133 research outputs found

    Acquiring data designs from existing data-intensive programs

    Get PDF
    The problem area addressed in this thesis is extraction of a data design from existing data intensive program code. The purpose of this is to help a software maintainer to understand a software system more easily because a view of a software system at a high abstraction level can be obtained. Acquiring a data design from existing data intensive program code is an important part of reverse engineering in software maintenance. A large proportion of software systems currently needing maintenance is data intensive. The research results in this thesis can be directly used in a reverse engineering tool. A method has been developed for acquiring data designs from existing data intensive programs, COBOL programs in particular. Program transformation is used as the main tool. Abstraction techniques and the method of crossing levels of abstraction are also studied for acquiring data designs. A prototype system has been implemented based on the method developed. This involved implementing a number of program transformations for data abstraction, and thus contributing to the production of a tool. Several case studies, including one case study using a real program with 7000 Hues of source code, are presented. The experiment results show that the Entity-Relationship Attribute Diagrams derived from the prototype can represent the data designs of the original data intensive programs. The original contribution of the thesis is that the approach presented in this thesis can identify and extract data relationships from the existing code by combining analysis of data with analysis of code. The approach is believed to be able to provide better capabilities than other work in the field. The method has indicated that acquiring a data design from existing data intensive program code by program transformation with human assistance is an effective method in software maintenance. Future work is suggested at the end of the thesis including extending the method to build an industrial strength tool

    Coalgebraic Methods for Object-Oriented Specification

    Get PDF
    This thesis is about coalgebraic methods in software specification and verification. It extends known techniques of coalgebraic specification to a more general level to pave the way for real world applications of software verification. There are two main contributions of the present thesis: 1. Chapter 3 proposes a generalisation of the familiar notion of coalgebra such that classes containing methods with arbitrary types (including binary methods) can be modelled with these generalised coalgebras. 2. Chapter 4 presents the specification language CCSL (short for Coalgebraic Class Specification Language), its syntax, its semantics, and a prototype compiler that translates CCSL into higher-order logic.Die Dissertation beschreibt coalgebraische Mittel und Methoden zur Softwarespezifikation und -verifikation. Die Ergebnisse dieser Dissertation vereinfachen die Anwendung coalgebraischer Spezifikations- und Verifikationstechniken und erweitern deren Anwendbarkeit. Damit werden Softwareverifikation im Allgemeinen und im Besonderen coalgebraische Methoden zur Softwareverifikation der praktischen Anwendbarkeit ein Stück nähergebracht. Diese Dissertation enthält zwei wesentliche Beiträge: 1. Im Kapitel 3 wird eine Erweiterung des klassischen Begriffs der Coalgebra vorgestellt. Diese Erweiterung erlaubt die coalgebraische Modellierung von Klassenschnittstellen mit beliebigen Methodentypen (insbesondere mit binären Methoden). 2. Im Kapitel 4 wird die coalgebraische Spezifikationssprache CCSL (Coalgebraic Class Specification Language) vorgestellt. Die Bescheibung umfasst Syntax, Semantik und einen Prototypcompiler, der CCSL Spezifikationen in Logik höherer Ordnung (passend für die Theorembeweiser PVS und Isabelle/HOL) übersetzt

    An Adaptive Integration Architecture for Software Reuse

    Get PDF
    The problem of building large, reliable software systems in a controlled, cost-effective way, the so-called software crisis problem, is one of computer science\u27s great challenges. From the very outset of computing as science, software reuse has been touted as a means to overcome the software crisis issue. Over three decades later, the software community is still grappling with the problem of building large reliable software systems in a controlled, cost effective way; the software crisis problem is alive and well. Today, many computer scientists still regard software reuse as a very powerful vehicle to improve the practice of software engineering. The advantage of amortizing software development cost through reuse continues to be a major objective in the art of building software, even though the tools, methods, languages, and overall understanding of software engineering have changed significantly over the years. Our work is primarily focused on the development of an Adaptive Application Integration Architecture Framework. Without good integration tools and techniques, reuse is difficult and will probably not happen to any significant degree. In the development of the adaptive integration architecture framework, the primary enabling concept is object-oriented design supported by the unified modeling language. The concepts of software architecture, design patterns, and abstract data views are used in a structured and disciplined manner to established a generic framework. This framework is applied to solve the Enterprise Application Integration (EM) problem in the telecommunications operations support system (OSS) enterprise marketplace. The proposed adaptive application integration architecture framework facilitates application reusability and flexible business process re-engineering. The architecture addresses the need for modern businesses to continuously redefine themselves to address changing market conditions in an increasingly competitive environment. We have developed a number of Enterprise Application Integration design patterns to enable the implementation of an EAI framework in a definite and repeatable manner. The design patterns allow for integration of commercial off-the-shelf applications into a unified enterprise framework facilitating true application portfolio interoperability. The notion of treating application services as infrastructure services and using business processes to combine them arbitrarily provides a natural way of thinking about adaptable and reusable software systems. We present a mathematical formalism for the specification of design patterns. This specification constitutes an extension of the basic concepts from many-sorted algebra. In particular, the notion of signature is extended to that of a vector, consisting of a set of linearly independent signatures. The approach can be used to reason about various properties including efforts for component reuse and to facilitate complex largescale software development by providing the developer with design alternatives and support for automatic program verification

    An incremental prototyping methodology for distributed systems based on formal specifications

    Get PDF
    This thesis presents a new incremental prototyping methodology for formally specified distributed systems. The objective of this methodology is to fill the gap which currently exists between the phase where a specification is simulated, generally using some sequential logical inference tool, and the phase where the modeled system has a reliable, efficient and maintainable distributed implementation in a main-stream object-oriented programming language. This objective is realized by application of a methodology we call Mixed Prototyping with Object-Orientation (in short: OOMP). This is an extension of an existing approach, namely Mixed Prototyping, that we have adapted to the object-oriented paradigm, of which we exploit the flexibility and inherent capability of modeling abstract entities. The OOMP process proceeds as follows. First, the source specifications are automatically translated into a class-based object-oriented language, thus providing a portable and high-level initial implementation. The generated class hierarchy is designed so that the developer may independently derive new sub-classes in order to make the prototype more efficient or to add functionalities that could not be specified with the given formalism. This prototyping process is performed incrementally in order to safely validate the modifications against the semantics of the specification. The resulting prototype can finally be considered as the end-user implementation of the specified software. The originality of our approach is that we exploit object-oriented programming techniques in the implementation of formal specifications in order to gain flexibility in the development process. Simultaneously, the object paradigm gives the means to harness this newly acquired freedom by allowing automatic generation of test routines which verify the conformance of the hand-written code with respect to the specifications. We demonstrate the generality of our prototyping scheme by applying it to a distributed collaborative diary program within the frame of CO-OPN (Concurrent Object-Oriented Petri Nets), a very powerful specification formalism which allows expressing concurrent and non-deterministic behaviours, and which provides structuring facilities such as modularity, encapsulation and genericity. An important effort has also been accomplished in the development or adaptation of distributed algorithms for cooperative symbolic resolution. These algorithms are used in the run-time support of the generated CO-OPN prototypes

    Extended static checking by calculation using the pointfree transform

    Get PDF
    The pointfree transform offers to the predicate calculus what the La- place transform offers to the differential/integral calculus: the possibility of chang- ing the underlying mathematical space so as to enable agile algebraic calculation. This paper addresses the foundations of the transform and its application to a calculational approach to extended static checking (ESC) in the context of ab- stract modeling. In particular, a calculus is given whose rules help in breaking the complexity of the proof obligations involved in static checking arguments. The close connection between such calculus and that of weakest pre-conditions makes it possible to use the latter in ESC proof obligation discharge, where point- free notation is again used, this time to calculate with invariant properties to be maintained. A connection with the “everything is a relation” lemma of Alloy is estab- lished, showing how close to each other the pointfree and Alloy notations are. The main advantage of this connection is that of complementing pen-and-paper pointfree calculations with model checking support wherever validating sizable abstract models.Fundação para a Ciência e a Tecnologia (FCT

    Bidirectional Programming and its Applications

    Get PDF
    Many problems in programming involve pairs of computations that cancel out each other’s effects; some examples include parsing/printing, embed- ding/projection, marshalling/unmarshalling, compressing/de-compressing etc. To avoid duplication of effort, the paradigm of bidirectional programming aims at to allow the programmer to write a single program that expresses both computations. Despite being a promising idea, existing studies mainly focus on the view-update problem in databases and its variants; and the impact of bidirectional programming has not reached the wider community. The goal of this thesis is to demonstrate, through concrete language designs and case studies, the relevance of bidirectional programming, in areas of computer science that have not been previously explored. In this thesis, we will argue for the importance of bidirectional programming in programming language design and compiler implementation. As evidence for this, we will propose a technique for incremental refactoring, which relies for its correctness on a bidirectional language and its properties, and devise a framework for implementing program transformations, with bidirectional properties that allow program analyses to be carried out in the transformed program, and have the results reported in the source program. Our applications of bidirectional programming to new areas bring up fresh challenges. This thesis also reflects on the challenges, and studies their impact to the design of bidirectional systems. We will review various design goals, including expressiveness, robustness, updatability, efficiency and easy of use, and show how certain choices, especially regarding updatability, can have significant influence on the effectiveness of bidirectional systems
    • …
    corecore