2,416 research outputs found

    One-Way Reversible and Quantum Finite Automata with Advice

    Full text link
    We examine the characteristic features of reversible and quantum computations in the presence of supplementary external information, known as advice. In particular, we present a simple, algebraic characterization of languages recognized by one-way reversible finite automata augmented with deterministic advice. With a further elaborate argument, we prove a similar but slightly weaker result for bounded-error one-way quantum finite automata with advice. Immediate applications of those properties lead to containments and separations among various language families when they are assisted by appropriately chosen advice. We further demonstrate the power and limitation of randomized advice and quantum advice when they are given to one-way quantum finite automata.Comment: A4, 10pt, 1 figure, 31 pages. This is a complete version of an extended abstract appeared in the Proceedings of the 6th International Conference on Language and Automata Theory and Applications (LATA 2012), March 5-9, 2012, A Coruna, Spain, Lecture Notes in Computer Science, Springer-Verlag, Vol.7183, pp.526-537, 201

    Unbounded-error quantum computation with small space bounds

    Full text link
    We prove the following facts about the language recognition power of quantum Turing machines (QTMs) in the unbounded error setting: QTMs are strictly more powerful than probabilistic Turing machines for any common space bound s s satisfying s(n)=o(loglogn) s(n)=o(\log \log n) . For "one-way" Turing machines, where the input tape head is not allowed to move left, the above result holds for s(n)=o(logn)s(n)=o(\log n) . We also give a characterization for the class of languages recognized with unbounded error by real-time quantum finite automata (QFAs) with restricted measurements. It turns out that these automata are equal in power to their probabilistic counterparts, and this fact does not change when the QFA model is augmented to allow general measurements and mixed states. Unlike the case with classical finite automata, when the QFA tape head is allowed to remain stationary in some steps, more languages become recognizable. We define and use a QTM model that generalizes the other variants introduced earlier in the study of quantum space complexity.Comment: A preliminary version of this paper appeared in the Proceedings of the Fourth International Computer Science Symposium in Russia, pages 356--367, 200

    An Application of Quantum Finite Automata to Interactive Proof Systems

    Get PDF
    Quantum finite automata have been studied intensively since their introduction in late 1990s as a natural model of a quantum computer with finite-dimensional quantum memory space. This paper seeks their direct application to interactive proof systems in which a mighty quantum prover communicates with a quantum-automaton verifier through a common communication cell. Our quantum interactive proof systems are juxtaposed to Dwork-Stockmeyer's classical interactive proof systems whose verifiers are two-way probabilistic automata. We demonstrate strengths and weaknesses of our systems and further study how various restrictions on the behaviors of quantum-automaton verifiers affect the power of quantum interactive proof systems.Comment: This is an extended version of the conference paper in the Proceedings of the 9th International Conference on Implementation and Application of Automata, Lecture Notes in Computer Science, Springer-Verlag, Kingston, Canada, July 22-24, 200
    corecore