca l l ed  the  flow conf igurat ion funct ion 

i 
of t r ans i t i on  point  i c M. One may ve r i f y  t h a t  the  funct ions P , i c M 

e s t a b l i s h  a one-one re la t i on  between t h e  input  and output  flow vectors 

x t j ,  y*' -and the  process-t ransi t ion flow vectors xi", y i ' j  with xi'' :- 0 

i f  ( ' t i )  - 0,and yi" :- 0 i f  )'(I) - 0. Thus, x i  , , . 
w i l l  be c d l e d  an i n te rna l  flow conf igurat ion i f  a sequence (x*' ,y* '~, N. 

i 
( x t Jgy* j )  .s ~ j ,  j c N u i a t s  such t h a t  xioj - F ( x * j ; + j ) ,  yinj - ~ ' ( y * j ; + j ) ,  

i c  n, j c N.  

i . j  Next, an i n te rna l  flow conf igurat ion ( (xi",y 1 I i  . *, , w i l l  be c a l l e d  

I* 
f eas ib le  with respact  t o  t he  import and export  flow vec tors  ( x  I i  

(yi* l i  . i f ,  on each t r a n s i t i o n  po in t  i c M t he  - s o  ca l l ed  - c o d i t x  

balance candi%s : 

a r e  s a t i s f i e d  (provided the  s u m  over j c N are wel l  de f ined) .  

I n  some app l i ca t i ons i tm igh t  be convenient to model an import o r  export 

flow a s  one of the  i n te rna l  flows. Within our  formal s e t  up, t h i s  can be 

done (somewhat t r i cky )  by introducing the  zero-dimensional r e a l  vector  

space no :- (01, 0 being t h e  r e a l  number zero. Then an ( a r t i f i c i a l )  I/- 

process w i t h  its input  p a r t  s i t ua ted  in no can be taken as a resource,  

where- an I/-process w i t h  its output p a r t  in XXO may be introduced a s  

a f i n a l  demand. Of course, t h e  corresponding ( a r t i f i c i a l )  t r a n s i t i o n  

0 
po in t s  and re la ted  flows a r e  associated w i t h  a "ccamxiity" space . 

Returning t o  our example: t h e  diagram suggests that t he  p r o c e s - f l o r  

t r a n s i t i o n  s t ruc tu re  i t s e l v e s  might be conceived ae me s ing le  I/O-process 



on a "higher" abstraction level ,  just  by taking the import and export flows 

as inputs and outputs and eliminating the corresponding feas ib le  internal  

flows configurations by some optimality pr inciple re la ted t o  the ~ n t e r n a l  

u t i l i t y  function. We sha l l  describe t h i s  transformation in to  an I/O-process, 

s ta r t i ng  f r m  the general structure as  introduced before. However, i n  order 

co avoid complications we r e s t r i c t  ourselves t o  the case where the number 

of I/O-procesaea I N I  and t ranei t ion points i a  f i n i te .  F i r s t  of a l l  we 

have co specify the order how the - what we sha l l  c a l l  - external  input 

vector and t he  external  output vector a re  composed of the import and export - 
flow vector reap.. In a similar manner as  the intert lalf lows const i tu te  the 

h t e r n a l  input and output vectors, t h i s  can be done w i t h  the help of inci-  

dence func t ians~  a:n+(0,1 ,2 ,  ... ) f o r  the external  inputs, and 6 : ~ + ( 0 . 1 , 2  ,... 
f o r  the external outputs. Having the Fmport flowsand export flows indicated 

by M+ c t4 and H- c M resp., these incidence functions have t o  sa t i s f y  the 

hypotheses ( i  c M I a ( i )  j 0) - M + ,  ( i  a M ( B ( i )  0) = t4-, ( ( a ( i )  I i r M, 

a ( i )  # 0 ) )  c E, ( (B ( i )  ( i 6 n, B ( L )  # 0 ) )  a a. The corresponding dimensions 

are r := ( E  C ( i ) ,  over i a M + )  f o r  the external inputs 5, and s := ( L  C ( i ) ,  

over i a M ) for  the external' outputs 1. Now, u t i l i z ing our f lw configuration 

function8 d, i r M ,  the corresponding import and export flaw vectors a re  

i i 
F (z~a),  F (x;B), i M.  Since input vectors a re  supposed t o  be nonnegative, 

the a e t  of feanible external input/output cmbinat ions 5 can be definad: 

i n  words: the s e t  of combinations ( 5 , ~ )  c IRt xIRS such that  thare ex is t  cor- 

responding feasrble internal  flow configurations. Next, the valuation of 

in terna l  f l w  C ~ f i q U r a t L ~ s  can be effectuated on the bas is  of a weighted sum 

1 1  
r j  y II (x* j ;yCJ) over the separate u t i l i t y  functions ~ j ,  IY'), being a 



sequence of nonnegative weight factors.  These considerations lead to  an 

1 
"external u t i l i t y "  functions k:g+ iU U I-1 ,defined by 

As a consequence of the "import" hypothesis tha t  for  each i a M+ there is  a 

j < N with 9 j ( i )  > 0, we have that the external process sa t i s f i e s  the " f ree 

disposal" hypothesis, indeed; i.e. for each x, x a Etr . y c EtS with (5.y) i 2, 

x 5 5 it holds (x.yl c g,  y(x;y) ~ ( x i y ) .  Thus, i f  y(r;y) is  f i n i t e  for  a l l  

(5.y) c 5, then y:S+ IR' can be taken as an I/0-process. 

With t h i s  fundamental transformation we have establ ishedtherecursive nature 

of our process- f lor t rans i t ion structure. Each I/-process i n  such a 

s t ructure might be generated by a (sub) pmce6s-flaw-transition structure. 

and, the other way round, each process-flow-trmsit ian structure might be 

integratedasan I/-process i n a  larger process-flowtransit ion structure. 

A s  an i l l us t ra t ion  of t h i s  recursiv i ty,  we consider a dynamic version of our 

-ample, as suggested by the diagram: 

Lt. 1 ) .  ( t .2 )  

period t - 1 * period t * period t + 1 4 



As per iod  index w e  have in t roduced t O , l ,  ..., h ,  where t := 0 i n d i c a t e s  

t h e  l a s t  past per iod ,  and where t h e  p o s i t i v e  i n t e g e r  h i s  t h e  f i n a l  pe r iod .  

The I /-processes and t r a n s i t i o n  p o i n t s . a r e i n d i c a t e d  by t h e  e lements of 

h h i  1 
t h e  s e t s  :- { ( t , l ) ,  ( t , 2 ) ,  ( t , 3 )  and := ( ( t , l ) ,  ( t . 2 ) .  ( t . 3 )  I tmi. 

The t r a n s i t i o n  p o i n t s  ara a l l  n-dimensional. The inc idence  f u n c t i o n s  can  

be def ined:  

w i th  r e s p e c t  to t h e  inpu t  vec to rs ,  and f o r  the o u t p u t  vac to rs :  

- $ , ( t r l )  (0.k) := 1 i f  ( e , k )  = ( t , l ) ,  := 2 i f  (0 ,k )  = ( t , 3 ) ,  

( t . 2 )  - (9.k) := 1 i f  ( g , k )  = ( t + 1 , 1 ) ,  :- 2 i f  ( e , k )  := ( t + l , 2 ) ,  

- e ( t * 3 )  ( e , k )  := I i f  ( e , k )  - ( t + 1 , 3 ) ,  o therw ise  := 0. 

Next w i th  t h e  h e l p  of our  f l w  c o n f i g u r a t i o n  f u n c t i o n s  r i ,  a l l  i n p u t  and o u t p u t  

1 
f low v e c t o r s  of  t h e  I /-processes ,,':s' + W , j  E I! can  be  dec-sed into 

p r o c e s s - t r a n s i t i o n  f l w  v e c t o r s  which have to s a t i s f y  t h e  c m i t y  ba lance  

cond i t i ons .  Thus, t h e  problem of f i n d i n g  an o p t d l  t r a j e c t o r y ,  under exponen t ia l  

t ime d iscoun t ing  ntt  w i th  n > 0 (,rtt s t a n d s  f o r  n power t) and a v a l u a t i o n  o f  

1 2 3  
t h e  t e r m i n a l  commodity s t o c k s  q ,q ,q c , and g iven  i n i t i a l  s t o c k s  

$ := ( y ( 0 ' 1 ) , y ( 0 ' 2 ) , y ( 0 ' 3 ' ) ,  can  be w r i t t e n  i n  t h e  s tandard  form: - 

k + ( h , k ) > )  
sup  ( ( z j  c l  ~ j u j ( x * j ; y + ~ ) )  + yhz < q  , y  

over  (x * j , y * j )  c sj, j  c N_, 
i 0 i s.r. t pi (X+';Q'I = F (z  ;a)  + E~~ N~ ( y * j ; d ) ,  vi c i, 

I aN_ - 



t t  
vhere y ( )  : ( 1  , t = 1.2 ,..., h,  k = 1.2.3, where <.,.> represents  

tho inner product of tvo vec tors ,  and vhere the  incidence funct ion a f o r  

tho "imports' $ is defined: a (0 .k )  := k i f  0 = 1 and k r (1,2,31,  otherwise 

:- 0. Note: i n  t h i s  example, the s imp l ic i t y  of the  s t r u c t u r e  makes it 

poss ib le  t o  g ive an equal ly  simple spec ia l  foxmulation vhere the  per iod 

index t is adopted exp l i c i t l y .  

Nor, a =re  s t r u c t u r a l  v i e w p o i n t  can be ob ta in  by taking t h e  process- 

f low-structure f o r  each separa te  per iod a s  one s i n g l e  I/*process, and 

naxt link- these I/*processes, dynamically. Thua, one may def ine  f o r  

each per iod t = 1.2, .  . . ,h an (I/o) -process $:St c R~~ xn3n+Et1 U (-1; 

t h i s  can be done in the  same manner a s  the  s i ng le  per iod  vers ion o f  the 

m d e l  WM transformed i n t o  an I/-process. The rerrult inq dynamic model can 

be charac ter ized by t he  diagram: 

per iod t -1 per iod t per iod t + l  J 

The corresponding problem of  f ind ing  an optimal t r a j e c t o r y  can wr i t ten  

as:  

vhare is thr qiven i n i t i a l  s t a t e .  Of course,  one may f i t  t h i s  p r o b l m  



in our process-flow-transition structure. More generally the question arises, 

under what conditions a part of a process-flow-transition may be substituted 

by its formulation as I/O-process. As a matter of fact, one has to require 

only, that input and output f l w s  can be distinguish, in such a manner that 

the hypotheses concerning the inputs are satisfied indeed; in that case one 

may conceive this as a structural decomposition, because the original input/ 

output structura is preserved. 

Beside this structural decomposition, one may apply Lagrangean decomposition 

techniques and the related shadow-price interpretation of Lagrange-multipliers. 

In order to introduce this approach briefly, let y:S c lm*Sln+lR1 be an 

I/O-process, let u c R~ be a "price" vector for the inputs and let v c mn 

be a "price" vector for the outputs. Then the corresponding supremum of the 

"net-profit" *u(u;v) can be found by: 

( 6 )  *u(u;v) := sup(u(x;y) - <u,x> + <v,y>), aver (x,y) c S. 

Thus "net-profit" maximization leads to a function u:* s c lm xIRn*IR1 - to be 

called the dual I/O-process - where the set *S (possible * S  = 0)  is defined: 

In case *S + 0 ,  it appears that s c IR: x l n  (being an implication of the 

"free disposal" assumption on inputs), and that for each u,; c l m ,  v 6 ln 

* -  - * -  
with (u,v) S, u 2 u: (u,v) S ,  p (u;v) : *u(u;v). (the latter being an 

m n 
implication of the hypothesis S c l+xIR ) .  Obviously, in the oppos~te  

orientation, the dual I/O-process m ~ g h t  be conceived (logically) as an I/+ 

* *  1 
process as well. In addition it is knawn that the epigraph of u: S+IR 

l *  
(i.e. the set (u.v,a) S x IR I p(u;v) a)) isclosed and convex. In 



case t h e  hypograph of ) r : ~ - t E t '  ( i .e .  t h e  s e t  ( ( x , y , a )  S x IR1 I a : p(x ;y )  1) 

** ** 1 
is closed and convex, the  func t ion  II: S c Elm xIRn+E3 , def ined:  

U ( X ; Y )  :- i n f  (*y ( u ; ~ )  + <x,u> - <y,v*),  over (u,v)  6 * s o  
(8) 

S :- i ( x , y )  f IRmxIRm I"p(x;y) > -01, 

t *  t *  
is t h e  inverse  transfo-tionr i . e .  Y: S + 1' is exac t ly  t h e  o r i g i n a l  

func t ion  u : ~  +-nl  (c f .  I: 1 I o r  I: 2 I ) .  

N e x t  l e t  us consider  t h e  s tandard  h g r a n g w  representa t ion  o f  maximizatbn 

problem ( 3 ) .  w i t h  Lagrangean vec to r s  wi c  R " ~ ) ,  i c kl on t h e  t r - i t i on  

po in ts ;  t o  be wr i t ten :  

i i i 

- Z i r  <w , (F (y ;8 )  * F' (x*j ;$')  - 
j c  N  

i - P (x:al + Z  j c N  ( y f j ; ~ ' ) ) > ! ,  

over  ( x f j , y * j )  6 s j ,  j c  N. 

Elaborat ing t h i s  expression o n e m y v e r i f y  that t h e  supremum is f i n i t e  i f ,  

and only i f ,  t h e r e  is a { ( u j , v j )  ) j : * s j  + m  1 ( u j , v f )  c  *s' (each u 

1 
being t h e  dual  of uJ:S' -t P( ) , such t h a t ,  f o r  a l l  i c  n, j N: y'pi ( uJ ;$ j )  = wi, 

i and y f p L  ( v J : # j )  = w ; i n  t h a t  case  t h e  value of t he  supremum is 

i E yj*uJ (uJ ; v j l  + Z . < w i , p  (E;a) - F~ (y; 0) >. Consequently t h e  corres-  
j c N  I .? n 

pondlng "dualn problem takes  t h e  form: 

i i * + E w ,  a - P ( 1 ;01> )  

over ( u j , v j )  c *s', j c  N ,  

wi <  1 4 ( i ) ,  i € n 

set .  y j r i  ( u j ; $ j )  - wi,  y j d  ( v j ; $ j )  = wi,  vi c  kl, j c  N .  



Obviously, instead of the commodity balance restrictions appearing in the 

original - or primal - problem (31, the dual restrictions might be taken 

as (weighted) price equality condition on the transition points. 

Now, prov~ded the suprenum in (3) is equal to the infimum ( 10) ( w h ~ c h  is 

generic in case the I/O-processes are concave), and provided ( (3 ,c3) I j  

(Cili is a dual optimal solution, a necessary condition for optinmlity 

A'j A'j 
of , I j  in 3 i s  t a h  x ,y ) is optimal ID the cor- 

responding problm: 

(11, { sup (,,j (x'j,y'j) - <cj,xfj> + <Cj,$'>), 

over (x",ytj) 6 s'; 

in case of uniqueness this condition is sufficient, as well. Since in these 

optimality conditions the commodity balans restrictions are eliminated, the 

optimization is decomposed over the separate I/O-processes. Illustrative is 

the dual fonnulation of the abstract dynamic problem ( 5 1 ,  which can be reduced 

to the £om:  

inf (n<$ ,$> + r:'l ( ~ ) ~ ~ * b ~ ( ~ ~ ; ~ ~ )  - ) , 

12. { over (ut,vt) c 'st, t = 1,2 ,..., h, - - - 
s.t. n5t+1 = $, t = 1,2, ..., h-1, 

h 1 2 3  
v - = (q ,q , ¶ ) ,  

3 
where q l ,  q2, q are fixed given valuation vectors of the terminal state. 

Note: in this formulation of the dual problem the elimination of the dual 

i 
variables (w 1 .  as introduced in (101, appears to be self-evident. 

I c n 
At At 

Further, given a dual optimal solution (y  , y  I ,  t = 1.2. ..., h, the decomposed 

problems (ll), in fact are single period optimization problems. 



We conclude t h i s  sec t ion  with some summarizing remarks. F i r s t  of a l l  

we found tha t  the nature of t he  process-f low-transi t ion s t ruc tu re  is 

recurs ive o r  repe t i t i ve .  Exploring t h i s  cha rac te r i s t i c  it is possib le 

t o  descr ibe such s t ruc tu res  uniformlg with t he  help of a simple recurs ive 

p b t e r  system. The s t ruc tu re  i t s e l v e s  gives sel f -evident  s t a r t i n g - p i n t s  

f o r  - what w e  have ca l l ed  - s t ruc tu ra l  decomposition, a t  any des i red  

abst rac t ion  leve l .  S t ruc tura l  decomposition can be supported by standard 

i a g r a n g e ~  decomposition techniques; the  corresponding dual  problem can 

be described with the  help of the  same recurs ive po in ter  s y s t m .  cmcs 

the  s t ruc tu re  of the  model is  f i xed i n  terms of such po in ter  system, 

it is poss ib le  t o  organize the  data and the  repor t  wr i t ing  along the  

same l i nes .  

2.  POLYHEDRAL PROCESS-PMW-TRANSITION Sl'RUCNRES 

In t h i s  sec t ion  ve w ~ l l  spec ia l i ze  the  domain of our I/-process t o  a 

pa r t i cu la r  polyhedral s e t ;  t o  beprec ise .  d i t h  a polyheder is meant anysolu-  

t i o n s e t  in a f i n i t e  dimensional r e a l  vector space of a f i n i t e  system of 

l i nea r  inequa l r t res  and/or equa l i t i es .  I t  w i l l  appear t h a t  every process- 

f low-transrt ion s t ruc tu re  where the  processes a r e  spec ia l i zed rn t h i s  

manner, can be represented in a matrrx form with again,  a r e p e t i t i v e  

s t ruc tu re .  Of course, i f ,  in  add i t ion ,  the  u t i l i t y  funct ions a r e  l i nea r  

o r  represented by a quadrat ic  form, such matrices can be used d i r e c t l y  

in t h e  scandard optimizarion methods. Below the  s e t  of r e a l  m x n-matrices 

is denoted X t m x n ;  the  s e t  of r e e l  m x n-marrices with nonnegative elements 

is denoted IRyn . 



Formally, we def ine  a polyhedral  I/-process a s  a (b i - ) func t ion  

rr:S C I R m * ~ ~ n + R L  LI I + - ) ,  being representab le  by a quadruple cons is t ing  of 

k 
a polyheder P c R + ,  a concave funct ion v:P+ R L  its hypograph 

1 X k 
( (= ,a )  6 P x R I a ; V ( Z )  1 closed,  a matrix A 6 m:x k,  and a matrix B 6 mn 

i n  t he  fol lowing manner: 

Observe that p c W: and A c w:~ implies: S c ~ = x m " ;  f u r t he r ,  t h e  

inequa l i t y  Az 5 x appearing i n  t h e  de f i n i t i on  i m p l i e s t h a t t h e  " f ree  d isposal"  

hypothesis on inputs  is s a t i s f i e d . a e a r l y ,  In case Y is f i n i t e  f o r  a l l  

(x ,y)  e S, t h e  funct ion u:S c m m x a n + ~ '  is an I/O-process, indeed. Ob- 

viously,  f o r  each z 6 P, t h e  quan t i t i es  Az and Bz can be conceived a s  t h e  

"e f fec t rve"  inputs and the  outputs resp. belonging t o  t h e  process intensity 

vector  z .  Below, polyhedral I/-processes w i l l  be denoted b r i e f l y ,  by the 

def in ing  quadruples, t he  order of a polyheder, a func t ion  on t h a t  polyheder, 

t he  input  matrix, and the  output  matrix. Thus, we w i l l  c a l l  a process-f lw-  

t r a n s i t i o n  structure polyhedral ,  i f  a l l  processes a r e  polyhedral I/-processes 

u ( j l x k ( j ) ,  Bj m u ( j ) x k ( j $ ,  spec i f i ed  by (P' c mk( j '  , vJ :p j  +a1 , A' 6 m+ 

j  c N.  E v ~ d e n t l y ,  i n  t h i s  context  it is poss ib le  t o  s u b s t i t u t e  m p u t  and 

output  flow vec tors  x*', y*' ( j  N) by t h e  expressions ~ j z j  and Bjz'. Then, 

glven the  incidence func t ions  @':M-.10,1 ,... ) f o r  thg  inputs ,  $ j : M + { ~ , l ,  ...I 

f o r  the  outputs,  a:M+IO,l,  ...I f o r  imports, and 8 : ~ - { 0 , 1 ,  ... ) f o r  t he  

exports ( M  being the  index set f o r  t h e  t r ans i t i on  p o i n t s ) ,  t he  c d i t y  

balance condi t ions reduce t o  



(14) { Lor a l l  i E n v i th  $ ' ( i )  0 for  some j E N ,  

pi (y;,) = pi (z~b) + Z .  pi (B'Zj), 
IEN 

I fo r  a l l  i a t4 with $ j ( i )  - 0 for  a l l  j a N; 

x,  y being the import and export flow vectors. Given theme import and - 
export flow vectors. (z' I N, z' E Pj,  w i l l  be cal led a feasible con- 

f igurat ion of process intensi ty vectors i f  (14)  is satisfied. 

In connection v l th  " c d i t y "  space PI' in the dof in i t ion of recourses 

and f i ~ l  d-ds as s p c i a l  I/O-procem~es, one may introduce tho Oxk- 

m a t r u  as the 1 x k-matrix v i t h  a l l  elemants zero, and denote tho s e t  of 

0 k-matrices as  aox k. Then recourses can bs defined by taking A E a 0' k 

Ox k 
and f-1 demands by taking B E a . 

As an i l l us t ra t ion  ve spacify our (s ingle period) conmodity d is t r ibut ion 

model of d e  f i r s t  diagram as  follows: 

- rhe d is t r ibut ion process, indicated j := 1: 

1 p1 :- m y ,  v ( 2 )  := o fo r  a l l  z 6 P', A' : =  (I",I"), := x2" 
e 

( I  being the e x e-ident i ty matrix) , 

- the production process, indicated j := 2: 

k e p2 :- i ( z 8 , z 1 * i  a: xm+ I&- r ,  i l l  z.1, g i v m  X atxk. r 6 q , 
- ndc 

and glvan A t a+ t 

2 
v Lz) :- 0 for a l l  z a P2, A2 := (I",o) (0 being the nx k zero-matrix), 

- n x k  s2 :- (" i), given B a 5 , and given the diagonal -duration matrixn 0 
P 

A being introduced ear l i e r ,  



- the consumption process, indicated j := 3: 

3 1 
p3  := m:, v ((Z := <P,z> - --<z.Qz>, given p € IR: and given Q c R 

n x n  
2 

symmetric posi t ive semi-def i n i te ,  

A3 := 1". g3 :- ,Ic, given the diagonal "duration" matrix ,Ic, 

- t rans i t ion points with indar s e t  M := (1,2,3,4,5,61, 

- input and output incidence function O':M+(0.1, ... 1, $ ' :M+(o ,~  ,... 1 as  

introduced ear l i e r .  

I rmted of formulatiag the c d i t y  balance ~ 0 n d i t i 0 ~  i n  tenUS of the 

flow configuration functions F ~ ,  one a lso may use sequences of matrices 

' ~ ~ ' ' ' i  6 n, j 6 N 1  ( ~ ~ " ' i  c n V j  c N defined 

where a?[ ID?[ resp. ) represents the 1- th  column of m i l t r i a  A' (B' resp.) ; 

observe tha t  Ai" := 0 (Bi" :- 0 resp.) i f  O J ( i )  - 0 ( $ j ( i )  = 0 resp.) .  

Then, i n  the case tha t  the processes and the t rans i t ion points a re  ordered 

s o  that U - { l , 2  ,..., n1, n - {1 ,2  ,..., m l ,  n :- I N I ,  m :- In l ,  these matrices 

may b. conceived an g b l o c k - e l ~ t s g  of col~posd input and output matrices 

A** :- ( ( A ~ " ) ~ ~ ) ~ ~ ~  B** :- t ( ~ ~ " ) ~ ~ ) ~ , ,  representing the cmp le ta  

input and output data i n  cur axamplevthese "super-matrices" take the form: 



obviously t he  " p i l a r s " ,  numbered j - 1 . 2 ,  ..., n r e f e r  t o  t h e  processes,  

whereas t he  " f loors" ,  numbered i = 1 . 2 ,  ..., m r e f e r  t o  t he  t r a n s i t i o n  

points.  

Analogous t o  the  transfozmation from a genera l  process- f law-t ransi t ion 

sc ruc tu re  i n t o  an I/-process, we a l s o  have such a t ransformat ion f o r  t he  

polyhedral  case.  However, s i nce  i n  the polyh-al case  flows a r e  expressed 

in terms of process i n t e n s i t y  vec to r s ,  we have tw d i f f e rences .  F i r s t l y ,  

we have to spec i fy  an order ing  on t h e  processes; this can be  done wi th 

the  he lp  o f  an  o rder ing  funct ion 0 : ! 1 , 2  ,..., n l + N ,  wi th n :- I N ( ,  
P ( f I ,  2 ,  . . . , n ) )  = N. Secondly, in order  t o  p reserve  t h e  n o ~ e g a t i v i c y  con- 

ven t ion  concerning t he  i n p u u ,  ex te rna l  inpu ts  (or imports) only may f low 

t o  t r a n s i t i o n  po in t s  which a r e  connected with processes only by inpu t  flows. 

Sometimes it w i l l  be necessary t o  extend t h e  model in order  t o  in t roduce 

s u i - A l e  t r a n s i t i o n  po in ts .  For ins tance,  i f ,  i n  our  s i n g l e  per iod cmamodity 

d i s t r i b u t i o n  model, one l i k e s  t o  in t roduce e x t e m l  inpu ts  a t  t h e  t r a n s i -  

t l o n  po in t s  i = 1 . 2 . 3 .  one has t o  extend t h e  process- f low-t ransi t ion s t r u c t u r e  

in t he  fol lowing manner: 

4 where TI is represented by ( P ~ , u ~ , A ~ ,  s4), p4 :- IR: , u ( z )  := 0 f o r  a l l  

z i p4, :- l n ,  g4 :- I", and T2 by ( P ~ , U ~ , A ~ , B ~ )  being def ined in t h e  

same manner. 



Again r e s t r i c t i n g  ourselves t o  a f i n i t e  s t ruc tu re  ( i . e .  m := \ M I  < +, 

n :- I N /  < e ) , and again assuming t h a t  the  ex terna l  input  and output  

vec tors  a r e  spec i f ied  by flow inc idence funct ions a:M+{ 0,1,2. ... ; and 

h 
B:n+(O. l ,2,  ... ) resp., our composed polyhedral I/O-process (g c IR , 

1 s *h v : P  + R  , A €  IRZxh, B E  Zl ) i s d e f i n e d :  - 

- h := L k ( j ) ,  r :- ( L  E ( i ) ,  over i c M ,  s.t. a ( i )  f 0 ) .  
j 6 N  

s :- ( L  E ( i ) ,  over i c M ,  s.t. B ( i )  # 0). 

- p :- ( ( z o ( l l  ,z‘'(2) ,..., Zo (n)) p~ (1)  p~ (21, (n) - I 
f o r  a l l  i c M with a ( i )  + B ( i )  - 0: 

0 : (1 ,2 ,  ..., n )  + N  being an order ing on t he  processes,  

- O(l '  z0 (2)  0 ) : & y j v j  (,I) , - u ( z  , ,..., 
1 6  N 

{y l l  being a given sequence of nonnegative r i g h t  f ac to rs ,  

- A :a ( (Ae ' j )m '  " - - [ - l ) j = l '  m'  :- l ' a ( i ) ' i c M l a ( i )  o l '  
A a ( i )  # j  := A i , D ( j )  - , i c M s o  t h a t  a ( i )  Z 0 ,  j c N 

e, ] ,m1 '  n - - 8 ( (  ell) j=l ,  m" :' I ( t 3 ( i ) ) i i  M j B ( i )  O l f  
B B ( i )  , j  := B i , ~ ( j )  - , i c M so t h a t  B(i) Z 0,  j c N; 

provided the  fol lowing "import hypotheses" concerning t he  import inc i -  

dence functron a r e  sa t i s f i ed :  

- f o r  each i c M so  t h a t  a ( i )  Z 0,  t he re  is a t  l e a s t  one j  c N with $' (i) Z 0 ,  

- f o r  each i c M s o  t h a t  a ( i )  Z 0 ,  it hold: $ j ( i )  = 0 f o r  a l l  j c N. 

Returning t o  our example in t h e  extended form: pu t t ing  a ( 7 )  :=  1, a (2 )  := 2, 

a ( 8 )  := 3 .  a ( i )  := 0 f o r  i f 7 , 2 , 8 ,  6 ( 4 )  := 1,  B(5) :- 2. 0 ( 6 )  := 3 ,  B ( i )  :- 0 

f o r  i Z 4,5.6,  o ( 3 )  := j ,  j  - 1.2, ..., 5,  the  corresponding composed polyhedral  

I/O-process can b e  defined: 



1 
Next, tak ing scch a composed polyhedral  I/O-process(c c m h ( t )  f - Apt - * , 
A~ i a:nxh(t), $ I R ~ ~ ~ ~ ( ~ ' )  a s  an abs t rac t i on  of a underlying - 
process-f low-transit ion s t r u c t u r e  f o r  a per iod t c (0 .1 .  ..., h},  the  

polyhedral vers ion of our dycam~c model (5) can be wrrt ten:  

h t t  t t t i1 1 2 3  h h  sup ( ( L t l l  ( n )  Y (5 ) )  + ( H )  < ( q  ,4 ,4 1 • 5 > I r  

t 
over 5 c P t ,  t = 1 , 2  ,..., h,  

s . t .  
gt-l t = 1,2 ,..., h,  

0 where 5 LS a given process i n tens i t y  vector  of  t he  l a s t  pas t  per iod 

t = 0. I t  should be c lea r  t h a t  t he  recurs ive  nature of composed input  

andoutputmat r ices ,  allow s i m ~ l a r  s t r u c t u r a l  o r  Lagrangean decomposition 

s t ruc tu res  a s  t he  general  process-f low-transit ion s t ruc tu re .  



The i r p u t  and output  matr ices can be composed i n  a recurs ive  manner. Solving 

problems with t h i s  s t ruc tu re  by numerical methods means the  a v a i l a b i l i t y  of 

software t o  generate t h e  matr ices i n  t h e  appropr ia te  format. This so f t va re  

must come up t o  t h e  next  requirements: 

a) Support of t he  modell ins - 

- The s e t  of i ns t ruc t i ons  must al low the  recurs ive  composing of matr ices,  

a s  prcposed in t h e  preceding sect ions-  

- The -er t o  g ive ins t ruc t ion6 must be o r i en ta ted  t o u s e r s v i t h  somemathe- 

mat ica l  background and s- experience with t h i s  s t r u c t u r e  of modelling. 

- Without handling t h e  da ta ,  it must be poss ib le  t o  make a o v e r v i w  how t h e  

matr ix  is composed by t he  given ins t ruc t ions .  

- I l l e g a l  ins t ruc t ions  must be recognized and reported t o  t h e  user.  No 

i l l e g a l  s e t  of i ns t ruc t i ons  +ay cause t h e  matrixgenerator t o  col lapse.  

b) Datahandling requirements - 

- Without e x p l i c i t  mention it is notal lowed t o g i v e  i ns t ruc t i ons  by which an 

a l ready  assigned value of a (sub)matrFx is changed. 

- To avoid not-defined s i t u a t i o n s ,  it is necessary t o  cont ro l  t h e  dimensions 

of t he  matr ices dur ing t h e  e labora t ion  of expressions and t h e  assignment 

of  values. 

- A l a rge  number of data foxmats m u s t  be ava i l eb le  and t he  implementation 

of another fo rmatorchang ingofa  format must be easy. This en la rges  t h e  

u s a b i l i t y  of t he  matrixgenerator. 



C) Report writinq - 

- The matrixqanerator must have facilities to associate names with rove 

or floors and columns or pilars. These names can be used for the re- 

porting of the results. 

d_l Flexibility 

- The software must be easy to understand, so one can mslre changes Fn the 

design of the matrixgemrator to one's avn opinion. 

e) Machine independency - 

- The slze of the software must be smal1,to allow the matrixgenerator 

implementation on a microcomputer. 

- The design of the software must allow that one builds aninstmction set 

describing the recursive set-up of matrices on a small computer and 

runs that program with the data inon other computer. 

In view of these requirements, we choose to design a language. with a 

simple syntax and a sepl~tttidirected at the recursive composing of 

matrices. in which all desired instructions can bs represented. The graumar 

of this language is context-free and is expressed by so called syntax 

diaqram (see appendix 8 ) .  The intention of these diagrams is twofold. 

First, it is of use to the user. With the help of the diagrams he can easily 

check whether an instruction is a well- or ill-formed sentence of the 

language. 

Second, it is the starting-point for the hplemantation of the software. 

The diagrams are translated in a syntax parser. This parser is extended 

successively by error-recovery, code-generation and code-interpretation. 



The s t v i s e  refinement leads t o  a modular construction of the software 01. 

A table-driven psrser approach makes the language extensible, so it can be 

extended by further syntact ic constructs. This requires declaration of the 

variables preceding the instruction-part, where theycoccur. 

A value is assigned t o  a submatrix, t h i s  value can be the resu l t  of the avalua- 

t ion of an expression. The various manipulations on matrices a re  defined 

as  operators. Monadic operators are t r a n s ~ e i t i o n o f a m a t r i x .  Fnversionofa matrix, 

inversion of the entr ies1 dyadic operators a re  multipl ication, addit ion;sub- 

t ract ion and a lso  the fusion of tvo matrices to one larger matrix. 

CLnally standard procedures organisem the input and output of data. 

These procedures can be adapted eas i l y ,  when the format of the data is 

di f ferent  f r m  the formats already implemented. 

Using recursion and dynamic data structur inc~ techniques, it is possible 

t o  wri te short  programs. Because of the ava i l i b i l i t y  of Pascal-compilers for many 

computersystemsthesoftware of the matrixgenerator is written in the p roqrmlnq  

language Pascal. 

3.1. Datatypes and operators 

In our matrixgenerator language the  standard implemented data typs are: 

integer, rea l ,  matrix and f i l e .  The types integer and rea l  are well 

known, for the other two types the following can be said: 

EE-%?!?-matf _is 

An object of the type matrLx is specif ied by the multiplicity of the re- 

presanting matrix. Multipl icity is a r~enera lhat ion of the well-known dimanslon concept 

it indicates the number of matrices the super-matrix, introduced ear l i e r ,  

consists of. The number of r a t s  and columns denotes the dimensions of a 

matrix, similary the number of f loors and p i la rs  denotes the mult ip l ic i ty 

of a super-matriw, also h l l e d  compound matrix. 



The value of the type matrix fa an elemant of the s e t  of mxn matrices 

with en t r ies  belonging to  ZI1 . The following operators applied t o  operands 

of the type matrix y ie ld  a matrixvalue. 

- The monadic operators; s ign inversion ( - ) ,  inversion ( INVERT), transpo- 

s i t i on  (TRANSPOSE) of a matrix. 

- The dyadic operators1 mult ip l icat ion ( + I ,  addit ion (+) , subtraction ( - )  , 

augmentation by placing matrices s ide by aide (COL) or by placing a 

matrix b e l w  (m) o r  diagonally b e l w  ( D m 1  an other matrix. The operators 

CQL, DXA and RCW are d e f i n d  as: 

A COL B :- (A ,B )  

A DIA B :I (t i) 
A 

A ROU 0 :- . 

- The dyadic operators REPCOL. REPDIA and REP- are  the repet i t ion var iants 

of the operacors COL, DXA and RCW. The l e f t  operand is of the type integer 

and the r igh t  of the type matrix. These operators y ie ld  a resu l t  of the 

type matrix and are defined as: 

K REPCOL A :r (A,A,  ....., A) - 
k times 



- The sca la r  mul t ip l i ca t ion  ( * ) .  is a lso  implemented, i n  the  case t h e  

l e f t  operand may be of the  type in teqer  o r  rea l .  Let PI and A being 

a rea l  rasp. matrix var isb la .  then is t h e  expression P I  + A a va l i d  

one. 

The--%_e-Zll_e 

A var iab le  of the  type f i l e  designates a sequence of data. The name of 

t he  var iab le  and t he  ruum of t he  f i l e  on secondary s torage of a computer 

a r e  the  same. 

3.2. A matrixgenerator program 

Every program expressed in tho matrixgenerator language ccmsists of a decla- 

ra t i on  part, where a l l  objocto a r e  defined and a.statcmcnt speci fy ing the  

ac t ions  t o  k a  executed upon this ob jec ts .  

A program cons i s t s  o f :  

r m u l t i p l i c i t y  de f i n i t i on  

C dec lara t ion  parc var iab le  dec lara t ion  

funct ion dec lara t ion  

program 
rassignment statement 

change statement 
statement p a r t  

r e p e t i t i v e  statement 

[standard procedure 

3.3. Declaration part 

A dec lara t ion  p a r t  cons is ts  of a mu l t i p l i c i t y  de f i n i t i on  pa r t ,  a var iab le  

dea lara t ion  p a r t  and a funct ion dec lara t ion  par t .  

A mul t i p l i c i t y  de f i n i t i on  introduce8 an i d e n t i f i e r  a8 a synonym f o r  t he  

rider of f l oo rs  o r  p i l a r s  of acornpoundmatrix. The use of mu l t i p l i c i t y  



i d e n t i f i e r s  ma)ios a program more readable. The user can a l s o  group the oxample 

dependent mu l t i p l i c i t y  of the matr ices  a t  t he  b e g i ~ i n g  of t h e  program 

where it can be e a s i l y  changed. 

A va r i ab le  dec la ra t ion  assoc ia tes  an i d e n t i f i e r  and a standard type wi th 

a n w  var iable.  In  t h e  dec la ra t ion  of a va r i ab le  of  the typo matr ix  the 

mul t i p l i c i t y  is denoted vh.n t he  var iab le  rmprewnts cgpound matrix- 

The nrmrb.r o f f l 0Orsand  p i l a r s  is recorded naxt t o  t h e  synrbol matrix. An 

~ l e  of  t he  var iab le  dac la ra t ion  of  a matrix A comibtm,of2 f l o o n  and 

2 p i l a r s  

VARIABLE 

A funct ion is a program part, which ca l cu la tes  a va lue  o f  t he  type matrix. 

This v a l w  is u s d  i n  t h e  evaluat ion of an supreasion. The funct ion dec la ra t ion  

has the same form a s  a program,but is p r e c e e d d  by a function-headins of the  

form: 

FVNmION i d e n t i f i e r  ; 

3.4. Statement part 

A statement can be an assignment, coopo~~~d ,chanpe ,  r e p e t i t i v e  statement 

o r  a standard procedure c a l l .  The assignment statamant s p e c i f i e s  t h a t  a newly 

cornputadvaluehas t o  be assignad t o  a var iab le .  The n w  value is obtained 

by eva lua t ing  an expression c o m i s t i n g  of s tandard o r  va r i ab le  operands, 

opera tors  and funct ion designators.  The matr ixgenerator  lanquage knms  

th ree  standard ob jec ts  of t he  typo matrix: 

mR9 - Zero-matrix 

-1 - E-matrix 

The value of a l l  e n t r i e s  is 1 

IDEN - I den t i t y  matrix. 



The dimensions of these standard objects must be recorded next t o  the 

appropriate symbol mR0, UI'RI or IDM. In the case of an i d a t i t Y  matxu 

it suf f ices to  specify only one dimension. 

The normal rules of operator precedence is observed i n  the evaluation of 

an expression. The rmnadic o p r a t o r s  have the hlghest precedence, follcwed 

by the multiplying and repet i t ive  operators and of lowest precedence, the 

adding operators. 

In an assig-t the variable and t he  axpression muat k of tho mame type. 

In case of a m a t r i r  value the dimensions of the var iable and expressions 

must a lso correepmd with each othor. To wery  coin-mnent of a compound matrix 

must be assigned a value. Only a change statement can change the value 

of a matrix variable. Assigmasnt to var iables of the type f i l e s  is not 

possible. 

The input and output of data is handled by the standard procedures READ and 

WRITE. A READ o r  WRITE procadure c a l l  associates a f i l e  on secondary storage 

of a canputer with a matrix var iable i n  the program. One of the parameters of 

these procedures designates the format of the transmitted data. 

Other f a c i l i t i e s  are: 

- Visualizing the values already assigned t o  submatrices of a ccxpound matrix 

on tha t  stage of the program. 

- Associating names w i th f loo rso r  p i l a rs  of the compound matrix. These names 

a re  l i s t e d  on a f i l e  and are  part of the input of the report writer. 

- Associating re la t iona l  symbols (S, 3, - 1  with the rows of a compound 

matrix t o  meet the input data raquirements of some L.P.-programs. 

3.5. Software 3tructurinQ 

The canstruction of the matrixgenerator s t a r t s  from the syntax diagram. 

The diagrams a r e  translated in an appropriate program structure.  Such a 



program is able t o  analyse the syntax of an input sequurce of oymbols. 

The parser uses a scanner whose t a s R i t t s w - q e t t h e  n u t  symbol. The scanner 

a lso skips separates and recognizes reserved wrda, integer and real numbern. 

spec ia l  symbols and ident i f ie rs .  The parser co l lec ts  the declared iden t i f i e rs  

denoting the mult ip l ic i ty of matrices var iables arid functions in  a table.  

Th occururce of an i den t i f i e r  within a s t a t r e n t  thou causes a search of 

th in  tab le  to detexmbe whether or. not tho i dan t i f i a r  haa bwn properly 

declared. Up to t h i s  point the p u e u  cur only datermine whether o r  not 

the input nquence of ey&ols balcmgs t o  the mt r i xqumra to r  L.nguage. 

Aa a f i r s t  re f inmur t  ( u r o r - r r o v e r y )  the parser is argument& w i t h  an 

appropriate u r o r  di.g.n~mtic s y s t m  and aft- a syntax error  the parsing 

process w i l l  be continued t o  f ind possibly fur ther  rnistakaa. 

In a aecond refinement (code generation) the ins t ruct ioru  (operators, 

assignments, sr lnan,procedures) a re  col lected i n  an other table. For t h i s  

prrpose, it is necessary t o  l ist an expression in the postf ix form s.quence. 

An in terpreter  is added t o  ganerate a program in the programing language 

Pascal frcm the both tables with iden t i f i e rs  and instruct ione. The generated 

program can be executsd, not necessar i ly by the same machine, with the help 

of spec ia l ly  written LLbrUy Frogramp. 

1 J . J . M .  Evers, "The Dytmmics of Concave Input/Output Processes", i n  

Convex Analysis and Mathematical Economics, (J. lCriens ed.), Lecture 

~ o t e s  in ~conomics and nathematical Syst-, 168, Springer Verlag (1979). 

C21 R.T. Rockafellsr, "Convex Analysis", Princeton University Press (1970). 

[ 3 ]  N. W i r t h ,  "Algorithms + Data Structures - Program", Prentice H a l l ,  

Enqle-d C l i f f s  ( N . J . )  (1976) . 



APPEhDIX A: An m p l e  

A multiperiod process-flowtransit ion prablem can be formulated a s  a dynamic 

I/-process (16). Taking a planning horizon h :- 4, the canposed polyhedral 

I/O-process (:t 
=6n+k(t) vt,pt +11 At c ,  =3n x (6n+k(t)) Bt , =3nx (6n+&t) 1 ) - ' - + ' -  

proposed i n  t h i s  paper, can be written an: 

where 2 is a givan process i n t w i t y  vector of the l a s t  period t - 0. 

t The vector Pt and t he  matrix 2 are  

A t  
Because of the polyhedral s t ructure the matrix A and the vector 5t are 

defined as: 

A t \  1 - 2 3 4 5  

1 -1" : 0 I" I 0 0 -1" 0 
I 

2 0 '-1" 0 , O  In 0 -In I 

o r o  -1~12 o o o 
3 1 - - - - -  - - - -  

a , o  
' 

o 1 3 * ,  a 6 6 
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t t 
The matrices A and g are defined as :  

The prablem can be simplified to a concave quadratic programing problem. 

t 
For convencienc we have supposed that the polyhedral P is the independent  

and a l s o  the input and output matrices At and gc. To come to the short 

notat ion w e  have introduced: 



A 
The dimensions of A, A and g are not of the same size, th is  fact must be 

taken into account by the definition of mat r5x  S. 

Like matrix S,  must vector b' be defined i n  an appropriate form 

, with the known identity vector in the last period t = 0.  



The standard Lagranqean of the concave quadratic p r o g r d n g  leads t o  the 

l inear camplmantarity prablem formulation 

u c  a 24n+4e , v t a 24n+4k are  the Lagrange mult ip l iers and y c m 24n+d 

the slack-vector of the constraints ( S  + R)Z* 2 bt + rt. 

This problem can solved with the Lauke a l q o r i t h .  

With the n u t  program we want t o  generate the matrix II and vectar d defined 

a8: 



(program to  gonerate the input of a computerprogram based on the Lemke 

algorithm f 

MlLTIPLICITY 

- = 3 r  M = 5 ;  H N - 4 ;  

VARIABLE 

(dimen~ion indicators for  sutmatricesl 

K,L,N: IWIEGER; 

(discount factor n and m i 2 f  

PI, SQPI: REAL; 

(compound matricesf 

AT, A, 8: MATRIX(I(L.Ml4); 

S: MATRIX(MN,MN) ; 

M: MATRIX(2.2); 

D: HATRIX(2.1); 

(matrices and vectors) 

P, Q, R, PP, PQ, C, RR, RB: MATRIX; 

(aux i l ia ry  matrices and vectors) 

PI'. QT, ASS. ASP, PG, BS. RS, ZNUL. QD: MATRIX; 

( f i l e s  on secondary storage with data)  

PFILE, QPILE, ASSFILE, ASTFILE. PCFILE, BSFILE, CGFILE, W I L E ,  

ZNULFILE. QDFILE: PILE; 

1.J: INTEGER 

BEGIN 

( t h e  actua l  parameter FORMAT i n  the procedure c a l l  read and write 

designates an arb i t rary  formst of the data) 

K :- 6 .  L :- 1 ;  N := 3r 

( c o n s t r u c t f ~ o f v e c t o r  pf 

RERD(PFILE, F O W T ,  PT); (read the data for  vector pf  

P := m0(2+ti,1) ROW KFRQ(N+K,~) ROW PF ROW(Z REPIMW M T R ~ ( N , ~ ) ) I  



(construction of matrix gl 

READ(QF1LE. FORHAT, QT); 

Q := MTRv(Z*N,2+N) DIA MIl30(N+K, N+K) D IA  PT D I A ( 2  W D I A  MTRP(N.N); 

(canpsirsg mauix 

A T ( 1 , l )  :- - IDEN(Nl COL I (PRv (N ,N) ;  

A T ( 1 . 2 )  :- I D W ( N )  COL ~ P ( N , K ) ;  

A T ( 1 . 4 )  :- - IDEN(N) ;  

A T ( 2 . 1 )  :- I ( P m ( N . N l  COL - I D W ( N ) ;  

AT (2 .31  :- L D W j N ) ;  

A T ( 2 . 5 )  :- - IDP( (N l  ; 

READ(ASSFILE, FOIIEIAT, ASS) ; (read d a t a  for matrix i) 
READ ~ASl'F1I.E. FORE(AT, AST) r { raad data for XI 

A T ( 3 . 2 1  :- ( - I D M ( N )  COL ASS)  RCH(MTR$(N,N) COL AST) ; 

tccapoaing matrix A )  

A ( 2 . 1 )  :- IDEN(N) COL IDEN(N1; 

A ( 2 . 2 )  :- MlTlv(N,N+K); 

A ( 3 , 3 )  :- I (PRQ(N,N); 

A ( 1 . 4 )  := I D M ( N ) ;  

A ( 3 . 5 )  :- IDEN(N) r 

tcapos ing matrix B l  

B ( 1 . 1 )  :- CcTRP(N,2+N); 

READ(PCFILE, FORMAT, PG) ; {read data for  matrix A') 

B ( 2 . 1 1  :- PG COL I(PRv(N,Kl ; 

READ(BSF1LE. POWAT,  B S ) ;  (read data for matrix BS} 

B ( 2 . 2 )  :- E(TW(N,N) COL BS i  

READ(CGF1LE. FORP(AT, B ( 3 . 3 )  ) ; (read data for matrix 

FOR I :- 4  TO 5 W B ( 3 , I )  :- Kl 'RP(N,Nl;  

(construction of vector 51 

READ ( W I L E .  FOPMAT, RS) ; ( read data for vector r )  

R :- ( 3  REF'RCU I ( P R @ ( N , l ) )  ROW RSI 



P I  :- 0.9, (value of the discount fac tor )  SQPI  := P I * P I ;  

(construction of vector p*) 

P P  :- P1.P Row SQP1.P Row P I + S Q P I * P  Rar SQPI.SQP1.P; 

tconstruction of matrix Q*) 

QP :- P I + Q  DIA SQP1.Q DIA PI*SQPI+Q DIA SQPI.SQP1.Q; 

(conotructfon of matric C l  

C :- AT DIA AT DIA AT DIA AT; 

t camposing of m a t r i r  S) 

WR I :- 1 TO 4 DO S ( I . 1 )  r -  A RCW I ITR@(L,N); 

FOR I :- 1 1Y) 3 DO S ( I + l , I )  := -B ROW Hl l l@(L ,N ) ;  

tcomtruct ion of vector r*) 

R R : - R R O W R R ~ M R R D W R I  

tcomtruct ion of vector b*) 

0 
RERD (ZNULFILE, FOREIAT, ZNUL) ; tread data f o r  vector = I 
RB :- B.ZNUL ROW KXW(L,N) ~ ( 3  REPROU ~ w ( N + L . ~ ) ) ;  

(canposing matrix M I  

n c l , l )  := QQI 

cni , 2 )  :- TRANSPOSE (SK) ; 

~ ( 2 . 1 )  :- - ( s + c ) ;  

tcomposing vector d l  

RERD(QDF1L.E. FORIIAT. QD) ; trclad data for  vector q*) 

D ( 1 . 1 )  :- P P  + SQPI+SQPIWSANSWSE(B)*QD; 

D ( 2 . 1 )  :- - ( R R + R B ) ;  

{put the data i n  the f i l e  DATA) 

WRITE (DATA, FORMAT. n) ; 

WRITE(DATA, FORHAT, D); 

mD. 
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APPENDIX 8: Syntax diagrams 







APPENDIX C 

R e s e r v e d  words 

BEGIN, C W E ,  COL, D I A ,  MULTIPLICITY, W, END, FOR, FUNCPION, INVEKT, 

REPCOL. RJPDIA,  REPROW, ROW, TO, TRANSPOSE, VARIABLE 

S t a n d a r d  types 

FILE, INTEGER, HATRJX, REAL 

S t a n d a r d  o b - j e c t s  

LDEN. m R g ,  r n l  

StanWd procedures 

W E ,  READ, SIGNFLOOR, SIGNFtW, VIEW, WRITE 





COMPUTATIONAL EXPERIMENTS IIV THE FORMULATION OF LARGE- 
SCALE LINEAR PROGRAMS 

Gerhard Knolmayer 

lnstitut f i r  Betriebswirtschaftslehre 
Universitat Kiel 

One of the decisions in the construction of a linear program i s  which formulation should 
be used. This paper explains why there i s  usually a very large number of equivalent formu- 
lations and reports on the computational behavior of these formulations. The usual text- 
book hypothesis - which claims that CPU-time increases with the cube of the number of 
constraints - i s  falsified by the reported experiments which suggest that advantage in re- 
ducing the number of rows may be overcompensated by an increase in the number of non- 
zeros. 



S e v e r a l  ( m e t a - )  d e c i s i o n s  h a v e  t o  b e  made i n  t h e  con- 

s t r u c t  i o n  o f  a  d e c i s i o n  mode l :  

- Which s e c t i o n  o f  r e a l i t y  s h o u l d  b e  m o d e l l e d  ? 

- How a c c u r a t e  s h o u l d  o n e  model  t h i s  s e c t i o n  o f  r e a l i t y  ? 

- Which a l g o r i t h m  s h o u l d  b e  u s e d  ? 

- Which p e o p l e ,  c o m p u t e r ,  s o f t w a r e  s h o u l d  b e  employed ? 

- Which f o r m u l a t i o n  s h o u l d  b e  u s e d  f o r  a  g i v e n  d e g r e e  

o f  a c c u r a c y  o f  t h e  model  ? 

The i m p l e m e n t a t i o n  o f  d i f f e r e n t  a n s w e r s  o n  t h e s e  q u e s t i o n s  

w i l l  r e s u l t  i n  d i f f e r e n t  b e n e f i t s  and c o s t s  o f  t h e  d e c i s i o n  

mode l .  The u l t i m a t e  b e n e f i t  o f  m o d e l l i n g  is  t o  g a i n  i n s i g h t  

i n t o  r e a l i t y .  I n  more d e t a i l  o n e  c o u l d  d i s t i n g u i s h  be tween  

B e n e f i t  f r om mode l  a c c u r a c y  

3 e n e T i t  o f  t h e  e a s e  o f  u n d e r s t a n d i n g  

t h e  f o r m u l a t i o n  

t h e  s o l u t i o n  

o f  t h e  r.ode1. 

On t h e  o t h e r  hand one  c a n  p a r t i t i o n  t h e  c o s t s  o f  d e c i s i o n  

n o d e l s  i n t o  

Z o s t s  o f  model  c o n s t r u c t i o n  

C o s t s  o f  c o l l e c t i n g  d a t a  

C o s t s  o f  m a n i p u l a t i n g  d a t a  

C o s t s  o f  c o m p u t a t i o n .  

Yany c o m o u t a t i o n a l  e x p e r i m e n t s  h a v e  b e e n  p e r f o r m e d  i n  

m a t h e m a t i c a l  p ros ramminp  (?!?I). Most r e s e a r c h  h a s  concen -  

t r a t e d  upon t h e  c o m p a r i s o n  o f  a l g o r i t h m s  and  c o d e s .  R e c e n t l y  



t h e  need f o r  r esea rch  on a  n e t h o d o l o ~ y  o f  f o rmu la t i ng  

YP-models has been expressed / l a / .  

Most computat ional  exper iments compare " cos t s " ,  u s u a l l y  

by g i v i ng  CPU-time. Sometimes c o s t s  and b e n e f i t s  a r e  compared, 
e.g.  i f  t h e  "qua l i t y "  o f  s o l u t i o n s  ob ta ined  is compared t o  
t h e  CPU-time needed f o r  exac t  and h e u r i s t i c  a l go r i t hms .  From 

t h i s  p o i n t  o f  view one can d i s t i n g u i s h  t h e  f o u r  a r e a s  o f  
computa t iona l  exper iments shown i n  F ig .  1. These a r e a s  have 

been i n v e s t i g a t e d  t o  a very  d i f f e r e n t  e x t e n t .  Th is  paper  
concen t ra tes  on a  cost-compar ison o f  equ i va len t  fo rmu la t ions  
by us ing  a  p roduc t ion  code f o r  l i n e a r  propramming (LP). 

Formulat ions 

Big. 1: Types o f  e x p e r i a e n t s  and t o p i c  o f  t h e  paper  ( X ) 

We d e f i n e  equ i va len t  fo rmu la t ions  a s  models f-om which 

i d e n t i c a l  op t ima l  a c t i v i t y  l e v e l s  can  be de r i ved  (by us ing  
a  r e p o r t  w r i t e r ) ;  t h e  op t ima l  va lues  of t h e  o b j e c t i v e  func- 

t i o n s  co inc ide .  Seve ra l  r e s e a r c h e r s  have compared two equi-  
va len t  fo rmu la t ions  f o r  l i n e a r  o r  mixed- in teper  problems; 

I make r e f e r e n c e s  t o  t h e  well-known s t u d i e s  o f  H.P.Williams 
/17;19/  on (mixed-) i n t e g e r  models and t o  t h e  c o n f r o n t a t i o n  

o f  l i n e a r  product-mix-models w i t h  a  "normal" r esp .  "aggre- 
gated"  t e c h n ~ l o g i c a l  mat r i x  / 12 ;14 ,p .148 -157 ;16 ,p .27 -821 .  

Such comparisons s u f f e r  from t h e  f a c t  t h a t  o f t e n  not  only  



two bu t  p l en t y  of equ i va len t  fo rmu la t ions  e x i s t .  Espec ia l l y  

i f  YP-models a r e  genera ted  from d a t a  bases  con ta in i nq  i n f o r -  
mation on every-day-operat ion t h e  model b u i l d e r  has  t o  dec ide  

which of  t h e  equ i va len t  fo rmu la t ions  should be genera ted .  
This  d e c i s i o n  determines t h e  computat ional  e f f o r t  f o r  ma t r i x  
gene ra t i on  and f o r  op t im i za t i on .  

I n  p r i n c i p l e  one can  d e f i n e  b a s i c  r e l a t i o n s  from t h e  d a t a  

base  a s  a c t i v i t i e s  of  t h e  LP model and connect  t h e s e  A c t i v i t i e s  

by ba lance  equa t i ons .  But o f t e n  t h e  so  emerging model w i l l  

be unso lvab le  by p roduc t ion  codes due t o  an enormous number 
of  ba lance  equat ions .  A product-mix-model f o r  a  manufactur ing 

f i rm  w i t h  400 f i n a l  and 10000 i n te rmed ia te  p roduc ts ,  w i t h  30000 
m a t e r i a l s ,  300 c a p a c i t i e s  and an  average number of  5 opera- 
t i o n s  f o r  t h e  manufactured p roduc ts  would need 82301 rows and 
82400 s t r u c t u r a l s !  There fo re  i t  is  d e s i r a b l e  t o  gene ra te  a  
compact model by e l i m i n a t i n q  ba lance  equa t i ons .  F ig .  2  shows 
a  sma l l  ou t  of  t h e  very l a r g e  number of equ i va len t  LP-models 

t h a t  can be  genera ted  from a  Cata base .  I n  F i g .  2  t h e  s i z e  
of  t h e  model i s  measured by t h e  number of  rows. Data manipu- 

l a t i o n  looks  h igh l y  a t t r a c t i v e  from t h e  usua l  textbook hypo- 
t h e s i s  t h a t  CPU-time grows w i t h  t h e  cube of  t h e  number o f  

rows / c f .  e .g .  1, p.83;3,p.16;5,p.146;6,p.181;15,p.118;2O,p.10/. 

Few a u t h o r s  c la im t h a t  CPU-time is i n f luenced by t h e  d e n s i t y  
of  t h e  s o d e l ,  too / l l , p . 57 ;14 ,p .190 / .  By e l i m i n a t i n g  ba iance  
equat ions  u s u a l l y  t he  number of rows i s  reduced and t h e  den- 
s i t y  r i s e s .  There fo re  r u l e s  o f  thumb a r e  wanted which in form 

about presumable e f f e c t s  of  ma t r i x  condensat ion.  To suppor t  
t h e  d e c i s i o n s  i n  model c o n s t r u c t i o n  two types  of  exper iments 

a r e  necessary  : 
- Experiments of gene ra t i ng  MP-models ou t  of  (non-specia-  

l i z e d )  d a t a  bases  

- Experiments on t h e  op t im i za t i on  behav io r  o f  equ i va len t  
f o rmu la t i ons .  

Th is  paper  r e p o r t s  on t h e  second type  o f  expe r i nen ts .  
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Fig.2: D i f f e ren t  ways of mat r ix  genera t ion  r e s u l t  i n  equ iva len t  
LP-models of d i f f e r e n t  s i z e  



Let  

c '  x +max ! 

x  0 

b e  a  f e a s i b l e  LP w i t h  s l a c k  and s u r p l u s ,  b u t  w i t h o u t  a r t i f i c i a l  

v a r i a b l e s .  The i n d i c e s  o f  t h e  c o n s t r a i n t s  i form t h e  s e t  

M-MluM2. Rows i t  M2 a r e  c a l l e d  .ba lance e q u a t i o n s .  L e t  M2=M21~M22. 

We s e a r c h  f o r  a  t r a n s f o r m e d  LP w i t h  new v a r i a b l e s  2 

c '  T  + max! 

T j i S O  

r h i c h  is  e q u i v a l e n t  t o  (1) bu t  c o m p u t a t i o n a l l y  more a p p r o p r i a t e .  

The l a t t e r  requ i rement  might b e  a c h i e v e d  i f  

I n  t h i s  c a s e  1 ~ 2 2 1  rows c a n  b e  dropped a s  r e d u n d a n t .  

I f  t h e  o r i g i n a l  f o r m u l a t i o n  (1) c o n t a i n s  p = / ~ 2 !  b a l a n c e  

e q u a t i o n s  t h e r e  a r e  a t  l e a s t  2' e q u i v a l e n t  f o r m u l a t i o n s !  To 

overcome t h e  prob lems due  t o  t h i s  enormous number c f  e q u i v a l e n t  

f o r m u l a t i o n s  we r e s t r i c t  t h e  d i s c u s s i o n  t o  t h o s e  f o r m u l a t i o n s  

which a r i s e  by a  s e q u e n t i a l  e l i m i n a t i o n  o f  b a l a n c e  e q u a t i o n s .  

The sequence  c a n  b e  de te rm ined  h e u r i s t i c a l l y  by some p l a u s i b l e  

c r i t e r i u m .  I n  t h e  s e q u e n t i a l  p r o c e d u r e  we have 

1 ~ 2 2  1 
T =  i7 

i= 1 Ti 



where Ti is t h e  t r ans fo rma t i on  ma t r i x  f o r  t h e  i - t h  e l i m i n a t i o n  
o f  a  ba lance  equat ion .  

It remains t o  determine ma t r i ces  Ti i n  such a way t h a t  (1) 

and ( 2 )  a r e  equ i va len t .  A f t e r  e l i m i n a t i o n  o f  f - l <p  ba lance  
equa t i ons  t h e r e  e x i s t s  a row krM21 so t h a t  

Le t  ; O S ( ~ ) =  ( j  (ak j  >O) and N E G ( ~ ) =  ( j  lakj ' 0 )  . These s e t s  
a r e  nonempty if t h e r e  a r e  no n u l l  v a r i a b l e s .  Fr ( r r Y ~ ~ ( k ) )  can  

be p o s i t i v e  i f  and only  i f  a t  l e a s t  one X (j.f&G(k)) is  posi -  
j 

t i v e .  Th is  n I f - t h e n n - r e l a t i o n  a l l ows  Zr>O and Xs>O ( s r ? ~ G ( k )  ) 

i m p l i c i t l y  by a ncoupled a c t i v i t y "  a U > O .  The c o e f f i c i e n t s  o f  
t h e  coupled a c t i v i t y  a r e  computed a s  

so  t h a t  v a r i a b l e  u has  a ze ro  i n  row k. g i s  a n  a r b i t r a r y  

p o s i t i v e  f a c t o r ;  i n  t h e  subsequent  t e x t  we assume g = l .  

A l l  p o s s i b l e  a c t i v i t y  l e v e l s  o f  t h e  p r i o r  fo rmu la t ion  can  - 
be expressed by I F o s ( ~ ) ~ .  ( k ~ ~ ( k ) l  coupled a c t i v i t i e s .  A f t e r  

t h e  t r ans fo rma t i on  a l l  v a r i a b l e s  K ( j t p ~ ~ ( k ) u g ~ ~ ( k ) )  can  be 
j 

d e l e t e d .  I n  t h e  mat r i x  

t h e r e  a r e  u n i t y  column vec to rs  f o r  t h e  untouched a c t i v i t i e s  

and two non-zeros i n  t hose  columns which r e p r e s e n t  coupled 



a c t i v i t i e s .  Ue have T f l  0  and t h e r e f o r e  T  5 O.Fur thermore 

we g e t  mod i f i ed  s e t s  

The t r a n s f o r m a t i o n  r e d u c e s  t h e  number o f  rows by one .  The 

e f f e c t  on t h e  number o f  l e g i t i m e  v a r i a b l e s  depends on t h e  

number o f  p o s i t i v e  and n e s a t i v e  c o e f f i c i e n t s  i n  row k :  

Tab le  1 shows how t h e  number of l e g i t i m a t e  ( = n o n - a r t i f i c i a l )  
v a r i a b l e s  changes w i t h  t h e  s i q n  o f  t h e  non-zeros i n  t h e  

e l i m i n a t e d  b a l a n c e  e q u a t i o n .  The e f f e c t s  o f  c o n d e n s a t i o n  on 

model structure a r e  i l l u s t r a t e d  i n  T a b l e  2 and F i g .  3  f o r  a  

r e f i n e r y  model g i v e n  by Meyer-Steinmann /10,p.390-393/ :  

The p o i n t s  on t h e  r i g h t  hand o f  F i g .  3  c h a r a c t e r i z e  t h e  

s r i g i n a l  f o r m u l a t i o n ;  t h e  e f f e c t  o f  s e q u e n t i a l  d a t a  manipu- 

l a t i o n  on problem s t r u c t u r e  is shown by g o i n g  t o  t h e  l e f t .  

" A c t i v i t y  coup l ing"  r e d u c e s  t h e  number o f  rows f a r  more t h a n  

e . g .  t h e  REDUCE-module o f  APEX-111. 

From a n  economic p o i n t  o f  v iew one c a n  d e s c r i b e  t h e  con- 

d e n s a t i o n  by t h e  i s o q u a n t  g i v e n  i n  F i g .  4 .  I t  might happen 

t h a t  b o t h  f o r m u l a t i o n s  compared i n  l i t e r a t u r e  a r e  u n s o l v a b l e  

on t h e  sys tem used w h i l e  some e q u i v a l e n t  f o r m u l a t i o n s  might 

b e  c o m p u t a t i o n a l l y  w e l l  s u i t e d .  The i s o q u a n t  must b e  r e a d  

Net 
E f f e c t  

- 1 

0  

17 

from r i g h t  t o  l e f t .  

Tab le  1: E f f e c t s  o f  E l i m i n a t i n g  a  Ba lance  E q u a t i o n  k  

1 ? 0 ~ ( k ) l  

3 
2 

7 

I R E G ( ~ ) I  

1 

2 
I I  

N u m b e r  o f  

new l e g i t i m a t e  
, Variables 

3  
4 

2 8 

l e g i t i m a t e  
v a r i a b l e s  d e l e t e d  

II 

4 

11 



N u m b e r  o f  I 
s t r u c t u r a l  

rows s t r u c t u r a l s  v a r i a b l e s  nonzeros nonzeros I 

Tab 

75 144 32 1 39 0 
7 4 l u 2  3 1 5  383 
73 140 31 3 38  0 
7 2 130 307 373 
7 1 136 301 366  
7 0 134 295  3 5 9  
69 132 289 352 
68  130 283  345 
67 128 28 1 34 2 
66 126 2 79 339  
65 124 277 33 6 
64  122 275  33 3 
63 120  273 33  0 
6 2 118 271 327 
6 1 116 2 69 324 
6 0 114 2 67 32 1 
5 9 112  2E5 31 8 
5 8 I10 263  31 5 
57 108 261  31 2 
56 106 259 309  
55 104 2 57 306 
5 4 102 255 303 
53 100 2 53 300 
52 98 251 297 
51 9 6  249 29 4 
5 0 94 247  2 91 
49 9 2 245 288 
4 8 9 0 24 3 285  
4 7 88 241 282 
4 6  0 6 239  2 79  
45 8 4 237 276 
'4 4 82 235  27 3 
4 3 8 0 233  270 
4 2 78 231 267 
4 1 7 6 229 264 
4 0 7 4  227 261 
39 7 2 224 257  
32 70 222 254 
37 6 8 21 8 249 
3 E 6 6 214  244 
3 5 64  210 239 
3 4 62 206 23 4 
3 3 6 0 21 3 240 
3 2 5 8 220 2 46 
32 57 240 265 
3 2 5 6 2 61 285 
3 2 5 5  282 hO 5 
32 54 303  31 5 
3 2 53 3 16  33 7 
3 2 52 329 349  
4 t  6 5 49 7 516 
7 0 R 8 853 87 1 

116 133 1375  1392 
2 LO 250  5075  3091 

l le 2: E f f e c t s  of condensat ion f o r  t h e  r e f i n e r y  

dens i t y  
s t r u c t u r a l  

d e n s i t y  

3.92512 X 
3.96645 X 
4.05117 X 
4.09550 X 
4.14027 X 
4.18610 X 
4.23280 X 
4.28040 X 
4.38012 X .  
4.48413 X 
4.59267 X 
4.70605 X 
4.82456 X 
4.94855 X 
5.07837 X 
5.21442 X 
5.35714 X 
5.50699 '1 
5.66449 X 
5.83019 X 
6.001.71 X 
6.18873 2 
6038298 '1 
6.58829 X 
6.80556 X 
7.03578 '1 
7.2800? X 
7.53968 X 
7.81596 X 
8.11047 X 
8.42491 X 
8.76123 X 
9.12162 X 
9.50855 X 
9 . 9 2 ~ 8 1  x 

10. '17361 X 
10.81650 X 
11.33979 X 
l l b812 lL  X 
12.32323 X 
12.87716 X 
13.47926 r 
14.81b81 X 
16.31300 X 
18.59699 X 
21.20536 '1 
24.11067 X .  
27.35690 X 
30.27853 Z 
33.55769 X 
41.78138 X 
5L.98737 % 
61.56568 X 
75.4C387 X 

model /lo, p. 



Number o f  rows 

500.  

A 

Number o f  nonzeros  

Number of  v a r i a b l e s  

FTumber o f  rows 

y node1 /lo, p.390-3931 



I n  economic t heo ry  on l y  t h e  p a r t  BC o f  t h e  i soquan t  would 
be r ega rded  a s  e f f i c i e n t .  I n  t h i s  connec t i on  t h e  p a r t  AB is 

e f f i c i e n t  t o o  because i t  t a k e s  r e s o u r c e s  t o  go from A t o  8. 

The p a r t  CD is exp la i ned  by t h e  r e a s o n  t h a t  by e l i m i n a t i n g  
a  ba l ance  e q u a t i o n  one o r  more bounds can  become r e g u l a r  

rows; t h i s  p a r t  o f  t h e  i soquan t  i s  i n e f f i c i e n t .  

A s  soon a s  a  f o rmu la t i on  ( 2 )  i s  reached  which i s  rega rded  
compu ta t i ona l l y  w e l l  s u i t e d  t h e  op t ima l  l e v e l s  o f  t h e  a c t i -  

v i t i e s  i@ a r e  determined.  The op t ima l  v a l u e s  o f  t h e  c r r ig ina l  

v a r i a b l e s  can  be computed by 

Cons ider  a problem i n  which two f i n a l  p roduc t s  xl and x 2  

a r e  produced by u s i n g  a  p a r t ,  which can  be e i t h e r  purchased  
( x  ) o r  produced ( x u ) :  3 

Max. 500  xl + 1000 x 2  - 2 0 0  x3  - 1 5 0  x 4  

s. t .  2 x; + X 2  + 1 X4 5 1 0 0 0  

X 2  + 2 x 4 5 2 0 0 0  
l X 1 +  4 x 2 -  1 -  1 x 4 =  0 

x 0 a l l  j 
j 

The f i r s t  two c o n s t r a i n t s  r e p r e s e n t  c a p a c i t i e s ,  t h e  t h i r d  
i s  t h e  b a l a n c e  e q u a t i o n  f o r  t h e  p a r t .  The d e f i n i t i o n s  

... q u a n t i t y  o f  f i n a l  p roduc t  1 produced by 

u s i n g  p a r t s  purchased 
12 ... q u a n t i t y  o f  f i n a l  p roduc t  1 produced by 

us i ng  p a r t s  produced by t h e  f i r n  



" ... q u a n t i t y  o f  f i n a l  p r o d u c t  2  produced by 

u s i n g  p a r t s  pu rchased  

... auan t i ' y  o f  f i n a l  p roduc t  2  produced by 

u s i n g  p a r t s  produced by t h e  f i r n  

a l l o w  t h e  f o r m u l a t i o n  

Nax. 300 + 3 5 0  i2 + 200 i3 + Q 0 0  k4 

s . t .  2 x l +  3 k 2 +  1  5 ? 4 *  1000 

2  k2 + 4  13 + 12 %4 "000 

k = O  a l l j .  .i 

Formal ly  s u c h  a  r e f o r m u l a t i o n  can  be o b t a i n e d  by m u l t i -  

p l y i n g  t h e  o r i g i n a l  c o e f f i c i e n t  m a t r i x  w i t h  t h e  t r a n s f o r m a -  

t i o n  m a t r i x  

- 
We have ~ 2 = 6 2 2 = ( 3 } ,  4  -1 -1). T-0 and  z = k + 2 . 2 - 2 - 2 = ~ .  

The 3 p t i m a l  s o l u t i o n  f o r  t h e  condensed LP i s  ?"=(250 0 5 0 0  3)'. 

Cpt ima l  l e v e l s  o f  t h e  o r i g i n a l  v a r i a b l e s  car. b e  de te rm ined  by 

x " = ~ < ~ = ( 2 5 0  5 0 0  2250 0 )  I .  

The d i f f e r e n t  p a t h s  th rough  t h e  networks i n  F i g .  5  show 

char  a  g e n e r a l  s e r i e s  r r a n s f o r m a t i o n  i s  employed f o r  e l i m i -  

n a t i n g  a  b a l a n c e  e q u a t i o n .  
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Fig.5: Elimination of a balance equation as general series 
transformation 

In Fig. 6 the general design of the experiments is sketched. 

The following tasks were necessary: 

1. Problem Generation 

Computational experiments usually need a problem generatcr, 

especially if a statistical analysis is wanted. A problem 



Fig. 6: Flow of information in computational experiments 



generator PPPOEN was written in FORTRAN to create LP- 

models of product-mix-type. ?he user specifies the type 

of model to be created in much detail by setting 16 
scalar and 3 vector parameters. One set of parameters 

generates different LP-problems with very similar but 

not identical structures by use of random numbers. 

2. Preprocessing 

A FORTRAN-program performs the transformations discussed 

above. The user controls the order in which the balance 

equations are selected for elimination by 7 parameters. 

This selection is based on an estimation of the number of 

additional non-zeros an elimination might create. 

3. Optimization 
Optimization was done by the in-core-system BASE-APEX-I11 

using the standard parameters (except LOG=I) on a CYBER 7 4  

under NOS/BE. The reported CPU-time was needed for optimi- 

zation only. (The maximal deviation of CPU-time due to 

multiprogramming is only about 1 % on the system used.) 

4. Postprocessing 

APEX-I11 produces an FORTXAN-accessible file which was 

used to determine the optimal levels of the activities in 

the original formulation. This postprocessinq is based on 

( 3 )  although the matrix T was not computed explicitly. 

5. Recording Information about Optimization 
The regular OUTPUT-file of APEX-I11 contains information 

which is necessary to analyse the optimization behavior. 
This output-file was read by a program which recorded the 

structure of the model and the specifics of the solution 

process. 

6. Regression Analysis 

The data collected in step 5 were examined by regression 
analysis. First the exponents of the variables in various 



r e g r e s s i o n  mDdels were de te rm ined  by SPSS1 nodu le  f o r  

n o n - l i n e a r  ? e g r e s s i o n .  The r e s u l t s  were used t o  d e f i n e  

t r a n s f o r m e d  v a r i a b l e s  f o r  a  " l i n e a r "  r e g r e s s i o n  th rough  

t h e  o r i g i n .  S e v e r a l  hypo theses  on t h e  dependence of o p t i -  

m i z a t i o n  t ime  on model s t r u c t u r e  were compared by t h e  

c o e f f i c i e n t  o f  d e t e r m i n a t i o n ,  R ~ .  

7 .  C o n t r o l  Exper iments  

A t e s t  deve loped  by Hoe1 / 7 /  was used  t o  compare t h e  b e s t  

r e g r e s s i o n  e q u a t i o n  a g a i n s t  t h e  t e x t b o o k - h y p o t h e s i s .  

A more d e t a i l e d  d e s c r i p t i o n  o f  t h e  e x p e r i m e n t s  and  t h e  program 

l i s t s  a r e  g i v e n  i n  / 9 / .  

Four  problem c l a s s e s  and f o u r  prob lem s i z e s  f o r  each  p rsb lem 

c l a s s  have been  examined. F o r  each  o f  t h e  16 c a s e s  5 models 

were g e n e r a t e d .  Three  problem c l a s s e s  were used co d e v e l o p  a n  

a p p r o p r i a t e  e x p l a n a t i o n  f o r  t h e  CPU-time o b s e r v e d ;  problem 

c l a s s  4 was used t o  c o n t r o l  t h e  r e s u l t s .  T a b l e  3 shows t h e  

approx imate  s t r u c t u r e  o f  t h e  models i n  l a r g e s t  s i z e .  For  

prob lems o f  s m a l l e r  s i z e  t h e  f i g u r e s  i n  T a b l e  3  have  t o  b e  

reduced  by 25%, 50% and 75%. 

A l l  80 f o r m u l a t i o n s  were condensed i n  f i v e  s t e p s .  I n  t h e s e  

s t e p s  s b a l a n c e  e q u a t i o n  was e l i m i n a t e d  i f  n o t  more t h a n  a  

z e r t a i n  number o f  a d d i t i o n a l  non-zeros were  e x p e c t e d  t o  a r i s e .  

F o r  prob lem c l a s s  3 and l a r g e s t  s i z e  T a b l e  4 shows t h e  e f f e c t s  

o f  t h e s e  c o n d e n s a t i o n s .  The o p t i m i z a t i o n  was done by t h e  proce-  

d u r e s  CRASH and PRIMAL o f  BASE-APEX-111. A l l  f o r m u l a t i o n s  were  

o p t i m i z e d  u s i n g  c o n s t a n t  f i e 1 3  l e n g t h  RFL,1000008 (-32768 

dec ima l  words o f  60 b i t s  e a c h ) .  O p t i m i z a t i o n  t i m e  was reduced  

romarkably  i n  t h e  f i r s t  phases  o f  t h e  c o n d e n s a t i o n  b u t  i n  

l a t t e r  phases  t h e  c o n d e n s a t i o n  d i d  n o t  pay. 



Number of rows/columns 

in problem class 
1 2 3 4 

R O W S  

Objective function 1 1 1 1  
Capacity constraints 25 25 25 25 
Balance equations for final products 45 45 45 45 
Balance equations for intermediate products 200 0 200 430 
Balance equations for materials 

C O L U M N S  

Sales variables for final products 45 45 45 45 
Sales variables for intermediate products -20 -43 -20 -43 
Purchase variables for intermediate products -20 -43 -20 -43 
Purchase variables for materials 250 20 250 20 
Production variables for 45 final products -135 -135 -59 -59 
Production variables for intermediate products -600 -1290 -260 -559 

-1070 -1576 -654 -769 

Tzble 3: Structures of product-mix-models generated 

Table 4: Effects of condensation in problem class 3 

Aver. 

CPU- 

time 

40.8 
26.0 
8.4 

7.5 
10.8 
10.4 

Average number of 

rows columns nonzeros 

521 651 3009 
351 481 2040 

185 315 1619 
144 286 1953 
137 294 2288 
1 3  338 3 206 

# 

1 
2 

3 
4 

5 
6 

Max. 

add. 
nz 

- 
-5 
0 

30 
100 

1000 

CPU - time estimated by 

textbook 

59.4 
18.2 
2.7 
1.3 
1.1 
1 .O 

"best" regression 

35 -0 I 
18.8 
7.8 

I 

6.1 
6 .0 

6.5 



The d a t a  o b t a i n e d  from 517 LPs b e l o n g i n g  t o  p r o b l e n  c l a s s e s  

1, 2  and 3  were a n a l y s e d  by r e g r e s s i o n  n o d e l s .  Tab le  5  com- 

p a r e s  t h e  q u a l i t y  o f  f i t  f o r  s e v e r a l  h y p o t h e s e s  and some o t h e r  

p l a u s i b l e  e q u a t i o n s .  

T a b l e  5:  Comparison o f  r e g r e s s i o n  models f o r  e x p l a i n i n g  

CPU-time i n  prob lem c l a s s e s  1 t o  3  

R e g r e s s i o n  e q u a t i o n  

(4) .00000042 m3 

.0627 m 

.000000015 n3 

.0081 

.OIL17 n1'05 

.0381 n z e 7 0  

( 5 )  .00 l0  m1.2' nzm3' 

.0015 I I I ~ ' ~ ' I  ."I5 

.0293 n2 '53  r 1 2 - l ' ~ ~  

.00085 m 2 ' 3 5  [ n z / ( m . n ) ]  .86 

( 6 )  . 0 0 0 9 ~  m1'29 nz ' "  

The improvement o f  ( 6 )  o v e r  (5) i s  s o  s m a l l  t h a t  

( 7 )  PREDCPU = a  nb nzC 

is r e g a r d e d  a s  most s u i t a b l e .  F o r  t h i s  model t h e  a p p r o x i n a t e  

95% c o n f i d e n c e  i n t e r v a l s  f o r  t h e  exponen ts  a r e  computed i n  

E x p l a i n i n g  v a r i a b l e s  

proposed by 

/ e . g .  1 ;3 ;5 ;6 ;15 ;20 /  

/ 8  / 

/4 ;13/  

t h e  n o n - l i n e a r  r e g r e s s i o n  by SPSS a s  

1 . 1 5  b = 1 .25  1 .34  

.25  ' c  = 3 3  .39 . 

F( 
2 

. 701  

.867 

.532 

.889 

.766 

.697 

.916 

.913 

.816 

.912 

.916 

Al though t h e s e  i n t e r v a l s  a r e  c i p h t  t h e y  l e a d  t o  r a t h e r  wide 

c o n f i d e n c e  i n t e r v a l s  f o r  CPU-time. 

The new assumpt ion  ( 5 )  was compared w i t h  t h e  e s t a b l i s h e d  

h y p o t h e s i s  ('I) v i a  a t e s t  deve loped  by Hoe1 / 7 / .  This t e s t  



:?ads t o  a l i n e a r  r e g r e s s i o n  o f  t y p e  

f c r  s d d i t i o n a l  d a t a .  The u s e f u l n e s s  c f  NE'dHYP i s  con f i rmed  
i f  w i s  s i g n i f i c a n t l y  p o s i t i v e .  R e n r e s s i o n  ( 8 )  g i v e s  a  
c o e f f i c i e n t  w=1.37 f o r  111 c a s e s  belong in^ t o  prob lem c l a s s  u ;  
t h e  95% c o n f i d e n c e  i n t e r v a l  is ~ ' 1 . 2 2 .  The t - v a l u e  f o r  r e -  

g r e s s i o n  ( 8 )  i s  15.11. T h i s  v a l u e  c a n  b e  compared w i t h  t h e  
s n e - s i d e d  v a l u e  f o r  95% and DF=l lC which i s  1.66.  The s c a t r e r -  
gramm i n  F i g .  7  shows t h a t  i n  93  o f  111 c a s e s  t h e  s i p n s  o f  
t h e  d i f f e r e n c e s  i n  ( 8 )  a r e  i d e n t i c a l .  T h e r e f o r e  t h e  new f o r -  
mula ( 5 )  p r e d i c t s  s i g n i f i c a n t l y  b e t t e r  t h a n  t h e  e s t a b l i s h e d  

h y p o t h e s i s  ( u ) .  

F i g .  7 :  Comparison o f  t h e  p r e d i c t i o n s  from ( 4 )  and (5 )  w i t h  o b s e r v e d  
CTU-time 



An i d e n t i c a l  LP-optimum u s u a l l y  c a n  b e  o b t a i n e d  by many 
e q u i v a l e n t  prob lem f o r m u l a t i o n s .  Da ta  c o n d e n s a t i o n  is  n e c e s s a r y  
i f  l a r g e  models a r e  g e n e r a t e d  from d a t a  b a s e s  c o n t a i n i n g  
i n f o r m a t i o n  a b o u t  eve ry -day -opera t ions .  Most t e x t b o o k s  r e -  
commend t o  r e d u c e  t h e  number o f  rows a s  much a s  p o s s i b l e .  Our 
e x p e r i m e n t s  show t h a t  t h e  u s u a l  m3-hypothesis i s  m i s l e a d i n g  
and s h o u l d  b e  c a n c e l l e d  f rom t e x t b o o k s .  The e x p e r i m e n t s  des -  

c r i b e d  above  i n d i c a t e  t h a t  t h e  number o f  non-zeros h a s  re- 

markab le  i n f l u e n c e  on c o m p u t a t i o n a l  e f f o r t .  The r u l e  g i v e n  by 
E.N.L.Beale / l , p . 8 3 /  t h a t  it i s  no rma l l y  n o t  wor th  s a v i n g  a  
row by s u b s t i t u t i n g  a  v a r i a b l e  i f  t h i s  adds  more t h a n  a b o u t  

h a l f  a  dozen  non-zeros rema ins  u s e f u l  i n  t h e  l i g h t  o f  o u r  
e x p e r i m e n t a l  r e s u l t s .  The number o f  non-zeros may r i s e  i f  

t h e  number o f  s t r u c t u r a l s  i s  reduced ;  t a k i n g  i n t o  a c c o u n t  
t h e  e f f o r t  f o r  m a t r i x  g e n e r a t i o n  one  might  p r o p o s e  a n  even  

e a s i e r  r u l e  o f  thumb: 

" E l i m i n a t e  b a l a n c e  e q u a t i o n s  o n l y  i f  
- t h e  model i s  s o  l a r g e  t h a t  t h e  number o f  rows is  a  Surden  

i n  t h e  c o m p u t a t i o n a l  env i ronment  used  

- t h e  number o f  s t r u c t u r a l s  is reduced  by t h e  e l i n i n a t i o n  
and t h e  number o f  non-zreos r ises on17 s l i g h t l y . "  

Fo r  product-mix-models t h i s  r u l e  s u g g e s t s  t o  u s e  b a l a n c e  equa- 
t i o c s  f o r  p r o d u c t s  which have more t h a n  one  way o f  p r e p a r a t i o n  

( e . g .  make o r  buy; m a n u f a c t u r i n g  v a r i a n t s )  and more t h a n  one  
way o f  u t i l i z a t i o n  ( e . g .  s e l l  o r  p r o c e s s ) .  Thus i f  o p t i o n s  
a r e  a v a i l a b l e  a  "combined" f o r m u l a t i o n  i s  recommended which 
d i f f e r s  f rom b o t h  f o r m u l a t i o c s  compared i n  l i t e r a t u r e .  

I f  t h e  r e s u l t i n g  model i s  s t i l l  t o  l a r g e  t h e  f o l l o w i n g  
a c t i o n s  cou ld  b e  t a k e n  i n t o  mind: 

- May t h e  problem b e  s o l v e d  e a s i e r  by codes  w i t h  GUB- 

f a c i l i t i e s  and can  s u c h  a  code be  made amenable ? 



- Should one d e f i n e  i n  t h e  f i r s t  ( i = l )  LP ,on l y  o p t i o n s  

which a r e  expec ted  t o  be  op t ima l  and g e n e r a t e  f o r  
o p t i m i z a t i o n  r un  i+l new v a r i a b l e s  f o r  o p t i o n s  
which improve t h e  s o l u t i o n  o f  r u n  i ? These c a n d i d a t e s  

can  be de te rmined  by t h e  i - t h  d u a l  s o l u t i o n .  
- Is i t  p o s s i b l e  t o  deve lop  b e t t e r  a l g o r i t h m s  f o r  dense  

LP-problems ? 

If a l l  t h e s e  q u e s t i o n s  have t o  be den ied  t h e r e  i s  an  e f f e c -  
t i v e  " s o l u t i o n  c o n s t r a i n t w  on t h e  LP o r i g i n a l l y  proposed.  I n  

t h i s  c a s e  one must t a k e  i n t o  accoun t  t h e  p o t e n t i a l  b e n e f i t s  
o f  d i f f e r e n t l y  a c c u r a t e  models and judge  whether  a  l e s s  accu-  
r a t e  model w i l l  a l l ow  enough i n s i g h t  i n t o  t h e  rea l -wor ld -  

problem t h a t  i t  pays t o  deve lop  t h i s  l e s s  a c c u r a t e  model. 

MAIN SYMBOLS 

DF Degrees  o f  f reedom 
ESTHYP CPU-time p r e d i c t e d  by t h e  e s t a b l i s h e d  hypo thes i s  ( 4 )  
m number o f  rows 
M 1 s e t  o f  i n d i c e s  i w i t h  b  0  
M2 s e t  o f  i n d i c e s  i w i t h  b f - 0  ( b a l a n c e  e q u a t i o n s )  
M21 S M2 s e t  o f  i n d i c e s  i f o r  b a l a n c e  e q u a t i o n s  no t  e l i m i n a t e d  
M22cM2 s e t  o f  i n d i c e s  i f o r  ba l ance  e q u a t i o n s  e l i m i n a t e d  
n  number o f  s t r u c t u r a l s  
n  z  number o f  non-zeros 
NEG(k) s e t  o f  i n d i c e s  j wi th  a  .<O 
NEWHYP CPU-time p r e d i c t e d  by t h g  new assumpt ion  (5 )  
OBSCPU Observed CPU-time 
POS(k) set o f  i n d i c e s  j w i t h  akj>O 
PFDCPU P r e d i c t e d  CPU-time 
R C o e f f i c i e n t  o f  d e t e r m i n a t i o n  
RFL 3eques ted  F i e l d  Length 
/SET ( number of  e lements  i n  a SET 

T, Ti T rans fo rmat ion  m a t r i c e s  
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PROBLEMS OF SYMBOLOGY AND RECENT EXPERIENCE 
(Or, Where Improvements Won't and May Come From) 

William Orchard-Hays 

Energy Information Administration 
U.S. Department of Energy 
Washington, D.C. 

Significant improvements in use of standard largescale LP, and related modeling which 
depends essentially on generated LP approximations or submodels, will not result from 
improvements in optimizing algorithms or even directly from improved computer imple- 
mentations, only slightly from improved inversion and transformation schemes, and pos- 
sibly somewhat from decomposition techniques applied a t  a high level. This will be true 
for a t  least several years. 

While these statements are made.emphatically and must be taken with appropriate qualifi- 
cation, this paper discusses the background and results of its author's reflections along 
these lines, as presented to the Workshop. 



INTRODUCTION 

I t  had been my i n t e n t i o n  t o  begin wi th a somewhat brash 
statement and then proceed t o  defend it. The purpose of such 
an approach is, of course,  t o  t r y  t o  push a s i d e  convent ional  
wisdom and hab i tua l  p a t t e r n s  i n  order  t o  present  a f resh  
viewpoint more c l e a r l y  and f o r c e f u l l y .  Had I been one of the  
f i r s t  speakers,  I would have done so and it would have been 
unfor tunate.  The d i f f e rences  i n  a r e a s  of i n t e r e s t ,  which 
have thus f a r  been presented a t  t h i s  meeting under t h e  head- 
ing  o f  Large-Scale Linear Programming, show how d ive rse  t h e  
sub jec t  a c t u a l l y  is. One can on ly  make broad s ta tements ,  
brash o r  otherwise,  w i th in  very c a r e f u l l y  def ined l i m i t s .  

A l l  t h i s  is only  a long way of saying t h a t  I have a l ready 
learned,  o r  a t  l e a s t  been reminded o f ,  a good d e a l  a t  t h i s  
Workshop. I t  may be he lp fu l  t o  o t h e r s  t o  summarize one s e t  
of observat ions.  I be l ieve  t h e  a t tendees a r e  a representa-  
t i v e  cross-sect ion o f  t h e  f i e l d  and it is c l e a r  t h a t  w e  
rep resen t  a t  least four major a r e a s  o f  i n t e r e s t .  (Of course,  
some of us  wear d i f f e r e n t  h a t s  a t  d i f f e r e n t  t imes.)  

U) The theore t i c ians .  This is t h e  l a r g e s t  i n t e r e s t  
group represented.  I do no t  mean t o  i n t ima te  t h a t  t h e  sub- 
j e c t s  and techniques discussed have no p r a c t i c a l  app l i ca t ion .  
However, t h e  o r i e n t a t i o n  has a t r a d i t i o n a l l y  mathematical and 
academic f l avo r .  Much of t h i s  work is fundamental t o  p r a c t i c a l  
app l i ca t ions  o r  improvements. Some f a l l s  by t h e  wayside. 

( 2 )  The f ree- lance consu l tants .  This a rea  has been most 
c l e a r l y  represented he re  by Marshall 'F isher 's  presenta t ion.  
My intended remarks would have been c l o s e  t o  i n s u l t i n g  t o  him. 
Conversely, h i s  repor ted r e s u l t s  would be inc red ib le  t o  m e  i f  
I d i d  n o t  p lace them i n  proper context .  Remarkable r e s u l t s  
can be achieved on some p r o j e c t s  by those  c leve r  enough t o  
perce ive t h e  proper approach. But our two a reas  of i n t e r e s t  
have a very small  i n te rsec t ion .  

(3)  The algorithmic-system engineers.  Several  presenta- 
t i o n s  rep resen t  this a rea  and o t h e r s ,  inc lud ing mysel f ,  most 
f requent ly  work i n  it. We may d i s t i n g u i s h  two sub-classes: 

(a) The in-house p r o j e c t  d i r e c t o r .  This is most 
c l e a r l y  represented by D r .  Aonuma's d iscuss ion of bu i ld -  
ing  a computational system using MPSX/370 a s  a base. 
Of course,  t h e o r e t i c a l  and consu l t ing- l i ke  work is 
involved but  a s p e c i f i c ,  t a i l o r e d  system is the  goa l .  



(b)  The general  system bui lder .  Several presenta- 
t i ons  could be c i t ed  here but of pa r t i cu l a r  i n t e r e s t  is 
Ho and Loute's work on D-W decomposition using much the 
same approach ae Aonuma and being extended by Loute t o  
nested decomposition. This a very worthwhile software 
development work, even i f  only f o r  experimental o r  
comparative s tud ies.  

(4)  The model implementers. O t h e r  speakers have addressed 
t h i s  sub jec t ,  notably Knol, and w e  have ye t  t o  hear from 
Strazicky and Kall io. I t  is a l so  the area I wish t o  address.  
This category may sound presumptuous s ince most workers i n  the 
f i e l d  would claim t ha t  they implement models. However, not 
a l l  t r e a t  model implementation a s  a d i sc i p l i ne  i n  the sense 
intended. 

THE DIFFICULTY OF IMPROVING SHEER COMPUTATIONAL PERFORMANCE 

tiaving now set f o r t h  my view of the main emphases i n  the 
f i e l d ,  l e t  me make my brash statement a f t e r  a l l ,  t r us t i ng  t ha t  
you w i l l  apply it i n  the sense intended: 

S ign i f i can t  improvements i n  use of standard 
large-scale LP, and re l a ted  modeling which 
depends essen t i a l l y  on generated LP approxi- 
mations o r  submodels, w i l l  not r e s u l t  from 
improvements i n  optimizing q o r i t h m s  o r  even 
d i r e c t l y  from improved computer implementa t i ons  , 
only s l i g h t l y  from improved inversion and trans- 
formation schemes, and possibly somewhat from 
decomposition techniques appl ied a t  a high l eve l .  
This w i l l  be t r ue  for  a t  l e a s t  severa l  years.  

Let me po in t  ou t  some f a c t s  i n  defense of the  above statement. 

1. A t  EIA, they a r e  regular ly  solv ing models of about 4500 
cons t ra in ts  i n  15-20,000 var iab les  with w e l l  over 50,000 
nonzero coe f f i c i en t s ,  from an advanced bas i s ,  more o r  l e s s .  
The WHIZARD optimizer i n  MPS-I11 takes perhaps 5,000 in tera-  
t i ons  fo r  the  f i r s t  optimal which it does i n  l e s s  then f i v e  
minutes. Do you think this can ever be s i gn i f i can t l y  re-  
duced? 

2 .  The inversion procedure i n  WHIZARD takes l e s s  than . O 1  
minutes f o r  these bases which g ive no ind icat ion of i ns ta -  
b i l i t y .  Do you r e a l l y  think you can bea t  tha t?  

3 .  Many of us here have worked untold days, weeks and months 
t ry ing t o  improve the simplex algorithm o r  make fundamental 
changes to it. The most w e  ever succeed i n  doing is coming 
c lose t o  standard commerical systems. On r a r e  occasions 
when w e  seem t o  g e t  be t t e r  so lu t ion t imes, the r e a l  reason 
i s  found t o  be i n  spec ia l  knowledge about the  model. 



4 .  Every few years someone proposes a d i f f e r e n t  method. On 
c l o s e r  i nves t iga t ion ,  these t u r n  o u t  t o  be flawed o r ,  i n  
a t  l e a s t  one case I know, t o  approximate t h e  e f f i c iency  
of t h e  simplex algor i thm on a l imi ted number of m a l l  
t e s t  models. 

But I can go fu r the r .  What about matr ix and repor t  generat ion? 
The MEMM model a t  EIA is generated from r e s u l t s  of about 14 
upstream models and produces a l a r g e  s e t  of formal repor ts .  
In add i t ion t o  f i l e s  from upstream models, t h e r e  is another 
l a r g e  f i l e  of t a b l e s  def in ing r e p o r t  l ayou ts ,  a f i l e  of t a b l e s  
def in ing model s t r u c t u r e ,  a f i l e  fo r  i n i t i a l  matr ix generat ion,  
another f o r  a major rev is ion,  p lus  severa l  o the r  r e l a t e d  
inputs  and outputs.  Haverly's OMNI chunks through a l l  t h i s  i n  
four o r  f i v e  minutes. Do you th ink  you can improve on t h a t ?  
(Note t h a t  the  quest ion is not whether MR4M could be improved.) 

Decomposition has been around f o r  over twenty years .  Early 
bad exper ience wi th D-W algor i thms led me t o  develop the block 
product form which so lves the  same s t r u c t u r e  with a p a r t i -  
t ion ing technique. It is  very c l o s e  t o  what has been known a s  
generalized-GUB. It was f i r s t  implemented i n  1967 i n  the  
LP/600 system which s t i l l  e x i s t s  i n  updated form i n  the  cur- 
r e n t  Honeywell MPS. I implemented it again i n  1968 f o r  t h e  
OPTIMA system. CDC threw the  l a t t e r  away, bu t  Honeywell sti l l  
claims t h e  block product a lgor i thm should be used f o r  l a r g e  
problems with proper s t ruc tu re .  I know of no one using it. 
The recen t  work by Etienne Loute a t  CORE is  more promising 
bu t  it is doubtfu l  whether he bea ts  t h e  standard system. A 
r e a l l y  l a r g e  problem with,  say,  t e n  per iods wi th 1,000 con- 
s t r a i n t s  each and running on a 3033 ins tead of a 158 might g ive 
r e a l l y  impressive r e s u l t s .  But a s  ~ i m  Ho ind ica ted ,  t h e i r  
system depends on standard MPSX/370 modules wi th t h e i r  super- 
s t r u c t u r e  a t  a r e l a t i v e l y  high leve l .  

George Dantzig s a i d  t h e  o ther  day t h a t  GUB had been highly 
successful .  That is t r u e  only i n  a l imi ted context .  I t  was I 
t h a t  r e a l l y  implemented GUB i n  a commercial system and made 
it highly e f f i c i e n t ;  it was t h e  o r i g i n a l  t h r u s t  of MPs-111. 
I t  d id  have some spectacu lar  successes,  maybe a dozen o r  so.  
(A  couple it should have had w e r e  denied it due t o  vested 
i n t e r e s t s . )  These appl ica t ion e s s e n t i a l l y  sa tu ra ted  t h e  market. 
IBM put  GUB i n  MPSX and dropped it from MPSX/370 because 
the  number of users  d id  not  j u s t i f y  t h e  c o s t .  I have not  
encountered a r e a l  CUB problem i n  my own work f o r  over f i v e  
years.  

Dennis Rarick b u i l t  WBIZARD and he was a very c lever  p rogramer .  
Jim Welch now works f o r  Ketron who took over MPS-I11 and he is 
a l s o  a very c lever  progranrmer. H e  has recen t l y  gone through 



Rar ick 's  code and th inks  he may have made a 20-25 percent  
improvement. I am a l s o  a very good programmer but  i f  Welch 
says he has done a l l  he can,  I would n o t  cha l lenge him, p a r t i -  
c u l a r l y  s ince  he now has John Tomlin t o  back him up on theory.  
I doubt i f  anyone here w i l l  cla im they can do b e t t e r .  

WHERE WILL MODELING IMPROVEMENTS BE MADE? 

One might conclude from the  foregoing d iscuss ion t h a t  I am 
s a t i s f i e d  w i t h  cu r ren t  modeling p r a c t i c e s  and do no t  th ink  
f u r t h e r  improvements a r e  poss ib le .  This is no t  a t  a l l  t he  
case.  The MEMU model re fe r red  t o  e a r l i e r  i s  a t e r r i b l e  mess 
opera t iona l l y  i n  s p i t e  of the  impressive execut ive t imes 
c i t e d .  This does not  a t  a l l  imply t h a t  r e s u l t s  obtained a r e  
inva l i d  but  only t h a t  the  e f f o r t  expended t o  g e t  them is 
inord inate .  This should n o t  be in te rp re ted  a s  a c r i t i c i s m  of 
the E I A  s t a f f .  They inher i ted  models and p a r t s  from var ious 
sources and had t o  i n t e g r a t e  them under cond i t ions of extreme 
pressure.  The po in t  is t h a t  accepted modeling and computational 
p r a c t i c e s  do no t  permit such a c t i v i t i e s  t o  proceed smoothly 
and expedi t ious ly ,  and t h i s  has almost nothing t o  do w i t h  t he  
bas ic  e f f i c iency  of a v a i l a b l e  opt imizers  and r e l a t e d  da ta  
management systems f o r  mat r ix  and r e p o r t  generat ion.  

There a r e  a c t u a l l y  two main problems involved which I w i l l  
s t a t e  but  only d iscuse one. The o t h e r  w i l l  have t o  awai t  t he  
outcome of work which I am j u s t  launching i n t o .  

The f i r s t  d i f f i c u l t y  has been a l luded t o  by severa l  speakers 
a t  t h i s  Workshop though no t  very succ inc t l y  o r  p rec i se ly .  
Perhaps the  most meaningful words t o  po in t  a t  t h e  problem a r e  
" a d a p t a b i l i t y w  and " f l e x i b i l i t y " ,  o r  r a t h e r  t h e i r  lack .  The 
b e s t  sof tware components a r e  o f t e n  not  a v a i l a b l e  separa te l y  
but ,  even when they a r e ,  they a r e  no t  very adaptab le  t o  new 
environments o r  requirements. IBM 's  modularizing of MPSX/370 
i s  a s t e p  i n  t h e  r i g h t  d i r e c t i o n  but  it does n o t  go f a r  enough. 
The l a r g e  commercial MPSs, i n  s p i t e  of t h e i r  impressive com- 
put ing power and range of f e a t u r e s ,  a r e  a c t u a l l y  not  f l e x i b l e .  
In f a c t ,  they seem t o  have followed t h e  evo lu t ion  of d inosaurs.  
I cannot go f u r t h e r  i n t o  this s u b j e c t  i n  t h i s  d iscuss ion.  I t  
is a problem I w i l l  be addressing over t h e  next  severa l  months. 
I t  has aspec ts  which transcend merely t h e  techn ica l ;  f o r  example, 
t h e r e  a r e  l e g a l  and p rop r ie ta ry  impediments t o  a f u l l  reso lu t i on .  

The second d i f f i c u l t y  i s  t h a t  very few model implementere know 
how t o  use proper ly the  t o o l s  t h a t  a r e  a v a i l a b l e  and, i n  some 
ins tances ,  s t rong ly  r e e i s t  o r  e l s e  ignore c a p a b i l i t i e s  t h a t  
have been designed t o  he lp  them. 



I have c a l l e d  t h i s  the problem o f  s o l o  , which may be too  
smal l  a word t o  convey the  scope o ~ p o r t a n c e .  The 
f a i l u r e  t o  proper ly  symbolize t h i n g s  causes confusion and 
e x t r a  work a t  many p o i n t s ,  a l l  t h e  way from LP model i d e n t i -  
f e r s  (row and column "names") t o  d a t a  set names i n  a run  
stream a t  t h e  ope ra t i ng  system l e v e l .  To make some approach 
t o  t h e  s u b j e c t ,  l e t  m e  pose t h e  ques t i on  heading t h e  nex t  
s e c t i o n .  

WHAT IS A MODEL? 

The term model is used i n  many senses,  a l l  t h e  way from con- 
c e p t u a l i z a t i o n  t o  a p a r t i c u l a r i z e d  mat r ix .  In  r e a l i t y ,  a n  LP 
model undergoes seve ra l  s t a g e s  of development and use.  (The 
same is t r u e  of o t h e r  t ypes  o f  mathematical models.) Like t h e  
word " f i l e " ,  it is impossib le t o  g e t  people t o  be p r e c i s e  w i t h  
t h e  use o f  "model". Unfor tunate ly ,  "model" can be used i n  
even more d i s p a r a t e  senses so  t h a t  d i f f e r e n t  types  o f  s p e c i a l -  
ists on t h e  same p r o j e c t  have complete ly  d i f f e r e n t  views of 
what t h e  model is. 

It is p o s s i b l e  t o  l ist t h e  va r i ous  s t a g e s  o f  modeling and this 
w i l l  be done he re  b r i e f l y .  Even s o ,  d i f f e r e n t  people w i l l  
st i l l  have a d i f f e r e n t  " f e e l "  f o r  what it is. 

( a )  Conceptua l iza t ion :  e x t r a c t i n g  from a real -wor ld 
situation c e r t a i n  a b s t r a c t  r e l a t i o n s h i p s  -- important  t o  a 
des i red  i n v e s t i g a t i o n  -- which a r e  amenable t o  t rea tment  by 
an a v a i l a b l e  modeling technique.  Many assumpt ions,  s imp l i -  
f i c a t i o n s  and compromises a r e  i n v a r i a b l y  necessary .  P r a c t i c a l  
cons ide ra t i ons  must a l s o  be  taken i n t o  account ,  such a s  a v a i l a -  
b i l i t y  of necessary d a t a ,  so f tware ,  a n a l y t i c  manpower, e t C .  

(b )  Formulat ion: de f i n ing  t h e  v a r i a b l e s ,  c o n s t r a i n t s ,  
na tu re  of the c o e f f i c i e n t s ,  l i m i t s ,  u n i t s  (of measurement),  
s c a l i n g s ,  etc. The assumpt ions,  d e r i v a t i o n s  and expected 
q u a l i t y  of r e s u l t s  must a l s o  be stated a s  c l e a r l y  a s  poss ib le .  
This s t e p  invo lves  d e t a i l e d  a n a l y t i c a l  work. 

(c)  Implementation: e s s e n t i a l l y  d a t a  c o l l e c t i o n  and 
a n a l y s i s .  This is o f t e n  t h e  most d i f f i c u l t  p a r t  of t h e  whole 
p r o j e c t  and may involve a number o f  a n c i l l a r y  p r o j e c t s  and 
even models. 

(d )  Computerizat ion : conver t ing  t o  workable computer 
procedures t h e  formulat ion and implementat ion and t h e i r  impl i -  
c a t i o n s .  I t  almost  i nva r iab l y  happen t h a t  new c l a s e e s  and 
sets of terminology a r e  in t roduced i n  t h i s  s t a g e ,  even t o  t h e  
p o i n t  t h a t  t h e  a n a l y s t s  of  the preceding s t a g e s  sca rce l y  
recogn ize  t h e i r  b ra inch i l d .  



( e )  Test ing on l i v e  data :  it is only a t  t h i s  s tage  t h a t  
t h e  model r e a l l y  begins t o  become "a l i ve "  and a l s o  where many 
de fec ts  appear. These usua l l y  lead t o  modi f icat ions of s tages  
(b ,c ,d )  u n t i l  s a t i s f a c t o r y  r e s u l t s  a r e  obtained.  

( f )  Exercising t h e  model f o r  " r e a l n  cases .  Note t h a t  
exper ience and exper t i se  from a l l  t he  preceding s tages  must be 
brought t o  bear i f  b e s t  r e s u l t s  a r e  t o  be obtained.  

In a narrower sense,  a model is one p a r t i c u l a r i z a t i o n  of the 
LP matr ix  f o r  a case,  perhaps including var ious a l t e r n a t e  
components o r  t h e  a b i l i t y  t o  r e v i s e  them f o r  va r ious  s t e p s  i n  
a (computer) run o r  coordinated set of runs.  The des igners  
and bu i l de rs  of app l i ca t ion  sof tware f o r  LP o f t e n  use "model" 
i n  t h i s  sense,  d i s t i ngu ish ing  t h i s  from an even more spec ia l -  
ized form which i s  used f o r  a c t u a l  ca l cu la t i ons .  This termino- 
logy is a l s o  adopted by t h e  use rs  of such systems. Note t h a t  
"users of t h e  model" i n  t h e  broad sense w i l l  inc lude ana lys ts  
who may no t  even be aware of such d i s t i n c t i o n s .  

A CLARIFYING ANALOGY 

Suppose one is going to e r e c t  a s t r u c t u r e  from a standardized 
a r c h i t e c t u r a l  design.  No two s t r u c t u r e s  w i l l  be i d e n t i c a l ,  of 
course,  bu t  each w i l l  have some s p e c i a l i z a t i o n  t o  accomodate 
d i f f e rences  i n  l oca t ion ,  topography, c l imate ,  end-use, and so 
on. What a r e  the major ca tegor ies  of m a t e r i a l s ,  machines, e t c . ,  
which must be taken i n t o  account? The fo l lowing l i s t  is  
adequate f o r  our  purposes here .  ( W e  amit  c o s t s  and investment 
schedule which need no analogy.) 

Plans and spec i f i ca t i ons .  
B i l l s  of mater ia l  and l is ts of equipment. 
Erect ion schedule. 
Special ized b luepr in ts  and i n s t r u c t i o n s .  
Preparatory and scaf fo ld ing mate r ia l s .  
Equipment f o r  preparat ion and forms. 
S t r u c t u r a l  ma te r ia l s .  
Equipment f o r  a c t u a l  const ruc t ion.  
Removal of scaf fo ld ing and debr i s .  
F in ishing work, which depends on s t r u c t u r a l  d e t a i l s .  

Overseeing a l l  t h i s  is a management and admin is t ra t ive  func- 
t i o n ,  a c t u a l l y  severa l  a t  var ious l e v e l s .  

Now, it is  our t h e s i s  t h a t  t h e  use of a complex system of 
models to produce f i n a l  r e s u l t s  is analoguous t o  e r e c t i n g  a 
s t ruc tu re .  Indeed, t h e r e  a r e  tw s tages :  t h e  c r e a t i o n  of t h e  
modeling system i t s e l f ,  and i ts  use f o r  a s p e c i f i c  case o r  
run. For t h e  f i r s t  s tage ,  each of t h e  t e n  items above, p lus  
management and admin is t ra t ion  can be analogized a s  fol lows. 



1. Conceptua l i za t ion  of t h e  modeling framework, i d e n t i -  
f i c a t i o n  o f  r e l a t i o n s h i p s  t o  be  taken i n t o  account ,  r ecogn i t i on  
of assumpt ions and l i m i t a t i o n s ,  formal s ta temen t  of  t h e  modeling 
scheme (w i th  review and p r o f e s s i o n a l  o p i n i o n ) ,  e s t i m a t e s  of  
t h e  r e s u l t s  o b t a i n a b l e  ( " a r c h i t e c t u r a l  r ende r i ngs  "1  , formula- 
t i o n  of  symbology and r e p r e s e n t a t i o n s ,  and o v e r a l l  f l owcha r t s  
of  t h e  a c t u a l  execu t ion  of  model r uns .  A l l  o f  t h i s  should 
e x i s t  i n  one o r  more volumes o f  formal  documentat ion.  Although 
t h e s e  may seldom be re fe renced  by exper ienced u s e r s  of t h e  
model ing system du r i ng  pe r i ods  o f  i n t e n s e  a c t i v i t y ,  t h e i r  
c o n t e n t s ,  o r  cou rse ,  a r e  fundamental t o  t h e  whole e x e r c i s e .  

2.  S p e c i f i c a t i o n s  o f  a c t u a l  d a t a s e t s  which c o n t a i n  
necessary  d a t a  i n p u t s  f o r  implementing the model,  and t h e  
programs o r  a p p l i c a t i o n s  systems which w i l l  p rocess  them. 

3.  Formulat ion o f  t h e  run s t ream and o t h e r  c o n t r o l  pro- 
grams necessary  t o  c a r r y  o u t  a run. Numerous t ime-dependencies 
and o t h e r  s u b t l e t i e s  must be  taken i n t o  account .  

4 .  Actua l  p r o g r m i n g  and checkout  of p rep rocesso r ,  
g e n e r a t i o n  and a w i l i a r y  programs s p e c i a l i z e d  t o  t h e  c u r r e n t  
c l a s s  of  cases .  

5. There i s  i n v a r i a b l y  a cons ide rab le  amount of  u t i l i t y  
so f twa re  and a u x i l i a r y  d a t a  requ i red  t o  c a r r y  o u t  tne o v e r a l l  
scheme of  execu t ion .  For example, temporary and s c r a t c h  
d a t a s e t s  a r e  needed and,  among o t h e r  t h i n g s ,  arrangements f o r  
t h e i r  r es idency  and l i f e - span  must be  made. 

6. The necessary  u t i l i t y  programs o r  systems must be  
a c c u r a t e l y  i d e n t i f i e d  a r e  t h e i r  a v a i l a b i l i t y  assu red .  

7 .  The a c t u a l  i n p u t  d a t a  must be accessed a t  t h e  p r e c i s e  
t i m e  needed. 

8 .  The necessary  a p p l i c a t i o n  systems o r  o t h e r  so f twa re  
must be a c c e s s i b l e  and l o g i c a l l y  compat ib le  w i t h  o t h e r  com- 
ponents.  

9.  Temporary f i l e s  must be  purged. A lso ,  most r uns  
produce a l a r g e  volume of  u n i n t e r e s t i n g  o u t p u t  wnich should be 
d isposed of exped i t i ous l y .  

10. F i n a l  r e p o r t s  must be p repared  i n  p r e s e n t a b l e  
f ash ion ,  u n c l u t t e r e d  by ex t raneous  in fo rmat ion .  Th is  n e a r l y  
a lways r e q u i r e  c a r e f u l  prearrangements s t a r t i n g  a t  i tem 3 and 
c o n s t i t u t i n g  a major p o r t i o n  of i tem 4 .  



For t h e  second s tage  -- making an a c t u a l  run -- i t  i s  assumed, 
o r  course,  t h a t  a l l  t h e  above has been done. S t i l l ,  t he re  is 
a no t  i n s i g n i f i c a n t  amount of planning and work f o r  each run. 
(Some of t h e  a c t u a l  work may be scheduled d i f f e r e n t l y ,  such a s  
"p re fab r i ca t ion "  of input  v a r i a n t s . )  W e  run through t h e  t e n  
items again f o r  the  second s tage .  

1. A t  l e a s t  some thought must be given t o  whether t h e  
des i red  case is wi th in  t h e  c a p a b i l i t i e s  of t h e  models. 

2. The exact  input  d a t a s e t s  and t h e i r  subse ts  must be 
spec i f  ied  . 

3. The run stream must be spec ia l i zed  p rec ise ly .  

4 .  Scenar io parameters must be spec i f i ed .  (Here, t h i s  
may come before  2 ) .  

5. Impl icat ions f o r  temporary d a t a s e t s  must be taken 
i n t o  account. 

6.  Impl icat ions f o r  con t ro l  programs must be ad jus ted.  

7. It is d e s i r a b l e  t o  check beforehand t h a t  the  spec i -  
f i e d  input  d a t a s e t s  r e a l l y  e x i s t  i n  a access ib le  s t a t e .  

8. I f  spec ia l  sof tware is a f f e c t e d ,  t h e  necessary module 
l i b r a r i e s  must be arranged fo r .  

9. and 10. Same a s  before  bu t  a c t u a l l y ,  n o t  j u s t  plan- 
ned. 

I t  hardly seems necessary t o  comment on t h e  management and ad- 
m i n i s t r a t i v e  overs ight  which must go along wi th  a l l  t h i s .  

I f  t h e  foregoing analogy is  v a l i d ,  a number of impl ica t ions 
can be der ived.  These a r e  t h e  sub jec t  of t h e  next  sec t ion .  

A FEW PRECEPTS 

One always h e s i t a t e s  t o  be dogmatic and p a r t i c u l a r l y  with 
respec t  of how computing and a n a l y t i c a l  work should be done. 
D i f fe rent  people g e t  good r e s u l t s  wi th d i f f e r e n t  s t y l e s  and 
work hab i t s .  Nevertheless, when one is  working wi th in  a 
complex system of a c t i v i t i e s ,  he cannot be judged on h i s  
personal  r e s u l t s  a lone,  bu t  almost equa l ly  on how w e l l  they 
mesh wi th  surrounding a c t i v i t i e s .  Incompat ib i l i t i es  lead not  
only t o  e x t r a  i n te r fac ing  work bu t  a l s o  t o  i n f l e x i b i l i t y  and 
the i n a b i l i t y  t o  t r a c e  e a s i l y  t h e  e f f e c t  of changes. 



One of t h e  th ings  l a r g e l y  miss ing  i n  t h e  computing f i e l d ,  and 
found i n  a lmost  every  o t h e r  d i s c i p l i n e ,  is s tandard i za t i on  of  
symbology. Some de  f a c t o  s t a n d a r d i z a t i o n  e x i s t s ,  due mainly t o  
such th ings  a s  JCL which manufacturers can d i c t a t e  i n  t h e i r  
b a s i c  sof tware.  (Even t h i s  i s  n o t  always c o n s i s t e n t . )  I n  
modeling work invo lv ing  l a r g e  a r r a y s  o f  va lues  which must be 
i d e n t i f i e d  i n  d e t a i l ,  t h e  l ack  o f  s tanda rd i za t i on  l e a d s  t o  
incomprehens ib i l i t y .  This may no t  be t h e  wors t  r e s u l t ;  it 
hampers and even i n h i b i t s  automated process ing  techniques.  
These l a t t e r  a r e  important  t o  s imp l i f y  s m a r y  and r e p o r t i n g  
s t e p s ,  to make modi f i ca t ions  e f f e c t i v e  a t  a h igh  l e v e l  of 
s p e c i f i c a t i o n ,  and t o  a s s i s t  a n a l y s t s  i n  d e t a i l e d  i nves t i ga -  
t i o n s .  

Refer r ing  back t o  our  analogy,  suppose each a r c h i t e c t  used h i s  
own terminology,  each draf tman had h i s  own symbols, and each 
s u p p l i e r  quoted m a t e r i a l s  i n  d i f f e r e n t  we ights ,  measures and 
packaging. The world would be a n ightmare and every  p r o j e c t  an 
horrendous undertak ing.  Yet something s i m i l a r  occurs  i n  t he  
a n a l y t i c  use o f  computers. 

I t  i s  n o t  enough t o  organ ize  each p iece  of  a l a r g e  p r o j e c t  -- 
a form o f  subopt imizat ion.  There should be an o v e r a l l  cons i s -  
tency even i f  t h i s  imposes s l i g h t l y  awkward arrangements f o r  
p a r t i c u l a r  p a r t s .  Everyone cannot  be l e f t  f r e e  t o  dev i se  h i s  
persona l  schemes, even i f  they  a r e  t h e  b e s t  f o r  h i s  p a r t i c u l a r  
task .  Th is  p r i n c i p l e  reaches down t o  t h e  lowest  l e v e l  of 
d e t a i l ,  perhaps p a r t i c u l a r l y  so .  I t  is s t a n d a r d i z a t i o n  a t  t h e  
lowest  l e v e l s  which permi ts  f l e x i b l e  manipulat ion a t  h igh  
l e v e l s ,  n o t  t h e  o t h e r  way around. A t  one t ime ,  each r a i l r o a d  
de f i ned  i t s  own t r a c k  gauge and designed i t s  own wheel f l anges .  
It was much more important  t h a t  t hese  be s tandard ized than ,  
say ,  r a i l r o a d  management. S im i l a r  c a s e s  have occur red i n  
computing, i n  a very  broad con tex t .  A t  one t ime,  every  manu- 
f a c t u r e r  claimed s u p e r i o r i t y  f o r  h i s  record ing  scheme f o r  
magnetic tapes.  IBM's method f i n a l l y  won o u t  due t o  t h e i r  
dominance i n  t h e  f i e l d .  I t  may be t h a t  t h e i r  method is not  
t e c h n i c a l l y  t h e  b e s t  b u t  it is much more impor tan t  t h a t  today 
one can c a r r y  a tape  a l l  around t h e  world and have it readab le  
i n  a lmost  any computer f a c i l i t y .  

Whenever a requ i red  change a t  one l e v e l  imposes changes a t  
lower l e v e l s ,  d i f f i c u l t i e s  a r e  su re  t o  ensue. ( I t  is o f t e n  
cheaper t o  bu i l d  a new s t r u c t u r e  than t o  remodel a n  o ld  one.) 
Sometimes, lower l w e l  changes a r e  unavoidable and/or  d e s i r a -  
b l e ,  bu t  they  should be made w i t h  g r e a t  c a r e ,  n o t  i n v a l i d a t i n g  
o r  bypassing t h e  o r i g i n a l  des ign .  The a b i l i t y  which i n t e r -  
a c t i v e  computing techn iques g i v e  u s  t o  d i d d l e  w i th  a lmost  any 
p a r t  o f  a system should n o t  be used i nd i sc r im ina te l y .  I n  a 
word, some d i s c i p l i n e  should be mainta ined.  



The above a lso  implies t h a t  low leve l  rout ines inappropr iate t o  
the  task should not  be used j us t  because they a r e  "standard 
system gear" and avai lable.  Sometimes whole appl icat ion 
systems a r e  used this way. One should not  fo rge t  t h a t  sub- 
s t a n t i a l  cos ts  a re  involved i n  bringing a l l  this machinery i n to  
place t o  do a t r i v i a l  job. In genera l ,  it is advantageous t o  
think of software and da tase ts  a s  machinery and mater ia ls ,  and 
consider whether the  ends j us t i f y  t he  means. A good cont ractor  
would t r y  t o  ge t  inc identa l  jobs done while machinery is i n  
place f o r  some larger  purpose. Consider, fo r  example, the  s i ze  
of the  JCL and PCL decks required t o  ac t i va te  an MPS, and t he  
prescanning of the JCL and compilation of the PCL which is 
necessary. 

A DETAILED EXAMPLE 

Let me now turn from the  general and analogous t o  the de ta i led  
and spec i f ic .  During 1979 here a t  IIASA, I implemented a 
generator f o r  a generalized regional  agr i cu l tu ra l  model, o r  
GRAM. The formal de f in i t i on  of GRAM, i .e . ,  i n  mathematical- 
l i k e  notat ion,  was the  work of Professor M. Albegov and some 
assoc ia tes.  My task was t o  devise a computerized scheme t o  
make GRAM a working r e a l i t y .  Another IIASA s t a f f  member, A. 
Por, a l so  contributed heavily t o  t h i s  e f f o r t ,  pa r t i cu la r l y  i n  
devis ing, implementing and ge t t ing  o thers  t o  use a scheme fo r  
i n i t i t a l  data spec i f icat ion and transformation. This was 
c r i t i c a l  s ince we had rea l ized from the ou t se t  t h a t  properly 
arranged and formatted data from a var ie ty  of government 
agencies i n  d i f f e ren t  countr ies would never be forthcoming 
without a r e l a t i ve l y  simple but f l ex i b l e  and eas i l y  processable 
format t o  which data o r ig ina to rs  could and would conform. This 
subject  alone is worth 30-40 minutes of discussion which we 
w i l l  have t o  forego. 

The GRAM generator was completed while I was a t  IIASA - although 
the  report ing s ide needed fu r ther  work - and was applied t o  a 
study of the  Notec region of Poland. I was p leasant ly  sur-  
pr ised a t  the a b i l i t y  of our colleagues from Poland t o  provide 
ample da ta  i n  appropr iate format, the  only h i t ch  being the  
physical format of the t ransmi t ta l  tape which caused some 
i n t i a l  t rouble.  A heavy cont r ibutor  t o  the  p ro jec t  was Janos 
Kacprzyk who deserves much c r e d i t  f o r  h i s  dedicated and in- 
s igh t fu l  e f f o r t s .  

Since GRAM was being b u i l t  from the  ground up a s  an experi- 
mental system, I was able t o  put in to  e f f e c t  without any 
con f l i c t s  some ideas t h a t  I had been t ry ing t o  promote for  some 
time pas t  but with l i t t l e  success. These have t o  do spec i f i ca l l y  
with LP naming conventions, i . e . ,  symbology. Without claiming 
t h a t  my scheme is the  bes t  poss ib le ,  l e t  me present it t o  



illustrate what such an approach can accomplish. Such ideas 
are not new but are seldom applied consistently. The best 
previous work I know of is that of Ken Palmer at Esso in 
London which dates back to at least 1970 and actually goes 
much further, for somewhat different purposes, than mine. 

As we all know, LP rows and columns must have identifiers, and 
for practical reasons, these are limited to 8 characters. 
These are not properly regarded as names or even mnemonics but 
as encodings. The ability to use both letters and numbers is 
not for readibility but to extend the character sets and thus 
the number of usable combinations. In fact, a well-designed 
scheme does have considerable mnemonic quality but that is a 
side effect, not a goal. 

The pieces, usually single but sometimes double characters, of 
which an identifier is composed are members of sets. These 
are mainly indexing sets. An LP model is essentially combina- 
torial in nature and this is reflected in the various combinations 
occurring in its identifets. But to be fully meaningful, the 
index sets must be assigned positions in the identifiers. 
Since a large model will involve more than eight index sets, 
considerable thought must be given to devising the most useful 
arrangement. This point is often handled in a very slipshod 
manner by model implementers which gets them into awkward 
messes later when they want to extract information or summarize 
over a set or sets. 

Let us interrupt this line of thought a moment to consider what 
parts go into the construction of an LP model. First of all 
there are indexing sets or, in Haverly's terminology used in 
Magen and OMNI and perhaps elsewhere, classes. However, I 
prefer to reserve the word classes for a different purpose. 
Until one knows something about the categories of items to be 
considered, represented by index sets, there is very little one 
can say about a model. 

Second, there are the main LP (primal structural) variables 
and these are usually divided into classes, say production, 
construction, inventory, sales, etc. Hence one needs a special 
index set called variable class designators to distinguish 
these. Further differentiation usually depends on regular 
index sets. 

Third, there are the constraints in the variables and here 
four considerations come into play: 

(a) The type of constraints; 
(b) The constraint class, similar to variable class: 
(c) The indexing which is to apply; and 
(d) What data values are to be used. 



Note t h a t  it is only here t h a t  numbers have been mentioned and 
w e  do n o t  y e t  ca re  what the  va lues a c t u a l l y  a r e .  

Fourth, t h e r e  a r e  the  d a t a  t a b l e s  of which two k inds a r e  
p r i n c i p a l l y  involved: t a b l e s  of s t r u c t u r a l  c o e f f i c i e n t s ,  and 
t a b l e s  of l i m i t  va lues (RIIS, ranges,  upper and lower bounds). 
These d i f f e r  i n  their own indexing and naming requirements. 

F i f t h ,  and f i n a l l y ,  a r e  the s p e c i f i c a t i o n s  f o r  t h e  o b j e c t i v e  
funct ion o r  funct ions.  Although depending on v a r i a b l e  index- 
ing  and c o e f f i c i e n t  t a b l e s ,  these f requent ly  do no t  f i t  nea t l y  
wi th the  rest of the model. This was t h e  case  i n  the  Notec 
model and it is t he  primary reason f o r  c e r t a i n  s p e c i a l  pro- 
cess ing  i n  generat ing MEMM. This i s  too  l a r g e  a sub jec t  t o  be 
f u r t h e r  developed here but  needed t o  be mentioned. It is a 
ch ie f  cause o f  awkwardness i n  generat ing standard MPS inpu t  
f i l e s .  

Returning now t o  index s e t s ,  one must be c a r e f u l  t o  d i s t i n g u i s h  
between t h e  name of a set, usua l l y  on ly  one charac te r  i t s e l f ,  
and t h e  v a l u e  a member of the set. Thus one might have a 
set c a l l e d d e f i n e d  = { I ,  1, J, K ,  L]. (This is no t  a 
recu rs i ve  d e f i n i t i o n . )  To make this d i s t i n c t i o n ,  an upper 
case  letter can be used t o  denote a set name and t h e  lower 
case  one of i ts members. Thus I = { i l  where i is understood 
t o  run over symbolic, no t  numeric va lues even i f  the symbols 
a r e  d i g i t s .  

Since GRAM i s  a general ized system, f u r t h e r  l e v e l s  of abs t rac -  
t i o n  a r e  required.  For example, va r iab le  c l a s s e s  must be 
spec i f ied .  We do n o t  know how many ( c a r d i n a l i t y  of the  va r iab le  
c l a s s  des ignator  set) o r  t h e i r  symbols (values i n  t h e  set) but 
some such set much be spec i f i ed .  Since it i s  a master o r  
primary set, values must be presented i n  two t a b l e s ,  one wi th the  
f ixed name H:VAR.TYPE which g i ves  t h e i r  meaning a g a i n s t  t h e i r  
c l a s s  des ignator  and t h e  o the r  wi th t h e  f ixed name M:VIDSTRUC 
which s p e c i f i e s  t h e i r  indexing s t r u c t u r e .  

The p re f i xes  t o  t h e  above t a b l e  names r e f l e c t  the f a c t  t h a t  
GRAH was implemented i n  DATAMAT, t h e  d a t a  management extension 
t o  the  SESAME i n t e r a c t i v e  MPS. DATAMAT u t i l i z e s  t h r e e  forms 
of  t a b l e s :  

numeric t a b l e s ,  names pref ixed G: 
symbolic t a b l e s ,  names pref ixed M: 
t e x t - s t r i n g  tables, names pref ixed H: 

They a l l  u t i l i z e  the same form of symbolic s tubs  and heads 
except H:table heads which a r e  convent ional ized f o r  formatt ing 
purposes. Since o t h e r  heads and s tubs  themselves c o n s t i t u t e  



s e t s ,  void t a b l e s  a r e  sometimes s u f f i c i e n t  f o r  de f in ing  a s e t .  
In t h e  above case ,  the  s tubs of t h e  two t a b l e s  a r e  i d e n t i c a l  
b u t  t h e  bodies serve d i f f e r e n t  purposes and hence u t i l i z e  
d i f f e r e n t  t a b l e  forms. (Some systems, f o r  example O M N I ,  
permit  a l l  t h ree  forms t o  be combined i n  one t a b l e .  Whether 
o r  no t  this c o n s t i t u t e s  a s i m p l i f i c a t i o n  is  a moot p o i n t . )  

For regu la r  indexing s e t s ,  even t h e i r  number and names a r e  
unknown a p r i o r i .  When it is necessary t o  r e f e r  t o  the  names 
of some indexing set whose name is unknown, an underl ined 
u p p e a s e  can be used, f o r  example, A is  t h e  name of some s e t  
which m i  h t  be A - ( a } .  In f a c t ,  a l l - regu lar  indexing s e t s  
a r e  nam*n t h e  s tub  of a t a b l e  c a l l e d  8:INDICES. s im i la r  t o  
H:VAR.TYPE. The bodies of these H:tables a r e  used only f o r  
auto-documentation. 

For each member of the  s t u b  of H:INDICES, another 8 : tab le  must 
be spec i f i ed  (by that name) whose s tub  s p e c i f i e s  t h e  members 
of t h e  s e t  and whose body g ives t h e i r  meaning. For example, 
one l i n e  of H:INDICES is  

I = 'ALL CROPS CONSIDERED' 

which shows what index s e t  I r e f e r s  t o .  There is then another 
t a b l e  H:I which has e n t z s  

W a 'WHEAT' 
R = 'RYE' 
8 = 'BARLEY' 

e t c .  

which shows w h a t  members of s e t  I r e f e r  to .  

Unfortunately, every group of models has some spec ia l  cond i t ions 
t o  be taken i n t o  account. These a r e . o f t e n  expressed w i t h  
"FOR" and "EXCEPT" phrases.  Another technique was a l s o  used 
i n  GRAM f o r  subsets  of c rops which had t o  be t r e a t e d  d i f f e -  
r e n t l y .  Another t a b l e  c a l l e d  H:CROPS has 2-character  s t u b s ,  
f o r  example, 

I G  = 'GRAINS' 
I 1  = ' INDUSTRIAL CROPS' 

e t c .  

Corresponding t o  these s t u b s  a r e  void M:tables l i s t i n g  the  
subsets  i n  t h e i r  heads, f o r  example: 



( the  rows of dots  terminate a tab le  de f in i t i on . )  Such 
spec i f i ca t ions  a re  easy t o  devise but  requi re  t h a t  spec ia l  
processing code be i ns ta l l ed  i n  the generator.  Further design 
e f f o r t  is  needed i n  t h i s  area and the foregoing is more an 
example of what not t o  do than of c lean, general capabi l i ty .  
Nevertheless, a few spec ia l  gimmicks always seem necessary i n  
par t i cu la r  cases and it is perhaps more important t h a t  the  
generator be eas i l y  modifiable. 

Let us now see how LP column i d e n t i f i e r s  a r e  put together. 
These a r e  members of va r iab le  c lasses  (or,  f o r  pu r i s t s ,  a re  
surrogates fo r  them). The f i r s t  var iab le  c l ass  i n  GRAM is 
named X and represents growing of prFmary crops. The f i r s t  
pos i t ion i n  an LP column i d e n t i f i e r  always represents the 
var iab le  c lass .  The following en t ry  appears i n  tab le  
M:VIDSTRUC 

X = X I .  PRSA 

The do t  ind icates t h a t  the  th i rd  pos i t ion is not  used but is 
held by the  dot. Any unused pos i t ions through t he  seventh a r e  
so held. The eighth was not used but l e f t  ava i lab le ,  fo r  
example, i f  t h e  periods were introduced. 

The f i ve  l e t t e r s  a f t e r  X a r e  names of index s e t s  and show t h a t  
X-class i den t i f i e r s  a r e  constructed by running over a l l  combina- 
t ions  of members of these s e t s ,  subject  t o  the  provision t ha t  
a nonzero coe f f i c ien t  appear i n  some cons t ra in t  for  each 
combination. An assembly language subroutine is used t o  run 
over a l l  combinations, l i k e  a mixed radix counter. (An analogy 
is a d i g i t a l  clock showing days, hours, minutes and seconds.) 

Another ent ry  i n  M:VIDSTRUC is  

U = UJKPRT.  

No con f l i c t s  a r i s e  s ince s e t s  I and J a r e  never used i n  the 
same var iab les,  and s im i la r l y  fo r  S and T. The placement of 
the  P and R s e t s  was d ic ta ted  by the f a c t  t h a t  they appear i n  
a l l  var iab le  c lasses  and most cons t ra in ts  c lasses .  Only the 
fourth and f i f t h  pos i t ions l e f t  enough pos i t ions on each s ide  
fo r  order ly  assignments. This kind of pre-analysis m>u be 
made before specifying i den t i f i e r  s t ructure.  

A d i f f e ren t  s o r t  of con f l i c t  d id  a r i s e  with Y-variables which 
have the same s t ruc tu re  a s  X-variables but which involve a 
subset of the I s e t  i n  the  same cons t ra in ts  as X-variables. 
This was resolved by def in ing a Y s e t  and i ns ta l l i ng  spec ia l  
processing code. This was the mostwkward s i t ua t i on  i n  GRAM 
and resul ted from a formulation compromise with respect  t o  
secondary crops which a re  not adequately handled by LP. 
Again, some spec ia l  gimmick always seems t o  a r i s e .  



S p e c i f i c a t i o n  o f  c o n s t r a i n t  ( i . e . ,  LP row) i d e n t i f i e r s  is 
d i f f e r e n t  from t h a t  o f  column i d e n t i f i e r s  and i n h e r e n t l y  more 
d i f f i c u l t .  One may no te  t h e  fo l lowing d i f f e r e n c e s  immediately: 

(1) There a r e  genera l l y  more index combinations f o r  
columns bu t  fewer c l a s s e s .  As a r e s u l t ,  column i d e n t i f i e r s  a r e  
more s t r a i g h t f o w a r d  though t h e  number genera ted o r  examined 
may be very l a rge .  

( 2 )  Index s e t s  d isappear  from those  c o n s t r a i n t s  in  which 
they  a r e  summed over.  The fewer index s e t s  appear ing ,  the 
fewer c o n s t r a i n t s  bu t  t h e  t o t a l  number o f  c o e f f i c i e n t s  may be 
about  t h e  same due t o  impl ied aggregat ions .  For example, a 
c o n s t r a i n t  over  a t o t a l  reg ion  may i nc lude  a l l  t h e  c o e f f i c i e n t s  
o f  c o n t r a i n t s  over  its subregione,  

( 3 )  Cons t ra in t  c l a s s e s  and index sets may not  be s u f f i -  
c i e n t  t o  i n s u r e  nonambiguity, due t o  m u l t i p l e  o r  s p e c i a l  
c o n s t r a i n t s  over  t h e  same i tems.  Conversely, index s e t s  may 
appear which do n o t  occur f o r  columns. 

( 4 )  I t  is u s e f u l  t o  ase ign  one p o s i t i o n  ( t h e  f i r s t )  t o  
d e s i g n a t e  LP c o n s t r a i n t  t ype ,  independent ly  o f  c o n s t r a i n t  
c l a s s  v is-a-v is  the model. (This may h e l p  a l l e v i a t e  t h e  
problem o f  ambiguity b u t  does n o t  guarantee t o  e l i m i n a t e  it.) 

15) Cons t ra in t  indexing must match l i m i t  t a b l e  indexing 
and be c o n s i s t e n t  w i t h  c o e f f i c i e n t  t a b l e  indexing.  Universal  
s e t  members "any" and "none" may a l s o  be necessary .  

A l l  t h e s e  s i t u a t i o n s  occurred i n  o r  were imposed on GRRM and 
it must be admit ted t h a t  f u r t h e r  work is needed i n  gene ra l i z i ng  
c o n s t r a i n t  s p e c i f i c a t i o n .  Nevertheless,  t h e  scheme used 
proved q u i t e  workable and its main p o i n t s  w i l l  be i nd i ca ted  
here.  

The f i r s t  p o s i t i o n  o f  a c o n s t r a i n t  i d e n t i f i e r  is ass igned t o  
LP type. These a r e  l i s t e d  i n  a t a b l e  H:CON.TYPE which is 
genera l  t o  LP formulat ion Lor in tended t o  be )  and n o t  s p e c i f i c  
t o  a c l a s s  o r  models. These types  i nc lude  s imple upper bounds 
and GUB s e t s  a l though,  i n  f a c t ,  these f e a t u r e s  were no t  used 
a s  such. The main types  were a s  fo l lows:  

A = 'AVAILABILITY, NO M I N  REQUIRMENT: 
B = 'BOUNDED ABOVE AND BELOW (RANGED) 
C + 'INEQUALITY CONDITN, NO CONSTANT' 
D = 'DEWiND,  NO UPPER LIMIT' 
E = 'EQUALITY, GENEWL' 
F = 'FUNCTIONAL FORM' 
K = ' GUB INEQUALITY, (NO ACTUAL GUB) ' 
L = 'BALANCE EQUALITY, NO CONSTANT' 



The second pos i t i on  s p e c i f i e s  c o n s t r a i n t  c l a s s  and is  s p e c i f i c  
t o  t h e  s e t  of models. These c l a s s e s  a r e  l i s t e d  i n  H:CONCLASS 
and inc luded,  f o r  example: 

B = ' LABOR' 
C = 'CAPITAL' 
D = 'WATER' ... 
L r 'LAND' 

. . . 
W = 'WAGES ' 
$ = 'COST OR PROFIT' 

The l a s t  was used f o r  f unc t i ona l  d e f i n i t i o n s  f o r  which a 
s p e c i a l  technique w a s  used which w i l l  n o t  be f u r t h e r  d i scussed .  

The a c t u a l  c o n s t r a i n t  i d e n t i f i e r  s t r u c t u r e s  appear on ly  i n  t h e  
s t u b  o f  a master  t a b l e  c a l l e d  M:CON which is ,  i n  f a c t ,  an 
abbrev ia ted  d e f i n i t i o n  or "p i c tu re "  o f  t h e  e n t i r e  model. 
Table M:CON is t h e  pr imiary  d r i v e r  f o r  t h e  genera to r  and ties 
t oge the r  a l l  t h e  va r i ous  p a r t s ,  showing t h e i r  r e l a t i o n s h i p s .  

One i d e n t i f i e r  appear ing i n  t h e  M:CON s t u b  i s  

BFFPR. 

which i n d i c a t e s  a set of double i n e q u a l i t i e s  on f e r t i l i z e r ,  
indexed over s e t  F ( f e r t i l i z e r  types ,  n o t  appear ing  i n  column 
i d e n t i f i e r s ) ,  P ( type o f  economy) and R ( sub reg ion ) ,  where P 
i s  r e s t r i c t e d  t o  va lues  ' 2 '  and '3 '  (coopera t ive  and p r i v a t e ) .  
The v a r i a b l e  c l a s s e s  involved a r e  X ,  Y and U which i nc lude  
index sets I ,  P, R ,  A ,  J, K and T ( a l s o  t h e  Y subse t  of I ) .  
Hence summation i s  over I (and Y )  , S, A ,  J,  K and T f o r  each 
FPR combination. This was t h e  l a r g e s t  set of  c o n s t r a i n t s  i n  
t h e  model. 

The head of M:CON and t h e  row f o r  BFFPR. are shown below. 

M:CON = M I N ,  RHS, SUM, MSUM, ISET, PSET, NO. - - -  
BFFPR. = GPPRN, GTPR, AXAY, FU, ALL, '23 ' ,  '23 '  

This is read fo l lows.  Lower l i m i t s  (MINI f o r  t h e s e  c o n s t r a i n t s  
a r e  g iven i n  t a b l e  G:GFPRN. Upper limits (RHS) a r e  i n  t a b l e  
G:GFPR. Var iab le  c l a s s e s  X and Y both appear ,  w i th  c o e f f i -  
c i e n t s  from G:A taken p o s i t i v e l y  (SUM). Var iab le  c l a s s  U 
appears w i th  c o e f f i c i e n t s  from G:F taken nega t i ve l y  (MSUM). 
A l l  members of s e t  I  a r e  used b u t  only '2 and ' 3 '  from set 
P. Th is  i s  c o n s t r a i n t  set number 23. (The I and P s e t s  a r e  
spec ia l i zed  i n  seve ra l  c o n s t r a i n t s  and hence have columns i n  
M:CON.) 



Another s e t  of const ra in ts  has the iden t i fe r  BFF... and hence 
only one const ra in t  fo r  each f e r t i l i z e r  type. Summation is 
over P and R s e t s  i n  addit ion t o  those previously noted. A l l  
the same coef f i c ien ts  occur but the M I N  and RHS tab les  a re  
smaller and d i f fe ren t .  

Since the GRAM generator i s  wri t ten i n  DATAMAT, it is eas i l y  
modified. However, the DATAMAT processor i s  not very e f f i c i -  
en t  for  t h i s  kind of appl icat ion on models a s  dense a s  t ha t  
for  the Notec region. (It had approximately 50,000 nonzero 
values. ) 
Essent ial ly,  DATAMAT was used l i k e  a compiler f o r  which it was 
not designed. Nevertheless, once generated, the model was 
eas i l y  worked with and the general approach seems eminently 
su i tab le  fo r  automated model generation. 

The important point  we wish t o  make, however, is t h a t  carefu l  
design and contro l  of symbology is a s ine  qua non fo r  well- 
managed modeling systems. Much the same approaches could be 
used with other systems such a s  DATAFORM (very c l o s e  to  DATAMAT 
i n  language) o r  OMNI which has d i r e c t  de f i n i t i on  of s e t s  
(c lasses) .  Both the l a t t e r  u t i l i z e  compilers and a re  designed 
fo r  batch processing whereas SESAME is an in te rac t i ve  system 
and DATAMAT is la rge ly  in terpret ive.  (A spec ia l  version of 
DATAMAT was implemented fo r  GRAM which uses a kind of "half- 
compiler" and t h i s  g rea t l y  improved throughput.) The impor- 
t a n t  task seems t o  be t o  convince LP modelers t o  use ex is t ing 
too ls  ef fect ive ly  and t o  demand fur ther  improvements i n  the 
fu ture,  ra ther  than forever f a l l i n g  back on ad hoc FORTRAN 
programs and sloppy nomenclature. 
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This paper examines a practical aspect of our decomposition method for dual angular lin- 
ear programs(51 in applying it to a planning system as a means of coordination. We often 
recognize in real planning systems that a "feasible solution" to a large-scale planning prob- 
lem isobtained by solving a sequence of subproblems and composing their solutions rather 
than formulating it as a single large-scale model to be optimized. In the decomposed mod- 
els, the planning staff can control the solutions through the modification of the succeeding 
models so as to be more desirable with respect to their criterion. We consider how to im- 
prove the present planning system leaving its basic planning method unchanged. In partic- 
ular, we tacitly assume that we shall be interested in considering a manner of computeriza- 
tion of the planning system from a practical viewpoint. We emphasize the need for a prac- 
tical coordination method in order to improve the plans obtained separately from the sub- 
models toward an overall objective. It i s  supposed that most of the models for such coor- 
dination will actually be formulated in dual angular form involving the submodels as part 
of their entire structure. Based on computational experience with our experimental codes, 
MULPS/FORTRAN[71 and MULPS/APL[Gl, we shall present one direction of applica- 
tion of our algorithm to a coordination method. 



1.  Int roduct ion 

We shal l  e d e  a pract ical  aspect of our decomposition method for  dual 

angular l inear  programs[5] i n  applying i t  t o  a planning system aa a meaus of 

coordination. We oftau recognize in rea l  planning system that a "feasible 

solution" to  a large-acale planning problem is obtained by solving a sequence 

of subproblem md composing the i r  solutiorrs rather than formulating i t  as a 

single large-scale d e l  t o  be optimized. In such cases. there seame t o  be 

persuasive and legit imate reasons why ouch a pluming mOIIp4r has been adopted 

in the rea l  syrtam. The reasons n r m  d o e a l y  related to the existence of 

intaugible factors under rea l  planning circuuutaucee and the subject iv i ty of 

the planning s t a f f ' s  c r i ter ion to  evaluate the plans. It m y  be too d i f f i c u l t  

to formdate those in a form of a aingle model. In the decomposed models, the 

p l w i n g  s ta f f  can control the solut ions through the modification of the suc- 

ceeding models so an t o  be more desirable v i t h  rerpect to the i r  c r i ter ion.  

We slull coluider h w  to  *rove the present planning system leaving its 

basic manner of planning unchanged. In part icular,  we t a c i t l y  ossrrma that  we 

W be interested in considering a manner of computerization of the plann- 

ing system from a pract ical  viewpoint. For that  purpose. we sha l l  emphasize 

the need for a pract ical  coordination lllethod i n  order to  improve the plans 

obtained separately f r w  the submodels toward aa overal l  objective, even i f  i t  

is a minor al terat ion. It ia supposed that  most of the models for  such coor- 

dination w i l l  be actual ly formulated aa a dual angular type of model involving 

those submodels i n  its en t i re  structure. 

Based on our computational experience i n  using our experimental codes, 

PaTLSS/FORTRAN[7] and NDLPS/APL[L], we shal l  present one direct ion of applica- 

t ion of our algorithm to a coordination method, i n  which the algorithm may 

not be necessari ly used for performing a global op tb iza t ion  of large-scale 



l inear  program. Rather. we intend to  replace the "experimce-baaed" cwrd i -  

nation in an actual  planning syacem by a pract ical  decompoai t ion-coord~t ion 

mthod when va computerize the planning syrtem. 

In Section 2 a d a c o m p o s i t i o n - c o o r ~ ~ t i m  mthod dll be described as one 

of the future d i n c t l o r u  of l a rp -sca le  1- progrmdng research. In Section 

3 ch. feature. of our algorithm and the r e l a t i o m  v i t h  other a lgor l thp.  w i l l  be 

mnrionmd, a d  the conc lwiow from the computational expmriance VFU ba given. In 

t!m lut sect ion um .hal l  introduce au uuraple of a h i . r u c h i u l  decoapomition 

approach t o  r u l  prcduction mehaduling in a Japanese o i l  coq.ny, which vill be 

n g u & d  u ch. f i r a t  s tep t w u d  m r p p l i u t i o a  of our decompo8itlon-coordination 

mrhod. 

2. The Need f o r  a Deco~nposition-Coordination Uethod 

It i8 vall-known that h l a r a r c h i u l  mthoda ham barn adopted in largtrcali 

i ndus t r ia l  p laming symtams for  p r r c t i u l  plauning [14]. By introdncing a hier- 

archical  s tmc tu re  in to  a plaoaing rymta,  um can formulate a vagru overall 

planning problem am a umber of more concrete 8ubproblmm on var low kipdm of 

hierarchical  18~818 ; h a r u f t e r  we d l l  n f e r  t o  the taminology of hierarchical  

.gatem theory of Xa8arovic e t  al. (141. 

For axtmple, the planning symtem in a Japanesa o i l  eompany,which la reputed 

t o  be one of the most intennivr w e r a  of l inear  prop-, h u  the f o l l d g  

h la ra rch icd  r t ructura b u i c a l l y  : 

Lave1 1 (8ighemc) : Long-term planning ; f a c i l i t y  md i n a s t m m t  plann- 

ing, curdes select ion and contracts, e tc .  

Leve l2  : Short-tern planning for  mix month8 or  one year ; 

pro f i t  md 1088 plaoaing, supplydemand pl.nning,ecc. 

Lave1 3 : Production planning fo r  evary one m t h  in the term. 

Lave1 4 (Lowest) : Oporac iod  planning and schmdullng fo r  one month. 

A l l  planning act iv i t ie8 except on Level 4 are perforrmd in the head off ice.  

but tho88 on Lave1 4 am performed a t  the refinery-eitem. 

We may regard thin h ia ra rch i t r l  planning syatem am a pract ica l  Wpa of 

decomporition method to  solve a largm vague planning problem so that  a larga 

a h t r a c t  model in deccnpomed in to  a nmuber of concrete rubmodels and each is 

sequential ly solved in a givuu hierarchical  order. We should notice that ,  a8 a 

simple pract ical  way to obtain an approximate solution to  a large-scale plonning 



problem on a hierarchical leve l ,  a s imi lar approach is also rued. on vhich ve 

ahal l  focus our at tent ion herea f te r .  In p u t i c u l a r ,  t h i s  simple way h.s been 

much w r e  favourable in planning on 1-r lavela than on higher levels.  because 

thore a m  mauy timo-dep.nd.nt ac t i v i t i es  having d i f ferant  p r io r i t i es  and weer- 

t-ty a t  the operat ioad f i d d s  m d  t h e n  & th. w d e l  too big. This rgpe 

of hk ra rch ica l  n t h o d  to  solve large-scale problem6 is 4 e d  the h i e m h i m 2  

d o c a n p 4 e i h  mUlod [11,[21,[31,Il21, [131. 

lsong th. s u b d o l a  c r u u d  by the hiarmrchicl l  decomposition n t h o d ,  there 

u e  hro kinds of liakqes, olu be- =&la oo the d i f ferent  level. d 

plother b ~ M m  t h o u  an the ram 1-1. fn th. h k r u c h i c a l  doc- i th,  

chore l inkages u m  mguded u the bouuduy cooditions of the subproblams. and 

each problem is solvad h a  a given order fo r  us-d values t o  t h o u  boundaries. 

& r c N  u m p l e  of h i e r u c h i c a l  &collposition w i l l  be described in Saction 4. 

Om of the vuk p o i n u  in the h i . ruch icr l  docomposition mrthod id that i t .  

l.ck an uplicit-r t o  word3aate the s o l u t i o ~  to  the submodels toward su 

o r n r d l  objectiva. Such coordinrrtiorr mmy m a r l y  be prfo-d InforPr l ly by 

nuu of information u & m p  among ths planners or  b e t v n n  un i ts  i n  the organ- 

iutim. A set of the solution8 t o  the submodds by thid approach m y  be no w r e  

t h m  a " feasible solution" to the en t i re  plandug pmblm.  I f  a pract ica l  coordi- 

nrt ion n t h o d  could be r u l i z e d  i n  vhich the ansumd va lwa  g iwn  fo r  the linkages 

could be adjusted ao u t o  Improve the overall p.rformnce, we vill be able to  

design an s f f i c ien t  wmputerized planning s y s t e m  vhich could s e t  up a bet ter  

plan v i t h  d y  a d e r  -unt of e f f o r t  t h m  in the present syscsm. W e  sha l l  

dl the h i % r r c h i u l  d e c q r i t i o n  approach having an u p l i c i t  coordination 

procena the &mnpmtiuneonIination method. 

h c h  ef for r  h a  be- o.& so f u  for dovaloping mathematical p r o g r e g  

d e l s  of pract ical  w, in such industr ies of Japan a s  o i l  and stsol, on higher 

levala of planning. Oa the other haadsthe omdelo m d  the solut ion =thodo fo r  

planning m d  scheduling problema on the l w e r ( o p r a t i o n a l )  l e w l a  have been l e f t  

ui& sxcept f o r  the optimal control problemm of physical processes. Rather, 

the a m 1  of e rper ianud  s ta f f  h.s been mgudad u being fmportmt. Ewever, 

th is  tsndency v l l l  be chmging in the m a r  future t o  a w m  computerized log ica l  

-er than presently because of the appaarence of high-level d l  cmputers 

and the remarkable progress in management decision support syatema. Tha personal 

computers vill b e a m  popular and v i l l  be rued a t  the operational f i e lds  for  

generatiog data for  models and analyzing tha resu l t s ,  l inking it v i th  the main 



computer very soon. 

It seems tha t  the fo l lov ing tvo.points on large-scale mathematical pro- 

g r d g  w i l l  be important in the near fu tu re  f o r  computerization of the  plann- 

ing systems : 

1) On the higher Z.evele o f  p k i n g  ByEt8WI8,a coordination method and 

its r e l a ted  models useful  f o r  l ink ing  together the  var ious kinds of planning 

models on two d i f f e r e n t  h ie rarch ica l  l eve l s  and f o r  coordiaat ing them tovard an 

mrall object ive.  

2) On the h a t  hwl, a p rac t i ca l  approach f o r  solv ing large-scale 

problems on the s m  h ierarch ica l  l eve l ,  in pa r t i cu la r ,  scheduling problem : 

f o r  example, m e t  production scheduling models are too l a rge  t o  be d i r e c t l y  

solved by a computer i ns ta l l ed  a t  the operat ional  f i e l ds .  To install a la rge  

computer only f o r  its purpose w i l l  no t  be economical. Therefore, the  h ie ra rch i ca l  

&composition mmthod is of ten  adopted f o r  so lv ing  t h e m .  Any p rac t i ca l  coordina- 

t i on  method will be rLso very useful  e m n  f o r  solv ing a l a r g o c a l e  operat ional  

problem so t h a t  the mmthod may praLs i t  possib le t o  improve the present  so lu t ions  

t o  so- ex ten t .  

Two Types o f  Algorithms Required. 

Ua s h a l l  n w  emphasize t h a t  two types of  a l g o r i t h m  should be developed fo r  

large-acala linear programma f o r  the purpose of r ea l i z i ng  the above mentioned 

points. 

1 )  Algorithm an an E f f h k n t  Sof- : This a rea  is in l i ne  with the 

t r a d i t i o n a l  d i r ec t i on  of developing nev a lgo r i t hm.  which a re  t o  so lve  the large- 

scale problems d i rec t l y  and e f f i c i en t l y .  This may be regarded aa f inding another 

" s b p l e x  method" f o r  large-scale problems. 

2) Algorithm as a Coozdinution h t h o d  : A ce r ta i n  type of algori thm 

uaeful  f o r  computerizing a r e a l  plarming proceas f o r  obta in ing an improved 

so lu t ion  w i l l  be needed. P i r a t l y ,  t h i s  algorithm should have a mechanism adapted 

fo r  expresaing a t  l e a s t  tvo typ ica l  operat ions of decomposition and coordinat ion 

which o f t en  e x i s t  in r e a l  planning proceaaes f o r  large-scale problems. It w i l l  be 

of a two-level scheme which means both solv ing subproblems in sequence and coordi- 

na t ing  them f o r  an improvcd aolut ion.  Secondly. t h i s  algorithm should have a 

c e r t a i n  type of a lgor i thmic s t ruc tu re  ao aa t o  be ab le  t o  be e a s i l y  rea l i zed  as 

a use r ' s  ova mathematical programming system i n  a simple way; i t w i l l  be des i rab le  

f o r  t h i s  purpose t h a t  the system can be e a s i l y  w r i t t en  by the users thamselves as 



a "Hathematical Programing Systems Complex" b u i l t  up by using advanced 

comerc ia1  codes. 

There is soma coordination i n  the r e a l  h ie rarch ica l  decomposition approach. 

It may be performsd on the baais of the planning s t a f f ' s  experience, vhich ve 

s h a l l  c a l l  the ecperienco-based caodinatia. It has been shown in papers on 

organizat ional  theory, e.g..[8].[9], t ha t  the umber  of information exchanges 

betmen the un i t s  in an organization fo r  coordination is only a few. u i t  i a  

l imi ted mafnly by coat and t h o .  We shall need a coordinat ion mchao im.  in the 

algorithm, which la close t o  a r e d  coordination manner. 

In the  c w  of cmnputerization of a r e a l  planning system. ue s h a l l  need t o  

wr i te  our ovn computer program involving a . m t r I x  generation from mahtained 

data bases,  m d i f i c a t i o n  of input  data and various aubwdels,  the  f a c i l i t i e s  f o r  

checking the overa l l  acceptab i l i t y  of the resu l t s ,  a repeated opt imizat ion of 

subproblems, and the  composition of the solut ione t o  the  var ious subproblems. . 

Y. rhrll c a l l  i t  the NnthmnxticaZ R q p w d n g  Syetoms CanpZe (MPS Complex). 

For a m p l e .  the Extended Control Langrup (ECL) of the MPSX/370 h a  the  

f a c i l i t i e s  appropr iate f o r  t h i s  purpose. by vhich we can wr i t e  a PIPS Complex i n  

such a -er t ha t  the poverful WSX can be used an a too l  f o r  the optimization 

of the var ious problema in the MPS Complex. The devclopmnt of t h i s  type of 

algorithm seema t o  br ing us a wider clasr of advanced tQS app l ica t ions  i n  the  

future. 

3. Our Decomposltlon Algorlthm as a Coordlnatlon Method 

An o r i g i n r l  form of our decompositioa algorithm (31 van dweloped as a 

coordination method f o r  solv ing tvo-stage l i nea r  programs in the nested tvo-level 

approach t o  multi-period planning. ca l led  the PAIRDP syatem(21. and then the 

idea vne fu r the r  extended t o  the present algorithm[5] f o r  solv ing dual angular 

l i nea r  programs. Therefore. the algorithm haa the fea tures  convenient f o r  

using i t  a s  a c o o r d i ~ t i o n  method. I n  addi t ion,  we have obsetved from our 

computational experience [4].[5].[7] t ha t  the  computational behaviour is 

a lso  des i rab le  to  a decomposition-coordination approach. The fea tures  of our 

algorithm a re  sumanrized as  follows : 

The features of the atgorithm. 

1) The algorithm is of a resource-directive decomposition and can make use of 

"good" i n i t i a l  values f o r  l ink ing  var iables eas i l y ,  such an those obtained by 



the planner from experience. The ocher advantageous propert ies inherent  in the 

resource-directive decomposition such a s  claimed i n  Burton e t  a l . [8 ]  a r e  a l so  

found. 

2) A number of l i nea r  programs are  solved throughout the e n t i r e  algorithm. 

An e f f i c i e n t  computer program can be e a s i l y  wr i t ten  by users  an long as an 

advanced l i n e a r  prograudng subroutine is avai lable.  

3) The optimizing s t ra tegy  i n  the  presant algorithm is e a s i l y  modified f o r  

the purpose of taking accormt of a planner's imp l ic i t  u t i l i t y  funct ion defined 

on tho object ive functions of the subproblema, s ince the s t ruc ture  of the sub- 

problems is preserved throughout the opt iPizat ion[3] .  

4) The number of coordination cycles required f o r  opt imol i ty  is r d a t i v a l y  

small and does not  aacessar i l y  increase along with sn inc-e i n  the nmber  of 

subproblems. Rather, it s tays  a t  a re la t i ve l y  small number. We may roughly 

est imate i t a t  the rider of subproblame o r  even less, though i t  usually depends 

on the  i n i t i a l  valuas fo r  the l ink ing var iables.  

5) k the so lu t ion  a t ta ined a t  tho f i r s t  o r  e a r l i e r  cycles of coordination is 

c lose t o  the optimum point ,  i t  may be e f f e c t i m  t o  s top  computing a f t e r  a few 

cycles before the exact opt imal i ty  is obtained. an i t is in the experience- 

breed coordination. 

Ihe re'etations with other atgoritlmrs. 

Lately, we have noticed tha t  our algorithm is bas i ca l l y  along the same llme 

re Gasm' a lgor i thm[ l l ] .  and, therefore,  is expressed i n  terms of WinLler's GBBP 

simplex method[l7] speci f ied by a spec ia l  solut ion s t ra tegy .  Eovever. the basic 

idea underlying Winkler's algorithm can be regarded aa a simplex method based on 

a bas is  fac tor iza t ion  method, i .e . ,  h i s  algorithm belongs t o  the f i r s t  type of 

algorithm mantioned in Section 2. 

The main di f ferences between Cass' algorithm and ours are  sunmaarized as 

f o l l w s :  

1) In order t o  f ind an improved bas is  f o r  a non-optimal subproblem, we 

employ a direction-f inding problem. vhich in defined aa a small l i nea r  program. 

Ue have al ready reported i n  [3] ,  although i t  is i n  the case of NO-stage l i n e a r  

programs, t ha t  the CPU the and the nlrmber of coordination cycles required f o r  

opt imal i ty  i n  our mathod a r e  l ess  than those when employing Cass' type of 

se lec t ion  ru le  t o  f ind a new bas is .  In our method more than one basic var iab les  

a t  a time a re  exchanged by solv ing the direction-f inding problem. On the other 

hand, only one basic var iable in the  non-optimat subproblem i s  exchanged i n  C a s s '  



algorithm. Thia d i f ference makes the number of coordination cycles smal ler  in 

our mthod.  

2) In our algorithm tha non-optimal subproblem is solved i n  a c w p l e t e  

form only i f  the d i rect ion- f inding problem can not  be defined o r  i t  can not 

br ing ua a new basia. G u s '  algori thm alvaya solves i t  in a complete form. 

3) In tha coordination problem of our algorithm, f r e a  v a r b b l a s  a re  

defined a t  evary cycla in ordar t o  inprom the  p r a a m t  values of tha l ink ing  

var iables.  Tha v a l w a  of tha l h k i n g  var iab las  ara  a d j w t e d  a r o d  the  present 

v a l w a  through tha f m a  vu i . b l ea .  On the  o thar  h.nd..tha o r i g i na l  non-negative 

l ink ing var iab las  u e  r w d  f o r  thi. purpoaa in C u a '  algorithm, b e c a u a  thare  

i. no concept of coordination in h i .  algorithm. Thia inp l iaa  t ha t  tha coordi- 

nat ion problem in Gaaa' algori thm is defined from the  o r i g i na l  l h k i n g  matrices. 

In our algorithm it in defined from the  l inir ing matr ix  updated with reapact  t o  

tba pmaent  bas ia  m t r i c e a  of the aubproblarm. 

Tho mluo ions  j%n tho canptttatwnal ozpolieneo. 

According t o  our computational exparlance in w i n g  m o  experimental codee. 

MlLPS/FOETRAN f o r  a = d i m - a i u  coaputer[7] and HfJLPS/APL f o r  a minicomputar[6], 

n c.n conclude tha following: 

1 )  The s i z e  of the coordination problem o f ten  r a a t r i c t s  the w e  of our 

algorithm. The number of r w a  i n  the coordination problem is equal t o  t ha t  of 

the l i nk ing  varinblas.and th. number of colmna is l a rge r  than the t o t a l  number 

of r w a  i n  tha a n t i r e  problem. Both of these numbera a r e  very l a rge  i n  r e a l  

problems. Therefore, va  muat develop an e f f i c i e n t  ache- t o  de+l wi th aa 

la rge  a coordination problem aa posaible. 

2) The coordination problem i t s e l f  has qu i t e  o f ten  a spec ia l  s t r uc tu re  

in case of r e a l  p r o b l m .  We s h a l l  propoee tha t  commercial MPS packages to  be 

h l o p e d  in the fu tu re  ahould have only a etandard LP subroutine but  a lao  

various ones f o r  s t ruc tured  l i nea r  programs. Such an MPS could make i t  possib le 

t o  br ing us more advanced EIPS appli&qtione than the present  ECL does, i n  the case 

of the computerization of planning syetems. For example. the coordination 

problem f o r  dynamic models ham a s t a i r c a s e  a t ruc ture .  I f  v e  could employ an 

e f f i c i e n t  a lgor i thm[ l6]  t o  make w e  of i t , it vould be poasib le t o  solve much 

l a rge r  problem more e f f i c i e n t l y  than ve do now. Such an attempt is under way. 

3) For the optimization of subproblems i n  sequence, a t  the f i r a t  s tage of 

the MILPS, ve had b e t t e r  make f u l l  w e  of the opt imr l  b u i s  a l ready obtained i n  

the pas t  sequence of optimization of the  subproblems a s  a s t a r t i n g  bas i s  fo r  the 



subsequent subproblem t o  be optimized. Ve have found tha t  the computing time 

i a  reduced considerably, i f  we use the optimal bas i s  a l ready obtained t o  the 

o ther  subproblem. This is because the  subproblema i n  moat ac tua l  problems 

a re  very s i m i l u  t o  each o ther  in s t ruc ture .  To take our 3-scage dynamic 

planning model f m n  a red o i l  re f inery .  the time needed fo r  computing the 

second and th i r d  subproblems a r e  near ly  a s  hal f  an f o r  the f i r s t  subproblem, 

when the optlmal bas is  t o  the  f i r s t  is used an tho s t m t i n g  bas i s  f o r  the o ther  

NO. 

4) 'Iba most t--consumhg j ob ' in  the MLPS c w u t a t i o n  is tha t  of s e t t -  

ing up and solv ing tho coordiuuticm problem(61. This tlme g rea t l y  depends upon 

the  s k i l l  of f i l e  management an wel l  am tho perfomauco of the linear p r o g r m -  

ing subrout lna adopted. We should consider developing e f f i c i e n t  methods f o r  

f i l e  management appropr iate f o r  designing a WS Complex. 

4. An Example o f  a Hierarchical Decomposltlon Approach 

L e t  ue in t roduce an example of tho h ie rarch ica l  decomposition approach in 

production-scheduling baaed on the seme idea aa i n  (21, which is n w  vorking 

very success fu l l y  in a Japanese o i l  compaay (151. The planning and scheduling 

problem is on the lovest(operat iona1) l e v e l  in the h ie ra rch i ca l  planning system 

mentioned in Section 2. The re f inery  makes a production schedule f o r  t he  next 

month a t  the end of every -nth on the bas i s  of a production plan given by the 

head o f f i ce .  The production-scheduling problem may be  formulated as  three l i n e a r  

program which respect ively correspond t o  a production schedule f o r  every 10 days 

A& those may be l inked by l ink ing  var iab les  represent ing inventory-levels a t  the 

end of a per iod of 10 b p s .  The length of a period has been decided according 

t o  the opera t iona l  experience. 

Each submodel han the  s i z e  of about 200 x 600, where there  a re  near ly  f o r t y  

d i f f e ren t  k inds of semi-products and t h i r t y  kinds of products t o  be blended. 

The hierarchicaldecomposit ion approach t o  t h i s  problem is described as f o l l w a :  

F i r s t ,  a crude-charge-schedule is obtained by the planning s t a f f .  Then, on the 

bss i s  of the schedule, those subproblem a r e  sequent ia l l y  optimized Fn such a 

h ie ra rch i ca l  manner as shovn i n  Fig.1. Af ter  t he  th ree  subproblem a re  solved. 

then the  "experience-based coordination" s t a r t s .  The planning s ta f f  checks the  

overa l l  acceptab i l i t y  of the solut ions.  e.g.. t h e i r  f e a s i b i l i t y  and performance. 

on the bas i s  of t h e i r  operat ional  experience. The crude-charge-schedule aad the 



th ree  blending problems are  modified so  tha t  an Fmproved schedule and blending 

plan may be obtained, and then the rmdi f ied problems a r e  reop th i zed .  Sat is fac-  

to ry  so lu t ions  a re  mostly obtained a f t e r  the f i r s t  coordinat ion,  i .e . ,  the  

d i f i c a t i o n  of problems is usual ly  performed only once. 

The reasons why the problem in solved by the  h ie ra rch i ca l  decomposition 

method may be s-rized an f o l l m e  : 

1 )  The blending opera t iom obtained by t h i s  approach a re  more accept&le 

t h m  those obtained when solved simultaneoluly, s ince  the more accurate f igures  

of p roper t ies  of the blending s tock .  than the  -8-d h a  befora obtain lag 

them can be recalculated befora solv lag the problem for  the next per iod,  which 

m y  considerably vary from t h e i r  values ass-d a t  the beginning, d e p s d i n g  

upon the opera t iom adopted f o r  the  prev iow periods. 

2) The suboptimization is rmre tl.m-sorring f o r  the purpose of obta in ing 

a p r a c t i c a l  schedule than when the e n t i r e  >stage model is solved a t  the same . 

ti- by the computer a t  the operat ional  f i e l d .  The modif ication of the  problem 

and the reoptimization of them vill be rmre tima-consuming and complicated f o r  

the e n t i r e  rmdel than fo r  t he  decaaposed model. In par t i cu la r .  the remarkable 

n r r i t  of the decomposition method is t o  be ab le  t o  use a good s t a r t i n g  basin 

f o r  the second and th i r d  problemcl, which is der ived from the optimal bas i s  of 

the previous problem. For example, the computlag time f o r  the succeedlag 

problems rued t o  be  l e s s  than a hal f  of t ha t  f o r  the f i r s t  problem by t h i s  ru le.  

3) I t is necessary t o  avoid a s t rong e f f e c t  on the schedule f o r  the f i r s t  

hal f  of the -nth f r m  the operat ions f o r  the l a t t e r  h a l f ,  because usual ly  

t h e m  is more uucerta inty la the da ta  f o r  the l a t t e r  ha l f  than f o r  the  f i r s t  

ha l f .  It sesnur t h a t  the planning s t a f f  uses i ts own imp l i c i t  u t i l i t y  funct ion 

rn the th ree  ob jec t ive  functions of the  subproblems fo r  the purpose of cms ider -  

ing the uncerta inty in the planning process. The experienced s t a f f ' s  sub jec t ive  

judgement Fa regarded a s  very Fmportant i n  r e a l  s i t ua t i ons .  

The &composi tia-Coordination Apprwoi r  . 
An attempt t o  apply the decomposition-coordination approach t o  the  present 

system is now being made v i t h  the i n ten t i on  of computerizing the experience- 

based coordinat ion aa much aa possib le.  The system w i l l  be v r i t t e n  a s  a PIPS 

Complex based on our decomposition method by w i n g  the  Extended Control Language 

of MPSX/370. In pa r t i cu la r ,  the f o l l w i n g  fea tures  of the system w i l l  be 

emphasized : 



1 )  The subproblems a re  sequent ia l ly  generated and optimized from the 

f i r s t  period t o  the t h i r d  period. The system haa the f a c i l i t i e s  t o  determine 

the initial values of the l ink ing  var iab les  and to  generate a pa r t  of a matrix 

of the succeeding problem from the so lu t ion  t o  the previoua problem. 

2) The system has the f a c i l i t i e s  t o  generate the coordination problem 

which ia pa r t l y  based on the planning s t a f f ' s  judgemnt.  

3) The optimization of the coordination problem is performad in such an 

In te rac t ive  mpnnar t h a t  the plnnning s t a f f  can maaura,  by i t s e l f ,  i t n  i q l i c i t  

u t i l i t y  functdon oo the th ree  ob jec t ive  f u n c t i m  of the subproblame [3 ] .  
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OPTIMAL DAILY SCHEDULING OF ELECTRICITY PRODUCTION IIV 
HUNGARY* 

I. Deak,t J. Hoffer,tt J. Mayer,tt A. Nimeth,tt B. Potecz,tt A. Prekopa,t 
and 0. Strazickyt 

t Compu ter and Automation Institu re, Hungarian Academy of Sciences, Budapest 
t tHunganan Electric Energy Industry 

Given: 

a piecewise constant function approximating the country's total demand on elec- 
trical energy in 27 time-periods spanning 25 hours forward, 
the set of applicable production technologies for each power station in the coun- 
try, and 
the actual network of power lines. 

we must determine the method of production to be applied and i t s  capacity level in each 
power station in each period of the day, so that the cost of production should be minimal, 
thedemand should be met in each period, and the capacity and network constraints should 
be fulfilled. 

The model of this problem i s  a large, but structured, mixed 0-1 programming problem, 
with a t  most 5 coupling constraints and a ven/ special connection between the 0--1 vari- 
ables. It i s  solved on a CDC 3300 computer. The method of solution i s  heuristic, involving 
Benders' decomposition method for subproblems. 

*The problem treated in this paper has been modelled under the directorship of Prof. A. Prekopa in 
the O.R. Depanment of the Computer and Automation Institute of the H.A.S. jointly with special- 
isn of the Hungarian Electric Energy Industry. 



A t  the  Ccerat ions 3esesrck. 3e9zrtnent  of the  

:oniyater and A u t o ~ a t i o n  I n s t i t u t e  o f  the Eunzarian 

ncadory or' Sciences the re  :?as 3een f o r  severa l  y e a s  

a work I n  arogress together  v i t h  =he axper ts  of 2 . s  

3 ~ g ~ i a . n  I l e c t r i c i *  3oards mst t o  app l7  

operat ions research i n  the e l e c t r i c i w  ?ewer industry.  

In ',he course of *.is work ;he ~ o d e l  and c o ~ u t e r  

program systen to  be descr ibed i n  t h i s  paDer j?rhici: 

can be consickred as a case study/ >as been conp le~ed .  

S t a r t i n g  f ron  tke  verbal  statement of the problem -:re 

have a r r i ved ,  through a la rqe  number of s t e ~ s  at  t5e 

so lu t i on  of the r e a l  ?roblen with r e a l  data. These 

s t e p s  3re: c l a r i f i c a t i o n  of every d e t a i l  of t he  

?%aica l  prob ler ,  aaecuate na thena t i ca l  ~ o d e l l i n g  



q f  t5e ~ r o j l e n ,  ';uildin; u? t:-e 6 a ~ a  sjszer! requi:?d 

f o r  the mathenaticai note l ,  ?repar?tign of a grr3r;rm 

systen, usL?g the 7ermnent data base, sui$able f c r  

9 roduc iq  the numerics1 data OD the ac tua l  ~ r r~b le rn  

$0 be solved. In t::e course of tke ~ o d e l l a ,  a 'And 

of groblem f ornulation, d e s c r i b i n ~  the r e a l i t y  :fel l  

enough had to  be found, snabling a t  the saze t i r e  

the problem to be handled computaticnall7. 31e 

coz~yleted nod-l leads to  a large-scale 3Fxed ~ r i a b i e  

l i nea r  p r o g r a m i ~  problem :&ere tke in teger  -rariables 

are of 6-1 @?e. -1 netkod had to  be vorked 3ut an 

the :3C 3500 conouter tb t  gives a nearly opt indl  

so lut ion to  the ?roolem in an acceptable t h e .  3 e  

computer >rotpan system Ims  requized to  ?resent the 

r e s u l t s  i n  the form ?rescribed by the user. 

Zaractar is t ic  f o r  the el l t i re vork has keen +he 

cons-t co-operstion amcng 'he ex3erts of the %o 

LnstiVutes r e s u i t i q  i n  a 7 e r m e n t  correct ive 

a c z i v i v  in the ~ ~ b s e q u e n t  stages. 

2.1. ?he overa l l  e l ec t r i c  ?owe= denand of the 

country a s  COnsLdered :'or each day separate17 z s  2 



?unction of the t i ~ e  i s  i l l u s t r a t e d  on 'ig.1. -.rnerp 

t h e  shape of the c u n e  i s  charac te r i s t i c .  Zce t i ne  

correspondiq t o  the i n i t i a l  po in t  of $he curve I s  

the so-called evening peak load tirye. This i e  

followed by a t i ne  i n te r va l  -.~i'&. decreasing load, 

thereaf ter  by some hours when tine value of the 4emand 

d i f f e r s  from the mininun value t o  a l i t t l e  extent 

only, therea f te r  a stage with increasing load - and 

the whole i s  repeated once xore. %e shage of the curre 

i s  in every case of t h i s  type, but f i e  lensh t  of the 

i n te r va l s  as  wel l  a3 the denand values change dai ly.  

Big. 1. 

.i m i c a l  da i l y  e l ec f r i c  power dmand funct icn 



'he e l e c t r i c  power denand o l  each day can Se 

forecasted i n  advance v i t n  an accuracy of 1-2 % on 

the b a s i s  of the da ta  ava i lab le  on the day before. 

:le i n v e s t i g a t e  always the 25 hours per iod fo l lowing 

the evening peak, t h i s  i s  sujdiveded i n t o  23 one 

hour and 4 half-hour per iods i n  which per iods the 

demand can be assumed constant .  ?he demand conta ins  

the est imated values of the  power p lan t ' s  own 

consumption and of the network losses.  

2.2. ,?he e l e c l x i c  power demand i s  s t a i s f i e d  by 

'he e l e c t r i c  power generated i n  the country's Dower 

p lan ts  m d  Sron the neigkbouring count r ies  inported 

?over. I n  our country +&ere are about 20 such gower 

p lan ts  ';hat a r e  consizered in 'he nodsl. ?he e l e c t r i c  

?over Lzgorted from abroad i n  international co-operaeon 

is considered a s  one gower Dlant v i t h  constant  

yoduc t ion .  

In the power p l a n t s  t h s  Dower is generate? by 

the combined ogeral ion of var ious a g p e g a t e s  i n  

d i f f e r e n t  mocles of ogeration. 3 a c i  node of operat ion 

Lrvolves the combined work of c e r t a i n  ag,pegates. 

3 e  a ~ g l i c a b l e  =odes of o ~ e r a t i o n  and the  physical  

,quant i t ies  character iz ing then a r e  given f o r  each 

?ov~er g l z r t  . 



-?le given !?ode of oaerat ion of 2 ?OTler ? lan t  c m  

run :.ri t h i n  giv~en ?ewer l i m i t s  and she ~ r o d u c t i o n  cos t ,  

a s  a funct ion of the aower leve l ,  i s  a fu..ction 

i l l u s t r a t e d  on Zfg.2. %is can f a i r l y  !re11 be 

a a ~ r  oxinased by a piece!dse l i ne=  r'unction (?ig. 3 .) 

where f o r  the slopes the r e l a t i ons  

cl( C 2  (Ck  

always hold. 

"ig.2. 

?rcduc$ion cost -*ction 
Piecewise l i nea r  app ro~ ina t i on  

of the ?raduction cos t  r h ~ c t F ~ n  



,Z?e change-over song zodes of operation - start 

w or shut off a t  l e a s t  one of generators - causes the  

turn of a mode of operation. Thus the change-over 

is  not allowed among a l l  possible nodes of operation 

of a power plant,  viz. not  among those working with 

en t i r e l y  d i f fe ren t  devices, An accidental  f a i l u r e  

o r  maintenance of the equipment can r e s u l t  in the 

da i l y  ch&- of the modes of operation in +he power 

plant. fig.4. shows an example of the mdes of 

operation, and in irig.5. we can see IAe function 

of s t i l l  stand cost, 

1-2-3-4-5 denote 

generators, 

A-3-C-3-Z are  gossible 
4. 2. 3. 4. 5. 

nodes of operations, 

1 I 1 I 4 where the -ow8 

indicate the generators 

t ha t  wo-=!r in fAe given 

node of operation. 

r'ig.4. 

An e x a q l e  f o r  the 

d e i i d t i o n  of t2e 

nodes of operation 

A d i rec t  change f o r  example 

between the nodes C and 3 

is not  allowed, but from C 

to  3 /it is a start of 

generator 5/ ~ n d  from 2 to 

D a d i rec t  change is  possible 

/shut off of generator 3./. 



?he e l e c t r i c  neY.ior4 of the countr'j i s  a s e t  

of nodes and t 'nnches. I t s  nodes a re  e i t h e r  ?ewer 

p lan ts  s r  po in ts  i n  :ihich the Dower l e n a d s  occur, 

and i t s  branches o v e r  t ransc iss ion  l i n e s  and 

t rans fomers  *:ri t n  given ?P,y s i c i l  c.harac t e r i s t i c s .  

Some of t'ne neD,iorkPs nodes can be connected to  bower 

s t a t i o n s  and from a h o s t  a l l  t he  consumer's denands 

a re  supplied. Also the e l e c t r i c a l  networ!~ can /and 

does/ da i l y  charge on account of aaintenance, 

f a i l u r e  etc.  Chage neans sere t ha t  certair? braxches 

or  nodes do not belong t o  the  syster, on a $-sen day, 

or the value of t h e i r  physical  cha rac te r i s t i c s  l i l ' zer  

f ron those i n  case TI' nornal  operation. 

2.3. 'fith r,?lis lao-.ileCge sur task i s  to  i e t e m i n e  

f o r  each e r i o d .  s f  the f3llc:ri.rg 25 >our Aurazion 2:le 

nodes o f  operation TO be agpl iee i n  %e d i f f e ren t  

power g l aa t s  and t h e i r  production l eve l s  so t h a t  'ke 

power Cer?and si:ould be s a t i s f i e d  i n  each ~ e r i o d ,  ?he 

physical  r e s t r i c t i o n s  on the ac tua l  cemqorlr ?old, 

aoreover the so-salled f i e 1  c o n s 2 a i n t s  be s a t i s f i e d  

i i i th  a r ? + n i m  golrer broduction cost .  Y e  A e l  

cons t ra in ts  requi re  t h a t  i n  some ?ewer p lan t s  the 

value o f  the t a i l y  overa l l  production - d i r e c t l y  

connected :ii';!l =\el c o n q t i o n  - shoul? d i f f e r  from 



3 ziven value 0nl7 t o  the exten-L of a given v e 7  

snall percentage. ?he reason of t h i s  restr iccAon 

can be t ha t  we cannot c o n m e  more than the ex is t ing  

anount of f u e l  o r  that ce r t a i n  amount of f u e l  is 

expected t o  e r r i ve  on the next day and the storage 

capacity is Uni ted .  

Fig. 5. 

St i l l s t and  cos t  funct ion 

The power yoduc t i on  cost  contains the actual  

production cost ,  the cbange-over cos t  resu l t i ng  e o n  

the switchiry of sodes of operat ion resp. s t a n d s t i l l  

and r e s t a r t  of the machhes, a s  wel l  a s  the cos t  of 

l o s s  of power i n  the neharorlc. 



aecause of the sophis t icated nature of the 

whole power system to  be optimized we had t o  make 

some assuzpt ions /s impl i f ica t ions/  i n  order to  obtain 

a nodel tha t  can be :handled. 

3.1. 3 y  knowing the shape of the denand ,function 

we agree t h a t  i n  t!!e f i r s t  periods when W.e n l u e  of 

the denand does not increase we allovr oonly such a 

change of the lode of goerat ion v~hic? caz be z e d i z e d  

5y shut t ing off 2 generator 3r generztor , ~ o u . ~ s .  3.ese 

per iods together a re  ca l led  stou or  shut  3f f  FLases, 

Bo change i n  the mode of opers t ion is allowed in the 

a l toge ther  4 periods around the period v iCi  Lqi-mn 

denand / ~ h a s e  of s t a g a t i o n / ;  only the ?roducfio:: 

i s ~ e l  of the ziven aode of o ~ e r a t i o n  can 3e charged. 

-m >er iods of increasing de~anc? only suck change or' 

node of o~ezaz ion  i s  dillowed where a t  l e a s t  one c f  

the generators i s  turned 2n / s t a r t  ?er icds/ .  Xie 

investiga?sd ?bases a re  therefore:  sto?, s t a w t i o n ,  

s t a r t  and once nore stop, s t a g a t i o n  and ;tar: ghases. 

c o ~ e c t i o ? l  :vith t h i s  :.re a q e e  3-zt 2' eve71 

? 1 m t  we a s s i g e  subscr i? ts  / ir i tegers/ to  e v e n  code 

of  operation star ti.^ ??on 1 and go* up t o  t h e  



n u b e r  of possible modes of operation a t  the ziven 

plant. We do i t  in such a * a y  t h a t  whenever Ype 

t rans i t ion  from node j-k (j<4) i s  possible then 

f r o m  mode j to  mode k we axrive by shutt ing off 

a t  l eas t  one generator. ?Tote tha t  a t rans i t ion  J+4 

is not always possible. 

3.2. A s  a resu l t  of physical considerations we 

have agreed t o  prescribe 'he requirements linitirg 

the physical s ta te  of the e lec t r i c  network only 

i n  the three periods with extreme denands /the f i r s t  

period, the f i r s t  period of the f i r s t  stagnation 

phase and the. l a s t  period of the f i r s t  start ghaee; 

these w i l l  be referred t o  as voltage check periods/. 

That is, we assume tha t  i f  Fn these 2eriods the 

?hgsical res t r i c t i ons  of the network are sa t i s f i ed ,  

then in periods of nFntemediaten demand with the 

appl icat ion of modes of operation 

/cf. assumption 3.1./ the physical restx ic t ions are  

a lso sat is f ied.  

3.3. In order to  determine the cost of power 

production the following simplification w i l l  be 

made. 

a./ The cost functions of the par t icu lar  nodes of 



opezation : f i l l  be a~?ro::3a$ed 3y piecewise 

l i n e a r  funct ions.  

b./ Syznetr ic res ta r t -  l : f i l l  be assumed f o r  t h e  

ca lcu la t ion  of the s t i l l  stand cos t  = i s in?  

Croz tine chazge of nodes of ooaration. This rieans 

t h a t  i9 we shut o f f  a generator a t  C 7er iods 

before the f i r s t  period of the s tagnat ion ~ h a s e ,  

then the r e s t a r t  takes place a t  (. per iods a f t e r  

the l a s t  per iod of the s tagnat ion phase, t h a t  i s  

the s t i l l  stand l a s t s  d i 2 1  periods. The dir ' ference 

between t h e  ac%l s t i l l  s tand cos t  and tke 

aoprcx ima~e value of i t  w i l l  be neglected. ?!ze 

t o t a l  c o s t  in the 4+2e ger iods i s  subdivided i n t o  

4+2e ? a r t s  a d  a r e  zssigned t o  these periods. 

:./ 3 e  c o s t  a r i s i r g  from the newor4  l o s s  , . r i l l  be 

ca lcu la ted  from the d i f fe rence  3eV.,reen the  l o s s  

value taken a l ready i n t o  account in tke derand 

Pmct ion  a d  the ca lcu la ted value of the a c t u a l  

l o s s  depending on the network. 

4.1. -arJabl~q ~f +&a. 3enote 5y 3 

the nunber of power ? l u l t s  z?d l e t  n( i )  be the 



n m b e r  of t ke  sodes c i  operat ion apo l icab le  i n  the 

i t h  power p l a n t  i=1,2,...,3. Zereirzkster supersc r ig t  

t w i l l  always r e f e r  t o  the per iod,  t=1,2,...,27. 

4.1.1. :,:ode oZ omeration var iab le .  Let rt 
i j 

be 0-1 var iab le  defined a8 fo l lows, where 

1=1,2, ... E* j=1*2* .. .*n(i)- 1: 

I per iod t t he  j t h  node of 

I operat ion or  one wi th a 

I subsc r ip t  1.39 than j works, 

1 i f  i n  power p lan t  L in 

I ?eriod t a aode of oaers t i sn  

4. 

In the sequel we s h a l l  use the  no ta t ions  I' and 
t i 0 

2 too and d e f h e  them so t h a t  xt = 1 
in (1) i o  

and x = 0. Xote t h a t  
im i 

t t 
1. s U-l - xiJ = 1 i f  a n i o n l y  i f  i n  power 

p l a n t  i in period t j us t  tt?e j t k  node of 



t ogerztion Y O Z ~ S  ( j=1,2, .  . . ,x (i)) , e lse  x' - x  = G .  
4J-1 i J  

2. According to  the above de f in i t i on  the 

var iab les belonging to the nodes of operat ion of a 

f ixed power p lant  can take in one 3eriod only the 

values (. . .1,1,13,0. . . ) where the 0 standing 

h the 1.0 value exchange is  Ln the J t h  ?lace 

i f  jus t  the j t h  mode of operation :~orks. Among 

d i f f e ren t  periods the right-'nand s h i f t  of the value 

exchange 1 , O  corresponds to  a node of operat ion 

exchange reacked by a shut of f  while the left-hand 

sh i z t  of the same corrres~onds t o  a s t a r t .  

3.  In  the periods b e l o n g i ? ~  to the s tagnat isn 
to-' 1 to i 7- to 3 

~ ~ h a s e  we have xto = z = x I :C 9 

i j  i j  i j  i j  

where to is  the f i r s t  period of the stagnat ion 
L 

phase, therefore i t  is  su l f l c i en t  fo :lave only I 
" 0 

i j 
anom the var iab les of the xodel. - - + I  . t L 3  

Xe wel l  use, however, the s p b o l s  x "" ,..., x 0. . 

i i i 
?omal l3  in soce re l a t i ons  linere 

3Iagl ic i2,of  the e q r e s s i o n s  requi res then. 

4.1.2. kcduct ion- leve l  var iable,  Denote 

r(i, J )  the number of tLe aoproxhet ing l i n e s  i n  the 



approxination of the cost -^ur,ction ~ e l g n g i ~  to  the 

jtl i =lode of oberation of ?ewer planr, i, and Fijmin 

and Pij- the minimum and aa3izmm production 

leve l  of the node of operation respectively. Denote 

k 
F pk the power leve ls  belonging t o  the 
i jninp i jmax 

terninal points of the k th approxi=rating l i ne  of the 

cost  function, where iL k 
= P , k = 1. .. . , r ( i , j )  -1, 

i j n i n  i jmax 

and F' = P , 9 Q 9 j ) = ?  hold. 
i jmin i jn5n i j m  i jnar 

3enote E~ the operation leve l  in oeriod t of the 
i j  

j th  node of operation of power ? lan t  i. In  order 

to  deternine i t  l e t  us introduce the var iab les 

tk t L  
4.1.2.3. P 7 0 ,  only i f  P 5 E  - 2  

e 
i j  i j  m i j n i n  

i o r  a l l  L c k ,  a d  x L  
L 

- x  = I .  
- 1  i s  



I . e .  ir' ?'ant L :~or:rs 33 :kc .j th zeds 05 3pera t i on  

in ?er iad  t. 

33 u s i . ~  t hese  v a r i a b l e  s t b e  above cen ti one3 

l e v e l  i s  g iven  by t he  f o l l o w i , ~  sum: 

3 e  ?roductiOn of power ? l a n t  i in the  /ez iod  t is  

equa l  t o  

3 - e  d a i l y  p roduc t ion  e q u a l s  



rhere a = 0,5 o r  1 , C  de~endir.g on the durat ion of 
t 

7eriod t. 

4.1.3. Voltage =r iaSle.  aenote s the number 

of the nodes of the  network with adiustab le  volLkge 
1 2 3  

and v , v , v , i , 2 , . . . ,  s the vol tage l eve l s  
i i i  

of +hese nodes in the three ber iods with extreme 

demanda /~o l ta .ge  check periods/. 

4.2. Const ra in ts  of t he  2odel. 

t 
4.2.1. Supn1.y condit iona. Denote P the  

dem 
value of the power demand in period t. We requ i re  

that t he  power demand be s a t i s f i e d  Fn each period, i.e. 

4.2.2. 3ounds on the Dower leve ls ,  



T:e va r i cb le  c o u r l i ~ y  ccndi t f  ons requ i re  

t h a t  the power l e v e l  in ?er iod t of the .jth maze 

of cperat ion of pouer a l a n t  i skculd be between the 

bounds ? and P , i .e. 
i jnin i j m & ~  

Tating In to  account 4.1.2.4. we g e t  the condi t ions:  

5.2.4. S t a r t  an6 s t o ~  condl$ions. 3 e s e  condi t ions 
t t+l 

ensure the impl ica t ion I =l+ :: = l i n  the shut 
i J  i s  

of? je r iods  and the i n p l i c a t i o a  
t t c l  

x = Q*:: = C i n  t he  start 3eriods. 
i j i j 

3enote tl &the l a s t  ?eriod rreceeding the 

examined da7, xbl the r e a l i z e d  value a i  t he  node 
I 2  
A J 

of o p e r a t i m  in the above yer iod,  t2 the s e r i a l  

nunber of the beginning of the second shu t  d v ~  yhase, 

- a d  t4 'he s e r i a l  nmbers  of the  beginning of the 
3 



r ' i rs t  and second s t a r t i n g  >has8 r esp . ,  4 , C , , & 
1 2 ' 3  4 

the lengths o f  the corresponding phases /in per iods/  

in t i e  prev ious sequence. 

X g . 6 .  

Structure o f  t h e  s top  and start cond i t i ons  



7- -.:e sku< off co3di;ions L-e: 

I?le start conditions are the Sollovrhg: 



Pig.6. shms the st ractnre of the a a t r i s  of *ese conditions. 

4.2.5. Fuel constraints.  a e s e  a re  constra ints  with 

lower and upper bounds, wescr ibed f o r  the da i l y  ~ roduc t i on  

of some pwbrer plants. U s i n g  4.1.2.6. we can wri te then a s  

f ollowe: 

:.rhere 3 3 are  the given bounds, the i ' s a re  
Frnin' Fmax 

the subscr ipts of the power p lants with f u e l  constraints.  

4.2.6. :?etwork conditions. 

dccordirq to the agreement in 3.2.. the res t r i c t i ons  

resu l t ing  from the e i e c t r i a a l  propert ies of the newor4 

will be taken in to  account i n  the three voltage check 

periods of the day. ,These condit ions are  the branch- 



loafi, t'le -roltaqe znS the react ive ?over ssmce 

conditions. :le descriSe only the content =ad :om 

of these, the coef f ic ients  i n  the condit ions depend 

on the network /which can be d i f fe ren t  during the 

three invest igate2 ?eriods/ a d  a w t i c u l a r  grogran 

system was designed fo r  t he i r  determineion. 

The 'srwch-load conditions ensure t h a t  the power 

transmission l ines ,  cables and transformers foming 

tpe meshed system which t ransn i ts  the power f ron the 

power p lants t o  the consumers should not be over 

loaded. These condit ions define *e load caused by 

the ef fect ive power, ~ i z .  w i t 5  tke :?el? of l i nea r  

a?proximation of Yne exact ~ u a c k a t i c  e - ~ r e s s i o n s  

vhic t  y ie ld  a VeT good a-oproxination i n  tine solut ion 

domah character iz ing tke s table operation of the power 

Bystens. The f o m  of the condit ion system i s  

where -1 i s  the n a t r i ~  of the coeff ic ients.  T3e nunber 

or' i ts rows is equal to tha t  of the branctes, the 

number of i ts  colunns equals tha t  of the sum of the 

power and aode of operation var iab les taken in to  

account in the relevant period. C contzins the 
T 



loadabi l i tg  of '3.e l ines. 

The number of these constra ints  is very large. 

Me may, however, delete nazly of then and keep only 

a few that correspond to  c r i t i c a l  branches. 

The voltane condit ions enaure the voltage 

staying within prescribed l im i t8  at the nodes of the 

network. These inu~lv, also quadratic formrlas where 

again l i nea r  approximation is used resu l t ing  in a 

prooerly accurate solut ion in the domain of operation. 

The forn of these condit ions is: 

where 3 is  the ziatrh of the derived coell ' icients 

having a s  saw rows a3 the number of the nodes o i  +Ae 

network, while the number of its co~ui!m3 e q d s  t ha t  

of the vol-e variables. 3 contains a unit matrix, 

V and 7 are  the allowed m i n i &  and slaxhal 
d n  m a x  

vol'tage thresholds of the nodes r e s p e c t i ~ e l ~ .  i c b a l l y  

the system of constra ints  son+ains a11 c o n d i t i o ~ s  

correspondhg t o  nodes w i t h  adjustable voltage, however 

f o r  the renaCning nodes it is su f i i c i en t  t o  'ake in to 

account on17 a few c r i t i c a l  constraints.  



3eac' i~e szk-ce conciitions ensure tbe react ive 

power of +Le react ive souzces /nerforning '&e voltage 

control/ not exceeding the allowed leading l agg iw  

power maxima, =es?ectiveig. ,%e react ive powers of 

the react ive sources are espressed by the voltages 

of the relevant nodes Ahat we l inear ize around a given 

basepoint. This condit ion has the form 

4.2.6.3. Q + A Q  . H f c . v + Q f 
min min const 

where Q , Q l im i t  tke allowed leading and 
nin =lax 

lagging power, r ~ s p e c t i v e l j  in s nodes, A Q  , 
=in 

A .; contain the react ive o w e r  threshol i  changes 
nax 

resul t ing from the node o i  operation change, C i s  

the sxs matrh def- fhe change of tine react ive 

supplies, Q is  a constant vector with s 
cons t 

elements , these elements being the react ive power 

s u ~ y l i e s  of the sources defined by the Fn i t ia l  s t a t e  

of the vector. 



3ig.7. 

Structure of the coefficient matrix of the whole model, 

q:fhere @ and @ have the structures given in Sig.8.and 7ig.5. 



4.3. 3 e f i n i 5  on of t h e  ob.lecti7z I~mc+inn. 3 e  

o b j e c t i ~ e  funct ion t o  3e z in in ized cons is ts  of three 

where X is the cos t  of power production, ii the 
1 2 

cos t  of s t i l l - s t an8  and Z t i e  cos t  en ta i led  by ;he 
1 
J 

network lose.  

4.3.1. & f i n i t i o n  of iZ . 3enote C .  . the sloge 
1 1 J 

of the kfh l i a e a r  sect ion of +he ,knction a?p rozha t i r g  

the one-%our 3roduction cos t  cu-me of tke jt;l s ode o f  
0 

operat ion of power ? lan t  i , and C the nroducticn 

cos t  of the l eve l  2 
i j 

i jmin 

Yi th these nota$ions tho cos t  of producticn on 
t 

'2.e l e v e l  O ancunts t o  
i j 

i f  i n  the  i - th  cower p lan t  jus t  the j-th node of 

operat ion worlcs . 3x1s 



1 2  
Xote t h a t  C < 2 . .. <C rUj)  a l m y s  holds,  h o n  

i j  i d  13 

which the f a l f i l n e n t  of the requirement 4.1.2.3. 

fo l lows f o r  such a so lu t ion  which s a t i a f i e e  the  

coupling condi t ion 4.2.3. and f o r  which Z i s  nininal. 
1 

4.3.2. Def in i t ion of K . Fig.5. shows t h e  c o s t  
2 

funct ion of t h e  s t i n ~ a t a n d  /or  r e s t a r t i n g /  of t h e  

j-th mode of operat ion of power p lan  i a s  t h e  

funct ion of the durat ion of the  s t i l l  stand. The 

funct ion can be descr ibed by the formula 

where g (01, g S )  and C are the constants  
i j  i j  

character iz ing the p w e r  p lant  and the mode of 

ooera t ion ,  g ( 0 )  denotes the  coat of stBting 
J 
A J  

without s t i l l - a tand ,  and g (-)the c o s t  of  t h e  
i d  

so-cal led cold starting. 

In accordance wi+h the  a s s u q t i o n  3.3.b, if a 

node of operat ion is stopped wi th  per iods 

before the beginning of the s tagnat ion p h s e ,  then 

i t s  e fzec t  in the c o s t  funct ion w i l l  be taken i n t o  

account with t he  n l u e  g(.j+2t). Tie corremonding 



c k s e n  coe lz i c ien ts  2-3 a S;UP consist in;  or' t e n s  

co.--es-,oxding t o  the dura t i sn  of the s t i l l - s t a n 8 ,  

- and the complete s t i l l - s t a n d  c o s t  w i l l  t&e the f o n  

i s  the pro?erly chosen c o e f I i c i e n t  dei-ned 
W.. 1 j 
53  $he u t i l i z a t i o n  of the ?unction $6 

where t r m s  f l - xoqh  the i z d i c e s  of the $Fee -rolt%e 

check 3er iods.  
t 

, 3 e  d e t e r l i n a t i o n  of the conoonents of T - i .e. 
3 

of the c o e f f i c i e n t s  p a r t i c i ; a $ i x  L? i t s  de f in i t i on , -  

i s  2 > a r t  of the procedure s e n i n g  507 the t e t e ~ z n a t i o n  

of the neb,~ork  condi t ions.  '%Ye d isregard i t s  descr i? t ion,  

a d  z ive only the formulae : 



3ig.7. is the schematical representation of the 

above described model. In its survey we point out that 

the conditions of the model have the follawFn& properties: 

1. The  el constraints contain besides the 

vol'age variables all variables belonging to the given 

m e r  plants and so practically they connect the 

7ariables of all the 27 periods. 

2. The start-stoy conditions contaia +he node 

of oyeration variables of the corresponding ~ > a s e ,  - 
'Aeae conditions connect the aeriods belonging to :he 

given >hasea. 

3. The connection among the particular phases 

is realized 5y the node of operation variables belonging 

to the stagnation phase, these at the sane tine 

connect the periods belonging to the stagnation phase. 

4. M t h e r  conditions of tke nodel contzin 

variables belonging to single periods only, the 
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?er i3? 3 e i X  one w i  ?.but net-:/or? :;r.?.i>ions. 

s i z e  of 'he 2od?l - i n  c!-.oosi-5 e-:eyr.kers 

r ( i j ) =  1 f 3 r  the arproxiza:ior 2 . I  th c c s t  : k c t i o n  

a d  t a k i r g  the  r e a l  s i z e  cf tke power oysi-en i n t o  

account - i s  af 30st a s  C91101:~s: 

r ,.e '- nunber sf var iab les :  7 5  power v z ~ i a b l e s  fzr 
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c o n 3  ti.-?rs z s  3 t=?-s tzz, condif i ocs  ccrt-ir.ing x1:- 

- ,  
L - ~  var iab les .  t ej xi; t 



In order to complete our work we had t o  wr i te  

a c o q u t e r  program f o r  the CDC 3300 computer of the 

Zugar ian Acadeny of Sciences ?or the so lut ion of 

the problem. *on among the possible ways we had 

the idea t o  apply the Benders decomposition method 

to  6olve the whole problem. This waa re jected because, 
\ 

on one hand, i t  can happen tha t  we w i l l  obtain a 

fea6ible solut ion only i n  the last step, so tha t  if 

on account of computer time l imi ta t ion the run had 

t o  be interrupted, the resu l t s  till then would not 

contain the necessary information. On the other hand, 

*ere is a large nuuber of var iab les of the pure 0-1 

problem6 to  be solved in the i t e ra t i ons  of the 

decompoaition and t h e i r  conatraints do not '?save 

favourable specia l  structure. We thought of a version 

of the branch-and-bound algorithm in which the 

re levant  l inear  proa~anmbg problem could have been 

solved by the Dantzig-Volfe decomposition, but 

because of the large number of the 0-1 var iab les we 

have re jected t h i s  idea, too. 

P inal ly  we have accepted the following algorithm: 

l./ 'Je disregard the  el constraints.  

2. / Ye solve the rena in iw  large-scale mixed 



in teger  ~ o ~ ~ i n g  _~roblem - i n  which the connections 

among the periods are ensured by the s tar t -s top 

condit ions and the mode of operation variables of 

the stagnat ion phases - the following way(Fig.10.) : 

Ye solve succeaaively the three nixed in teger  

prograGlming problems corresponding to  the vol tage 

check perioda. We allow in the so lut ion of the f i r s t  

problem every mode of operation appl icable on the 

given day. I n  the solut ion of the second problea we 

a l l o w  only t ha t  modee of operations which a re  

rea l i zab le  from the modes of operat ions in the 

so lut ion of +he flrst problem by shut off. ?or the 

t h i r d  problem we allow tha t  nodes of operations, 

rea l i zab le  from the solut ion of the second problem 

by s ta r t ing .  

Thereafter we soLva the intermediate problems 

and the problems corresponding t o  the following 

periods successively, by taking always the m r i a b l e s  

of 'he nodes of operation of the neighbouring, 

already solved problems and the connections of the 

periods t o  the s tar t -s top phases i n to  account. 

In every case the Benders decomposition method 

w i l l  Se a ~ p l i e d  f o r  the so lut ion of the problem 

corresponding t o  one period. 



Fig.10. 

,The auccessive mode of solving the mired-integer 

programing problem without fuel-conditions, where the 

numbers in circle indicate the order of the sxecntions 

of com?utations 

3./ We check whether.the fcel constraints are 

satisfied for the obtained solution. If yes, then the 

algorithm ends, else the -Pollowing iterative procedure 

will Se applied. 



$./ If i n  a poq:rer glant the daily power 

production is lees then what is prescribed then the 

production coat aoefficients of the given power 

plant will be multiplied by a multiplier less than 

1, and i f  the daily power production is greater than 

what is prescribed, then they will be multiplied by 

a multiplier greater than 1. The valuee of the mode 

of operation variables v i U  be fixed and t he  

corresponding linear programing problem will be 

solved. If in the course of the solution the ,%el 

constraints are satisfied by the new outputs obtained, 

the iteration ends. 

Otherwise tha& are %o cases: i/ i f  in the 

course of the iteration processes we bhve already 

found solutions indicating underproduction and over- 

production, too, then we will proceed according to 

-graph 5; ii/ else we will a o d i e  again the cost 

coefficients and repeat the solution of the linear 

p r o ~ e ~  groblem. 

5./ m e  mode of operation values of the solution 

accepted as optfmum are the fixed modes of operation 

and the production level will be defined by such a 

linear combination of any particular solution 

indicating the underproduction and o~e rp rodu~ t i on  

wKich satisfies the fuel conetrailt. 



Iienark: ?he r~hys ica l  background and t ke  

prel iminary surrey of the d a t a  ensures t h a t  tine 

descr ibed algor i thm works wel l ,  i.e. i t  cannot occur 

t h a t  a mixed problem corresponding t o  a per iod has  

no f e a s i b l e  so lu t ion  o r  t h a t  we obta in  only such 

so lu t ions  in t he  4-th etq:, which v i o l a t e  t h i s  

c o n s t r a i n t  only in the same d i rec t ion.  

This paper givea only a shor t  survey of the  

nost  i npor tan t  f e a t u r e s  of the model, without a ~ y  

claim t o  completeness. A b r i e f  sketch of the whole 

computer program system i s  shown 9n ? ig . l l ,  and a 

study covering a l s o  d e t a i l s  not  discussed Fn t h i s  

paper /e.g. computation of l oss ,  ae te rn ina t ion  of 

the network condi t ions etc./ i s  under preparat ion.  
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A MATHEMATICAL MODEL FOR THE DETERMINATION OF OPTIMAL 
CROP PRODUCTION STRUCTURES 

Bumau for S y m s  Andysis 
of the Start? Office for Technkal Development 

Budapest 

In assessment of the agrotrcological potential, the main goal was to determine the maxi- 
mal amount of plant production in a r m  of optimal utilization of the pmsibilitles offered 
by the natural environment and to invertignte the consequences of such a policy. 

A two level hierarchical model was constructed for the analysis of crop production. 

The models are described by syrtems of inequalities paramarized in the right hand side. 

The constraints can be gouped as follows: 

area constraints, 
constraints of the production structure, 
crop rotation conditions ensuring the continuity of production, 
constraints regulating the extent of land reclamation and irrigation investment. 

The solutions are special Pareto optimal points of the feasibility set. 



Dur ing recent  years, throughout the  wor ld ,  i n c reas i ng  

a t t e n t i o n  has been p a i d  toward assessing n a t u r a l  

resources, ,working out p o s s i b i l i t i e s  f o r  t h e i r  u t i l i z a t i o n .  

Today t h i s  assessment inc ludes  no t  on l y  the  energy resources, 

raw ma te r i a l s  but a l so  the so c a l l e d  " b i o l o g i c a l  resources'. 

I t  i s  e x p e c i a l l y  impor tant  t o  be f a m i l i a r  w i t h  the  i n t e r a c t i o n  

between t he  n a t u r a l  environment and p l a n t  and animal p roduc t ion  

t o  d iscover  the  hidden reserves i n  b i o l o g i c a l  resources, t h e  

p o s s i b i l i t i e s  and l i m i t s  o f  t h e i r  u t i l i z a t i o n .  

I n  Hungary, work on t he  es t ima t i on  o f  ag roeco log ica l  

p o t e n t i a l s  s t a r t e d  i n  1978 a t  the i n i t i a t i v e  o f  the  Hungarian 

Academy o f  Sciences and was f i n i s h e d  i n  t he  sp r i ng  o f  t h i s  

year. 

A t  the assessment o f  the  agroeco log ica l  po ten t i a1 , t he  main 

goa l  was t o  determine the  maximal amount o f  p l a n t  p roduc t ion  

as a r e s u l t  o f  op t ima l  u t i l i z a t i o n  o f  the  p o s s i b i l i t i e s  

o f f e r e d  by the  n a t u r a l  environment and t o  i n v e s t i g a t e  the  

consequences o f  such a po l i c y .  

I n  concrete terms, t h i s  meant t he  de te rmina t ion  o f  l and  use 

pa t t e rns  o p t i m a l l y  u t i l i z i n g  the a c o l o g i c a l  cond i t i ons  t h a t  

- can be r e a l i z e d  i n  p r i n c i p l e ,  

- meet the  requirements o f  the  soc i e t y ,  

- and are op t ima l  w i t h  respect  t o  some goal. 

R e a l i z a b i l i t y  means the  use o f  data and hypotheses i n  the 

model t ha t  can be expected by reasonable standards t o  be 

v a l i d  a t  the  t u r n  o f  the  mi l lennary.  



t,leeting the  requirements o f  the soc i e t y  means, the c a p o b l l i t y  

t o  supply the  soc i e t y  w i t h  a l l  the products  determined by the  

p ro j ec ted  s t r u c t u r e  oC consumption. 

O p t i m a l i t y  means an i n  some senee op t ima l  compliance o f  the  

land  uee e t r u c t u r e  w i t h  the  e c o l o g i c a l  condi t ions.  

A f t e r  t h i s  sho r t  i n t r o d u c t i o n ,  the  p resen ta t i on  o f  the  model 

desc r i b i ng  c rop  p roduc t ion  f o l l owe ,  w i t h  the  s t r u c t u r e  o f  tho  

model shown i n  the  f i g u r e  below. 

d e s c r i p t i o n  o f  a c o l o g i c a l  f a c t o r s  

1 
e c o l o g i c a l  y i e l d  prognosis  - c h a r a c t e r i z a t i o n  r e f l e c t i n g  e c o l o g i c a l  
o f  avable l and  . f a c t o r s  

i 
1 m o d i f i c a t i o n  1 

p o e e i b i l i  t i e s  
o f  e c o l o g i c a l  
cond i t i ons  I - 
/ i r r i g a t i o n ,  
me l io ra  t i o n /  U 1 ----(requirements o f  1 

s u i t a b l e  
e c o l o g i c a l  
mosaice 

1 cond i t i ons  o f  
i r r i g a t i o n  and 
m e l i o r a t i o n  

weather e e n s i t i v i t y  energy balance I 0  



The f i r s t  problem was t o  de te rm ine  t h e  a t t a i n a b l e  l e v e l  o f  

y i e l d s  i n  20GO g i v e n  t h e  n a t u r a l  env i ronment  o f  Hungary 

/ p r e c i p i t a t i o n ,  tempera ture ,  s o i l ,  r e l i e f ,  h y d r o l o g y  etc./ 

an t h e  g e n e t i c  p o t e n t i a l  o f  t h e  species.  F o r  t h i s  end a  

y i e l d  p r o g n o s i s  was p repa red ,  t h e  s t r u c t u r e  o f  t h e  r e s u l t i n g  

d a t a  b a e i s  i s  shown i n  Tab le  1. 

The methodology and d e t a i l e d n e s s  i s  d e s c r i b e d  i n  t h e  f o l l o w i n g  

papers  131, 191. 
The model d e s c r i b i n g  c r o p  p r o d u c t i o n  i s  based on t h i s  d a t a  

bas is .  

The main g o a l s  o f  t h e  compu ta t i ons  were:  

- t h e  assessment o f  p r o d u c t i o n  c a p a c i t y  o f  c r o p  

p r o d u c t i o n  under  d i f f e r e n t  c i r cums tances ,  

- t h e  a n a l y s i s  o f  t h e  re1ationsh;ps between l a n d  

use p a t t e r n s  comply ing  w i t h  t h e  n a t u r a l  c o n d i t i o n s  

and the  r e q u i r e d  t o t a l  p r o d u c t i o n  / s o c i a l  demand/, 

- t h e  a n a l y s i s  o f  t h e  development o f  l a n d  use p a t t e r n  

and t o t a l  p r o d u c t i o n  as f u n c t i o n s  o f  t h e  q u a n t i t y  

and q u a l i t y  o f  a v a i l a b l e  l a n d ,  

- t h e  a n a l y s i s  o f  t h e  dependence c f  l a n d  use p a t t e r n s  

and t o t a l  p r o d u c t i o n  on t h e  amount o f  i n v e s t m e n t s  

i n t o  l a n d  r e c l a m a t i o n  and on t h e i r  way o f  r e a l i z a t i o n ,  

- t h e  a n a l y s i s  o f  t h e  r e l a t i o n s h i p s  bet:veen i r r i g a t i o n  

and l a n d  use p a t t e r n s  

e tc .  

The l a r g e  number o f  c rops  and h a b i t a t s  cons ide red  

r e s u l t e d  i n  about 5000 v a r i a b l e s .  T h i s  s i t u a t i o n ,  i n  f a c t ,  

de termined t h e  method; as t h e  o n l y  s o l v a b l e  prob lem i n  t h i s  

case i s  t h e  one u s i n g  l i n e a r  programming techn iques ,  t h e  sane 

b e i n g  t r u e  even a f t e r  excess i ve  aggregat ion .  



A two l e v e l  h i e r a r c h i c  node1 nas c o n s t r u c t e d  f o r  t h e  

a n a l y s i s  o f  c r o p  p roduc t i on .  

The f i r s t  so c a l l e d  r e g i o n a l  model d e e c r i b e s  t h e  

prob lem i n  an aggregated form. The so c a l l e d  e c o l o g i c a l  

r e g i o n s  c o n s t i t u t e  t h e  l a n d  u n i t s  here. /See F i g u r e  2./ 

The requ i remen ts  o f  t h e  s o c i e t y  w i t h  respec t  t o  t h e  

p r o d u c t i o n  s t r u c t u r e  and l a n d  r e c l a m a t i o n  i nves tmen t  

c o n d i t i o n e  and o t h e r s  a r e  f o r m u l a t e d  i n  t h e  c o n s t r a i n t s  o f  

t h i s  model. 

The r ~ s u l t  g i v e e  a  rough, r e g i o n a l  a l l o c a t i o n  o f  t h e  

i nvee tmen ts  and l a n d  use. The g l o b a l  a n a l y e i s  o f  t h e  c r o p  

p r o d u c t i o n  system and t h a t  o f  t h e  dependence o f  l a n d  uee 

and p r o d u c t  s t r u c t u r e  on t h e  c o n d i t i o n s  and t h e  g o a l s  i s  

c a r r i e d  o u t  b y  u s i n g  t h i s  model. 

D e t a i l e d  computa t ione c o n s i d e r i n g  e c o l o g i c a l  mosaics a r e  

c a r r i e d  o u t  on t h e  o t h e r  l e v e l .  

The whole o f  t h e  c o u n t r y  was d i v i d e d  i n t o  f o u r  l a r g e  r e g i o n s  

as i s  shown i n  F i g u r e  2., and t h e  c r o p  p r o d u c t i o n  a c t i v i t y  

i n  them a r e  desc r i bed  b y  s e p a r a t e  problems. The s t r u c t u r e  

o f  these models i e  s i m i l a r  t o  t h a t  o f  t h e  r e g i o n a l  model 

wh ich  w i l l  be o u t l i n e d  i n  t h e  sequel .  I t  i s  t h e  r e g i o n e  a r e  

c o n s i d e r e d  homogeneous i n  t h e  r e g i o n a l  model w h i l e  t h e  same 

i s  t r u e  o n l y  f o r  t h e  e c o l o g i c a l  mosaics i n  t h e  o the rs .  

The c o n s t r a i n t s  o f  t h e  d e t a i l e d  models /ae f a r  as t h e  p roduc t  

s t r u c t u r e ,  t h e  a l l o c a t i o n  o f  l a n d  r e c l a m a t i o n  i n v e s t m e n t s  

and even t h e  g o a l  f u n c t i o n  a r e  concerned/ were f o r m u l a t e d  

on t h e  b a s i s  o f  t h e  r e s u l t s  o f  t h e  r e g i o n a l  model. 

Our computa t ione g i v e  d e t a i l e d  i n f o r m a t i o n  about t h e  

l a n d  use p a t t e r n  be ing  i n  good compl iance w i t h  t h e  e c o l o g i c a l  

c o n d i t i o n s  and about t h e  a l l o c a t i o n  b o t h  i n  space and t i n e  

o r d e r  o f  l a n d  r e c l a m a t i o n  inves tments .  

Be fo re  g o i n g  i n t o  t h e  d e t a i l s  o f  t h e  c o n s t r e i n t s  o f  t h e  

r e g i o n a l  mgdel we s h o r t l y  g i v e  a  f o r m a l  d e f i n i t i o n  o f  t h e  

model system. 



The r e g i o n a l  model i s  d e s c r i b e d  by a s y s t e m  o f  

i n e q u a l i t i e s  p a r a m e t r i z e d  i n  t h e  r i g h t  hand s i d e :  

Le t  u s  d e n o t e  t h e  set o f  t h e  s o l u t i o n s  o f  t h e  above  s y s t e m  

by fi. 
Our t a s k  i s  t o  d e t e r m i n e  a n  x M c f i ,  w i t h  a l l  t h e  g o a l  

f u n c t i o n s  

r e a c h i n g  t h e i r  o p t i m a ,  t h a t  is 

T h i s  o p t i m i z a t i o n  p rob lem,  however ,  h a s  no s o l u t i o n  i n  

g e n e r a l  [4 j  , and f o r  t h i s  r e a s o n  we have  t o  f i n d  s p e c i a l  

P a r e t o - o p t i m a ,  t h a t  is s u c h  zH€ fi f o r  ~ h i c h  

9(zM)= maxi  I y : y = y ; x ) ,  x ~ f i j  

The maximum h e r e  i s  t a k e n  o v e r  ,R' w i t h  r e s p e c t  t o  t h e  

o r d e r i n g  i n d u c e d  by t h e  n a t u r a l  p o s i t i v e  cone  ,R$. 

T h a t  i a  t o  s a y :  

Two, s o  c a l l e d  compromise s o l u t i o n s  were d e t e r m i n e d  from 

t h e  set o f  P a r e t o  o p t i m a l  p o i n t s .  



I n  t h e  f i r s t  s t e p  the  u t o p i a  p o i n t  i n  : R ~  was determined 

f o r  t ho  prob lem / 1 /. ' p) The,  i - t h  c o o r d i n a t e  o f  t h e  u t o p i a  p o i n t  i s  Pi = yi\- , 
where t h e  s o l u t i o n  o f  t h e  prob lem:  

1 E [O , 1] 

yiiI! )- max 

8e cons ide red  two new g o a l  f u n c t i o n s  by  u s i n g  t h e  u t o p i a  p o i n t ,  

p o i n t ,  

and 

then  we m in im ized  them on t h e  s e t  n. 
These s o l u t i o n s  a r e  P a r e t o - o p t i m a l  p o i n t s  o f  t h e  system / 1 /. 
The s o l u t i o n s  o f  t h e  r e g i o n a l  model p roduced l a n d  use p a t t e r n s  

on t h e  r e g i o n a l  l e v e l .  By t h e i r  use, t h e  p r o d u c t i o n  s t r u c t u r e  

and t h e  e x t e n t  o f  l a n d  r e c l a m a t i o n  and i r r i g a t i o n  were 

determined. 

Tak ing  them as c o n s t r a i n t s  and t a k i n g  t h e i r  co r respond ing  

g o a l  f u n c t i o n e ,  t h e  l i n e a r  programming prob lem d e s c r i b i n g  

t h e  c r o p  p r o d u c t i o n  o f  t h e  f o u r  l a r g e  r e g i o n s  were solved.  



NOW we a r r i v e d  t o  t h e  d e s c r i p t i o n  o f  t h e  main 

r e l a t i o n s h i p e  and t o  t h e  e x p l a n a t i o n  o f  o u r  c h o i c e  o f  

methodology. 

The c o n s t r a i n t s  can be grouped ae f o l l o w e :  

- area c o n e t r s i n t s ,  

- c o n s t r a i n t s  o f  t h e  p r o d u c t  s t r u c t u r e ,  

- c r o p  r o t a t i o n  c o n d i t i o n e  eneu r ing  t h e  c o n t i n u i t y  

o f  p r o d u c t i o n ,  

- c o n s t r a i n t e  r e g u l a t i n g  t h e  e x t e n t  o f  l a n d  r e c l a m a t i o n  

and i r r i g a t i o n  inveetment .  

Crop land waa cona ide red  t o  be homogeneoue i n  t h e  r e g i o n a l  

model, w i t h  t h r e e  k i n d s  o f  p o s a i b l e  a c t i v i t y :  

- p r o d u c t i o n  co r reapond ing  t h e  p r e s e n t  s i t u a t i o n ,  

- p r o d u c t i o n  co r reepond ing  t o  t h e  s i t u a t i o n  a f t e r  

l a n d  r e c l a m a t i o n  / m e l i o r a t i o n / ,  

- p r o d u c t i o n  on b o t h  rec la imed  and i r r i g a t e d  land.  

The a rea  o f  i r r i g a b l e  and r e c l a i m e d  l a n d  was i i n i t e d  

i n  each reg ion.  

The t o t a l  a rea  c u l t i v a t e d  i n  t h e  t h r e e  p o s e i b l e  ways had t o  

be e q u a l  t o  t h e  t o t a l  c r o p l a n d  i n  t h e  reg ion.  The t o t a i  

a v a i l a b l e  c r o p l a n d  i n  t h e  r e g i o n s  was changed acco rd ing  t o  

t h e  amount o f  l a n d  unde r  non a g r i c u l t u r a l  use. 

The demand t h a t  c r o p  p r o d u c t i o n  had t o  meet c o n s i s t e d  

o f  two p a r t s :  

- home consumpt ion,  

- expor ts .  



A t  fo rmu la t ing  the demand, the f o l l o a i n g  p o i n t s  were 

t o  be considered: 

- immediate p u b l i c  consumption, 

- consumption ensur ing the  c o n t i n u i t y  o f  p roduc t ion  

and reproduct ion. 

The p u b l i c  consumption i s  the  f u n c t i o n  o f  t he  number o f  the  

popu la t i on  and ea t ing  h a b i t s ,  i n  the  f i r t s  place. 

Three d i f f e r e n t  consumption s t r u c t u r e s  were considered : 

consumption corresponding t o  the  present  Hungarian, 

West-European and p h y s i o l o g i c a l l y  r i g h t  n u t r i t i o n .  

Th is  i s  the  p o i n t  where animal husbandry i s  l i n k e d  i n t o  the 

system. 

The fodder needs o f  an appropr ia te  s tock  o f  c a t t l e  and 

sowing seed f o r  keeping the  l e / e l  o f  p roduc t ion  had t o  be 

reckoned w i t h  t o  ensure the c o n t i n u i t y  o f  food product ion.  

Th is  consumption model served ae the  bae is  f o r  the  

de te rmina t ion  o f  the  min imal  amount o f  products  t o  be 

produced. Upper bounds were g iven f o r  crops t h a t  cannot be 

expor ted end home coneumption i s  a l so  l i m i t e d .  

The t h i r d  group o f  c o n s t r a i n t s  i s  f o r  the c o n t r o l  o f  the  

t e r r i t o r i a l  s t r u c t u r e  o f  the  product ion. I s  i t  the  t e r r i t o r i a l  

c o n s t r a i n t s  determined f o r  each r eg i on  t h a t  ensure the  

r e a l i z i b i l i t y  o f  the  r o t a t i o n  plan. 

These a re  o f  two k inds  : 

- those g iven i n  the form o f  a  l i m i t  f o r  the r a t i o  

between the area occupied by the crops o r  groups 

of  crops,  r espec t i ve l y  



- those l i m i t i n g  the area occupied by c e r t a i n  crops 

o r  groups o f  crops from above o r  below. 

S i m i l a r  cond i t i ons  were formulated f o r  i r r i g a t e d  o r  reclaimed 

l and  and f o r  the  r a t i o  between i r r i g a t e d  and d r y  c u l t i v a t i o n .  

A l l  the above mentioned parameters were expressed i n  n a t u r a l  

u n i t s  and the  same i s  t r u e  f o r  the c o n s t r a i n t s ,  a r  wel l .  

There was, i n  f a c t ,  one s i n g l e  c o n d i t i o n  o f  a non e c o l o g i c a l  

character ,  and t h i s  war the ex ten t  o f  l and  rec lamat ion 

inveetaent r .  

Th i s  i e  a  e i g n i f i c a n t  meane f o r  i n c reas i ng  y i e l d ,  bu t  i t  

cannot be expected t h a t  a l l  the rec lamat ion work w i l l  have 

been f i n i s h e d  i n  the near fu ture.  

I n  the course o f  our  i n v e e t i g a t i o n s ,  more than 20 

d i f f e r e n t  forms o f  l and  rec lamst ion  vtere considered, w i t h  

d i f f e r e n t  inves tnen t  requirements. The r i s e  o f  y i e l d  due t o  

l and  rec lamat ion be ing known, inves tnen t  coete i n  cu r ren t  

p r i c e s  vtere s u f f i c i e n t  t o  determine the  op t ima l  a l l o c a t i o n  

and t i n e  o rder  o f  l and  rec lamat ion p ro jec ts .  The volume o f  

m a t e r i a l  investment was l i m i t e d .  The s o l u t i o n e  under the 

d i f f e r e n t  investment c o n s t r a i n t s  gave the oppo r t un i t y  t o  

determine the expedient l o c a t i o n  and t ime o rder  o f  l and  

rec lamat ion  p ro jec ts .  

The s t r u c t u r e  o f  t he  o u t l i n e d  model can be seen i n  

the  f i g u r e  below: 



Some o f  t h e  l ower  bounds e q u a l  t o  zero  w h i l e  some o f  t h e  

upper bounds may be i n f i n i t e ,  meaning t h a t  t h e r e  i s  no 

l i m i t a t i o n .  The system o f  i n e q u a l i t i e s  means a  s e r i e s  o f  

problems o f  an ever  growing s i z e  b u t  o f  c o n s t a n t  s t r u c t u r e .  

The m a t r i c e s  At and A  were t h e  same i n  a l l  cases w h i l e  
Y 

i n  t h e  m a t r i c e s  Ak , r e l a t i o n s h i p s  c o n t r o l l i n g  t h e  l a n d  

use p a t t e r n  were g r a d u a l l y  extended. The s o l u t i o n  i n  t h e  

l e s s  const  r a i n e d  cases made g r e a t  d i f f e r e n c e s  between t h e  

p r o d u c t i o n  area6 o f  t he  i n d i v i d u a l  crops. 9y t h e  g r a d u a l  

e x t e n s i o n  o f  t h e  c o n d i t i o n s ,  however, t h e  l a n d  use p a t t e r n  

reached a  s t a b l e  form, t h a t  i s  from a  c e r t a i n  s t e p  onwards 

the d i f f e r e n t  g o a l s  d i d  n o t  made the  l a n d  use p a t t e r n  change 

s i g n i f i c a n t l y .  

The knowledge o f  such s t a b l e  systems i s  i m p o r t a n t ,  

because t h e  p roduc t  mix can be changed w i t h o u t  s u b s t a n t i a l  

m o d i f i c a t i o n s  o f  t h e  s t r u c t u r e  of  t h e  a g r i c u l t u r a l  p r o d u c t i o n .  

and hence the  p lann ing  o f  t he  a g r i c u l t u r a l  i n f r a s t r u c t u r e  

can be brought  i n t o  harmony w i t h  the  s t a b l e  - though 

v e r s a t i l e  - l a n d  use p a t t e r n .  

The d e s c r i p t i o n  o f  t h e  parameters s e r v i n g  as a  b a s i s  o f  t h e  

p r o d u c t i o n  and o f  t he  main forms o f  t h e  f a c t o r s  i n f l u e n c i n g  

p r o d u c t i o n  i s  h e r e w i t h  f i n i s h e d .  

T h i s  i s  desc r ibed  i n  a  conc i se  form by the  i n e q u a l i t y  system 



The p o s s i b l e  l a n d  use p a t t e r n e  a r e  rep resen ted  by  t h e  

s o l u t i o n s  o f  t h i s  system. 

The main prob lem he re  i s  t o  choose t h e  c r i t e r i o n  o f  

o p t i m a l i t y .  

The u s u a l  g o a l s  i n  economic p l a n n i n g  - l i k e  t h e  max im iza t i on  

o f  n e t  income, t h e  m i n i m i z a t i o n  o f  c o s t s  - were n o t  s u i t a b l e  

ae b o t h  the  c o e t s  / i n p u t s /  and t h e  p r o d u c t s  were counted 

i n  n a t u r a l  u n i t e .  

Hence, g o a l e  c o u l d  be f o r m u l a t e d  by t h e  way o f  some f i c t i v e  

p r i c e  eyetem, and so we used a  number o f  compara t i ve  v a l u e  

syeteme. ' P r i c e  syetems', i n  t h i s  case,  were needed o n l y  

f o r  t h e  a n a l y s i e  o f  s e n s i t i v i t y  o f  t h e  system and n o t  f o r  

t h e  d e t e r m i n a t i o n  o f  some s o r t  o f  p r o f i t .  

The compara t i ve  v a l u e  syeteme were based on some i n d i c a t o r  

o f  t h e  i n t e r n a l  c o n t e n t  o f  t h e  p r o d u c t s  l i k e  e.g. p r o t e i n  

c o n t e n t ,  energy  c o n t e n t ,  g r a i n  u n i t  and so f o r t h ,  and t h e n  

t h e  o p t i m a l  p r o d u c t  and l a n d  uee s t r u c t u r e  under  t he  d i f f e r e n t  

l i m i t a t i o n  l e v e l s  were ana l i zed .  

Obv ious l y ,  because o f  t h e  extreme c h a r a c t e r i s t i c s  o f  such 

v a l u e  syeteme, an economy cannot  adapt a  p r o d u c t i o n  

s t r u c t u r e  b e i n g  o p t i m a l  w i t h  r e s p e c t  t o  them, b u t  t h e  r e s u l t s  

themeelves e r e  i n t e r e s t i n g  as  they  show t h e  maximal  

p o e s i b i l i t i e e  i n  some d i r e c t i o n s .  

Knowing theee nax ima l  p o s e i b i l i t i e e ,  compromioe s o l u t i o n e  

w i t h  r e s p e c t  t o  c e r t a i n  groups o f  t h e  g o a l  f u n c t i o n s  o r  t o  

a l l  o f  them were a l s o  determined. 
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with t he  advent of high speed d i g i t a l  computers and sophis t icated 

implementation of t he  simplex method, l i nea r  programming (LP) [43 

has become one of t he  most powerful algor i thmic too ls  i n  operat ions 

research and management science. Using LP, decision makers can 

determine optimal so lut ions from among a l l  f eas ib le  so lu t ions  i n  

a decision process t ha t  can be mathematically modelled a s  the  op- 

t imizat ion of  a l i near  funct ion i n  t he  dec is ion var iab les sub jec t  

t o  a set of l i nea r  inequal i ty cons t ra in ts .  

Y e t  one of the  major l im i ta t ions  to t he  u t i l i t y  of t h e  wel l  

developed LP approach is t h a t  only a s i n g l e  ob ject ive funct ion can 

be optimized a t  a time. I n  p rac t i ce ,  most decision processes involve 

necessar i ly  a mult i tude of con f l i c t ing  c r i t e r i a .  For example, i n  

t he  planning o r  contro l  of any operat ion, minimal cos t ,  m a x i m a l  re-  

l i a b i l i t y  and optimal performance a r e  a l l  des i rab le  ob ject ives.  How- 

ever,  such c r i t e r i a  cannot i n  general  be optimized simultaneously, 

and the  bes t  compromise so lu t ion ,  i n  some appropriate sense, is sought. 

The mul t ip le  c r i t e r i a  l i near  programming (McLP) problem is then 

"maximize" c x ,  k= l ,  . ..,X 
k 

subject  t o  3 b 

x z o  

where 



and the  quotat ion marks ind icate t ha t  t he  meaning of opt imal i ty has 

ye t  t o  be speci f ied.  

Many methods have been proposed i n  recent  years.  For a survey, 

t h e  reader is re fe r red  t o  C31 and [141. Some methods (eg. [31) a r e  

based d i r e c t l y  onLP and a r e  there fo re  easy t o  implement and deploy. 

Others such as [2] have i n t u i t i v e  appeal t o  t h e  decision maker. S t i l l  

o thers ,  such as  [ll], have a w r e  r igorous t heo re t i ca l  bas is .  To be 

operat ional  they a l l  depend on various assumptions t h a t  l i m i t  t h e i r  

robustness in deal ing with d iverse,  r e a l - l i f e  problems. To da te ,  no 

proposed method seem t o  be a t t r a c t i v e  enough by a l l  t h e  above standards 
1 

t o  become an i n teg ra l  p a r t  of t h e  p rac t i ce  of l i nea r  programming. 

I n  t h i s  paper, a method is presented t o  extend the algorithmic 

too ls  of LP fo r  MCLP. Sect ion 2 reviews the  concepts of u t i l i t y ,  

preferences, p r i o r i t i e s  and e f f i c iency  t h a t  a r e  usefu l  i n  def ining 

opt imal i ty f o r  mult ip le c r i t e r i a  decision processes. The conceptual 

bases as  wel l  a s  l im i ta t ions  of ex is t ing  approaches: d i r e c t  assessment 

[a], goal programming C3) and mult iobject ive programming [14] can b e  

viewed i n  a unif ied framework. For a de ta i led  discussion, t he  reader 

is re fe r red  t o  L12]. I n  Section 3, a unifying approach which w i l l  

be termed Ho l i s t i c  Preference Evaluation and abbreviated a s  HOPE 

is developed. It is shorn t ha t  HOPE combines many advantages of 

ex is t ing  approaches while circumventing some of t h e i r  d i f f i c u l t i e s .  

' I ronical ly,  t h i s  begins t o  sound l i k e  a mul t ip le  c r i t e r i a  problem 
i n  i t s e l f .  



After a discussion of the  bas ic  assumptions, an algorithm fo r  HOPL 

is presented in Section 4. A s  it is based simply on the i t e r a t i v e  

appl icat ion of parametric LP, t h e  HOPE algorithm can be  implement^;. 

q u i t e  eas i l y .  Convergence is f i n i t e ,  and although heu r i s t i c  i n  

nature,  j us t i f i ca t i on  fo r  i t s  robustness is given i n  Sect ion 5. 

Numerical examples a r e  presented in Section 6 t o  demonstrate how 

t h e  HOPE procedure works in r e a l i s t i c  s i tua t ions .  The simple num- 

e r i c a l  example in  [201, t he  f o res t  management model i n  [16], and 

the  academic department planning model i n  [ll] a r e  used. The resu l t s  

provide ample evidence t h a t  HOPE can be a robust  method fo r  MCLP. 

Concluding remarks and an ou t l i ne  of fu r ther  development a r e  given 

i n  Sect ion 7. The t e s t  problems and re levant  data f o r  the  larger  

examples a r e  included in Appendices A and B. 



2. U t i l i t y ,  Preferences and P r i o r i t i e s  

To de f ine  opt imal i ty  f o r  MCLP, it i s  assumed t h a t  t he  decis ion 

maker's (DM) value judgnent can be expressed by an add i t i ve  u t i l i t y  

funct ion 

u  : RK + R such t h a t  

K 
u 3 C \ where, f o r  e a c h b l , . . . ,  K ,  

k= 1 

\ : R + R is monotone increasing. 

Indeed, \ ( c  X) is i n te rp re ted  a s  t he  u t i l i t y  L71 t o  t h e  DM at ta ined  
k  

by t h e  kth c r i t e r i o n  whi le  u(clx, .  . . , c  x) is t h e  ove ra l l  u t i l i t y  K 

when x  is chosen. Often, each uk is f u r t he r  assumed t o  be l i nea r ,  

concave o r  a t  l e a s t  quasi-concave. 

Let X ~ ( X C R ~ X ~ ( A J F ~ , X ~ O ]  be the  set of  f e a s i b l e  so lu t ions  t o  

K 
MCLP, assumed bounded f o r  s imp l i c i t y ,  and V=[VCR lv=(v l , . . . , ~ K ) ;  

v  =C x , k= l ,  . . . ,K, XCX] be t he  corresponding f e a s i b l e  set i n  c r i t e r i a  
k k  

space. 

Def in i t ion.  For a  DM with u t i l i t y  funct ion u, X*CX is an optimal 

so l u t i on  t o  MCLP i f  u(clx*, . . . , c  x*) 2 u(clx,. . . , c  x) VXSX. 
K K 

A necessary condi t ion f o r  x  t o  be opt imal is t ha t  of e f f i c iency  [lo]. 

( a l so  known i n  t h e  l i t e r a t u r e  a s  nondoninance c181, Pareto  opt imal i ty ,  

non in fe r io r i t y  o r  adm iss i b i l i t y ) .  

0  1 1 
Def in i t ion.  x  EX is e f f i c i e n t  i f  3 x EX 3 c x0 c  x  , k= l ,  . . . ,K 

k k  
wi th s t r i c t  i nequa l i t y  f o r  a t  l e a s t  one k. 

A so lu t i on  is e f f i c i e n t  i f  it is not poss ib le  t o  increase t he  value 

of  any c r i t e r i o n  wi thout diminishing t h a t  of a t  l ease  one other .  



Le t  E = [ X C X ( X  is e f f i c i e n t ]  be t h e  s e t  of a l l  e f f i c i e n t  s o l u t i o n s  

t o  MCLF'. 

f 
Propos i t i on  1. I f  xf is opt imal ,  then x cE. 

Proof.  Follows from monotonicity of each u and a d d i t i v i t y  o f  u. 
k 

Therefore ,  on ly  e f f i c i e n t  s o l u t i o n s  need b e  considered i n  t h e  op- 

t i m i z a t i o n  of MCLP. The fo l lowing p ropos i t i on  prov ides a very  use fu l  

c h a r a c t e r i z a t i o n  of e f f i c iency .  

0 Propos i t i on  2. x cE i f  and on ly  i f  it maximizes 

- K 
u a C Ak\x over X 

k=l 

f o r  some A >O, k= l , . .  ..K. 
k 

Proof .  See [ lo ]  o r  C131. 

Without l o s s  of g e n e r a l i t y ,  b k )  is normalized s o  t h a t  

There is cons ide rab le  mathematical i n t e r e s t  t o  develop enumeration 

methods t h a t  seek t o  determine a l l  e f f i c i e n t  s o l u t i o n s  [13]. However, 

MCLF' cannot b e  optimized wi thout  f u r t h e r  knowledge about  u. I n  genera l ,  

it is q u i t e  d i f f i c u l t  t o  assess u e x p l i c i t l y .  See, e.g., [s], [a] and 

L151. I n  f a c t ,  t h e  e x p l i c i t  form of  u is i r r e l e v a n t  i f  t h e  weak 

order ing o f  xcX induced by u is assumed. See e-g., [l] and C61. This 

means t h a t  g iven two s o l u t i o n s ,  t h e  DM can determine by h i s  p re fe rence  

judgment whether he  p r e f e r s  one t o  t h e  o the r  o r  that h e  is i n d i f f e r e n t  

about t h e  two. It is then p o s s i b l e  t o  d e r i v e  a lgor i thms t h a t  i t e r a t e  



from one so lut ion t o  another t ha t  is preferred by the DM. This is 

t h e  preference programming approach discussed i n  [12]. Examples 

a r e  t he  mult iobject ive programming methods proposed i n  [ l l ] ,  [ l6]  

and CZO] .  Shortcomings of t h i s  approach a r i s e  from its re l iance  on 

l oca l  (e.g., adjacent so lut ions)  o r  marginal preference (e-g., t rade- 

o f f s )  analys is  t h a t  may c a l l  f o r  i n f i n i t e  s e n s i t i v i t y  i n  t he  DM'S 

preference judgment. To a l l e v i a t e  t h i s  d i f f i c u l t y  more e l labora te  

techniques have been introduced, e.g. in h 6 1 .  

A d i f f e ren t  assumption about the  DM'S value judgment is of ten 

va l id  i n  p rac t i ce ,  namely h i s  p r i o r i t i e s .  I n t u i t i v e l y ,  it means t h a t  

t h e  DM considers some c r i t e r i a  more important than others.  Formally, 

an o rd ina l  ranking of t he  c r i t e r i a  is considered. For s impl ic i ty ,  

suppose c 1 , ~ 2 , . . . , ~  a r e  given indescending order of p r i o r i t y  ( i m -  
K 

portance).  By appropr ia te scal ing,  the  underlying u t i l i t y  funct ion 

u can be assumed t o  s a t i s f y  

u l  (y) zu2 (y) 2 . .  . 2uK(y)Vy=R- 

I f  in addi t ion,  t h e  DM can est imate h i s  card ina l  ranking (or degree 

of p r i o r i t y )  of the  c r i t e r i a ,  the p r i o r i t y  programing approach d is-  

cussed i n  L121 can be appl ied t o  MCLP. Examples include the  whole 

c l a s s  of goal  programing methods 131 as  well ae the  method in [Z]. 

Shortcomings of t h i s  approach a r i s e  from the  need t o  quant i t y  p r i o r i t y :  

a s  penalty weights i n  goal programming and as  concession leve ls  i n  C21. 

A uni f ied framework is prescn ted i n  [12] f o r  the  above approaches 

t o  MCLP. I n  summary, given an MCLP, i f  t he  DM'S u t i l i t y  funct ion is 



known exp l i c i t l y ,  it can be optimized d i rec t l y .  I f  r e l i a b l e  tech- 

niques a r e  avai lab le t o  assess t h i s  funct ion, they can be used before 

optimization. I f  the  DM can weakly order the so lu t ions ,  preference 

programming can be applied. I f  t h e  DM can rank the c r i t a r i a ,  prin;-L *:! 

programming can be used. I f  none of the  above assumptions holds, t he  

b e s t  one can do is t o  enumerate a l l  t he  e f f i c i e n t  so lut ions.  Within 

t h i s  framework, another case is possible,  t h a t  i n  which both p r i o s i r i e , ~  

and preferences a r e  assumed. This forms t h e  bas is  of the  h o l i s t i c  

preference evaluation approach presented in  t he  fol lowing sect ions.  



3. H o l i s t i c  Pre ference 

De f in i t i on .  When a DM is a b l e  t o  

( i )  weakly order  t h e  s o l u t i o n s  of an MCLP by h i s  

p re fe rence  judgment and 

( i i )  rank t h e  c r i t e r i a  according t o  o r d i n a l  p r i o r i t y ,  

we s a y  t h a t  h i s  h o l i s t i c  p re fe rence  can be assessed. 

I n  t h i s  sense ,  h o l i s t i c  p re fe rence  is i n t e r p r e t e d  as a va lue 

judgment t h a t  extends from t h e  pa i rw ise  comparison of s o l u t i o n s  t o  

t h e  pa i rw ise  comparison o f  c r i t e r i a  a s  a whole. However, t h e  a b i l i t y  

t o  do ( i )  and ( i i )  i n  t h e  above d e f i n i t i o n  does n o t  necessar i l y  mean 

t h a t  t h e  o v e r a l l  va lue  judgment w i l l  b e  c o n s i s t e n t .  For example, 

suppose a p r i o r i t y  ranking impl ies  t h a t  

The u t i l i t y  func t ion  ur 1 \ induces on X a weak order ing by t h e  

1 
k= 1 

d e f i n i t i o n s  x 4 x2 i f  

Le t  v v be such t h a t  u1(v1)=u2(v2). By (1)  and monotonicity of 
1, 2 

uk, we have 

1 
Hence, u (vl, v2,  v3, . . . , V  ) u (v2, v2 ,v3, . . . , .' Let  x and x 

2 
K vK) 

correspond t o  (v 1 . ~ 2 . ~ 3 , . . . , ~  and (v2,v2.v3, . . - ,V  ) respect ive ly .  K K 



I f  t he  DM prefers  x1 t o  x 2  when ac tua l l y  asked t o  compare the two, 

h i s  preference judgment is inconsis tent  with h i s  p r i o r i t y  ranking. 

When t h i s  happens, h i s  h o l i s t i c  preference is sa id  t o  be inconsistent.  

In  pract ice,  while it is p laus ib le  t o  expect preference and 

p r i o r i t y  judgment by t he  DM, t h e  a p r i o r i  assumption of consistency 

w i l l  i n  genera l  be too res t r i c t i ve .  This i s  by no means a re f lec t ion  

on t he  i n teg r i t y ,  in te l l i gence  or  competence of t h e  DM. Inconsistency 

may a r i s e  na tu ra l l y  from imcomplete information about t he  problem. 

I f  t he  MCLP is nont r i v ia l  a t  a l l ,  the DM may have l i t t l e  o r  no a p r i o r i  

knowledge about t h e  var iance of ind iv idual  c r i t e r i o n  over the  f eas ib le  

s e t  o r  t h e  convariance (interdepndence) among d i f f e ren t  c r i t e r i a .  He 

may assign high p r i o r i t y  t o  two of t he  c r i t e r i a  t o  make su re  t h a t  they 

a t t a i n  acceptable values. I f  t h e  two c r i t e r i a  turn out t o  be highly 

corre la ted,  h i s  preference judgment should reveal  t h a t  one of the 

c r i t e r i a  could have been assigned a lower p r i o r i t y .  Moreover, in 

a repeated -choice s i t ua t i on ,  a s  is t yp ica l  of i t e r a t i v e  procedures 

i n  preference programming, it is not uncommon f o r  a DM to be inconsis tent  

by changing h i s  mind as  he learns  more about t he  a l te rna t i ves .  For 

example, given two i n i t i a l  so lu t ions,  he may pre fe r  t he  one t h a t  ex- 

aggerates h i s  p r i o r i t i e s  with t h e  hope of achieving fu r ther  improvement. 

As t he  i t e r a t i v e  process evolves he learns t h a t  those a r e  ac tua l l y  

t he  most a t t r a c t i v e  a l te rna t i ves .  So he may end up choosing t he  l ess  

rad i ca l  so lut ion.  For a discussion of the  adapt ive displacement of 

preferences, t he  reader is re fe r red  t o  C191. For these reasons, i f  



any opera t iona l  method t o  s o l v e  MCLP by eva luat ion of  t h e  DM'S 

h o l i s t i c  pre ference is t o  be robus t ,  it must a l low t h e  DM t o  uncover 

incons is tency i n  h i s  judgment and make appropr ia te  adjustments.  This 

way t h e  exper ience of so lv ing an MCLP can be i n t e r p r e t e d  a s  a learn ing 

process f o r  t h e  DM. As he accrues informat ion about  h i s  a l t e r n a t i v e s ,  

he  may r e f i n e  h i s  p re fe rence  and p r i o r i t y  judgment, n o t  u n l i k e  acqu i r ing  

s k i l l  in play ing a game. 

The h o l i s t i c  pre ference eva lua t ion  (HOPE) procedure t o  b e  de- 

veloped i n  t h i s  paper assumes ( i )  and ( i i )  on ly  in an opera t iona l  

sense.  As long a s  t h e  DM b e l i e v e s  t h a t  he  can perform t h e s e  tasks ,  

HOPE m y  b e  used. Of course,  he  is even tua l l y  expected t o  settle f o r  

a c o n s i s t e n t  va lue judgment i n  o rde r  f o r  t h e  s o l u t i o n  thus  obta ined 

t o  b e  meaningful. 

Next we cons ider  sca l i ng .  

De f in i t i on .  An MCLP wi th  t h e  c r i t e r i a  ( c  l , . . . ,c  ) ordered in 
K 

descending p r i o r i t y  (importance) is s a i d  t o  b e  proper ly  

sca led  i f  t h e  opt imal  s o l u t i o n  x maximizes 

f o r  some X s a t i s f y i n g  
k 



Again, we assume proper s c a l i n g  opera t iona l l y .  I f  it holds ,  HOPE 

proceeds t o  determine [ A  1 and hence x*. When it f a i l s ,  t h e  DM'S 
k 

h o l i s t i c  p re fe rence  should r e v e a l  t h a t  it is t h e  c a s e  and i n d i c a t e  

t h e  proper d i r e c t i o n s  f o r  resealing. I n  genera l ,  [kL] is n o t  uniqus 

* 
and a c t u a l l y  provides a s u f f i c i e n t  degree o f  freedom s o  t h a t  x can 

be determined by HOPE over a reasonably  wide range o f  sca l i ng .  



4. Holist ic Preference Evaluation (HOPE): An Alqorithm 

Given an MCLP it is assumed that  

(I) t he  DM'S ho l i s t i c  preference can be assessed; 

(11) the  DM can learn to be consistent;  and 

(111) the DM can learn to discover improper scaling. 

To solve MCLP, it suf f ices to  determine a s e t  of weights tha t  

correspond t o  the optimal solut ion x*. Let (cl, . . .c ) be the c r i t e r i a  
K 

ordared in descending pr io r i ty .  Then proper scal ing i m p l i e s  the 

existence of ( A *  3 such that  
k 

The HOPE algorithm determines successively A:, . . . , A:, in that  

order. Each i te ra t ion  of the a l g o r i t h  involves a number o fLP 's  

defined on X with parametric object ive functions based on (C l , . . . ,~  
K). 

The parametric solutions generated a t  each i te ra t ion  a re  presented 

t o  the  DM who then se lec ts  the one he prefers most. This choice w i l l  

be used t o  define the s e t  of parametrizatiorsin the followitq i terat ion.  

The algorithm is centered around the idea of probing the d ist r ibut ion 

of weights while enforcing conditions (3) and (4) .  I n i t i a l l y ,  a l l  

c r i t e r i a  a r e  divided in to  two groups: high p r io r i t y  and low pr ior i ty .  

For each possible division, e f f i c ien t  solutions a re  generated by 

parametrizing a complementary pa i r  of high and law pr io r i ty  weights 



assigned t o  each c r i t e r i on  i n  t h e  corresponding groups. Since only 

one parameter is involved, s tandard parametr ic LP techniques can be  

appl ied.  The DM i s  asked t o  choose t h e  most p re fe r red  so lu t ion  from 

t h i s  f i r s t  and probably r a the r  crude approximation. Next, t he  high 

p r i o r i t y  weights of t h i s  so l u t i on  a r e  temporari ly f ixed whi le t h e  

above process is appl ied t o  r e f i n e  t h e  low p r i o r i t y  weights u n t i l  

t h e  lowest p r i o r i t y  weight is determined. The l a t t e r  is then f i x e a  

and t h e  algor i thm is repeated with one less weight t o  be  resolved. 

I n  each parametr izat ion,  t h e  c r i t e r i a  whose weights a r e  being 

parameter ized a r e  ca l l ed  act ive.  Thei r  ind ices w i l l  be consecut ive,  

say i ,  i + l ,  ..., k. The weights A l,...,Ai-l w i l l  be temporar i ly  f ixed 

a t  values assigned i n  previous i t e r a t i o n s .  The weights A k+l, - -  '1 
K 

w i l l  be permanently f ixed a t  A;+~, -.. ,A *  s i n c e  they have a l ready 
K 

been determined. The a c t i v e  c r i t e r i a  a r e  pa r t i t i oned  i n t o  two con- 

t iguous groups: t he  head and t h e  t a i l .  For example, i f  ( C ~ , C ~ + ~ ,  . -. ,C ,) 
3 

is t h e  head, then (C j+l, . . . , ck) is t h e  ta i l .  The head is the  group 

with h igher  p r i o r i t i e s .  c w i l l  b e  ca l l ed  t h e  vedette.  It i d e n t i f i e s  
j 

t h e  head- ta i l  pa r t i t i on i ng .  Every c r i t e r i o n  i n  t h e  head is assigned 

equal  weight: Ah, and every c r i t e r i o n  i n  t h e  t a i l :  A Bounds f o r  
t' - 

A h  and it a r e  determined i n  t h e  previous i t e r a t i o n  a s  A h  and A 
t 

respec t i ve ly .  The parametr izat ion involves decreasing A whi le 
tL 

increas ing h t  u n t i l  they a r e  equal. It is i d e n t i f i e d  a s  



meaning t h a t  

(i) A k  is t o  be  determined next ;  

( i i )  A1,A2, .. . ,Ai-l a r e  temporar i ly  f i xed ;  

( i i i )  . .. ,A have been determined and hence f i xed ;  
K  

( i v )  c is t h e  vedet te ;  
j 

(v)  ( C ~ , C ~ + ~ .  . . . , C  ) is t h e  head; and 
j 

( v i )  ( c ~ + ~ ,  . . . ,ck.) is t h e  t a i l .  

F igure 1 g ives  a schematic rep resen ta t ion  of a parametr izat ion.  The 

parametr ic o b j e c t i v e  funct ion f o r  t h e  LP is 

where 
- 
A 10 

k l ,  . . . , i -1,  a r e  computed i n  previous i t e r a t i o n s  : 

A;, LPk+l,. . . , K, a r e  computed i n  previous i t e r a t i o n s ;  

A is t h e  lower bound f o r  t h e  weight on t h e  t a i l ;  
t - 
A is t h e  upper bound f o r  t h e  weight on t h e  head; 
h 

= A  +B is t h e  parametr ized weight on t h e  t a i l ;  At t - 
Ah=Xh-p is t h e  parametrized weight on t h e  head; and 

CO.F] is t h e  range of t h e  parametr iza t ion.  

The bounds and range i n  c(B) a r e  computed a s  fo l lows. 
i-1 - k * K  

Let  w l a  C 1 -  'Z k1 - Z 
L=1 



I A = w  
-t 2 

o therwise - h h = r  . 
i-1 

( 1, = *tl 

The two cases a r e  n e c e s a r y t o  ensure  t h a t  cond i t i on  (3) holds.  In 
- 

e i t h e r  case ,  is givens by 

then 

- 
0 = (r -A ) / 2 .  

h - t  

- : 
X h  = W 

1 

The parametr ic  LP f o r  P Ck. l , 2 ,  . . . , i-1, j 1 is t hen  

(7) maximize c (8)  , o ~ B ~ B .  
XCX 

The opt imal  s o l u t i o n  t o  (7)  is piecewise cons tan t  over  i n t e r v a l s  o f  

B i n  t h e  range c0,81, and can b e  so lved by s tandard  parametr ic  LP 

methods [41. 

At  i t e r a t i o n  n ,  i f  X k  is t o  b e  deteumined nex t ,  pn parametr ic  

LP'S cf the  form (7) w i l l  b e  considered.  Depending on t h e  outcome of  

i t e r a t i o n  n-1, p may vary  from 1 t o  k-1. So lu t i ons  from t h e s e  pn 
n 

problems are presented t o  t h e  DM who must t h e n  i d e n t i f y  h i s  most 

p r e f e r r e d  s o l u t i o n  i n  t h e  set. As t h i s  s o l u t i o n  corresponds to an 

i n t e r v a l  o f  va lue  f o r  t h e  parameter 8 ,  t h e  DM may dec ide  on t h e  

p a r t i c u l a r  va lue  of B*  wi th in  t h i s  i n t e r v a l  that w i l l  b e  used i n  

i t e r a t i o n  m t l .  I f  he has no p a r t i c u l a r  pre ference,  t h e  midpoint  o f  



t h e  i n t e r v a l  w i l l  be used. In  a d d i t i o n ,  h i s  most p re fe r red  s o l u t i o n  

i n  i t e r a t i o n  n may appear i n  more than one parametr iza t ion.  In  

t h i s  case ,  t h e  DM should exerc i se  h i s  h o l i s t i c  pre ference judgment 

t o  choose t h e  p r e f e r r e d  conf igurat ion a s  w e l l .  Otherwise, h i s  

previous dec is ions  may be  examined t o  i n f e r  a choice. I f  none is 

a v a i l a b l e ,  t h e  algor i thm w i l l  choose t h e  parametr iza t ion wi th  t h e  

most even d i s t r i b u t i o n  o f  weights. This is a l o g i c a l  cho ice a s  the 

absense of  pre ference impl ies t h a t  t h e  DM'S p r i o r i t i e s  cannot b e  

very d i s t i n c t .  I n  any case,  a t  t h e  end of  i t e r a t i o n  n, a 0' is 

determined. I f  the corresponding parametr iza t ion has a s i n g l e  c r i t e r i o n  

i n  t h e  t a i l ,  namely c then $ is  determined by 
k' 

(8) 1.; - %+s'. 

Otherwise, each c in t h e  head w i l l  b e  assigned t h e  weight 
I 

- - 
(9) X I  = kh-8+ 

which w i l l  then be  temporar i ly  f i x e d  in i t e r a t i o n  n+l. 

The a lgor i thm can now be  s t a t e d .  



The HOPE Algorithm. 

S tep  0. I n i t i a l i z e :  s e t  k = ~ ,  n=O, A:+~=O. 

S t e p  1. Free a l l  undetermined weights: set i=l. 

S t e p  2. Update i t e r a t i o n  count: set n=n+l, number of parametr iza t ions 

pn=k-i. I n i t i a l i z e :  set j=i-1, S=8. 

S t e p  3. Choose vedette:  set j = j+ l .  I f  j=k, go t o  S tep  5. 

Step  4. s o l v e  parametr ic  l i n e a r  program (7) f o r  P C ~ ,  l , 2 , .  . . , i -1, j] 

Enter s o l u t i o n s  i n  S. 

Return t o  S tep  3. 

Step  5. E l i c i t  DM'S h o l i s t i c  preference:  s e l e c t  m o a t  p r e f e r r e d  

s o l u t i o n  x i n  S and corresponding va lue o f  parameter B*.  
n 

Also, v e r i f y  s c a l i n g  and p r i o r i t i e s .  

S tep  6. Analyze xn: i f  on ly  one c r i t e r i o n  i n  tail, go t o  S tep  7. 

Otherwise, set X =X -a*  f o r  each of t h e  h c r i t e r i a  in head 
I h  

( h - 1  Update number of weights t o  b e  temporar i ly  f ixed:  

set i= i+h.  Return to Step  2. 

Step  7. A *  is determined: set \2&+8*. S e t  k=k-1. I f  b l ,  s top.  
k 

Otherwise, r e t u r n  t o  S tep  1. 

A f low diagram f o r  t h e  HOPE a lgor i thm is given in F igu re  2. An 

i l l u s t r a t i o n  of a l l  p o s s i b l e  outcomes f o r  K=4 is given i n  F igure  3. 

The number o f  i t e r a t i o n s  requ i red  by t h e  a lgor i thm is bounded 

The t o t a l  number o f  pa ramet r i za t ions  examined is bounded by 

K-1 
(11) = C j(K-1). 



The a c t u a l  number of parametr iza t ions requ i red  is usua l l y  much l e s s  

and can be made so ,  e s p e c i a l l y  when K is l a r g e  (say,  0 5 )  by t h e  

fo l lowing cons ide ra t ion .  For p e r f e c t  g e n e r a l i t y ,  t h e  a lgor i thm is 

s t a t e d  i n  such a way t h a t  each t ime it r e t u r n s  from Step 7 t o  S t e p  1, 

a l l  p o s s i b l e  d i s t r i b u t i o n s  f o r  t h e  undetermined weights a r e  considered 

t o  b e  of p o t e n t i a l  i n t e r e s t .  I n  p r a c t i c e ,  outcomes i n  previous 

i t e r a t i o n s  can u s u a l l y  b e  used t o  r u l e  o u t  f u r t h e r  cons ide ra t ions  

o f  var ious parametr iza t ions.  For  example, r e f e r r i n g  t o  F igu re  3, 

suppose P 142 1 and P 1431 produce s o l u t i o n s  t h a t  are s i g n i f  i c a n t l y  

i n f e r i o r  t o  ~ 1 4 1 1 .  Then, a f t e r  A 4  is determined, PC321 is extremely 

u n l i k e l y  t o  produce a t t r a c t i v e  s o l u t i o n s  and may t h e r e f o r e  b e  suppressed. 

F i n a l l y ,  a d iscuss ion  o f  s c a l i n g  and p r i o r i t y  checks w i l l  complete 

t h e  d e s c r i p t i o n  o f  t h e  HOPE algor i thm. Whenever t h e  DM has reasons 

t o  suspec t  t h a t  t h e  values o f  c e r t a i n  c r i t e r i a  a r e  c o n s i s t e n t l y  t o o  

high o r  t o o  low, a s c a l i p g  and p r i o r i t y  check should b e  s igna l led .  Th is  

happens i f  t h e  DM'S preferences seem t o  l i e  beyond t h e  range CO,~) ]  

f o r  t h e  parameter B i n  a l l  parametr iza t ions i n  an i t e r a t i o n .  I f  

a pa i rw ise  p r i o r i t y  in terchange can be i d e n t i f i e d  and approved by 

t h e  DM, it should b e  executed and t h e  a lgor i thm r e s t a r t e d .  Otherwise, 

a u n i l a t e r a l  s c a l i n g  w i l l  be  performed on s p e c i f i e d  criteria. Scal ing 

is recommended on ly  when o rde r  o f  magnitude changes deem necessary. 
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Figure 1. A typ ica l  parametrization i n  HOPE. 
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I HOPE: K=4 

X 4  DETERMINED I 

I DETERMINED I 
3 

J, 
A 2 ,  k1 DETERMINED I 

F i g u r e  3 .  HOPE i l l u s t r a t e d  for K=4. 



5. Jus t i f i ca t i on  of HOPE 

The HOPE algorithm is a f i n i t e  procedure t o  parametrize condit ions 

(3) and (4) i n  order t o  discover t he  optimal so lu t ion  t o  MCLP, defined 

as  t h e  one most preferred by t he  DM. A s  pointed out i n  [9], t h e  exact,  

f u l l  parametr izat ion of a l l  poss ib le  combinations of t he  weights be- 

comes very d i f f i c u l t  fo r  K>2. HOPE is essen t i a l l y  a method of nested 

b i c r i t e r i on  programming t h a t  al lows the  successive refinement of crude 

i n i t i a l  approximations. The main argument f o r  t he  robustness of 

HOPE r e l i e s  on t h e  f a c t  t h a t  the  weights X*  a r e  i n  general  not unique, 

regardless of whether t h e  corresponding x* is the  unique optimal 

so lu t ion  t o  MCLP o r  not. This can be seen from the  following proposi t ions 

Let  
K e = ( l , l ,  ..., 1)cR , yeR , c =  [:I 1. ~ R ~ x R ~ .  

0 
Proposi t ion 3. x cE i f  and only i f  t h e  LP 

(12) maximize e y  

subject  t o  I y -  Cx = -Cx 
0 

A x = b  

has an optimal so lut ion with y o .  

Proof. Follows from the  de f in i t ion  of e f f ic iency.  

Proposi t ion 4. Let (XO,rrO) be a dual optimal so lu t ion  t o  (12). 

0 
Then X >O and xo sol;es 

0 
maximize X Cx 

xox 



0 0 
Proof.  Dual opt imal i ty  of ( A  ,n ) = 

(13) e-A0 s 0 

(14) AOC-?OA s 0 

0 0 0 
(15) -A Cx +rr b = max ey = 0 

Now x0 is pr imal  f e a s i b l e  to (16) by de f in i t i on .  TI' is dual  f e a s i b l e  

t o  (16) by (14) .  By (15).  complementary s lackness holds. There fo re  

0 0 (x ,T I  ) is a n  opt imal  primal-dual p a i r  of s o l u t i o n  t o  (16).  A I I ~  (13) 

0 
impl ies A >O. 

0 
Hence, i0 from (12) may be  used to c h a r a c t e r i z e  x 6E. Now cons ider  

x* and (12) w i th  xO=x*. x * c ~  impl ies  y=O and t h e  opt imal  b a s i s  i n  

(12) w i l l  i n  genera l  be  degenerate. Th is  is  c e r t a i n l y  t r u e  i f ,  f o r  

* .  
example, x is an extreme p o i n t  of  X. Consequently, t h e r e  e x i s t s  i n  

genera l  a mul t i tude of ( l i n e a r l y  independent) A* t h a t  s a t i s f y  

P ropos i t i on  2 f o r  x* a s  wel l  a s  condi t ion ( 4 ) .  C a l l  t h i s  set A. 

L e t  A be  i ts r e s t r i c t i o n  to A K .  Recal l ing t h a t  c has lowest 
K K 

p r i o r i t y ,  A- is expected t o  be smal l  (<<1) s o  t h a t  r e l a t i v e l y  l a r g e  
K 

per tu rba t ions  would st i l l  be ins ign i f i can t .  T h i s  impl ies t h a t  even 

crude approximationsof A should i n t e r s e c t  \. The HOPE algor i thm does 

exac t l y  tha t .  The s e r i e s  of P C K  . . . I  parametr iza t ions seek A € A  
K K' 

Once t h i s  ho lds ,  t h e  above argument can b e  repeated induct ive ly .  Note 

t h a t  a s  t h e  r e l a t i v e  margin of e r r o r  decreases f o r  t h e  higher p r i o r i t y  

weights,  t h e  p rec is ion  of t h e  parametr ic  approximation increases.  For 

ins tance,  once A3,...,AKtA have been determined, ~ [ 2 1 ]  determines exac t l y  

t h e  corresponding and A1. 



Another argument fo r  t he  robustness of HOPE is t ha t  no specia l  

assumption about t h e  underlying u t i l i t y  function is made. Of course, 

caut ion must be exercised in  the  general case t o  take i n to  account 

of nonextremal as  well as  loca l  optima. I n  t he  f i r s t  instarlte, a l l  

optimal so lu t ions to  (16) fo r  a given l o  should be examined. Simi lar ly,  

f o r  non-unimodal u t i l i t y ,  t h e  DM can choose severa l  so lut ions a t  any 

s tage  of HOPE and branch out the  refinement procedure f o r  loca l  optimal 

solut ions. 

I n  terms of implementation, HOPE involves simply the  i t e r a t i v e  

appl icat ion of parametric l inear  programming. It can therefore be 

incorporated a s  a natura l  extension of the  algorithmic too ls  of wel l  

devploped IS technology. To the  DM t he  bas ic  concepts of HOPE a r e  

easy t o  understand and maybe even t o  accept. I n  actual  use, the  DM 

has only t o  examine e f f i c i e n t  solut ions. Moreover, s ta r t i ng  from 

i t e ra t i on  1 on the DM is offered a h o l i s t i c  view of t he  a l te rna t ives  

which becomes more and more c lear  a s  the process evolves. This is 

i n  contrast  t o  most preference programing methods tha t  r e l y  on local 

o r  marginal u t i l i t y  analysis.  

F inal ly ,  it should be remarked tha t  t he  primary purpose of 

HOPE is t o  iden t i f y  the optimal so lut ion x* t o  an MCIS. This is 

done by approximating t h e  weights [A*] t h a t  character ize x*. However, 
k 

I a r e  not meant t o  be an evaluation of t he  DM'S u t i l i t y  function 

1 (except i n  the  spec ia l  case where it is known to be l inear  ) .  

1 .  
ThlS spec ia l  case is exploited i n  the  numerical examples in  Section 6 
fo r  t he  s o l e  purpose of simplifying t h e  simulation of the DM'S response. 
The reader should not be confused about t h e  s ign i f icance of t he  u t i l i t y  
function. 



This funct ion u i s  i n  genera l  too  complicated t o  be  meaningfully 

* 
represented by X ' k  ck. I n  p r a c t i c e ,  a p a r t  from assuming its 

separab le  a d d i t i v i t y  and monotonicity, t h i s  author  p r e f e r s  to leave 

u o u t  of t h e  p ic tu re .  Nonetheless, t h e  DM may st i l l  a t t a c h  whatever 

i n t u i t i v e  i n t e r p r e t a t i o n  he chooses t o  X . Thus HOPE can b e  regarded 

a s  a lea rn ing  process f o r  t h e  DM t o  'weigh" h i s  c r i t e r i a .  Or i f  one 

dec ides on using k* ae a measure of t h e  DM'S h o l i s t i c  pre ference then 

HOPE is t r u l y  a procedure f o r  h o l i s t i c  pre ference eva luat ion.  



6. Numerical Examples 

In  t h i s  sect ion,  the  resu l t s  of the  appl icat ion of HOPE 

t o  four t e s t  problems a r e  reported. Although they a r e  not based 

on experience involving decision makers i n  ac tua l  appl icat ions,  

they should st i l l  be very useful  a s  a demonstration of the  eff icacy 

of the  algorithm. This is especia l ly  t r u e  s ince  &he l a s t  th ree  

problems a r e  drawn from rea l - l i f e  mult ip le c r i t e r i a  decision processes 

reported in the  l i t e ra tu re .  Problem I is t he  simple numerical example 

used by Zionts and Wallenius i n  [20]. Problem I1 is t he  academic 

department planning model formulated by Geoffrion, Dyer and Peinberg 

i n  L111. As [11] did not  provide su f f i c i en t  data t o  reconstruct the  

problem there in ,  f i c t i t i o u s  but r e a l i s t i c  values of the  parameters 

a r e  used here. These a r e  recorded in  Appendix A. Problems I11 and 

I V  a r e  two cases of the  fo res t  management model studied by Steuer 

and Schuler i n  (161. The data a r e  given i n  Appendix B. Each of t h e  

four problems makes a par t i cu la r  point  about HOPE and together they 

provide considerable ins ight  i n t o  the  approach. 

AS the  algorithm has not yet been implemented a s  a f u l l y  automatic 

and in te rac t i ve  computer program, the tesfswere run by batching each 

parametric LP a s  a separate job on a CSC 7600 a t  Brookhaven National 

Laboratory. The LP code used was CDC'c APEX I11 with parametric 

opt  ions. 

To simpl i fy the  t e s t  runs and t o  ensure t h e i r  reproducib i l i ty ,  a 

l i nea r  u t i l i t y  function is speci f ied in each case t o  simulate preference 

judgment by a DM. The reader is reminded t h a t  l i nea r i t y  assumptions a r e  

n o t  necessary i n  pract ice.  



Problem I. Example in  :20]. 

The e n t i r e  s e t  of extreme point  so lut ions a r e  l i s t e d  i n  Table 1. The 

ones i n  parenthes is  a r e  ine f f i c ien t .  AS i n  (201, it is assumed t h a t  

t h e  DM'S ( imp l i c i t )  u t i l i t y  funct ion 'is 

which is maximal a t  so lut ion B with a value of 42.96. Applying 

HOPE, t he  DM f i r &  ranks ( c  1 , ~ 2 , ~ 3 )  in descending order  of p r i o r i t y .  

The r e s u l t s  a r e  surmnarized in Table 2. Note t h a t  t he  so lut ion on 

each l i n e  is achieved by t h e  value of B on t h a t  l i n e  up t o  bu t  

excluding t h e  value of ,9 on the  following l i ne ,  The f i r s t  i t e r a t i o n  

involves parametrizations P [31] and P [32]. The DM'S preferred 

so lut ion appears i n  both cases. H i s  h o l i s t i c  preference implies 

t h a t  c2 and c3 a r e  considered equal and l ess  important than c 1' 



Therefore ,  he chooses s o l u t i o n  B i n  ~ [ 3 1 ]  and B*= 0.21, t h e  midpoint 

o f  t h e  i n t e r v a l  corresponding t o  B. Next, PC3121 is considered.  AS 

no improvement r e s u l t s  from s h i f t i n g  weight  from c t o  c t h e  DM 
3 2' 

concludes t h a t  c and c shou ld  have aqua1 weight  and chooses 
2 3 

A; - 6' = 0.21. PC211 prov ides a f i n a l  check by s h i f t i n g  weight  

from cl  t o  c 2  f o r  p o s s i b l e  improvement. None r e s u l t s ,  and s o  

8*=0.0 i2 = 0.21 and A; = 0-58. 

Th is  s imple  warnple i l l u s t r a t e s  t h e  fundamental concept  o f  HOPE. 

Because t h e r e  a r e  s o  few a l t e r n a t i v e s ,  d i v e r s e  combination8 of weights 

g i v e  rise t o  t h e  saneso lu t i on .  I d e n t i f i c a t i o n  of t h e  most p re fe r red  

s o l u t i o n  i n  an i t e r a t i o n  does n o t  s u f f i c e .  P r i o r i t i e s  and hence 

h o l i s t i c  p re fe rence  must be  c a l l e d  i n t o  p lay .  I n  t h i s  c a s e ,  p r i o r i t i e s  

a c t u a l l y  p l a y  t h e  major r o l e .  I n  complex problems w i th  abundant 

a l t e r n a t i v e s  t h e  6 i n t e r v a l s  w i l l  diminish and t h e  e f f e c t  of p re ferences 

w i l l  become more s i g n i f i c a n t  . 



TABLE 1. PROBLEM I :  A l l  extreme point solut ions 



TABLE 2. PROBLEH I: Solution by HOPE 

- 
r 
n 

1 

2 

3 

P 

C31] 

C321 

[312] 

[2l] 

6 

0.00 

0.20 

0.22 

0.33 

0.00 

0.13 

0.16 

0.33 

0.00 

0.21 

0.00 

0.04 
0.19 

Solution 

A 

B 

D 
I 

B 

H 

D 
I 

B 
II 

B 

D 

u 

42.06 

42.96 

41.64 
I 

42.96 

36.80 

41.64 
I 

42.96 
II 

42.96 

41.64 
" 

8 * 

+ 0.21 

+ 0.21 

+ 0.00 

X3=0.21 

X2=0.21 

X1=0.58 

%*=B 



Problem XI. Academic Department Planning Model i n  [ i l l .  

This is a planning problem f o r  t h e  operat ion of a  s i n g l e  academic 

department on a  l a r g e  u n i v e r s i t y  campus. The c o n s t r a i n t s  r e f l e c t  

work ba lance,  budget ba lance,  man-power c e i l i n g ,  p o l i c i e s  and 

commitments of t h e  department. The c r i t e r i a  have t h e  fo l lawing 

meaning. 

f l :  course s e c t i o n s  o f fe red  - gradua te  d i v i s i o n ,  

f2 :  course s e c t i o n s  o f fe red  - lcwer d i v i s i o n ,  

f3:  course s e c t i o n s  o f fe red  - upper d i v i s i o n ,  

f4 :  teach ing a s s i s t a n t  t i m e  used f o r  suppor t .  

f5: r e l e a s e s  f o r  departmental  s e r v i c e  duty ,  

f6: a d d i t i o n a l  a c t i v i t i e s  of  t h e  regu la r  f a c u l t y .  

DM'S p r i o r i t i e s :  (C1' C 2 '  C3' C4' C5' ~ 6 )  = ( f 5 r  f 4 #  f 6 #  f l #  f 3 ,  f 2 )  

DM'S u t i l i t y  funct ion:  

u  = 0 . 4 ~  + 0 . 3 ~ ~  + 0 . 2 ~  + 0 . 0 7 ~  + 0 . 0 2 ~  + 0 . 0 1 ~  
1 3 4  5  6  

which is maximized a t  v* = (68.25, 20.0, 1.08, 100, 30, 20) 

w i th  t h e  va lue u(v*) = 41.3. 

Tab le  3  conta ins  t h e  s o l u t i o n s  t o  Problem I1 examined by ROPE. To 

s i m p l i f y  p resen ta t ion ,  only parametr iza t ions g i v ing  t h e  p r e f e r r e d  

s o l u t i o n  i n  each i t e r a t i o n  have been entered i n  Tab le  4. The opt imal  

v* is determined c o r r e c t l y  by HOPE i n  7 i t e r a t i o n s  wi th  t h e  weights 



P, = (0.395, 0.295, 0.185, 0.085, 0.025, 0.015) which is a  very good 

approximation of t h e  i m p l i c i t l y  assumed l i n e a r  u t i l i t y  func t ion  u.' 

This example i l l u s t r a t e s  t h a t  even wi th  six c r i t e r i a ,  t h e  number of 

i t e r a t i o n s  requ i red  may st i l l  b e  r e l a t i v e l y  low. The upper bound 

f o r  K=6 is 15. 

'see remark a t  end of Sect ion 5. 



TABLE 3 .  PROBLEM 11: Solu t ions  examined 



TABLE 4. PROBLEM 11: Solution by HOPE 

- - 



Problem 111. Forest Management Model i n  [16]. 

K E 5 ,  X E  R31, ACR13XR31 

The problem is t o  optimize management plans for  t he  multi tude of 

goods and serv ices obtainable from publ ic f o res t  land. There a re  

e ight  acreage l im i ta t ion  equal i ty  cons t ra in ts ,  one budget l imi ta t ion 

inequal i ty  constra int  and four susta in ing timber y ie ld  inequal i ty 

constra ints  i n  t he  model. The c r i t e r i a  represent  ac t i v i t y  levels  

i n  

timber production (z l ) ,  

dispersed recreat ion (z  ) ,  
2 

hunting fo res t  species (z3) ,  

hunting open land species ( z4 ) ,  and 

grazing (z5) .  

A s  reported i n  [16], t he  r e a l  DM i n  t h i s  case ranked the c r i t e r i a  

(z2, Z3, z4, zl, z ) in descending order. The method i n  C16] led t o  
5 

1 
t he  determination of so lut ion J i n  Table 5 a s  t h e  optimal solut ion. 

Applying HOPE with t he  above p r i o r i t y  ranking of t he  c r i t e r i a ,  t he  

DM w i l l  discover t h a t  the value of z3 never exceeds t h a t  i n  so lut ion 

N. I f  he switches the  p r i o r i t i e s  of z2 and z3 d t  any s tage of HOPE 

(even down t o  ~ c 2 1 ' J )  and continues, he can st i l l  discover so lut ion J. 

However: we present t he  r e s u l t s  of a complete run of HOPE a f t e r  the  switch 

 here are  s l i g h t  discrepencies between the numerical values i n  [16] 
and those i n  Table 5. This is caused by the  f a c t  t h a t  we s ta r ted  with 
data presented i n  t he  Appendix of [16] which have been rounded off  O r  

truncated t o  two decimal places. 



The DM'S new p r i o r i t i e s :  

So lu t ion  J corresponds (among o t h e r  p o s s i b i l i t i e s )  t o  t h e  u t i l i t y  

funct ion 

u  = 0 . 5 0 ~ ~  + 0 . 2 5 ~ ~  + 0 . 1 2 ~  + 0 . 0 8 ~  + 0 . 0 5 ~  
3 4 5' 

which is maximized a t  a  va lue of  19735 by s o l u t i o n  J. HOPE e s t a b l i s h e s  

t h e  o p t i m a l i t y  of J i n  10 i t e r a t i o n s  wi th  t h e  weights A = (0.53, 0.23, 

0.13, 0.08, 0.03). 

This example i l l u s t r a t e s  how HOPE can be  used t o  d iscover  

incons is tency i n  t h e  DM'S h o l i s t i c  pre ferences and haw t h e  DM can 

regard HOPE a s  a  lea rn ing  process t o  eva lua te  h i s  own va lue judgment. 



- 1 0 1 4 -  

TABLE 5 .  PROBLEM 111: Solutions examined 
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TABLE 6. PROBLEMIrI: Solution by HOPE 

n P 3 u 8 a 



Problem IV. Forest  Management Model i n  L16:. 

This is t h e  same a s  Problem I11 wi th  a  d i f f e r e n t  l i n e a r  u t i l i t y  

func t ion  t o  s imu la te  t h e  DM'S preferences.  I n  each of t h e  f i r s t  

t h r e e  problems, t h e  opt imal  s o l u t i o n  a c t u a l l y  appears i n  t h e  r e s u l t s  

of  t h e  f i r s t  i t e r a t i o n .  Subsequent i t e r a t i o n s  s e r v e  p r imar i l y  a s  

a  v e r i f i c a t i o n  t h a t  no improvement can b e  made. Th is  is t y p i c a l  

when t h e  MCLP is no t  very  complex t h e  DM'S u t i l i t y  func t ion  i s  

l i n e a r .  Problem IV i l l u s t r a t e s  t h a t  even in t h e  l i n e a r  case ,  it 

may r e q u i r e  more than one i t e r a t i o n  t o  uncover t h e  opt imal  so lu t i on .  

DM'S u t i l i t y  funct ion:  

which has a  maximum a t  22771. 

HOPE genera tes  t h e  opt imal  s o l u t i o n  i n  i t e r a t i o n  2  and e s t a b l i s h e s  

i ts op t ima l i t y  i n  s i x  i t e r a t i o n s .  The process is summarized i n  

Tab le  7. 
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TABLE 7 .  PROBLEM IV: S o l u t i o n  by HOPE 

n P B u 8 a 



7 .  Conclusions 

I n  t h i s  paper, a  parametric l i near  programming method is 

proposed t o  so lve the mul t ip le  c r i t e r i a  optimization problem. 

The approach uses the decision maker's preference judgement a s  

well a s  h i s  p r i o r i t y  ranking of t he  c r i t e r i a .  Based on h e u r i s t i c  

arguments and empir ical  evidence, t he  algorithm is observed t o  be 

robust  i n  terms of 

i) implementation: requi res only parametric LP software: 

ii) user f r iendl iness:  easy t o  understand, requi res only 

mul t ip le  choice response:. 

iii) general  app l i cab i l i t y :  requi res no spec ia l  assumptions 

about the  DM'S u t i l i t y  function; 

i v )  i n t u i t i v e  appeal: may be in te rp re ted  a s  h o l i s t i c  preference 

evaluat ion, o r  a  learn ing process i n  "weighing" t he  c r i t e r i a .  

Further development involves: 

i) implementation a s  an extension of the capab i l i t y  of ex is t ing  

algor i thmic too ls  i n  LP; 

ii) experimentation i n  d iverse,  r e a l  dec is ion processes, e.g. 

energy pol icy  ana lys is ,  where the con f l i c t ing  c r i t e r i a  may 

be costs , resource deplet ion,  environmental impact, nuclear 

p ro l i f e ra t i on ,  e tc .  ; 

iii) genera l izat ion t o  nonl inear c r i t e r i a ,  e.g. concave object ive 

funct ions, using r e s u l t s  in  191; and 

i v )  comparison with other  methods [17]. 



Appendix A 

Data fo r  Problem I1 i n  U P S  format. 

The model is described i n  ell]. The values of t he  parameters 

used i n  Problem I1 are tabulated a s  follows. 

The bounds implied by (15) i n  [ll] a r e  dropped. Note a l so  t h a t  

the  summation in  inequa l i t ies  (9) and (10) i n  [ll] should be over 

l*r5. In  the  fol lowing, R i  is the  ith constra int .  

PROBLEM I 1  



. ,- - \ -. -. . LL 

.'-. r.cc 

)',>E 
xc':3 
X23 
xes 
X24 
xe 4 
XZ5 
XE5 
X3 1 
X3 1 
X32 
X32 
X33 
X33 
x:34 
X34 
X35 
X'35 
X4 1 
X4 1 
'44 2 
:<42 
:<43 
x43 
X 4 4  
X45 

?HZ 
DH S 
RHS 
RHS 
RHC; 
EHS 

BOIJNDS 
LO E l  
LO E l  
LO B1 
FX B1 
UP E l  
UP B1 
UP B1 
UP 21  

3 I D A T A  

X I 1  
X I 2  
X I 3  
X2 1 
xee 
xz3 
X24 
X25 
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Appendix B 

YfiME 
901.j:s 
3 7 1  
N 22 
N 23 
N 24 
N 25 
L R 1  
L R 2  
L R3 
L R4 
L R 5  
L R 6  
L R 7  
L R e  
L R 9  
L R l O  
L R i l  
L R 1 E  
DL R 1 3  

COLUMNS 
X i  
X 1 
X 1  
XE 
x2 
x2 

Data for Problem I11 in MPS format 

PROBLEM I 1 1  



;: 1 3 
' 1  1 3 
>: 14 
X 1 4  
X I 5  
X 1 5  
X l r j  
X l r j  
X I 7  
X 1 7  
X I 8  
X I 9  
X 1 9  
X 1 9  
X 2  0 
X 2  0 
X 2  1 
X 2  1  
X 2  1  
X 2 2  
X 2 2  
X 2 2  
:<2:> 
X 2 3  
X 2 3  
xe4 
XZ4 
XE4 
X 2 5  
:<25 
X 2 6  
K26 
X 2 7  . e X i 7  
X 2 8  
XE:3 
X 2 8  
x2a 
X2-3  
X 3  0 
X 3  0 
X3 0 
X 3  1  
X 3  1  

RHS 
RHS 
RHS 
R H f  
RH3 
RH:2 
RHS 
RH5 

EtiDHTH 
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AN IMPLEMENTATION OF THE REFERENCE POINT APPROACH FOR 
MULTIOBJECTIVE OPTIMIZATION 

M. Kallio,' A. Lewandowski,' W. Orchard-Hays*' 

"System and Decision Sciences, IlASA 
' Energy Systems Program, IIASA t 

This paper studies the reference point approach of Wierzbicki for multiobjective optimiza- 
tion. The method does not necessarily aim a t  finding an optimum under any utility func- 
tion but rather it isused to generate a sequence of efficient solutions which are interesting 
from thedecision maker's point of view. The user can interfere via suggestions of reference 
values for the vector of objectives. The optimization system is  used to find (in a certain 
sense) the nearest Pareto solution to each reference objective. 

The approach is  expanded for adaptation of information which may accumulate on the 
decision maker's preferences in the course of the interactive process. In this case any Pareto 
point is  excluded from consideration if it i s  not optimal under any linear utility function 
consistent with the information obtained. Thus, the Pareto points being generated are the 
"nearest" ones among the rest of the Pareto points. 

Wierzbicki's approach i s  implemented on an interactive mathematical programming sys- 
tem called SESAME and developed by Orchard-Hays. It i s  now capable of handling large 
practical multicriteria linear programs with up to 99 objectives and 1000 to 2000 con- 
straints. The method i s  tested using a forest sector model which is  a moderate sized dy- 
namic linear program with twenty criteria (two for each of the ten time periods). The ap- 
proach i s  generally found very satisfactory. This is  partly due to the simplicity of the basic 
idea which makes it easy to implement and use. 
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1 . INTRODUCTION 

In many practical decision situations there is a need to 

find a compromise between a number of conflicting objectives. 
Furthermore, the decision may involve several decision makers in 

partly conflicting, partly cooperative situations. Hathematically 

such decision problems can often be formulated as a multiobjective 

optimization problem or in the framework of game theory. In this 

paper we concentrate on the former approach for developing deci- 

sion aid techniques for the problem. For an overview on various 

approaches, see, for instance Bell et al. (1977), Starr and 

Zeleny (1977), and Wierzbicki (1979 b). 

In our opinion, the reference point optimization method with 

penalty function scalarization (Wierzbicki 1979a) is an appropriate 

tool for studying such problems. This approach has several 

desirable properties: 

-- it applies to convex and nonconvex cases 

-- it can easily check Pareto-optimality of a given decision 

-- it can be easily supplemented by an a posteriori computa- 

tion of trade-off coefficients for the objectives 
-- it is numerically well-conditioned and easy for imple- 

mentation 



-- the concept of reference point optimization makes it 

possible to take into account the desires of a decision 

maker directly, without necessarily asking him questions 

about his preferences. 

In this paper we will focus on the interactive use of ref- 

erence point optimization for multiobjective linear programming 

with a single decision maker. However, we believe that the same 

approach proves to be useful for group decision problems as well 

The reference point optimization will be reviewed first and some 

preliminary results will be given. Thereafter, we develop an 

approach for employing information which may be revealed on the 

decision maker's preferences in the course of the interactive 

process. The multiobjective method has been computerized in the 

SESAME-system, a large interactive mathematical programming 

system designed for IBM 370 under VM/CMS (Orchard-Hays 1978). 

A sample of numerical experiments will be reported at the end 

of the paper. 

2. REFERENCE POINT OPTIMIZATION 

Let A be in RmXn, C in RPXn, and b in R~ and consider the 

multlcriteria linear program (MCLP): 

(MCLP .l) Cx = q 

(MCLP. 2) A x = b  

where the decision problem is to determine an n-vector x of 

decision variables satisfying (MCLP.2-3) and taking into account 

the p-vector q of objectives defined by (MCLP.1). We will assume 

that each component of q is desired to be as large as possible. 

An objective vector value q = q is z t t a < n a $ L e  if there is a 

feasible x for which Cx = q. Let qT, for i = 1,2, ..., p, be the 
A 

largest attainable value for qi; i.e., qi = sup {qilq attainable). 

The point q* 5 (q,, q2,. . . , q:)T is the u t o p i a  p o i n t .  If q* is 



a t t a i n a b l e ,  it is a  s o l u t i o n  f o r  t h e  d e c i s i o n  problem. However, 

u s u a l l y  q  is n o t  a t t a i n a b l e .  A p o i n t  q is s t r i c t L y  Pare to  i n -  

f e r i o r  i f  t h e r e  is an a t t a i n a b l e  p o i n t  q  f o r  which q  > G .  I f  t h e r e  

i s  an  a t t a i n a b l e  q  f o r  which q,G and t h e  i n e q u a l i t y  i s  s t r i c t  

a t  l e a s t  i n  one component, t hen  q is  P a r e t o  i n f e r i o r .  An a t t a i n a b l e  

p o i n t  q i s  weakLy Pareso -op t ima t  i f  it is n o t  s t r i c t l y  P a r e t o  i n -  

f e r i o r  and it is Pareto-opt imaL i f  t h e r e  is  no a t t a i n a b l e  p o i n t  q  

such t h a t  q  q wi th  a  s t r i c t  i n e q u a l i t y  f o r  a t  l e a s t  one component. 

Thus a  P a r e t o  op t ima l  p o i n t  is a l s o  weakly P a r e t o  op t ima l ,  and a  

weakly P a r e t o  op t ima l  p o i n t  may be P a r e t o  i n f e r i o r .  For  b r e v i t y ,  

w e  s h a l l  c a l l  a  P a r e t o  op t ima l  p o i n t  sometimes a  Pare to  po in t  and 

t h e  set of  a l l  such p o i n t s  t h e  P a r e t o  s e t .  

What w e  c a l l  a  r e f e r e n c e  p o i n t  o r  r e f e r e n c e  o b j e c t i v e  i s  a  

sugges t i on  q by t h e  d e c i s i o n  maker ( o r  t h e  group o f  them) r e f l e c t i n g  

i n  some s e n s e  an a s p i r a t i o n  l e v e l  f o r  t h e  o b j e c t i v e s .  According 

t o  Wierzb ick i  (1979 a  ) ,  we c o n s i d e r  f o r  a  r e f e r e n c e  p o i n t  q a  pen- 

a l t y  s c a l a r i z i n g  f unc t i on  s(q-:) de f i ned  over  t h e  set of  o b j e c t i v e  

v e c t o r s  q. C h a r a c t e r i z a t i o n  of  f u n c t i o n s  s, which r e s u l t  i n  P a r e t o  

op t ima l  ( o r  weakly P a r e t o  op t ima l )  min imizers o f  s ove r  a t t a i n a b l e  

p o i n t s  q  is g i ven  by Wierzb ick i  (1979 b ) .  See a l s o  Wierzb ick i  (1980) 

when t h e  r e l a t i o n s  of r e f e r e n c e  p o i n t  o p t i m i z a t i o n  t o  s a t i s f i c i n g  

d e c i s i o n  making a r e  d i scussed .  

I f  w e  r ega rd  t h e  f unc t i on  s (q -q )  a s  t h e  "d i s tance "  between t h e  

p o i n t s  q  and q, t hen ,  i n t u i t i v e l y ,  t h e  problem of  f i n d i n g  such  a  

minimum p o i n t  means f i n d i n g  among t h e  P a r e t o  set t h e  n e a r e s t  p o i n t  

4 t o  t h e  r e f e r e n c e  p o i n t  q. However, a s  it w i l l  be c l e a r  l a t e r ,  o u r  

f u n c t i o n  s is  n o t  n e c e s s a r i l y  r e l a t e d  t o  t h e  u s u a l  no t i on  of  d i s t a n c e .  

Having t h i s  i n t e r p r e t a t i o n  i n  mind, t h e  use  of  r e f e r e n c e  p o i n t s  
-k o p t i m i z a t i o n  may be  viewed a s  a  way of  gu id i ng  a  sequence ( q  1  of  

-k P a r e t o  p o i n t s  gene ra ted  from t h e  sequence (q  } of  r e f e r e n c e  o b j e c t -  

i v e s .  These sequences w i l l  be gene ra ted  i n  an  i n t e r a c t i v e  p rocess  

and such i n t e r f e r e n c e  should r e s u l t  i n  an i n t e r e s t i n g  set of  a t -  

t a i n a b l e  p o i n t s  4k. I f  t h e  sequence { q k )  converges,  t h e  l i m i t  p o i n t  

may be seen  a s  a  s o l u t i o n  t o  t h e  d e c i s i o n  problem. 

I n i t i a l  in fo rmat ion  t o  t h e  d e c i s i o n  maker may be  prov ided by 

maximising a l l  o b j e c t i v e s  s e p a r a t e l y .  Le t  qi = (q;) be  t h e  



vec to r  of o b j e c t i v e s  obta ined when t h e  ith o b j e c t i v e  i s  maxi- 
i 

mized f o r  a l l  i. Then t h e  mat r ix  ( q j )  , i ,  j  , = 1 , .  . . , p,  y i e l d s  

in fo rmat ion  on t h e  range o f  numer ical  va lues  of  o b j e c t i v e  func- 
i 

t i o n s ,  and t h e  vec to r  q* = (qi) i s  t h e  u top ia  po in t .  I t  should 

be s t r e s s e d ,  however, t h a t  such i n i t i a l  in fo rmat ion  i s  n o t  a  

necessary  p a r t  of t h e  procedure and i n  no sense l i m i t s  t h e  f ree -  

dom of  t h e  dec i s ion  maker. 
- 

We denote w i q - q ,  f o r  b r e v i t y .  Then, a  p r a c t i c a l  form 

of  t h e  pena l t y  s c a l a r i z i n g  func t i on  s ( w ) ,  where minimizat ion 

r e s u l t s  i n  a  l i n e a r  programming formulation,. i s  g iven a s  fo l lows:  

S ( W )  = -minIp min wi, 1 wi}  - EW . 
i 

Here P i s  an a r b i t r a r y  pena l t y  c o e f f i c i e n t  which is g r e a t e r  than 

o r  equa l  t o  p  and E = ( E ~ , E ~ ,  ..., E ) is a nonnegat ive v e c t o r  of 
P  

parameters.  I n  t h e  s p e c i a l  case  of p = p,  ( 1 )  reduces t o  

s (w )  = - p  min w. - EW . (2 )  
i 

So f a r  i n  our  exper ience,  form ( 1 )  of t h e  pena l t y  s c a l a r i z i n g  

func t i on  has proven t o  be most s u i t a b l e .  Other p r a c t i c a l  forms 

have been given i n  Wierzbicki (1979a).  

For any s c a l a r  2 t h e  s e t  Sg (q )  Z {q 1 s ( w )  2 3 ,  w = q - q }  
i s  c a l l e d  a  l e v e l  s e t .  Such s e t s  have been i l l u s t r a t e d  f o r  

f unc t i on  (1 )  w i th  E = 0 i n  F igure 1  f o r  p = p ,  f o r  0 > p and f o r  a  

very l a r g e  va lue  f o r  p .  I n  each c a s e ,  i f  w i O ,  then s ( w )  is g iven 

by ( 2 ) ;  i . e . ,  t h e  func t i ona l  va lue  i s  propo r t i ona l  t o  t h e  worst  

component of w i f  E = 0 .  I f  p = p, t h e  same is  t r u e  f o r  w 1 0  a s  we l l .  

~ f  w > 0 ,  then f o r  l a r g e  enough p ( s e e  t h e  case  p>>p)  s ( w )  i s  

g iven by 1 wi. I n  t h e  genera l  c a s e ,  when o > p ,  t h e  s i t u a t i o n  
i s  shown i n  t h e  middle of  F igure 1. When w 1 0 and i ts  components 

a r e  c l o s e  enough t o  each o t h e r  ( t h a t  i s ,  ( p - l ) w l  2 w2 and 

(p-1 )w2  2 w l ,  f o r  p  = 21, then s ( w )  is g iven by 1 wi. Otherwise,  
formula (2 )  a p p l i e s  again.  

For E 10,  s c a l a r i z i n g  func t i on  (1 )  guarantees  on l y  weak 

Pare to  op t ima l i t y  f o r  i ts  minimizer. However, a s  w i l l  be shown 

i n  Lemma 1 below, i f  E > 3 ,  then Pare to  o p t i m a l i t y  w i l l  be guar- 

anteed.  



Figure 1 .  Level sets for penalty scalarizing functions (1) and 
(2) for E = 0. 

The problem of minimizing ~ ( ~ - q )  defined by (1) over the 

attainable points q, can be formulated as a linear programming - - 
problem. In particular, if we again denote w = q - q = Cx - q 

and introduce an auxiliary decision variable y,  this minimization 

problem can be stated as the following problem (P): 

find y, w, and x to 

(P. 1 ) min y - ;w 



where E and D are appropriate vectors and matrices. Furtner- 

more, D ( 0, and if w = Q and y = 9 are optimal for (PI, then 

S = 9 - EQ is the minimum value attained for the penalty function 

s. The detailed formulation of (PI is given in the Appendix. 

The optimal solution for (P) will be characterized by the fol- 

lowing result: 

LEMMA 1 .  Let ( y ,w , x )  = (ij,13,2) be an op t ima l  s o l u t i o n  and 

6, u, and n t h e  corresponding dual  v e c t o r s  r e l a t e d  t o  c o n s t r a i n t s  

( P . Z ) ,  ( P . 3 ) ,  and ( P . 0 ,  r e s p e c t i v e l y .  Denote b y  $ .I Ci? t h e  

c ~ r r e s p o n d i n g  o b j e c t i v e  v e c t o r ,  and by 6 = y^ - ED t h z  opt ima l  

va lue  for  t h e  pena l ty  f unc t i on ,  and by Q t he  a t t a i n a b l e  s e t  o f  

o b j e c t i v e  v e c t o r s  q .  Then 4 € Q n ~ ~ ( 7 )  and t h e  hgperp iane 

H = {ql u(G-7)  = 0 )  separates Q and ~ ~ ( 7 ) .  Furthermo:-e, u 2 E 

and q = j maximizes ~q over  q € Q; i . z . ,  4 i s P a r e t o  op t ima l  

.',: E > 0, and $ i s  weakly Pareto opt imal  i f  E 2 0 .  

Remark. As illustrated in Figure 2 ,  the hyperplane H 

approximates thePareto set in the neighborhood of 4. Thus the 

dual vector u may be viewed as a vector of trade-off coefficients 

which tells roughly how much we have to give up in one objective 

in order to gain (a given small amount) in another objective. As 

seen in Figure 2, the assumptions of Leima 1 might be satisfied 

provided € 2 0  is sufficiently small. 

Proo j. Clearly 4 is attainable (i.e., 4 E Q) and by def ini- 

tion 6 S ( q ) .  In order to prove the separability assertion 3 
we show that (i) 6 minimizes uq over Sg(q) and that (ii) 4 
maximizes uq over Q. Noting that q = w + q = Cx, these two 

problems may be stated as follows: 

minimize uw + u q  
St. 

P (i) 

and 

maximize uCx 

st. 

Ax = b 

x,o 



F igu re  2.  An i l l u s t r a t i o n  o f  Lemma 1 .  

L e t t i n g  t h e  d u a l  m u l t i p l i e r s  f o r  t h e  f i r s t  c o n s t r a i n t  o f  P ( i )  

be e q u a l  t o  -1 ,  w e  can  r e a d i l y  check ,  based  on  t h e  o p t i m a l i t y  

c o n d i t i o n s  f o r  (P )  , t h a t  9 ,  Q ,  2 ,  6 ,  u, and - 3  s a t i s f y  t h e  

o p t i m a l i t y  c o n d i t i o n s  f o r  P ( i )  and  P ( i i ) .  Based on d u a l  f e a s i -  

b i l i t y ,  we have u = E - 6 0  and 6 2 0.  Because D ( 0,  we have 

u L E .  Thus. i f  E > 0 ( E  ) 0 ) .  t h e n  $ is (weakly)  P a r e t o  o p t i m a l . / /  

3. EMPLOYING INFORMATIOiJ ON PREFERENCES 

While app l y i ng  t h e  r e f e r e n c e  p o i n t  o p t i m i z a t i o n  a sequence 
k  i q k )  o f  r e f e r e n c e  p o i n t s  and t h e  co r respond ing  sequence  {$  f 

P a r e t o p o i n t s  w i l l  be gene ra ted .  Usua l l y  t h e s e  sequences  r e v e a l  

p a r t i a l l y  t h e  d e c i s i o n  makers p r e f e r e n c e s .  For  i n s t a n c e ,  a f t e r  
k- 1 o b t a i n i n g  a P a r e t o  p o i n t  , a new r e f e r e n c e  p o i n t  2 may be  

chosen s o  t h a t  ck i s  p r e f e r r e d  t o  Q~-'. I n  t h e  f o l l ow ing  we 

i n t e n d  t o  e x p l o i t  such  i n f o rma t i on .  I n  such  a p rocedure  w e  

s h a l l  n o t  n e c e s s a r i l y  g e n e r a t e  t h e  n e a r e s t  P a r e t o  p o i n t  t o  a  

r e f e r e n c e  p o i n t .  W e  w i l l  restrict t h e  P a r e t o  p o i n t s  be i ng  

g e n e r a t e d  t o  t h o s e  which a r e  c o n s i s t e n t  ( i n  t h e  s e n s e  d e f i n e d  

below) w i t h  t h e  i n f o rma t i on  ga i ned  from t h e  i n t e r a c t i v e  p rocess .  

I n i t i a l l y ,  we w i l l  assume a l i n e a r  u t i l i t y  f u n c t i o n  h e q ,  

where A *  is a v e c t o r  such  t h a t  q  i s  p r e f e r r e d  t o  q '  i f  and o n l y i f  

i * q  > A*¶', f o r  a l l  q and q'. The v e c t o r  A* i s  n o t  known ex- 

p l i c i t l y .  However, because  each  o b j e c t i v e  q i  is t o  be maximized, 



i 
w e  have A* 2 0 ;  i .e . ,  X*di - > 0 f o r  each u n i t  v e c t o r  d . Fur ther -  

more, o t h e r  in fo rmat ion  concerning X may be ob ta ined  du r i ng  t h e  

i n t e r a c t i v e  procedure. A s  above, i f  t h e  d e c i s i o n  maker 
-k -k *k-1 p r e f e r s  y  t o  pk-', then ,  denot ing  d = y - y , w e  have Xd > 0 .  

I n  g e n e r a l  l e t  di ,  f o r  i = 1 , 2 , .  . . , Ik, be t h e  v e c t o r s  of pre-  

f e r r e d  d t r e c t i o n s  ( i nc lud ing  t h e  u n i t  v e c t o r s )  be ing  revea led  

by i t e r a t i o n  k of t h e  procedure.  Th i s  imp l i es  t h a t  

A* E ~k z C X I X ~ ~  2 o , f o r  i = 1 , 2 , . - . ,  I k )  , ( 3 )  

. 
i .e., X i s  i n  t h e  dua l  cone of  t h e  cone spanned by t h e  v e c t o r s  

di. (Ac tua l l y ,  A *  is  i n  t h e  i n t e r i o r  of A k . )  See a l s o  Z ion ts  and 

Wal lenius (1976) .  

k  Let Q be t h e  s e t  of Pa re to  p o i n t s  which a r e  c c n s i s t e n t  

wi th  r e s p e c t  t o  hk i n  t h e  sense  t h a t  4 E Qk i f  and on l y  i f  

t h e r e  is X E Ak such t h a t  XQ 2 Xq, f o r  a l l  a t t a i n a b l e  q E Q. 

W e  s h a l l  now d i s c u s s  an approach t o  p rov ide  a P a r e t o  p o i n t  
k  4 E Q r e l a t e d  t o  a r e f e r e n c e  p o i n t  q. For t h i s  purpose w e  

rewrite (P.3) a s  

where t h e  s c a l a r s  zi a r e  nonnegat ive d e c i s i o n  v a r i a b l e s .  Th i s  

r e v i s e d  problem w i l l  be r e f e r r e d  t o  a s  problem ( P I .  An i n t e r -  

p r e t a t i o n  of t h i s  problem is  t o  f i n d  t h e  n e a r e s t ? a r e t o  p o i n t  

(among a l l p a r e t o  p o i n t s )  t o  t h e  cone, which is  spanned by t h e  
i v e c t o r s  d of p r e f e r r e d  d i r e c t i o n s  and whose v e r t e x  i s  a t  t h e  

r e f e r e n c e  p o i n t  q. Another c h a r a c t e r i z a t i o n  o f  t h e  r e v i s e d  

problem (F) is g iven a s  fo l lows:  

LEMMA 2. LJ! E > 0, jl = S i s  o p z i m c l  f o r  t h e  r e v i s e d  prgb lem 
- (F), Lznd 4 = q + 3, t h e n  4 E Q'; i . e . ,  4 i e  1 P a r e t o  poinr; wh tch  

k ie c o n s i s t e n t  w i t h  r e s p e c t  t o  t h e  i n f c J r m a t i o n  o b t a i n e d  i n  A . 
P r o o f .  Let  (y ,w,x,z i )  = (9,Q,11,2i) be op t ima l  f o r  (?TI and, 

a s  be fo re ,  6 ,  v ,  and n t h e  op t ima l  d u a l  s o l u t i o n .  Def ine 
= - 
q = q + 1 diz. Then t h e  above a l s o  s o l v e s  (P) w i t h  t h e  r e f e r e n c e  

i 

p o i n t  t. Thus, by Lemma 1 ,  u ,E  > 0 and $ maximizes uq over  



a t t a i n a b l e  p o i n t s  q.  By the  o p t i m a l i t y  cond i t i on  f o r  z . ,  we have 

pdi - , 0 ,  f o r  a l l  i. Thus p E h k ,  and t h e r e f o r e ,  4 is a l p a r e t o  
k  

po in t  c o n s i s t e n t  wi th h . I /  

I n  p r a c t i c e ,  t h e  dec i s ion  makers u t i l i t y  f unc t i on  is usua l l y  

not  l i n e a r .  However, i n  t h e  neighborhood of h i s  most d e s i r e d  
s o l u t i o n  t h e  u t i l i t y  f unc t i on  has usua l l y  a  s a t i s f a c t o r y  l i n e a r  

approximation and, t h e r e f o r e ,  t h e  above procedure may s t i l l  be 

use fu l .  Because of n o n l i n e a r i t y ,  t h e  v e c t o r s  di of p re fe r red  

d i r e c t i o n s  may appear c o n f l i c t i n g f o r  a  l i n e a r  u t i l i t y  f unc t i on ;  

i . e . ,  t h e  s e t  hk reduces t o  a  s i n g l e  po in t  ( t h e  o r i g i n )  and t h e  

vec to rs  di span t h e  whole space. Of course ,  t h i s  may occur 

a l s o  f o r  reasons o t h e r  than t h e  n o n l i n e a r i t y .  For i ns tance ,  

l a c k  of t r a i n i n g  i n  us ing t h e  approach may e a s i l y  r e s u l t  i n  

c o n f l i c t i n g  s ta tements  on pre ferences.  In e i t h e r  c a s e ,  such 

c o n f l i c t  r e s u l t s  i n  an unbounded opt ima l  s o l u t i o n  f o r  t h e  re-  

v ised problem (F ) .  In  such a  c a s e ,  we suggest  t h a t  t h e  o l d e s t  

v e c t o r s  di ( t h e  ones genera ted f i r s t )  w i l l  be d e l e t e d  a s  long 

a s  boundedness f o r  (F) i s  obtained.  Th is  approach seems appea l ing  

i n  account ing both f o r  t h e  l ea rn ing  process  of  t h e  use r  (dec i s ion  

maker) and f o r  h i s  poss ib le  non l inear  u t i l i t y  f unc t i on .  

4.  COMPUTER IMPLEMENTATION 

A package of SESAME/DATAMAT programs has been prepared f o r  

automating t h e  use of t h e  m u l t i c r i t e r i a  op t imiza t ion  technique 

u t i l i z i n g  user -spec i f ied  re fe rence  po in t s .  The s c a l a r i z i n g f u n c -  

t i o n  de f i ned  i n  ( 1 )  was adopted f o r  t h i s  implementat ion. A model 

r e v i s i o n  i n t o  t h e  form of (P)  is c a r r i e d  o u t  and a  n e u t r a L  8 0 Z u t i o n  

corresponding t o  a  re fe rence  p o i n t  q = O  i s  computed and recorded 

f i r s t .  Each time a  new re fe rence  po in t  q i s  g iven,  t h e  opt imal  
s o l u t i o n  f o r  (P)  is  found s t a r t i n g  w i th  t h e  n e u t r a l  s o l u t i o n  and 

using parametr ic  programming, t h a t  is  paramet r iz ing  t h e  re fe rence  

po in t  a s  4 q  wi th  4 i nc reas ing  from 0 t o  1 .  Some op t i ona l  a l g o r i t h -  
mic dev i ses  have been implemented t o  f o rce  t h e  sequence of Pa re to  
p o i n t s  t o  converge. A s  i t  w i l l  be c l e a r  l a t e r ,  such a  procedure 

does not  guarantee an opt imal  s o l u t i o n  (under any u t i l i t y  f unc t i on )  



but o f t e n  it is expected t o  be u s e f u l  f o r  genera t i ng  i n t e r e s t i n g  

Pare to  po in ts .  There is no e x p l i c i t  l i m i t  t o  t h e  s i z e  of  model 

which can be handled except  t h a t  t h e  number of o b j e c t i v e s  cannot 

exceed 99. 

The package of programs is  r e f e r r e d  t o  a s  t h e  MOCRIT 

Package, o r  simply MOCRIT. The s tandard  package c o n s i s t s  of 

t h r e e  f i l e s :  a SESAME RUN f i l e ,  a DATIU.nT program f i l e ,  and a 

dummy d a t a  f i l e  which e x i s t s  merely f o r  t e c h n i c a l  reasons.  

There a r e  e s s e n t i a l l y  four  programs i n  I4OCRIT: ( 1 )  REVISION, 

which re formula tes  t h e  model i n t o  the  form of (P) and c r e a t e s  

t h e  n e u t r a l  so lu t i on ,  ( 2 )  START, which i n i t i a l i z e s  t h e  system 

f o r  a i n t e r a c t i v e  sess ion ,  (3 )  SESSION, which u t i l i z e s  t h e  

s tandard  technique of re ference p o i n t  op t imizat ion ,  and ( 4 )  

CONVERGE, which fo rces  t h e  sequence o f p a r e t o  po in ts  t o  converge 

The use of REVISION and SESSION is  mandatory. START is a con- 

venience t o  obv ia te  t h e  need t o  e n t e r  var ious  SESAME parameters 

f o r  each sess ion.  CONVERGE i s  an opt ion :  it cannot  be used 

meaningful ly be fore  SESSION has been executed a t  l e a s t  once. 

CONVERGE i s  a c t u a l l y  a prologue t o  SESSION which it a c t i v a t e s  

a s  a te rmina l  s tep .  

These "programs" a r e  r e a l l y  RUN decks c o n s i s t i n g  of  appro- 

p r i a t e  SESAME commands. There a r e  corresponding decks (DATAMAT 

programs) which a r e  executed automat ica l ly  by t h e  RUN decks. 

A l l  f ou r  t.lOCRIT programs terminate  by re tu rn ing  t o  t h e  SESAME 

environment i n  manual mode. Regular SESAME commands and pro- 

cedures can be in te rspe rsed  manually from t h e  te rmina l  a t  such 

t imes. (For d e t a i l s ,  s e e  Orchard-Hays 1977). 

4.1  The REVISION Program 

The purpose of t h l s  program is  t o  r e v i s e  an e x i s t i n g  l i n e a r  

programming model conta in ing two o r  more func t i ona l  rows i n t o  

a form s u i t a b l e  f o r  mu l t i ob jec t i ve  opt imizat ion .  The e x i s t i n g  

model f i l e  must have been prev ious ly  c rea ted  wi th DATAMAT ( o r  

CONVERT) i n  s tandard  fashion.  Th is  f i l e  is no t  a l t e r e d :  a new 

f i l e  conta in ing t h e  rev i sed  model i s  c rea ted  i ns tead .  



Af te r  c r e a t i n g  t h e  new model, REVISION f u r t h e r  s o l v e s  t he  

model w i t h  a re fe rence  po in t  of  a l l  ze ro ,  and o b t a i n s  thereby  

t h e  n e u t r a l  s o l u t i o n .  Th is  i n i t i a l  s o l u t i o n  must be ob ta ined 

on ly  once and t h e  op t ima l  b a s i s  i s  recorded on a d i s k  f i l e  f o r  

f u r t h e r  use.  

REVISION a l s o  c r e a t e s  ano the r  f i l e  con ta in ing  two t a b l e s .  

One is used t o  record  s e l e c t e d  r e s u l t s  form t h e  n e u t r a l  s o l u t i o n .  

The o t h e r  i s  used by t h e  START program t o  set t h e  v a r i o u s  SESAME 

parameters f o r  t h e  rev i sed  model, i . e . ,  model name, model f i l e  

name, RHS name, name of RANGE set i f  any ,  and name of BOUND s e t .  

Thus i t  i s  unnecessary t o  set t h e s e  f o r  subsequent  s e s s i o n s .  

The r e f e r e n c e  p o i n t  q a s  w e l l  a s  t h e  model parameters depen- 

d e n t  on t h e  c o e f f i c i e n t s  p and E a r e  s p e c i f i e d  i n i t i a l l y  i n  t h e  

rev i sed  model a s  symbol ic  names. When t h e i r  va lues  a r e  decided 

on,  they  a r e  s p e c i f i e d  numer ica l l y  a t  run  time wi thout  gene ra t i ng  

t h e  whole model over  aga in .  For  i n s t a n c e ,  t o  o b t a i n  t h e  n e u t r a l  

s o l u t i o n ,  REVISION r e q u i r e s  c o e f f i c i e n t s  p and E .  The i r  va lues  

a r e  ob ta ined v i a  an  i n t e r a c t i v e  response.  I f  i t  i s  subsequent ly  

changed (see t h e  SESSION program) t h e  n e u t r a l  s o l u t i o n  w i l l ,  i n  

g e n e r a l ,  no longer be f e a s i b l e .  Th i s  may no t  be done normally 

b u t ,  i f  necessary ,  a new n e u t r a l  s o l u t i o n  can be ob ta ined  a s  shown 

i n  Orchard-Hays ( 1  979) . 
A use r - spec i f i ed  number of  columns w i l l  be reserved f o r  t h e  

p r e f e r r e d  d i r e c t i o n s  di ; i . e . ,  f o r  t h e  d e c i s i o n  v a r i a b l e s  zi .  

Also t h e  di v e c t o r s  a r e  s p e c i f i e d  i n i t i a l l y  i n  t h e  rev i sed  model 

a s  symbolic names. The i r  va lues  a r e  i n i t i a l l y  s e t  s t r i c t l y  pos i -  

t i v e  s o  t h a t  t h e  zi v a r i a b l e s  do  n o t  appear  a t  a p o s i t i v e  l e v e l  

i n  an op t ima l  s o l u t i o n  of  (P). Afterwards,  t h e s e  p o s i t i v e  v e c t o r s  

w i l l  be ( c y c l i c a l l y )  rep laced by p r e f e r r e d  d i r e c t i o n s  whenever 

t hey  a r e  genera ted  i n  t h e  cou rse  of  t h e  i n t e r a c t i v e  process .  



4.2 The START and SESSION Programs 

A f te r  a model has been rev i sed  and t h e  n e u t r a l  s o l u t i o n  ob- 

t a ined  and recorded,  t h e  model i s  ready f o r  use  w i th  t h e  i n t e r -  

a c t i v e  mu l t i ob jec t i ve  procedure. Such use is r e f e r r e d  t o  a s  a 

8 e s s i o n .  A sess ion  is i n i t i a t e d  by execut ing  t h e  START program. 

A l l  t h i s  does is d e f i n e  t h e  necessary  SESAME parameters unique t o  

t h e  model. 

A f t e r  execut ing  START b u t  be fo re  execut ing  SESSION, t h e  re-  

f e rence  po in t  must be def ined.  T h i s  i s  done w i th  t h e  SESAME pro- 

cedure  VALUES which is q u i t e  f l e x i b l e  w i th  r e s p e c t  t o  formats and 

func t i ons .  I f  necessary ,  a l s o  t h e  va lue  of t h e  c o e f f i c i e n t s  p and 

E may be changed a t  t h i s  po in t .  A f t e r  t h e  re fe rence  po in t  has  

been def ined,  execut ion of SESSION r e s u l t s  i n  t h e  fo l lowing se- 

quence of events .  

Any e x i s t i n g  s o l u t i o n  f i l e  is erased.  

The problem set-up procedure is c a l l e d  and t h e  e x i s t i n g  

re fe rence  p o i n t  i s  i ncorpora ted f o r  use i n  paramet r ic  

programming. 

The b a s i s  o f  t h e  n e u t r a l  s o l u t i o n  is r e c a l l e d .  

The simplex procedure is  c a l l e d .  A f t e r  a b a s i s  inver -  

s i o n  and check of t h e  s o l u t i o n ,  t h e  n e u t r a l  s o l u t i o n  

is recovered. 

The paramet r ic  programming procedure i s  c a l l e d  t o  para- 

me t r i ze  the  re fe rence  po in t  €): over  t h e  parameter 

va lues  13 E [ 0 , 1 ] .  

A SESAME procedure is c a l l e d  t o  record  s e l e c t e d  por- 

t i o n s  of t h e  so lu t i on .  

DATAMAT is c a l l e d  t o  execute  a program t o  d i s p l a y  

r e s u l t s  a t  t h e  te rmina l  (and t o  p r i n t  o f f - l i n e )  and 

a l s o  t o  record  necessary informat ion f o r  p o s s i b l e  

subsequent use  by CONVERGE. 

The c o n t r o l  is re tu rned  t o  SESAME i n  manual mode. 



I f  i t  is d e s i r e d  t o  t r y  a n o t h e r  r e f e r e n c e  p o i n t ,  we c a l l  

t h e  p r o c e d u r e  VALUES a g a i n  and t h e n  r e r u n  SESSION. T h i s  may b e  

done  r e p e a t e d l y .  

I f  i t  is  d e s i r e d  t o  g e t  a p r i n t - o u t  o f  t h e  f u l l  s o l u t i o n  

( o r  s e l e c t e d  p o r t i o n s )  i n  s t a n d a r d  LP s o l u t i o n  fo rmat  a f t e r  re- 
t u r n  f rom SESSION, it c a n  b e  o b t a i n e d  u s i n g  t h e  SESAME p r o c e d u r e s  

i n  t h e  u s u a l  way ( s e e o r c h a r d - H a y s  1 9 7 7 ) .  An example o f  p a r t  o f  

t h e  r e s u l t s  d i s p l a y e d  a t  t h e  t e r m i n a l  i s  g i v e n  i n  F i g u r e  3. Each 

row c a r r y i n g  u s e r - d e f i n e d  l a b e l s  F1 t o  I 1 0  r e f e r s  t o  a n  o b j e c t i v e .  

The column REFER.PT d e f i n e s  t h e  r e f e r e n c e  p o i n t  q, column SUB.FN 

y i e l d s  t h e  P a r e t o  p o i n t  4 o b t a i n e d ,  and column W is j u s t  t h e  

d i f f e r e n c e  4 - q o f  t h e  above two columns. Column DUAL is t h e  

( n e g a t i v e  o f  t h e )  v e c t o r  u o f  t r a d e  o f f  c o e f f i c i e n t s  d e f i n e d  

i n  Lemma 1 .  

REFER. PT SUB. FN W DUAL 

F i g u r e  3. An example o f  r e s u l t s  d i s p l a y e d  i n  a s e s s i o n  
r e f e r e n c e  p o i n t  is q 5  o f  S e c t i o n  5 . 2 ) .  

(The 



4 . 3  The COVERGE Program 

The CONVERGE program may be used ins tead  of S E S S I O N  a f t e r  

t h e  l a t t e r  has been executed a t  l e a s t  once. The VALUES procedure 

must be executed f i r s t ,  a s  usua l ,  t o  de f ine  a new re ference 

po in t .  However, t h i s  re ference po in t ,  denoted by G, is  not  

a c t u a l l y  used. Let ak be t h e  l a s t  Pareto  po in t  obtained (by 

e i t h e r  S E S S I O N  o r  CONVERGE). A new re ference po in t  is computed 

from i n  two s tages  a s  fo l lows. F i r s t  is pro jec ted on t h e  

hyperplane H def ined i n  Lemma 1 ,  pass ing through qk and orthogonal  

t o  the  dual  vector  u. This  p ro jec t ion  q* is  given by 

The new re fe rence  po in t  F ~ + '  is then chosen from t h e  l i n e  seg- 

ment [q* ,ak l ;  i - e . ,  a po in t  qk+' = q* + 8($k-q*) is chosen f o r  

some 0 E [ 0 ,1 ] .  The fol lowing opt ions have been considered: 

(i) choose 0 = 0 ( i . e . ,  choose qk+' as  t h e  p ro jec t ion  q*) , or  
k k (ii) choose t h e  sma l les t  0 E [O, l ]  s o  t h a t  max(ck+'-pi) 5 y , 

i 
where yk is a user -spec i f ied  to le rance .  The value f o r  y may e i t h e r  

be en te red  d i r e c t l y  o r  i t  may be s p e c i f i e d  a s  a percentage of 

t h e  "d is tance"  between t h e  previous re ference po in t  qk and t h e  
k -k k 

Pareto po in t  ak; i . e . ,  yk = 8 max (qi-qi) , where ak is  a coef f i -  
i 

c i e n t  en te red  by t h e  user .  Th is  l a t t e r  opt ion may be used 

meaningful ly only i f  t h e  re ference po in t  is  not a P a r e t o  

i n f e r i o r  po in t ,  f o r  ins tance,  a po in t  obta ined by CONVERGE i n  

t h e  preceeding sess ion.  For an i l l u s t r a t i o n  of t h e  modiTied 

re ference po in t ,  see  Figure 4 .  



Figure 4. Modification of the reference point in CONVERGE. 

Note that 

k Thus, if yk 2 0 and the sequence {y 1 converges to zero, then the 

sequence of optimal values for (P) converges to zero. 

,?ernark. A limit point of {fjkl is not necessarily a solution 

to the multicriteria optimization problem, because the convergence 

is mechanically forced without taking the decision maker's 

preferences properly into account. The only purpose of the 

CONVERGENCE routine is to provide some algorithmic help to con- 

verge to a, hopefully, interesting Pareto point. 

5 .  COMPUTATIONAL EXPERIENCE 

For testing purposes we used a ten period dynamic linear 

programming model developed for studying long-range development 

alternatives of forestry and forest based industries in Finland 

(Kallio et al. 1978). This model comprises two subsystems, 



the forestry and the industrial subsystem, which are linked to 

each other through raw wood supply. The forestry submodel 

describes the development of the volume of different types of 

wood and the age distribution of different types of trees in 

the forests within the nation. In the industrial submodel 

various production activities, such as saw mill, panels pro- 

duction, pulp and paper mills, as well as further processing 

of primary wood products, are considered. For a single product, 

alternative technologies may be employed so that the production 

process is described by a small Leontief model with substitu- 

tion. Besides supply of raw wood and demand for wood products, 

production is restricted through labor availability, production 

capacity, and financial resources. All production activities 

are grouped into one financial unit and the investments are 

made within the financial resources of this unit. Similarly, 

the forestry is considered as a single financial unit. 

A key issue between forestry and industry is the income 

distribution which is determined through raw Wood price. Conse- 

quently, we have chosen two criteria: (i) the profit of the wood 

processing industries, and (ii) the income of forestry from 

selling the raw wood to industry. These objectives are con- 

sidered separately for each time period of the model. Thus, 

the problem in consideration has 20 criteria altogether. 

Of course, both the average raw wood price and quantity 

of wood sold must be implicit in such a model. In order to 

handle this in a linear programming framework, we use inter- 

polation. We consider two exogeneously given wood prices for 

each type of raw wood and for each period. The quantities sold 

at each price are endogeneous and the average wood price results 

from the ratio of these quantities. The complete model after 

REVISION consists of 712 rows and 913 columns. 

We experiment first with different values for the penalty 

coefficient p .  Then, fixing p = p (the number of objectives) 

we generate a sequence {qk1 of reference points and compute the 
k 

corresponding sequence {G 1 of pareto points as solutions to (P). 

The influence of accumulated information on preferences will be 



experimented wi th  t h e r e a f t e r .  Experience wi th  CONVERGE w i l l  then 

be repor ted b r i e f l y .  A l l  t hese  experiments have been c a r r i e d  out  

with an e a r l y  vers ion of MOCRIT f o r  which E = 0. A sample of runs 

wi th our cu r ren t  vers ion f o r  which E > 0 w i l l  be repor ted f i n a l l y .  

5 . 1  Inf luence of the  Penal ty Coe f f i c ien t  

Using t h e  s c a l a r i z i n g  funct ion ( 1 )  we experimented wi th 

d i f f e r e n t  va lues of t h e  penal ty c o e f f i c i e n t  o and wi th d i f f e r e n t  

re ference po in ts  c. A s  pointed o u t  i n  Sect ion 2, un less  t h e  

re ference po in t  is pareto  i n f e r i o r ,  t h e  Pareto  po in t  4 obtained 

a s  a so lu t i on  of (PI is independent of 0 ,  namely t h e  one cor re-  

sponding t o  t h e  max min c r i t e r i o n  of t h e  s c a l a r i z i n g ~ f u n c t i o n  ( 2 ) .  

On t h e  o the r  hand, i f  is Pareto i n f e r i o r ,  then 4 i n  genera l  

depends on 0.  I n  t h e  extreme case of 0 = p, we again ob ta in  t h e  

max min so lu t i on .  

Figure 5 .  Experiments w i th  d i f f e r e n t  penal ty c o e f f i c i e n t s  and 
wi th the  re ference po in t  about 90 percent of a pare to  
po in t .  



In  an experiment i l l u s t r a t e d  i n  F igure  5  an a t t a i n a b l e  re -  

f e rence  po in t  : has been chosen and t h e  va lues  20 (=p ) ,  25, 50 and 

100 have been app l ied  t o  0. A s  : now is  Pare to  i n f e r i o r  t h e  Pa re to  

t r a j e c t o r i e s  ob ta ined a r e  dependant on 0. For o = p, a  cons tan t  

dev ia t i on  9.  = zi- G i =  0.4 i s  obta ined f o r  each o b j e c t i v e  i. When 

o i nc reases  t h e  minimum guaranteed f o r  each wi decreases.  Simul- 

taneous ly  a s  0 i nc reases ,  t h e  behavior  of t h e  Pa re to - t ragec to r i es  

6 g e t s  worse i n  t h a t  l a r g e  sp i kes  appear i n  t h e s e  t r a j e c t o r i e s .  

I n  t h i s  example a c t u a l l y  is  about  90 percent  of a  Pareto-  

s o l u t i o n .  When a  (Pa re to - i n fe r i o r )  re fe rence  p o i n t  i s  moved fu r -  

t h e r  from t h e  Pareot -se t  accord ing  t o  our  exper ience,  t h e  behavior  

o f  t h e  P a r e t o - t r a j e c t o r i e s  g e t  more s e n s i t i v e  t o  t h e  va lue  o f  0 ;  

i .e . ,  sp i kes  appear a l ready  w i th  va lues  of o r e l a t i v e l y  c l o s e  t o  

p, and f o r  a g iven p > p ,  t h e  s p i k e s  grow worse when q moves f u r t h e r  

from t h e  pare to-se t .  

5.2 Experiments w i th  a  Sample o f  Reference Po in t s  

For f u r t h e r  tests w e  set o = p, generated a  sequence of n ine  

-k re fe rence  p o i n t s  q , k  = 0 , 1 , , . . ,  8 ,  and t h e  corresponding Pa re to  

s o l u t i o n s .  The r e s u l t s  have been i l l u s t r a t e d  i n  F igures  6 and 7 ,  

f o r  3, k  = 3,U,. . . , 8 .  The cont inuous t r a j e c t o r i e s  r e f e r  t o  t h e  

re fe rence  p o i n t ,  and those drawn i n  broken l i n e s  r e f e r  t o  t h e  Par- 

e t o  po in t .  A s  an o v e r a l l  observa t ion  w e  may conclude,  t h a t  t h e  

t r a j e c t o r y  of t h e  p a r e t o  s o l u t i o n  tends t o  be t h e  re fe rence  t r a -  

j ec to ry  s h i f t e d  up o r  down. (See a l s o  F igu re  5  f o r  o ~ 2 0 . )  However, 

t h i s  i s  no t  always t h e  case.  I n  F igure  6 ( a )  t h e  Pare to  t r a j e c t o r y  

h a s a v e r y  l a r g e  sp ike .  Such undes i rab le  unsmoothness may be due 

t o  a  m u l t i p l i c i t y  of opt imal  s o l u t i o n  which a r e  very  d i f f e r e n t  

from each o the r .  I n  our  dynamic case ,  f o r  i n s t a n c e ,  t h e  f i r s t  



Figure 6 A sample of sessions 

periods may totally determine the optimal objective function valne 

for (P) and the multiple optimal solutions result from the variety 

of alternatives left for the later periods. 

Next, the influence of the accumulated information on pre- 

f erences was experimented. Again, let q^k be the Pareto-traeectory 
-k corresponding to the reference trajectory q , k = 0,1,...,8. For 

the purpose of our numerical tests we assume that the differences 

dk = $ - nk-1 q reveal the decision makers preferences in a way that 

k .  k d 1s a preferred direction, for k =  1,2,...,8. All vedtors d , 
for i 2 k, will be made available when applying the reference point 

-k 
q in the revised problem (PI. Thus, all information gained on 

preferences is being used. ThePareto points resulting as optimal 
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solutions for (P) have been illustrated in dotted lines in Figures 

6 and 7. For k = 1,2, and 3, the additional information did not 

have any influence on the Pareto point; i.e., the same solutions 

k 4 were obtained as before. However, thereafter a significant 

change was observed in most cases, and in addition, the obtained 

revised Pareto w i n t  seems more appealing than the one obtained from 

problem (P) (see Figures 6 (b) , 7 (b), and 7 (c) , for instance). On 

the other hand, we may observe that the revised trajectories us- 

aally resemble the shape of the reference trajectory to a ieseer 

degree than do the trajectories obtained form problem (P). These 

observations suggest that perhaps in practice both Pareto traject- 

ories ought to be computed in each session. 

5.3 Forcing Convergence 

In Section 4 we developed procedures for modifying the users 

suggested sequence of reference points in such a way that the ?a=- 

eto points obtained are forced to converge. One of these procedures 
k 

was controlled by a sequence ( 8  of percentages, and another by 

k 
a sequence {y 1 of tolerances. Both of them were tested using the 

4 8  same sequence {q iIO of reference points of section 5.2 . 
First we discuss the case of using the 0-factors. After ob- 

hO taining the initial solution q , the CONVERGE program was applied 

-k for each suggestion q . The results obtained when a constant value 

gk = - 5  (for all k) was used, indicate that practically no change in 

ek occurs after k 2 2 . The same phenomenon was discovered for 

gk  = .9 (for all k) . Thus the convergence proved to be extremely 

fast. An explanation for this phenomenon may be found from the 

fact that the hyperplane (on which the reference points are pro- 

jected) is close to the Pareto set in the neighborhood of the last 



Pareto point obtained. This in turn is likely to result in a se- 

quence of objective function values for (PI, which converges fast 

to zero. 

k 
For the other procedure, we chose the bounds yk as yk = 10/2 . 

The converge appeared to be now reasonably fast, but not too fast. 

Thus, the user has a fair chance to control the sequence of Par- 

eto points being generated. 

5.4 A sample of runs with E > 0 .  

All the previous runs were made with the parameter vector 

E = O .  As indicated by Lemma 1 ,  this may not guarantee Pareto- 

optimality for the trajectories G ~ .  However, even then, a suffi- 

cient but not a necessary condition for Pareto-optimalit7 is that 

the dual vector u is strictly positive. This condition in fact 

was satisfied in many cases of the previous runs, and it is likely 

that most other cases (which did not satisfy this sufficient con- 

dition) resulted in a Pareto optimal trajectory as well. In any 

event, more recently we have experimented also with our current 

version of MOCRIT to see whether the main qualitative results ob- 

tained in Section 5 .2  hold also when E > O  (i.e., when Pareto- 

optimality for the 4 trajectories is guaranteid). 

Figure 8 shows a sample of reference trajectories and the 

respective Pareto trajectories when p = p  each component of E is 

set to 1 o - ~ .  Similarly as observed in Section 5.2, the Pareto 

trajectories tend now to result from a shift in the reference tra- 

jectories. More importantly, sharp spikes, which occasionally were 

obtained in Section 5.2 (see Figure 6 (a), for instance), did not 

result in our four examples of Figure 8 nor in other experiments 

which we did with E > 0. 
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Figure 8 A sample of sessions with E > O .  



Naturally, it would be desirable to repeat the experiments 

of Section 5.2 with E > O .  However, these runs were made half a 

year earlier with a slightly different version of the model, and 

this version is no longer available. Nevertheless, the authors 

feel that no drastic new conclusions can be expected from further 

testing, and therefore,additional extensive and resource consuming 
experimenting has been neglected. 

6. SUMMARY AND CONCLUSIONS 

In this paper we have investigated the reference point ap- 

proach for linear multiobjective optimization (Wierzbicki 1979a, 

b). In our opinion, the basic concept proves to be very useful, 

in particular, because of its simplicity. The method does not 

necessarily aim at finding an optimum under any utility function, 

but rather it is used to generate a sequence of interesting 

Pareto points. In order to guarantee usefulness of the infor- 

mation being generated, we let the decision maker interfere with 

the model system. In the course of such an interactive process 

he suggests reference objectives which normally reflect his de- 

sired levels of various objectives. The optimization system is 

used to find, in some sense, the nearest Pareto point to each 

reference objective. 

As a measure of distance between the reference points and 

the Pareto set we use the penalty scalarizing function (1) which 

in our experience has very favorable properties: first. the prob- 

lem of finding the nearest Pareto point to a reference point amounts 

to linear programming problem, and second, it allows the user a 

reasonable control over the sequence of Pareto points generated, 

given that the penalty coefficient p is close to the number of 

objectives p and a small E > 0 is chosen. To clarify the latter 

point we have observed that, if p>>p and E = 0, the scalarizing 

function has an undesirable property of favoring arbitrarily one 

or a few components of the objective vector. In such a case, the 

objective levels at the Pareto point and at the reference objective 

may be close to each other in all except one component where the 

Pareto point is far superior to the reference objective. In dyn- 

amic cases this phenomenon usually causes spikes in trajectories 

of the objectives (see Figure 5 for large values of the penalty 

coefficient p). However, this phenomenon has not been observed 

if p a p  and E > O .  



We have expanded the reference point approach for the adap- 

tation of information which accumulates on the decision maker's 

preferences in the course of the interactive process. In this 

case we exclude from consideration every Pareto point which is not 

optimal under any linear utility function consistent with the in- 

formation obtained so far. Thus the Pareto point being generated 

is the nearest one among the rest of the Pareto points. 

We have implemented the reference point approach using the 

interactive mathematical programming system, called SESAME 

(Orchard-Hays 1978). The package of programs consists of .essen- 

tially two parts: first, a DATAMAT program which reformulates a 

linear p rog rm ing  model in the form (B) of reference point op- 

timization, and second, a routine to carry out an interactive it- 

eration (i.e., to insert a reference objective, and to compute 

and display the pareto point). The current implementation employs 

the scalarizing function (1) with the components of vector E being 

4.1 equal. The system is now capable of handling large practical 

multicriteria linear programs with up to 99 objectives and one or 

two thousand constraints. 

For computational experimentation we used a dynamic LP 

model of a forest sector with about 700 rows and 900 columns. 

There are two objectives defined for each of the ten time periods 

of the model, i.e., there are twenty objectives in total. We 

experimented first with different values of the penalty coeffi- 

cient p .  The results suggest that for p one should use a value 

which is equal to or slightly larger than p, the number of ob- 

jectives. Based on this observation, we set p = p = 2 0  for 

further numerical test rune. Samples of reference points have been 

tried out and the overall performance of the method has been found 

to be satisfactory. For E = O ,  however, we observed occasional unde- 

sirable unsmoothness in the computed trajectories of the two object- 

ives (see Figure 6(a)). This may be due to the fact that only weak 

Pareto optimality is guaranteed, for E = O  (see Lemma 1). Indeed, 

as discussed in Section 5.4, this problem seems to disappear when 

E > 0  (and pareto optimality is guaranteed). 

A general observation is that the Pareto trajectories tend to 

agree with the reference objectives shifted up or down. This prop- 

erty was found not to be valid when experimenting with the extension 



of employing cumulative information on preferences. However, 
after this information began to influence the solution the Pareto 

trajectories generally appeared more appealing than those obtained 

disregarding this information (see Figures 7 (b) and 7 (c) ) . 
A reader familiar with the goal programming approach might 

observe the similarity of the algorithm discuaaed in this paper, 

to goal p r o g r m i n g  algorithma. In fact, the algorithm has been 

derived from the reference point approach to multiobjective opti- 

mization which is a generalization of goal programming: in par- 

ticular, the algorithm works as well for Pareto-dominated reference 

objective points which cause difficulties in typical goal program- 

ming. Moreover, the questions of eliminating weakly Pareto-optimal 

solutions and of employing cumulative information on users prefer- 

ences have not been considered in typical goal programming. 



APPENDIX 

Derivation of Problem (P) 

Denote by W E {wl-w+cx=~, Ax=br x,O} the feasible set for 

vector w. Then the reference point optimization problem, when 

the scalarizing function (1) is applied, is as follows: 

mint-mint0 min wi, 
w€W i 

miniz)z,-pwi-~w, tor all i, z 2 -1 wi - ewf 
w€w i 

where we have substituted y = z + EW. 



REFERENCES 

Bell, D., R. Keeney, and 8.  Raiffa (eds.) (1977) Conflicting 
Objectives in Decisions. IIASA International Series on 
Applied Systems Analysis. New York: Wiley. 

Kallio, M., A. Propoi, and R. Seppala. A Model for the Forest 
Sector. Laxenburg, Austria: International Institute for 
Applied Systems Analysis. Forthcoming. 

Orchard-Hays, W. (1977) A Simplified Introduction to Vi.(/CMS and 
SESXG/DATAMAT Software. Technical Report (unpublished). 
Laxenburg, Austria: International Institute for Applied 
Systems Analysis. 

Orchard-Hays, W. (1978) Anatomy of a mathematical programing 
system. In: Design and Implementation of Optimization 
Software, edited by H. Greenberg. Netherlands: Sijthoff 
and Noordhoff. 

Orchard-Hays, W. (1979) Multi-objective Criterion Optimization. 
User's Guide (unpublished). Laxenburg, Austria: Inter- 
national Institute for Applied Systems Analysis. 

Starr, M., and M. Zeleny (eds. ) ( 1977 Multiple criteria decision 
making. TIMS Studies in the Management Sciences, 6. 

Wierzbicki, A. (1979a) The Use of Reference Objectives in Multi- 
objective Optimization. Theoretical Implications and 
Practical Experience. UP-79-66. Laxenburg, Austria: 
International Institute for Applied Systems Analysis. 

Wierzbicki, A. (1979b) A Methodological Guide to ilultiobjective 
Optimization. WP-79-122. Laxenburg, Austria: Interna- 
tional Institute for Applied Systems Analysis. 



Wierzbicki, A. ( 1 9 8 0 )  A Mathematical Basis for Satisficing De- 
cision Making. WP-30-90. Laxenburg, Austria: International 
Institute for Applied Systems Analysis. 

Zionts, S., and J. Wallenius (1976) An interactive programming 
method for solving the multiple criteria problem. Manage- 
ment Science 22:652-663. 



A MODEL FOR THE FOREST SECTORt 

M. Kallio,' A. Propoi," R. Seppala"' 

'System and Decision Sciences, llASA 
"Institute for Systems Studies, USSR Academy o f  Sciences, Mascow 
" 'Mathmatics Depament, The Finnish Fomst Reseamh Inm'tute. Helsinki 

This paper describes a dynamic linear programming model for studying long-range develop- 
ment alternatives of forestry and forest based industries a t  a national and regional level. 
The Finnish forest sector is  used as an object of implementation and for numerical exam- 
ples. Our model i s  comprised of two subsystems, the forestry and the industrial subsys- 
tem, which are linked to each other through the wood supply. The forestry submodel de- 
scribes the development of thevolumeand age distribution of different tree species within 
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payments, employment, wage income, stumpage earnings, and industrial profit have been 
formulated. Terminal conditions have been proposed to be determined through an 
optimal solution of a stationary model for the whole forest sector. 

The structure of the integrated forestry-forest industry model i s  given in the canonical 
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1 . INTRODUCTION 

As is the case with several natural resources, many regions 

of the world are now at the transition period from ample to scarce 

wood resources. Because the forest sector plays an important 

role in the economy of some countries, long-term policy analysis 

of the forest sector, i.e., forestry and forest industries, is 

becoming an important issue for these countries. 

We may single out two basic approaches for analyzing long- 

range development of the forest sector: simulation and optimi- 

zation. Simulation techniques (e.g., system dynamics) allow 

us to understand and to quantify basic relationships influencing 

the development of the forest sector (see Jegr et al. 1978, 

Randers 1976, Seppala et al. forthcoming). Hence, using a simu- 

lation technique we can evaluate the consequences of a specific 

policy. However, using only simulation it is difficult to find 

a "proper" (or in some sense optimal) policy. The reason for 

this is that the forest sector is in fact a large-scale dynamic 

system and, on the basis of simulation alone, it is difficult to 

select an appropriate policy which should satisfy a large number 

of conditions and requirements. For this we need an optimization 

technique. Because of the complexity of the system in question, 



linear programming (Dantzig 1963) may be considered as the most 

appropriate technique for this case. It is worthwhile to note 

that the optimization technique itself should be used on some 

simulation basis: i.e., different numerical runs based on dif- 

ferent assumptions and objective functions should be carried 

out to aid the selection of an appropriate policy. Specific 

applications of such an approach for planning an integrated 

system of forestry and forest industries have been presented, 

for instance, by Jackson (1974) and Barros and Weintraub (1979) . 
Already because of the nature of growth of the forests, 

the model should necessarily be dynamic. Therefore, in this 

paper we consider a dynamic linear programming (DLP) model for 

the forest sector. In this approach the planning horizon (e.g., 

a 50-year period) is partitioned into a (finite) number of time 

periods (e.g., 5-year periods) and for each of these shorter 

periods we consider a static linear programing model. A dynamic 

LP is then just a linear program comprising of such static models 

which are interlinked via various state variables (i.e., different 

types of "inventories", such as wood in the forests, production 

capacity, assets, liabilities, etc., at the end of a given period 

are equal to those at the beginning of the following period). 

In our forest sector model, each such static model comprises 

two basic submodels: a forestry submodel, and an industrial 

model of production, marketing and financing. The forestry 

submodel describes also ecological and land availability con- 

straints for the forest, as well as labor and machinery constraints 

for harvesting and planting activities. 

The industrial submodel is described by a small input-out- 

put model with both mechanical (e.g., sawmill and plywood) and 

chemical (e.g., pulp and paper) production activities. Also 

secondary processing of the primary products will be included 

in the model, in particular, because of the expected importance 

Of such activities in the future. 

The rate of production is restricted by wood supply (which 

is one of the major links between the submodels), by final demand 

for wood products, by labor force supply, by production capacity 

availability, and finally, by financial considerations. 



The evaluation criterion in comparing alternative policies 

for the forest sector is highly multiobjective: while selecting 

a reasonable long-term policy, preferences of different interest 

groups (such as government, industry, labor, and forest owners) 

have to be taken simultaneously into account. It should also 

be noted that forestry and industry submodels have different 

transient times: a forest normally requires a growing period of 

at least 40 to 60 years whereas a major structural change in the 

industry may be carried out within a much shorter period. Because 

of the complexity of the system, it is sometimes desirable to 

coneider the forestry and the industries on some independent 

basis, each with its own objective(s), and to analyze an inte- 

grated model thereafter (see Kallio et al. 1979). 

The paper is divided into two parts. In the first part 

(Sections 2-4) we describe the methodological approach. In the 

second part (Section 5) a specific in~plementation for the Finnish 
forest sector is described and illustrated with somewhat hypo- 

thetical numerical exam?les. 

2. THE FORESTRY SUBSYSTEM 

Mathematical programming is a widely applied technique for 

operations management and planning in forestry (e-g., Navon 1971, 

Dantzig 1974. Kilkki et al. 1977, Newnham 1975, ~as lund 1969, 

Wardle 1965, Ware and Clutter 1971, Weintraub and Navon 1976, 

Williams 1976). In this section we follow a traditional formu- 

lation of the forests' tree population into a dynamic linear 

programming system. We describe the forestry submodel, where 

the decision variables (control activities) are harvesting and 

planting activities, and where the state of the forests is 

represented by the volume of trees in different species and 

age groups. Because the model is formulated in the DLP frame- 

work, we single out the following: (i) state equations which 

describe the development of the system, (ii) constraints which 

restrict feasible trajectories of the forest development, (iii) 

planning horizon, and (iv) objective function(s). 



2.1 State Equations 

Each tree in the forest is assigned to a class of trees 

specifying the age and the species of the tree. A tree belongs 

to age group a (a = I,..., N-1) if its age is at least (a-1)A 

but less than aA, where A is a given time interval (for example, 

five years). In the highest age group a = N all trees are in- 

cluded which have an age of at least (N-1)A. (Instead of age 

groups, we might alternatively assign trees to size groups speci- 

fied by the trees' diameter. ) We denote by wsa (t) the number of 

trees of species s, s = 1,2,3, ..., (e.g., pine, spruce, birch, 

etc.) in age group a at the beginning of time period t, 

t = O,l,..., T. 

Let a:,, (t) show the ratio of trees of species s and in age 

group a that will proceed to the age group a' during time period 

t. We shall consider a model formulation where the length of 

each time period is A. Therefore, we may assume that a:., (t) 

is independent of t and equal to zero unless a' is equal to a+l 
s (or a for the highest age group). We denote then CI:~, (t) = aa 

with 0 2 a: 2 1. The ratio 1 - a: may then be called the attri- 

tion rate corresponding to time interval A and tree species s in 

age group a. We introduce a subvector wS(t) = {wSa(t)}, speci- 

fying the age distribution of trees (number of trees) for each 

tree species s at the beginning of time period t. Assuming neither 

harvesting nor planting, the age distribution of trees at the 

beginning of the next time period t+l will then be given by 

sSwS (t) where as is the square N x N growth matrix, describing 

aging and death of the trees resulting from natural causes. By 

our definition, it has the form 



In t roduc ing  a vec tor  w ( t )  = I w s ( t )  ) = I w S a ( t )  ), desc r ib ing  

t r e e  spec ies  and age d i s t r i b u t i o n  and a block-diagonal ma t r i x  a 

with submatr ices as on i ts diagonal ,  t h e  s p e c i e s  and age d i s t r i -  

bu t ion  a t  t h e  beginning o f  per iod  t + l  w i l l  be  g iven by a w ( t ) .  
+ 

W e  denote by u ( t )  and u - ( t )  t h e  v e c t o r s  of p lan t i ng  and har-  

ves t i ng  a c t i v i t i e s  a t  t i m e  per iod  t. The s t a t e  equat ion  descr ib -  

i ng  t h e  lavelooment of t h e  f o r e s t  w i l l  then be 

where ma t r i ces  rl and w spec i f y  p lan t i ng  and ha rves t i ng  
+ - 

a c t i v i t i e s  i n  such a way t h a t  qu ( t)  and -wu ( t )  a r e  t h e  incre-  

mental change i n  numbers of t r e e s  r e s u l t i n g  from p l a n t i n g  and 

ha rves t i ng  a c t i v i t i e s ,  respec t i ve l y .  

A p lan t i ng  a c t i v i t y  n may be s p e c i f i e d  t o  mean p l a n t i n g  of 

one tree of spec ies  s which e n t e r s  t h e  f i r s t  age group ( a  = 1 )  

dur ing  per iod  t. Thus, ma t r i x  has one u n i t  column vec to r  

f o r  each t r e e  spec ies  s. The nonzero element o f  such a column 

is on t h e  row of t h e  f i r s t  age group f o r  tree spec ies  s i n  equa- 

t i o n  ( l ) . 
A harves t i ng  a c t i v i t y  h is s p e c i f i e d  by v a r i a b l e s  u h ( t )  

which determine t h e  l e v e l  o f  t h i s  a c t i v i t y  (e .g . ,  f i n a l  ha rves t -  

ing ,  t h inn ing ,  e t c .  ) . The c o e f f i c i e n t s  wk of ma t r i x  i;i 

a r e  def ined s o  t h a t  wk<(t) i s  t h e  number of trees of s p e c i e s  

s from age group a harves ted when a c t i v i t y  h i s  app l i ed  a t  l e v e l  

u h ( t ) .  Thus, t hese  c o e f f i c i e n t s  show t h e  age and spec ies  d i s -  

t r i b u t i o n  of t r e e s  harves ted when a c t i v i t y  h is  app l ied .  

Sometimes t h e  ha rves t i ng  a c t i v i t i e s  can be s p e c i f i e d  simply 

by the numbers o f  trees of  spec ies  s and age a harves ted dur ing  

t ime pe r iod  t. There is  some danger i n  t h i s  s p e c i f i c a t i o n ,  however, 

because t h e  s o l u t i o n  o f  t h e  model may suggest  t h a t  on ly  one or  
very few age groups w i l l  be harves ted a t  each time per iod  t. 

This  would of course be u n r e a l i s t i c  i n  p r a c t i c e .  Therefore,  it 

is recornended t h a t  each ha rves t i ng  a c t i v i t y  is def ined through 

a tree d i s t r i b u t i o n  corresponding t o  a c t u a l  ope ra t i ons .  



2.2 Constraints 

Land. Let H(t) be the vector of total acreage of different - 
types d of land available for forests at time period t. A land 

type d may refer, for instance, to a soil type. Let ~z~ be the 

area of land species d required by one tree of species s and age 

group a. We assume that each tree species uses only one type 
s of land d; i.e., only one of the elements Gd, d = 1 ,  2, ..., 

is nonzero. Thus, if we consider more than one land type, then 

the tree species s may also refer to the soil. Defining the 

matrix G = (G:), we have the land availability restriction 

In this formulation we assume that the land area H(t) is 

exogenously given. Alternatively, we may endogenize vector H(t) 

by introducing activities and a state equation for changing the 

area of different types of land. Such a formulation is justi- 

fied if changes in soil type over time is considered or if some 

other land intensive activities, such as- agriculture, are included 

in the model. 

Besides land availability constraints, requirements for 

allocating land for certain purposes (such as preserving the 

forest as a water shed or as a recreational area) may be stated 

in the form of inequality (2). In such a case (the negative of) 

a component of  ~ ( t )  would define a lower bound on such an alloca- 

tion, while the left hand side would yield the (negative of) 

land allocated in a solution of the model. 

Sometimes constraints on land availability may be given 

in the form of equalities which require that all land which is 

made available through harvesting at a time period should be 

used in the same time period for planting new trees of the type 

appropriate for the soil. Forest laws in many countries even 

require following this type of pattern. 

Labor and other resources. Harvesting and planting acti- 

vities require resources such as machinery and labor. Let 

R+ (t) and R- (t) be the usage of resource g at the unit level 
gn gh 



of planting activity n and harvesting activity h, respectively. 

Defining the matrices ~'(t) = (R' (t) 1 and R-(t) = (Rih(t) 1 , 
9n 

and vector R(t) = ( ~ ~ ( t ) }  of available resources during period 

t, we may write the resource availability constraint as follows: 

Wood supply. The requirements for wood supply from forestry 

to industries can be given in the form: 

where vector y(t) = (yk(t)} specifies the requirements for dif- 

ferent timber assortments k (e-g., pine log, spruce pulpwood, 

etc.), and matrix S(t) transforms quantities of harvested trees 

of different species and age into the volume of different timber 

assortments. Note that the volume of any given tree being har- 

vested is assigned in ( 4 )  to log and pulpwood in a ratio which 

depends on the species and age group of the tree. 

2.3 Planning Horizon 

The forest as a system has a very long transient time: one 

rotation of the forest may in extreme conditions require more 

than one hundred years. Naturally, various uncertainties make 

it difficult to plan for such a long time horizon. On the other 

hand, if the planning horizon is too short we cannot take into 

account all the consequences of activities implemented at the 

beginning of the planning horizon. As a compromise we may think 

of a planning horizon of 50 to.80 years. Thus, if one period 

represents an interval of five years, the model will constitute 

10 to 16 stages. It should be noted that such a planning horizon 

is unnecessarily long for the industrial subsystem and too short 

for the forestry subsystem. In order to eliminate the latter 

difficulty, it is desirable to analyze a stationary regime for 

the forests. In this case we set w(t+l) = w(t) = w, for all t. 

Similarly planting and harvesting activities are taken indepen- 
+ 

dent of time; i.e., u'(t) = u and u-(t) = u-, for all t. The 

state equation ( 1 )  can then be restated as 



+ 
Imposing constraints (2) through (4) on variables w, u , 

and u-, we can solve the static linear programming problem and 

find an optimal stationary state w* of the forest (and corre- 

sponding harvesting and planting activities). This approach 

has been used, for instance, by Rorres (1978) for finding the . 
stationary maximum yield of a harvest. The solution of a dynamic 

linear program with terminal constraints 

yields the optimal transition to this stationary state. 

Another way of introducing a stationary state is to consider 

an infinite period formulation and to impose constraints w(t) = 

w(t+l), u-(t) = u-(t+l) and u+(t) = u+(t+l), for a11 t ) T. If 

the model parameters for period t are assumed independent of time 

for all t 2 T, then the dynamic infinite horizon linear program- 

ming model may be formulated as a T+l period problem where the 

last period represents a stationary solution for periods t 2 T, 

and the first T periods represent the transition from the ini- 

tial state to the stationary solution. 

There is a certain difference in these two approaches of 

handling the stationary state. In the first approach, when ( 5 )  

is applied, we first find the optimal stationary solution in- 

dependently of the transition period, and thereafter we deter- 

mine the optimal transition to this stationary state. In the 

latter approach we link the transition period with the period 

corresponding to the stationary solution. The linkage takes 

place in the stationary state variables which are determined 

in an optimal way taking into account both time periods simul- 

taneously. 

2.4 Objective Functions 

The forest management described above, has a very multi- 

objective nature. For example, the following objectives have 

been mentioned (Dantzig 197U, Steuer and Schuler 1978): 



1) obtaining higher yields of round wood; 2) preserving the 

watershed; 3) preserving the forest as a recreational area; 

4) making the forest resilient to diseaees, fire, droughts, etc. 

Some of these objectives may be included in objective function(s), 

while others can be given as constraints. In Section 2.2 we 

considered some of these types of objectives as constraints. 

A common objective which is also used as an objective 

function is the discounted sum of net income in forestry. This 

profit Nay be expressed as a linear combination of the decision 

variables: 

Here J-(t) accounts for the mill price of the wood less trans- 

portation and harvesting costs at unit level. Vector ~ + ( t )  

refers to planting costs at unit level and B(t) is a discounting 

factor. For illustrative purposes we shall use this objective 

function for forestry. 

2.5 Forestry Model 

In summary. our forestry model may now be stated as 

follows. Given state equation ( 1 ) , an initial state w (0) = w 0 

and a terminal state w(T) = w , find such nonnegative controls 

{u-(t)) and ~u+(t ) l  (t = 0,l.. .., T-l), which satisfy con- 

straints ( 2 )  through (4). yield nonnegative state vectors w(t) 

and maximize the aggregated profit defined in (6). 

In this problem the vector y (t) of wood supply, the (vec- 

tor of) available land H(t), and the availability of labor and 

other resources R(t) are given exogenously. Therefore, policy 

analysis for forestry on the basis of only this submodel is very 

limited in its possibilities. We shall link below this submodel 

with an industrial submodel describing transformation of 

wood raw material into products. 



Note that our formulation may also be considered as a 

regionalized forestry model. In this case we only have to 

extend the meaning of various indices (tree species s, planting 

activity n, harvesting activity h, land type d, resource g, and 

timber assortment k) to refer, in addition to the above, also 

to various subregions within the nation. 

3. THE INDUSTRIAL SUBSYSTEM 

We will now consider the industrial subsystem of the forest 

sector. Again the formulation is a dynamic linear programming 

model. We discuss first the section related to production and 

final demend of wood products, then the financial considerations 

and the complete industrial submodel thereafter. 

3.1 Production and Demand 

Let x(t) be the vector (levels of) of production activities 

for period t, for t = 0, I , . . . ,  T-1. Such an activity i may 

include production of sawn wood, panels, pulp, paper, converted 

products, etc. For each single product j, there may exist 

several alternative production activities i which are specified 

through alternative uses of raw material, technology, etc. Let 

U be the matrix of wood usage per unit of production activity 

so that the wood processed by industries during period t is given 

by vector Ux(t). Note that matrix U has one row corresponding 

to each timber assortment k (corresponding to the components 

of supply vector y(t) in the forestry model). Some of the 

elements in U may be negative. For instance, saw milling con- 

sumes logs but produces raw material (industrial residuals) for 

pulp mills. This byproduct appears as a negative component in 

matrix U. We denote by r (t) = (rk (t) 1 the vector of wood raw 

material inventories at the beginning of period t (i.e., wood 

harvested but not processed by the industry) . As above, let 

y(t) be the amount of wood harvested in different timber assort- 

ments, and z+(t) and z-(t) the (vectors of) import and export 

of different assortments of wood, respectively during period t. 

Then we have the following state equation for the wood raw ma- 

terial inventory: 



In other words, the wood inventory at the end of period t is 

the inventory at the beginning of that period plus wood harvested 

and imported less wood consumed and exported (during that period). 

Note that if there is no storage (change), and no import nor export 

of wood, then (7) reduces to y (t) = Ux (t) ; i. e. , wood harvested 

equals the consumption of wood. For wood import and export we 
+ 

assume upper limits Z (t) and ~ - ( t ) ,  respectively: 

The production process may be described by a simple input- 

output model with substitution. Let A(t) be an input-output 

matrix having one row for each product j and one column for each 

production activity i so that A(t) x (t) is the (vector of ) net 

production when production activity levels are given by x(t). 

Let m (t) = {mj (t) and e (t) = (e . (t) j be the vectors of import 
3 

from and export to the forest sector, respectively, for products 

j. Then, excluding from consideration a possible change in the 

product inventory, we have 

Both for export and for import we assume externally given bounds 

E (t) and !*(t) , respectively: 

Production activities are further restricted through labor 

and mill capacities. Let L(t) be the vector of different types 

of labor available for the forest industries. Labor may be 

classified in different ways taking into account, for instance, type 

of production, and the type of responsibilities in the produc- 

tion process (e.g., work force, management, etc.). Let ~ ( t )  



be a c o e f f i c i e n t  mat r ix  s o  t h a t  p ( t ) x ( t )  i s  t h e  ( vec to r  o f )  

demand f o r  d i f f e r e n t  t ypes  o f  l abo r  g iven product ion a c t i v i t y  

l e v e l s  x ( t )  . Thus we have 

We w i l l  cons ider  t h e  product ion ( m i l l )  capac i t y  a s  an en- 

dogenous s t a t e  va r i ab le .  Let q ( t )  be t h e  vec to r  o f  t h e  amount 

o f  d i f f e r e n t  t ypes  o f  such capac i t y  a t  t h e  beginning o f  per iod  

t. Such types may be d i s t i n g u i s h e d  by reg ion  (where t h e  capac- 

i t y  is l o c a t e d ) ,  by type o f  product  f o r  which it is  used and by 

d i f f e r e n t  techno log ies  t o  produce a g iven product .  Le t  Q(t) be 

a c o e f f i c i e n t  mat r ix  s o  t h a t  Q ( t ) x ( t )  is t h e  demand ( v e c t o r )  

f o r  t hese  types  o f  capac i ty .  Such a ma t r i x  has  nonzero e lements 

on ly  when t h e  region-product-technology combination o f  a produc- 

t i o n  a c t i v i t y  matches w i th  t h a t  of t h e  type o f  capac i t y .  The 

product ion  capac i t y  r e s t r i c t i o n  i s  then g iven a s  

The development of t h e  capac i t y  i s  g iven by a s t a t e  equa- 

t i on  

where 6 i s  a d iagona l  mat r ix  account ing f o r  (phys i ca l )  depre- 

c a t i o n  and v ( t )  i s  a vec to r  o f  investments ( i n  phys i ca l  u n i t s ) .  

Capaci ty  expansions a r e  r e s t r i c t e d  through f i n a n c i a l  resources .  

We do n o t  cons ider  p o s s i b l e  c o n s t r a i n t s  o f  o t h e r  s e c t o r s ,  such 

a s  heavy machinery o r  bu i l d ing  i ndus t r y ,  whose capac i t y  may be 

employed i n  investments of t h e  f o r e s t  s e c t o r .  

3.2 Finance 

W e  w i l l  now t u r n  our  d i scuss ion  t o  t h e  f i n a n c i a l  aspec ts .  

We p a r t i t i o n  t h e  s e t  of p roduct ion  a c t i v i t i e s  i i n t o  f i n a n c i a l  

u n i t s  ( s o  t h a t  each a c t i v i t y  belongs uniquely t o  one f i n a n c i a l  

u n i t ) .  Furthermore, we assume t h a t  each product ion  capac i t y  



is assigned to a financial unit so that each production activity 

employs only capacities assigned to the same financial unit as 

the activity itself. 

Production capacity in (14) is given in physical units. 

For financial calculations (such as determining taxation) we 

define a vector q(t) of fixed assets. Each component of this 

vector determines fixed assets (in monetary units) for a finan- 

cial unit related to the capacity assigned to that unit. Thus, 

fixed assets are aggregated according to the grouping of pro- 

duction activities into financial units, for instance, by region, 

by industry, or by groups of industries. 

Financial and physical depreciation may differ from each 

other; for instance, when the former is defined by law. We 

define a diagonal matrix (I-z(t) ) so that ( ~ - x ( t )  ) <(t) is 

the vector o f  fixed assets left at the end of period t when 

investments are not taken into account. Let K(t) be a matrix 

where each component determines the increase in fixed assets 

(of a certain financial unit) per (physical) unit of an invest- 

ment activity. Thus the components of vector K(t)v(t) determine 

the increase in fixed assets (in monetary units) for the finan- 

cial units when investment activities are applied (in physical 

units) at a level determined by vector v (t) . Then we have the 

following state equation for fixed assets: 

For each financial unit we consider external financing 

(long-term debt) as an endogenous state variable. Let L (t) 

be the (vector of) beginning balance of external financing for 

different financial units in period t. Similarly, let k+(t) 

and k-(t) be the (vectors of) drawings of debt and the repayments 

made during period t. In this notation, the state equation for 

long-term debt is as follows: 



We will restrict the total amount for long-term debt through 

a measure which may be considered as a realization value of a 

financial unit. This measure is a given percentage of the total 

assets less short-term liabilities. Let u(t) be a diagonal 

matrix of such percentages, let b(t) be the (endogenous vector 

of) total stockholders equity (including cumulative profit and 

stock). Then the upper limit on loans is given as 

Alternatively, external financing may be limited, for in- 

stance, to a percentage of a theoretical annual revenue (based 

on available production capacity and on assumed prices of pro- 

ducts). Note that no repayment schedule has been introduced in 

our formulation, because an increase in repayment can always be 

compensated by an increase of drawings in the state equation (16). 

Next we will consider the profit (or loss) from period t. 

Let p+(t) and p- (t) be vectors whose components indicate profits 

and losses, respectively, for the financial units. By definition, 

both profit and loss cannot be simultaneously nonzero for any 

financial unit. For a solution of the model, this fact usually 

results from the choice of an objective function. 

Let P(t) be a matrix of prices for products (having one 

column for each product and one. row for each financial unit) 

so that the vector of revenue (for different financial units) 

from sales e(t) outside the forest industry is given by P (t)e(t) 

Let C(t) be a matrix of direct unit production costs, including, 

for instance, wood, energy, and direct labor costs. Each row 

of C(t) refers to a financial unit and each column to a pro- 

duction activity. The (vector) of direct production costs for 

financial units is then given by C(t)x(t). 

The fixed production costs may be assumed proportional to 

the (physical) production capacity. We define a matrix F(x) 

so that the vector F(t)q(t) yields the fixed costs of period t 

for the financial units. According to our notation above, 

(financial) depreciation is given by the vector x(t)q(t). 



W e  assume t h a t  i n t e r e s t  is pa id  on t h e  beginning ba lance o f  deb t .  

Thus, i f  ~ ( t )  is t h e  d iagona l  ma t r i x  o f  i n t e r e s t  r a t e s ,  then t h e  

v e c t o r  o f  i n t e r e s t  pa id  (by t he  f i n a n c i a l  u n i t s )  i s  g iven by 

E ( t )  1 ( t )  . F i n a l l y ,  l e t  D ( t )  be ( a  v e c t o r  o f )  exogeneously g iven  

cash  expend i tu re  cover ing  a l l  o t h e r  c o s t s .  Then t h e  p r o f i t  be- 

f o r e  t a x  ( l o s s )  is g iven a s  fo l lows:  

The s tockho lder  e q u i t y  b ( t ) ,  which w e  a l r e a d y  employed 

above, s a t i s f i e s  now t h e  fo l low ing  s t a t e  equat ion :  

where ~ ( t )  i s  a d iagona l  ma t r i x  f o r  t a x a t i o n  and B ( t )  i s  t h e  

(exogenously g iven)  amount o f  s tock  i ssued  d u r i n g  per iod  t. 

F i n a l l y ,  w e  cons ide r  cash  (and rece i vab les )  f o r  each f inan-  

c i a l  u n i t .  Let  c ( t )  be t h e  v e c t o r  of cash  a t  t h e  beginning o f  

per iod  t. The change of cash  du r i ng  per iod  t i s  due t o  t h e  

p r o f i t  a f t e r  t a x  ( o r  l o s s ) ,  d e p r e c i a t i o n  ( i . e . ,  noncash expen- 

d i t u r e ) ,  drawing of deb t ,  repayment, and inves tments .  - ~ h u s  

w e  assume t h a t  t h e  p o s s i b l e  change i n  cash  due t o  changes i n  

accounts  rece i vab le ,  i n  i n v e n t o r i e s  (wood, end produc ts ,  etc.)  
and i n  accounts  payable cance l  each o t h e r  ( o r  t h a t  t h e s e  quan- 

t i t i es  remain unchanged dur ing  t h e  p e r i o d ) .  A l t e r n a t i v e l y ,  such 

changes cou ld  be taken i n t o  account  assuming, f o r  i n s t a n c e ,  t h a t  

t h e  accounts  payable and r e c e i v a b l e ,  and t h e  i n v e n t o r i e s  a r e  

p ropo r t i ona l  t o  annual  s a l e s  o f  each f i n a n c i a l  u n i t .  

Using our  e a r l i e r  n o t a t i o n ,  t h e  s t a t e  equa t i on  f o r  cash  is 

now 



3 .3  I n i t i a l  S t a t e  and Terminal Condi t ions 

I n  our  i n d u s t r i a l  model, we now have t h e  fo l lowing s t a t e  

vec tors :  wood raw m a t e r i a l  inventory  r ( t ) ,  (phys i ca l )  p roduct ion  

capac i t y  q ( t ) ,  f i xed  a s s e t s  q ( t ) ,  long-term d e b t  L (t) , cash c (t) , 
and t o t a l  s tockho lders  equ i t y  b ( t ) .  For a l l  o f  them we have an 

i n i t i a l  va lue  and poss ib l y  a l i m i t  on t h e  te rm ina l  value.  W e  

s h a l l  r e f e r  t o  t h e  i n i t i a l  and te rm ina l  va lues  by s u p e r s c r i p t s  

0 and *, respec t i ve l y ;  i.e., w e  have t h e  i n i t i a l  s t a t e  g iven a s  

and a te rm ina l  s t a t e  r e s t r i c t e d ,  f o r  i ns tance ,  a s  fo l lows:  

The i n i t i a l  s t a t e  is determined by t h e  s t a t e  o f  t h e  f o r e s t  in -  

d u s t r i e s  a t  t h e  beginning o f  t h e  p lanning hor izon.  The te rm ina l  

s t a t e  may be determined a s  a s t a t i o n a r y  s o l u t i o n  s i m i l a r l y  a s  we 

desc r i bed  f o r  t h e  f o r e s t r y  model above. 

I f  w e  cons ider  t h e  wood supply y ( t )  be ing  exogenous, we 

now have an i n d u s t r i a l  submodel which may be analyzed indepen- 

d e n t l y  from t h e  f o r e s t r y  submodel. A more complete duscussion 

on o b j e c t i v e s  w i l l  be g iven i n  t h e  nex t  s e c t i o n ,  bu t  f o r  i l l u s -  

t r a t i v e  purposes, we may choose now t h e  d iscounted sum o f  indus-  

t r i a l  p r o f i t s  ( a f t e r  t a x )  a s  an  o b j e c t i v e  func t ion :  

Here B (t) is a (row) vec to r  where components a r e  t h e  d iscount ing  

f a c t o r s  f o r  d i f f e r e n t  f i n a n c i a l  u n i t s  ( f o r  per iod  t ) .  



3.U Industrial Model 

We may now summarize the industrial model. Given initial 
+ 

state (21 ) , find nonnegative control vectors x (  t )  , z (t) , z-(t) , 
m(t) , e(t), v(t), Lf (t), L-(t) p+(t), and ~ - ( t ) ,  and nonnegative 

state vectors r(t), q(t), g(t), L(t), c(t), and b(t), for all t 

which satisfy constraints and state equations ( 7 )  - (20), the 

terminal requirements (22), and maximize the linear functional 

given in (23). 

As was the case with the forestry model, our industrial 

model may also be considered being regionalized. Again various 

indices (such as production activities, production capacities, 

etc.) should also refer to subregions within the country. Var- 

ious transportation costs will then be included in direct pro- 

duction costs. For instance for a given product being produced 

within a given region there may be alternative production acti- 

vities which differ from each other only in the source region of 

raw material. 

U. THE INTEGRATED SYSTEM 

We will now consider the integrated forestry--forest in- 

dustries model. First we have a general discussion on possible 

formulations of various objective functions for such a model. 

Thereafter, we summarize the model in the canonical form of 

dynamic linear programming. A tableau representation of the 

structure of the integrated model will also be given. 

4.1 Objectives 

The forest sector may be viewed as a system controlled by 

several interest groups or parties. Any given party may have 

several objectives which are in conflict with each other. 

Obviously, the objectives of one party may be in conflict with 

those of another party. For instance, the following parties 

may be taken into account: representatives of industry, govern- 

ment, labor, and forest owners. Objectives for industry may be 

the development of profit of different financial units. Govern- 

ment may be interested in the increment of the forest sector 



to the gross national product, to the balance of payments, and 

to employment. The labor unions are interested in employment 

and total wages earned in forestry and different industries 

within the sector. Objectives for forest owners may be the 

income earned from selling and harvesting wood. Such objec- 

tives refer to different time periods t (of the planning horizon) 

and possibly also to different product lines. We will now give 

simple examples of formulating such objectives into linear 

objective functions. 

Industrial profit. The vector of profits for the industrial 
+ 

financial units was defined above as [I-r(t)]p (t) - p-(t) for 

each period t. If one wants to distinguish between different 

financial units, then actually each component of such a vector 

may be considered' as an objective function. However, of ten 

we aggregate such objectives for practical purposes, for instance, 

summing up discounted profits over all time periods, summing 

over financial units, or as in ( 2 3 1 ,  summing over both time 

periods and financial units. 

Increment to gross national product. For the purpose of 

defining the increment of the forest sector to the GNP we consi- 

der the sector as a "profit center' where no wage is paid to the 

employees within the sector, where no price is paid for raw 

material originating from this sector, and where no taxes exist. 

The increment to the GNP is then theprofit for such a center. 

We will now make a precise statement of such a profit which may 

also be viewed as the valued added in the forest sector. 

Let P' (t) be a price vector so that P' (t)e(t) is the total 

revenue from selling wood products outside the forest sector. 

Let C'(t) be the vector of direct production unit costs ex- 

cluding direct labor cost and cost of raw material which origi- 

nates from the forest sector. Let 3(t) and R(t) be vectors of 

unit cost of planting and harvesting activities, respectively, 

excluding labor costs. For simplicity, we may assume that these 

latter two cost components include both operating and capital 

cost for machinery. The direct operating costs (excluding wages 

and wood based raw material) is then given, for period t, by 



C 1  (t)x(t) + i(t)u+(t) + $(t)u-(t). Also the import and export 

of  wood based raw material influence the GNP. Let (t) and i (t) 

be price vectors for imported and exported wood raw material, 

respectively, and let M'(t) be the price vector of imported 

wood based products (to be used as raw material). Thus, the 

following term should be added to the GNP of period t: 

g(t)z-(t) - i(t)z+(t) - M1(t)m(t). The influence of the change 

in the wood inventory may be neglected in our model. For the 

fixed costs all except the labor costs will be taken into account. 

Let F1( t )  be the vector of such costs per unit of production 

capacity, let 6'(t) be the vector of depreciation factors, and 

E' (t) the vector of interest rates (for various financial units). 

Then the negative increment of the fixed costs, depreciation 

and interest to the GNP is given by F1(t)q(t) + dl(t)q(t) + 
+ E ' (t) L (t) . Summing up, the increment of the forest sector 

to the GNP of period t is given by the following expression: 

Increment to balance of payments. The increment of the 

forest sector to the balance of payments has a similar expression 

to the one above for the GNP. The changes to be made in this 

expression are, first, to multiply the components of the price 

vector P1( t )  by the share of exports in the total sales e(t); 

second, to multiply the components of the cost vectors Ca(t),  

i(t), *R(t), and F' (t) by the share of imported inputs in each 

cost term; third, to multiply each component of ~ ' ( t )  by the 

share of foreign debts (among all long-term debts) of the fi- 

nancial unit; and finally, to replace the depreciation function 

6'(t)q(t) by investment expenditures K1(t)v(t), where K 1 ( t )  

is a vector expressing investments in imported goods (per unit 

of production capacity). 

Employment. Total employment (in man-years per period) for 

each time period t for different types of labor, in different 

activities and regions, has already been expressed in the left 



hand side expressions of inequalities (3) and (12). The expres- 

sion for forestry is given by (part of the component of) the 

vector ~+(t )u+(t )  + R-(t)u-(t) and for the industry by the vec- 

tor 0 (t)x(t). 

Wage income. For each group of the work force, the wage 

income for period t is obtained by multiplying the expressions 

for employment above by the annual salary of each such group. 

Stumpage earnings. Besides the wage income for forestry 

(which we already defined above), and an aggregate profit (as 

expressed in ( 6 ) ) ,  one may account for the stumpage earnings; 

i.e., the income related to the wood price prior to harvesting 

the tree. Such income is readily obtained by the timber assort- 

ments if the components of the haNeSting yield vector y(t) are 

multiplied by the respective wood prices. 

4.2 The Integrated Model 

We will now summarize the integrated forestry-industry model 

in the canonical form of dynamic linear programming (Propoi and 

Krivonozhko 1978). Denote by X(t) the vector of all state vari- 

ables (defined above) at the beginning of period t. Its two- 

nents include the trees in the forest, different types of 

production capacity in the industry, wood inventories, exter- 
nal financing, etc. Let Y (t) be the nonnegative vector of 

all controls for period t, that is, the vector of all decision 

variables, such as levels of haNeSting or production activities. 

An upper bound vector for Y (t) is denoted by ? (t) (some of whose 

components may be infinite). We assume that the objective func- 

tion to be maximized is a linear function of the state vectors 

X(t) and the control vectors Y(t), and we denote by y(t) and 

A (t) the coefficient vectors for X(t) and Y (t) , respectively, 

for such an objective function. This function may be, for 

instance, a linear combination of the objectives defined above. 
0 The initial state X(0) is denoted by X , and the terminal re- 

quirement for X(T) by x*. Let T(t) and A(t) be the coefficient 

matrices for X(t) and Y (t) , respectively, and let E (t) be the 

exogenous right hand side vector in the state equation for X(t). 



Let @ ( t ) ,  n ( t ) ,  and @(t )  be t h e  corresponding matr ices and t h e  

r i g h t  hand s i d e  vector f o r  the  cons t ra in ts .  Then t h e  in teg ra ted  

model can be s t a t e d  i n  t h e  canonical  form of DLP a s  fol lows: 

f i nd  Y ( t ) ,  f o r  0 < t < T-1,  and X ( t ) ,  f o r  1 5 t 5 T ,  t o  - - 

T- 1 
maximize 1 ( y ( t ) X ( t ) + h ( t ) Y ( t ) )  + y(T)X(T) , 

t = O  

sub jec t  t o  

x ( t + ~ )  = r ( t ) x ( t )  + A ( t ) ~ ( t )  + ~ ( t )  , f o r  0 5 t 2 T-1 , 

@ ( t ) X ( t )  + n ( t ) Y ( t )  2 $ ( t )  , f o r  o 2 t 2 T-1 , 

0 5 X ( t )  , 0 5 Y ( t )  2 ?(t)  r f o r a l l t  , 

with t h e  i n i t i a l  s t a t e  

and with terminal  requirement 

The nota t ion f o r  t h e  cons t ra in ts  and terminal  requirement 

r e f e r s  e i t h e r  t o  =, t o  5 o r  t o  2 , separate ly  f o r  each cons t ra in t .  

The c o e f f i c i e n t  matrix (corresponding t o  va r iab les  X ( t )  , Y ( t)  , 
and X ( t + l ) )  and t h e  r i g h t  hand s i d e  vector  of the  in teg ra ted  

forest ry- indust ry  submodel of per iod t a r e  given a s  

respect ive ly .  Their s t r u c t u r e  has been i l l u s t r a t e d  i n  Figure 1 

using the  nota t ion introduced i n  Sect ions 2 and 3. 
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5. APPLICATION TO THE FINNISH FOREST SECTOR 

5.1 Implementation 

Two versions of the integrated model were implemented for 

the SESAME system (Orchard-Hays 1978) (a large interactive mathe- 

matical programming system designed for an IBM/370 and operating 

under VM/CMS). The model generators are written using SESRME's 

data management extension, called DATAMAT. An actual model is 

specified by the data tableaux of the generator programs. 

Our two versions have been designed for the Finnish forest 

sector. Both of them may have at most ten time periods each of 

which is a five year interval. In each case, the country is 

considered as a single region. The main differences between 

our small and large version are in the number of products, 

financial units, and the tree species considered in the forest. 

Table 1 shows the dimensions of the two models. 

For the small version, the seven product groups in consider- 

ation are sawn goods, panels, further processed mechanical wood 

products, mechanical pulp, chemical pulp, paper and board, and 

converted paper products. For each group we consider a separate 

type of production capacity and labor force. In this small 

version, we have aggregated all production into one financial 

unit. Only one type of tree represents all tree species in the 

forests. The trees are classified into 21 age groups. Thus, 

the interval being five years, the oldest group contains trees 

older than 100 years. Two harvesting activities were made avail- 

able: thinning and final harvesting. The main timber assort- 

ments in consideration are log and pulpwood. 

The larger version has the following 17 product groups: 

sawn goods, plywood, particle board, fiberboard, three types of 

further processed mechanical products, mechanical pulp, Si-pulp, 

Sa-pulp, newsprint, printing and writing paper, other papers, 

paperboard, and three types of converted paper products. Again 

for each such group we have a separate type of production capacity 

as well as labor force. The production is aggregated into seven 



Table 1. Characteristic dimensions of the small and the large 
versions of the Finnish forest sector model. 

Small Large 
version version 

Number of time periods * 10 10 

Length of one period in years 5 5 

Number of regions 1 1 

Number of tree species 

Number of age groups for trees* 

Harvesting activities* 

Soil types 1 1 

Harvesting and planting resources 1 1 

Timber assortments 2 6 

Production activities 7 17 

Types of labor in the industry 7 17 

Types of production capacity 

Number of financial units 

Number of rove in a ten period LP 520 2320 

Number of columns in a ten period LP 612 3188 

 he value may be specified arbitrarily by the model data. The 
numbers show the actual values being used. 



financial units: saw mills, panels production (plywood, particle 

board, and fiberboard), further processing of primary mechanical 

wood products, mechanical pulp mills, chemical pulp mills, paper 

and board mills, and production of converted paper goods. 

Three species of trees appear in the larger version: pine, 

spruce, and birch. For each of these we apply the same 21 age 

groups as in the small version. The two harvesting activities 

(thinning and terminal harvesting) and the two main timber 

assortments (log and pulpwood) are now considered separately 

for each of the three tree species. 

The data for both of the versions of the Finnish model was 

provided by the Finnish Forest Research Institute. It is par- 

tially based on the official forest statistics (Yearbook of 

Forest Statistics 1977/1978) published by the same institute. 

Validation runs (which eventually resulted in our current fonnu- 

lation) were carried out by contrasting the model solutions 

with the experience gained in the preceeding simulation study 

of the Finnish forest sector by Seppala, Kuuluvainen and Seppala 

(forthcoming) . 

5.2 Numerical Examples 

For illustrative purposes we will now describe a few test 

runs: two with the small version and one with the larger one. 

Most of the data being used in these experiments corresponds 

approximately to the Finnish forest sector. This is the case, 

for instance, with the initial state; i.e., trees in the forests, 

different types of production capacity, etc. Somewhat hypo- 

thetical scenarios have been used for certain key quantities, 

such as final demand, and price and cost development. Thus, 

the results obtained do not necessarily reflect reality. They 

have been presented only to illustrate a few possible uses of 

the model. 

For each test run a ten (five year) period model was con- 

structed. Labor constraints both for indsutry and for forestry 

were temporarily relaxed. At this stage, no further processing 

activity for mechanical wood products but one activity for 



converted paper products was considered. Both wood import and 

export were excluded, and pulp import to be used for paper pro- 

duction was allowed only in the larger version of the model. 

The assumed demand of wood products is given in Table 2. At 

the end of the planning horizon, we require that in each age 

group there is at least 80 percent of the number of trees ini- 

tially in those groups. For production capacity a similar 

terminal requirement is 50 percent. Initial production capacity 

is given in Table 3 and the initial age distribution of trees 

in Figure 8 below. 

For the first run the discounted sum of industrial profits 

(after tax) was chosen as an objective function. Such an ob- 

jective may reflect the industry's behavior given the cost 

structure, price development, and other parameters. The results 

have been illustrated in Figures 2 through 7. The mechanical 

processing activities are limited almost exclusively by the 

assumed demand of sawn goods and panels. The same is true for 

converted paper products. However, both mechanical and chemical 

pulp produced is almost entirely used in paper mills, and there- 

fore, the potential demand for export has not been exploited. 

Neither have the possibilities for exporting paper been used 

fully. As shown in Figure 5, paper export is declining sharply 

from the level of 5 million ton/year, approaching zero towards 

the end of the planning horizon. This is due to the stongly 

increasing production of converted paper products. The corre- 

sponding structural change of the production capacity of the 

forest industry over the 30 year period from 1980 to 2010 is 

given in Table 3. (The sudden decrease in production of panels 

and converted paper products is a "planning horizon effect" 

which often appears in dynamic LP solutions. Usually it is due 

to inappropriate accounting for the future in terminal conditions. 

For instance, in our case only a reasonable state was required 

at the end of the planning horizon, while an optimal stationary 
state might have been more appropriate.) 



Table 2.  Assumed annual demand of wood products i n  Rune 1 - 3 .  

per iod Sawn panels Mech. Chem. Paper and Converted 
woqd pulp pulp board paper prod. 
m, /y ~m3/y  Mton/y Mton/y Mton/y Mton/y 

Table 3 .  Production capac i ty  i n i t i a l l y  and i n  2010  according 
t o  Runs 1  - 3. 

Production capac i ty  

Product 
Year 2010  

I n i t i a l  Unit 
Run 1  Run 2  Run 3  

sawn wood 7 . 0  1 0 . 2  10 .2  1 0 . 2  M m3/year 

Panels 1 . 7  3 .6  
3 

3.6  3 . 6  M m /year 

Mechanical pulp 2 .2  1 . 9  2 .2  0 . 5  Mton/year  

Chemical pulp 4 . 0  4 . 3  5 .8  5 . 0  M ton/year 

paper (and board) 6 . 2  6 . 2  7 . 3  8 . 7  M ton/year 

Copverted paper 0 . 5  2 . 9  2 . 9  2 . 9  M ton/year 
and board products 
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The use of wood has been shown i n  Figure 7 .  A t  t h e  be- 

g inning t h e  i n d u s t r i a l  use of wood increases from about 40 
3 m i l l i on  x ~ ~ / ~ e a r  t o  t h e  l e v e l  of 45 mi l l i on  m /year and s t a y s  

r a t h e r  s t e a d i l y  there .  According t o  Figure 6 ,  t h e  i n d u s t r i a l  

p r o f i t  i nc reases  from t h e  annual  l e v e l  of . 2  b i l l i o n  d o l l a r s  

towards t h e  end o f  t h e  planning horizon t o  around .5 b i l l i o n  

d o l l a r s  per year. 

For t h e  secondrun w e  have chosen t h e  discounted sum of t h e  

increments of t h e  f o r e s t  s e c t o r  t o  g r o s s n a t i o n a l p r o d u c t  a s  an 

ob jec t i ve  funct ion.  The r e s u l t s  have been i l l u s t r a t e d  us ing 

dot ted l i n e e  i n  t h e  same F igures 2 through 7. 

Compared wi th  t h e  previous case,  t h e r e  is no s i g n i f i c a n t  

d i f f e r e n c e  i n  t h e  production of sawn goods, pane ls  and converted 

paper products f o r  which expor t  demand again l i m i t s  t h e  produc- 

t i on .  However, t he re  is  a s i g n i f i c a n t  d i f f e r e n c e  i n  pulp and 

paper production. Pulp (both mechanical and chemical) is  now 

produced t o  s a t i s f y  f u l l y  t h e  demand f o r  export .  Paper produc- 

t i o n  is now s t e a d i l y  increas ing from 5 mi l l i on  ton/year t o  near ly  

9 mi l l i on  ton/year. Paper expor t  is  s t i l l  dec l in ing  again due 

t o  i nc reas ing  use f o r  t h e  convert ing processes of paper products. 

Therefore,  t h e  expor t  demand f o r  paper is  not f u l l y  exp lo i ted.  

The bot t leneck f o r  paper production now is  t h e  b i o l o g i c a l  

capac i t y  of t h e  f o r e s t s  t o  supply wood. The use o f  round wood 
3 i nc reases  from about 40 mi l l i on  in /year t o  t h e  l e v e l  o f  65 

3 mi l l i on  m /year.  The inc rease  i n  t h e  y i e l d  o f  t h e  f o r e s t s  may 

be explained by t h e  change i n  t h e  age s t r u c t u r e  of t h e  f o r e s t s  

dur ing t h e  planning hor izon.  Such change over t h e  per iod 1980- 

2010 has been i l l u s t r a t e d  i n  ~ i g u r e '  8 .  

W e  no t i ce  a s i g n i f i c a n t  d i f f e rence  in t h e  wood use between 

t h e s e  f i r s t  two runs. W e  may conclude t h a t  i n  t h e  f i r s t  run 

( t h e  p r o f i t  maximization) t h e  n a t i o n a l  wood resources a r e  being 

used i n  an i n e f f i c i e n t  way; i .e . ,  under t h e  assumed p r i c e  and 

c o s t  s t r u c t u r e  t h e  poor p r o f i t a b i l i t y  o f  the f o r e s t  i ndus t ry  

r e s u l t s  i n  an investment behavior which does no t  make f u l l  use 

o f  t h e  f o r e s t  resources.  
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F i g u r n  8. Age distribution o f  t m s  in 1980 and i n  2010 accnrding t o  k n 2 .  



The third run is the same as the first one except that the 

larger version of the model was used and pulp import was allowed 

to be used in paper mills. The production of sawn goods and con- 

verted paper products, as described by broken lines in Figure 2, 

still meet the export demand. However, panel production is 

declining and it fallswell below the level of the previous runs. 

The reason is that panel production is now considered as a sepa- 

rate financial unit which cannot afford to keep up its production 

capacity. Thus, an increase in panels production appears to be 

possible only if it is supported from other product lines. 

Similarly, the use of spruce for mechanical pulp appears unprofit- 

able so that its production is declining. Production of Si-pulp 

(for which spruce pulpwood is used) grows steadily from 5 million 

ton/year to about 10 million ton/year. No spruce is used for 

Sa-pulp but both the use of pine and birch for Sa-pulp increase 

over time so that the total production of chemical pulp increases 

from about 3.5 million ton/year to the level of 7 million ton/ 

year during the planning horizon. Thus chemical pulp production 

somewhat exceeds the amount produced in the first run. 

Paper production in this third run exceeds the level ob- 

tained in both previous runs. The reason is that imported 

pulp is now allowed to be used in paper mills. (Note that in 

the second run, the raw wood supply was the limiting factor for 

paper production.) As a consequence, total paper production 

increased from 5 million ton/year to above 1 1  million ton/year. 

The share of newsprint is about one fifth and the share of 

printing paper one quarter. Only paperboard production appears 

to decline. 

From the production curves of the primary uses of wood, 

i.e., sawn goods, panels and pulp, we may conclude (comparing 

with the second run) that wood resources are again being used 

inefficiently. It appears that, under the assumed price and 

cost structure, fiber (pulp in particular) import to be used 

as raw material in paper mills is more profitable than the use 

of domestic wood raw material. 



6. SUMMARY AND POSSIBLE FURTHER RESEARCH 

We have formulated a dynamic linear programming model of 

a forest sector. Such a model may be used for studying long- 

range development alternatives of forestry and forest based 

industries at a national and regional level. Our model comprises 

of two subsystms, the forestry and industrial subsystem, which 

are linked to each other through the raw wood supply from forest- 

ry to the industries. We may also single out static temporal 

submodels of forestry and industries for each interval (e.g., 

for each five year period) considered for the planning horizon. 

The dynamic model then colnprises of these static submodels 

which are coupled with each other through inventory-type of 

variables; i.e., through state variables. 

The forestry submadel describes the development of the 

volume and the age distribution of different tree species within 

the nation or its subregions. Among others, we account for the 

land available for timber production and the labor available 

for harvesting and planting activities. Also ecological con- 

straints* such as preserving land as a watershed may be taken 

into account. 

In the industrial sutmodel we consider various production 

activities, such as saw milling, panel production, pulp and paper 

milling, as well as further processing of primary products. For 

a single product, alternative production activities employing, 

for instance, different technologies, may be included. Thus, the. 

production process is described by a small beontief model with 

substitution. For the end product demand an exogenously given 

upper limit is assumed. Some products, such as pulp, may also 

be imported into the forest sector for further processing. Be- 

sides biological supply of wood and demand for wood based pro- 

ducts, production is restricted through labor availability, pro- 

duction capacity, and financial resources. Availability of 

different types of labor (by region) is assumed to be given. 

The development of different types of production capacity depends 

on the initial situation in the country and on the investments 

which are endogeneous decisions in the model. The production 



activities are grouped into financial units to which the respec- 

tive production capacities belong. The investments are made 

within the financial resources of such units. External financing 

is made available to each unit up to a limit which is determined 

by the realization value of that unit. Income tax is asswed 
proportional to the net income of each financial unit. 

The structure of the integrated forestry-forest industry 

model is given in the canonical form of dynamic linear programs 

for which special solution techniques may be employed. (See, 

for instance, Kallio and Orchard-Hays 1979, Propoi and Krivonozhko 

1978). Objectives related to gross national product, employment 

and profit for industry as well as for forestry have been formu- 

lated. Terminal conditions (i.e., values for the state variables 

at the end of the planning horizon) have been proposed to be 

determined through an optimal solution of a stationary model 

for the forest sector. 

Two verisons of the Finnish forest sector model have been 

implemented for the interactive mathematical programming system 

called SESAME (Orchard-Hays 1978). Both versions are ten period 

models with each period five years in length. In neither case 

has the country been divided into subregions. The main differ- 

ence between these versions are in the number of production 

activities and in the number of financial units. No distinction 

has been made between the tree species in the smaller version 

whereas pine, spruce, and birch are considered explicitly in 

the larger one. The complete model amounts to 520 rows and 612 

columns in the smaller case, and to 2320 rows and 3188 columns 
for the larger model. 

A few numerical runs have been presented to illustrate 

possible use of the model. Both the discounted industrial 

profit and the discounted increment to the GNP were used as 

objective functions. The results obtained illustrate a case 

where the internal wood price and wage structure results in . 
a rather poor profitability for the forest industries. This 

in turn amounts to an investment behavior which provides insuf- 
ficient capacity for making full use of the wood resources. 



However, because of somewhat hypothetical data used for some 

key parameters, no conclusione based on these runs should be 

made on the Finnish case. 

The purpose of this work has been the formulation, imple- 

mentation and validation of the Finnish forest sector model. 

Natural continuation of this research is to use the model for 

studying some important aspects in the forest sector. For in- 

stance, the influence of alternative scenarios of the energy 

price and the world market prices for wood products would be of 

interest. Furthermore, the studies could concentrate on employ- 

ment and wage rate questions, on labor availability restrictions 

and productivity, on new technology for harvesting and wood 

processing, on the influence of inflation and alternative tax- 

ation schemea, on land use between forestry and agriculture, 

on site improvement, on ecological constraints, on the use of 

wood as a source of energy, etc. Given the required data, such 

studies can be carried out relatively easily. 

Further research requiring a larger modeling effort may con- 

centrate on regional economic aspects, on linking the forest 

sector model for consistency to the national economic model, and 

on studying the inherent graup decision problem for'controlling 

the development of the forest sector. The first of these three 

topics requires a complete revision of our model generating pro- 

gram and, of course, the regionalized data. The second task 

may be carried out either by building in the model a simple input- 

output model for the whole .economy where the non-forest sectors 

are aggregated up to ten sectors. Alternatively, our current 

model may be linked for consistency to an existing national 

economic model. The group decision problem has been proposed 

to be analyzed, for instance, using a multicriteria optimization 

approach (Kallio, Lewandowski, and Orchard-Hays forthcoming) 

wnich is based on the use of reference point optimization 

(Wierzbicki 1979). 



APPENDIX: NOTATION 

Indices 

age group of trees (range 1, ..., N) 

type of forest land 

type of resource for forestry activities 

harvesting activity 

production activity (of the forest industries) 

industrial product 

timber assortment 

planting activity 

tree species 

time period (range I,.. ., T) 

State and control variables 

b(t) stockholders equity at the beginning of period t 

bO = b(0) initial level of stockholders equity 

c (t) cash (and receivableslat the beginning of 
period t 

c0 = c(0) initial amount of cash 

C* terminal requirement for cash 

e(t) = {ej (t) } export (and sales outside the forest sector) of 
forest products during period t 



beginning ba lance o f  e x t e r n a l  f inan-  
c ing  f o r  pe r i od  t 

i n i t i a l  ba lance o f  e x t e r n a l  f i nanc ing  

te rm ina l  requi rement  f o r  e x t e r n a l  
f i nanc ing  

drawings o f  deb t  dur ing  pe r i od  t 

repayments made dur ing  pe r i od  t 

import o f  f o r e s t  p roduc ts  dur ing  
pe r i od  t 

p r o f i t s  o f  pe r i od  t 

( f i n a n c i a l )  l o s s e s  o f  p e r i o d  t 

produc t ion  c a p a c i t y  a t  t h e  beginning 
o f  pe r i od  t 

i n i t i a l '  l e v e l  o f  p roduc t ion  c a p a c i t y  

t e rm ina l  requi rement  f o r  p roduc t ion  
c a p a c i t y  

f i x e d  a s s e t s  a t  t h e  beginning of 
pe r i od  t 

i n i t i a l  va lue  o f  f i x e d  a s s e t s  

t e rm ina l  requi rement  f o r  f i x e d  a s s e t s  

timber assor tments  inventory  a t  t h e  
beginning o f  pe r i od  t 

i n i t i a l  l e v e l  o f  t imber  asso r tmen ts  
inventory  

t e rm ina l  requi rement  f o r  t imber  
assor tments  inventory  

l e v e l  o f  h a r v e s t i n g  a c t i v i t i e s  du r i ng  
pe r i od  t 

l e v e l  o f  h a r v e s t i n g  i n  a s t a t i o n a r y  
s o l u t i o n  

l e v e l  o f  p l a n t i n g  a c t i v i t i e s  dur ing  
pe r i od  t 

l e v e l  o f  p l a n t i n g  i n  a s t a t i o n a r y  
s o l u t i o n  

l e v e l  o f  inves tments  ( i n  p h y s i c a l  
u n i t s )  dur ing  t 

number of trees a t  t h e  beginning o f  
o f  p e r i o d  t 

i n i t i a l  number o f  trees 
t e rm ina l  requi rement  f o r  t h e  number 
o f  trees 
number o f  trees i n  a s t a t i o n a r y  so lu -  
t i o n  



Parameters 

S 
aaa l  ( t )  

l e v e l  o f  p roduct ion  a c t i v i t i e s  dur ing  per iod  t 

s t a t e  vec to r  a t  t h e  beginning of pe r i od  t 

i n i t i a l  s t a t e  

requirement f o r  t e rm ina l  s t a t e  

supply of t imber  assor tments  dur ing  per iod  t 

l e v e l  o f  c o n t r o l  a c t i v i t i e s  dur ing  pe r iod  t 

import  o f  t imber  assor tments  dur ing  pe r iod  t 

expor t  o f  t imber assor tments  dur ing  pe r iod  t 

r a t i o  o f  trees of  spec ies  s and i n  age group 
a  t h a t  w i l l  proceed t o  age group a '  dur ing  
pe r iod  t 

mat r i ces  o f  c o e f f i c i e n t s  a:al (t) 

d iscount ing  f a c t o r  

o b j e c t i v e  func t i on  c o e f f i c i e n t s  f o r  t h e  s t a t e  
vec to r  X ( t )  

c o e f f i c i e n t  ma t r i x  f o r  t h e  s t a t e  v e c t o r  X ( t )  
i n  the s t a t e  equat ion  

phys i ca l  d e p r e c i a t i o n  r a t e s  

f i n a n c i a l  d e p r e c i a t i o n  r a t e s  

age i n t e r v a l  i n  an  age group of t r e e s  ( e - g . ,  
f i v e  y e a r s )  

i n t e r e s t  r a t e s  f o r  e x t e r n a l  f inanc ing  

r i g h t  hand s i d e  vec to r  o f  c o n s t r a i n t s  f o r  
per iod  t 

c o e f f i c i e n t  ma t r i x  f o r  t h e  s t a t e  vec to r  X ( t )  
i n  c o n s t r a i n t s  f o r  per iod  t 

matr ix  r e l a t i n g  p l a n t i n g  a c t i v i t i e s  t o  t h e  
i nc rease  i n  t h e  number of t r e e s  

o b j e c t i v e  func t i on  c o e f f i c i e n t s  f o r  t h e  con- 
t r o l  v e c t o r  Y ( t )  

c o e f f i c i e n t  ma t r i x  f o r  t h e  c o n t r o l  vec to r  Y ( t )  
i n  t h e  s t a t e  equat ion  

mat r ix  r e l a t i n g  ha rves t i ng  a c t i v i t i e s  t o  t h e  
decrease i n  t h e  number o f  t r e e s  

c o e f f i c i e n t  ma t r i x  f o r  t h e  c o n t r o l  v e c t o r  Y ( t )  
i n  c o n s t r a i n t s  f o r  pe r i od  t 

l a b o r  requirement f o r  d i f f e r e n t  p roduct ion  
a c t i v i t i e s  

t a x  f a c t o r s  f o r  t h e  i n d u s t r i e s  dur ing  per iod  t 



upper l i m i t  t o  ex te rna l  f inanc ing a s  a 
percentage o f  t o t a l  a s s e t s  l e s s  s h o r t  term 
l i a b i l i t i e s  

r i g h t  hand s i d e  vector  f o r  t h e  s t a t e  equat ion 
of per iod t 

input-output matr ix  f o r  t h e  f o r e s t  i n d u s t r i e s  

s tock  issued dur ing per iod t 

d i r e c t  u n i t  product ion c o s t s  

exogeneously g iven c o s t s  

upper bound on demand of f o r e s t  products 

f i xed  c o s t s  (per u n i t  of product ion capac i ty )  

land requirement o f  t h e  spec ies  i n  var ious 
age groups 

land a v a i l a b l e  f o r  f o r e s t s  

i d e n t i t y  matr ix  

ob jec t i ve  funct ion c o e f f i c i e n t s  f o r  harvest ing 
a c t i v i t i e s  (an example) 

ob jec t i ve  funct ion c o e f f i c i e n t s  f o r  p lant ing 
a c t i v i t i e s  (an example) 

investment c o s t s  per  capac i ty  u n i t  

labor  a v a i l a b l e  f o r  f o r e s t  i n d u s t r i e s  

upper l i m i t  on import of f o r e s t  products 

number of a g e g r o u p s f o r  t r e e s  

p r i ces  of f o r e s t  products 

matr ix  o f  capac i ty  requirements f o r  production 
a c t i v i t i e s  

resources a v a i l a b l e  f o r  f o r e s t r y  a c t i v i t i e s  

resource usage of p lant ing a c t i v i t i e s  

resource usage of harvest ing a c t i v i t i e s  

matr ix  t ransforming t h e  t r e e s  harvested i n t o  
volumes of t imber assortments 

number of time per iods 

usage o f  t imber assortments by var ious pro- 
duct ion a c t i v i t i e s  
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OPERATIONAL USE OF MULTlPERlOD LP MODELS FOR PLANNING 
AND SCHEDULING 

A.T. Langeveld 

Koninklijke/Shdl- Laboraton'um, Amstenlam 
(Shell R~~eiwch B. V. ) 

In t h i s  paper we concentrate on the operational use of large multiperiod LP models for the 
planning and scheduling of plant operations, and the problems it poses for the rnethodol- 
ogy of largexale linear programming. A number of requirements from the operational 
environment are listed. On the basis of an example (refinery planning,tcheduling) it i s  
shown that the structure of multiperiod models can be employed to reduce computation 
times. It is  argued that modem electronic equipment can facilitate the input and output 
of large LP models, especially for non-LP specialists. An area of algorithmic research is  
indicaard. 



g ~ e r a t i o n a l  environment 

Linear programing can be a very he lp fu l  t o o l  i n  t h e  planning 

and scheduiing o f  p lant  operat ions.  Mult iperiod LP models can be 

construczed t o  express t h e  dynamic re l a t i onsh ips  betveen t h e  operat ions 

o f  t h e  var ious processing p lan ts .  i2 ac tua l  operat ions t hese  models v i l l  

have t o  be used on a day-today bas is  by people vho a r e  not fami l ia r  

with t he  i n t r i c a c i e s  of large-ecaie P. In such an environment spec ia l  

c a p a b i l i t i e s  a r e  required from t h e  LP p lan t  of t h e  p imning/schedul ing 

systems. Eere ve l ist a number of these operat ional  requirements: 

- input  and output must be understandable t o  t h e  planner/scheduler: it 

nust  b e  poss ib ie  f o r  him t o  checir e a s i l y  t h e  input  da ta  and j-e the  

L? out?ut ,  ? re fe rab ly  i n  h i s  own language and terminology; 

- t he re  i s  a need t o  adapt t he  L' outcome t o  s a t i s f y  opera t iona l  

requirements t h a t  can not be spec i f ied  v i t h i n  t h e  i? framevork; 



- successive 2 runs are usually re lated t o  each other: e i ther  the new 

i s  a modification of the previous run; or  the new run covers a 

time interval  largely overlapping the time in te rva l  of the  previow 

run (moving time frsmc); 

- the turn-around time of the LF' must be short: i n  day-today use 

anavers should be avai lable v i th in an hour; 

- cost m a t  be low; 

- the system vill have t o  be rm on di f ferent  computers. 

Structure of multiperiod LP models 

Ef f ic ient  solut ion of large models requires m analysis of 

t he i r  character is t ics.  We i l l u s t r a t e  such an analysis fo r  a typ ica l  

multiperiod ref inery scheduling model. 

For the dai ly scheduling o f  ref inery operatiom use i s  mule 

of ref inery models describing the processing and i n t e m d i a t e  storage 

of hydrocarbons ("msterials") . Rocessing uni ts  transfoxm hydrocarbon 

s t ream in to  other hydrocarbon s t r eam through a number of "modes of 

operation" (see 'J6asdox-p and Van Aes. 1975). each mode being speci f ied 

by i t s  marimurn throughput and the  y ie ld d is t r ibut ion.  The scheduler 

should dete-mine for  each day and each processing uni t  vhich w d e  i s  

run. k severe res t r i c t ion  i n  the operation of the processing unit8 i s  

the l imited ranirage fo r  intermediate hydrocarbon s t ream.  Variables i n  

the w a e l s  are the d d l y  throughputs of the  v a r i o u  wdes  of the 

processing uci ta;  constraints describe the tankage l imi tat ionr  fo r  each 

material and the throughput res t r i c t ions  fo r  each w d e  m d  each proces- 

sing .x.it. The resul t ing multiperiod LF' model then har the fol loving 

st ructure:  

< %  1 m e r i a l  tankage 
< :3 conrtrainta 



L1 < Bx, < 

L2 < Bx2 
L < Bx 

< 
, u n i t  t h r o w p u t  

3 03 cons t ra in ts  

In t h i s  formulation xt represents  t h e  vector of var iab les i n  t ime period 

t ;  t h e  matr ix A describes t h e  production c a p a b i l i t i e s  of t h e  modes. 

Usually, the  ob ject ives of such models r e l a t e  t o  cumulative 'production: 
N 

marimize o r  minimize cT 4, where C i s  a known vector which is 
t =  1 "T 

constant f o r  each time period; C' denotes t h e  transposed of C. 

In such models one can introduce cumulative var iab les:  

(def ined i n  the  usual way: componentvise ). The model s t ruc tu re  then 

becomes : 

< Ayl 

l2 < 
Ay2 mater ia l  tankage 

13 < Q3 
I 

cons t ra in ts  

1 < 
-N 

Such a w d e l  might be s ign i f i can t l y  quicker t o  solve, because the  

density a f  t he  matrix of t h e  cumulative m d e l  i s  usual ly l e s s  than t h e  

dens i ty  of the  "standard" formulation. T y p i c d  examples a r e  shown i n  

Table I ,  vhere we have co l lec ted some of our computational experiments. 

it shows t h a t  the  dens i ty  o f  the  cumulative model i s  indeed l e s s  than 

L. C By, < Y ,  

L? < - a ~ ,  +  BY^ c s '  

U2 
\3 < -ByC + By3 <:3 

I I 

uni t  throughput 

cons t ra in ts  

% <  -ByN- ,  + 3yN < VN 



COPlPARISCN OF ML%TIPDISD HODEL5 WITH NON-CUMILATIVE AND CUMULATIVE VARIABES 

(USE WAS ,MADE OF WSX/370 ON I N  310/168) 

1 Model s i z e  Stmdard formulation Cumulative formulation I 

(minutes 1 

0.37 20 1 0.23 



t h a t  gf t h e  standard formulation. resu l t i ng  i n  a reduct ion of  the  compu- 

t a t i o n  time; surpr is ing ly ,  the  number o f  i t e r a t i o n s  was of ten higher fo r  

the  emulative mdels .  

Another charac te r i s t i c  o f  such a mult iper iod LP model is t h a t  

there e x i s t  many optimal solut ions: an exchange of  values of non- 

cumulative var iab les between two periods does not change the  value of  

t h e  ob ject ive funct ion (due t o  t h e  nature o f  t h i s  funct ion)  and is o f ten  

allowed by t h e  const ra in ts ,  espec ia l ly  vhen t h e  time periodd a re  adjacent.  

This obsermt ion p lays a c ruc ia l  r o l e  i n  t h e  adaptat ion of t h e  LP out- 

comes, a s  we s h a l l  see l a t e r .  

Use of mdern equipment 

To s a t i s f y  t h e  f i r s t  operat ional  requirement fo r  an LP-based 

scheduling system (user-understandable I/O) we have b u i l t  a minicomputer 

system t o  handle the  input and the  output of the  LP. This system has t h e  

fo i lov ing c o ~ i c a t i o n  s t ructure:  

display 

mini- 
da ta  cent re  

computer mainframe 
computer 

Ihe  schetu ler  spec i f i es  the  i a t a  t o  the  minicomputer using t h e  v i sua l  

d isp lay ur.it, e i t h e r  by f i l l i n g  i n  f o r m  on the  d isp lay o r  by ca l l i ng  

data already s tored i n  t h e  minicomputer. The information on the screen 

r e i a t e s  t o  the scheduler 's  language, without LP jargon. The schedule 

can e a s i i y  checir t h e  data, if he f inds it necessary. using VDU o r  

p r in te r .  m.e minicomputer then const ructs  t h e  A and B matr ices, the  

r igh t  and lef'. hand s ides  of  the LP matr ix and t h e  ob ject ives ( i f  any). 

Via telephone l i n e s  t h i s  information i s  sent  t o  a da ta  cent re  computer 

i t h e  minicomputer a c t s  a s  a remote batch terminal ) .  where t h e  LP matrix 

i s  ~ O n S t ~ c t e d  and the  LP run i s  ca r r ied  out.  The r e s u l t s  a r e  sent  back 

t o  t h e  minicomputer snd a r e  t rans la ted  in to  the  terminology of  the  

scheduler and presented on h i s  VDU o r  p r in te r .  



Tt.e minicomputer syrtem can thus be seen as  a tailor-made 

matr ix generator l repor t  v r i t e r .  We have found t h i s  system very convenient 

f o r  the  in te rac t i ve  process of  specify ing LP input da ta  f o r  mult iper iod 

scheduiing models. 

Adaptation of  L? r e s u l t s  

Usually the  LP models do not describe all t he  operat ional  

requirements of  t h e  re f inery .  For ins tance,  one would l i k e  t o  keep the  

number o f  m d e  switches on a proceasing un i t  low; o r  a pa r t i cu la r  

operat ion could b e t t e r  start during t h e  dry than in  t h e  n ight .  Such 

requirements a r e  not easy t o  model within t h e  LP framework. 

Fortunately.  a s  explained e a r i i e r ,  these m i t i p e r i o d  LP m d e l s  

contain m ~ y  ~ p t i m a l  so lu t ions,  o f  which t h e  LF' code rill only present a 

few bas ic  optimal solut ions. In our system t h e  scheduler can use an 

optimal LP solut ion a s  a start; v i t h i n  t h e  s e t  of opt imr l  LF' so lu t ians  

he can t r y  t o  f ind another opt imal so lu t ion which he th inks m a t  appro- 

p r i a t e  i n  view of  the  operat ional  requirements. On t h e  minicomputer ve 

have developed a l g o r i t h m  t o  allow the  scheduler t o  adapt t h e  LP outcome 

without becoming unfeagible and a l s o  re ta in ing  opt imal i ty .  The f i n a l  

scneduie v i l l  not necesssr i ly  be a bss ic  so lu t ion;  on '.he cont rary ,  i n  

view of the  u n c e c a i n t i e s  o f  t h e  fu ture.  the  scheduler v i l l  p re fe r  

schedules than can withstand the  inev i tab le  changes in circumstances a s  

much a s  poasib:ef. 

;n the  hrll cycle o f  input spec i f i ca t ion ,  LP run, output 

checklng, and adaptat ion of LP r e s u l t s  t h e  last a c t i v i t y  t skes  most of 

the  time : 50  5 ) .  

Almrit'nm research 

The above approach has a number of p rac t i ca l  d i f f i c u l t i e s :  

- t h e  cost o f  running la rge  LF"s during t h e  day i n  a da ta  cent re  i s  high: 

one had t o  run on high p r i o r i t y  o r  obta in  a reasonable turn-mound 

t i n e  and the re fo re  the highest t a r i f f s  apply; -- 
Work has been done a t  our l abora to r ies  on the  f l e x i b i l i t y  proper t ies  

of  so lu t ions of  LP models. This work i s  reported i n  a Ph.D. Thesis 

!Van der Vet, 1980). 



- lov-prior i ty runs are usually carr ied out during the night; i f  a run 

f a i l s  (e.g. due t o  wrong input one vould lose a f u l l  24 hours: turn- 

around becomes too long; 

- since data centres have many customers, it v i l l  happen tha t  turn- 

around times exceed the required times despite the high p r io r i t y ;  

- vhen LP-based systems as described above are t o  be wed by d i f ferent  

ref iner ies,  then d i f ferent  data centres vill be used and d i f ferent  

mainframe computers v i l l  have t o  be accessed. So f a r  ve have experience 

v i th  IBM computers using KFSX as LP package, and v i th  Univac computers 

using FMPS. 

The question arose, of course, vhether it vould be poasible t o  solve the 

multiperiod LP on the on-site minicomputer. In the current s t a t e  of 

minicomputer technology standard LP codes (based on the  simplex method) 

K e  avai lable vhich are capable of solving problem up t o  800 variables/ 

constraints*. I t  i s  surprising tha t  there i s  s t i l l  a aeed for  LP codes 

and algorithms for solving relazively big LP problems on re la t i ve ly  

small computers: 20 years a f t e r  the publication of decomposition methods 

the same problem area that  generated these methods s t i l l  ex is ts  despite 

the developments in computer technology. 

3ne of the  consequences of the day-to-day w e  of these mdels 

i s  ?hat most runs ~ e ' r e l a t e d  t o  each other (s l igh t l y  d i f ferent  data. 

moving timeframel. A t  each nev LP run the scheduler faces the s i tuat ion 

in vhich he has avai lable a sat is fy ing schedule [from the operational 

point of v iev) .  vhich i s  s l igh t l y  unfeasible i c r  h is  nev LP run. Use of 

LT brings him back t o  some undesirable basic solut ion fo r  vhich he has 

again t o  spend a l o t  of time t o  bring it up t o  operational standards. 

Therefore, ve believe that the sc ien t i f i c  vcrid should pay at tent ion t o  

the folloving area of algorithmic research: it vould be useful t o  have 

al,-orithns that  accept a s l igh t l y  unfeasible conbasic s ta r t ing  point and 

f icd an optimal and feasible soiut ion in the "vicinity" of the s ta r t ing  

~ 0 1 n t .  

ilecently ve became a w e  of a program cal led LAMPS, developed by 

J. Forrest fo r  32-bit minicomputers. vhicb i s  claimed t o  solve LP 

problems v i t h  severa: thousands of variables nnd constraints v i th in  

tn, tours. 



Ye have s t a r t e d  vork on approximating ( i t e r a t i v e )  techniques 

f o r  soiving LP problems ( A w n ;  Motzkin and Schoenberg; O e t t l i ) .  O u r  

f i r z t  r e s u l t s .  even on sma l l  problems, vere ra the r  disappoint ing: 

convergence i s  very slov. Hovever. using simple ext rapolat ion techniques 

ve speeded up convergence by a fac to r  of t e n ,  but a l o t  of  vork hsp a s  

yet  t o  be done before th in  method can be of p r a c t i c a l  value. Simi lar ly.  

ve have experimented v i t h  ilhachian's method (1979) and found s im i la r  

convergence charac te r i s t i ce .  

Conclusions 

A c lsps  of large-scale l i n e a r  progranming models a r e  multi- 

per iod models f o r  the  planning and scheduling of p lant  operat ions. Such 

mult iper iod models have spec ia l  charac te r ie t i cs  vhich can be employed 

in  t h e i r  solut ion. Ye have show tha t  model formulation (cmrmlative . 
versus non-cumulative va r iab les )  plays an important r o l e  i n  the  so lu t ion 

ef f ic iency.  Further vork could be done on spec ia l  algori thms t o  employ 

t h e  mult iper iod s t ructure.  

For operat ional  use of large-scale I9 models it is of v i t a l  

impor.ance t h a t  easy means e x i s t  t o  spef icy  and check t h e  LP input and 

t o  judge t h e  LP output. Inetead of the  ex is t i ng  t m e  of matr ix 3eneratcrs l  

repor t  v r i t e r s  use could be made of present-day e lec t ron ic  equipment such 

s s  v isual  d isp lay .anits, minicomputers and da ta  communication l i n k s .  In 

our exenple of d t i p e r i o d  2 models f o r  re f ine ry  scheduling ve have 

shovn t h a t  t h i s  route is cer ta in l y  viable. 

Equally imponanc i n  the  operational .use of large-scale LF i s  

che f a c t  chat the LP r e s u l t  may not be t h e  des i red aasver t o  the  

p rac t i ca l  question. The LP solut ion i s  very o f ten only a s t a r t i n g  point 

f o r  Further manipulation, and the re fo re  t h e  LP s t e p  needs t o  be r e l i a b l e  

acd t o  take a minor porr ion of the  time f o r  t h e  t o t a l  a c t i v i t y .  

Ye have indicated tha t  the re  i s  s t i l i  s need fo r  algori thms 

and codes t o  solve L? problem on r e l a t i v e l y  smai l  computere. Such codes 

should be as  machine-independent as poesible. In t h e  l i g h t  of t h e  ever- 

increas ing power of computers one has t o  be prepared f o r  a s i t u a t i o n  i n  

vhich a pa r t i cu la r  appl icat ion nov running on a small dedicated :omputer 



w i l l  eventual ly be switched t o  a =re powerful dedicated computer 

in which standard LP techniques can be appl ied. This i nd ica tes  tha t  t h e  

input and output of LP codes need t o  be standardized, even f o r  spec ia l  

codes on small computers. 

As mult iper iod planning models a r e  of ten run on a regular  

bas is  v i t h  a s h i f t i n g  timeframe and s l i g h t l y  modified da ta  (aa more 

prec ise data on the  fu ture become ava i lab le )  the re  is a need t o  use the  

l a s t l y  obtained adapted LP solut ion as  t h e  bas is  f o r  t h e  nev run. 

Current ly,  the re  a r e  hardly any techniques t o  deal  v i t h  s i t u a t i o n s  i n  

which m e  would l i k e  t o  f ind a non-basic optimal f e a s i b l e  so lu t ion c lose  

t o  an a r b i t r a r y  s l i g h t l y  unfeasible s t a r t i n g  point.  

Our vork on approximating ( i t e r a t i v e )  LP techniques ( A w n ;  

Yotzkin and Schoenberg; O e t t l i ;  Khachian) shovs t h a t  a l o t  o f  work has 

as  yet  t o  be done before such methods become of p r a c t i c a l  value. 

June 198C 
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1 MODUCTION 

We consider the following dynamic input output model 

P ro~ ram P 
T 

U w  z U(dt). 
t-l 

z t+ l  - ut + Y t + l -  

T 
where - U(d ) i s  a u t i l i t y  funct ion v i t h  respect  to  t and t 

t-1 
U ia a nondecreasing funct ion of d 

t' 

- A is a matrix of in te rsec tora l  technical  coe f f i c i en ts ,  

- B is an investment coef f i c ien t  matrix. 

- X and Y are  respect ively the a c t i v i t y  and investment l eve l s  
t t 

of t h e d i f f e r e n t  sec tors  of the economy i n  period t ,  

- Z is the cap i t a l  s tock vector  of the  var ious sec to rs  of the 
t 

economy i n  period t. 

Uodels of t h i s  type a r e  v e l l  known and usual ly  take much more 

complicated forms than the one considered here. I n  t h i s  paper ve 

take up the par t icu lar  case vhere it i s  desired to  d e t a i l  i n  the  

model the representat ion of several  sec tors  of the economy. This 

problem i s  cormnonly encountered i n  environmental and energy planning 

problems [ 11 [ 41 [ 111 vhere s t ruc tu ra l  changes a r e  expected i n  va- 

r ious  sec tors  of the economy. Expanding the representat ion of some 

sectors  of the economy usual ly  leads t o  ra ther  complex and la rge 



models which may be d i f f i c u l t  to  solve. It is the purpose of th i s  

paper to  propose a systematic modeling approach for  tha t  problem 

as well as  a special purpose algorithm for  handling the resul t ing 

model. The discussion is presented on a model derived from the 

simple inputloutput model (PI; the reader can eas i ly  convince himaelf 

that  the procedure remaim val id for w r e  complex models including 

various coamtraints such as import export balance, employment objec- 

t ives,  saving formation ... . 
In the fo l iw ing  we sha l l  assume tha t  the so t  of sectors of 

the economy is partit ionned in  tro subsets E and NE, where E desi- 

gnates the set  of sectors fo r  vhich we want to adopt a w r e  refined 

tachnological description and NE those for  which we accept the input 

output representation. This part i t ioning was already introduced 

and exploited by several authors before ([ 21 [ 91) i n  tho context of 

energy modeling. Ue sha l l  denote by zNE, xNE and yNE the vectors 

formed by the NE components of 2, X and Y respectively. A detai led 

representation of the E sectors w i l l  usually require the introduc- 

t ion of addi t ional  goods compared to  the input output representation. 

Ue shal l  assume i n  the following that  t h i s  extension has been made. 

Ue then define 

as the matrices of the vectors associated with xKe and yNE rerpec- 

t iva ly .  The submatrices and BNEvNE are d i rect ly  extracted 

from A and B respectively; tho matrices A E v m  and BE** are obtained 



by expanding the  corresponding submatrices of A and B t o  take i n to  

account the add i t iona l  goods introduced i n  t he  model when disaggre- 

ga t ing  the  E sec tors .  h i s  expansion i s  i l l u s t r a t e d  on f i gu re  I .  

I n  the r e s t  of t h i s  paper we s h a l l  adopt t he  fol lowing represen- 

t a t i o n  of the  E subsystems. To each E sec to r  i ve a rsoc ia te  the s e t  

K.  of the equipments cons t i t u t i ng  the  sec tor .  By d e f i n i t i o n  we s h a l l  

say t h a t  an equipment i s  character ized by a unique capaci ty  var iab le .  

P lan ts  t h a t  do not s a t i s f y  t ha t  condi t ion v i l l  have to  be disaggrega- 

ted ir. such a vay t ha t  the a s s q t i o n  i s  ve r i f i ed .  An example of 

NE NE 

NE 

Pig. 1 : Decomposition and expansion of t he  A and B matr ices 

ANEsNE 

expanded 

matr ix  

NE 

expanded ener- 
gy goods s e t  ' 

B ~ ~ ' ~ ~  

expanded 
&NE 
matrix 



t h i s  s i t ua t i on  i s  given by pumping storage i n  pover generation which 

needs to be disaggregated i n  tvo equipments : the reservo i r  and the  

revers ib le  pumps. 

Let S (Z ) denote the  production s e t  corresponding t o  a capa- 
i k  i k  

c i t y  Zik of the equipment k i n  sector  i. We s h a l l  assume S 
ik('ik) 

t o  be described by a s e t  of l i nea r  i nequa l i t i es  of the  form 

where Cik and flik are  respect ively a matrix and a vector  and Eik i s  

the vector  of goods (E and NE) produced and consumed by the equip- 

ments. I n  order t o  s impl i fy  the notat ion,  we assume that the non- 

negat iv i ty  const ra in ts  on the E have been included i n  the de f i n i t i on  

of Sik(Zik). 

Using t h i s  notat ion we s h a l l  def ine the fol lowing expanded 

form of the dynamic I10 model. 

Etik E Sik(Ztik). k E Ki and i E E (1.9) 

where - Bik i s  the vector  of goods (E and NE) conslmed by an inves- 

tment of a un i t  capaci ty i n  p lant  k of sec tor  i and Y t i k  

denotes the quant i ty  invested i n  tha t  p lant  i n  period t. 



- A is a matrix which takes into account the obsolescence of 

the capital stock of the HE sectors and the technical ser- 

vice life of the E sector equipments. 

It may be that for some applications the size of the problem is 

sufficiently large to preclude the treatment of the problem by a 

straight simplex algorithm. In the following we present an algorithm 

for dealing with this situation. 

2. PRELIMINARY REMRKS : A REMIMVEK OF NESTED DECOMPOSITION 

We consider the dynamic problem pC defined precedingly. Aa in 

many plarming models, the variables of the problem can be categori- 

zed in t w  groups namely operations and capacity variables. Opera- 

tions variables relative to a period t only appear in constraints 

(1.8) (1.9) and (1.10) which involve variables of that period. 

Capacity variables appear among other things in constraint (1 .11 )  

which involve variables of the two successive periods. The set of 

non zero elements of the constraint matrix will thus exhibit a clas- 

sical staircase structure. Denoting by Cl the set represented bjf t 

the constraints (I .O to (I. 10) by rt the vector (rp (ctik; 

k E Ki, i E  E), dt). One can write the problem in the form 

Program SC 

T 
nax z V(xt) 

t- 1 



Several algorithms based on the decomposition principle or on 

particular block factorizations of the basis have been proposed to 

handle ataircase problcmr. Among these approaches, the nested 

decomposition algorithm is certainly the one vhich has received the 

most systeutatic attention : it has been described in several publi- 

cations 151 [ 61 as well as implemented and tested on various dynamic 

linear problems; it has also been extended by O'Ieill [ 81 to non- 

linear problems. 

The principle of the nested decomposition algorithm is to 

replace the solution of a large problem such as SC by the repeated 

solution of a set of T smaller problems. A set of T problems is 

constructed by the algorithm at each major iteration or cycle. We 

shall denote these cycles by an upper index IC. The problems of the 

set are of the following form : 

Problem S P ~  - 



Problems 59: : (defined for t = 2. . . . . T-I) - 
zK t - max V(xt) + P: At + <+, AZt, 

Problem SP; - 

The justification of the procedure is given in 1 51 and [ 81 and 

will not be repeated here. For the clarity of the presentation. we 

shall h w e v e r  give an economic interpretation of some of the syabols 

appearing in the statement of the models and in particular of nK 
t 

and Q:. Strictly speaking < and <. t = T - 1. .... 2. are the 

vectors of the dual variables relative to the constraints (2.6) and 

(2.10) of the program 5pK and SP' respectively : for each cycle. 
T t 

JI:+, is obtained from S P ~ ~  and used to construct SP: : this opera- 

tion is performed for t varying from T-1 to I. Intuitively a com- 

ponent of ir the value for the rest of the horizon of a unitary 

capacity of the equipmeat involved in the equation corresponding to 

that component in the constraint (2.3). The idea of program SPK 
t 



ir thur to choose tentative production, conrumption and invertment 

vectors in period t, taking into account the value for the reat of 

the horizon of the capital stock fontarded to futrue periodr. < 
and < have a somevhat different interpretation : for every cycle 

K the problem SPY determiner a vector of capital stock for the E 
t 

and RE rector8 in period t d an evaluation of the utility thot 

can be attained up to that period. Uore precirely the vector q 
K+ 1 
t+ 1 

ir the vector -AZ h e r e  Z ir the optimal Z vector of problem SP'. 
t t t' 

rimilarly pK+' ir the optimal objective function value of SP:. It 
t+ 1 

ir VOrthWile to note for the requel of the paper that, because A 

and Z are by nature nonnegative. q ir a non positive vector. It ir 

reen that each problem SP: determines its optimal capital mix by 

codining different capital structures inherited from the past vith 

nev invertmantr. 

We sh.11 s h w  in the folloving sections t h t  nested decomposi- 

tion. vhen applied to problem PC can be combined with column genera- 

tion to produce rubprobleme that have a number of conrtraints equal 

to the total number of goods produced and consumed in the economy 

plur one, thus allwing one to eliminate the technological constraintr 

describing the equipments and the capital good conservation (1.9) to 

(1.11). In order to proceed tovard that discusrion. ve firrt intro- 

duce some additional notions. 

Let S (I) be the production set of a unit capacity of equip- 
ik 

ment (i.k); ve rhall assuma that this set is bounded and contains 

the origin : it is clear that thin assumption is not really restric- 

tive in practical case. 



A s  w i l l  be seen la te r ,  the extreme points of S ( 1 )  w i l l  play a 
i k  

ro le  somewhat analogous to the columns of the input output matrix. 

For th i s  reason. we shal l  write these extreme points, using a simi- 

l a r  notation and define 

(Aike I e E Lik) (2.16) 

as the se t  of extreme points of S (1). ik  

We assume that  we are dealing with problems for  which extreme 

points of the production se ts  are e u y  to obtain. [ 101 shows that  

it is indeed the case for  energy models where the extreme points of 

the S ( I )  can always be obtained exp l i c i t l y  by a one pass algorithm. ik  

The fol l 'wing addi t iv i ty  property of the production se t  will be 

useful l a te r .  

Lamu 1 : Any production se t  chamcterized by a miqua capacity 

v a r i a b t  and s d i s f i i n g  the definitCon erpreesed i n  the 

1 2 2 relat ion 11.6) s a t G f i e s  S(Z ) + S(Z ) - S(Z' + Z ) 

Proof : the proof of the c re la t ion i s  obvious. In order to prove 

2 
the we consider a point E belonging to S(Z' + Z ). 

Defining 

- - 

1 2 1 2 
It is c lear  that  6 and 6 belong respectively to S(Z ) and S(Z ) 

which proves the lemma. 

0 



Before going into the application of the nerted decomporition 

approach to problem PC, it may be useful to ray a feu vordr about 

the rolution procedures chat can be applied to problem S P ~ ,  Variour t 

w thodr  can be contemplated for rolving SP:; in thir paper we shall 

arrume that we ure a reduced gradient type approach. We rhall not 

elaborate here on the relative marits of that type of algorithm com- 

pared to other methodr. The use of reduced gradient algorithm for 

rolving sPK ir mainly jurtifiad in our context by the fact that it 
t 

ir compatible with a column generation procedure vhich ir the proce- 

dure chat we shall ure later, to rhow how each problem SP: can be 

tranrformed into a new problem with fewer constraints and a large 

number of co lu~mr  which are only k n a m  implicitly. Since it ir 

clear that we do not want to enumerate all thore columns they vill 

have to be generated only when required. This is performed natural- 

ly in a rimplex type approach when computing the reduced cost of 

m u i m a l  value over the net of those unknown columns. 

3. A COMBINATION OF MESTED DECOMPOSITION AM) COLUIW GENERATIO9 

According to the dircusrion of the preceding section, one can 

vrite the rubproblem generated by the nerted decomposition approach 

applied to PC as followr : 

Problem SP: 
- 



We shall n w  indicate h w  a column generation procedure can be 

applied to this problem in order to transform S P ~  into a nev problem 
t 

that only contains a number of constraints equal to the number of 

goods + I. 

In order to simplify the notation. ve shall drop in the rest 

of the presentation all indices K and t. In particular. the multi- 

pliers and lIK will be denoted as and TI respectively. Let us 
t 

assume that Q contains exactly K columns and let QP denote one of 

these : the subvector of QP corresponding to the NE goods will be 

noted an Q ~ * ~ ~ ,  while the component of QP corresponding to an equip- 

ment k of the energy sector i will be noted QPik. The proposed pro- 

cedure is based on the fact that the Stik belonging to Sik(Zik) 

can be represented very easily as convex combination of vectors 

that are quite easy to obtain. Briefly speaking the sets S 
ik('ik) 

can be replaced by s u m  of the type 

K 
Sit (- Q L  Ap) + Sik(Yik). (3.7) 

P-1 

where the extreme points of each set in the sum are easily to ob- 

tain. In order to discuss this systematically. ve define the pro- 

duction set associated with the capital stock QP. let 



Eik E s~~(-$~); k E K ~ .  i E E). (3.8) 

Program SP: considers convex combinations of different capital 

stock vectors - QP : ve first shov that the same convex combinations 

allows one to mix the production sets DP. This is stated in the 

folloving leuma. 

temrp 2 : OkB ha8 for aLL vector8 X 0 

K 
P D = {n I n - A. wm P + 2 c,; cik E s~~((-~!x)~J; 

PI  ik 

K 
Proof : Let r, be an element of Z D ~ X  One can write 

PI  p' 

By definition of qP, there exists xPsm and cek such that 

nP - xPsm + P c:k, 
ik 

Combining these relations, one can write 

K K 
with 0 < xpsn < -E QpvNE 1 

D- I D-1 P 
K K K 

and P CP 1 E P s 1 )  - s (- ?k ip) 
P- 1 1k fJ p-1 P-1 



To prove the converse, we consider TI equal to 

for some vector xNE and E such that 

Eik E sir((+) ik). 

Because of 1- 1,  one can find xPvNE and c!~ such that 

0 < xPtrn < -Qp'm, 

The proof follows then trivially. 

In order to proceed t w a r d  a new problem equivalent to SP we 

first introduce a few additional notation. We first consider the 

capital vector QP and its associated production sets DP. The ope- 

rations of an economy of capital structure QP can be completely 

described by the extreme points of DP. Since these points will 

roughly play the same role as columns of the A matrix we shall 

denote then using a similar notation A where 11 is a current index 
DP11 

taking its values in a set L We also denote X to be the acti- 
DP' DPL 

vity level of A in the economy. Consider n w  the vector yNE of 
D P ~  

new capacities in the non energy sectors. Ve define vm to be the 



vector  of these nev capac i t ies  vhich r a m i n s  i d l e  dur ing the cur ren t  

period and x + ' ~ ~  the amount of t ha t  new capaci ty  a l ready operated 

dur ing the period. To x + ' ~  i e  thus associated a cont r ibu t ion  

t o  the b i l l  of goods, while vNE only cont r ibu tes  f o r  B a e N E  vNE. 

Fina l ly ,  we c r i de r  the  new capac i t i es  of the  energy sect ion.  

Aa already introduced before Ailrll designates an axtrene po in t  of 

Sik(l) .  We l e t  Xikp denote the a c t i v i t y  l eve l  associated with Aikp 

and Vik the newly invested capaci ty  t h a t  remains i d l e  dur ing the 

period. The contr ibut ion t o  the  b i l l  of goods due t o  the new capa- 

c i t y  is then 

md  the newly invested capaci ty  

Using t h i s  notat ion.  ve can then introduce nev equivalent  problem 

spr a s  fo l lovs.  

Let A , II E L the  extreme points of DP, one then introduces 
DPII DP 

the problem SPr vhich s h a l l  be proved t o  be a s u b s t i t u t e  f o r  SP i n  

the  decomposition approach. 

Program Spr 

+ Z x (P-TQ)~ x , 
p-l E L  DpII 

DP 



It is clear that the number of constraints of SPr is equal to  

the number of goods plus one. In  the folloving, we shall denote by 

p and a respectively the multipliers associated with the constraints 

(3.11) and (3.12) respectively. 

Before atating any equivalence property between SP and sPr, it 

is necessary to indicate exactly what it meant by that notion in the 

context of the nested decomposition approach. 

It has been recalled at the beginning of this section that the 

implementation of the nested decomposition algorithm requires at 

every cycle and for each problem SPK the vector IIt+, Of multipliers t 

associated to the constraints (3.5) of SP:+,. In order to define 

SP:+' it is also necessary to know the capital stock vector at cycle 

K generated by the problem SP:. More precisely it can be shown on 

the basis of [ 8 ]  that the following elements and conditions are 

required : 

A. The optimal z:, d: and X: of each problem SP:. These elements 

are used to construct pK' t' 
rC 

B .  The optimal z: and A t  of each problem SP:. This vector allows 

one to construct cqK- 
t' 



C. The multipliers !I: and aK arsociated with the constraints (3.5) 
t 

and (3.6). Theso multiplierr satisfy the following optimality 

caditione : 

K K 
C. I. U: - C(zt - Yt) - Pt A t  - 0 (see relation (12) in [ 71 ). 

c.2. P:+, + li:+, AZ: c a:+), t - I. .... T-I et q K + I 

(ace relation (13) in I71 ) . 
Both C.I. a d  C.2. are used to prove convergence of the method 

181. We rhall not discurr here tha convergence proof but rhply say 

a feu words about there relationr. Condition C.I. rtates the opti- 

K 
ml i ty  conditionr for the variabler in problem SPt. Similarly con- 

dition C.2. rtates that the reduced cost of a variable K muat be n a  

poritive at the optinurn for all rubrequcnt rubproblemr SP:+~. This 

clearly implies thar all generated proporals q are kept in program 
t 

SPt a c e  they have been generated. 

4 .  KECONSTITUlON OF THE OPTlUAL VARlABLES OF THE ORIGINAL PROBLEM 

The following proporition indicates how the optimal variabler 

of the original problem SP can be recovered from the optimal pr im1 

variables of S P ~ .  

Proposition 1 : Ths fo l twing retatione between SP and S P ~  hold at 

tho 0pti.wn.m 



grf : The proof i s  obtained by a succession of t ransformat ions of 

the  problem SP. These t ransformat ions a r e  based on t he  a d d i t i v i t y  

of the  production s e t s  on 1- 2. We f i r s t  w r i t e  SP a s  

M ~ X  u(d) + XA - (T~AQ) a + Pa. 

Int roducing the  extreme po in ts  of Sik and DP one ge t s  successively  

and c p -  A X w i t h Z X  - 1 a n d X  > 0 ,  
PEL Dpe D p e  &ELP- D p e  D p e  

D p. 
where Vik represents  the  unused capaci ty  invested i n  i k  i n  the  cur ren t  

per iod.  This va r i ab le  does not  have t o  be introduced i f  { o l  i s  an 

extreme po in t  of S. ( 1 )  : indeed i n  t h a t  case  the  r o l e  of Vik can be 
rk 

taken over  by t he  XikQ corresponding t o  t h a t  extreme po in t .  A f te r  

in t roducing a va r i ab le  S(E t o  represent  the unused capaci ty  invested 

i n  t he  NE sec to r s  dur ing the  cur ren t  per iod and subs t i t u t i ng  these  

expressions i n  the  program j u s t  obtained one a r r i v e s  a t  SP'. The 

expressions f o r  X Yik, PE and Z can then be der ived from these 
P' 

t ransformat ions.  

0 



Tho dorivation of tho optimal dual variables asnociatad with tho 

capacity constraints (3.5) is not as clear. Tho following intuitive 

rouoning loads to oxpressiolu for thene variabloa that will be jus- 

tified in the next aoction. 

It ia known that dual variables at the optimum represent the 

dorivativo of the optimal objective function with respect to the 

right-hand ride of tho constrainta. In order to evaluate the dori- 

vative vl consider a mal l  increaae o of aome capital stock ik. 
ik 

fh. corresponding capital stock balance equation will read 

Zik - Yik + (QAiik - cik (4 .5)  

The resulting incroaae of the objective function value ia tvofold. 

A first contribution to this increue is the valuo of tho additional 

capital stock that will be fonrarded to future poriods : this con- 

tribution is equal to (m)ik cik. A second contribution arises fram 

the enlarged possibilities of the economy due to the additional capi- 

tal stock. In order to evaluate thia aocond element. we consider 

tho e x t r a  point A 
ikL(p) 

of Sik(l) natiafying 

- MikL(p) I mu{- PE I 6 E sik(l)). 

It is clear that the improvement of the objective function due to 

the capital stock increase will be 
ik 

- %u(P) "ik' 

if this term is positive and zero othenrise. 

Intuitively olla can then propone for the values of dual variables !I 



The fol lowing sec t ion  shows t h a t  these expressions f u l f i l l  t he  con- 

d i t i o n s  C and C2 defined before.  
1 

Consider an extreme point  A of DP. Because of t he  de f in i -  
DPll 

t i on  of DP one can v r i t e  (see sec t i on  6 lemma 3) 

where - 6(i.L. DP) is equal t o  zero i f  t he  NE vec tor  i. A' 8 i  appear8 

w i th  a c t i v i t y  l eve l  zero i n  the  extreme point  A ; 
DPL - Aik(A ) designate8 the extreme point  of Sik con t r ibu t ing  

DPll 
t o  t he  extreme point  A of DP. 

DPL 

In  t he  fol lowing we s h a l l  dea l  v i t h  po in t s  of DP t ha t  s a t i r f y  the  

name type of expresr ion (5.1) without being extreme po in t  of DP. 

Since t he re  a r e  only a f i n i t e  number of these  point8 we s h a l l  denote 

them a8 A , n being the current  index i den t i f y i ng  each of these 
Dpn 

po in ts ;  we can wr i te .  u r ing  no ta t ion  r im i l a r  t o  the one appearing 

Suppose now tha t  the  problem SP' is solved ur ing  a rev ised 

simplex method and l e t  p and a be the  dual  va r i ab les  assoc ia ted  

with the  cons t ra i n t s  (3.11) and (3.12) respec t ive ly  a t  some i t e r a -  

t ion .  The reduced cos t  of the va r i ab le  X i s  then 
D L 



that  we sha l l  designate by RC(A ) i n  the following. Consider n w  
DP1 

a point A aa defined before. One ahal l  define for each A an 
Dpn DPn 

expression RC(A ) of the same algebraic form as (5.3). Since 
~~n 

A is not a colum of S P ~ ,  =(A ) is no longer a reduced cost. 
~~n ~~n 

It is introduced here for  future use in  the proofs. 

We con now s t a t e  the f o l l w i n g  propositions 

Proposition 2 : For each p, them i s  at m s t  om vector X in tho 
DPE 

Proof : Suppose not and l e t  E' and 9." be two extreme points of DP 

belonging t o  the bar i r ;  onr considers the vector A obtained as 
~~n 

f o l l w s .  

For i E NE l e t  

- p ~ " '  6(i.n.DP) - mar((- P A*" 6(i.1'.DP) ; 

For every ik. i E E. k E Ki, l e t  

It is clear that the vector A belongs t o  DP. Moreover rince 
~~n 

A and k are i n  the basis, one has 
D ~ E ~  DPQ- 

and hence neglecting the case of degeneracy and taking in to  account 

the nonposit ivitp of QP 



Writing A a s  a convex combination of extreme points of DP, one 
~ p n  

obtains 

with 

C v, - I andv, > O  f o r  I IE L 
E L  

which implies 

and hence. there  e x i t  extreme points of DP v i t h  a pos i t i ve  reduced 

cos t .  This cont rad ic ts  the op t ima l i t y  of SP'. 

Bopos i t i on  3 : I f  X > 0 i n  the optimal solut ion,  then om j2PB 
DPE - A..i a ( i , e . ~ ~ )  > o i E NE 

Proof : We f i r s t  s h w  tha t  D is nonnegative. To see t h i s  we assume 

tha t  t he  equa l i t y  in  re l a t i on  (3.11) i s  replaced by an inequa l i t y  <; 

because each funct ion U i s  nondecreasing i n  d. these i nequa l i t i es  

w i l l  be t i gh t  a t  the  optimum and hence the  problem v i t h  t he  inequa- 

l i t y  s ign  is equivalent  t o  the  o r i g i na l  program S P ~ .  p i s  then 

nonnegative because i t  i s  the dual  var iab le  vector  of a s e t  of ine- 

qua l i t y  cons t ra in ts .  

- - 
Suppose n w  tha t  the  proposi t ion i s  not t r ue  and l e t  i .  k be 

such tha t  



Ye l e t  A be the point of DP obtained by replacing kZE-(A ) by 
Dpn Dp% 

the  zero vector  i n  the expression of A . It i s  c l e a r  t ha t  A 
upn up, 

belongs t o  UP. Xoreover RC(A i s  pos i t i ve .  A cont rad ic t ion  
DP, - -. 

c m  then be obtained a s  i n  the  preceding proposit ion. 

Before s t a t i n g  the next proposi t ion we r e c a l l  t ha t  A ikll(p) desi- 

gnates the extreme point  of S t ha t  mximises - p(on Sik(l) .  
i k  

0 

Proposition 4 : If x > o in tho optimal sotution, then- as h a  
uPll 

- w'*i 6 ( i . ~ . ~ ~ )  - U U X ( - P A " ~  ; 0 )  f o r  i E mi 

Aik(A - ' ikl(p) f o r  k E  Ki and i E  E. 

zrf : The f i r s t  r e l a t i on  is obtained d i r e c t l y  from the  preceding 

lemma. I n  order t o  prove the second re la t i on .  we suppose t h a t  

and def ine A a s  the vector  obtained by replacing Aik(A ) by 
upn UP% 

'ika r P) 
i n  the expression A . Because of the de f i n i t i on  of %(p) 

uPll 
OPI has 

-PA ikL(p) ' - Aik(A UP% 

m d  hence 

which leads again t o  the  same type of contradict ion as  precedingly.. 

A s  a coro l la ry  of these proposi t ions i t  i s  possib le t o  prove 

t ha t  i f  A defined by re la t i on  (4.1) is posi t ive.  then one has 
P 



vhich is pa r t  of the  property  Cl mentioned a t  the end of sec t i on  3. 

This i s  shown i n  the  f o l l w i n g  proposi t ion.  

Proposition S : kt X be such that 
P - L: x > o  

DP cmd II be the vector definsd i n  mkztiaru, ( 4 . 6 )  a d  ( 4 . 7 1 .  Then 

Proof : Consider t he  bas i c  va r i ab le  X . One has 
DPll 

and hence 

Because of the preceding proposi t ion one has 

and hence RC(A _ ) can be v r i t t e n  as  

We now consider  the op t ima l i t y  condi t ions f o r  the  t ha t  a r e  
P 

equal t o  zero namely those f o r  which L: X - 0 .  
E L  D P t  

D p 



One can wr i t e  t h i s  fol lowing proposi t ion 

A.aposit ion 6 : I f  XDpE - 0 for  aLL E € L 
D 

Prr : Suppose not  and l a t  A ba the  po in t  def ined a s  i n  (5.2) 
~~n 

where 

6(i,n,DP) - 0 i f  max ( - 0 ~ ~ ' ~  ; 0 )  - 0; 

i 6(i,n.~') - 1 i f  max (-PA" ; 0 )  > 0;  

'iir(*,p,' - 'ikt:p) i f  max (-pAikt(p) ; 0 )  > 0 .  

One has, because we have assumed the  proposi t ion t o  be f a l s e  t h a t  

BC(A ) -BC(A ) > O  
~ ' n  D p t  

h i c h  leads t o  a contradict ion a s  i n  proposi t ion 2. 

c o m z l m y  : ~f aP - 0, tkn pP - AQP - a G O  

Proof : This fol lows d i r e c t l y  from the preceding proposi t ion.  

We can now show the v a l i d i t y  of the  expressions (4.6) and (4.7) 

defined i n  the preceding sec t ion .  

R o p o s i t i a  7 : ( 4 . 6 )  and ( 4 . 7 )  s a t i s f y  the  w n d i t w n  C s t a t e d  i n  

sec t i on  4 .  

Erf : Because of the  preceding proposi t ion we have tha t  X > 0 
9 

implies P - I I Q ~  - a - 0 and X - 0 implies pP - T ~ Q ~ - -  a <  0,  
P P 



and hence 

Since 

Z - Y + Q A - 0 ,  

OM can wr i te  

which is property CI. 

I n  order t o  prove C2 note tha t  one has a t  the optimum of SP t +  1 

K 
p:+1 - n:+, Q ~ + ~  - aq < o f o r  q > K + 1 .  

t+ l 

C2 follows then t r i v i a l l y  from the f a c t  t h a t  

6. G E M R A T I O N  O F  EXTREME POINTS 

I n  t h i s  sec t ion  we b r i e f l y  d iscuss the modeling approach under- 

ly ing program P' and show how it natura l ly  allows one t o  f ind  the  

extreme points required by the algorithmic framework presented i n  

t h i s  paper. The approach was introduced i n  the context of energy 

modeling but can eas i l y  be extended t o  o ther  f i e l d .  

In energy flow w d e l s  ([ 31 [ 71 ) the d i f f e ren t  energy production 

and consumer sec tors  a re  represented as  a graph. Following t h i s  

descr ipt ion.  we sha l l  assume each process of an E sector  t o  be repre- 

sented as  i n  f igure  2. 



i npu ts  ou tpu ts  

Pig.  2 : Energy flow representa t ion  of a proceaa 

In  t h i s  representat ion,  an  a r c  i s  associated t o  each process. Various 

inputs a re  consumed by the proceas which a l s o  produces some outputs;  

bounds a r e  imposed on the inputs and outputa ind ica t ing  t h a t  they 

cannot be conaumed o r  produced i n  auy proport ion. 

I 0 Let  t and 6 be respect ive ly  t he  vec tors  of goods consumed and 

produced by the process. Because of technological cons t ra in t s  the 

i npu ts  and outputs mwt u s u l l y  remain w i th in  c e r t a i n  muimal  and 

m i n k 1  proport ions. The s e t  of c o n s t r d n t a  describing the  process 

is then a s  fol lows : 

- a f i r s t  cons t ra in t  expreases a consemat ion p r i nc ip l e  (mater ia l  

o r  energy) 

aO EO - a' C' - 0 (6.1) 

- a second s e t  of cons t ra in ts  expreases maximal and minimal 

proport ions on the input and output  of the aystem : they can be s ta -  

ted  aa 

0 0 0  0 4 0 0  
b. a Ei < Ei < bi a E f o r  a l l  output-  i, 
-1 

bf ;I E1 < E T  < i f  a' EI f o r  a l l  input  i; 
-1 1 1  



- t he  l a s t  cons t ra i n t  expresses the  capaci ty  l i m i t a t i o n  of t he  

equipment. I f  we assume a u n i t  capaci ty  we can w r i t e  t h i s  cons t ra i n t  

a s  

o < r O  (6.4) 

Let us assume f i r s t  t ha t  the  equipment operates a t  a constant  

l eve l  throughout a period of the  planning horizon and l e t  0 be t he  
E 

subvector  of p cons is t ing  of the  components of p r e l a ted  t o  t he  goods 

appearing i n  the  operat ion of the  equipment. C lear ly  the  problem of 

eva lua t ing  a maximal reduced cos t  f o r  a column assoc ia ted  t o  an 

equipment of t h i s  type c m  be formulated as  

b0 a0 E:< a0 c 0  f o r  a11 output  i. 
-1 

(6.7) 

I I I -I I I 
bi  a E < fC bi a 5 f o r  a l l  input  i. (6.8) 

O < a O  EO < 1  (6.9) 

We f i r s t  no te  t h a t  an obvious extreme po in t  of t h i s  production s e t  

i s  no t  t o  operate t he  p lan t  a t  a l l ;  t h i s  corresponds t o  a zero objec- 

t i f  funct ion value.  I f  the  p lan t  i s  t o  be operated then it w i l l  be 

a t  f u l l  capac i ty ,  which impl ies 

aO EO - a 1  E' - 1. (6.10) 

and hence the preceding problem i s  reduced t o  t he  fol lowing s e t  of 

NO problems 



n in  P =E 
E 

A' 6' - 1 

b? < 6: < F: f o r  a11 output  i. 
-A 

and 

0 0 - 0  b. < Ei < bi f o r  a l l  input  i, 
1 

f o r  which an e x p l i c i t  so lu t ion  can be found by r- rimple log ic  

(Imnpsack problem i n  continuour var iab les) .  

Much =re  complex r i t u a t i o n s  can be considered which include 

phewmna ruch a r  time varying opera t ions  and storage. while sti l l  

allowing one to generate extreme po in ts  exp l i c i t l y .  A syr temat ic  

d iscur r ion  of the  approach w i th  examples taken from the energy 

rec to r  is p r e r e n t d  i n  [ 101 . 
Ar a fi-1 remark we ind ica te  how extreme point. of DP can be 

obtained e a r i l y  from the extrame point. of the  S ik '  

tsmKl 3 : An e.xtrems point of D' i e  a awn of a+treme points of tho 

' NE 
S,,(-Q;~) for k. K~ i E e of vectors o or  -A''' Oi for 

i E E. 

Proof : Since DP is polyhedral. there  e x i s t s  f o r  every extreme point  -- 
E* of DP a vector  p such tha t  

pE* - max{p E ( E E DP1. 

The le- fol lows d i r e c t l y  from the  d e f i n i t i o n  of DP. 



CONCLUSIONS 

Because of their size dynamic input output models may be dif- 

ficult to extend so as to include a detailed representation of some 

of the sectors of the economy. In this paper, we propose a general 

formlation of those models that considers a detailed representation 

of some sectors. This representation is based on the assumption 

that the equipments of the sectors of interest are characterized by 

a single capacity variable and that their production set is simple 

enough so as to allow one to construct their extremc points easily. 

These assumptions arc taken from the field of energy flow modeling 

where they are generally satisfied. A special purpose algorithm 

is proposed for the resulting model which takes advantages of the 

aformentioned representation of some of the equipments. The algo- 

rithm is a combination of nested decomposition and column genera- 

tion. Nested decomposition is applied first on the dynamic model 

to transform it into a set of smaller subproblems. A further reduc- 

tion of the number of constraints of each of the resulting subpro- 

blems is then obtained by eliminating the constraints describing 

the operation of the equipments satisfying the assumption. 
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