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ABSTRACT

ALGORITHMS FOR LINEAR AND CONVEX FEASIBILITY PROBLEMS: 

A BRIEF STUDY OF ITERATIVE PROJECTION, LOCALIZATION 
AND SUBGRADIENT METHODS

Hakan Ozakta§
Ph.D. in Industrial Engineering 

Supervisor: Assoc. Prof. M ustafa Akgiil 
August 1998

Several algorithms for the feasibility problem are investigated. For linear systems, 
a number of diflferent block projections approaches have been implemented and 
compared. The parallel algorithm of Yang and Murty is observed to be much slower 
than its sequential counterpart. Modification of the step size has allowed us to 
obtain a much better algorithm, exhibiting considerable speedup when compared 
to the sequential algorithm. For the convex feasibility problem an approach 
combining rectangular cutting planes and subgradients is developed. Theoretical 
convergence results are established for both ca^es. Two broad classes of image 
recovery problems are formulated as linear feasibility problems and successfully 
solved with the algorithms developed.

Key words. Linear feasibility, convex feasibility, projection methods, the 
relaxation (successive orthogonal projections) method, Cimmino’s method, surrogate 
constraints and block projections, long-step methods, sequential and parallel 
algorithms, subgradient methods, central cutting (localization) methods, analytic 
centers, descent directions, image recovery, image restoration, image reconstruction 
from projections, tomography, regularization of iU conditioned problems.

Ill



ÖZET

LİNEER VE KONVEKS FİZİBİLİTE PROBLEMLERİ İÇİN
ALGORİTMALAR

Hakan Özaktaş
Endüstri Mühendisliği Bölümü Doktora 
Tez Yöneticisi; Doç. Dr. Mustafa Akgül 

Ağustos 1998

Bu çalışmada fizibilite problemi için çeşitli algoritmalar İncelenmektedir. Lineer 
sistemlerde birkaç blok projeksiyon yaklaşımı uygulanmış ve kıyaslanmıştır. Yang 
ve Murty’nin paralel algoritmasının dizisel yaklaşımlardan çok daha yavaş olduğu 
gözlenmiştir. Adım boyunun düzeltilmesi sonucu dizisel algoritmalardan daha hızh 
bir paralel algoritma elde edildiği görülmüştür. Konveks fizibilite problemine ise dik 
kesmeli ve cdttürevsel yöntemleri birleştiren bir yaklaşım getirilmiştir. Her iki durum 
için de teorik sonuçlar verilmiştir. Fizibilite probleminin görüntü düzeltmedeki 
uygulamalarına dikkat çekilmiş, incelenen iki değişik problem için başarıh sonuçlar 
ahnmıştır.

Anahtar sözcükler. Lineer fizibilite, konveks fizibilite, projeksiyon yöntemleri, 
Kaczmarz yöntemi, Cimmino yöntemi, aracı kısıtlar ve blok projeksiyonlar, uzun 
adımh yöntemler, dizisel ve paralel algoritmalar, alttürevsel yöntemler, merkezi 
kesme (lokalizasyon) yöntemleri, analitik merkezler, yokuş yönleri, görüntü düzeltme, 
görüntü restorasyonu, görüntü rekonstrüksiyonu, tomografi, kötü davranımh prob­

lemlerin regülasyonu.

IV



.. Science tells us what we can know, but what we can know is little, 
and if we forget how much we cannot know we become insensitive to many 
things of very great importance. Theolog}^ on the other hand, induces a 

dogmatic belief that we have knowledge where in fact we have ignorance, 
and by doing so generates a kind of impertinent insolence towards the 
universe. Uncertainty, in the presence of vivid hopes and fears is painful, 
but must be endured if we wish to live without the support of comforting 
fairy tales.” ̂

^Bertrand Russell, History of Western Philosophy, 1946.
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Chapter 1

Introduction

In this research we present a study of iterative procedures for feasibility problems. 
We have analyzed these problems in two groups. The first group consists of linear 
feasibility problems. In this group, we have considered very large scaled, sparse 
and unstructured systems where traditional pivoting or elimination techniques and 
decomposition methods are considered to be inefficient. The second group consists 
of nonlinear convex feasibility problems. In our studies we have mostly assumed an 
explicit definition of a convex set F of the following form:

r  = {y e : /.(y) < 0, t = l,2 ,...}  

where Vfi are convex functions in Jf”*.

(1.1)

For linear problems we have concentrated on block projections methods. Block 

projections methods for the linear fezisibility problem make use of projections onto 

a surrogate constraint representing a set of violated constraints, and are much more 
efficient than algorithms which make projections onto distinct constraints.

We have coded and tested the sequential and parallel versions of the block 
projections algorithm of Yang and Murty. It hcis turned out that the performance 

of the parallel version is significantly inferior to the sequential version. Our main 

contribution to this problem has been to obtain a parallel algorithm which performs 
better than the sequential algorithm, through a modification of the step sizing rule. 

This modification has been justified both theoretically and practically. Furthermore, 
the modified step sizing rule can be extended to parallel projection algorithms for

1



CHAPTER L INTRODUCTION

the general convex feasibility problem as well. In addition to random test problems 
we have also tested our procedure on real life applications in image restoration.

For the convex feasibility case, we have first considered central cutting plane 
approaches, particularly the algorithms of Ye and Goffin. After examining the 
use of multiple cuts and descent directions instead of center calculations in these 
approaches, we have introduced the concept of rectangular cuts to obtain an 
algorithm which maintains a simple containing domain. The use of descent directions 
has served the aim of obtaining better iterates than central points. Following these 
tw'o ideas we have constructed a new' algorithm, and verified that this algorithm 
uses a descent direction with respect to a reference function representing the convex 
feasibility problem. The algorithm produces a monotonically decreasing sequence 
of the reference function values (and is convergent) when a line search subroutine 

is called by the main algorithm. Furthermore, the algorithm still converges when 
a self adaptive step sizing subroutine which can provide an overall descent of the 
functional values of the generated sequence is used.

In the next chapter we will present a general overview of the approaches in 

the literature for the feasibility problem. In the third chapter we describe our 
developments (both theoretical and practical) for the block projections methods. 
In the fourth chapter we present our w'ork on the convex feasibility problem. In the 
fifth chapter we introduce two novel applications of the linear feasibility problem in 
image processing.

Within each chapter we have tried to keep our notation consistent. However, 

there are some differences between chapters. It was our objective to be in accordance 

with the notation of the major references. Thus in Chapter 3 the problem is to 
determine x e K  C  ̂ K  being a nonempty polyhedron [Yang & Murty 92]; in 
Chapter 4 the problem is to find y G int(F) C F being a convex set with
nonempty interior [Gof. et al, 93a, b], [Luo & Sun 95], whereas in Chapter 5 we 
represent the linear feasibility problem as < 6 [Ozak. et al. 98a, b].



Chapter 2

Classification of the 
Approaches in the Literature

This chapter covers several iterative routines which have been devised to solve the 
convex feasibility problem. We have classified these routines into three categories: 
(i) central cutting methods, (ii) subgradient direction methods, and (iii) projection 

methods. We should note, however, that these categories are not completely disjoint.

2.1 Central C utting M ethods

The central cutting methods (which are also referred to as localization methods) 

are ‘test and cut’ routines. The feasible region is assumed to be a subset of a 
containing domain and at each iteration a point within this domciin is computed as 
the new iterate. This point is tested for feasibility and if this is not the case, the 
containing domain is shrunk somehow (for example by several valid cuts through 
the current point) and a new test point is regenerated. The routine stops when a 
feasible (interior) point is found.

Convergence of these algorithms is closely related to the shrinkage rate of the 

containing domain. So the selection of the iteration point within the containing 

domain is an important issue. As one gets closer to a center point of this domain, 

it becomes more likely to obtain deeper cuts so that shrinkage will be fa.ster
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[Xeniirovsky i.: Yudin 83]. For this reason, a subroutine for computing an almost 
exact or an approximate center of the current domain is required.

The ellipsoid method [Khachiyan 79] is an example for these algorithms (with 
some differences of the general framework given above, though). The containing 
domains are ellipsoids which are generated successively and the test points are the 
centers of these ellipsoids. The convex optimization algorithm of volumetric centers 
given in [Vaidya 89], employs containing poly topes which contract iteratively by the 
introduction of new inequalities. The algorithms given in [Ye 89], [Gof. ei ai 93a, 
b] also utilize polytopes as containing domains and the so called analytic centers 
(of poly topes) which are relatively easier to compute [Gritz. & Klee 93a]. The 
algorithm outlined in [Luo & Sun 95] solves a convex quadratic feasibility problem 
by shrinking convex bodies and testing at analytic centers, redefined for convex sets. 

Some extensions to general convex optimization are given in [Altman & Kiwiel 96].

2-2 Subgradient D irection M ethods

To find a feasible point satisfying the inequalities fi(y) < 0, i by an

iterative routine, a natural way is to use the negated subgradients as the movement 
direction. Such algorithms are usually referred to as descent methods [Censor & 
Lent 82], [Kiwiel 85], [Scheim. & Oliv. 92], [Kiwiel 96a, b]. For convenience we 
have assumed differentiability of these functions throughout the fecisible domain 
of y (however, our results can be generalized to the nondifferentiable case simply 

by replacing gradients by subgradients, without any further assumption). Having 
made this assumption, we can regard these movement directions as steepest descent 

directions for individual functions. Instead of reaching a minimum of a single 

function, one tries to reduce several functions below the limiting value of 0.

In Chapter 4, movements in the reverse directions of gradients will be combined 
with the containing domain approaches. The motivating idea behind these search 

directions is to obtain better test points than the center points. In this way one 

can expect faster shrinkage of the containing domain and faster convergence of the 

generated sequence to the feasible region.
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2.3 Projection M ethods

The orthogonal projection of a point x onto a convex set C is a point (if it exists) 
of the convex set which has the miniiual Euclidean distance to x. Nonemptiness is 
required by assumption, however existence of an interior point (full dimensionality) 
is not necessarily the case.

Projection methods date back to the early works of Kaczmarz and Cimmino 
in the thirties. Both approaches are iterative procedures which solve systems of 
linear equations. In the Kaczmarz approach, projections are made onto hyperplanes 
(which represent linear equations) successively, whereas Cimmino’s method is based 
on simultaneous projections onto aU, and takes their convex combination.

The same idea can be applied to the solution of a set of linear inequalities. 
The successive projections approach of Kaczmarz ( which is also referred to eis the 
relaxation method), has been generalized to the case of inequalities. Convergence 
results for this method as given in [Agmon 54], [Motzkin & Scho. 54] are quite 
fundamental and they still serve as the basis for \*arious projection approaches.

These approaches have become popular starting from the seventies with the 

development of the algebraic reconstruction technique (ART) for computerized 
tomography.

During the implementation of these methods, one has to specify a certain 
feasibility tolerance (to enable finite convergence), since projection algorithms tend 
to converge infinitely to the boundary of the feasible region.

Computing the projection onto an arbitrary convex set is a nontrivial problem. 

However, for the case of a linear equation (or inequality) it is quite straightforward. 
Actually, the projection routine for linear systems is a special case of the subgradient 

methods where the step sizes are selected with respect to their distances to the 
hyperplanes (hence distances to the related half spaces). Just like the subgradient 
methods, these routines are nonpolynomial time algorithms [Coffin 80], almost all 

with linear rates of convergence. They are practical for very large linear problems 

with sparse and unstructured coefficient matrices.



Chapter 3

The Linear Feasibility Problem

The linear feasibility problem, though it might seem to be trivial at a first glance, is 
quite challenging when the matrix dimensions are large. The fundamental Fourier- 
Motzkin elimination technique (see for example [Dantzig & Eaves 73]) is not realistic 
to implement for many real world problems [Chvatal 83]. Other direct (noniterative) 
methods such as LP pivoting or Gaussian elimination may also be inefficient when 
the underlying matrix is huge and sparse with an irregular nonzero pattern.

Nice reviews of the projection methods for the feasibility problem are given in 
[Combettes 93] and [Censor & Zenios 97]. In a recent paper, a generalized framework 
for the projection approaches in the literature has been given [Bauschke & Borwein 
96].

In this chapter we present an analysis of the block projections methods outlined 
in [Yang & Murty 92]. Similar routines have been given in [Censor 88], [Aharoni 

& Censor 89], [Gar.-Pal. 90], [Oko 92], [Gar.-Pal. 93], [Kiwiel 95], [Gar.-Pal. & 
Gon.-Cas. 96] as well. Our point of departure was to compare the sequential and 

parallel versions of the Yang-Murty algorithm. We have observed that the parallel 
block approach of Yang-Murty (as well as many similar routines in the literature) 
perform quite poorly in practice. Instead of the conventional short steps used in 

the simultaneous methods we have considered longer steps based on ideas outlined 

in [Kiwiel 95] and [Gar.-Pal. & Gon.-Cas. 96]. The resulting performance with this 

step size modification is superior to that obtained with the sequential algorithm. 

The results of this research have been reported in [Ozak. et al 96, 97a, 97b].
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III the next section we present some basic knowledge related to the projection 
methods. In Sections 3.2 and 3.3 we outline the se([iiential and parallel versions of 
the Yang-Murty algorithm which we have implemented. In Section 3.4 we suggest a 
new' step size to improve the performance of the parallel routine. In Section 3.5 we 
present an analytical verification of the convergence of the parallel algorithm with 
the new step size. In Sections 3.6 and 3.7 we compare implementation results for the 

sequential and several parallel routines. In Section 3.8 we generalize the convergence 
results to the convex feasibility problem.

3.1 On Orthogonal P rojections onto Convex Sets

A projection of a point € Ji" onto a convex set C, gives the point (if there is 
any) X G C, which has the minimal Euclidean distance to x^ [Hir.-Urr. & Lemar. 
93]. More generally, projections are defined as the nearest points contained in the 
convex bodies with respect to appropriate distance definitions.

Usually, one has to compute the projection of x^ onto C,· when x'  ̂ ^  Ci- This 
projection requires the solution of the following problem:

PCi{x'’) = in in ||a :*^-i|| (3.1)

In this case, the minimization is made over the Euclidean distance, and the nearest 
point of Ci to is found. Note that, existence of this minimum does not imply 
that the projection is an orthogonal projection.

For the cases where Ci = {a: G : fi{x) < 0}, fi{x) convex and differentiable, 
the direction [PcXx^) -  x^) is given by However, to determine this

direction and the next point, one needs to solve the minimization problem defined 

above and in a way, to find the point x̂ ~̂  ̂ in advance. We will state two propositions 

(with elementary verifications) on the existence of orthogonal projections. As stated 
above, an orthogonal projection may not exist for certain cases. We will assume a 
finite dimensional Euclidean space, .

P roposition  1. Let C, be a closed convex set with nonempty interior and x be 

a point such that x ^  Ci. Then an orthogonal projection of x onto Ci does exist.

P roposition  2. Let C, be a subspace (or a linear variety) of 3?” and x be a
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point such that x ^  C;. Then an orthogonal projection of x onto C\ does exist.

From Proposition  2 one can say that a projection onto a linear equation (hence 
to a linear inequality induced by this equation) exists. In our subsequent discussions, 
it will be assumed for convenience that an orthogonal projection exists.

The convergence of the projection methods are based on the nonexpansivity 
property which is related to the Fejer-monotonicity of the sequence generated by 
the algorithm. These important definitions will be stated below (see for example 

[CTombez 91]).

D efinition 1. Let x G C{ C and P be a mapping P  is
referred to as a nonexpansive mapping, if for every /  G C, it satisfies:

\ \ x - f \ \ < \ \ P i - f \ \  (3.2)

D efinition 2. Let C, C P  a nonexpansive mapping and let {x^} be a 
sequence generated by P . P is said to be Fejer-monotone with respect to C{ if for 
every /  G Ci and k it satisfies:

(3.3)

A detailed treatment of the concepts given above can be found in [Bauschke & 
Borwein 96]. It has to be stated that Fejer-monotonicity can be satisfied by arbitrary 
projections onto separating hyperplanes (instead of the set Ci itself) so that one can 
refrain from computing complicated projections, and this idea forms the basis of the 
((5, 77) approach [Censor & Zenios 97].

3.2 T he Sequential Yang-M urty A lgorithm

The problem which will be of main interest to us in this chapter is of the type:

Ax <b  (3.4)

where x 6 iZ" and A is m x  n. By assumption, the feasible set K defined by this 

inequality is nonempty.
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The inothod of successive orthogonal projections (SOIM of Gubin, Polyak and 
Raik works by projecting the current point onto a convex set at each iteration until 
a point which is contained in the intersection of these convex sets is found. At a 
typical iteration of the SOP algorithm (actually in many projection algorithms) an 
overrelaxed or an underrelaxed step is taken in the computed projection direction. 
Hence an iterative step becomes:

= + 0 <  Aa- < 2 (3.5)

where Pc\ is the projection operator onto the closed convex set Ci and is the 
so called relaxation parameter. When = 1, the next point generated is the exact 
orthogonal projection of the current point. On the other hand, when > 1, one 
has a longer step, which is the case of overrelaxation and when Ât < 1, one has a 
shorter step, which is the case of underrelaxation [Censor k  Zenios 97].

In an explicitly defined linear feasibility problem the intersection of many 
halfspaces define the convex set. At an iteration point . the routine proceeds 
by considering a violated inequality AiX^ > bi and calculating the next point as:

= x ^ - X k
Aix>̂  -  b,

>1. (3.6)

where 0 < Ât < 2.

The relaxation method is quite inefficient when the number of inequalities is large 
[Yang & Murty 92], [Gar.-Pal. 93]. Considering the projection onto a surrogate plane 
(instead of distinct constraining planes) is a useful idea. This is simply achieved by 
defining a hyperplane 7r*(Tx — 6) := 0 where the component of the row vector 

is positive if the current test point does not satisfy (3.4).

Since the number of constraints in (3.4) is quite large, partitioning the matrix 
into blocks and making surrogation within these blocks is easier to implement. 
Additionally, partitioning the matrix (rowwise) increases the efficiency of the 
projection algorithm to some extent.

As is the ca.se in many applications such as those arising in image reconstruction 

and restoration it is assumed that the matrix A is sparse and unstructured, so it is 

logical to partition it into equal (or almost equal) blocks. Let each block i = 1,.. .,p  

consist of TUt rows so that each partition may be denoted as A^x < 6'. The surrogate 
constraint is defined as x'A'a; < x ‘6‘ (which is clearly a valid inequality), where x‘
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is a iioiiiiogative weiglit vector. The following algorithm, which is referred as the 
'seciuential .surrogate constraint method', is given in [Vang <V Murty 92]:

The Sequential Surrogate Constraint Algorithm:

Step 0. Generate or read a feasible problem, with .4 G b G with
previously known values of n, m, p, m i , . . . ,  nip. Initially, let A: = 0 and / = 1. Fix 
a value of A so that 0 < A < 2.

S tep 1. Check if ^  bF If so, then let . Otherwise let

-x>^ -  X (3.7:||7riA^t||2

where tt·’̂  > 0 if constraint i is violated, and = 0 otherwise. ( 5Zi'=i = 1 is 
required for convenience.) Update the value of the counter of violated inequalities.

S tep 2. If i < p. let A; = A· + 1, i = t + 1 and go to S tep  1. If i = p and if 
the total number of violated constraints in the major iteration is zero then stop, the 
current solution is feasible. Otherwise, assign zero as the new value of the counter 
of violated constraints, let i = 1, A = A + 1 and go to S tep  1.

Verification of convergence is based on the Fejer-monotonicity of the generated 
sequence If the feasibility check in S tep  1 is adjusted to allow for a

certain degree of tolerance so that A{X^ is compared with b,+£,  then the algorithm 
converges finitely [Yang L· Murty 92].

3.3 The Parallel Yang-M urty A lgorithm

Cimmino’s method is an iterative routine which makes simultaneous projections 
onto aU violated constraints and takes their convex combination as the iterative 
step. However, it is impossible to implement when the number of constraints is large 

(even more severely than the relaxation method).

The simultaneous block projections approach is the parallel version of the method 

described in the previous section. In the simultaneous case all submatrices are 

processed on distinct machines at the same time. Instead of adding p successive
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projections on top of each other, their convex combination is computed, and a single 
combined step is taken at a major iteration.

The modified algorithm has been outlined in ’̂ ’ang & .Murty 92]. Theoretical 
convergence results are quite similar to those of the sequential case. It should 
be staled that the block projections approach is not unique in the literature. A 
generalized approach of the Yang-Murty algorithm (both parallel and sequential 
versions) has been described earlier in [Censor 88] and [Aharoni Sc Censor 89], and 
also ill [Kiwiel 95]. Other surrogate approaches include [Dos Santos 87], [Oko 92], 
[Gar.-Pal. 93] and [Gar.-Pal. & Gon.-Cas. 96].

The parallel algorithm is given as follows. We consider equal weights (rj's) for 
equal sized partitions (similar to the sequential case) since none of the blocks have 
a structural superiority to others.

The Parallel Surrogate Constraint Algorithm:

Step 0. Generate or read a feasible problem. Let к = 0 and fix A so that 
0 < A < 2.

Step 1. For t = 1---- ,p

check if ^  f>E If so, then let Pt(x^) = x^·· Otherwise let

Ptix'^) = X* -
|ж‘А'.4‘|Р (3.8)

where is the same as in the sequential algorithm. When the entire matrix is 

processed, let P(x* )̂ = IliLi fiPi(x*') where Yft=i = 1. T·« > 0, and Tt > 0 for all 
blocks which violate feasibility. The next point is generated as:

1^+1 = x*  + A (P (x * )-x ^ ).

Update the total number of violated constraints, in all blocks.

(3.9)

Step 2. If the total number of violated constraints in the major iteration is zero 

then stop, the current solution is feasible. Otherwise, assign zero to the number of 
violated constraints, let k = k + 1 and go to Step 1.
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We cau rewrite (3.9) as:

where.

î = l
: U 0 )

(3.11)

As just stated, a unified framework for the block projections algorithms has been 
considered in the literature. Whether the algorithm is successive or simultaneous 
depends on the choice of the parameters. Hence we prefer to state a general form of 
the block projections algorithm in the following way:

The Block Projections Algorithm:

Step 0. Let A G and b G 3?^. Consider the even partitioning of
the A matrix and the b vector into p rowwise blocks of almost equal sizes, as 

. . .  I a n d  [6^|6^|. . .  (In the case of parallel implementation p is
equal to the number of processors.) Let = 0 and k = 0.

Step 1. For t =  based on a selection of Tt values (satisfying Vr̂  > 0
and Tt = 1) check if A^x^ < b̂  for all t with > 0. If so, then let df = 0. 
Otherwise let

d, = — --------- ^  ̂ and Pt(x^) = x^ -  d. (3.12)

t k . . .  t kwhere 7г¿’ > 0  if constraint i is violated and tt-' = 0  otherwise. Define a weighted 
projection as:

P(x^) = J2rtP t{x^) = -  4 )  (3.13)
(=1 t=l

where <̂ = 1» ■’"t ^  0· The next point is generated as:

x>̂+̂  = + Xk{P(x'‘) -  X*) (3.14)

where 0 < A/t < 2. Notice that equivalently we can rewrite equation (3.14) as:

>+i (3.15)
'<«=1

Update the total number of violated constraints in all blocks.
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Step 2. If the total number of violated constraints in the iteration is zero then 
stop, the current solution is feasible. Otherwise, assign zero to the number of violated 
constraints, let k = k + I and go to Step 1.

To guarantee convergence, for a given block index t for which Â .v̂ ' ^ for all 
k > it' (where k̂  is fixed to a sufficiently large value), should take positive 
values for infinitely many k iterations (see [Aharoni & Censor 89] and [Kiwiel
95] ). Verification of convergence is based on the Fejer-monotonicity of the generated 
sequence Note that this algorithm is more general and does not require
the two following imposed conditions of the Yang-Murty algorithms: (i) that the 
relaxation parameter should be fixed to A, (ii) that > 0 for all t with ^ bE

The given algorithm is referred to as the successive block projections algorithm 
(or is said to have cyclic control), and corresponds to the sequential surrogate 
constraint algorithm of Yang-Murty, if at each iteration only one block coefficient is 
nonzero ( = 1 for a single t) and at the following iteration only the block coefficient
with the successive index is nonzero (modp) = 1)· On the other hand if one
takes Tt > 0,Vi such that A^x^ ^  6 ,̂ then it is referred as the simultaneous block 
projections algorithm, and corresponds to the parallel surrogate constraint algorithm 
of Yang-Murty. In the absence of additional information it is natural to take equal 
weights Tt for all blocks whose inequalities are not fuUy satisfied (since none of 
the blocks has priority with respect to the others) and zero weights for the blocks 
whose inequalities are fuUy satisfied. If the simultaneous algorithm is implemented 
on a parallel computer, then all submatrices are processed on distinct machines at 

the same time. Instead of proceeding with p successive projections, the convex 
combination of p simultaneous projections is computed, and a single combined step 
is taken at a major iteration.

3.4 Ideas for Im proving Parallel Performance

A comparison of test results for the sequential and parallel algorithms (see Tables 

3.1 and 3.2) reveals that the parallel version of the Yang-Murty algorithm performs 

much worse than the sequential version. The situation becomes even worse when 

the number of processors is increased.
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Betbro concluding that simultaneous methods are not practical to imi)lernent, one 
should consider adjustment of the algorithm in order to benefit as much as possible 
from parallelization. A close examination of the parallel algorithm makes it apparent 
that the step taken in (3.9) is quite short when compared to the accumulated 
sequential steps in a major iteration of the first algorithm. This issue has also 
been discussed in [Gar.-Pal. 93]. Thus a remedy for the parallel algorithm should be 
able to compensate for this deficiency.

Let us recall that the combined movement direction induced by the infeasible 
blocks at the iteration is:

(3.16)
t=\

111 the parallel algorithm this convex combination of the individual directions is taken. 
Assuming that — 0 when block t is feasible, by substitution and rearrangement 
(3.9) becomes (using instead of a fixed A):

= x̂ ' -  Xkd^ (3.1i

An apparently promising idea is to magnify this ‘averaged step’ in some proportion 
to make it comparable in norm to the accumulated steps of the sequential algorithm. 
An appropriate magnifying parameter is the number of violated blocks at the k^^ 
iteration. The new iterate then becomes:

= x^ «Arx Tit{XkP )d (3.18)

where is the number of blocks which are infeasible at x ^ . The idea is illustrated 
in Figure 3.1. The results with this step sizing policy is given in Table 3.3. Good

/  X

(b)

Figure 3.1: Movement in a major iteration in (a) sequential, and (b) parallel versions 
of the algorithm. The idea is to take a longer step in the same movement direction 
to achieve better convergence.

results are obtained for some problems, but unfortunately, the speed of convergence
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bocoiuos iutolerablo especially as the number of blocks are increased. Even worse, it 
has been observed that the algorithm gives divergent sequences for many examples. 
VVe can conclude that this idea may be useful if one can introduce some sort of a 
regulative mechanism which will prevent too long steps.

We have also tested the alternative step suggested recently in [Gar.-Pal. 93] and 
[Gar.-Pal. & Gon.-Cas. 96] for a similar simultaneous block projections algorithm. 
For the equal weighted case the suggested step is:

E L i  11411'̂  "
2

(3.19)

It is shown both theoretically and practically in [Gar.-Pal. & Gon.-Cas. 96] that with 
this new step, the routine performs better (with respect to the parallel algorithm 
which uses the convex combination of surrogate steps) under some assumptions. Our 
results in Table 3.4 are also in accordance. However, the average number of major 

iterations are still unsatisfactory when compared to those of the sequential algorithm.

Returning to the iterative update given in equation (3.18), we consider the 
premultiplication of the step size with the fraction based on the

acceleration idea discussed in [Gar.-Pal. & Gon.-Cas. 96]. One can notice after a 
closer examination of the behavior of the algorithm that, the generated sequence 
commences to diverge whenever this fraction is much smaller than unity. It is seen 
that as long as this fraction is around unity, the algorithm proceeds moderately and 
the sequence tends to converge. So one can vaguely conclude that when the fraction 
is relatively small, the current step is relatively long and has to be adjusted to 
enable convergence. So in addition to the magnifying parameter we will propose 
to introduce the regulative parameter in equation (3.18), so that the new

iterate becomes:

IIEi’= ,4 lP
Note that an equivalent statement of this new step can be given as:

(3.20)

1^+  ̂ = X

Experimentation with this step sizing rule of the parallel algorithm has yielded 
encouraging results (Table 3..5). Furthermore, implementation of this algorithm 
on a parallel computer resulted in considerable speedups which were out of the 
question with the conventional short-step simultaneous algorithms. Convergence of
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the niodiiiod sinudtatieous block projections algorithm obtained by replacing (3.9) 
(or identically (3.14)) with (3.20) will be given in the following section.

3.5 A Longer Step Size

Before establishing convergence, an intuitive explanation of the reasons behind 
the efficiency of the regulative parameter (motivated in the previous section) will 
be given. Considering two blocks, hence two movement directions - ¿ 1 , - ^ 2 , this 
parameter is equivalent to 0 is the

angle between -d i  and -( /2 · Now when 6 is quite small (about 0 -3 0  degrees), this 
ratio will be much less than 1 and premultiplication with this fraction will decrease 

the magnitude of the step originally given as = -^k(d i  + ¿ 2 ). substantially.
VV'hen 0 is larger (about 70-90 degrees) this ratio will be above 1 and the magnitude 
will be reduced moderately. If however, 0 is larger than 90 degrees, the parameter 
will be above 1 and in this case the magnitude of the step will be increased. Thus, 
premultiplication with this regulative parameter works in both ŵ ays; it reduces steps 

which are too long and expands steps which are too short. It will be assumed that

(a) (b)
Figure 3.2: The parameter works in both ways. In (a) - d  = - ( ¿ 1 + ^ 2 ) is a relatively 
short step, and multiplication with the regulative parameter results in - d ' . In (b) 
- d  = -{d\  + ¿2 ) is a relatively long step, and in this case multiplication with the 
regulative parameter we results in a moderate - d ' .

the direction vectors, dt : t = I , . . .  ,p (we drop the iteration superscript k from 

df in this section) are linearly independent. Clearly, this assumption requires that 
p should be less than or equal to n , and that none of the surrogate plane pairs are



CHAPTER :i THE LINEAR EEASIBILITY PROBLEM 17

parallel. We define an ‘overall surrogate plane' as:

¿ « ( J :  = Y^b'.
¿=1 f=l

where cit = and b[ = ir^b .̂ Clearly, in place of equation (3.21) one can also 

write where bt = ( ||^ f ||/ ||« i||) , for t = l , . . . , p ,  with a little
abuse of notation.

By definition, this plane contains the intersection set of the individual surrogate 
planes. The bunch of surrogate inequalities constitute the ‘containing polyhedron', 
which clearly contains the set of feasible points A’ . (In the special case where p = n 
this polyhedron is a cone.) The overall surrogate plane supports the containing 
polyhedron so that the overall surrogate inequality {x :

contains K  as well. Clearly - d  = -  dt is orthogonal to this surrogate plane.

Figure 3.3: Two surrogate planes a\x = b[.a2X = ¿2  movement directions
induced by them.

This vector has the same direction with the one used in (3.17) when equal weights 
are assigned. Define —d^k (also orthogonal to the surrogate plane) so that:

Ppk(x^) — — dfk (3.22)

where Ppk is the unrelaxed projection onto the surrogate plane. Let represent 

the containing polyhedron nf=i{^ · < b[} and denote the half space defined
by the surrogate inequality {x : ^ t=i  ^  ·

Lemma 3.5.1
|2 P,  E L i l K I l V . (3.23)
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Figure 3.4: Movement in the direction of - (d i  + d^) orthogonal to the overall 
surrogate plane, which supports the containing polyhedron.

Figure 3..5: Unrelaxed projection onto overall surrogate plane, -  dpk ’ gives the 
unrelaxed projection onto this plane. ' - d = - ^ d t '  takes beyond this plane.
On the other hand with ‘-d "  = -Y^Ttdt '  (where Y^Tt = 1) does not quite
reach the plane.
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Proof: By definition V/, f \ {x) = x -  ( df = i^^write
dtx = bt instead of «(.r = b\ by replacing at,b[ with d,.bt respectively. Doing this 

we have:

d. = ( ^ - ^ )  d,\\d,\\‘
which implies that dtx -  bt = Indeed, 'dtx -  bt' is the squared distance
of x^ to the set Ct = {x : atx < b[}. Now, consider the overall surrogate plane 

dtX = bt and the unrelaxed projection onto it:

T . U d , \ ? i=l

E U d . № t = l

= X,  / E L i l K I I " '  '

From Lem m a 3.5.1 we get the idea of the new step size. Disregarding relaxation, 
the conventional step given by equation (3.17) as the convex combination of distinct 
block steps in the simultaneous algorithm is very short and does not quite reach 
the overall surrogate plane given by equation (3.21) in practice. It is verified in 
[Kiwiel 95] that the long-step algorithms generate deeper surrogate cuts than the 
conventional short-step algorithms. Hence, the longer step in (3.20) has the most 
appropriate size, since it projects the current point exactly onto the overall surrogate 
plane. It is the longest step which yields a Fejer-monotonic sequence when utilized 
with a relaxation parameter between 0 and 2.

Lem m a 3.5.2 Redefine Pf (x^)  = x^ — Xkdp where 0 < < 2 if x^ ^  K and let
xk-\-i _ Then the sequence strictly Fejer-monotone with respect

to (hence with respect to and K  ̂  since K  C C F^).

Proof: Although obvious geometrically we provide an analytic verification, x "̂^  ̂

is contained within the line segment between x^ and -  2dpk (excluding the end 
points). Let Xpk be the unrelaxed projection {X^ = 1) onto i.e. Xpk = x ^ - d p k . 
Let /  be any point in F ^ , As also seen from Figure 3.6:
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Figure 3.6: Illustration of the Fejer-monotonicity of the generated sequence. 
(Superscripts of some of the F's are dropped for clarity.)

\\x^ -  f\\^ = Wix̂  ̂ -  XpU -  i f  -  XpUW'^

-  /||2  = l|x^ _ + 11/ _ · ( /  -  Xf^) (3.24)

where the dot product term is nonpositive due to convexity of On the other 
hand,

l|x‘+ ' - / I P  = ll( i“ - * F » ) - ( / - X f . ) l P

||x‘+· -  /11" = ||x*+' -  + 11/ -  IF.|P  -  2(x‘+· -  xp.) · ( /  -  ip .)  (3.25)

If 1 < A;t < 2 the dot product term in (3.2.5) is nonnegative (see Figure 3.6). 
Conversely, if 0 < < 1 the dot product term is nonpositive but since
is contained in the line segment between x^ and Xfk we have (x*···̂  -  Xpk) = 

6(x'‘ -  Xpk) for some 0 <  ̂ < 1. Hence in both cases, (x^+i ~ Xp'’) ' i f  ~ F̂>‘) ^  
(i^ -  Xpk) ■ i f  -  Xp^)· Since Ajt < 2 , we always have ~ 2:^*11 > ~

which yields \\x^ -  f\\^ > ~ / I P  and hence, ||x*̂  -  / | |  > ||x^·^  ̂ ~ / l l ·  I

R em arks. (1) It has been assumed that for the simultaneous block projections 
approach each infeasible block has the same weight, i.e. r< = Vt, A'x* ^  (p^

being the total number of infeasible blocks at iteration k). This is quite plausible 

since the matrix A is sparse and unstructured. However, Lem m as 3.5.1, and 3.5.2
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are still valid when arbitrary (all positive) weights are assigned to infeasible blocks. 
In that case the projection onto the 'weighted surrogate plane' becomes:

— dfpk — — (3.26)

which can be similarly derived by replacing dtx^ — bt by for all t =

( 2 ) Fejer-monotonicity of the generated sequence is still valid when the containing 
domain is an arbitrary convex superset S instead of a surrogate inequality, provided 

that a valid projection somehow exists and is between 0  and 2 . In the cases of 
convex feasibility, movement directions might be chosen as combined subgradients 
as done in [Oettli 72], [Censor & Lent 82], [Dos Santos 87] and projections can be 
made onto valid separating hyperplanes.

Hence we can restate the dong-step block projections algorithm’ as follows:

T h e  L o n g -S tep  B lock  P ro je c tio n s  A lg o r ith m :

S tep  0 . Let A G and b G 3?'^. Consider the even partitioning of
the .4 matrix and the b vector into p rowwise blocks of almost equal sizes, as 
[A^\A'^\ ., and [6 ^|6 ^ |. . . |6 ]̂  ̂ . (In the case of parallel implementation p is

equal to the number of processors.) Let = 0 and A; = 0.

S tep  1 . For t = l , . . . , p ,  based on a selection of Tt values (satisfying Vr< > 0 
Tt = 1) check if A^x^ < b̂  for all t with > 0. If so, then let d^ = 0.

Otherwise let
Jk _

' IkM'IP
where > 0  if constraint i is violated and tt, ’ = 0  otherwise. The next point is 

generated as:
(3,27)

Update the total number of violated constraints, in all blocks.

S tep  2 . If the total number of violated constraints in the iteration is zero then 

stop, the current solution is feasible. Otherwise, assign zero to the number of violated 

constraints, let k = k + 1 and go to Step 1 .
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In this modified algoritdim one will have longer steps when it is implemented with 

simultaneous projections. Note that if the algorithm is implemented with successive
,.A:+1 _

—projections (cyclic control) the iterative update (3.27) will reduce to x̂ '
One should recall that, the successive versions of the conventional and long- 

step block projections algorithms are identical, hence the improvement is valid only 
for the simultaneous block projections case, when the algorithms diflfer.

Lem m as 3.5.1 and 3.5.2 establish that the modified simultaneous algorithm 
can be viewed as a basic surrogate constraint algorithm which generates a separating 
hyperplane at each major iteration and the direction vector given in equation (3.23) 

(or (3.26)) provides the unrelaxed projection onto this valid hyperplane through 
-  dfTk (see Figure 3.6). Hence, with this interpretation, this algorithm 

belongs to the general class of ‘projection-onto-separating-hyperplane algorithms.'

In retrospect, it can be seen that this algorithm falls into the framework of the 
generalized algorithm with long steps, outlined by equations (3.10) through (3.16) 
in [Kiwiel 95]. Rewriting equation (3.27) as — x^ -  Xkicrk/^k)Y7t=\'Ttdt (so 

that {(Jkl^k) is equivalent to verified in Lemma 4-3 (Hi) of
[Kiwiel 95] that {(Jk/^k) > 1 which indicates that the long-step method uses the 
same movement direction as the one used in the short-step method with larger step 
sizes.

T heorem  3.5.1 The block projection.s algorithm with the modified step as given by 
equation (3.21) converges to a point in R \  provided that it is nonempty.

The verification of the theorem follows from the fact that the algorithm falls in 
the category of long-step methods outlined by (3.10) and (3.15) in [Kiwiel 95]. By 
Theorem 3.11 of [Kiwiel 95], the algorithm generates sequences which converge to 
K.

3.6 Im plem entation R esults for Random  Problem s

In this section, test results in terms of iterations are given for five routines: 
(i) the successive Yang-Murty block projections algorithm, (ii) the simultaneous
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P n
in. n. int.

■¿I I 4 /, 1 6 //

500. 1000, 0.02 15.4(7.2) 27.8(6.2) 51.8(5.6) 104.6(5.6)
2000. 1000, 0.02 203(50) 365.4(44.8) 651.8(.39.8)
5000. 2500, 0.02 106.6(52.8) 191.8(47.2) 367(45) •12.6(43.6)
10000,5000, 0 .0 1 110.2(.54.6) 205.4(50.6) 392.6(48.2) •54.2(46.2)
20000. 10000, 0.002 144.6(71.8) 261.4(64.6) 479(.59) 885.4(54.4)
50000,20000, 0.001 290.2(144.6) .508.6(126.4) 941.4(116.8) 177.5(110)

Table 3.1: Average number of block and major iterations (numbers in parentheses 
represent the major iterations) of the sequential algorithm of Yang and Murty. ’int.' 
stands for the nonzero intensity of the matrix, m and n are the row and column 
sizes respectively and p represents the number of blocks. Five test problems have 
been solved for each size.

Yang-Murty block projections algorithm, (iii) the simultaneous Yang-Murty block 
projections algorithm with a step size magnified by a factor equal to the current 
number of violated blocks (iv) the simultaneous Yang-Murty block projections 
algorithm with the Gar.-Pal.-Gon.-Cas. step. (v) the simultaneous Yang-Murty block 

projections algorithm with the modified step suggested in equation (3.20).

The figures in the tables represent major (fuU) iterations for the simultaneous 
algorithms and block and major iterations for the successive algorithm. To compare 
the performance of the simultaneous algorithm with that of the successive algorithm 
based on the iteration results, one should assume that (in the ideal case) a block 
iteration of the successive algorithm is more or less equivalent to a full iteration 
of the simultaneous algorithm; which is not indeed the case, as can be seen from 

the timing results. However, while comparing different instances (by varying p) 
of the successive algorithm, the figures representing the major iteration should be 
considered.

We have tabulated timing results for the successive block projections algorithm 
of Yang-Murty (Table 3.6) and the simultaneous block projections algorithm with 

the modification described in Section 3.5 (Table 3.7). Only the largest 3 problem sets 

are tabulated since for smaller problems convergence occurs in a few seconds. We 

have not tabulated results for the original simultaneous block projections algorithm 
of Yang-Murty and other parallel routines since the iterative results in Table 3.2 are 
already much worse than those of the successive block projections algorithm. The
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p II
JU, n, illt.

2 /7 •1 / / 16 / /

500, 1000, 0 .0 2 27.6 69.4 209.4 .507
•2 0 0 0 , 1 0 0 0 , 0 .0 2 207.4 14-22.8 3393.8 6921.4
5000,2500, 0 .0 2 1087.6 3274.8 05-24.2 1.3069.2

Table 3.2: Average luiniber of major iterations of the original parallel algorithm 
suggested by Yang and Murty. p represents the number of blocks and hence the 
processors. Same test problems used in the sequential experiments are used, but 
the largest 3 problem sets are not solved since the number of iterations become 
prohibitive. Comparison of these results with those of the previous table indicates 
that the simultaneous version of the block projections algorithm with short steps, is 
quite poor in performance.

p H
m, n, int.

2 / / 4 / / 8 / / 16 / /

500. 1000, 0 . 0 2 7.2 7 6 . 6 1
•2 0 0 0 , 1 0 0 0 , 0 . 0 2 84 1.52.2 - -
.5000, 2500, 0 . 0 2 8 6 . 6 979.6 - 1164.6

Table 3.3: Average number of major iterations of an implementation of the parallel 
Yang-Murty algorithm with the magnified step size without premultiplication with 
the regulative parameter. Same test problems as in the previous table are used. 
represents a typical case where the routine does not converge to a feasible point. It 
is seen that there is some improvement (when compared to the parallel version of the 
Yang-Murty algorithm) for problems with relatively small sizes but performance is 
still poor for larger problems. Furthermore, the algorithm does not always converge.

p H
m, n, int.

2 / / 4 / / 8 / / 16 / /

500, 1000, 0 . 0 2 •24.2 24.2 •26.6 27.8
2 0 0 0 , 1 0 0 0 , 0 . 0 2 193 2 0 0 . 2 193.4 197.8
.5000, 2500, 0 . 0 2 612.8 643 646.6 669

Table 3.4: Average number of major iterations for an implementation of the parallel 
algorithm with the step suggested by Gar.-Pal.-Gon.-Cas. Same test problems as 
in the previous experiments given in the previous two tables have been used. The 
results are better when compared to the parallel Yang-Murty algorithm, but are still 
quite bad when compared to the sequential Yang-Murty algorithm.
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P / /
ni. n. int.

2 / / ■S// 16 / /

500, 1000. 0.02 7.4 6.N 7.2 6. 6
2000. 1000. 0.02 66.8 62.8 .59.4 .5.3.8
•5000.2.500. 0.02 66 65.6 65 63
10000, .5000, 0.01 69.8 69 68 66.6
20000, 10000, 0.002 80.6 74.6 69.2
.50000,20000, 0 .0 0 1 180.2 172.6 166.2 1.58.4

Table 3.5: Average number of major iterations for an implementation of the long-step 
simultaneous block projections algorithm. Same test problems as in the experiments 
given in the previous tables are used. The simultaneous algorithm with the improved 
step size performs better than the sequential Yang-Murty algorithm, under the 
assumption that a full iteration of the simultaneous routine takes about the same 
time as a block iteration of the successive routine.

p / /
m, n, int.

2 / / 4 /7 8 / / 16 / /

10000, 5000, 0 .0 1 29.6 28.6 27.8 29
2 0 0 0 0 , 1 0 0 0 0 , 0 . 0 0 2 36 .34.2 .34.2 36
50000,20000, 0 . 0 0 1 189.2 170.8 171.2 183.4

Table 3.6: Average processing times (in waUclock seconds) for the successive Yang- 
Murty algorithm. Same test problems (the largest 3 problem sets) are used.

distributed implementation of the simultaneous algorithm has been realized by the 
aid of PowerPVM on a Parsytec CC-24 machine. Timing results have been obtained 
as wallclock seconds. CPU results are not representative since message transfers 
between the processors are neglected by CPU timers. The timing results, although 
not as good as the iteration results (due to the communication overhead between 
the parallel processors), are still very encouraging and indicate that the parallel 
implementation of the long-step simultaneous block projections algorithm is quite 

competitive over the successive block projections algorithm.
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i> h
m. n. int.

2  / / -1 / / 1 6 / /

10000. 5000. O.Ol 19.6 12 9.2 1 2

2 0 0 0 0 . 1 0 0 0 0 , 0 . 0 0 2 2 1 . 2 13.4 1 1 .2 13
50000. 20000, 0 .0 0 1 1 2 1 . 6 69.2 47 43.4

Table 3.7: Average processing times (in wallclock seconds) for the long-step 
simultaneous block projections algorithm. Same test problems with those given in 
the previous table are used. The timing results are better than those obtained by the 
sequential Yang-Murty algorithm, although we do not have as much improvement 
as indicated by a comparison of the iteration results.

P I I

rn, n, int.
2 / / 4 / / s  I I 16 / /

10000, 5000. 0.01 1.51. 0.76 2.38. 0.60 3.02, 0..38 2.42, 0.15
2 0 0 0 0 , 1 0 0 0 0 . 0 . 0 0 2 1.70. 0.85 2..55, 0.64 3.05, 0..38 2.77, 0.17
50000, 20000.0.001 1.56. 0.78 2.47, 0.62 3.64, 0.46 4.23, 0.26

Table 3.8: Speedup and efficiency measures of the new parallel implementation. The 
figures in the cells represent speedups and efficiencies respectively.

3.7 N otes on Im plem entation

In this section we discuss issues related to random generation of the test problems 
and parallel implementation on distributed computers.

3.7.1 Implementation Data and Test Parameters

It is assumed that the matrix underlying the feasibility problem is sparse. This 
matrix is stored in rowwise format to ease its access. Using this type of data storage, 

the matrix-vector products can be computed easily. The widely known standard 

sparse matrix formats are used [Pissa. 84], but to ease the control over the storage 

arrays, we have added one more cell to each, which marks the end of the array.

The sample test problems have been generated as follows: First of aU, a matrix 

with a given size and sparsity percentage is generated so that the nonzero elements 
are distributed uniformly and such that each nonzero value is uniformly distributed
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bolvvoeii -5 .0  and 5.0. The random distribution has been realized in two ways. 
In the first, an exact number of nonzero entries is fixed and they are distributed 
uniformly (with parameters depending on the problem size) to the rows of the 
matrix so that each row has at least one nonzero element. Then, their column 
numbers are generated uniformly. In the second, a simulated sequence of a Poisson 
process is obtained and points are generated with exponential interarrival times with 
a parameter value equal to the nonzero intensity of the matrix. The exponential 
density is truncated between I and ri and the generated interarrival time is rounded 
to the nearest integer and the next nonzero entry position is found by adding this 
value to the column number of the previously placed nonzero entry. When one row is 
finished, the process is continued in the next row. This approach is somewhat better 

than the first, since the nonzero entries are generated sequentially and one does not 
require a reordering when storing the data in rowwise format. Here we utihze the 
property stating that in a Poisson process, given that n arrivals have occurred within 
a time interval (0,t).  the distribution of the arrival times 5 i , . . . ,  Sn have the same 
distribution as the order statistics of n independent random variables distributed 
on this interval (0,/) (see for example [Ross 83]). We assume that this idea is 
applicable to a discrete interval (the entire matrix in row stacked vector format, 
being visualized as a very long discrete time interval) and that the truncation of the 

exponential distribution does not have any significant effect on the uniformity of the 
nonzero distribution throughout the matrix.

After generating the random matrix, a random vector x is generated, such that 
each of its elements lie in the interval (-4 .5 ,4 .5). Following this. Ax is computed 
and the vector b is generated according to b{ = A{X + u, , where Ui is a discrete 

0-1 uniform random variable. In this way a feasible polyhedron is created. Our aim 
is to keep this polyhedron somewhat small and distant to the initial point of the 
algorithm, so that trivial convergence in a few steps will not occur.

An important issue is the selection of the w^eight vector Weights within
a block may be distributed equally among aU violated constraints or they can be 

assigned in proportion to the amount of violations. A suitable combination of the 

two approaches may also be used. In our tabulated results we have used the hybrid 

approach (which has also been used in [Yang & Murty 92]):

0.2{ A \ x ^ -b i )  0 . 8t,k7T· = +J2h:Â  x̂ >b̂  -  6 Ĵ ) number of violated constraints
(3.28)
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For coiiveuieuco it is assumed that ^  == 1. The relaxation parameter Â. has
been fixed at 1.7 and the feasibility tolerance ( r ) is taken as 10“'̂  (to enable finite 
convergence).

3.7.2 Parallel Architecture

In parallel implementation the number of submatrix blocks should be equal to the 
number of processors. Each processor deals with a single block, so that it is quite 
natural to divide the matrix into p submatrices as evenly as possible, so that each 
submatrix has about [y] rows. Each processor checks its constraints (which are 
equal or almost equal in size) for feasibility and computes the projection if necessary. 

W'hen a processor finishes its task, it waits for the others to finish as well.

During the subroutine operations (feasibility checks and projection calculations 
for distinct blocks) each processor works independently and no message passing 
among the machines is required. Then, the new iteration point is calculated 
according to equations (3.9) or (3.20). After this step, the new point is broadcasted 
to all processors and the procedure is repeated until a feasible point is found.

The broadcasting of the vector (at the beginning of the iteration) and the 
direction vectors - among all processors to compute (at the end of
the iteration) is a critical issue. A natural way to accomplish this is the following: 
x^ is transmitted to all processors from the first processor. Later, each machine 
computes its corresponding direction vector dt and sends it to the first processor 
where x^^^ is computed (see Figure 7). When the number of processors are large ( 8  

or 16), this procedure becomes quite inefficient due to the overload burden resulting 
from the transmission of these arrays of sizes ranging up to 2 0 , 0 0 0  double precision 
numbers.

To overcome this inefficiency, we have considered another design. Let each 
processor t compute the related dt and also \\dt\\'  ̂ for the given Computing 

IMdP is trivial, since it only involves a global sum operation (over the 

values). For Y^t=i^t^ let each machine be responsible for computing a fractional 

part ( l /p )  of the summation vector. Thus it is sufficient to broadcast only the 

fractional part of the related direction vectors. The quantity is ^Is^
determined by global summation over the fractional summed parts. Naturally, each



C H A riE R  :i THK USEAR FEASllUUTY PROliI.EM 29

d' ! d‘

Figure 3.7: Conventional parallel architecture.

processor will update the corresponding portion of with respect to equation 
(3.20). The fractional portions of (which are l/p^^ of the original vector size) 
should be broadcasted to aU machines. The Told' (over dt) and 'expand’ (over x^) 
operations just outlined, avoid the transmission of very large vectors among the 
processors, which would greatly slow down the parallel implementation. A more 

sophisticated parallel implementation of the long-step block projections algorithm 
has been recently reported in [Turna 98].

The initialization phase is carried out on each processor independently to avoid 
further communication among the blocks. If a test problem is to be randomly 
generated, the initial seed is broadcasted to aU machines. If the initial seed has 
to be read from a data file, this is done by all machines separately.

The distributed implementation of the algorithm has been developed with the aid 

of PVM 3.3.11 on several Sparc workstations. The algorithm is governed by a main 

C routine, which makes calls to a C subroutine (for the parallel block operations) 
and to several PVM functions (see [Geist et ai 94]). For waUclock timings, the 
same routine with slight modifications has been compiled and executed by the aid 
of PowerPVM/EPX on a Parsytec CC-24 machine.
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3.8 G eneralization of the N ew  Step Size to Convex 

Feasibility Problem s and Subgradient M ethods

The idea of the longer step regulated by the fractional parameter utilized in (3.20), 
can be easily generalized to the case of convex feasibility. Note that the Fejer- 
monotonicity proofs are valid for any valid separation of the test point and K . 
This may be a separating hyperplane or even a convex superset containing K . Here 
we will restrict ourselves to the case of separating hyperplanes.

We first outline the cyclic subgradient projections method (CSP) in [Censor 

& Lent 82]. This is an algorithm of successive projections onto valid separation 
domains, as also illustrated in [Dos Santos 87]. The underlying feasibility problem 
is of the form (identical to the one that will be posed in Chapter 4):

A' = {x e : M x )  < 0 } (3.29)

where the fi for all i are convex throughout the applicable domain. For convenience 
we assume differentiability as well. Let gi represent the gradient of fi(x).  The CSP 
algorithm is given as:

S tep 0 . arbitrary, 0 < A/; < 2, for all k. 

s te p  1 . = x'  ̂ -

Now, we present the parallel version of this step. Here we consider simultaneous 
projections onto all separating planes (orthogonal to the gradient directions). Thus, 

the simultaneous step becomes (we consider the case of assigning equal weights to 

the individual steps):

9i (3.30)

In general, the same idea is also applicable to the {6, t]) approach mentioned 

earlier (and actually to any simultaneous approach ranging from Cimmino’s 

algorithm to the most sophisticated block projections method). The key is to replace 

the short step determined as the convex combination of individual projections with 

the long step given in (3.26).



The Convex Feasibility 
Problem

C hapter 4

In this chapter we will first describe the central cutting plane algorithms based on 

the routines of [Ye 89], [Gof. et al. 93a, bj. Then we propose a variation of these 
methods which utilize rectangular cuts and subgradients as movement directions.

The cutting plane methods utilize the analytic center of the polytope as a test 
point. As stated previously, central test points are essential since central cuts induce 
faster shrinkage of the containing poly tope even if the most unfavorable hyperplane is 
selected. So before going into these algorithms, a brief overview of various definitions 
for the center of convex bodies will be given in the next section. In Section 4.2 the 
Ye-GofRn approach is summarized. In Section 4.3 the effect of multiple cuts is 
discussed. In Section 4.4 average convergence behavior of a typical central cutting 
plane approach is analyzed.

In the later Sections 4.5, 4.6, and 4.7 a new algorithm which maintains a 

containing box and (at the same time) utilizes subgradient directions is developed. 

In Section 4.8 some geometrical and analytical concepts for analyzing this algorithm 

are given. In Section 4.9 convergence of the algorithm is established.

31
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4.1 A Variety of Centers

The most natural center is the center of gravity of the convex domain. Indeed it is 
known that the center of gravity cuts lead to high shrinkage rates. It has been shown 
by Griinbaum and Mityagin that the volumes of the successive polytopes satisfy the 
following inequality (in

1
1 - 1 -

rn + 1
v a r (4.1)

Determining the center of gravity of a polytope is complicated, so despite this nice 
bound for shrinkage rate, a simpler center is necessary. In [Tarasov et al. 8 8 ] the 
polytope is approximated by an inscribed ellipsoid of maximal volume. If valid 
cuts through the centers of these ellipsoids are introduced, then convergence of the 
algorithm is quite good. However, determining this center for arbitrary polytopes 
is still complicated, although possible in polynomial time [Khachiyan & Todd 90], 
[Tarasov et ai  8 8 ].

The analytic center proposed by Sonnevend is much easier to compute and several 
polynomial time routines are given through Newtonian subroutines (see for example 
[Renegar 8 8 ]). The analytic center of a polytope ii = {j/ : A^y < c} is defined as 
the unique maximizer of the function:

Hy)  = X ] ln ( c -  A'^y)j
J= 1

(4.2)

Another center which has gained some interest, is the volumetric center of [Vaidya 

89]. Computation of the volumetric center is more efficient than the center of the 
maximal inscribed ellipsoid defined above [Atkinson & Vaidya 95]. It is calculated 

as the center of the maximal inscribed ellipsoid as well, but in this case a restricted 
class of ellipsoids are taken into account. According to this restriction, only ellipsoids 
which have axes parallel to the coordinate axes are considered. It is defined as the 
minimizer of the following potential function:

F(y) = iln (d e t(^ (y ))) (4.3)

where If(p) is the Hessian of the negated potential function of the analytic center:

-  <̂ (y) = - ¿ l n ( c - A ^ y ) j  (4.4)
i=l
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aiul is positive (lofnuto Vx € iiit(Q). I'lie maximal inscribed ellipsoid of the polytope 

il is given as;

E ( i r \ y ^ ) . y ^ A )  = {y :{y -  H(y^){y -  y^) < 1 },0n7' it, ,0\, .Ox (4.5)

where is the volumetric center computed as above. It has been shown that when 
cuts are introduced from the volumetric center, the volumes of successive ellipsoids 
satisfy:

< 0.843r(£*··) (4.6)

A detailed discussion of centers may be found in [Kaiser et ai  91].

4.2 The Ye-Goffin Approach of A n alytic  Centers

In this section w*e give a short discussion of the possible improvements that can be 
made on the convex feasibility model described in [Ye 89] and [Gof. et al 9.3a, b]. 
The problem can be implicitly defined by a separation oracle at a given test point. 
Each iteration of the Ye-Goffin algorithm gives a separating hyperplane between the 
test point and the convex set. The procedure is repeated until an interior point of 
the convex body is found. The selection of the test point is essential for rapid volume 
shrinkage of the containing polytope and hence the rapidity of the algorithm. As 
previously stated, the center of gravity cuts lead to algorithms which have relatively 
high shrinkage rates; however computation of the center of gravity is too complicated. 
Thus, in the recent literature the use of analytic centers has become popular. The 
cuts obtained from the analytic centers are satisfactory [Gritz. & Klee 93a] and can 
be computed approximately with the desired tolerance within a reasonable amount 

of Newton steps.

The convex feasibility problem posed in [Gof. et al. 93a, b] can be described 
briefly as follows: F is a convex set defined implicitly by a separation oracle. Given 
any point y, the oracle either answers that y G int(F) or generates a separating 

hyperplane a^(y -  y) = 0, |a| = 1 and a^y < a^y^ which is valid for F. It 

is assumed that F is contained in the unit cube, and it contains in itself a full 

dimensional ball of radius e (hence its interior is nonempty). In our analysis, F is 

explicitly expressed as:

r = { y e ^ ^ :  / : ( y ) < 0 , l , 2 , . . . ,p }
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such that /,:'s arc convex. The problem is solved when a suitable y G such that 

all f:(y) < 0  is determined.

Central cutting algorithms start with an elementary containing domain, a ball, 
a cube or a simplex for which the center is trivial or easily computable. A valid 
cut passing from this point is generated and the new center of the shrunk domain 
(polytope, ellipsoid or whatever) is approximated or computed with a high degree of 
accuracy (or directly calculated if it is trivial). The procedure is repeated and the 
algorithm stops wdien an interior point is found. Some classes of these algorithms also 
alloŵ  for infeasible inputs and terminate appropriately if such cases are encountered.

Now w'e give the algorithm in [Gof. et al. 93a, b]:

The Cutting Plane Algorithm of Analytic Centers:

Step  0 .

>1° = ( / . - / )  € ??m X 2rn

= : 0  < y < 1 }

/  = ie  G G x° = 2e G

Step  1 . Find the center y* of Check if y*̂  G int(F) and stop in that case. 
If not, choose any i such that fi(y^) > 0. Let y,· be a subgradient of /,■ at y*', and 

let Cfc+i = 11̂ .  Then {y : af^jy < al^^y'^} D F, so let = (A'=.aA:+i), 0 =̂+̂ =

S tep  2 . A; = A; + 1 , go to Step 1 .

The implicit oracle definition provides a column generation scheme for the Ye- 
Goffin approach. Since we assume that F is defined as in the previous section, calling 

the oracle amounts to a sequential check of those inequalities. In the following 

section, we wiU consider introducing all (or some) of the cuts generated from the 

violated inequalities one at a time. But for particular problems, each call of the 

oracle might be quite costly depending on the prespecified implicit definition, so 

that this approach might become unimplementable.
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Recallhig the analytic center of the polytope Q = {y : A^y < c} as the point y 
maximizing o{y) in (-1.2 ). the potential function of the polytope will be defined as:

F(9.) -  (i>(y) -  max(o(i/))
S/€s2 (4.7)

This algorithm guarantees positive reduction of the potential value at each iteration 
with appropriate parameters [Ye S9]. [Gof. et al. 9 3 a].

The interest in 9 .  the containing polytope in the dual space, has arisen from the 
availability of the centering direction which has been defined originally for primal- 
dual path following methods. Let us consider the following primal-dual pair of linear 

programs for an instant:

(P) min c^x

s.t. Ax = b

X > 0

(4.8)

(D) max b^y

s.t. A^y + s = c 

s > 0

(4.9)

An interior point algorithm which stays close to the central path, has iterationaUy 
a better convergence rate than that of the projective scaling algorithm. This centra/ 
path is the set of minimizers of the following problem with the logarithmic barrier 
function and the penalty term p > 0 [Mont, k  Adler 89]:

(P^) min c^x -  /r In Xj
J = l

s.t. Ax = b

X > 0

(4.10)

which has a unique solution x{p). The necessary and sufficient conditions for (P^) 

[Todd k  Ye 90], [den Hertog et al. 90] are:

X s  -  pe = 0 

Ax = b 

A^y T s = c

(4.11)

(4.12)

(4.13)
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where X  is the diagonal matrix version of the vector x. For a previous choice of 

.s = (or // = ), one can rewrite (4.11 ) as A'.s -  = 0. In fact, the set C
-  |(.r,,s)..r G G : Xs = is known as the central path. Path following
methods move along the vicinity of this set to solve the original linear program. The 
duality gap for feasible :c, y, s between (P) and (D) is x -  y = s -  nfL.

The conditions (4.11), (4.12), and (4.13) are all applicable for the following barrier 
function problem:

(Df,) max y + i-i E ' - v
J  =  l

s.t. A^y + s = c 

s > 0

(4.14)

with the extra condition that x > 0 [Todd L· Ye 90].

The centering direction for the Newtonian subroutine in the main algorithm in 
[Gof. et al. 9 3 b] is given as:

Sdx + Xds — — X s
n

Adx = 0

A^dy + d.s = 0

(4.1.5)

(4.16)

(4.17)

with d = (dx,dy,ds).  This direction is the Newton step from (x,s) to the central 
path with duality gap x^s,  for the original (P) and (D) LP pairs [Mizuno et al. 
90].

This Newton subroutine is convergent whenever the starting point satisfies ||X 5 -  

e|| < 7  < 1» and .X > 0 ,s > 0  [Ye 89], [Gof. et al. 93b]. This is similar to 
the convergence criterion for the Newtonian minimization of the algorithm given in 

[Renegar 8 8 ].

When a new column a is added to 4̂* (a new cut included in fi*), such an 

{x ,y ,s )  satisfying the above necessity condition can be found from the previous 
approximate center (of the previous polytope); {x^,y^,s '‘) [Gof. et al. 9 3 b]:

r* = sJaJ[A[X'^)‘̂ AT')-^a

Ay = ~{l3lT^)(A{X'^fA^)-^a

(4.18)

(4.19)
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and,

A.S = (J/r^)A^’{ A { X ^ fA ' ' ) - ' a  

i/ = /  + Ai/

(s'‘ + A.s) 
(f3r^)

{x^ + Ax) 
"■ = (/3/r^)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

Starting from {x\ y, s), after a sufficient number of steps as given by (4.15), (4.16), 
and (4.17), the center can be found within a certain tolerance.

4.3 M ultiple Cuts

By introducing many cuts at a test point (generated for all or part of the violated 
inequalities) or furthermore, calling the oracle at many test points inside the 
containing poly tope (whenever implementing the oracle is not too costly), one could 
possibly obtain a better shrinkage performance, as also pointed out in [Ye 89].

Confining ourselves to a single test point at each iteration, we can include all cuts 
generated by all inequalities that hold as fi{y^) > 0 , where y^ is the current test 
point. Note that each such inequality generates a valid cut of the form giy < giy^. 
One might expect this approach to lead to a faster algorithm, especially for cases 
where the number of inequalities defining F is numerous. However, center updating 
at each iteration would be tedious and maintaining the containing polytope would 
become more difficult.

So we consider another way of determining the next test point. One can take 

a large single step into the next polytope. A possible movement direction is the 

negative sum of the normalized gradients of /t(i/^)’s such that fiiy^) > 0 , i.e. all 
of the violated inequalities which are taken into consideration. This direction will 
be denoted shortly as the NSNG direction. In mathematical terms it is expressed as

, under the assumption that all gi's are normalized. An important problem 
is to decide on the step length. At a given iteration the next test point is found as:
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gly-y)=0

Figure 4.1: The NSNG direction for the case of two valid inequalities. The normal 
vectors and ^ 2  (each assumed to be of unit length) which define the cutting 
hyperplanes, are also illustrated. The NSNG direction is - ( ^ 1  + 5 2̂ ).

I I E 5 .il
(4.25)

where a is the step size.

For appropriate recentering, one would naturally try to estimate the radius of 
the current poly tope. As also discussed in [Gritz. &: Klee 93b], this problem is very 
complicated even for simple polytopes. One could have considered the half-width of 
the new polytope if this was not the case. In this way the new test point would have 
been somewhat closer to the center. One could consider the width of the maximal 
inscribed ellipsoid, instead. Although this can be computed in polynomial time 

[Khachiyan & Todd 90], it is too complicated for practical purposes. One approach 
is to be satisfied with the volumetric center of the current polytope, which is easier 

to compute. (The notion of volumetric center has been introduced in the previous 
section.) This center can also be determined with a certain precision in polynomial 
time, but still not very efficiently [Gonzaga 92]. Thus the novel approach described 
here, is conceptual rather than practical.

The determination of the volumetric center and the width of the related ellipsoid 

will be illustrated. We can recall from equation (4.3) that, F(y) =  ̂ln(det(/f(j/))), 
where f f(y)  is the Hessian of (/>(y), the negative logarithmic sum of the slack 
components. The volumetric center as stated, is the minimizer of F(y) over the 

poly tope [Vaidya 89]. One can approximately obtain it through the Newtonian
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roiitiiio with the following iteration:

= y -  i Q ~ H y ) v  f'iy)

whore,
GjaJ

Q(y) = Y,(^jiy)} T-------^  { a j y - C j VJ = 1

and,

V F i y )  = '^<yjiy):----[ C j - a ]y )

a j H ~ \ y ) a j
<̂ j(y) = {ajy  -  Cj)2 ’ I < j  < n

(4.26)

(4.27)

(4.28)

(4.29)

in which a j  is the row of .4^ of the current polytope. As a starting point of this 
subroutine, we need an interior point of the new’ polytope. So we can start with, for
example:

(/ = /  -  (2 0 m€ A
II

(4,30)

where is the previous test point and e is the radius of the ball contained (by 
definition) in F.

Having computed the volumetric center with a certain tolerance, the width 
of the related ellipsoid E(H~^{y^)^ y^^l) is 2\/Xmin where Anun is the smallest 
eigenvalue of H~^{y^) [Grotschel et al. 8 8 ].

It may seem superfluous to carry out all this effort while having at hand y^ , the 
volumetric center, which could work quite well as the test point, but for the sake 
of completing the discussion and utilizing the movement direction as suggested, we 
write the new test point as:

L 9 i  .
Eff.ir tt = V^min (half-width) (4.31)

Whether one uses the above method for estimating the width or some other 
method, the long step given by (4.31) may result with a test point which is exterior 

to the polytope. The effectiveness of taking a step equal to the haJf-width of the 

inscribed ellipsoid is related to the centrality of the previous test point. It is clear 
that as one proceeds with the iterations, the subsequent test points may become quite 

distant from the current centers, and the occasion of infeasibility may occur. One
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(a)
Figure 4.2: (a) A feasible step, (b) An infeasible step.

particular way of restoring feasibility when this occurs is to consider the volumetric 
center or the analytic center (if available) as the new test point.

So a methodology that can deal with infeasibility is essential. Another advantage 
of such an approach is the fact that the ability to restore feasibility allow's one to 

take longer steps within an algorithm. Even though one could devise a safe method 
which stays in the polytope, computational experience indicates that taking long 
steps are worth considering, since they induce faster termination. It is reported in 
[Kojima et al. 93] that taking longer steps along the central path in primal-dual 
scaling results in better convergence. So it is worthwhile to estimate a suitable step 
length and deal with infeasibility.

Numerical experimentation and their theoretical implications will be the subject 
of future research. Initially, we have found it more promising to investigate shrinkage 
through rectangular cuts. The ideas underlying this approach are given in the 
following sections.

Before closing this section we will mention an interesting point related to the 

NSNG direction. As described, a step is taken in this direction at each iteration. If we 

had a single function defining the convex body (only an / i  < 0 , such as an ellipsoidal 

region) the NSNG direction is obtained from (4.31) as -(v/i/ll V /i ||) ·  This can be 
recognized as the steepest descent direction for the nonlinear unconstrained problem 
‘minimize f \  ’. Recalling that the convex body contains a ball with radius e by 

definition, a convergence criterion similar to that of the conventional steepest descent
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algoritlini. can be given based on this definition.

4,4 E stim ation  of the Shrinkage R ate o f Containing  

D om ain Procedures

It is established in [Gof. et ai  93b] that the algorithm should have terminated 
whenever the number of iterations k satisfy:

^2 j  + 2 m ln( 1 + 8^ )  - 2ct
m 2m + k + I (4.32)

where rn is the dimension of the Euclidean space in which the convex body is found, c 
the radius of the full dimensional ball contained in the convex body, and a a positive 
amount of reduction guaranteed on the potential function. The above statement 
indicates that the algorithm is a fully polynomial approximation scheme; how'ever it 
is possibly an overestimation of the average performance. For parameter values of 
m = 3, € = 0.05, a = 3.95 x 10“  ̂ the minimal value of k satisfying (4.32) is about 
48, 500. For typical problems of this size, one does not expect such a large value of 
k , on average.

Instead, let us try to track the shrinkage rate of the maximal inscribed ellipsoid 
—with the restriction of [Vaidya 89]—at each iteration. Assume that we have an 
algorithm which guarantees that the next ellipsoid has a volume less than a fraction 
p of the latest ellipsoid, i.e. pV^ > . The volume of the ellipsoid is [Grotschel

et ai  8 8 ]:

(4.33)

where is the volumetric center, H(y^) is the Hessian of —<t>(y) (the negated 
barrier function), and = r(m7 2 +i) volume of the m dimensional unit ball.

Initially we have a ball of radius 1/2 (m dimensional):

yo ^  2~'^V (4.34)

Given that the convex body contains a ball of radius e, the minimal volume that 
can be achieved just before termination of the algorithm is (after k iterations):

yk  _  ^myr (4.35)
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Since wc have assumed that p is the upper bound value of the fraction of volume 
reduction throughout the algorithm, after k iterations:

k = rn ln(2 6 ) 
In p

(4.36)

(4.37)

So after k = (m ln(2 £))/(ln/)) steps, the algorithm should have terminated. With 
parameter values m = 3, e = 0.05, p = 0.95 the given algorithm would stop after 
at most 135 iterations.

It may be theoretically difficult to obtain a worst case value p for some 
algorithms. Nevertheless, if an average shrinkage rate can be deduced, equations 
(4.36) and (4.37) are useful to obtain the number of steps required, on average.

4.5 An Approach C om bining Containing D om ains and 

D escent D irections

The central cutting plane approach to the feasibility problem in [Ye 89]. [Gof. et al. 
93a, b], [Bahn et al. 94] yields more and more complex containing domains as the 
number of iterations grow. For practical implementations one should reconstitute a 
simpler domain after a prespecified number of iterations by relaxation. Another way 
to maintain a simple domain is to put certain restrictions on arbitrary cuts. The 

idea of rectangular cuts has been proposed in [Ozak. 95] and developed in [Ozak.

96] through a simphfication of the central cuts obtained in [Gof. et al, 93a, b]. Our 
objective here is to present a thorough description of this approach.

One can obtain the induced rectangular cuts from a given valid inequality. Each 

valid inequality provides a lower or upper bound for any variable component which 
has a nonzero coefficient in the valid inequality. Thus one can possibly obtain m 

induced rectangular cuts (since the feasibility problem is defined in ) from each 

valid inequality. Obviously, some (actually most) of these cuts are redundant.

Thus we will repose the feasibility problem as:

Í2" = {j/ e J?”* : 0  < y < 1 }
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r  = {^ 6  : fi(y) < 0 } fi — convex and differentiable

r  C C C . . .

where = {/; G < y < is the current containing poly tope

and y^\s the current test point in

Hence at the iteration one has to update a polytope of the form = {y ^ :
< y < u^] where and are lower and upper bound vectors respectively. It is 

natural to start with the unit cube as the containing polytope. The current center 
of the polytope is simply y^ =  ̂ approach, no special effort is made for
center computations.

One major disadvantage of this approach is the reduced shrinkage rate, when 

compared to the approach employing arbitrary cuts. Actually, as will be illustrated 
below, this disadvantage may be so severe that the algorithm might become stuck at a 
point without a feasible result. However, the simplicity of the containing box enables 
us to use additional tools to formulate a convergent algorithm. The notion of the 
negative sum of normalized gradients (NSNG) direction, which has been suggested 
previously for the cutting plane approach with arbitrary cuts, will be quite useful. 
By the utilization of this direction we aim to obtain test points which are better 

than central points.

4.6 O btaining Rectangular C uts A nalytica lly  and the  

P rim itive Rectangular C utting P lane A lgorithm

The method that is described here for obtaining the new containing box induced 
from the valid cuts, does not necessarily give the minimal box containing the new 
polytope. However, it is quite simple and straightforward, and one need not bother 
with the minimal box which is quite difficult to compute. Provided that we have 
a valid cut ay < ay (obtained by a single implementation of the separation oracle, 
as in [Gof. et al. 9-3a], [Ye 89] etc.), the idea is to obtain the lower or upper bound 
induced on each component of y (Figure 4.3). The induced upper (lower) bound is a 

rectangular cut, yj < uj (Ij < yj) (orthogonal to the yh axes, = 1 , . . . ,  m, h j )  

and is less deep than ay < ay. Hence it is also a valid cut.

Thus each valid cut ay < ay induces several valid rectangular cuts (each in the
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(a) (b)
Figure 4.3: (a) The given valid cut, ay < ay. (b) The induced rectangular cut, 
yj < “j ·

form of a lower or an upper bound). These bounds will be determined sequentially 
for j  = in the following way: Pick a component of y, say y j . If a, > 0 ,
then one can obtain a valid upper bound by assigning the lower bound values to 
the variables with positive coefficients and upper bound values to the variables with 

negative coefficients, in the valid inequality ay < ay. Similarly, if aj < 0, then 
one can obtain a valid lower bound by assigning the lower bound values to the 
variables with positive coefficients and upper bound values to the variables with 
negative coefficients. In this way one can obtain a bound induced on yj by the valid 
inequality. (If aj = 0, then no bound is induced on y j .)

The proposed method of obtaining upper and lower bounds can be verified as 
follows. When a valid inequality is at hand, one should consider the worst cases, 

in order to obtain rectangular cuts which are also valid. So, whenever aj > 0, by 

assigning Ik —̂ yh for ah > 0 OT Uk yh for a/i < 0 , /i = 1 , . . . ,  m, /i 7  ̂ j , we have 
the induced cut:

O'jyj < [ a y -  X ] a h k -  dhUh] (4.38)
a/j> 0

For all the worst case possibilities to hold, the RHS should be as large as possible, 

and this is indeed the case for the above inequality. Similarly, whenever Oj < 0, the 

induced cut (by a similar assignment) is:

-  djyj > [-ay  + Y  ahh  + Y
ah> 0  an<0

(4.39)

This time, the RHS should be as small cis possible for the worst cases and clearly
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it turns out to be so when yk = h  if > 0 , — Uh if (ih < 0  for h =
1 ....... m. h ^  j .

Algorithmically, we prefer to treat each valid cut separately and sequentially 
to obtain the induced rectangular cuts. At the end of an iteration, we update 
the containing box by the best bounds obtained. Hence the containing box which 
is obtained at the end of the iteration is not necessarily the minimal box which 

contains the containing polytope obtained by the introduction of all arbitrary valid 
cuts (Figure 4.4). But, it is neither meaningful nor ea^y to compute the minimal box 
containing that polytope. Before going into the rectangular cutting plane algorithm,

(a) (b)
Figure 4.4: (a) The minimal box containing the new poly tope found by two valid 
inequalities, (b) Another containing box computed (as described in this section) 
which contains the new polytope. This one is not minimal.

specific bounds will be given for the case where the test points are the center points, 
i.e. at the iteration y = Plugging in this value for y, inequalities (4.38)

and (4 .3 9 ) become respectively (from the valid cut ay < a- t ^ - )·

1
( i f < . ;> 0 ), ! / , < - ( / ? + « } )+  X

fl/i
2uj

ah
2a ( 4  -  < )

(4.40)

(4.41)
1

(if aj < 0 ), pj > -(Ij  + «j) + ^
^ h=l.h: ĵ

So the modified algorithm restricted to only rectangular cuts (with central test 

points) will be given as follows:

The Prim itive Rectangular Cutting Plane Algorithm:
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s te p  0 . y e  < y <  /° = 0 . =
A· = 0. 

= iC
= { j/: /" < < «"}

Г = {y · fliy) < 0 } fi — convex and diirerentiable,
i = Г C

(We have taken the unit cube as the initial box for convenience, but one may start 
with any arbitrary box and its center.)

Step 1 . Check if fi(y^) < 0 for all i. If this is the case, stop with success. If 
not, for all i which have fi(y^) > 0 , consider the valid inequalities of the form:

(I'y < d'y s.t. a' = V /t(y ) = Ум where /Лу ) > 0

Here, a* 's are not necessarily normalized and if some ’s are not differentiable, 
subgradients provided by the oracle can be used. For each such cut, update the 
following upper and lower bounds (rectangular cuts):

For j  = 1 ___, m

(i) if aj > 0 ; let

1
4  = 5 ( ' ; + “i ) +  E

dh
2a, ( <  -  Ю

Let üj = min{üj,Wj}

(¡i) if Cj < 0 ; let

A = 5('Í + «Í)+ E
dh
2a i ( 'Í -  «Í)

Let Ij = min{/j,/j}

Step 2. = Ü, = /, = {y : < y <
If j/*+i = y*. then the algorithm fails, otherwise let k = k + 1 and go to S tep 1.

This algorithm is a nonconvergent routine (it may not terminate with a feasible 

result), but it illustrates the idea of rectangular cuts for a central cutting plane 

approach. Actually it will form the basis of a more sophisticated algorithm that wiU 

be illustrated in the following section.
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Hence vve will refer to the stated algorithm as the weak (or the primitive) routine. 
Indeed, most of the rectangular cuts obtained are redundant, and the nonredundant 
cuts are not deep. So the shrinkage rate of the containing box is not very impressive 
and what is more unfortunate is that the algorithm may terminate at an infeasible 
test point, without a further reduction of the box.

However, the simplicity of the algorithm and the well defined and simple 

containing domain are still the valuable assets of this approach. As an improvement 
we will consider the use of noncentral test points which can be possibly better than 
center points.

In previous sections, the concept of the NSNG direction was introduced. The 

applicability of this concept was quite limited, since we had been working on arbitrary 
polytopes without well defined structures, where we had been trying to estimate the 
polytope radius to obtain a usable step size. iN'ow, since we have a containing domain 
with a simple and clear definition, we can utilize this concept to its utmost extent. 
So from now on, w'e will not consider the pure algorithm given in this section with 
central test points, but an algorithm which allows movement towards the convex set.

Figure 4.5: Movement in the NSNG direction.

4.7 A N ew  A lgorithm  Based on Containing Boxes and 

Subgradients

In this section we outline an extended approach to increase the performance of the 

weak routine summarized above. We utilize the NSNG direction described previously,
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at oach iteration, lii this way the algorithm will roiitimie to proceed, even when 
further shrinkage is no longer possible from a given test point (see Figure 4.G). 
Furthermore, we e.\pect the generated test points to be better than central points 

( Figure 4.7).

(a) (b) (c)
Figure 4.6: (a) Shrinkage does not occur at y. (b) New test point y~̂  = y -  ad. (c) 
New containing box computed at the new test point y~^.

For arbitrary test and cut algorithms which call implicit oracles (either to verify 
feasibility/optimality or to generate valid inequalities), usage of central test points is 
the most meaningful policy, since this conceptually gives the best shrinkage rate of 
the containing domain. However, in the specific case where an explicit definition of 
the convex set is available (through a set of functional inequalities), the predefined 
movement direction yields better test points than central test points. We still 

compute the maximum possible step size in a given direction (thus we have to update 

/ and u)\ however the containing box loses its importance with this approach.

At each iteration we update / and u as in the original algorithm. Then we 
determine the movement direction —d and a suitable step a < Omax is taken in this 
direction. This new point is the test point to be used in the next iteration. As will be 
seen in later sections, a suitable step sizing subroutine is essential for convergence. 

At this instant we will assume that the step size can be determined efficiently by a 

suitable subroutine. We will return to the issue of step sizes later.

The Extended Rectangular Cutting Plane Algorithm:

step  0. y € 3?"*, /° < J/ < (/° =  Ó, u® =  e =  ¡e)
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(a) (b) (c)
Figure 4.7: (a) Test point y, and shrinkage through rectangular cuts, (b) New test 
point y'  ̂ = y — ad,  obtained by moving in the direction of —d. (c) New test point 
y'^ , and shrinkage afterwards.

A; =  0, Ü = u°, / -- /°, =  {t/ : /° <  y <

r  = {y : fi(y) < 0} (All fi 's  are convex and differentiable)

r C

Step 1 . Check for all i, whether /,(y^) < 0. If so, then stop; an interior point 
has been found. If not, then for aU i such that fi(y^) > 0, consider the following 
valid inequalities:

a‘y < a'y^ s.t. a' = j | ^ ,  where fi(y^) > 0

Here y, = V/i(y^) a ,’s are normalized. For each such cut, update the 
following upper and lower bounds:

For y = l , . . . ,m

(i) if Oj > 0 ; let

S; = !'‘+ E > i- 4 )+ E
h:afi>0 I r\ ^  ih:ah<0

and let Uj = min{új,üy}
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;ii) if a¡ < 0 ; let

= E  “N d - i, ..A: ;A·,
 ̂ AllI r\ ^ 1h:ah>0 ^

-  E  ? ( í /¿  - 4 )
« ^ 'A '  1

and let Ij = max{/^,/j}

Step 2 . Let
E>:/,(y*)>QAA‘

- d = -
Ei;/,(y*)>0 ® j

Let = «, = / and = y'  ̂ -  ad for a suitable step size a. Set k = k + I
and go to Step 1 .

4.8 Some C oncepts R elated to  th e  D escent Approach

We will classify the extended version of the rectangular cutting plane algorithm as a 

descent approach, since iterationally the algorithm takes a step in a mixed descent 
direction towards the feasible convex body. The term descent is interpreted as an 
overall reduction of the individual functional values, where the functional inequalities 

define the convex body.

It was emphasized previously, that the step sizing policy is of central importance 
in determining the convergence behavior of the algorithm. One can adopt two 
different approaches to step sizing. The first approach is to take step sizes as 

predefined/updated fractions of the maximum possible step size that will keep us 

in the containing domain (such as 0.7 x Omax- 0.5 x «max. 0 . 2  x ttmax)· The second 
approach is to use step sizes unrelated to the maximum possible step. In this case, 
the containing box is no longer of any importance and the routine becomes a pure 
descent algorithm. In this approach, one has to use reference measures other than 
those of the containing box, for determining the step size at each iteration.

A number of definitions will be given before we go into theoretical results:

The Descent Set:

A movement direction from a test point will be denoted as an overall descent 
direction if a positive step towards that direction yields a reduction in all nonnegative
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functional values. laking steps in such consecutive descent directions would 
theoretically provide a convergent algoriilmi and this fact makes the concept 
important. The descent set, wdth respect to the test point y will be defined as 

the set of points (convex) where each point has a reduced value of the functional 
values which are nonnegative at y.

Obviously the descent set contains the convex body, since every point y within 
that set satisfies f i(y) < 0 for ail i s.t. fj{y) > 0. Actually the descent set can 
be defined as the intersection of convex sets bounded by the contour sets of all 

nonnegative functions passing through the test point y. In more formal terms:

n  < f i iy)]
t:/i(2/)>0

(4.42)

Naturally the set is convex. Any direction vector emanating from the test point 
which traverses the descent set (which has common points with the descent set) is 
an overall descent direction at this test point.

Figure 4.8: The descent set and a descent direction, - d .

The Descent Cone:

Now we introduce a slightly different concept in order to obtain a better definition 

for the descent direction. Considering only those functions with nonnegative values 
at the test point, it will be recalled that each functional inequality induces a valid 
cut of the form giy < giy^ assuming that all gi's are normalized. We will name the 
intersection of these halfspaces as the descent cone. The cone is pointed at the test
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point y ,  Forinally the rone is defined as:

n  {^‘У ^
i:/i(y) > 0

(4.43)

The hyperplane g^y — Qiy is tangent to the contour set fi(y) = fi[y) and clearly 
the steepest descent direction gi is perpendicular to this tangent hyperplane.

Now let y^ = y — ad for some a  > 0. We can say that - d  is a descent direction if 
and only if y"̂  is contained in the descent cone, defined as in (4.43). This is expected 
because y~̂  as in (4.42) should satisfy fiiy'^) < ftiy)  for all i with fi{y) > 0, for 
some positive value of a. The reverse statement is also evident: if any was 

outside the descent cone, this would indicate that at least one inequality of the form 
> fi{y) holds; which would also violate the descent condition.

The descent set is contained in the descent cone. This is because each hyperplane 
in (4.43) is a supporting hyperplane of the descent set at the test point y. 
Furthermore, it is easy to verify that the inequality dy < dy is valid for the convex 

body (see the following section), where d is defined as (from now on we relieve the 
assumption of the gi's being normalized):

d = nf: (4.44)

We will refer to this surrogate hyperplane {y : dy = dy} as the averaged support 
plane. Clearly it is orthogonal to the movement direction —d and it is a supporting 

hyperplane for the descent set and the descent cone. Another support plane can also 

be given as Gy < Gy, where G = J2i-.f,{y)>o9i■ Note that G is not identical with 

d. In fact, d = ^ scaled version of G.

R em ark : If the smallest angle between the conic rays of the descent cone is 
greater than 90 degrees, then - d  (the NSNG direction) is a descent direction.

The Ascent Cone:

In a similar manner we can define the ascent cone, which is also pointed at y. 

Similarly, it is the intersection of several half spaces:

n  Í9iy ^ 9iy} (4 .4 .5 )
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It can be seen that the only difference is that the inequalities in (4.43) have changed 
their direction. As the name implies, if y'^ =: y -  ad,(o > 0) is contained in the 

ascent cone, then we should have fi(y'^) > M y)  for all i with /,(y) > 0 . This fact 
follows from the convexity of these functions.

Figure 4.10: The descent cone, the ascent cone, the averaged support plane and a 
descent direction -d .

The Functional Distance:

It has been stated previously that, if the step lengths are short enough, then the 

algorithm should converge. Experimental evidence indicates that if the step lengths 

are not short enough, then it is quite possible that the algorithm may not terminate. 

This phenomenon takes place due to oversized steps, in the form of orbiting around
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tilt' convex set witliout reaching it.

(a) (b)
Figure 4.11: (a) Long steps, (b) Short steps.

What should be the step size, so that orbiting does not occur? Intuitively, if the 
consecutive step sizes are longer than the Euclidean distance between the test point 
and the convex set, then this will result in an orbital trajectory.

However, determining the distance to the convex set could be quite difficult in 
practice. (In fact, if we knew this distance, we could almost simplify the convex 

feasibility problem to a linear feasibility problem.) For this reason, we will introduce 
the following relative distance measure instead of the Euclidean distance. The 
functional distance will be defined as:

F{y) =
i-f, {y)>o

(4.46)

We wiU also refer to F as the functional sum. since it is the sum of the positive 
functional values. In the next section, it will be verified that it is a convex function.

Despite its simple definition, the functional distance is a useful surrogate for the 

Euclidean distance, allowing relative comparisons between consecutive algorithmic 
steps. If it decreases continually, then this means that we have an overall descent 

behavior. If it fluctuates between different values or if it almost remains constant, 
then we can say that the algorithm is trapped in an orbit, hence the current step 

sizes are not short enough, and they must be adjusted. In this way, we do not need 

to have an explicit knowledge of the Euclidean distance to judge whether the step 

lengths are longer than necessary.
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Due to convexity, as one moves away from the convex set in a fixed direction, 
the functional distance will also increase. However, the rate of increase in different 
directions will be quite different, since at a certain test point, the functional values 

are quite different. Furthermore, the functions independently have irregular increase 
rates for a fixed direction. There is a complicated relationship between the functional 
distance and the distance to the convex set. It is not our objective to establish such 
a relationship.

For practical purposes we will define the functional scaled distance (sum) as:

Fsciy) = ^  Pifiiy) (A > 0) (4.47)

The scaled sum is also convex.

We need one more definition, which we will refer to as the weighted functional 

sum:

F^(y) =
llff.ll

(4.48)
i f . { y ) > o

Clearly is a special case of Fsc, with Vz, l3i = j - j^ . While establishing 
convergence of the algorithm in the following section, we will mostly make use of the 
weighted functional distance.

An Overall Reduction Algorithm:

Finally, we define the concept of overall reduction of a certain function. Let the 

initial value of the function be finite and positive. Consider some primal minimization 
algorithm. At any given iteration if there exists a positive finite integer N 
such that f(y^) > (meaning that after N  iterations a positive amount
of reduction is guaranteed on / ) ,  then we will denote this algorithm as an overall 
reduction algorithm on / .

Note that N need not be the smallest integer satisfying f(y^) > /(j/^“̂ ^). 

Moreover, for an overall reduction algorithm, there can be a finite or infinite number 

of reduction steps depending on the convergence routine.
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number o f 
iterations

4.9 Convergence R esults

In the remaining part of this chapter, we will mainly deal wnth the extended cutting 
plane approach. It has been stated earlier that the convergence behavior is governed 

by the step sizing policy. We will give the theoretical convergence of the extended 
cutting plane routine provided that an adaptive step sizing policy is used.

Experimental results indicate that if the step sizes are small enough, then the 
algorithm should converge. Therefore, the critical issue is to determine ‘how small is 
small enough’ for convergence. We will see that by keeping track of the test points, 
it is possible to properly adjust the step size.

At this point, one remark will be made regarding the NSNG direction, which was 
defined as:

- d = - - (4.49)
^*:/i( ! / )>0 ||p»|

That is, at a given test point y, we sum up all the normalized gradients of all the 

functions which have nonnegative values. Steps are taken in the direction of -d .

Suppose that we have only a single function /, which has a nonnegative value 

at point y. Then, the movement direction given by (4.49) is the steepest descent 
direction for the problem ‘minimize /, ’. In fact, the algorithm minimizes in a certain 
way several convex functions by taking a combined (steepest descent) direction, and 

stops when all functions have negative values. This similarity to the steepest descent
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algorithm will be essential in establishing the convergence criteria of the algorithm.

4.9.1 Some Lemmas Related to Convergence

In this section we will list a number of elementary lemmas which are of importance 
for establishing convergence. We assume that all functions underlying the convex set 
are explicitly known, convex and differentiable. The assumption of differentiability 
w'ill be relaxed later whenever generalizations are possible but unless stated so, we 
will retain this assumption for convenience.

Due to convexity of the functions /¿, i = 1,2---- the sets defined as {y : /,(i/) <
v a lj are convex. We also sometimes refer to the contour sets of the functions with 

the prespecified value val{ as {j/ : /¿(y) = v a lj .  Naturally these contour sets form 
the boundaries of their corresponding convex sets. The convex body for which we 

seek an interior point is F = Hi·{2/ · ft(y) ^  0 }·

Lemma 4.9.1 For all vali < val2 O  {i/ : fiii/) < vail} C {y : /,(y) < val2 ) 

given vali,val2 > min{/,(y)}.

f,(y)=val2

Figure 4.13: vali < vab O {y : /,(j/) < vali} C { ¡ / : f i ( y )  <  va^} 

Proof: The lemma follows from convexity. |

Lemma 4.9.2 For any  i ,  p rovided  that val, > 0 

{y : fiiy) < val,·} 2  {y ■ fi{y) < 0 } 2  T.
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f,(y)=val,

Figure 4.14: {¿z : /,(j/) < val,} 3 {y : /¿(t/) < 0 } 3 F.

Proof: This lemma follows from Lem m a 4.9,1 and the definition of F. |

Lem m a 4.9.3 Consider the test point for which possibly 3/ s.t. /¿(y) > 0. The 
convex body is contained in the descent set due to y. Clearly the descent set is 
nonempty.

Figure 4.15: The descent set is nonempty and it contains F.

Proof: The claim is valid since

{i/: fxiy) < v a lj 3 {y : f i(y) < 0} for all i.

n  {y ' fi(y) ^  fi(y)} 5  : My )  < vali} 3 {y : /.(y) < 0} = F.

- -—V ^
The Descent Set
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Lem m a 4 .9 . 4  Coimdcr the test point y. possibly with 3i s.t. f,(y) > 0. The 

arerayed support plane defined preinousiy as dy < dy is vnhd for I'.

f,(y)=i(y)

Proof: The claim follows as a consequence of the following reasoning: For all i, g f  y) < 

giy  is valid.

Thus, Y , 9i{y) < T,9i{y)
Finally, Gy < Gy, where G = Jf,9i

sdy) ^  y^gt(v)

Furthermore, any convex combination also gives a valid inequality: ^ fii9 iiy) —

E M y ) ,  > 0

This simply means that the inequality dy < dy is valid. |

Lem m a 4.9.5 F{y) = Et:/,(y)>o/«(//) convex throughout the containing polytope.

Proof: To verify, let us define the following function, for all i:

M y)  i f /.·(!/) > 0
My) =

0  otherwise
(4.50)
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Since f i(y)  is convex over Ji'" , fi(y) is also convex. With this new definition, we 
can define:

F{y) = Y^ h { y )  (4.51)
i

Hence F is convex. |

Lem m a 4.9.6 = Yli:f,(y)>oPifi(y) (Pi > 0 )’ convex.

Proof: The verification is similar, one just needs to define fi{y) as in (4.47) and 
redefine:

Fsciy) = Y , ( ^ г k y )  (4.52)

As a corollary to this claim, we can say that the weighted functional distance as 
defined in (4.48) is also convex.

In both of these claims we use the basic fact that, a conic combination of convex 
functions is also convex (see for example [Luen. 84]). Both functions are convex but 
not differentiable everywhere, throughout the containing polytope.

Note that Fy¡ has a minimum value of zero. In fact, when such a point is detected, 
the feasibility problem is solved and even if the point is not in the interior, an interior 

point can be found by a single movement.

Unfortunately, the movement direction that we have adopted is not necessarily 
an overall descent direction, despite the fact that it provides a general descent, and 
that the points obtained are definitely not in the ascent cone. Certain constructed 

examples indicate that for irregular cases or unbalanced scalings the NSNG directions 

might fall outside the descent cones. However, since the descent cone pointed at an 

infeasible point is nonempty, such a direction always e.xists with a certain scaling as: 

- d  = ¡3i > 0 ,  = 1 where aU ^, ’s are normalized. Theoretically,

the availability of a descent direction might contribute to the convergence analysis 
of algorithms which use scaled NSNG directions with adaptive step sizing.
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Nevertheless, we [)ostpone the scaling issue to the iinplementatioii stage, and 
pursue our develo|)iiient with the unsealed NSNG direction. It will be seen in the 
next section that the movement direction is a descent direction for the weighted 

functional distance, and guarantees convergence through the use of an appropriate 
step sizing policy. A different approach to establish the convergence of the algorithm 
will also be sketched in the next section.

4 .9 .2  E s ta b lish in g  C onvergence  o f th e  E x te n d e d  V ersion  of th e  

R e c ta n g u la r  C u ttin g  P la n e  A p p ro a ch

In this section we will adopt the weighted functional distance given in (4.48) as the 
reference function, since it has both theoretical and practical significance. It will 
be seen that the NSNG direction is a descent direction for the weighted functional 
distance. Actually, for points where Fw is differentiable, it is indeed the steepest 
descent direction.

Let us consider the feasibility problem. Initially F^{y^) = fi{y^) has
a finite value, since it is the sum of a finite number of finite values. By some descent 
routine over Fw , the problem will be solved (or almost solved) when Fy^iy) becomes 
zero. The overall convergence behavior is quite similar to that of a steepest descent 
routine for the min Fyf(y) problem. The routine proceeds as Fw(y) 0, and upon 
termination one would have Fw(j/) = 0 , meaning that Vi, f i { y ) < 0 , y  satisfies the 
feasibility problem, y may not be an interior point of F, but we can easily find an 

interior point by a single positive step in the direction of -r i = -  My) ·

Of course, searching the feasible set F through steepest descent steps of Fyf(y) 
does not yield the best path towards F. However, this method exhibits a certain 
simplicity, and furthermore, keeping track of Fw gives some insight regarding the 
state of the current test point.

We wish to show first that the NSNG direction is a descent direction for Fw 

It is quite easy to do this at a point where Fw is differentiable. We will do this 

in T h eo rem  4 .9 .1 . Proof for the nondifferentiable case is not trivial and will be 

established through Lemmas 4.9.7, 4.9.8, 4.9.9 and T heorem  4.9.2. We should 

recall that, we assume that all /¿ ’s are differentiable and hence gi = V/t(i/)· From 

(4.48), Fw(i/) = E i:/.(y )> o fS ’ ^  (Actually d,
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defuied in (-1.49). is a normalized redefinition of (»’„ .)

T heorem  4.9.1 Let F»· be differentiable at some point y. Then V^w(i/) 

X î:/t(y) > 0  Ill'll '

Proof: The proposition is true, since V^w(^) = V (Ei:/,(y)>o f | ^

Hence - d  is the steepest descent direction at some point y for Fw |

Lem m a 4.9.7 Let y be an interior point of so that fi(y) > 0 for some i 6  F  
and fi(y) < 0 for some i € h -  Then, there exists a nonempty neighborhood of 
y, N(y)  so that all y e N(y) would satisfy: f f y )  < 0 , for i £ F

Proof: In relation to this neighborhood, for any y £ N(y)  we will consider the 

following partition of i \ :

i G I i A  if f i { y )  > 0 

i e I\B if f i ( y )  < 0

where I ia U I \ b  = F  , is dependent on y.

One can define a neighborhood such that Vi £ l 2 , f i{y) < 0, since for i £ 
F) f i ( y )  is strictly smaUer than zero. The partition stated above for F is also 

trivial. I

Lem m a 4 .9 . 8  Gw is a subgradient for the nondifferentiable point y of F„ if and 

only if y solves the problem:

(4.53)

or equivalently y solves:

sup GwV -  Fwiy) 
ye»"*

max Gwy 

s.t. Fw(y) < Fwiy)

(4.54)
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Proof: The problem given in (4.53) i-s the conjugate function of /·«· · 1« other 

words, it is equivalent to the solution of T “(6 'w)· From elementary convex analysis, 
a necessary and sufficient condition for 0·^ to be a subgradient of Fw is that y 
be a maximizer of (4.53) [Me Conn. 83]. If this is the case, then the hyperplane 
G^.{y) = G J y )  is a support plane ofthe convex set F^{y) < F^.{y)· Hence the linear 
function G„y is maximized over this convex set at the extreme point y (referring 
to the support plane definition, for example in [Schr. 8 6 ]) and thus (4.53) and (4.54) 

are identical. |

Figure 4.17: Gv,y is maximized over the convex set Fw(j/) < Fy,{y) at y.

Lem m a 4.9.9 A local optimum to problems (4-53) and (4-54) is also a global 

optimum for both.

Proof: This lemma follows from the facts that (4.54) is a convex minimization 

problem over a convex set and (4.53) and (4.54) are equivalent. |

T heorem  4.9.2 If Fy, is not differentiable at the test point y, then Gy, = E .g/, J|^ 

where y, = h  = = fiiv) > 0 } « subgradient for Fy, at y.

Proof: We wiU be looking at two different cases:

Case 1: There exists a neighborhood N{y)  of y such that, y € N(y)
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;alisfying
fi{y) > 0  for all i € h  
f,{y) < 0  for all i e I2

Within this neighborhood:

supG'wi/ -  Fy,{y] = supj, (E .e/, j]f7ff)2/ “  E .e/i
y

= sup,, [ E . e / J n i f i n

= (iMi -  tS )

Since fif, = Vfi(y)^ supy ^
\ \ 9 i IbJI u

So we have,

-  ( l lS  -  f f f l)

and — Gwy ^w(i/)

Thus y is a local optimizer of problem (4.53).

Case 1 is a special case of Lem m a 4.9.7 where / i s  = 0· So we will proceed 

with Case 2 where / i s  is nonempty.

Case 2 : In the neighborhood of j/, where Vy € N(y)  for all t € / 2 , any y € N{y)

satisfies <
fi(y) < 0  for all i e h  

f i iy)  > 0  for all i e / 1,4 

f i iy) < 0  for all i e I\B

where /i / iU A s  and / i s  /  0 ·

So if this is the case for any y € N{y)  we have:

Gyiy FY/(y)
9i V -  fi{y)

.€/, ieiiA
_ 9i , 9i _ f i j y )

Ill’ll .€/ia

Recalling that ^  < 0
'■e/ij Ib.i
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E .Vi , Si . JiUJ) ^ XT' /■(<
l l « . l l ^ ^  ^  . 4 -  llo .ll

fdy) /.(.v)
, Í F : j i í / . i r

— V  U i y - J i [ y } }  1 ( g i y - I x i y ) )
11 (/.¡I  ̂ ^ ¿ 6/1.4 f]57fl■ lls.il ■

-  ^ ' € 6  l U i T i r j
^  ( 9>y-ii(y) \
-  ^ ‘e/. I lls.ll ■ )

wht're the last inequality follows from:

■'iin I f i (y) \  _ g,y-f,{y) f 11 · ^ r
T l  IWI )  f o r a l l . 6 / ,

Hence, Gy,y -  Fy,(y) < G^y  -  F^iy) for any y € -V(|/) so y is a local optimizer for 
the problem given in (4.53).

Thus for both cases ¿/ is a local majcimizer of problem (4.53). From Lem m a
4.9.9 y is also a global optimizer. So from Lem m a 4.9.8 Gv, is a subgradient of 
Fw for the nondifferentiable point y. |

R em ark : In the above proof, one can reduce Case 1 to Case 2  by removing the 
necessity that F b is nonempty. Since it can also be empty—to account for Case 
1—we would have f i iy)  < 0  so that the strict inequality should be replaced
by less than or equal to and in the end we would have Cwi/ — F’w(y) < Gv,y -  Fyf{y). 
However, treating the two cases separately provides some insight about the local 
optimum. For Case 2  y is strictly local optimal.

T heo rem  4.9.3 The extended rectangular cutting plane algorithm converges to an 

interior point of the feasible set when adaptive step sizing policy is used.

Proof: At each iteration, since - d  is a descent direction for F*, there exists 
an Q > 0 such that F„(y -  ad) < F„(y). Hence a positive reduction on F„ is 
guaranteed iterationaUy. Since the initial value of F„ is assumed to be finite, after 

a number of iterations, the algorithm should eventually yield Fy,(y) = 0. |

We have stated that an algorithm which utilizes descent directions with respect 
to the reference function Fw is convergent when adaptive step sizing is used. Thus,
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a, subroutine for sto|) size determination should be embedded in the routine given in 
this chapter. Before concluding this section we will describe two step sizing routines 
which will yield a converging sequence of points.

(i) A line search subroutine which finds a point in the descent direction -cl, 
which has a reduced value. In formal terms, = ŷ ‘ — ad, a > 0 such that

111 this manner (following the steepest descent idea) one would 
obtain a rnonotonically decreasing sequence of points. Naturally, one should consider 
the sufficiency conditions of global convergence [Fletcher 87]. [Dennis & Schn. 83].

(ii) An adaptive step sizing subroutine which maintains a current fraction of Ощах 
as the step size and which is able to update this fraction when the general descent 
behavior of Fw is interrupted. To detect this phenomenon (orbiting), the algorithm 
can store the successive values of Fw for several iterations (say 5). If descent has 
not taken place in between more than half of these successive steps, then the current 
fraction value should be reduced. For example, an adaptive algorithm which takes 
the initial step size as can adjust the current step size by multiplying with 1 / 2  

when necessary. Here 1/2 may be replaced with any other suitable value between 
0  and 1 . Step sizes may also be determined by dividing Omax by any value greater 
than 1 . Such a procedure acts as an overall reduction algorithm for Fw This is 
because for aU nonfeasible points Fyf(y^) > 0 . descent conditions always exist, and 
upon decreasing the step size one will ultimately obtain (after N  finite iterations) 

a new point for which Fw(i/^“̂ ^) < Fw(i/^). Similarly, one should also check for the . 
sufficiency conditions which guarantee the convergence of descent algorithms. The 
idea behind using an overall reduction procedure rather than a monotonic algorithm 
is to avoid the slow convergence rates observed in steepest descent type algorithms 
when the elliptic eccentricity is dominant.

Verification of convergence with the use of a subroutine as described in (i) is 

quite similar to that of a steepest descent routine. The claim of convergence for a 
subroutine of type (ii) can be verified in the following way. Suppose that we are at 
iteration k.  After Ni  iterations we should have F^(y^) > Fyf(y^~^^^), Similarly, 

after N 2 iterations we should have Fw(j/^) > F^(y^'^^^) > (see
Figure 4.12). Provided that these incremental reductions satisfy the sufficiency 

conditions for subgradient descent algorithms, after a sequence of these states we 

should reach a point у such that F^{y) = 0 . At this point, we are either at the
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interior of r  or on the boundary of it. If ÿ is not interior, then wo can move to an 
interior point in a single step, as described below.

In our discussions we have considered the problem to be almost solved, whenever 
we have E\-(y) = 0 . for some ÿ. .A.t such an instant, either V¿/,(í/) < 0  and thus y 

is interior, or Vi/,(ÿ) < 0 , = 0 , and in this case ÿ is not an interior point of
r .  If this is the case, we can easily determine an interior point by a single step of 
the form y'^ = ÿ -  ad where 0  < a  < e. By definition, c is the radius of the full 
dimensional ball contained in the convex body.
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Applications

Convex optimization has many real life applications, and possibly many more 
which are unrecognized [Boyd & Vand. 97]. The linear feasibility problem by 
itself, has many important applications. Image reconstruction from projections and 
tomography are probably the most studied ones.

In medical imaging and computerized tomography the so called algebraic. 
reconstruction technique (ART) has been popular since the early seventies. This 
approach may be regarded to be equivalent to a discrete version of the inverse Radon 
transformation. From the computational point of view, one has to solve the following 
equation for / :

g = H f  + e (5.1)

where e is an error term which is assumed to satisfy \e\ < e. Equation (5.1) can 

be reduced to a feasibility problem of the form —€< g - H f  < e, which takes the 

generic form:
A ^ < b  (5.2)

for which a feasible solution ^ yields the digital image representing the object, subject 
to the specified error [Herman 80], [Natterer 85]. (To avoid confusion with the 

coordinate variable x, in this chapter the unknown vector will be denoted by ^.) 

For this type of discrete image reconstruction applications the m x n matrix A is 

a huge and sparse matrix without any definite structure. Similar formulations have 

also been devised in related fields such as magnetic resonance imaging [Liang L· 
Laut. 91], ultrasound imaging [Rohl. et al. 97] and spectroscopic tomography [Sal.

6 8
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& Slioli. 90], but tlie stated matrix properties are not necessarily valid in all of these 
cases. It has to be stated that the linear feasibility approach to tomography and 
similar problems are not competitive with sophisticated approaches such as filtered 
back-projection or F\uirier transform methods [Censor & Herman 87], [Atalar 97]. 
It is the objective of this chapter to demonstrate image processing problems which 
cannot be solved efficiently by such techniques, but can be handled with the linear 
feasibility approach.

Although the above way of posing an inverse problem as a feasibility problem 
is most commonly mentioned in the context of tomography, we note that it is in 
fact much more general. Assume that we are able to measure indirectly a vector 
variable / ,  by some procedure H f  with some error. The system H f  = g may 
be overdetermined and—due to noise, errors in measurement, and discretization— 
possibly inconsistent. So one has to allow for a certain error tolerance to determine 
/ .  Thus writing as in [Censor & Herman 87]:

-  € < g -  H f  < € (5.3)

with a sufficient error vector c, one can find a feasible solution /  to this system.

Direct projection algorithms for solving the interval feasibility problem given in 
(5.3) which arises in tomography applications, have been devised. These algorithms 
have similar convergence properties. Several examples are given in [Censor & Zenios

97].

In this chapter we will discuss two image restoration problems which can be 
formulated as < 6 . Both problems deal with recovering blurred images in 

photographic films. In the first problem the image is blurred and distorted severely 
due to effects such as object or camera motion during the photographic exposure. 
In the second problem, the image is blurred by the so called point spread function 
(referred as PSF) arising from effects such as misfocus of the photographic device, 
atmospheric turbulence, etc. Additional effects which cause further distortions of 

the image, are also included in these models.
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Problem

In this chapter, we show that two rather general classes of image recovery problems 
can be efficiently solved by formulating them as a linear feasibility problem. When 
discretized, the class of problems which we deal with is of the general linear form:
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9 =  H f (5.4)

where g is the vector representing the observed image and /  is the vector 
representing the original image to be recovered. H represents the system which 
distorts the image. If the images have N x N  pixels, then /  and g are column 

vectors of size obtained by stacking the columns of the image matrix on top of 
each other [Jain 89], Thus H is an x matrix. (Generalization to rectangular 
images is straightforward.) For the 160 x 160 images used in our examples, the 
matrix H has a size of 25,600 x 25,600. Normally, matrices of this and larger sizes 
cannot be handled unless they are sparse. The class of problems we deal with lead 
to such large, sparse matrices representing distortions and blurs which are:

1 . Nonseparable. The two dimensions are coupled and the problem cannot be 
reduced to two one-dimensional problems.

2 . Anisotropic, The distortion is different along different directions.

3. Space variant. The distortion is different for different parts of the image; it is 

not space invariant.

4 . Nonlocal, The value of the distorted image at a certain point may- depend 

on values of the original image at distant points; the distortion is of a global 

nature.

If the system is separable or isotropic or space invariant, then it may be possible 

to simplify the problem by exploiting the special structure of H , (For instance, 

see image processing texts such as [Jain 89], [Lim 90], [Pratt 91]. Also see 

[Fish et al 96] for a discussion of the difficulties involved in the general case and 

an approach appropriate when the distortion is local.) In this chapter we assume 

that the matrix H does not exhibit any special structure which would allow some
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roductioii or decomposition techniques to be used. Furthermore, due to the large 
size of / / ,  direct methods such as Wiener fdtering or those based on singular value 
decomposition cannot be applied (they would require too much storage and time). 
Despite these difficulties, the approach taken in this chapter allows such problems 
to be solved efficiently.

Typically there will be an amount of measurement error or noise associated with 
the observation, which may lead to an inconsistent system of equations. Denoting 
the noisy observation by we allow for such errors by writing:

\ ( g ' - H / ) , \ < e i = 1 , . . . . /V (5.5)

where (g' — H f)i  is the component of g' -  H f  and e is a suitable error tolerance

parameter, which we will quote as a percentage of the mean value of g .

Equation (5.5) can be converted into a feasibility problem of the form /1  ̂ < 6 by 

setting

/1 =
H

- H
b = t + g '

[ S - g ' \ 2jV 2 X  1
i  -  /yV'̂ xl (5.6)

where S is an N'^ x 1 vector of e’s.

As we have stated previously, although the solution of a linear inequality system 
of the form < 6 vvith conventional (Kaczmarz or Cimmino type) projection 
algorithms is in principle straightforward, convergence is often exceedingly slow for 
large problems. This has led to the development of the block projections or surrogate 
constraint algorithms [Aharoni k  Censor 89]. [Yang k  Murty 92], which has been 

the focus of this research.

5.2 Pre-filtering and Sm oothing

When the relative measurement errors are very small, solution of equation (5.5) may 
directly yield a good restoration of the original image / .  However in general, since 

we are dealing with a severely ill conditioned problem [Rush. 87], [Herman 80], [Sal. 
k  Sheh. 90], [Fleming 90], even small observation errors will tend to show up as very 

large restoration errors. It is thus necessary to introduce some kind of regularization 

[Rush. 87] to limit the negative effects of noise to what is fundamentally unavoidable. 

Physically, what happens is that the severe distortions we consider blur the finer
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details of the original image and those image components which are depressed below 
the noise level become irretrievably lost. However, unless care is exercised, the 
restoration process may amplify this noise, resulting in a restored image which is 
much worse than the best possible.

There are many approaches to regularizing ill conditioned inverse problems, most 
of which involve the introduction of some kind of a priori knowledge regarding the 
original image. This knowledge may take the form of additional constraints or 
statistical information. We will assume that such information is not available apart 
from the condition of piecewise smoothness, which means that the image consists of 
smooth regions separated by sharp edges. This is the most we will allow ourselves 
since our interest is in generic real images, for which even this condition is only partly 
valid.

Our regularization procedure consists of two components. In the first, called 
pre-filtering, we try to reduce the noise in p' as much as possible. We multiply the 
Fourier transform of (f by ( 1  + where Sn is the power spectral density
of the noise (simply equal to the variance for zero mean independent identically 
distributed noise), and Sg is the magnitude squared of the Fourier transform of g . 
When Sn Sg^ the noise is small so that the filter is simply equal to 1 . When 
Sn >  Sg^ noise is dominant and the filter is close to 0. In between, the filter 
effects a smooth transition. Thus, the overall effect of this filter is to eliminate the 
components of the image for which noise is dominant while preserving others. Of 
course, in reality we do not have access to but only g '. Thus we have used 
Sg' -  Sn as a surrogate for Sg (setting it equal to zero for those frequencies where 
it goes negative). This is based on the assumption that the noise is not correlated 

with g so that Sgf = Sg + Sn· Filtering procedures of this nature are commonly 

used in image processing [Jain 89], [Lim 90], [Pratt 91].

The second component of our regularization procedure, smoothing, is applied 
after the feasibility problem is solved and a tentative (noisy) restoration /tent is 
obtained. We introduce the following edge preserving nearest neighbor smoothing, 
inspired by edge preserving penalty functions [Delaney & Breşler 98]:

/tent  ̂ /tent "b f t e n i m i tent/k ) (5.7)

where 0 < /? < 0.5, 7  > 0, z{Q = arctan(C)/C, and A/tent is the difference between 
the average of the four nearest neighbors of a given image pixel, and the pixel itself.
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Tlie usual choice' for J is 0.5 and the? usual choice for 7  is comparable or somewhat 
larger than the level of noise which we are trying to smooth out but sufTiciently 
smaller than the edges or other features we are trying to protect. (Naturally, these 
two requirements sometimes conflict for the generic images we are considering, so 
that a compromise is necessary.) When A/tent/7 <  1* -(A /tent/7 ) ~  1 and the 
procedure becomes equivalent to taking the average of a given image pixel with the 

average of its neighbors. When A/tent/ 7  ^  - ( A / / 7 ) is small and the procedure
results in little change. A third parameter of the smoothing process is the number 
of times (n) equation (5.7) is consecutively applied. The overall effect is to smooth 
out the noise while limiting the damage to the edges.

5.3 R estoration  o f Space Variant G lobal Blurs Caused  

by Severe Cam era M ovem ents and Coordinate 

D istortions

Consider an original image f{q) which undergoes a general time varying, nonlinear 
coordinate distortion represented by q = p(r, ¿) = [iz(r, 0 , n(r, ¿)] so that at time t 
the image is observed as / ( p ( r , /)) = f (u(r^t)^v{rj)) .  Here r stands for the position 
vector (x,j/). Now assume that we expose a photographic film to this time varying 
image for a duration of T  seconds. The image g{r) recorded on the film is given by:

g(r) = K  r  f {p{rj ) )dt  (5.8)
Jt=o

where K  is a constant. (This equation may also have other physical interpretations 
than the one mentioned here. One such interpretation, the image reconstruction from 
projections problem, will be mentioned in Chapter 6 .) To appreciate the generality 

of this observation model, we consider some of its special cases:

1 . Translational motion, p(r, t) = r -  rdt)  where rdt)  ~ [xc(t)^yc{t)] is a given 

function representing the motion of the original image or object as a function 
of time. Arbitrary two-dimensional movement with arbitrary acceleration and 

higher order derivatives are allowed. (Although we speak of the movement of 

the object, it is clear that this also covers movement of the film or the camera.)
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2 . Lyotropic scaling. p(i\ i) -  r/n\{i) whore nui)  is an arbitrary scaling function 
of time. More generally, different scaling functions can be assumed in the 
two dimensions (anisotropic or elliptic scaling). By properly choosing and 
interpreting in[t), it is possible to model the movement of the object towards 
or away from the camera.

3. Rotation. р[гЛ) = R<i>(tF' where Дф,.) is the 2 x 2 rotation matrix 
[coscpit)^ sin (p(t); -  sin (f){t), cos(f>{t)]. Here (i)(t) is an arbitrary function of 
time representing the angle of rotation. More generally, the 2 x 2 matrix may 
take the form of an arbitrary nonorthogonal (parallelogram type) distortion 
represented by the matrix [a(/), b{t):c(t). d{t)], which can be used to model 
moderate out of plane rotations of the object.

Other special cases and their combinations may also be considered.

Since equation (5.8) represents a linear relation between g and / ,  it is possible 
to write it in the form:

g{r) = H(r,  r')f{ r')dr' (5 .9 )

To find H(r,r' ) ,  we use f(r' )6(r'  -  p(r,t))dr', in equation (5.8) to

obtain:

g(r )= i  К I  6{r' -  p(r.t))dt
Jr' Jt=o

f(r')dr'

from which we conclude that

H(r,r' ) = K  6(r ' — p(r,t))dt
Jt=o

(5.10)

(5.11]

Here 6{r) is the so called delta function whose unit mass is concentrated at г = 0 

(see for example [Jain 89]).

The discrete counterpart of equation (5.9) is simply the general linear matrix 
equation g = H f .  Since equation (5.11) is a one-dimensional integral over time 
whereas the images are two-dimensional, the number of nonzero elements of H will 
typically be of the order of (an average of N  elements per row) out of N'^xN'^ = 

.V  ̂ elements. This sparsity property is what makes it possible to solve this class of 
problems despite the fact that the dimensions of H are very large. The large and 

sparse matrix H  should be represented in sparse matrix format [Pissa. 84]. Since 

p(r, t)  is arbitrary, the nonzero elements of Я  will in general be distributed quite 

irregularly and will not exhibit any special structure. We emphasize that unlike
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many sparse matrix algorithms which rely on some special structure of the matrix, 
the approach described in Chapter 3 is particularly suited and effective in handling 
matrices whose nonzeros are arbitrarily distributed.

As an example we will consider restoration of an image distorted by the combined 
effects of translational and rotational motion, and elliptic scaling:

cos (pit) [x -  X c { t ) )  + sin (pit) iy -  y^it))
uix,y. t )

i ' ix,y. t)  =

mu{t)

sm (pit) jx -  Xcit)) + cos(p(<) (y -  j/Ji))
m„(<)

(5.12)

(5.1.3)

where uix,y, t )  and vix,y , t )  are components of pir,t).  We emphasize that there 
is nothing special about this particular example; the present approach can equally 
efficiently handle arbitrary nonlinear p(r, i), which may even be discontinuous and 
fragmented. We will consider two cases. The functions xdt )  and ycit) which define 
the translational motion are given in Figure 5.1 along with the trajectory itself. 
Notice that the motion is quite irregular and involves not only acceleration but also

Figure 5.1: (a) xdt ) ·  (b) yd t)·  (c) The complete trajectory from i = 0 to i = T = 
3. X and y are measured in number of image pixels. (Case 1: solid line, case 2: 
dashed line.)

higher order derivatives. In case 1 , the extent of the motion is small in comparison 
to the size of the images, whereas in case 2  it is comparable to the size of the images. 

The functions (pit), ra^it) and m„(t) are illustrated in Figure 5.2. In case 1 , the 
object undergoes a moderate rotation of 5 degrees, whereas in case 2 it undergoes a 

180 degrees rotation and ends upside down. Thus while case 1 represents a moderate 
local blur, in case 2 the image undergoes a severe blurring of a global nature. The 

original and the distorted images are shown in Figure 5.3. The restored images 

for the two cases are illustrated in Figure 5 .4 (a) and 5 .5 (a) when there is no (or 

negligible) measurement error. A relative tolerance of 10““* has been used.
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Figure 5 .2 : (a) (b) (c) my(t).  (Case 1: solid line, case 2: dashed line.)

Figure 5.3: (a) Original image, (b) Distorted image (case 1). (c) Distorted image 
(case 2 ).

For the examples where random noise is also included, the measurement errors 
were .simulated by adding identically independent distributed zero mean norma.l 
random variables to g such that e = 2 standard deviations. After pre-filtering 
the observation, the recovery problem can be formulated as a feasibility problem 

of the form < 6 as discussed in Section 5.1, and the feasibility problern can be 
solved by using the class of algorithms discussed in Chapter 3. Finally, smoothing 

is employed to obtain the recovered images shown in Figure 5.4(b,c) and 5 .5 (b,c). 
Table 5.1 shows the resulting mean restoration errors as a percentage of the mean 

image intensity.

In case 1, the distortion is moderate so that good restorations are possible 

even when the measurement error is relatively large. Although the distortion in 

case 2  is very severe, blurring the original beyond any possible recognition, quite 

good restorations are obtained when the noise is small. However, the restorations 
become less satisfactory as the measurement error is increased. This illustrates 

the fundamental tradeoff between the amounts of noise and blur which can be
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Figure 5.4: Recovered Images for case 1 : (a) Without measurement error, (b) With 
0.5 % relative measurement error, (c) With 5 % relative measurement error.

Figure 5.5: Recovered Images for case 2 : (a) Without measurement error, (b) With 
0.5 % relative measurement error, (c) With 5 % relative measurement error.

simultaneously tolerated in ill conditioned problems. When the noise and blur are 
both large, a significant amount of information becomes lost and a faithful restoration 

is not pos.sible.

Further improvements would be possible by introducing additional a priori 
knowledge in the form of additional constraints or statistical information, which 
we have assumed are not available. The condition of piecewise smoothness we have 
employed is only approximately valid for the generic images we have considered. This 

condition is much more effective when the original images consist of relatively large 

regions separated by sharp boundaries, and when the intensity within each region is 

constant or nearly constant [Delaney & Breşler 98].
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No error 0.5 % i 5 %
Case 1 0.6 % (0,-.-) 1.9 %  (1, 0.5. 5 % ) ¡ 5.3 %  (2. 0.5, 10 %  )

Case 2 3.2 % (0,-.-) 5.6 % (4. 0.5. 10 % ) j 12.9 % (12, 0.5, 30 %  )

Table 5.1: Restoration errors for case 1 (moderate blur) and case 2 (severe blur) 
for two different levels of the measurement error, quoted as a percentage of the 
mean value of g. The numbers in the parentheses are the values of the smoothing 
parameters n./J and 7  used, where 7  is expressed as a percentage of the mean image 
intensity.

5.4 Im age Recovery in the Presence o f Severely Space 

Variant G eom etric D istortions and Point Spread 

Functions

In this section we consider another very general image restoration model. We begin 
by introducing a basic point spread function (PSF) h(r).  It will be assumed that 
most of the mass of h is contained in a region whose area is small with respect to 
the images, h is otherwise totally arbitrary; it need not be localized around (0 , 0 ) 
or any other point, and its mass may be divided among multiple component regions 
separated by arbitrary distances. We consider the general class of kernels H defined 
as

H{r, r') = h[ur'{r), Vr'(r)] (5.14)

where u and v are arbitrary nonlinear functions of r and r ', which introduce a 
(x', j/')-dependent coordinate distortion (CD) into h(x,y) .  (Special cases include 

space varying translations, scalings, rotations, and more generally, affine distortions.) 
Thus, equation (5.14) represents the combined effects of an arbitrary global CD 
and an arbitrary PSF. This form is capable of modeling a very large class of 
problems where the distortions and blurs may arise from diverse effects such as 
diffraction, misfocus and misalignment, coordinate transformations, different kinds 

of aberrations, design errors, atmospheric turbulence or other environmental factors, 

or their combinations.

We now reconsider the PSF h,  but this time explicitly write it in the parametric 

form h{r-,pi,p2, . ■■,Pm), where the parameters p,· are functions of r ' . For instance.
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h may take the quadratic exponential form 

h( x , y ; A. B, C. nuR2)  = A’

where N normalizes the mass of h to unity. Now. we take

H {r. /·') ^  h(r -  r'\ Pi, Pi....... p,„)

(5.15)

(5.16)

Had the pi been constants, this would reduce to the space invariant case. We do 
not even assume that the p,· are slowly varying] so that the present approach is able 

to handle cases of extreme or abrupt space variance as well. (Many treatments of 
space variant problems make a slowly varying assumption so that the problem can 
be approximately reduced to many smaller locally space invariant problems.)

Although our approach can handle both equation (5.14) and equation (5.16), 
the latter is probably more application oriented since it may be more convenient 
to model systems in terms of their deviations from space invariance. At the same 
time, this form retains full generality, since any H can be obtained by appropriately 
choosing h and p{.

As an example, we use the basic PSF given in equation (5,15) and choose A, B , 
C such that the 1/e contour is an ellipse centered at (p i ,p 2 ) whose first normal axis 
(along which it has radius a\ ) makes an angle 9 with the x axis and whose second 
normal axis (along which it has radius 0 2) makes an angle 6 with the y axis. The 
nature of the resulting blur is much easier to visualize in terms of the parameters 
a i ,a 2 ,^ characterizing the contour of equation (5.15), as opposed to A ,5 ,C . The 
formulas relating A , B , C  to a i ,a 2 , 0  are:

A = I ^  cos  ̂& + \  if a f j  af

B = 2 { ^  sin 9 cos 9

c  = - 1 n  2 ., 1---- 5· cos·̂  9 A-

(5.17)

(5.18)

(5.19)

Note that h will now take the form h(r; 0 1 , 0 2 , ^./¿1 , ^ 2 )- Now, it only remains to 
specify fj,i,fi2,9,ai,U2 as functions of r ' . As an example, we consider

Hi = -  cos <f>' A'(0.5 + sin^ 4>')p'

H2 = — sin 4>' K{Q.b + sin^ 4>')p'
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No error 0.2 % 1 % 5 %
2 . 0  % (0 ,-,-) 3.8 % (1, 0..5, 3 % ) .5.2 % (3, 0.5. 5 % 8.2 % (8 , 0.5. 15 )

Table 5 .2 : Restoration errors for three different levels of the measurement error, 
quoted as a percentage of the mean value of g. The numbers in the parentheses are 
the values of n. J and 7  used, where 7  is expressed as a percentage of the mean 
image intensity.

e  = o'

— uq T ki{ i T sin^ (j) )p

^ 2  = « 0  + ^2 ( 1 + ^ (5.20)

where {p\(j>') is the polar representation of r ' = {x',y') and K,  ao, A:i, k2 

are positive constants. All distances are measured in number of image pixels. 

The dependence of (/¿i,//2 ) on r ' implies a so called barrel type distortion. The 
dependence of a\ , a-i on />' implies an isotropic blur near the center of the field, 
which increases as we go towards the edges at a rate which is angle dependent, 
and resulting in an anisotropic blur. 9 ^  <p' implies that, in our example, the axis 
along which the radius of the ellipse is a\ is always pointing in the radial direction. 
Overall, the distortion and blurring is of a highly irregular nature. In our example 

we take K = 8 ” \  ao = 6̂  ki = 7200“ ^, k2 = 9600“ .̂ The original and degraded 
images are shown in Figure 5.6(a,b). We emphasize that there is nothing special 
about this particular example; the present approach can effectively handle arbitrary 
nonlinear u and v in equation (5.14) or p, in equation (5.16), which may even be 

discontinuous and fragmented.

The recovered image corresponding to zero measurement error is shown in Figure 

5 .6 (c). A relative tolerance of 10“ "̂ has been used. Figures 5.7(a,b,c) show the 
recovered images for different levels of the measurement error, which was simulated 
by adding independent identically distributed zero mean normal random variables 
to g such that c = 2 standard deviations. In this section, pre-filtering hcis not 
been applied since the blur which we have considered is not as severe as in the 
previous section and the use of pre-filtering did not offer any noticeable improvement. 

Smoothing was applied to obtain the results shown in Figures 5.7. Table 5.2 

shows the resulting mean restoration errors as a percentage of the mean image 

intensity and the smoothing parameters used in equation (5.7). The fact that
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Figure 5.6: (a) Original image, (b) Degraded ima.ge. (c) Recovered image without 
measurement error.

Figure 5.7: Recovered images when the measurement error is (a) 0 . 2  %; (b) 1 %; 
(c) 5 %; quoted as a percentage of the mean value of g.

Figure 5.7(c) is relatively less satisfactory again illustrates the fundamental tradeoff 

between the amounts of noise and blur which can be simultaneously tolerated in 
ill conditioned problems. When the noise and blur are both large, a significant 
amount of information becomes lost and a faithful restoration is not possible, unless 
additional a priori knowledge is available.

5.5 N otes on Im plem entation  of the Block Projections  

A lgorithm  in Im age R estoration A pplications

Block-iterative methods have been used in several image processing applications 

[Censor 8 8 ], [Piestiin et al. 96]. In this study we have presented two novel application 

classes. In this section we will summarize our experience during the implementation
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of the block projections approach.

Ill actual irnpleineiitatiori, we have considered the interval feasibility problem 
g -  s < H f  < g + s , following the idea given in [Censor «C Zenios 97] instead of 
.1,̂  < bs since .4 is composed of H and - H  and has twice as many rows as H . In 
this way. we saved both from memory storage and major iteration run time.

As stated previously, most image restoration and reconstruction problems are 

highly ill conditioned and as a consequence the iterative algorithms converge quite 

slowly. During implementation it is necessary to stop the algorithm when further 
progress falls below a certain level (infeasible termination). Due to the ill conditioned 
nature of the matrix, in the presence of noise one should consider some kind of 
regularization to limit the amplification of noise in the final result. Conventional 
tools like singular value decomposition (see [Strang 88]) are out of the question for 

such large matrices.

For the examples given in Sections 5.3 and 5.4 we have only considered 
the successive block projections algorithm. In the meantime, simultaneous 
implementation (with the long steps discussed in Section 3.5) has been given in 
[Turna 98] with encouraging results, in terms of speedup and efficiency. It has to 
be stated that the algorithmic behavior depends highly on the parameters of the 
algorithm for the ill conditioned image processing applications considered in this 
chapter. This issue deserves further research and will be dealt with elsewhere.

In our current implementations, solutions are obtained in the order of hours 

(instead of minutes as for the random problems in Chapter 3) and ten thousands 
of iterations. Still, we can hope for significant improvements over these preliminary 

results through parametric experimentation and parallel computing.

The algorithmic behavior for inconsistent systems (when measurement errors 

are included) is quite interesting. It turns out that the algorithm always converges 

towards some approximate solution. Thus for the block projections approach we 

obtain results similar to those obtained by [De Pierro & lusem 85] for Cimfnino’s 
method and [Hanke & Niet. 90] for Kaczmarz’ method, when applied to infeasible 

problems.
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Conclusions and Prospects for 
the Future

In Chapter 3 we have presented a thorough experimental study of the block 
projections approach. Our results indicate that the long-step simultaneous block 
projections algorithm is quite competitive with the successive block projections 
algorithm. It should be recalled that the conventional short-step simultaneous block 
projections algorithm is quite poor in performance when compared to its sequential 
counterpart. So with the use of long steps, it is possible to benefit from distributed 
implementation on parallel processors.

In the random test problems solved in Chapter 3 we observed that the 
simultaneous block projections method of Yang and Murty (without any adjustment) 
is quite poor when compared to the successive block projections method. This is 
because the magnitudes of the steps obtained in the parallel algorithm remain quite 
small with respect to the accumulated sequential steps. In order to compensate for 

this deficiency, we used the longer step size given in (3.20) and obtained favorable 
results. We may conclude that the new step given by equation (3.20) (or more 

generally by (3.27)) should replace the conventional step (the convex combination 
of simultaneous projections) for all Cimmino based algorithms. The theoretical 
results given in this study are also valid for any simultaneous method for the convex 
feasibility problem which proceeds by projecting onto valid supersets.

8 3
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Iinploineiitatioiis employing the step size given in equation (3.20) have yielded 
many interesting results. It is observed that convergence is very sensitive to changes 
in the relaxation parameter Â .. Best results are obtained when Â. is chosen to have 
values close to 2.

Our main contribution in Chapter 4 is an algorithmic scheme which utilizes 
both cutting planes and subgradient movement directions. The motivating

idea behind this approach is to obtain deep cuts to accelerate convergence, by 
utilizing the information contained in the subgradient directions. Although only 
theoretical results are presented, we find it worthwhile to proceed with experimental 
implementation in the near future.

In Chapter 4 it has been assumed that the underlying functions defining the 
convex set are differentiable. Despite its convenience, this assumption is not critical 

in establishing convergence. Thus we can conclude that the results are also valid for 
convex nondifferentiable functions ŵ here subgradients are provided by the separation 
oracle.

Further research will focus on implementation of routines with variable step 
sizing policies. The use of varying steps together with multiple test points is a 
fruitful research direction. Independent searches through many test points with 
the aid of parallel processors will conceptually and practically yield much more 
powerful algorithms, since the search area increases proportionally with the number 
of simultaneously implemented test points.

Although - d  is not a descent direction for all individual ’s, it is so for the 
reference function . What is nice about is the fact that - d  is the gradient 

(or a subgradient) for this function, at the test point y. Further analysis of this 
function might possibly yield interesting results on the behavior of the algorithm. 

Another point worth noting is that the convex feasibility problem in Chapter 4 
has been solved by applying a sort of steepest descent procedure on the weighted 

functional sum Fw. This suggests that the presented algorithm can also be used for 

multi-objective (convex) minimization problems.

In Chapter 5 we have shown that rather general classes of image blurring and 
distortion problems can be formulated as a linear feasibility problem of the form 

< b. The feasibility problem approach hcis been previously used for medical
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image reconstruction (computerized tomography) [Herman 80]. It is not difficult to 
see that the tomography problem [Jain 89] is a special case of the general model 
introduced in equation (5.8):

g ( s , e )  = ^ f ( p ( s .  6.  t ) ) d t  =  ^ / ( u ( s .  e , t ) .  c(.s, e j . ) ) d t  (o.i)

where

u(s, 6j.) = s cos 0 — t sin 0 (6.2)

v(s, 0j.) = s sin 0 + t cos 6 (6.3)

Here t is no longer time but the integration variable along the path of X-rays. We 
emphasize that, in Chapter 5 we allowed a(r, t) and v[r, t) to be arbitrary nonlinear 
functions which may even be discontinuous and fragmented.

The image processing applications we have addressed are in general nonseparable, 
anisotropic, global and space variant. These problems lead to large, sparse matrices 
(with the order of 10  ̂ elements for 160 x 160 pixel images) whose nonzeros are 
irregularly distributed. The block projections algorithms employed are particularly 
suited for such situations. This match between these difficult problems and their 
effective solution is the main motivation for considering these applications.

Image restoration and reconstruction problems are often iU conditioned. There 
exists a fundamental tradeoff between the amounts of distortion and noise that can 
be simultaneously tolerated in an ill conditioned problem. The approach presented 
can be especially useful on that side of this tradeoff where the distortion is of a 
severe and very irregular nature, but the noise is low or moderate. A number of 
generalizations of the approach given in Chapter 5 can be readily implemented.
If the imaging device is subjected to motion blur and also has an arbitrary space 

varying point spread function (PSF) of limited extent, then the combined effects of 
these two blurs can be incorporated into the matrix H . The only limitation arises 

from the fact that this will increatse the number of nonzero elements of H (especially 
if the PSF is relatively broad), resulting in memory problems. What ultimately 
matters is the largest number of nonzero elements that the computer can handle. 

Another advantage of the approach is that it is possible to accommodate situations 
in which the observed data is incomplete or partial, or when additional a priori 

information about the original image exists. Thus we may conclude that our results 

may contribute to greater and more effective use of this type of algorithms for such 

image processing applications.
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