14 research outputs found

    Eight Biennial Report : April 2005 – March 2007

    No full text

    On Flows, Paths, Roots, and Zeros

    Get PDF
    This thesis has two parts; in the first of which we give new results for various network flow problems. (1) We present a novel dual ascent algorithm for min-cost flow and show that an implementation of it is very efficient on certain instance classes. (2) We approach the problem of numerical stability of interior point network flow algorithms by giving a path following method that works with integer arithmetic solely and is thus guaranteed to be free of any nu-merical instabilities. (3) We present a gradient descent approach for the undirected transship-ment problem and its special case, the single source shortest path problem (SSSP). For distrib-uted computation models this yields the first SSSP-algorithm with near-optimal number of communication rounds. The second part deals with fundamental topics from algebraic computation. (1) We give an algorithm for computing the complex roots of a complex polynomial. While achieving a com-parable bit complexity as previous best results, our algorithm is simple and promising to be of practical impact. It uses a test for counting the roots of a polynomial in a region that is based on Pellet's theorem. (2) We extend this test to polynomial systems, i.e., we develop an algorithm that can certify the existence of a k-fold zero of a zero-dimensional polynomial system within a given region. For bivariate systems, we show experimentally that this approach yields signifi-cant improvements when used as inclusion predicate in an elimination method.Im ersten Teil dieser Dissertation präsentieren wir neue Resultate für verschiedene Netzwerkflussprobleme. (1)Wir geben eine neue Duale-Aufstiegsmethode für das Min-Cost-Flow- Problem an und zeigen, dass eine Implementierung dieser Methode sehr effizient auf gewissen Instanzklassen ist. (2)Wir behandeln numerische Stabilität von Innere-Punkte-Methoden fürNetwerkflüsse, indem wir eine solche Methode angeben die mit ganzzahliger Arithmetik arbeitet und daher garantiert frei von numerischen Instabilitäten ist. (3) Wir präsentieren ein Gradienten-Abstiegsverfahren für das ungerichtete Transshipment-Problem, und seinen Spezialfall, das Single-Source-Shortest-Problem (SSSP), die für SSSP in verteilten Rechenmodellen die erste mit nahe-optimaler Anzahl von Kommunikationsrunden ist. Der zweite Teil handelt von fundamentalen Problemen der Computeralgebra. (1) Wir geben einen Algorithmus zum Berechnen der komplexen Nullstellen eines komplexen Polynoms an, der eine vergleichbare Bitkomplexität zu vorherigen besten Resultaten hat, aber vergleichsweise einfach und daher vielversprechend für die Praxis ist. (2)Wir erweitern den darin verwendeten Pellet-Test zum Zählen der Nullstellen eines Polynoms auf Polynomsysteme, sodass wir die Existenz einer k-fachen Nullstelle eines Systems in einer gegebenen Region zertifizieren können. Für bivariate Systeme zeigen wir experimentell, dass eine Integration dieses Ansatzes in eine Eliminationsmethode zu einer signifikanten Verbesserung führt

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    Traveling Salesman Problem

    Get PDF
    The idea behind TSP was conceived by Austrian mathematician Karl Menger in mid 1930s who invited the research community to consider a problem from the everyday life from a mathematical point of view. A traveling salesman has to visit exactly once each one of a list of m cities and then return to the home city. He knows the cost of traveling from any city i to any other city j. Thus, which is the tour of least possible cost the salesman can take? In this book the problem of finding algorithmic technique leading to good/optimal solutions for TSP (or for some other strictly related problems) is considered. TSP is a very attractive problem for the research community because it arises as a natural subproblem in many applications concerning the every day life. Indeed, each application, in which an optimal ordering of a number of items has to be chosen in a way that the total cost of a solution is determined by adding up the costs arising from two successively items, can be modelled as a TSP instance. Thus, studying TSP can never be considered as an abstract research with no real importance

    Explicit Building Block Multiobjective Evolutionary Computation: Methods and Applications

    Get PDF
    This dissertation presents principles, techniques, and performance of evolutionary computation optimization methods. Concentration is on concepts, design formulation, and prescription for multiobjective problem solving and explicit building block (BB) multiobjective evolutionary algorithms (MOEAs). Current state-of-the-art explicit BB MOEAs are addressed in the innovative design, execution, and testing of a new multiobjective explicit BB MOEA. Evolutionary computation concepts examined are algorithm convergence, population diversity and sizing, genotype and phenotype partitioning, archiving, BB concepts, parallel evolutionary algorithm (EA) models, robustness, visualization of evolutionary process, and performance in terms of effectiveness and efficiency. The main result of this research is the development of a more robust algorithm where MOEA concepts are implicitly employed. Testing shows that the new MOEA can be more effective and efficient than previous state-of-the-art explicit BB MOEAs for selected test suite multiobjective optimization problems (MOPs) and U.S. Air Force applications. Other contributions include the extension of explicit BB definitions to clarify the meanings for good single and multiobjective BBs. A new visualization technique is developed for viewing genotype, phenotype, and the evolutionary process in finding Pareto front vectors while tracking the size of the BBs. The visualization technique is the result of a BB tracing mechanism integrated into the new MOEA that enables one to determine the required BB sizes and assign an approximation epistasis level for solving a particular problem. The culmination of this research is explicit BB state-of-the-art MOEA technology based on the MOEA design, BB classifier type assessment, solution evolution visualization, and insight into MOEA test metric validation and usage as applied to test suite, deception, bioinformatics, unmanned vehicle flight pattern, and digital symbol set design MOPs

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    29th International Symposium on Algorithms and Computation: ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan

    Get PDF

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 26th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The total of 60 regular papers presented in these volumes was carefully reviewed and selected from 155 submissions. The papers are organized in topical sections as follows: Part I: Program verification; SAT and SMT; Timed and Dynamical Systems; Verifying Concurrent Systems; Probabilistic Systems; Model Checking and Reachability; and Timed and Probabilistic Systems. Part II: Bisimulation; Verification and Efficiency; Logic and Proof; Tools and Case Studies; Games and Automata; and SV-COMP 2020
    corecore