12 research outputs found

    A characterization and an application of weight-regular partitions of graphs

    Full text link
    A natural generalization of a regular (or equitable) partition of a graph, which makes sense also for non-regular graphs, is the so-called weight-regular partition, which gives to each vertex uVu\in V a weight that equals the corresponding entry νu\nu_u of the Perron eigenvector ν\mathbf{\nu}. This paper contains three main results related to weight-regular partitions of a graph. The first is a characterization of weight-regular partitions in terms of double stochastic matrices. Inspired by a characterization of regular graphs by Hoffman, we also provide a new characterization of weight-regularity by using a Hoffman-like polynomial. As a corollary, we obtain Hoffman's result for regular graphs. In addition, we show an application of weight-regular partitions to study graphs that attain equality in the classical Hoffman's lower bound for the chromatic number of a graph, and we show that weight-regularity provides a condition under which Hoffman's bound can be improved

    Estudi bibliomètric primer trimestre 2014. EETAC

    Get PDF
    El present document recull les publicacions indexades a la base de dades Scopus durant el període comprès entre el mesos de gener a abril de l’any 2014, escrits per autors pertanyents a l’EETAC. Es presenten les dades recollides segons la font on s’ha publicat, els autors que han publicat, i el tipus de document publicat. S’hi inclou un annex amb la llista de totes les referències bibliogràfiques publicades.El present document recull les publicacions indexades a la base de dades Scopus durant el període comprès entre el mesos de gener a abril de l’any 2014, escrits per autors pertanyents a l’EETAC. Es presenten les dades recollides segons la font on s’ha publicat, els autors que han publicat, i el tipus de document publicat. S’hi inclou un annex amb la llista de totes les referències bibliogràfiques publicades.Postprint (published version

    Estudi bibliomètric any 2014. Campus del Baix Llobregat: EETAC i ESAB

    Get PDF
    En el present informe s’analitza la producció científica de les dues escoles del Campus del Baix Llobregat, l’Escola d’Enginyeria de Telecomunicació i Aerospacial de Castelldefels (EETAC) i l’Escola Superior d’Agricultura de Barcelona (ESAB) durant el 2014.Postprint (author’s final draft

    On symmetric association schemes and associated quotient-polynomial graphs

    Get PDF
    Let Γ\Gamma denote an undirected, connected, regular graph with vertex set XX, adjacency matrix AA, and d+1{d+1} distinct eigenvalues. Let A=A(Γ){\mathcal A}={\mathcal A}(\Gamma) denote the subalgebra of MatX(C)_X({\mathbb C}) generated by AA. We refer to A{\mathcal A} as the {\it adjacency algebra} of Γ\Gamma. In this paper we investigate algebraic and combinatorial structure of Γ\Gamma for which the adjacency algebra A{\mathcal A} is closed under Hadamard multiplication. In particular, under this simple assumption, we show the following: (i) A{\mathcal A} has a standard basis {I,F1,,Fd}\{I,F_1,\ldots,F_d\}; (ii) for every vertex there exists identical distance-faithful intersection diagram of Γ\Gamma with d+1d+1 cells; (iii) the graph Γ\Gamma is quotient-polynomial; and (iv) if we pick F{I,F1,,Fd}F\in \{I,F_1,\ldots,F_d\} then FF has d+1d+1 distinct eigenvalues if and only if span{I,F1,,Fd}=\{I,F_1,\ldots,F_d\}=span{I,F,,Fd}\{I,F,\ldots,F^d\}. We describe the combinatorial structure of quotient-polynomial graphs with diameter 22 and 44 distinct eigenvalues. As a consequence of the technique from the paper we give an algorithm which computes the number of distinct eigenvalues of any Hermitian matrix using only elementary operations. When such a matrix is the adjacency matrix of a graph Γ\Gamma, a simple variation of the algorithm allow us to decide wheter Γ\Gamma is distance-regular or not. In this context, we also propose an algorithm to find which distance-ii matrices are polynomial in AA, giving also these polynomials.Comment: 22 pages plus 4 pages of reference

    Some applications of linear algebra in spectral graph theory

    Get PDF
    The application of the theory of matrices and eigenvalues to combinatorics is cer- tainly not new. In the present work the starting point is a theorem that concerns the eigenvalues of partitioned matrices. Interlacing yields information on subgraphs of a graph, and the way such subgraphs are embedded. In particular, one gets bounds on extremal substructures. Applications of this theorem and of some known matrix theorems to matrices associated to graphs lead to new results. For instance, some characterizations of regular partitions, and bounds for some parameters, such as the independence and chromatic numbers, the diameter, the bandwidth, etc. This master thesis is a contribution to the area of algebraic graph theory and the study of some generalizations of regularity in bipartite graphs. In Chapter 1 we recall some basic concepts and results from graph theory and linear algebra. Chapter 2 presents some simple but relevant results on graph spectra concerning eigenvalue interlacing. Most of the previous results that we use were obtained by Haemers in [33]. In that work, the author gives bounds for the size of a maximal (co)clique, the chromatic number, the diameter and the bandwidth in terms of the eigenvalues of the standard adjacency matrix or the Laplacian matrix. He also nds some inequalities and regularity results concerning the structure of graphs. The work initiated by Fiol [26] in this area leads us to Chapter 3. The discussion goes along the same spirit, but in this case eigenvalue interlacing is used for proving results about some weight parameters and weight-regular partitions of a graph. In this master thesis a new observation leads to a greatly simpli ed notation of the results related with weight-partitions. We nd an upper bound for the weight independence number in terms of the minimum degree. Special attention is given to regular bipartite graphs, in fact, in Chapter 4 we contribute with an algebraic characterization of regularity properties in bipartite graphs. Our rst approach to regularity in bipartite graphs comes from the study of its spectrum. We characterize these graphs using eigenvalue interlacing and we pro- vide an improved bound for biregular graphs inspired in Guo's inequality. We prove a condition for existence of a k-dominating set in terms of its Laplacian eigenvalues. In particular, we give an upper bound on the sum of the rst Laplacian eigenvalues of a k-dominating set and generalize a Guo's result for these structures. In terms of predistance polynomials, we give a result that can be seen as the biregular coun- terpart of Ho man's Theorem. Finally, we also provide new characterizations of bipartite graphs inspired in the notion of distance-regularity. In Chapter 5 we describe some ideas to work with a result from linear algebra known as the Rayleigh's principle. We observe that the clue is to make the \right choice" of the eigenvector that is used in Rayleigh's principle. We can use this method 1 to give a spectral characterization of regular and biregular partitions. Applying this technique, we also derive an alternative proof for the upper bound of the independence number obtained by Ho man (Chapter 2, Theorem 1.2). Finally, in Chapter 6 other related new results and some open problems are pre- sented

    Algebraic Characterizations of Regularity Properties in Bipartite Graphs

    No full text
    Regular and distance-regular characterizations of general graphs are well-known. In particular, the spectral excess theorem states that a connected graph GG is distance-regular if and only if its spectral excess (a number that can be computed from the spectrum) equals the average excess (the mean of the numbers of vertices at extremal distance from every vertex). The aim of this paper is to derive new characterizations of regularity and distance-regularity for the more restricted family of bipartite graphs. In this case, some characterizations of (bi)regular bipartite graphs are given in terms of the mean degrees in every partite set and the Hoffman polynomial. Moreover, it is shown that the conditions for having distance-regularity in such graphs can be relaxed when compared with general graphs. Finally, a new version of the spectral excess theorem for bipartite graphs is presented

    Algebraic Characterizations of Regularity Properties in Bipartite Graphs

    No full text
    Regular and distance-regular characterizations of general graphs are well-known. In particular, the spectral excess theorem states that a connected graph GG is distance-regular if and only if its spectral excess (a number that can be computed from the spectrum) equals the average excess (the mean of the numbers of vertices at extremal distance from every vertex). The aim of this paper is to derive new characterizations of regularity and distance-regularity for the more restricted family of bipartite graphs. In this case, some characterizations of (bi)regular bipartite graphs are given in terms of the mean degrees in every partite set and the Hoffman polynomial. Moreover, it is shown that the conditions for having distance-regularity in such graphs can be relaxed when compared with general graphs. Finally, a new version of the spectral excess theorem for bipartite graphs is presented
    corecore