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associated quotient-polynomial graphs
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Abstract Let Γ denote an undirected, connected, regular graph with vertex set X, adjacency
matrix A, and d+ 1 distinct eigenvalues. Let A = A(Γ) denote the subalgebra of MatX(C)
generated by A. We refer to A as the adjacency algebra of Γ. In this paper we investigate
algebraic and combinatorial structure of Γ for which the adjacency algebra A is closed under
Hadamard multiplication. In particular, under this simple assumption, we show the following:
(i) A has a standard basis {I, F1, . . . , Fd}; (ii) for every vertex there exists identical distance-
faithful intersection diagram of Γ with d + 1 cells; (iii) the graph Γ is quotient-polynomial;
and (iv) if we pick F ∈ {I, F1, . . . , Fd} then F has d + 1 distinct eigenvalues if and only if
span{I, F1, . . . , Fd} = span{I, F, . . . , F d}. We describe the combinatorial structure of quotient-
polynomial graphs with diameter 2 and 4 distinct eigenvalues. As a consequence of the tech-
niques used in the paper, some simple algorithms allow us to decide whether Γ is distance-regular
or not and, more generally, which distance-i matrices are polynomial in A, giving also these
polynomials.

1. Introduction
A matrix algebra is a vector space of matrices which is closed with respect to matrix
multiplication. Let X denote a finite set and MatX(C) the set of complex square
matrices with rows and columns indexed by X (or full algebra denoted by C|X|).
The subalgebras of MatX(C) that are closed under (elementwise) Hadamard mul-
tiplication, and containing the all-ones matrix J , are known as coherent algebras.
The concept was developed independently by Weisfeiler and Lehman in [69] and by
Higman in [34, 35]. A good introduction to the topic may be found in [41]. In the
literature, a rich theory has been built up around this concept, and much more can
be found in [38, 39, 42, 60, 61, 62, 63, 72]. It is well known that every coherent alge-
bra C is semisimple (see, for example, [31, Section 2]) and that has a standard basis
{N0, N1, . . . , Nr} consisting of the primitive idempotents of C viewed as a subalgebra
of MatX(C) with respect to Hadamard multiplication (see [35]). Each basis matrix Ni
of a coherent algebra C = 〈N0, N1, . . . , Nr〉 can be regarded as the adjacency matrix
A = A(Γi) of a graph Γi = (X,Ri). Then Γi and Ri are called a basis graph and a
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basis relation, respectively, of the coherent algebra C. The basis relations of a coherent
algebra give rise to a coherent configuration in the sense of [34].

A special subfamily of coherent configurations are commutative association schemes
also known as homogeneous coherent configurations [20]. Let R = {R0, R1, . . . , Rn}
denote a set of nonempty subsets of X ×X. For each i, let Ai ∈ MatX(C) denote the
adjacency matrix of the (in general, directed) graph (X,Ri). The pair (X,R) is an
association scheme with n classes if the following holds.

(AS1) A0 = I, the identity matrix.

(AS2)
n∑
i=0

Ai = J , the all-ones matrix.

(AS3) Ai> ∈ {A0, A1, . . . , An} for 0 6 i 6 n.
(AS4) AiAj is a linear combination of A0, A1, . . . , An for 0 6 i, j 6 n.

By (AS1) and (AS4) the vector space M spanned by the set {A0, A1, . . . , An} is an
algebra; this is the Bose–Mesner algebra of (X,R). We say that (X,R) is commutative
ifM is commutative, and that (X,R) is symmetric if the matrices Ai are symmetric. A
symmetric association scheme is commutative. The concept of (symmetric) association
schemes can also be viewed as a purely combinatorial generalization of the concept
of finite transitive permutation groups (famously said as a “group theory without
groups” [5]). The Bose–Mesner algebra was introduced in [7], and the monumental
thesis of Delsarte [17] proclaimed the importance of commutative association schemes
as a unifying framework for coding theory and design theory. There are a number of
excellent articles and textbooks on the theory of (commutative) association schemes
and Delsarte’s theory; see, for instance, [4, 8, 18, 21, 40, 51]. The following are some of
the books which include accounts on commutative association schemes: [10, 32, 49, 44].
As an example of a commutative association scheme, let Γ denote a distance-regular
graph of diameter D. It is well known (not hard to prove) that the vector space
spanned by the distance-i matrices A0, A1, . . . , AD of Γ, is closed under both ordinary
multiplication (A,B) 7→ AB and Hadamard multiplication (A,B) 7→ A ◦ B (see, for
example, [5, Chapter III] or [8, Chapter 4]). This is one of the main reasons why the
theory of distance-regular graphs is so rich in the study of algebraic and combinatorial
structures.

In this paper we consider the following problem (we always assume that our graphs
are finite, simple, and connected; see Section 2 for formal definitions).

Problem 1.1. Let Γ denote a regular graph with vertex set X. Using the algebraic
or combinatorial structure of Γ, find, if possible, a set F = {F0, F1(= F ), . . . , Fd}
of mutually disjoint (0, 1)-matrices satisfying the following properties: (i) the sum
of some (respectively all) of these matrices gives I (respectively J); (ii) for each
i ∈ {0, . . . , d}, the transpose of Fi belongs to F ; (iii) the vector space spanned by
F is closed under both ordinary and Hadamard multiplication; and (iv) each Fi is a
polynomial (not necessarily of degree i) in F .

A basis {F0, F1, . . . , Fd} of some subalgebra C ⊂ MatX(C) satisfying all the proper-
ties of Problem 1.1 is known as the standard basis of C. In particular, property (AS4)
holds and there exist intersection numbers phij (0 6 i, j, h 6 d) such that FiFj =∑d
i=0 p

h
ijFh.

The contents and main results of the paper are as follows. In Section 2 we recall
some notation and definitions. In Section 3 we give a new and algorithmic proof of a
known result [8, Theorem 2.6.1]. Namely, if the adjacency algebra A = {p(A) | p ∈
R[x]} of a graph Γ is closed under Hadamard multiplication, then A is a symmetric
association scheme (see Theorem 3.1). We also recall a simple procedure to find the
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number of different eigenvalues of a Hermitian matrix without computing them, and
propose a simple algorithm to check distance-regularity.

The next question we want to answer is what is the combinatorial structure of Γ
for which the vector space A is closed under Hadamard multiplication. This is studied
in Section 4, where we show that, if the adjacency algebra A, with dim(A) = d + 1,
of a regular graph is an association scheme, then there exists a common intersection
diagram with d + 1 cells for every vertex x that corresponds to a distance-related
equitable partition (see Theorem 4.1).

For the converse of Theorem 4.1, see Theorem 5.12. The first author in [26] defined
quotient-polynomial graphs, as graphs for which the adjacency matrices of a walk-
regular partition belong to the adjacency algebra A. In Section 5 we recall some old,
and prove some new, properties of such graphs. We also consider graphs which have
the same distance-faithful intersection diagram around every vertex, and we propose a
method for deciding if their distance-i matrices Ai are polynomial in A. In Section 5.1
we give an algorithm which computes the polynomial pi(t) so that Ai = pi(A) (if such
a polynomial exists).

In Theorem 6.1 of Section 6 we establish a connection between the structure of
Γ and Problem 1.1. Namely, it is shown that the adjacency algebra of Γ is closed
under the Hadamard product if and only if Γ is a quotient-polynomial graph (see
Theorem 6.1). As a corollary of Theorem 6.1, if the number of distinct entries of Ad
is greater than the number d + 1 of distinct eigenvalues, then the adjacency algebra
A is not closed under Hadamard multiplication (see also Section 5). In Theorem 6.3
we consider quotient-polynomial graphs with diameter 2, and 4 distinct eigenvalues.
Quotient-polynomial graphs with diameter 2, and 3 distinct eigenvalues are known
as strongly regular graphs. Note the similarity between [14, Theorem 5.1] and Theo-
rem 6.3. Moreover, we prove that a regular graph Γ with diameter 2 and 4 distinct
eigenvalues is quotient-polynomial if and only if either any two nonadjacent (respec-
tively, adjacent) vertices have a constant number of common neighbours, and the num-
ber of common neighbours of any two adjacent (respectively, nonadjacent) vertices
takes precisely two values (see Theorem 6.3). In Section 7 we give a necessary and suf-
ficient condition for the existence of an idempotent generator (see Theorem 7.1). This
corresponds to condition (iv) of Problem 1.1. Globally, note that Theorems 3.1, 6.1
and 7.1 give a solution to our problem. Finally, in the last Section 8 we propose some
open problems.

2. Definitions and preliminaries
A graph (or an undirected graph) Γ is a pair (X,R), where X is a nonempty set and R
is a collection of two element subsets of X. The elements of X are called the vertices
of Γ, and the elements of R are called the edges of Γ. When xy ∈ R, we say that
vertices x and y are adjacent, or that x and y are neighbors. A graph is finite if both
its vertex set and edge set are finite. By our definition for an edge it is not allowed
to start and end at the same vertex, so we can say a graph is simple if no two of its
edges join the same pair of vertices. For any two vertices x, y ∈ X, a walk of length
h from x to y is a sequence x0, x1, x2, . . . , xh (xi ∈ X, 0 6 i 6 h) such that x0 = x,
xh = y, and xi is adjacent to xi+1 (0 6 i 6 h− 1). We say that Γ is connected if for
any x, y ∈ X, there is a walk from x to y. From now on, we assume that Γ is finite,
simple and connected.

For any x, y ∈ X, the distance between x and y, denoted dist(x, y), is the length
of the shortest walk from x to y. The diameter D = D(Γ) is defined to be D =
max{dist(u, v) |u, v ∈ X}. We say Γ is regular with valency k, or k-regular, if each
vertex in Γ has exactly k neighbours. Recall also that a graph Γ is distance-regular
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if its distance relations (or distance matrices) form an association scheme. A strongly
regular graph, different from the complete graph or its complement, is a distance-
regular graph with diameter D = 2. For more information about distance-regular
graphs, we refer the reader to [16]. Some excellent articles that contain algebraic
approach to the theory of distance-regular graphs are [1, 2, 25, 27, 55, 67].

A partition around x of Γ, is a partition {P0 = {x},P1, . . . ,Ps} of the vertex
set X, where s is a positive integer. The eccentricity of x, denoted by ε(x), is the
maximum distance between x and any other vertex y of Γ. A distance partition
around x, is a partition {Γ0(x),Γ(x), . . . ,Γε(x)(x)} of X. An x-distance-faithful par-
tition {P0,P1, . . . ,Ps} with s > ε(x) is a refinement of the distance partition around
x. An equitable partition of a graph Γ is a partition π = {P1,P2, . . . ,Ps} of its vertex
set into nonempty cells such that for all integers i, j (1 6 i, j 6 s) the number cij of
neighbours, which a vertex in the cell Pi has in the cell Pj , is independent of the choice
of the vertex in Pi. We call the cij ’s the corresponding parameters. The intersection
diagram of an equitable partition π of a graph Γ is the collection of circles indexed by
the sets of π with lines between them. If there is no line between Pi and Pj , then it
means that there is no edge yz for any y ∈ Pi and z ∈ Pj . If there is a line between Pi
and Pj , then a number on the line near a circle Pi denotes corresponding parameter
cij . A number above or below a circle Pi denotes the corresponding parameter cii (see
Figure 1 for an example).
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Figure 1. Cayley graph Cay(Z7; {1, 2}) and its intersection diagram
(around vertex 0). The adjacency algebra of this graph is closed with
respect to Hadamard multiplication (this follows from Theorems 5.12
and 6.1; or independently from Theorem 6.3).

2.1. The adjacency algebra. Let C denote the complex number field, and let Γ
denote a graph with vertex set X and diameter D. For 0 6 i 6 D let Ai denote the
matrix in MatX(C) with (x, y)-entry

(1) (Ai)xy =
{

1 if dist(x, y) = i,

0 if dist(x, y) 6= i
(x, y ∈ X).

We call Ai the distance-i matrix of Γ. We abbreviate A := A1 and call this the
adjacency matrix of Γ. Observe that A0 = I,

∑D
i=0Ai = J , Ai = Ai (0 6 i 6 D),

and A>i = Ai (0 6 i 6 D), where I denotes the identity matrix (respectively, all-ones
matrix) in MatX(C), “>” denotes transpose, and “ ” denotes complex conjugation.

Let V = CX denote the vector space over C consisting of column vectors whose
coordinates are indexed by X and whose entries are in C. We call V the standard
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module. We endow V with the Hermitian inner product 〈·, ·〉V that satisfies 〈u, v〉V =
u>v for u, v ∈ V . Moreover,

〈u,Bv〉V = 〈B>u, v〉V
for u, v ∈ V and B ∈ MatX(C).

We observe that MatX(C) acts on V by left multiplication, and since A is a real
symmetric matrix, A can be interpreted as a self-adjoint operator on V. This yields
that V has an orthogonal basis consisting of eigenvectors of A (see, for example, [3,
Chapter 7]). Assume that Γ has d + 1 distinct eigenvectors. For each eigenvalue λi
(0 6 i 6 d) of Γ let Ui be the (real) matrix whose columns form an orthonormal basis
of its eigenspace Vi := ker(A−λiI), and let mi := dim(Vi). The primitive idempotents
of A are the matrices

Ei := UiU
>
i (0 6 i 6 d).

Some well-known properties of the primitive idempotents are the following:

(e-i) p(A) =
d∑
i=0

p(λi)Ei, for every polynomial p ∈ C[t]. In particular, E0 +E1 +

· · ·+ Ed = I and Ah =
∑d
i=0 λ

h
i Ei (h ∈ N).

(e-ii) tr(Ei) = mi (0 6 i 6 d).
(e-iii) E>i = Ei (0 6 i 6 d).
(e-iv) Γ regular and connected ⇒ E0 = |X|−1J .
(e-v) EiEj = δijEi (0 6 i, j 6 D).
(e-vi) EiA = AEi = λiEi (0 6 i 6 d).

(e-vii) Ei = 1
πi

d∏
j=0
j 6=i

(A− λjI) (0 6 i 6 d), where πi =
∏d
j=0(j 6=i)(λi − λj).

(e-viii) Ei is the orthogonal projector onto Vi = ker(A−λiI) (0 6 i 6 d). Moreover,
Im(Ei) = ker(A− λiI) and ker(Ei) = Im(A− λiI).

Proofs of properties (e-i)–(e-viii) can be found, for example, in [57, Chapter 2]. Recall
that, the number of walks of length ` > 0 between vertices u and v of Γ is the (u, v)-
entry of A`, and that the eigenvalues of a real symmetric matrix are real numbers
(see, for example, [68]). From this fact, together with (e-iv) and (e-viii), we have the
following result:

Corollary 2.1 (Hoffman polynomial, [36, Theorem 1]). A graph Γ is regular and
connected if and only if there exists a polynomial H ∈ R[t] such that J = H(A).

Now, using the above notation, the vector space
A = Rd[A] = span{I, A,A2, . . . , Ad}

is an algebra, with the ordinary product of matrices and orthogonal basis
{E0, E1, . . . , Ed}, called the adjacency algebra. Moreover, the vector space

D = span{I, A,A2, . . . , AD}
forms an algebra with the Hadamard product “◦” of matrices, defined by (M ◦N)uv =
(M)uv(N)uv. We call D the distance ◦-algebra. Note that, when Γ is regular, I, A, J ∈
A∩D, and thus dim(A∩D) > 3 assuming that Γ is neither a complete graph (in which
case, J = I +A) nor the empty graph. In this algebraic context, an important result
is that Γ is distance-regular if and only if A = D, which is therefore equivalent to
dim(A∩D) = d+ 1 (and hence d = D); see, for example, [6, 8, 59]. A related concept
was introduced by Weichsel [71]: a graph is called distance-polynomial if D ⊂ A, that
is, if each distance matrix is a polynomial in A. In other words, a graph with diameter
D is distance-polynomial if and only if dim(A ∩D) = D + 1.
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(〈I, A, . . . , Ad〉,+, ◦)

(D,+, ◦)(A,+, ·)

{I, A, J}

Figure 2. Inclusion diagram when the adjacency algebra A is closed
under Hadamard multiplication. A line segment that goes upward
fromM to N means that N containsM . In case when Γ is a distance-
regular graph we have A = D.

In general the algebras A and D are different from the algebra N = (〈A0, A1, . . . ,
AD〉,+, ·) generated by the set of distance-i matrices {A0, A1, . . . , AD} with respect
to the ordinary product of matrices. Figure 2 shows a diagram with some inclusion
relationships when A is closed under Hadamard multiplication.

3. The symmetric association scheme
In this section we give a new and algorithmic proof of a known result (see [8, Theo-
rem 2.6.1]). With this aim, let us call two (0, 1)-matrices B, C disjoint if B ◦ C = 0.
For the moment, let F denote the vector space of symmetric n × n matrices. In [8,
Theorem 2.6.1(i)] it was proved that F has a basis of mutually disjoint (0, 1)-matrices
if and only if F is closed under Hadamard multiplication. In [8, Theorem 2.6.1(iii)] it
was proved that F is the Bose–Mesner algebra of an association scheme if and only
if I, J ∈ F and F is closed under both ordinary and Hadamard multiplication. Thus,
as commented, our next theorem is a re-proof of [8, Theorem 2.6.1] using a different
(algorithmic) approach. We emphasize that the notation and technique used in our
proof is important for the application in Section 3.1, as well as for the rest of the
paper.
Theorem 3.1. Let Γ denote a regular graph with d+1 distinct eigenvalues. If the vector
space A = span{I, A, . . . , Ad} is closed under Hadamard multiplication (A,B) →
A ◦ B, then there exists a unique basis {F0, F1, . . . , Fd} of A such that the following
hold.

(i) Fi’s (0 6 i 6 d) are nonzero (0, 1)-matrices, such that Fi ◦ Fj = δijFi (0 6
i, j 6 d).

(ii) There exist m ∈ {0, 1, . . . , d} such that Fm = I, the identity matrix.

(iii)
d∑
i=0

Fi = J , the all-ones matrix.

(iv) Fi> = Fi (0 6 i 6 d).
(v) FiFj is a linear combination of F0, F1, . . . , Fd for 0 6 i, j 6 d.

Proof. Let X denote the vertex set of Γ and let bi (0 6 i 6 d) denote the row vectors,
obtained from Ai (0 6 i 6 d) as concatenation of the rows of Ai. That is, if

Ai =


di11 di12 . . . di1,|X|
di21 di22 . . . di2,|X|
...

...
...

di|X|,1 d
i
|X|,2 . . . d

i
|X|,|X|
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then
bi =

(
di11 d

i
12 . . . d

i
1,|X| d

i
21 . . . d

i
|X|,1 d

i
|X|,2 . . . d

i
|X|,|X|

)
.

Define B as the d× |X|2 matrix constructed from the row set {b0, b1, . . . , bd},

B =


− b0 −
− b1 −

...
− bd −

 .

It is not hard to see that the vector space A is isomorphic to the vector space

C := Row(B>) = {γ0b
>
0 + γ1b

>
1 + . . .+ γdb

>
d | γ0, γ1, . . . , γd ∈ R}.

Using elementary row operation on B, we compute C as the reduced row echelon form
of the matrix B. That is,

B
row∼ C =


1 ∗ 0 0 ∗ ∗ 0 ∗ ∗ . . .
0 0 1 0 ∗ ∗ 0 ∗ ∗ . . .
0 0 0 1 ∗ ∗ 0 ∗ ∗ . . .
...

... 0 ∗
...

0 0 0 0 0 0 1 ∗ ∗ . . .

 =


− c0 −
− c1 −

...
− cd −

 .

Note that the set of nonzero vectors ci (0 6 i 6 d) are linearly independent. Finally,
we can use row vectors {ci}di=0 to construct our matrices Fi in the following way. If

ci =
(
ci11 c

i
12 . . . c

i
1,|X| c

i
21 . . . c

i
|X|,1 c

i
|X|,2 . . . c

i
|X|,|X|

)
.

then

Fi =


ci11 ci12 . . . ci1,|X|
ci21 ci22 . . . ci2,|X|
...

...
...

ci|X|,1 c
i
|X|,2 . . . c

i
|X|,|X|

 .

We claim that the set {F0, F1, . . . , Fd} has the required properties. By construction,
it is routine to show that the matrices F0, F1, . . . , Fm are linearly independent.

(i) Pick Fi for some i (0 6 i 6 d). Since {F0, F1, . . . , Fd} is a basis of the vector
space A, which is closed under both ordinary multiplication and Hadamard multipli-
cation, there exists scalars α0, . . . , αd such that Fi ◦ Fi =

∑d
h=0 αhFh. Now pick Fj

(where j 6= i) and consider the (x, y)-entry of Fj which corresponds to the first nonzero
entry of the row vector cj . We have (Fj)xy = 1 and (Fh)xy = 0 (0 6 h 6 d, h 6= j).
This yields that if αj 6= 0 then (Fi ◦ Fi)xy = αj 6= 0, a contradiction (because
(Fi)xy = 0). Thus Fi ◦ Fi = αiFi. To show that αi = 1, pick (u, v)-entry of Fi which
corresponds to the first nonzero entry of the row vector ci. We have (Fi)uv = 1 and
with that 1 = (Fi ◦ Fi)uv = (αiFi)uv = αi.

This yields Fi ◦ Fi = Fi, and with that all entries of Fi (0 6 i 6 d) are zeros and
ones. In a similar way as above, we can show that Fi ◦ Fj = O, for i 6= j. The result
follows.

(ii) Since I ∈ A = span{F0, F1, . . . , Fd} and the set {F0, F1, . . . , Fd} is a basis of
◦-idempotents, there exists an index set Ω such that

∑
α∈Ω Fα = I. If |Ω| > 1 then we

can pick α ∈ Ω, y, z ∈ X, such that (Iα)yy = 1 and (Iα)zz = 0. For an algebra A we
have that for any B,C ∈ A, BC = CB, and since J ∈ A we have IαJ = JIα. If we
compute (y, z)-entry of IαJ and JIα we get (IαJ)yz = 1, (JIα)yz = 0, a contradiction.
The result follows.
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(iii) Since Γ is a regular connected graph we have J ∈ A. On the other hand, by (i)
the set {F0, F1, . . . , Fd} is a basis of ◦-idempotents. The result follows.

(iv) Since the Fi (0 6 i 6 d) are real symmetric matrices, the result follows.
(v) Note that {F0, F1, . . . , Fd} is a basis of A.
This completes the proof. �

Note that, as a consequence, if the adjacency algebra A of Γ is closed under
Hadamard multiplication, then it produces a symmetric association scheme. The prop-
erty (ii) of Theorem 3.1 tell us that if we want to get property (i) of Problem 1.1,
for |Ω| > 1, we should consider a directed graph Γ. By Theorem 3.1(iv), we also need
a directed graph to get non-symmetric Fi’s. Using the technique from the proof of
Theorem 3.1, it is not hard to figure out an algorithm which yields the number of
distinct eigenvalues of A without computing them.

3.1. Checking the number of distinct eigenvalues and distance-regula-
rity. As before, let X denote a set with |X| = n elements, MatX(C) the set of
n × n matrices over C with rows and columns indexed by X, and A ∈ MatX(C) a
Hermitian matrix. Then, to find the number d+1 of distinct eigenvalues of A (without
computing them), it suffices to find the dimension of the vector space A spanned by
the powers of A. With this aim, we can consider the set {A0, A1, . . . , Ak} for some
positive integer k. Then, as in the proof of Theorem 3.1, we construct the matrix B
and compute C = (cij)(d+1)×n2 as its reduced row echelon form (here both B and C
are matrices from the proof of Theorem 3.1). Then, note that the set of nonzero row
vectors ci (0 6 i 6 k) are linearly independent. Thus, we only need to find the smallest
k so that ck 6= 0 to conclude that A has d+1 = k+1 different eigenvalues. The problem
with this approach is that to decide what initial number k to pick. Of course, k = n
will always work, but, in this case, we need to compute all Ai (0 6 i 6 n) which is
not the best choice if the number of distinct eigenvalues is small compared with n.

To overcome the above problem, we can use the Gram–Schmidt method with inner
scalar product

(2) 〈A,B〉Cn
:= 1

n
tr(AB) = 1

n
sum(A ◦B), A,B ∈ MatX(C),

where sum(M) denotes the sum of all entries of M (the term 1
n is a normalization

factor to get ‖I‖Cn
= 1) . Then, if we apply the method from the matrices I, A,A2, . . .,

we get a sequence A0, A1, . . ., where Ai is a polynomial of degree i in A, for i = 0, . . . , d,
the matrices A0, . . . , Ad are orthogonal, and Ai = 0 for i > d. Consequently, we
only need to apply the process until we reach the first zero matrix. Moreover, notice
that if, when computing Ak+1, instead of the power Ak+1, we use AkA, we have
〈AkA,Ai〉Cn

= 〈Ak, AiA〉Cn
= 0 for each i < k − 1 (since AiA is a polynomial in A

of degree less than k). Moreover, the Gram–Schmidt orthonormalization can be done
within the rational field if we do not orthonormalize but just orthogonalize.

Thus, if A is a Hermitian matrix such that A = span{A0, A, . . . , Ad} is closed
under Hadamard product, we can use the above procedure to compute the standard
basis {F0, F1, . . . , Fd} of A by following the proof of Theorem 3.1(i). Just apply the
algorithm to get a set {A0, A1, . . . , Ad} of non-zero matrices such that d + 1 is the
number of distinct eigenvalues of A, and, starting from them, proceed as in the proof.

In fact, if A is the adjacency matrix of a graph Γ with d+1 eigenvalues, the above in-
ner product (2) is denoted as 〈·, ·〉Γ, and the obtained matrices A0, A1, . . . , Ad coincide,
up to a multiplicative constant, with the so-called predistance matrices of Γ, see [30].
In turn, such matrices are obtained by evaluating at A the predistance polynomials
p0, . . . , pd, introduced in [28]. In particular, if Γ is distance-regular, the predistance
polynomials and predistance matrices are, respectively, the distance polynomials and
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distance matrices of Γ. If Γ has spectrum sp(Γ) = sp(A) = {λm0
0 , λm1

1 , . . . , λmd

d },
where λ0 > λ1 > · · · > λd, the predistance polynomials p0, p1, . . . , pd constitute an
orthogonal sequence of polynomials (dgr(pi) = i) with respect to the scalar product

(3) 〈f, g〉Γ := 1
n

d∑
i=0

mif(λi)g(λi) = 1
n

tr(f(A)g(A)) = 〈f(A), g(A)〉Γ,

normalized in such a way that ‖pi‖2Γ = pi(λ0) (we know that pi(λ0) > 0 for every
i = 0, . . . , d).

As every sequence of orthogonal polynomials, the predistance polynomials satisfy
a three-term recurrence of the form
(4) xpi = bi−1pi−1 + aipi + ci+1pi+1 (0 6 i 6 d),
where the constants bi−1, ai, and ci+1 are the Fourier coefficients of xpi in terms of
pi−1, pi, and pi+1, respectively (and b−1 = cd+1 = 0). Moreover, p0+p1+· · ·+pd = H,
the Hoffman polynomial of Corollary 2.1. Hence, if Γ is k-regular, we can apply the
above algorithm, based on the Gram–Schmidt method, to obtain the predistance
matrices if we normalize each Ai, for i = 0, . . . , d, in such a way that ‖Ai‖2Γ = 〈Ai, J〉Γ,
which satisfy
(5) A0 +A1 + · · ·+Ad = p0(A) + p1(A) + · · ·+ pd(A) = H(A) = J.

Some recent characterizations of distance-regularity in terms of the predistance
polynomials and distance matrices Ad and Ad−1 are the following: A regular graph
Γ with d + 1 distinct eigenvalues, diameter D = d, is distance-regular if and only if
either
(DR1) Ad ∈ A,
(DR2) Ad = pd(A),
(DR3) Ai = pi(A) for i = d− 2, d− 1.

Each of the above conditions assures the existence of all the distance matrices A0(=
I), A1(= A), A2, . . . , Ad, which is a well-known characterization of distance-regularity.
More generally, in [12], a graph Γ is said to be k-partially distance-regular, for some
k < d, if there exist the distance matrices Ai for i = 0, . . . , k. For more details,
see [12, 15, 24, 29].

Now, as another possible application of the algorithm given by the Gram–Schmidt
method, we have the following result.

Proposition 3.2. Let Γ be a regular graph with diameter D, and d+1 different eigen-
values. Let Ai be the matrices obtained by applying the Gram–Schmidt method, and
normalizing them so that ‖Ai‖2Γ = 〈Ai, J〉Γ, for i = 0, 1 . . ., that is, Ai ← 〈Ai,J〉Γ

‖Ai‖2Γ
Ai.

If the following conditions hold:
(i) AD+1 = 0 and AD 6= 0,
(ii) AD is a (0, 1)-matrix,
(iii) Ai, i = 0, . . . , D − 1, are nonnegative matrices,

then Γ is a distance-regular graph.

Proof. We will prove that Ad is the distance-d matrix of Γ. First, as we have already
seen, (i) implies that D = d. Then, if u, v ∈ X are two vertices at distance dist(u, v) =
d, we have that (Ad)uv = (pd(A))uv = (H(A))uv = (J)uv = 1. Otherwise, assume
that dist(u, v) = ` < d and (Ad)uv = 1. Then, from (5) and (iii), it should be
(A` + · · ·+Ad−1)uv = 0. In particular, (A`)uv = 0, a contradiction since A` = p`(A),
with dgr(p`) = ` and so p` has leading nonzero coefficient. Then, if dist(u, v) < d,
then (Ad)uv = 0. Consequently, Ad is as claimed, and (DR2) gives the result. �
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Notice that, in fact, if Γ is indeed distance-regular, all the normalized matrices
A0, A1, . . . obtained by the algorithm must be the corresponding distance matrices.
This provides an obvious procedure to decide whether a regular graph is distance-
regular or not.

4. The distance-faithful intersection diagrams
In this section we prove that, if the adjacency algebra A = {I, A, . . . , Ad} of a reg-
ular graph is closed under Hadamard multiplication, then there exists a common
x-distance-faithful intersection diagram of an equitable partition with d + 1 cells for
every vertex x.

Theorem 4.1. Let Γ denote a regular graph with d+1 distinct eigenvalues. If the vector
space A = span{I, A, . . . , Ad} is closed under Hadamard multiplication, then, for
every vertex x, there exists an x-distance-faithful intersection diagram of an equitable
partition with d + 1 cells. Moreover, this intersection diagram is the same around
every vertex.

Proof. Since Γ is a regular graph, by Theorem 3.1 A has the standard basis
{F0, F1, . . . , Fd}. Let X denote the vertex set of Γ. Given x ∈ X, we define the
partition

πx = {P0(x),P1(x), . . . ,Pd(x)}, where Pi(x) = {z | (Fi)xz = 1} (0 6 i 6 d),

To prove the claim, we need to show that the following (i)–(iii) hold.
(i) All vertices in Pi(x) are at the same distance from x.
(ii) |Pi(x)| = |Pi(u)| (0 6 i 6 d) for every x, u ∈ X.
(iii) There exist numbers cij (0 6 i, j 6 d) such that, for every x ∈ X, πx is

equitable partition of Γ with corresponding parameters cij (which do not
depend on x).

(i) We first show that for any z, w ∈ Pi(x) we have (A`)xz = (A`)xw (0 6 ` 6 d).
That is, the number of walks of length ` from x to z is the same as the number of
walks of length ` from x to w. Since {Fh}dh=0 is a basis of A there exist scalars αij
(0 6 i, j 6 d) such that

A` =
d∑
j=0

α`jFj (0 6 ` 6 d).

Since z, w ∈ Pi(x) we have (Fi)xz = (Fi)xw = 1 and (Fj)xz = (Fj)xw = 0 for j 6= i.
This yields (A`)xz = α`i = (A`)xw. Now we prove the claim (i) by contradiction. As-
sume that z, w ∈ Pi(x) and that dist(x, z) > dist(x,w) = `. Then, we have (A`)xw 6= 0
but (A`)xz = 0, a contradiction.

(ii) This follows from the fact that every matrix in A has constant row sums, so Fi
does too. Indeed, since Γ is a regular graph of valency k, Aj = kj (where j is all-ones
column vector). This yields E0j = j and Ejj = 0 for 1 6 j 6 d (see property (e-viii)
in Subsection 2.1). Now, since Fi ∈ A = span{E0, E1, . . . , Ed}, there exist scalars βh
(0 6 h 6 d) such that

Fi =
d∑

h=0
βhEh (0 6 i 6 d).

This implies Fij = β0E0j = β0j. That is, the sum of row entries is the same for every
vertex. Therefore, |Pi(x)| =

∑
z∈X(Fi)xz = β0 =

∑
w∈X(Fi)uw = |Pi(u)|.
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(iii) Since AFi ∈ span{F0, F1, . . . , Fd}, there exist scalars cij (0 6 i, j 6 d) such
that

(6) AFi =
d∑

h=0
cihFh (0 6 i 6 d).

Now, for any given x ∈ X and y ∈ Pj(x), from the left side of (6) we have

(AFi)yx =
∑
z∈X

(A)yz(Fi)zx = |Γ(y) ∩ Pi(x)|,

and from the right side of (6) we have

(AFi)yx =
(

d∑
h=0

cihFh

)
yx

= cij(Fj)yx = cij .

Thus, πx is an equitable partition of Γ with corresponding parameters cij . �

5. The quotient-polynomial graphs
In this section we recall some old, and prove some new, properties of quotient-
polynomial graphs, a concept introduced by the first author in [26].

Recall that, for every y, z ∈ X, (A`)yz (0 6 ` 6 d) is the number of walks of length
` between vertices y and z.

Definition 5.1. Let Γ denote a graph with vertex set X and d+1 distinct eigenvalues.
The column vector w(y, z) ∈ Cd+1 is defined as

w(y, z) =
(

(A0)yz, (A1)yz, . . . , (Ad)yz
)>
.

Let R = {R0, R1, . . . , Rr} denote a partition of X ×X such that, for each i (0 6
i 6 r), the pairs (y, z), (u, v) ∈ X ×X belong to Ri if and only if w(y, z) = w(u, v).
Then, from the above definition, all pairs of vertices in a given Ri are at the same
distance.

Remark 5.2. If we have an equitable partition π = {P0,P1, . . . ,Pr} around y, P0 =
{y}, with intersection numbers bij we can compute the vector w(y, z) (y, z ∈ X)
from its quotient matrix B = (bij) ∈ Mat(r+1)×(r+1)(C), (0 6 i, j 6 r). The reason is
that 1

|Pj | (B
`)Pj ,P0 is the number of `-walks (0 6 ` 6 d) from z to y for any z ∈ Pj

(0 6 j 6 r) (see, for instance, [13]).

Definition 5.3. The walk-regular partition R = {R0, R1, . . . , Rr} of X × X is the
partition satisfying that, for each i (0 6 i 6 r), the pairs (y, z), (u, v) ∈ X ×X belong
to Ri if and only if w(y, z) = w(u, v). Let Mi (0 6 i 6 r) denote the |X|×|X| matrix,
indexed by the vertices of Γ, and defined by

(Mi)yz =
{

1 if (y, z) ∈ Ri
0 otherwise

(y, z ∈ X).

The matrix Mi is called the adjacency matrix of the equivalence class Ri.

Note that, since the walk-regular partition follows from the equivalence classes of
w, it is unique up to ordering of the indices in R = {R0, R1, . . . , Rr}. In other words,
if necessary, and using the comment after Definition 5.1, we can define the walk-
regular partition R by adding the following restriction: for any i 6 j and (x, y) ∈ Ri,
(u, v) ∈ Rj we have dist(x, y) 6 dist(u, v). Moreover, by the same comment, the
following lemma is immediate.
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Lemma 5.4. Let Γ be a graph with vertex set X and a walk-regular partition R of
X ×X. Let Ai (0 6 i 6 D) denote the distance-i matrix of Γ, and let Mi (0 6 i 6 r)
denote the adjacency matrices of the corresponding equivalence classes Ri. Then there
exists an index set Φi ⊂ {0, . . . , r} such that Ai =

∑
j∈Φi

Mj.

Definition 5.5. Let Γ denote a graph with vertex set X, d + 1 distinct eigenvalues,
and adjacency algebra A. Let R = {R0, R1, . . . , Rr} be the walk-regular partition of
X×X and let Mi (0 6 i 6 r) denote the adjacency matrices of the equivalence classes
Ri (0 6 i 6 r). A graph Γ is quotient-polynomial if Mi ∈ A (0 6 i 6 r).

From Lemma 5.4 and Definition 5.5 it follows that every distance-i matrix of a
quotient-polynomial graph Γ belongs to its adjacency algebra A.

Example 5.6. Let B ⊗ C denote the Kronecker tensor product of matrices B and
C (for the definition and properties of Kronecker tensor product see, for example,
[43, Chapter 13] or [37, Chapter 4]). Let A and A′ denote the adjacency matrices of
the graphs Γ and Γ′ respectively. The Kronecker product, Γ⊗ Γ′, is that graph with
adjacency matrix A⊗A′ (see [70]).

Let T4 be the triangular graph (that is, the line graph of the complete graph K4, or
K6 minus a matching). The distinct eigenvalues of T4 are {−2, 0, 4}, and the distinct
eigenvalues of the complete graph K2 are {−1, 1}. Consider the graph Γ = K2 ⊗ T4,
the bipartite double of T4. From [43, Theorem 13.12], the distinct eigenvalues of
Γ are {−4,−2, 0, 2, 4}, and from [70, Theorem 1], Γ is connected. Moreover, Γ is a
quotient-polynomial graph. The adjacency algebra of Γ is closed with respect to the
Hadamard product, and has the standard basis {F0, F1, F2, F3, F4}, where Fi := pi(A)
(0 6 i 6 4) and

p0(t) = 1, p1(t) = t, p2(t) = − t
4

32 + 5t2

8 − 1,

p3(t) = t4

16 −
3t2

4 , p4(t) = t3

8 −
3t
2 .

(The above polynomials can be obtained by the process explained in Definition 5.7.)
For the corresponding intersection diagram of Γ see Figure 3.

P0 P1

P2

P3

P4

– –

–

–

–

4 1
1

2

4

2 2

4

Figure 3. The quotient-polynomial graph Γ := K2 ⊗ T4 and its
intersection diagram. The adjacency algebra of Γ is closed with re-
spect to the Hadamard product. If {F0, F1, F2, F3, F4} is the stan-
dard basis from Remark 5.6, then for a fixed vertex x of Γ we have
Pi = {z | (Fi)xz = 1} (0 6 i 6 d).

Definition 5.7. Let Γ denote a graph with d+1 distinct eigenvalues. Given the walk-
regular partition R = {R0, R1, . . . , Rr} of X ×X, let wij be the common value of the
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number of i-walks (0 6 i 6 d) from y to z for any y, z ∈ Rj (0 6 j 6 r). Define the
matrices W and Z, and the polynomials pi(t) (0 6 i 6 d) as follows:

[W |t] =



w00 w01 . . . w0r 1
w10 w11 . . . w1r t

w20 w21 . . . w2r t
2

...
...

...
...

wd0 wd1 . . . wdr t
d


row∼



1 ∗ 0 0 . . . 0 ∗ . . . ∗ p1(t)
0 0 1 0 . . . 0 ∗ . . . ∗ p1(t)
0 0 0 1 . . . 0 ∗ . . . ∗ p2(t)
...
...
...
...

...
...

...
...

0 0 0 0 . . . 1 ∗ . . . ∗ pd(t)


= [Z|p(t)],

that is, the matrix [Z|p(t)] is the reduced row-echelon form of [W |t]. (As we will see
in the next proof, rank(W ) = d+ 1.)

Theorem 5.8. Let Γ be a graph with vertex set X, d+ 1 distinct eigenvalues, and let
R = {R0, R1, . . . , Rr} denote a walk-regular partition of X ×X. Then,

d 6 r.

Furthermore, let Z denote the matrix of Definition 5.7, and define

W := {w(y, z) | y, z ∈ X} .

Then the following are equivalent.
(i) d = r.
(ii) Z = I.
(iii) |W| = d+ 1.
(iv) W is a linearly independent set.
(v) Γ is a quotient-polynomial graph.

Proof. Let Mj denote the adjacency matrix of the relation Rj (0 6 j 6 r). Since R is
a walk-regular partition, for the scalars wij (0 6 i 6 d, 0 6 j 6 r) of Definition 5.7,
we have

I = w00M0 + w01M1 + · · ·+ w0rMr,

A = w10M0 + w11M1 + · · ·+ w1rMr,

A2 = w20M0 + w21M1 + · · ·+ w2rMr,

...
Ad = wd0M0 + wd1M1 + · · ·+ wdrMr.

This yields span{I,A, . . . , Ad} ⊆ span{M0,M1, . . . ,Mr} as vector spaces, and hence
d 6 r.

Let W denote the matrix from Definition 5.7. Note that the elements of the set W
are columns of the matrix W , and since R is a walk-regular partition, W has exactly
r + 1 elements.

Also note that

(7) rank(W ) > d+ 1.

Otherwise, if rank(W ) < d + 1, applying elementary row operations on the above
system, we get Ad ∈ span{I, A, . . . , Ad−1}, a contradiction.

To prove equivalences between (i)–(v), we show the following chain of implications.
(i)⇒ (ii), (v). If d = r then rank(W ) = d+1 = r+1, which means that Z = I and

for everyMi we haveMi = pi(A). This yieldsMi ∈ A, and Γ is a quotient-polynomial
graph.
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(ii) ⇒ (i), (iii), (iv). If Z = I, since Z is a (d+ 1)× (r+ 1) matrix, we have r = d.
Moreover, we also have that rank(W ) = d + 1. This yields |W| = d + 1 and W is a
linearly independent set.

(iii) ⇒ (i), (iv). If |W| = d+ 1 then d = r (since W has r + 1 elements). If W is a
linearly dependent set, then rank(W ) < d+ 1, which is a contradiction with (7).

(iv) ⇒ (i). If W is a linearly independent set, then rank(W ) > r+ 1. On the other
hand, since d 6 r, and W is (d+ 1)× (r+ 1) matrix, we have rank(W ) 6 d+ 1. This
yields d = r.

(v) ⇒ (i). If Γ is a quotient-polynomial graph then Mi ∈ A (0 6 i 6 r). Then
as vector spaces span{M0,M1, . . . ,Mr} ⊆ span{I, A, . . . , Ad}, which yield r 6 d. On
the other hand, since d 6 r, the result follows. �

Corollary 5.9. Let Γ denote a graph with d+1 distinct eigenvalues, and x-distance-
faithful intersection diagram π with r + 1 cells. If Γ has the same x-distance-faithful
intersection diagram around every vertex x, then Γ has at most r + 1 eigenvalues.
Moreover, if r = d then Γ is a quotient-polynomial graph.

Proof. The same intersection diagram around every vertex corresponds to a walk-
regular partition of X ×X with r+ 1 cells. The result now follows from Theorem 5.8.

�

From the end of the proof of Theorem 5.8, the number of distinct entries of Ai
(0 6 i 6 d) is important in deciding when Γ is not a quotient-polynomial graph.

Corollary 5.10. Let Γ denote a graph with vertex set X and d+ 1 distinct eigenval-
ues. If, for i ∈ {0, . . . , d}, the matrix Ai has more than d+ 1 distinct entries, then Γ
is not a quotient-polynomial graph.

Proof. Under the hypothesis, Ai cannot be written as a linear combination of some
d + 1 ◦-idempotent (0, 1)-matrices in {F0, . . . , Fd} and, hence, A does not have a
standard basis. �

Comment 5.11. If Γ is a quotient-polynomial graph then the polynomials pi (0 6
i 6 r) from Definition 5.7 are orthogonal with respect to the scalar product (3), as
happens with the distance polynomials of a distance-regular graph. Indeed, for every
i, j (0 6 i, j 6 d), we have

〈pi, pj〉Γ = 〈pi(A), pj(A)〉Γ = 〈Mi,Mj〉Γ = 1
|X|

∑
u,v∈X

(Mi ◦Mj)uv = 0.

Also, for the same polynomials pi (0 6 i 6 r), we have that Γ is a regular and
connected graph if and only if

∑r
i=0 pi(A) = J .

Theorem 5.12. Let Γ denote a graph with vertex set X, x-distance-faithful inter-
section diagram πx, and assume that πx has r + 1 cells Pi with P0 = {x}: πx =
{P0,P1, . . . ,Pr}. Let wij denote the number of i-walks (0 6 i 6 r) from y to x for
any y ∈ Pj (0 6 j 6 r). Let P = [wij ]06i,j6r denote (r + 1) × (r + 1) matrix with
entries wij. If Γ has the same x-distance-faithful intersection diagram around every
x ∈ X then Γ has exactly rank(P ) distinct eigenvalues. Moreover, if rank(P ) = r+ 1
then Γ is a quotient-polynomial graph.
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Proof. Using the intersection diagram πx = {P0,P1, . . . ,Pr} around x, we can con-
sider the column vectors

(8) w0 =


w00
w10
w20
...
wr0

 ,w1 =


w01
w11
w21
...
wr1

 , . . . ,wr =


w0r
w1r
w2r
...
wrr

 ,

where wij denote the number of i-walks (0 6 i 6 r) from z to x for any z ∈ Pj
(0 6 j 6 r). Note that we do not know whether it is wi 6= wj for every 0 6 i, j 6 r
or not. Now, pick a vertex u ∈ X (u 6= x), consider the intersection diagram πu =
{P0(u),P1(u), . . . ,Pr(u)}, and let w′ij(u, v) denote the number of i-walks (0 6 i 6 r)
from v to u for any v ∈ Pj(u) (0 6 j 6 r). Then, since Γ has the same intersection
diagram around every vertex, the set of vectors

w′0(u, v),w′1(u, v), . . . ,w′r(u, v),

is the same as in (8). That is, for every i (0 6 i 6 r) there exists exactly one h (0 6 h 6
r) such that wi = w′h(u, v). Now we can define the matrices Mi ∈ Mat(r+1)×(r+1)(C)
in the following way:

(Mi)zy =
{

1 if w′h(z, y) = wi for some h,
0 otherwise

(z, y ∈ X).

This definition of Mi yields that

(9) Ai = wi0M0 + wi1M1 + · · ·+ wirMr (0 6 i 6 r).

Also, since Γ has the same distance-faithful intersection diagram around every vertex,
using this intersection diagram we can construct a walk-regular partition of X × X
with r + 1 basis relations Ri. So, by Theorem 5.8, d 6 r. By assumptions

P =


w00 w01 . . . w0r
w10 w11 . . . w1r
w20 w21 . . . w2r
...

...
...

wr0 wr1 . . . wrr

.
Now using (9) and the fact that dim(A) = d + 1, it follows rank(P ) = d + 1. If
rank(P ) = r + 1 the result follows from Theorem 5.8. �

5.1. Algorithmic approach for deciding whether Ai is a polynomial in A
or not. In this subsection we give an algorithm which, for a given graph Γ, decides
whether Ai (0 6 i 6 D) is a polynomial (not necessarily of degree i) in A or not. If the
answer is in the affirmative, then the algorithm also computes that polynomial. Note
that this procedure can be seen as a refinement of the mentioned procedure to check
distance-regularity, since it allows also to decide whether Γ is distance-polynomial
(Ai ∈ A for every i = 0, . . . , D) or not.

Algorithm 5.13. Let A denote the adjacency matrix of Γ with d + 1 distinct eigen-
values and diameter D. Considering only the matrix Z (from Definition 5.7) we can
determine which distance-i matrix is a polynomial in A (see Example 5.14).
Input: The adjacency matrix A of Γ, or intersection diagrams around every vertex.
Output: A polynomial pi such that Ai = pi(A) (if such a polynomial exists).
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1. Using the adjacency matrix A of Γ (or using intersection diagrams around ev-
ery vertex), compute the vectors w(y, z) for every y, z ∈ X (see Definition 5.1
and Remark 5.2).

2. Find the matrices [W | t], [Z | p(t)], and the polynomials pi(t) (0 6 i 6 d)
from Definition 5.7.

3. The columns of the matricesW and Z are indexed by the sets {R0, R1, . . . , Rr}
(where R = {R0, R1, . . . , Rr} is the walk-regular partition of X × X). Let
Ri1 , Ri2 , . . . , Rik denote the equivalence classes for which all pair of vertices
in any Rih (0 6 h 6 k) are at the same distance. These relations represent
the columns ih (0 6 h 6 k) in [W |t] and [Z|p(t)]. Let pj1 , pj2 , . . . , pjm

denote
the polynomials which have nonzero entry in the columns ih (0 6 h 6 k) of
Z.

4. If the sum of the rows j1, j2, . . . , jm of Z is a (0, 1)-row vector for which the
nonzero entry is only in columns Ri1 , Ri2 , . . . , Rik , and vice versa, then the
adjacency matrix Ai is polynomial in A, and we have Ai = pj1(A) + pj2(A) +
· · ·+ pjm

(A). Otherwise, Ai is not polynomial in A.

P0

2

1–

P2
1

2
–

P1
1 1

1

–

P41

1

1
–

P3
1 1

1–

P61

1 1

–

P5
2

1–

P7

1

2 –

Figure 4. “Chordal ring” (12, 4) and its intersection diagram. This
graph has the same intersection diagram around every vertex and
adjacency algebra A is not closed with respect to Hadamard product.
If R = {R0, R1, . . . , R7} is the walk-regular partition and Fi (0 6 i 6
7) are adjacency matrices of Ri (0 6 i 6 7), then for a fixed vertex
x of Γ we have Pi = {z | (Fi)xz = 1} (0 6 i 6 7).

Example 5.14. Assume that Γ is the graph from Figure 4. Using the intersection dia-
gram we can compute the adjacency matrix B ∈ Mat8×8(C) of intersection diagram,
and using B, we can compute the numbers wij from Definition 5.7 (for example, a
number (B`)P3,P0 is the number w`3 (0 6 ` 6 7)). Since we do not know the number
of distinct eigenvalues, using Corollary 5.9 we know that Γ will not have more then 8
of them. So we can compute the matrices W and Z with 8 rows and 8 columns. We
have 

1 0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 0 t
3 0 0 1 2 0 0 0 t2

0 6 7 0 0 2 3 0 t3

19 0 0 11 16 0 0 8 t4

0 46 51 0 0 30 35 0 t5

143 0 0 111 132 0 0 100 t6
0 386 407 0 0 322 343 0 t7


︸ ︷︷ ︸

=[W |t]

row∼



1 0 0 0 0 0 0 0 p0(t)
0 1 0 0 0 0 −1 0 p1(t)
0 0 1 0 0 0 1 0 p2(t)
0 0 0 1 0 0 0 0 p3(t)
0 0 0 0 1 0 0 0 p4(t)
0 0 0 0 0 1 1 0 p5(t)
0 0 0 0 0 0 0 1 p6(t)
0 0 0 0 0 0 0 0 ∗


︸ ︷︷ ︸

=[Z|p(t)]

Algebraic Combinatorics, Vol. 4 #6 (2021) 962



On symmetric association schemes and associated QPG

where polynomials pi(t) (0 6 i 6 6) are

p0(t) = 1, p1(t) = 1
10 t

5 − 3
2 t

3 + 27
5 t, p2(t) = − 1

10 t
5 + 3

2 t
3 − 22

5 t,

p3(t) = 2
15 t

6 − 5
3 t

4 + 68
15 t

2 − 1, p4(t) = − 1
15 t

6 + 5
6 t

4 − 53
30 t

2 − 1,

p5(t) = 1
20 t

5 − 1
4 t

3 − 4
5 t, p6(t) = − 1

20 t
6 + 3

4 t
4 − 27

10 t
2 + 1.

Since rank(W ) = 7, Γ has 7 distinct eigenvalues, which imply that the polynomial
p7(t) is not important. Note thatA0 = p0(A),A1 = p1(A)+p2(A),A2 = p3(A)+p4(A),
A3 = p5(A) and A4 = p6(A). Therefore, every distance-i matrix can be written as a
polynomial in A and

∑6
i=0 pi(t) is the Hoffman polynomial. Thus, by Theorem 5.8, Γ

is not a quotient-polynomial graph.

6. Some characterizations of quotient-polynomial graphs
For the moment assume that Γ is a distance-regular graph with diameter D. Note
that intersection diagram of a distance partition around x of Γ has D+ 1 cells, and is
the same for every x ∈ X (also it is x-distance-faithful). So as an immediate corollary
of Theorem 5.12, the number of distinct eigenvalues of a distance-regular graph Γ is
6 D + 1. Also note that the nonnegative integer wij from the Theorem 5.12 can be
computed from the x-distance-faithful intersection diagram.

The following result follows from [26, Theorem 4.1]. Here we give an alternative
proof for completeness and clarity. It establishes a connection between the structure
of Γ and Problem 1.1.

Theorem 6.1. Let Γ denote a regular graph with d+1 distinct eigenvalues. Then, the
vector space A = span{I, A, . . . , Ad} is closed under Hadamard multiplication if and
only if Γ is a quotient-polynomial graph.

Proof. Assume that Γ is a quotient-polynomial graph. Let Fi (0 6 i 6 d) denote the
adjacency matrix of the equivalence class Ri (0 6 i 6 d) of a walk-regular partition
R = {R0, R1, . . . , Rd} of X × X. By definition, {I = F0, F1, . . . , Fd} is a linearly
independent set such that Fi ◦ Fj = δijFi, and

∑d
i=0 Fi = J . Moreover since Fi ∈ A

we have span{F0, F1, . . . , Fd} ⊆ A. Thus, the vector space A is closed under both
ordinary and Hadamard multiplication.

Conversely, assume that the vector space A is closed under both ordinary and
Hadamard multiplication. By Theorem 3.1, since Γ is a regular graph, the algebra A
has the standard basis {I = F0, F1, . . . , Fd}. Then, there exists scalars αij (0 6 i, j 6
d) such that

(10) A` =
d∑
j=0

α`jFj (0 6 ` 6 d).

Now, by (10), if u, v, y, z ∈ X are vertices such that (Fi)uv = 1 and (Fi)yz = 1
(0 6 i 6 d), then the number of walks of length ` from u to v, is equal to the number
of walks of length ` from y to z (0 6 ` 6 d). This implies that the matrices Fi
correspond to the basis relations Ri (0 6 i 6 d), and that R = {R0, R1, . . . , Rd} is a
walk-regular partition of X ×X. Since Fi ∈ A the result follows. �

Corollary 6.2. Let Γ be a graph with adjacency matrix A and d+ 1 distinct eigen-
values. If some matrix in {A2, . . . , Ad} has more than d + 1 distinct entries, then A
is not closed under Hadamard product.
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Now we prove Theorem 6.3. (A regular graph Γ with diameter 2 and 4 distinct
eigenvalues is quotient-polynomial if and only if either any two nonadjacent (respec-
tively, adjacent) vertices have a constant number of common neighbours, and the
number of common neighbours of any two adjacent (respectively, nonadjacent) ver-
tices takes precisely two values.)

The proof can be seen as a very nice application of the walk-regular partition from
Section 5.

Theorem 6.3. Let Γ denote a regular connected graph with diameter 2 and 4 distinct
eigenvalues. Then the vector space A = span{I,A,A2, A3} is closed under Hadamard
multiplication if and only if either (i) or (ii) below hold.

(i) Any two nonadjacent vertices have a constant number of common neighbours,
and the number of common neighbours of any two adjacent vertices takes
precisely two values.

(ii) Any two adjacent vertices have a constant number of common neighbours,
and the number of common neighbours of any two nonadjacent vertices takes
precisely two values.

Proof. (⇒) Assume that the vector space A = span{I, A,A2, A3} is closed under
Hadamard multiplication. By Theorem 3.1, A has the standard basis {F0, F1, F2, F3}
consisting of ◦-idempotents. For every ` (0 6 ` 6 3) there exist scalars α`i (0 6 i 6 3)
such that

A` = α`0F0 + α`1F1 + α`2F2 + α`3F3.

This implies that if (Fi)yz 6= 0 then (A`)yz = α`i. Thus, for every y, z, u, v ∈ X, if
(Fi)yz 6= 0 and (Fi)uv 6= 0 then

(A`)yz = (A`)uv (0 6 ` 6 3).

Now, we can obtain a walk-regular partition R = {R0, R1, R2, R3} (see Definition 5.3)
in the following way:

(z, y) ∈ Ri ⇔ (Fi)zy 6= 0 (0 6 i 6 3).

By the paragraph after Definition 5.1, all pairs of vertices in a given Ri are at the same
distance. This implies that if (Fi)zy 6= 0 and (Fi)uv 6= 0 then dist(z, v) = dist(u, v)
for every z, y, u, v ∈ X. Permute indices of the set {F0, F1, F2, F3} so that F0 = I,
and, for any i 6 j and (Fi)zy 6= 0, (Fj)uv 6= 0 we have dist(z, y) 6 dist(u, v). Since Γ
is a graph of diameter 2, (F3)zy 6= 0 implies dist(z, y) = 2. Since there exist scalars βi
(0 6 i 6 3) such that

A = β0I + β1F1 + β2F2 + β3F3

and since A is a (0, 1)-matrix, we have β0 = 0 and only one of the following two cases
are possible: A = F1 + F2 or A = F1.

Case 1. Assume that A = F1 + F2. This yields F3 = A2. Now, it is not hard to see
that there exists scalars k, λ1, λ2, µ such that

A2 = kI + λ1F1 + λ2F2 + µF3,

and the result follows.

Case 2. Assume that A = F1. This yields F2 + F3 = A2. Now, there exists scalars
k, λ, µ1, µ2 such that

A2 = kI + λF1 + µ1F2 + µ2F3,

and the result follows.
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(⇐) Assume that Γ has the property (i), that is any two vertices at distance
two have exactly µ common neighbours, and for every adjacent x, y ∈ X we have
|Γ(x)∩Γ(y)| ∈ {λ1, λ2}. Define the matrices {F0, F1, F2, F3} as F0 := I, F1 +F2 = A
where
(F1)xy = 1 if and only if dist(x, y) = 1 and |Γ(x)∩Γ(y)| = λ1 (x, y ∈ X),
and let F3 = A2. Since Γ is regular J ∈ A. Note that I +A+A2 = J yields A2 ∈ A,
and with that F3 ∈ A. Let k denote the valency of Γ. Computing A2 we have

A2 = kI + λ1F1 + λ2F2 + µA2 = kI + λ1F1 + λ2(A− F1) + µA2

which yields F1 ∈ A. Since F2 = A − F1 we also have F2 ∈ A. By construction the
set {F0, F1, F2, F3} is linearly independent set consisting of ◦-idempotents. Thus we
showed that span{F0, F1, F2, F3} ⊆ A. The result follows.

If we assume that Γ has the property (ii), the proof is similar as above (consider
the set of (0, 1)-matrices {I, A, F2, F3} where F2 + F3 = A2, and (F2)xy = 1 if and
only if dist(x, y) = 2 and |Γ(x) ∩ Γ(y)| = µ1). �

The two families of graphs from Theorem 6.3 are in fact a subfamily of quasi-
strongly regular graphs (see [33]). Indeed, note that if Γ is a graph for which prop-
erty (i) of Theorem 6.3 holds, then the distance-2 matrix of Γ is the adjacency matrix
of Γ (complement of Γ, which have the property that any two adjacent vertices have
a constant number of common neighbours, and the number of common neighbours of
any two nonadjacent vertices takes precisely two values). With this in mind, it follows
a result of Van Dam from [14]:

Theorem 6.4 ([14, Theorem 5.1]). Let Γ be a connected regular graph with four dis-
tinct eigenvalues and diameter 2. Then Γ is one of the relations of a 3-class association
scheme if and only if any two adjacent vertices have a constant number of common
neighbours, and the number of common neighbours of any two nonadjacent vertices
takes precisely two values.

7. The existence of an idempotent generator
Now we prove that a given F ∈ {F0, F1, . . . , Fd} has d+ 1 distinct eigenvalues if and
only if 〈F0, F1, . . . , Fd〉 = 〈I, F, . . . , F d〉.

Theorem 7.1. Let Γ denote a quotient-polynomial graph with d + 1 distinct eigen-
values, and let {I, F1, . . . , Fd} denote the standard basis of the adjacency algebra A.
Pick F ∈ {F0, F1, . . . , Fd}. Then F has d + 1 distinct eigenvalues if and only if
span{F0, F1, . . . , Fd} = span{I, F, . . . , F d}.

Proof. We already know that, for any real symmetric matrix B with s + 1 distinct
eigenvalues, the set {I,B, . . . , Bs} is a basis of the algebra {p(B) | p ∈ R[t]}.

(⇐) Assume that A = span{I, F, . . . , F d}. This yield that {I, F, . . . , F d} is also a
basis of A, that is, it is maximal linearly independent set. Thus F have d+ 1 distinct
eigenvalues.

(⇒) Now assume that F has d+1 distinct eigenvalues, and let F denote the algebra
generated by the set {I, F 1, . . . , F d}. Since {I, F1, . . . , Fd} is a basis of A we have that
F i ∈ A for every i ∈ N. This yields F ⊆ A, that is dim(F) 6 d+ 1. Now since F has
d+ 1 distinct eigenvalues, dim(F) = d+ 1, and the result follows. �

Example 7.2. Let Γ denote the bipartite 2-walk-regular graph with diameter 4 and
6 distinct eigenvalues from [58, Theorem 2]. By such a theorem, Γ generates an as-
sociation scheme with 5 classes. Let {A0, A1, . . . , A5} denote the adjacency matrices
of this association scheme. Considering its first eigenmatrix P [58, Section 3], we can
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conclude that A1 and A3 have 6 different eigenvalues. Thus, both of these matrices
generate the algebra A of Γ, which is closed under Hadamard multiplication.

8. Further directions
Let Γ denote a quotient-polynomial graph with vertex setX, d+1 distinct eigenvalues,
and let {I, F1, . . . , Fd} be the standard basis of the adjacency algebra A of Γ.

Since {E0, E1, . . . , Ed} is also a basis of A, there exist numbers qhij such that

(11) Ei ◦ Ej = 1
|X|

d∑
h=0

qhijEh (0 6 i, j 6 d).

The numbers qhij are called the Krein parameters for Γ with respect to the ordering
E0, E1, . . . , Ed of its basis of primitive idempotents. An ordering E0, E1, . . . , Ed is a
cometric (Q-polynomial) ordering if the following conditions are satisfied:
(Q1) qhij = 0 whenever any one of the indices i, j, h exceed the sum of the remaining

two, and
(Q2) qhij > 0 when 0 6 i, j, h 6 d and any one of the indices equals the sum of the

remaining two.
We say that Γ is a cometric (or Q-polynomial) quotient-polynomial graph when such
an ordering exists. In the future, we plan to study algebraic and combinatorial prop-
erties of cometric quotient-polynomial graphs. This Q-polynomial concept is taken
from the theory of commutative association schemes. A good introduction to the
topic of Q-polynomial structures for association schemes and distance-regular graphs
can be found in [19]. For a new technique (and approach) about computations in
Bose–Mesner algebras, which also deals with Q-polynomial case, we recommend [50,
Section 3].

Fix a “base vertex” x ∈ X. For each i (0 6 i 6 D) let F ∗i = F ∗i (x) denote
the diagonal matrix in MatX(C) with (y, y)-entries (F ∗i )yy = (Fi)xy. The Terwilliger
(or subconstituent) algebra T = T (x) of Γ with respect to x is the subalgebra of
MatX(C) generated by {I, F1, . . . , Fd, F

∗
0 , F

∗
1 , . . . , F

∗
D}. By a T -module we mean a

subspace W of V = CX such that BW ⊆ W for all B ∈ T . Let W denote a T -
module. Then W is said to be irreducible whenever W is nonzero and W contains no
T -modules other than 0 andW. In the future we plan to study irreducible T -modules
of quotient-polynomial graph Γ. This T -module concept is also taken from the theory
of commutative association schemes [64, 65, 66]. For most recent research on the use
of Terwilliger algebra in the study of P -polynomial association schemes (that is, using
the Terwilliger algebra to study distance-regular graphs) see [11, 45, 46, 47, 48, 52,
53, 54, 56].

Another possible line of research would be the study of “pseudo-quotient-
polynomial graphs”, defined by using weighted regular partitions, see [23].

At the end, let Γ denote k-regular graph with adjacency matrix A. We are interested
in finding which “known” family of polynomials {qi(x)}di=0 will produce the standard
basis {qi(A)}di=0 of A, and in connections between “known” families of polynomials
with our polynomials from Definition 5.7. For example, it would be nice to use our
polynomials in a similar way as it is done in [22]. In that paper, the author studied
polynomials {Gi,k(x)}di=0 defined by Gk,0(x) = 1, Gk,1(x) = x+ 1, and

Gk,i+2(x) = xG(k, i+ 1)− (k − 1)Gk,i(x) for i > 0,

to give a lower bound for the discriminant of the polynomials {Gi,k(x)}di=0. As ex-
plained in [22, p. 2], the (x, y)-entry of Gk,i(A) counts the number of paths of length
i joining the vertices x and y. For example, one question can be what happens if,
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in our algorithms, we replace our polynomials by the family {Gi,k}di=0 or by the
family {Fk,i(x)}di=0, where {Fk,i(x)}di=0 are defined by Fk,0(x) = 1, Fk,1(x) = x,
Fk,2(x) = x2 − k, and

Fk,i+2(x) = xFk,i+1(x)− (k − 1)Fk,i(x) for i > 1

(see [22]). Also, one line of research could be to find out what kind of graphs we get if,
for example, the set of matrices {Gi,k(A)}di=0 is orthogonal with respect to the inner
product (3).

Acknowledgements. The authors thank the anonymous reviewers for helpful and con-
structive comments that contributed to improving the final version of the paper.
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