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Abstract. The pointfree transform offers to the predicate calculus what the La-
place transform offers to the differential/integral calculus: the possibility of chang-
ing the underlying mathematical space so as to enable agile algebraic calculation.
This paper addresses the foundations of the transform and its application to a
calculational approach to extended static checking (ESC) in the context of ab-
stract modeling. In particular, a calculus is given whose rules help in breaking
the complexity of the proof obligations involved in static checking arguments.
The close connection between such calculus and that of weakest pre-conditions
makes it possible to use the latter in ESC proof obligation discharge, where point-
free notation is again used, this time to calculate with invariant properties to be
maintained.
A connection with the“everything is a relation” lemma of Alloy is established,
showing how close to each other the pointfree and Alloy notations are. The main
advantage of this connection is that of complementing pen-and-paper pointfree
calculations with model checking support wherever validating sizable abstract
models.

Keywords: Theoretical foundations; formal methods; proof obligations; extended
static checking.

“Certaines personnes ont [l’affectation] d’éviter en apparence
toute espèce de calcul, en traduisant par des phrases fort
longues ce qui s’exprime très brièvement par l’algèbre,et
ajoutant ainsi à la longueur des opérations, les longueurs d’un
langage qui n’est pas fait pour les exprimer. Ces personnes-là
sont en arrière de cent ans.”

Evariste Galois (1831)

1 Introduction

Much of our programming effort goes into making sure that a number of“good” re-
lationshipshold among the software artifacts we build. There are two main ways of
ensuring that such good things happen. According to the first, the intended relationship
is firstpostulatedas a logic statement and thenverified. We shall refer to this as the “in-
vent & verify” way. Alternatively, one may try andcalculatethe intended relationship
out of other valid relationships using an algebra, or theoryof relationships. This will be
referred to as the “correct by construction” approach.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55624872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 J.N. Oliveira

Let us illustrate the contrast between these two approacheswith examples. When-
ever Haskell programmers declare function types, eg.

f
︸︷︷︸

function

:: a→ b
︸ ︷︷ ︸

type

(1)

they are postulating a“is of type” relationship involving two kinds of artifact: functions
(λ-expressions) and types (τ -expressions). It is quite common to declaref :: a → b
first, write the body off afterwards and then wait for the interpreter’s reaction (type
checker) when verifying the consistency of both declarations.

Clearly, this is aninvent & verifyapproach to writing type correct functional code.
What about thecorrect by constructionalternative? It goes the other way round: one
writes the body off first and lets the interpretercalculate(by polymorphic type infer-
ence) its principal type, which can be instantiated later, if convenient.

Note that absence of type errors in theinvent & verifyapproach does not ensure
associating a function to its most generic type: the programmer’s guess (invention) may
happen to be stronger, implicitly reducing the scope of application of the function being
declared. This is also a danger ofinvent & verifyapplied toextended typed checkingas
in, for instance, typing code using Hoare triples:

{p}P{q}

This postulate about piece of codeP captures relationship“is such that pre-condition
p ensures post-conditionq” . So it could be alternatively written as

P
︸︷︷︸

program

:: p→ q
︸ ︷︷ ︸

predicative type

(2)

involving, as artifacts, programs (imperative code) and pre/post conditions (predicates).
The invent & verifyway of handling Hoare triples consists of writingP , inventingp
andq and finally proving that{p}P{q} holds. Thecorrect by constructionequivalent
consists of writing two of the ingredientsq,P andp and calculating the third. Typically,
one will calculate the weakest pre-condition (wp) for q to hold upon execution ofP .
Again, the calculated pre-conditionpmay be strengthened at a later stage, if convenient.

Our third and last example, in the area of discrete maths, is perhaps the most elo-
quent in contrasting verification against calculation. Think of how to postulate that a
given functionf is a bijection: one may provef injective, total and surjective or, in typ-
ical invent & verifymode, guess its conversef◦ and then prove the two cancellations
〈∀ x :: f◦(f x) = x〉 and〈∀ y :: f(f◦y) = y〉. By contrast, a constructive, calcula-
tional alternative will go as follows: using relation algebra, one calculatesf◦, which in
general is a relation, not a function; bothf andf◦ will be bijective iff a functionf◦ is
obtained. The approach is constructive (f◦ is calculated, not guessed) and simpler.

From the examples above it can be observed that “traditionalthinking” in maths and
software design tends to follow theinvent & verifyreasoning style. This paper is devoted
to the alternative, constructive approach to building correct code. In particular, it focuses
on a calculational approach to discharging proof obligations involved in writing type
correct software, a discipline which can be framed into the wider topic of extended
static type checking(ESC) [24].
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Our starting point is the observation that thinking constructively requires a “turn
of mind”. And this raises the question: are the logics and calculi we traditionally rely
upon up-to-date for such a turn of mind? In an excellent essayon the history of scientific
technology, Russo [55] writes:

The immense usefulness of exact science consists in providing models of the real world
within which there is a guaranteed method for telling false statements from true. (...)
Such models, of course, allow one to describe and predict natural phenomena, by trans-
lating them to the theoretical level via correspondence rules, then solving the “exer-
cises” thus obtained and translating the solutions obtained back to the real world.

The verdict is that disciplines unable to build themselves aroundexercisesshould be
regarded aspre-scientific.

This fits neatly into the current paper’s overall message. Our idea is to invest in
a scientific theory for software development whereby code isobtained by solving ex-
ercises whose solutions are the artifacts one wants to produce. So, the formulæ and
equations involved in such exercises should range over programs and properties of pro-
grams (assertions, specifications, etc) and not over the particular data values handled
(stored, retrieved etc) by such programs. This identifies a first challenge: to devise a
way of abstracting from program control/data structures. Asecond challenge consists
in finding a single notation unifying properties of programs, program data, the programs
themselves (or models thereof) and their “desirable” relationships.

Fortunately, such a unified notation exists already and doesnot need to be (re)in-
vented: it is the notation of the pointfree relation calculus [60, 13, 7]. The link between
conventional point-level logic and such a relation calculus is a transformation which
abstracts from quantifiers and bound variables (points) found in predicates and con-
verts these to formulæ involving binary relations only. In this pointfree transform(PF-
transform for short) [60, 50] variables are removed from program descriptions in the
same way Backus develops his algebra of programs [10]. The main difference stays in
the fact that one is transforming logical formulæ while Backus does so for functional
terms only1.

Structure of the paper.The remainder of this paper is organized as follows: sections 2 to
5 are concerned with motivation, background and related work. Extended static check-
ing (ESC) is addressed in sections 6 and 7. The PF-transform and relational calculus,
which are central to the whole paper, are given in sections 3,9 and 12. PF-transformed
ESC reasoning leads to the ESC/PF calculus for typing functions which is the subject
of sections 8, 10 and 11. The generalization of this to relations is given in sections 14,
15 and 17. Sections 13 and 18 are concerned with case studies illustrating the use of the
ESC/PF calculus. The second of these case studies, introduced in section16, is a real-
life problem tackled in the context of the Verified Software Initiative. The connection
with Alloy is addressed in sections 4 and 19. Conclusions andfuture work are given
in sections 20 and 21, respectively. Annex A lists a number oflaws of the Eindhoven
quantifier calculus which are relevant to the PF-transform.

1 See section 5 for more details on the pointfree notation and the origins of relational methods
in computer science.
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2 Motivation

Consider the following fragment of requirements put by a hypothetical telecom com-
pany:

(...) For eachlist of callsstored in the mobile phone (eg. numbers dialed, SMS messages,
lost calls), thestoreoperation should work in a way such that (a) the more recentlya
call is made the more accessible it should be; (b) no number appears twice in a list; (c)
only the last 10 entries are stored in each list.

It is not difficult to write a functional model for the requiredstoreoperation on finite
lists of calls,

store c l △ take 10 (c : [ x | x← l, x 6= c ]) (3)

wherec : l denotes listl prefixed by call numberc andtake n l returns the prefix ofl
of lengthn, or l itself if n > length l, as in the Haskell notation and standard libraries
[33]. However, how can one be sure that all requirements are properly met by (3)? Think
of clause (b), for instance. Intuitively, missingx 6= c in the list comprehension would
compromise this property. But, is this enough? too strong?

Following the standard practice in formal methods, one firstof all needs to formalize
requirement (b) in the form of a predicate on lists of calls2:

noDuplicates l △ 〈∀ i, j : 1 ≤ i, j ≤ length l : (l i) = (l j)⇒ i = j〉 (4)

Next, we need to formulate and discharge the proof obligation which ensures that the
storeoperation on lists of calls maintains propertynoDuplicates:

〈∀ c, l : noDuplicates l : noDuplicates(store c l)〉 (5)

Desirable properties such as (4) which should be maintainedby all operations of a given
software application are known asinvariant properties [32, 31]. Our toy requirements
include other such properties, for instance that corresponding to clause (c):

leq10 l △ length l ≤ 10 (6)

Ensuring that invariants are preserved by software operations entails the need for
formal proofs. The complexity of such proofs grows dramatically with the complexity
of the formal models of both invariant properties and operations. So, any effort to mod-
ularize such models and proofs is welcome. In the case of (3),for instance, it can be
observed thatstore is the “pipeline” of three sub-operations: filteringc first, cons’ing
it afterwards and finally taking 10 elements at most. This is nicely expressed by writing

store c △ (take 10) · (c :) · filter(c 6=) (7)

wherefilter is the obvious list processing function and combinator “· ” denotes func-
tion composition:

(f · g) a △ f (g a) (8)

2 We use notation〈∀ x : R : T 〉 to meanfor all x in rangeR it is the case thatT holds.
Properties of this notation, known as theEindhoven quantifier notation[7, 4], are given in
appendix A.
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Note that (7) abstracts from input variablel (of type list of calls) thanks to (8) and to
extensional functional equality:

f = g ⇔ 〈∀ a :: f a = g a〉 (9)

Also note the use of sections(take 10) and(c :) in converting curried binary operators
take and(:) into unary ones by “freezing” the first argument.

The main advantage of (7) when compared to (3) is that different invariants may
happen to be maintained by different stages of the pipeline,reducing the overall com-
plexity of proof obligations. For instance,leq10 has to do with lists not going beyond
10 elements: clearly, this is ensured by the outermost stagealone,

〈∀ l :: length(take 10 l) ≤ 10〉 (10)

independently of how argument listl is built. Property (10) can in fact be shown to hold
for function

take 0 = [ ]

take [ ] = [ ]

take (n+ 1) (x : xs) = x : take n xs

Clearly, proving (10) requires less effort that proving that leq10 is preserved by the
whole functionstore:

〈∀ c, l : length l ≤ 10 : length(take 10 (c : [ x | x← l, x 6= c ])) ≤ 10〉 (11)

The use of notation (7) instead of (3) above is an example of PF-transformation:
instead of writingf(g a) such as in the right hand side of (8), one writesf · g and drops
variable (point)a. This kind of transformation, which is not a privilege of functions, is
introduced in the section which follows.

3 Overview of the PF-transform

Composing relations.Functional composition (8) is a special case ofrelational com-
position,

b(R · S)c ⇔ 〈∃ a :: bRa ∧ aSc〉 (12)

whereR,S are binary relations and notationyRx means“ y is related tox byR” .
No other concept traverses human knowledge more ubiquitously than that of are-

lation, from philosophy to mathematics, to information systems (think eg. of relational
databases [38]), etc. SymbolR in yRx can stand for virtually any relationship we may
think of: not only those expressed by the “::” symbol in type assertions (1,2) but also
those expressing facts as simple as eg."a" prefix of "ab" among strings,n ≤ n+ 1
among natural numbers, TRUE ∈ {TRUE, FALSE} in the Booleans, etc. In particular,R
can be a functionf , in which casey f x means thaty is the output off for inputx.

Before going further, note the notation convention of writing outputs on the left
hand side and inputs on the right hand side, as suggested by the usual way of declaring
functions in ordinary mathematics,y = f x, wherey ranges over outputs (cf. the ver-
tical axis of the Cartesian plane) andx over inputs (cf. the other, horizontal axis). This
convention is adopted consistently throughout this text and is extended to relations, as
already seen above.
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Comparing relations.The main advantage of relational thinking lies in its powerful
combinators and associated laws, of which composition (12)is among the most useful:
it expresses data flow in maths formulæ in a natural, implicitway while dropping exis-
tential quantifiers. Removing quantifiers from formulæ makes these more amenable to
calculation. For instance, the rule which introducesrelational inclusion

R ⊆ S ⇔ 〈∀ b, a : b R a : b S a〉 (13)

can be regarded (if read from right to left) as a way of dropping a very common pattern
of universal quantification. (ReadR ⊆ S as “R is at mostS”, meaning thatS is either
more defined or less deterministic thanR.)

Relational equality is usually established by circular inclusion:

R = S ⇔ R ⊆ S ∧ S ⊆ R (14)

A less obvious, but very useful way of calculating the equality of two relations is the
method ofindirect equality[1, 13]:

R = S ⇔ 〈∀ X :: (X ⊆ R⇔ X ⊆ S)〉 (15)

The reader unaware of this way of indirectly setting algebraic equalities will recog-
nize that the same pattern of indirection is used when establishing set equality via the
membership relation, cf.A = B ⇔ 〈∀ x :: x ∈ A⇔ x ∈ B〉.

Dividing relations. It is easy to check thatR · S (12) has amultiplicativeflavour: it is
associative (albeit not commutative), it distributes overthe union of two relationsR∪S,
defined by

b(R ∪ S)a △ bRa ∨ bSa

and it has a unit element, the identity relationid defined in the obvious way:b id a iff
b = a. Given such a multiplicative flavour, one may question: is there any reasonable
notion ofrelation division? It turns out that the following property holds, for all binary
relationsR, S andT

X ·R ⊆ S ⇔ X ⊆ S/R (16)

whereS/R is the relation whose pointwise meaning is

a(S/R)b ⇔ 〈∀ c : b R c : a S c〉 (17)

Again note the economy of notationS/R when compared to its pointwise expansion as
a universal quantification. Expanding the whole of (16) willlead to formula

〈∀ b, a : 〈∃ c : bXc : cRa〉 : bSa〉 ⇔ 〈∀ b, c : bXc : 〈∀ a : cRa : bSa〉〉

which expresses a trading rule between existential and universal quantification harder
to parse and memorize.

Phrasepointfree transform(or PF-transformfor short) will denote, throughout this
paper, this process of transforming predicate calculus expressions into their equivalent
relational combinator based representations.
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Coreflexives.Given a binary predicatep, we will denote byRp the binary relation
such thatb Rp a ⇔ p(b, a) holds, for all suitably typeda and b. How does one
transform a unary predicateu a into abinary relation? We will see that this can be done
in more than one way, for instance by building the relationΦu such thatb Φu a means
(b = a) ∧ (u a). That is,Φu is the relation that maps everya which satisfiesu (and
only sucha) onto itself. Clearly, such relation is a fragment of the identity relation:
Φu ⊆ id.

Relations at mostid are referred to ascoreflexiverelations and those larger thanid
asreflexiverelations. Coreflexives will be denoted by uppercase Greek letters (Φ, Ψ ) as
in the case ofΦu.

Composition with coreflexives expresses pre-conditioningand post-conditioning in
a natural way, cf.R · Φ andΨ ·R, respectively. Coreflexives also act as datafilters. For
instance, suppose we need to transform the following variant of the right hand side of
(12),〈∃ a : u a : b R a ∧ a Sc〉, whereu shrinks the range of the quantification. It
can be easily checked thatR · Φu · S is the corresponding extension to (12)3.

Arrow notation and diagrams.We will use arrows to depict relations. In general, arrow

B A
Roo denotes a binary relation with source typeA and target typeB. We will

say thatB Aoo is the typeof R and writeb R a to mean that pair(b, a) is in R.

Type declarationsB A
Roo andA R //B mean the same. Arrow notation makes it

possible to explain relational formulæ in terms of diagrams. For instance,

C

X

��

A
Roo

S
wwppppppppppppp

⊆

B

equivalent to
C

X

��

C

S/R

��

idoo

⊆

B B
id

oo

helps in understanding (16).

Galois connections.Properties such as (16) are known asGalois connections(GCs)
[51] and prove very useful in problem understanding and reasoning, while bearing par-
ticular resemblance with school algebra: compare, for instance, (16) with a similar prop-
erty defining integer division, for alld, n, q ∈ IN (d > 0) 4:

q × d ≤ n ⇔ q ≤ n/d
n d
r q

(18)

By substitutingX := S/R in (16) we obtain(S/R) · R ⊆ S meaning thatS/R ap-
proximatesS once composed withR; by reading (16) from left to right, we obtain
implicationX ·R ⊆ S ⇒ X ⊆ S/R, which means thatS/R is largest among all such
approximations. SoS/R is a supremum (as is quotientn/d).

3 See section 9 in the sequel for more about this important class of relations.
4 See [56] for a derivation of the algorithm of integer division from Galois connection (18) as

an example of PF-calculation performed by theGalculator, the prototype of a proof assistant
solely based on the algebra of Galois connections and PF-reasoning.
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Table 1.Sample of PF-transform rules.

Pointwise Pointfree
〈∃ a :: b R a ∧ a S c〉 b(R · S)c
〈∀ x : x R b : x S a〉 b(R \ S)a
〈∀ c : b R c : a S c〉 a(S / R)b

b R a ∧ c S a (b, c)〈R, S〉a
b R a ∧ d S c (b, d)(R × S)(a, c)
b R a ∧ b S a b (R ∩ S) a

b R a ∧ ¬b S a b (R − S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f◦ · R · g)a

TRUE b ⊤ a
FALSE b ⊥ a

〈∀ b, a : b R a : b S a〉 R ⊆ S
〈∀ a :: a R a〉 id ⊆ R

As example of other Galois connections bearing relationship with school algebra
consider the following, which captures the operation which“subtracts” relations,

X −R ⊆ Y ⇔ X ⊆ Y ∪R (19)

and is analogue of number subtraction:

x− n ≤ y ⇔ x ≤ y + n (20)

Table 1 lists the most common relational operators associated to the PF-transform.
R∩ S denotes the intersection (ormeet) of two relationsR andS.⊤ is the largest rela-
tion of its type. Its dual is⊥, the smallest such relation (the empty one). The following
universal properties of relationalmeetandjoin are also Galois connections:

X ⊆ R ∩ S ⇔ X ⊆ R ∧X ⊆ S (21)

R ∪ S ⊆ X ⇔ R ⊆ X ∧ S ⊆ X (22)

The two variants of division in table 1 arise from the fact that relation composition
is not commutative, the Galois connection forR \ S being similar to (16):

R ·X ⊆ S ⇔ X ⊆ R \ S (23)

Converses.Every relationA R //B has a converse, which is relationA B
R◦

oo such
that

a(R◦)b⇔ b R a (24)

holds. Two important properties of converse follow: it is aninvolution

(R◦)◦ = R (25)

and it commutes with composition in a contravariant way:

(R · S)◦ = S◦ · R◦ (26)
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Functions.Lowercase symbols (f, g) stand for relations which arefunctions. The inter-
play between functions and relations is a rich part of the binary relation calculus [13].
From table 1 we single out rule

b(f◦ · R · g)a ⇔ (f b)R(g a) cf. diagram C D
Roo

B

f

OO

A

g

OO

f◦·R·g
oo

(27)

which involves two functionsf, g and relationR and plays a special role in pushing
variables out of relational expressions.

The exact characterization of functions as special cases ofrelations is achieved in
terms of converse, which is in fact of paramount importance in establishing the whole
taxonomy of binary relations depicted in figure 1. First, we define two important no-
tions: thekernelof a relationR, kerR △ R◦ · R and its dual,imgR △ R · R◦, the
imageof R 5.

From (25, 26) one immediately draws

ker (R◦) = imgR (28)

img (R◦) = kerR (29)

Kernel and image lead to the four top criteria of the taxonomyof figure 1:

Reflexive Coreflexive

ker R entireR injectiveR

img R surjectiveR simpleR

(30)

In words: a relationR is said to beentire (or total) iff its kernel is reflexive and to be
simple(or functional) iff its image is coreflexive. Dually,R is surjectiveiff R◦ is entire,
andR is injectiveiff R◦ is simple.

Let us check (30) with examples. First, we PF-transform the pointwise formula
which captures function injectivity:

f is injective

⇔ { recall definition from school maths}

〈∀ y, x : (f y) = (f x) : y = x〉 (31)

⇔ { introduceid (twice) }

〈∀ y, x : (f y)id(f x) : y(id)x〉

⇔ { (27) }

〈∀ y, x : y(f◦ · id · f)x : y(id)x〉

5 These operators are relational extensions of two concepts familiar from set theory: the image
of a functionf , which corresponds to the set of ally such that〈∃ x :: y = f x〉, and the
kernel off , which is the equivalence relationb(ker f)a ⇔ f b = f a . (See exercise 3
later on.)
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binary relation
ZZZZZZZZZZZZZ

QQQnn
n

ddddddddddddddd

injective
PP

entire
nn

n QQQ
simple

OOOmmm
surjective

pp
p

representation
PP

function
QQ

Q
nn

n
abstraction
oo

o

injection
QQ

surjection
mmm

bijection

Fig. 1.Binary relation taxonomy

⇔ { id is the unit of composition; then go pointfree via (13)}

f◦ · f ⊆ id

⇔ { definition }

ker f ⊆ id

Going the other way round, let us now see whatid ⊆ img f means:

id ⊆ img f

⇔ { definition }

id ⊆ f · f◦

⇔ { relational inclusion (13)}

〈∀ y, x : y(id)x : y(f · f◦)x〉

⇔ { identity relation ; composition (12)}

〈∀ y, x : y = x : 〈∃ z :: y f z ∧ z f◦x〉〉

⇔ { converse (24)}

〈∀ y, x : y = x : 〈∃ z :: y f z ∧ x f z〉〉

⇔ { ∀-one point rule (175) ; trivia ; functionf }

〈∀ x :: 〈∃ z :: x = f z〉〉

⇔ { recalling definition from school maths}

f is surjective

The interested reader is welcome to convert the two remaining entries of (30) to point-
wise notation.

Exercise 1.Resort to (28,29) and (30) to prove the following four rules of thumb:

– converse ofinjectiveis simple(and vice-versa)
– converse ofentire is surjective(and vice-versa)
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– smaller than injective (simple) is injective (simple)
– larger than entire (surjective) is entire (surjective)

2

Exercise 2.Show that

R ∪ S is injective ⇔ R is injective ∧ S is injective ∧ R◦ · S ⊆ id (32)

R ∪ S is simple ⇔ R is simple ∧ S is simple ∧ R · S◦ ⊆ id (33)

Suggestion: resort to universal property (22).
2

Exercise 3.Given a functionB A
foo , use (27) in the calculation of

b(ker f)a ⇔ f b = f a (34)

2

Constant functions.Quite often one needs to internalize particular constant values in
PF-expressions. For instance, we may want to say that, givensomex, there exists some
z such thatx > z andf z = c, for some fixed valuec. This requires the“everywhere
c” constant function. In general, given a nonempty datatypeC andc ∈ C, notationc
denotes such a function:

c : A //C
c a △ c

(35)

Thanks to (35) and (27) it can be easily checked that PF-term> · f◦ · c asserts the
requirement above.

Constant functions are also useful in PF-transforming particular relation pairs. For
instance, it is easy to check thatb · c◦ is the singleton relation{(b, c)}. Thenimg c is
the singleton coreflexive{(c, c)} which PF-transforms predicateλx.x = c:

Φλx.x=c = img c (36)

Thanks to (34), it is easy to show that⊤ is the kernel of every constant function,

1 A
!oo included, where function! — read “!” as “bang” — is the unique function of

its type, where1 denotes the singleton data domain.

Exercise 4.Check the meaning of relationb◦ · c.
2

The Reynolds-Backhouse relation on functions.Consider two functionsf andg related
in the following way: if y = f x holds theny ≤ g x holds, for a given ordering
≤ on the outputs of bothf andg 6. It is easy to see that this relationship betweenf
andg PF-transforms tof ⊆ ≤ · g. Now suppose thatg is such thatg · � ⊆ ≤ · g,
for � another ordering, this time on the input side. Back to points, this re-writes to
〈∀ x, x′ : x � x′ : g x ≤ g x′〉, meaning thatg is monotonic.

6 It is common to record this fact by writingf
.

≤ g, the so-called pointwise ordering on func-
tions.
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B

f

��

A
Soo

g

��
⊆

C D
R

oo

Once PF-transformed, the two situations just above are instances
of the diagram aside, for suitable versions of relationsR,S and
functionsf, g (these two, in particular, can be the same, as in the
monotonicity condition). The diagram captures a very useful way
of relating functions and relations (note the higher-orderflavour)

which was identified first by John Reynolds [54] and later treated in the pointfree style
by Roland Backhouse [5, 3].

We will refer to this as the relational “arrow combinator”, to be writtenR ← S.
GivenR andS, R← S is a relation on functionsf andg defined as follows:

f(R← S)g ⇔ f · S ⊆ R · g (37)

With points,f(R←S)g means〈∀ b, a : b S a : (f b)R(g a)〉, that is,f andg produce
R-related outputsf b andg a provided their inputs areS-related (b S a).

Properties and applications of this (PF) relational combinator can be found in eg.
[3, 12]. The special casef(R←S)f will suit our needs later on, and it will prove useful

to write R S
foo to meanf(R← S)f . Therefore, we will rely on equivalence

R S
foo ⇔ f · S ⊆ R · f (38)

The notation just introduced captures the view that types offunctions can be re-
garded as relations. This is indeed the essence of the abstraction theorem [54] on type
polymorphism which, as we shall see in section 11, plays its role in what is to come.

This important combinator closes our introduction to the relational combinators
involved in the PF-transform. Before proceeding to the application of this transform
to our topics of interest, let us frame it into a wider context.

4 Haskell and Alloy: two PF-flavoured languages

As will become apparent throughout this paper, PF-notationwill be regarded as a single,
abstract (ie. technology free) unifying notation encompassing program specifications,
implementations, program data and program properties. Howfar is such a notation from
programming languages and notations available from the community?

Most commercially available programming languages are pointwise. But there are
notations and languages which embody a pointfree subset. Functional programming
languages with higher order functions have the power to define functional combinators
and therefore make it possible to program in the pointfree style. Among these, some
actually have pointfree constructs in their core syntax. Haskell [33] is one of these, as
we have already seen in the motivating example of section 2. However, the artifacts one
can build in Haskell do not go beyond partial functions, thatis, simple relations.

Alloy [30] — a notation and associated model-checking tool which has been suc-
cessful inalloying a number of disparate approaches to software modeling, namely
model-orientation, object-orientation, etc. — is a rare example of a language where
relations and their combinators are the standard way of doing things. In fact, the “ev-
erything is a relation” motto of Alloy matches perfectly with the view purported in the
current paper. Quoting [30]:
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(...) “ All structures are represented as relations, and structural properties are expressed
with a few simple but powerful operators.(...) Sets are represented as relations with
a single column, and scalars as singleton sets.(...) In the Alloy logic, all values are
relations[and] the unification of sets and relations makes the syntax simpler, since there
is no need to convert between sets and relations, or between scalars and sets.”(...) In
Alloy, everything’s a relation.

It is interesting to note that Haskell and Alloy complement each other in a nice way:
Haskell provides for models closer to implementations in the sense that they are reactive
by construction: the idea is to evaluate typedλ-expressions which express the reaction
of a system to input stimuli. However, there is no native syntax to express datatype
invariants, pre and post-conditions and assertions. As a checking tool, Haskell invites
the software designer to invent test cases and check for their behaviour7.

Alloy is not functional, therefore it is a passive language.One writes uninterpreted
data models and predicates about such models, as well as assertions about such predi-
cates. The system runs checks for such assertions trying andfinding counter-examples
able to falsify such assertions. If no counter-example is found then the formulamay be
valid. Purists often regard model-checking as the poor relative to theorem proving. Ex-
perience tells, however, that many subtleties and design flaws can be unveiled by model
checking. In other words: the checker does not prove things for certain but is of great
help in improving what one wants to prove.

To catch a glimpse of the proximity between Alloy and the PF-notation adopted in
the current paper, consider the Alloy pointwise definition of an injective relationR 8,

pred Injective {
all x, y : A, z : B | z in x.R && z in y.R => x=y
}

and its PF-equivalent,

pred Injective’ {
R.˜R in iden :> A
}

— recallR◦ ·R ⊆ id (30), forR◦ denoted bỹR andid denoted byiden :> A . Also
note that composition is written in reverse order.

5 Related Work

The idea of encoding predicates in terms of relations was initiated by De Morgan in
the 1860s and followed by Peirce who, in the 1870s, found interesting equational laws
of the calculus of binary relations [53]. The pointfree nature of the notation which
emerged from this embryonic work was later further exploited by Tarski and his stu-
dents [60]. In the 1980’s, Freyd andŠčedrov [25] developed the notion of anallegory
(a category whose homsets are partially ordered) which eventually accommodates the

7 Tools such as QuickCheck [15] help in this respect.
8 Note the transposed notationx.R meaning set{y | y R x}.
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binary relation calculus as special case. In this context, arelationR is viewed as an

arrow (morphism)B A
Roo between objectsB andA, respectively referred to as the

target and source ofR. Composition of such arrows corresponds to relational compo-
sition (12), identity isid, and relational expressions can be “type-checked” by drawing
diagrams such as in category theory.

Such advances in mathematics were meanwhile captured by theEindhoven com-
puter science school in their development of program construction as a mathematical
discipline [1, 8, 20, 13, 7] enhanced by judicious use of Galois connections, as already
illustrated above.

Our view of this approach as a kind ofLaplace transform[37] for logic was first
expressed in [42]. Such a transform (the PF-transform) has henceforth been applied to
several areas of the software sciences, namely relational database schema design [44, 2,
18], hashing[49], software components [11], coalgebraic reasoning [12], algorithmic
refinement [50], data refinement [18, 48] and separation logic [65].

The remainder of this paper will be devoted to yet another example of applica-
tion of the PF-transform which we regard as a particularly expressive illustration of its
power: extended static type checking (ESC) [24]. If performed at abstract model level,
ESC includes what is commonly known as invariant preservation and satisfiability proof
obligations in specification languages such as VDM [32, 22] and Z [57]. Hoare triples
[27] and weakest pre-condition calculus [19] are also related to ESC, as will be shown
later. With notable exceptions (eg. [9, 6]) these theories are available in thepointwise
style, as most theories in computing are. Evidence will be provided not only of the uni-
fying effect of the PF-transform in putting together different (but related) theories in
programming but also of how it can be used and applied to real-sized (non trivial) case
studies in connection with mechanical support provided by model checking [30] and
theorem proving [26].

6 Extended static checking and datatype invariants

Type theory [52] is unanimously regarded as one of the most solid and relevant branches
of computer science. Thanks to the concept of atype, the quality of code can be checked
statically, ie. before execution. In programming languages such as Haskell, for instance,
ill-typed programs simply don’t compile, meaning that types are an effective way of
controlling software robustness.

The ESC acronym for “extended static checking” was coined atCompaq SRC in
their development of a tool for Java (ESC/Java) able to detect as many programming
errors as possible at compile-time [24]:

Our group at the Systems Research Center has built and experimented with two real-
izations of a new program checking technology that we call extended static checking
(ESC): “static” because the checking is performed without running the program, and
“extended” because ESC catches more errors than are caught by conventional static
checkers such as type checkers.

If we look at the particular kinds of error which such a tool isable to catch — null
dereferencing, array bounds errors, negative array indices, etc — we realize that these
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can be abstractly characterized by properties of particular datatypes which are violated
by the running program, and/or a pre-condition of a given operation which is not en-
sured in some program trace. These two are related: the standard way of ensuring that
a particular property of a datatype is maintained consists of adding pre-conditions to
operations which may put such properties at risk.

However, adding arbitrary run-time checks for every property (a style often referred
to asdefensive programming[39]) may be counterproductive: one may write too many
or much too strong checks. In the limit, the context may happen to ensure the properties
one wants to maintain, thus rendering such checks useless and redundant.

Properties statically associated to datatypes are known asinvariants [32] and as
state invariantsin case the particular datatypes embody the state of some state-based
machine or system, often handled coalgebraically [31, 12].For instance, in a system for
monitoring aircraft flight paths of in a controlled airspace[22], altitude, latitude and
longitude cannot be specified simply as

Alt = Lat = Lon = IR

because altitudes cannot be negative, latitudes must rangebetween−90◦ and90◦ and
longitudes between−180◦ and180◦. Using traditional maths notation, one would write:

Alt = {a ∈ IR | a ≥ 0} (39)

Lat = {x ∈ IR | −90 ≤ x ≤ 90}

Lon = {y ∈ IR | −180 ≤ y ≤ 180}

Formal modeling notations such as VDM and Z cater specially for invariants. In the
case of languages of the VDM family (eg. VDM-SL [22], VDM++ [23]) the standard
notation is

Alt = IR

inv a △ a ≥ 0

for Alt (39) (and similarly forLat andLon), which implicitly defines a predicate

inv-Alt : IR→ IB
inv-Alt a △ a ≥ 0

known as theinvariant of Alt. In general, givenA and a predicatep : A → IB, data
type declaration

T = A

inv a △ p a

means the type whose extension is

T = {x ∈ A | p x}

Therefore, writinga ∈ T meansa ∈ A ∧ p a. Note thatA itself can have its own
invariant, so the process of finding which properties hold about a given datatype is
inductive on the structure of types. (See more about this in section 17.)
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7 Invariants entail proof obligations

Static checking of formal models involving invariants is a complex process relying on
generation and discharge of proof obligations, as pointed out more than two decades
ago by Jones [32]:

The valid objects ofDatec are those which (...) satisfy inv-Datec. This has a profound
consequence for the type mechanism of the notation. (...) The inclusion of a sub-typing
mechanism which allows truth-valued functions forces the type checking here to rely on
proofs.

The required proofs, which are known under the headingsinvariant preservationor
satisfiability [32] 9 belong clearly to the ESC family. Recalling the mobile phonetoy
requirements of section 2, it should be clear by now that predicatesnoDuplicates (4)
andleq10 (6) are components of the invariant of the list of calls datatype handled by
store, say

ListOfCalls = Call⋆

inv l △ noDuplicates l ∧ leq10 l

and that (5) and (11) express two proof obligations entailedby such an invariant, con-
cerning thestore operation.

In general, given a functionA
f //B where bothA andB have invariants, ex-

tended static checking (ESC) off means discharging proof obligation (PO)

〈∀ a : inv-A a : inv-B(f a)〉 (40)

which ensures thatf is invariant-preserving. The fact that invariants are intrinsic to
datatypes is better captured by the following version of theabove,

〈∀ a : a ∈ A : (f a) ∈ B〉 (41)

where membership (∈) should be understood in the broad sense of encompassing all
invariants. (Again we anticipate that this will be handled in precise terms later on in
section 17.) Also note the following variant of (41),

〈∀ a, b : a ∈ A ∧ b = f a : b ∈ B〉 (42)

which is granted by the∀-one-point rule (175).
How does one handle ESC POs? The sheer complexity of such proofs in real-size

problems calls for mechanical support and this can be essentially of three kinds: PO-
generation, model-checking and theorem-proving.

Generating all proof obligations (POs) needed for checkinga particular formal
model is a mechanical process available from tool-sets suchas eg. the VDMTools [17].
In practice, the number of generated POs is larger than expected because of the adop-
tion of “rich types” such as sequences and finite mappings, which can be regarded as
simplerelations (30), as we shall see. Such types, in a sense, hide particularly common
invariants which “turn up” at PO-level.

The following situations can take place:

9 This nuance will be explained in section 14.
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1. Independently of satisfying (42) or not,f is “semantically wrong” because it does
not behave according to the requirements. This calls for manual tests, which may
include running the model as a prototype, should an interpreter be available.

2. f survives all tests compiled in the previous step (includingdynamic type checks)
and yet testers are not aware that it does not satisfy (42). Inthis case, a model
checker able to automatically generate counter-examples to (42) which could sug-
gest how to improvef is welcome.

3. The model checker of the step just above finds no counter-examples. In this case a
theorem prover is welcome to mechanically check (42).

4. Proof obligation (42) is too complex for the available theorem prover. In this situa-
tion, our ultimate hope is a pen-and-paper manual proof, or some kind of exercise
able to decompose too complex POs into smaller sub-proofs.

The main purpose of this paper is to show the suitability of the PF-transform and rela-
tion calculus to carry out the pen-and-paper proofs (as exercises in the sense of [55])
mentioned in the last step. The idea is to regard such POs as “first class citizens” which
are represented by arrows which, in turn, can be put togetheror decomposed in simpler
ones using a suitable PO-calculus supported by the relational calculus.

8 PF-transformed ESC

In [46] it is argued that the complexity of POs mentioned above is partly due to the
pointwise notation itself, which does not scale up very wellto complex models, leading
to long, unreadable POs full of nested quantifications. Experience in PF-transforming
such formulæ invariably leads to much shorter, sharp relation-level formulæ which (al-
beit more cryptic) convey the essence of the proof, which quite often has to do with
particular relationships between data flows.

In this section we set ourselves the task of investigating PF-transformed ESC proof
obligations. As we shall see, these include invariant preservation, satisfiability and
Hoare triples. We begin with a very simple example: checkinga function which doubles
even numbers,

twice : Even→ Even

twice n △ 2n

where

Even = IN0

inv n △ 〈∃ k : k ∈ IN0 : n = 2k〉
︸ ︷︷ ︸

even n

(43)

Is twice properly typed? To be so, the following instance of (42) telling that function
twice preserves even numbers

〈∀ x, y : even x ∧ y = twice x : even y〉 (44)
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should be discharged. According to our strategy, the first step consists in PF-transforming
(44). We tackle the range of quantification (44) first,

y = twice x ∧ even x

⇔ { ∃-one-point (176)}

〈∃ z : z = x : y = twice z ∧ even z〉

⇔ { ∃-trading (174) ; introduce coreflexiveΦeven }

〈∃ z :: y = twice z ∧ z = x ∧ even z
︸ ︷︷ ︸

z Φeven x

〉

⇔ { composition (12)}

y(twice · Φeven)x

cf. diagram IN0

twice

��

IN0
Φevenoo

IN0

which expressestwice pre-conditioned byeven. Next, we proceed to the whole thing:

〈∀ x, y : y = twice x ∧ even x : even y〉

⇔ { just above}

〈∀ x, y : y(twice · Φeven)x : even y〉

⇔ { ∃-one-point (176)}

〈∀ x, y : y(twice · Φeven)x : 〈∃ z : z = y : even z〉〉

⇔ { predicate calculus:p ∧ TRUE = p }

〈∀ x, y : y(twice · Φeven)x : 〈∃ z :: y = z ∧ even z ∧ TRUE〉〉

⇔ { ⊤ is the topmost relation, cf. table 1}

〈∀ x, y : y(twice · Φeven)x : 〈∃ z :: y Φeven z ∧ z⊤x〉〉

⇔ { composition (12)}

〈∀ x, y : y(twice · Φeven)x : y(Φeven · ⊤)x〉

⇔ { go pointfree (13)}

twice · Φeven ⊆ Φeven · ⊤ (45)

Note that the two occurrences of unary predicateeven in (44) are PF-transformed
in two different but related ways: via coreflexiveΦeven on the lower side of (45) and
viaΦeven · ⊤ on the upper side — a so-called (left)condition10. Coreflexives relate to

10 For a detailed account of this duality see themonotype-condition isomorphismformalised in
[20].
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conditions in a number of ways, namely in what concerns pre/post restrictions:

R · Φ = R ∩ ⊤ · Φ (46)

Ψ ·R = R ∩ Ψ · ⊤ (47)

This makes it possible to transform (45) even further:

(45)

⇔ { (21), sincetwice · Φeven ⊆ twice }

twice · Φeven ⊆ twice ∩ Φeven · ⊤

⇔ { (47) }

twice · Φeven ⊆ Φeven · twice

⇔ { (38) }

Φeven Φeven
twiceoo (48)

cf. diagram

IN0

twice

��

IN0
Φevenoo

twice

��
⊆

IN0 IN0
Φeven

oo

In retrospect, PF-statement (48) of proof obligation (44) is interesting from a num-
ber of viewpoints: notationally, it is of great economy; conceptually, it really purports
the idea that ESC has to do with types, which are now regarded as predicates (encoded
by coreflexives); last of not least, it is of great calculational value, as we shall soon see.

Let us generalize what we have obtained thus far:

Definition 1 (Predicative types of functions).Let functionB A
foo and predicates

IB A
poo and IB B

qoo be given. We say thatf haspredicative type

Φq Φp
foo (49)

wherever

f · Φp ⊆ Φq · f (50)

holds, cf. diagram A

f

��

A
Φpoo

f

��
⊆

B B
Φq

oo

Condition (50) — which is equivalent to

f · Φp ⊆ Φq · ⊤ (51)
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as we have seen above — is the PF-transform of ESC proof obligation 〈∀ x : p x :
q (f x)〉 stating that functionf ensures propertyq on the output once propertyp is
granted on the input.
2

Stating that a given function is of a particular predicativetype is an assertion which
needs to be checked. Predicative types obey to a number of interesting and useful prop-
erties which can be proved using the PF-calculus alone. Suchproperties, together with
the relational calculus itself, make proof obligation discharge more structured and eas-
ier, as we shall soon see. Prior to this, we need to present a little more of the relational
calculus itself.

9 More about the relational calculus

Coreflexives.Recall from section 3 that unary predicates PF-transform tofragments of
id (coreflexives) as captured by the following universal property:

Ψ = Φp ⇔ 〈∀ y, x :: y Ψ x⇔ y = x ∧ p y〉 (52)

Via cancellationΨ := Φp, (52) yields

y Φp x ⇔ y = x ∧ p y (53)

A setS can also be PF-transformed into a coreflexive by calculatingΦ(∈S), cf. eg. the
following graphic display of the transform of set{1, 2, 3, 4}:

Φ(∈{1,2,3,4}) =

Thanks to the isomorphism between predicates and coreflexives implicit in (52), it
is easy to show that predicate algebra can be expressed in terms of coreflexives alone
[7]. In particular, given predicatesp, q, we have

Φp ∧ q = Φp · Φq (54)

Φp∨q = Φp ∪ Φq (55)

Φ¬p = id− Φp (56)

Φfalse = ⊥ (57)

Φtrue = id (58)

wherefalse (resp.true) denote the everywhere FALSE (resp. everywhere TRUE) pred-
icates andR − S denotes relational difference (19).
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Coreflexives are symmetric and transitive relations, that is,

Φ◦ = Φ = Φ · Φ (59)

hold forΦ coreflexive. The fact that meet of coreflexives is composition

Φ ∩ Ψ = Φ · Ψ (60)

is of great calculational advantage since it enables one to pipeline restrictions (or con-
ditions) while taking advantage of the central role played by composition in the whole
calculus.

Exercise 5.Given a functionB A
foo , show thatimg f is the coreflexiveΦp of predicate

p b △ 〈∃ a :: b = f a〉.
2

Domain and range.The coreflexive fragments of kernel and image are nameddomain
(δ ) andrange(ρ )

δ R △ kerR ∩ id (61)

ρR △ imgR ∩ id (62)

Therefore:

R · δ R = R = ρR · R (63)

Clearly:

δ R = kerR⇔ R is injective (64)

ρR = imgR⇔ R is simple (65)

δ R = R = ρR⇔ R is coreflexive (66)

In particular, range and image of functions coincide.
From the definitions above we easily recover their pointwiseequivalents. For in-

stance, let us calculateρ twice:

y(ρ twice)x

⇔ { (65) }

y(twice · twice◦)x

⇔ { exercise 5 ; coreflexives}

y = x ∧ 〈∃ k :: y = twice k〉

⇔ { definition oftwice }

y = x ∧ 〈∃ k :: y = 2k〉

⇔ { (53) ; definition ofeven (43) }

y Φeven x
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So, the range oftwice is the same relation asΦeven. Taking advantage of this, we check
predicative type assertion (48) of the previous section:

Φeven Φeven
twiceoo

⇔ { (49,50) }

twice · Φeven ⊆ Φeven · twice

⇔ { Φeven = ρ twice (above) }

twice · Φeven ⊆ ρ twice · twice

⇔ { (63) }

twice · Φeven ⊆ twice

⇐ { composition is monotonic}

Φeven ⊆ id

⇔ { Φeven is coreflexive}

TRUE

This first ESC/PF exercise gives an idea of the flavour of discharging proof obliga-
tions by calculation. The example is very simple and so the distance between this and
the equivalent pointwise proof stemming directly from (44)is not much. Non-trivial
examples to be given later in sections 13 and 18 will provide abetter idea of the advan-
tages of doing things in the pointfree style.

It should be noted that the closed formulæ given above (61,62) do not provide the
best way to infer properties such as the above. It is much simpler to rely on universal
properties which domain and range enjoy and which are (once again) Galois connec-
tions, as explained below.

Structuring the calculus.As anticipated in section 3, Galois connections provide a
convenient way to structure the relational calculus in the sense that they offer (univer-
sal) properties which implicitly capture the meaning of thetwo relational combinators
(termedadjoints) involved in each connection11.

A paradigmatic example is that of capturing the meaning of functions: it can be
shown that functions areexactly those relationsh which obey the following Galois
connection, for all other (suitably typed) relationsR,S:

h · R ⊆ S ⇔ R ⊆ h◦ · S (67)

Taking converses, this is equivalent to12

R · h◦ ⊆ S ⇔ R ⊆ S · h (68)

11 This approach to the relational calculus was pioneered in the 1990s by the Mathematics of
Program Construction (MPC) school, see eg. references [1, 29, 20, 62, 7].

12 These Galois connections are often referred to asshunting rules[13].
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Again we stress on the resemblance with school algebra: likenumbern in (20), function
h in (67,68) can be shifted back and forth in relational expressions by “swapping sign”
(which in the relational context means taking converses).

The fact thatat mostand equality coincide in the case of functions

f ⊆ g ⇔ f = g ⇔ f ⊇ g (69)

is among several other beneficial consequences of these rules (see eg. [13]).

Exercise 6.Use the shunting rules (67,68) to show thatc · R is always simple andS · c◦ is
always injective, for all suitably typedR,S.
2

Domain and range are characterized by Galois connections

δ R ⊆ Φ⇔ R ⊆ ⊤ · Φ (70)

ρR ⊆ Φ⇔ R ⊆ Φ · ⊤ (71)

whereΦ ranges over coreflexives, from which a number of properties arise, namely:

⊤ · δ R = ⊤ ·R (72)

ρR · ⊤ = R · ⊤ (73)

Φ ⊆ Ψ ⇔ Φ ⊆ ⊤ · Ψ (74)

δ R ⊆ δ S ⇔ R ⊆ ⊤ · S (75)

δ (R · S) = δ (δ R · S) (76)

ρ (R · S) = ρ (R · ρ S) (77)

In general, all such Galois connections instantiate the equivalence at the top of table
2. It should be mentioned that some rules in this table appearin the literature under
different guises and usually not identified as GCs13. For a thorough presentation of the
relational calculus in terms of GCs see [1, 7]. There aremanyadvantages in such an
approach: further to the systematic tabulation of operators (of which table 2 is just a
sample), GCs have a rich algebra of properties, namely:

– both adjointsf andg in a GC are monotonic;
– lower adjointf commutes with join and upper-adjointg commutes with meet;
– two cancellation laws hold,R ⊆ g(f R) and f(g S) ⊆ S , respectively known as

left-cancellationandright-cancellation.

In summary, all relational combinators involved in table 2 are monotonic. The ones in
thef -column distribute over∪, eg.

(R ∪ S)◦ = R◦ ∪ S◦ (78)

f · (R ∪ S) = f · R ∪ f · S (79)

and the ones in theg-column distribute over∩, eg.:

(R ∩ S)◦ = R◦ ∩ S◦ (80)

(R ∩ S) · f = R · f ∩ S · f (81)

13 For instance,shuntingrule (67) is calledcancellation lawin [66].
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Table 2. Tabulation of Galois connections in the relational calculus (sample). The general for-
mula given on top is a logical equivalence universally quantified onS andR. It has a left part
involving lower adjointf and a right part involving upper adjointg. These are expressed using
sections of binary operators. So, each line in the table corresponds in fact to afamily of adjoints
indexed by the argument frozen in each section, eg.h in (h·), (h◦·) in the line markedshunting
rule.

(f R) ⊆ S ⇔ R ⊆ (g S)

Description f g Comment

converse ( )◦ ( )◦

shuntingrule (h·) (h◦·) h is a function

“converse”shuntingrule (·h◦) (·h) h is a function

difference ( − R) (R ∪ )

Left-division (R·) (R \ ) read “R under . . . ”

Right-division (·R) ( / R) read “. . . overR”

domain δ (⊤·) left ⊆ restricted to coreflexives

range ρ (·⊤) left ⊆ restricted to coreflexives

Simplicity. Simple relations (also known as partial functions) will be particularly rel-
evant in the sequel because of their ubiquity in software modeling. In particular, they
can be used to model data structures “embodying a functionaldependency” such as eg.
mappings from object identifiers to object attribute values[47, 48].

In the same way simple relations generalize functions as shown in figure 1,shunting
rules (67, 68) generalize to

S · R ⊆ T ⇔ (δ S) · R ⊆ S◦ · T (82)

R · S◦ ⊆ T ⇔ R · δ S ⊆ T · S (83)

for S simple. In the case of coreflexives (which are special cases of simple relations),
rules (82,83) instantiate to

Φ ·R ⊆ S ⇔ Φ ·R ⊆ Φ · S (84)

R · Φ ⊆ S ⇔ R · Φ ⊆ S · Φ (85)

Harpoon arrowsB A
Ro or A R /B in diagrams indicate thatR is simple.

Later on we will need to describe simple relations at pointwise level. The notation we
shall adopt for this purpose is borrowed from VDM [32], whereit is known asmapping
comprehension. This notation exploits the applicative nature of a simple relationS by
writing b S a as

a ∈ dom S ∧ b = S a (86)



ESC by Calculation using the Pointfree Transform 25

where ∧ should be understood non-strict on the right argument14 anddom S is the
set-theoretic version of coreflexiveδ S, that is,

δ S = Φ(dom S) (87)

holds (cf. the isomorphism between sets and coreflexives). In this way, relationS itself
can be written as{a 7→ S a | a ∈ dom S} and projectionf · S · g◦ as

{g a 7→ f(S a) | a ∈ dom S} (88)

providedS satisfies functional dependencyg → f , to ensure simplicity (see exercise
8).

Exercise 7.Further to exercise 2 show that condition

M · N◦ ⊆ id (89)

(which ensures that the union of two simple relationsM andN is simple) converts to pointwise
notation as follows,

〈∀ a : a ∈ (dom M ∩ dom N) : (M a) = (N a)〉

— a condition known as (map)compatibilityin the VDM terminology [22].
2

Exercise 8.A relationS is said to satisfy functional dependencyg → f wherever projection
f · S · g◦ is simple, that is, iff

ker (g · S◦) ⊆ ker f (90)

holds [45].

1. Show that (90) trivially holds whereverg is injective andS is simple, for all (suitably typed)
f .

2. Resort to (86), (90) and to the rules of both the PF-transform and the Eindhoven quanti-
fier calculus (appendix A) to show that the healthiness condition (90) imposed on mapping
comprehension (88) is equivalent to

〈∀ a, b : a, b ∈ dom S ∧ (g a) = (g b) : f(S a) = f(S b)〉

2

10 Building up the ESC/PF calculus

What we have seen so far about the PF relational calculus is enough to start developing
our own calculus of ESC predicative type assertions, stemming from definition 1. Let
us see, for instance, what happens wherever the input predicate in (49) is a disjunction:

Φq Φp1
∪ Φp2

foo

⇔ { (50) }

14 VDM embodies a logic of partial functions (LPF) which takes this into account [32].
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f · (Φp1
∪ Φp2

) ⊆ Φq · f

⇔ { distribution (79) }

f · Φp1
∪ f · Φp2

⊆ Φq · f

⇔ { ∪-universal (22)}

f · Φp1
⊆ Φq · f ∧ f · Φp2

⊆ Φq · f

⇔ { (50) twice }

Φq Φp1

foo ∧ Φq Φp2

foo

Thus distributive law

Φq Φp1
∪ Φp2

foo ⇔ Φq Φp1

foo ∧ Φq Φp2

foo (91)

holds. The dual rule,

Φq1
· Φq2

Φp
foo ⇔ Φq1

Φp
foo ∧ Φq2

Φp
foo (92)

is calculated in the same way.
The fact that predicative arrows compose,

Ψ Φ
g·hoo ⇐ Ψ Υ

goo ∧ Υ Φ
hoo (93)

follows straight from (49, 50), as does the obvious rule concerning identity

Ψ Φ
idoo ⇔ Φ ⊆ Ψ (94)

wherebyΦ Φ
idoo always holds. Thus it makes sense to draw predicative diagrams

such as, for instance,

Ψ Ψ × Υ
π1oo π2 // Υ

Φ

f

ffLLLLLLLLLLLL

〈f,g〉

OO

g

88rrrrrrrrrrrr

(95)

where predicates (coreflexives) are promoted to objects (nodes in diagrams). In this
case, the diagram explains the ESC behaviour of the combinator which pairs the results
of two functions,

〈f, g〉c △ (f c, g c) (96)

recall table 1. In the literature, this is often referred to as thesplit or fork combinator.
The two projectionsπ1, π2 are such that

π1(a, b) = a ∧ π2(a, b) = b (97)
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andΨ × Υ instantiates relational productR × S of table 1. The diagram expresses the
two cancellation properties

π1 · 〈f, g〉 = f ∧ π2 · 〈f, g〉 = g (98)

The question is: is diagram (95) properly typed?
We defer to section 11 the discussion about the arrows labelled withπ1, π2 (which

are instances of a more general result) and focus on arrow〈f, g〉. We need to recall the
universal property of relationalsplits

X ⊆ 〈R,S〉 ⇔ π1 ·X ⊆ R ∧ π2 ·X ⊆ S (99)

(another Galois connection, see exercise 9) and that×-absorption holds [13]:

〈R · T, S · U〉 = (R × S) · 〈T, U〉 (100)

Then we reason:

Ψ × Υ Φ
〈f,g〉oo

⇔ { (49,50) }

〈f, g〉 · Φ ⊆ (Ψ × Υ ) · 〈f, g〉

⇔ { absorption (100)}

〈f, g〉 · Φ ⊆ 〈Ψ · f, Υ · g〉

⇔ { universal property (99)}

π1 · 〈f, g〉 · Φ ⊆ Ψ · f ∧ π2 · 〈f, g〉 · Φ ⊆ Υ · g

⇔ { cancellations (98)}

f · Φ ⊆ Ψ · f ∧ g · Φ ⊆ Υ · g

⇔ { (49,50) twice}

Ψ Φ
foo ∧ Υ Φ

goo

In summary, we have calculated ESC/PF rule

Ψ × Υ Φ
〈f,g〉oo ⇔ Ψ Φ

foo ∧ Υ Φ
goo (101)

which justifies the existence of arrow〈f, g〉 in diagram (95).

Exercise 9.Show that

〈R, S〉 = (π◦

1 · R) ∩ (π◦

2 · S) (102)

is the PF-transform of the clause given for this combinator in table 1. Furthermore infer (99) from
(102) and universal property (21).
2
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Let us finally see how to handle conditional expressions of the formif (c x) then
(f x) else (g x), which PF-transform into the following version of McCarthy’s condi-
tional combinator:

c→ f , g = f · Φc ∪ g · Φ¬c (103)

In this case, (51) offers a better standpoint for calculation than (50), as the reader may
check in calculating the following rule for conditionals:

Φq Φp
c→f,goo ⇔ Φq Φp · Φc

foo ∧ Φq Φp · Φ¬c
goo (104)

Further ESC/PF rules can calculated on the same basis, either elaborating on the
predicate structure or on the combinator structure. However, all the cases above involve
functions only and the semantics of computations are, in general, relations. So our strat-
egy is to generalize definition 1 to relations and develop thecalculus on such a generic
basis. Before this, let us present a generic result which still has to do with functions and
is of great interest to type checking.

11 ESC “for free”

In his well-known paperTheorems for free![64], Philip Wadler writes:

From the type of a polymorphic function we can derive a theorem that it satis-
fies.(...) How useful are the theorems so generated? Only time and experience
will tell.

The generosity of this quotation stems from John Reynoldsabstraction theoremon
parametric polymorphism [54] of which several applications have been found in the
meantime, namely in program transformation [59], abstractinterpretation and safety
analysis [3], relation calculus [49], program correctness[63], etc.15

In this section we identify a class of ESC/PF rules which are corollaries of this
theorem and which, as such, do not need to be discharged. We follow the pointfree
styled presentation of this theorem given in [3], which is remarkably elegant: letf be
a polymorphicfunction f : t , whose typet can be written according to the following
<<grammar>> of types:

t := t′← t′′

t := F(t1, . . . , tn) for n-ary parametric typeF

t := v for v a type variable (= polymorphism<<dimension>>)

LetV be the set of type variables involved in typet, {Rv}v∈V be aV -indexed family of
relations (fv in case all suchRv are functions) andRt be a relation defined inductively
as follows:

Rt:=t′←t′′ = Rt′ ←Rt′′ (105)

Rt:=F(t1,...,tn) = F(Rt1 , . . . , Rtn
) (106)

Rt:=v = Rv (107)
15 For the automatic generation of free theorems (in Haskell syntax) see Janis Voigtlaender’s

home page:http://linux.tcs.inf.tu-dresden.de/˜voigt/ft .
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whereRt′ ← Rt′′ is defined by (37) and symbolF is overloaded in (106): it denotes
a parametric type on the left hand side and then-ary relator [35, 8] which captures its
semantics on the right hand side. (More details to follow.)

The free theorem of typet then reads as follows:given any functionf : t andV
as above,f Rt f holds for any relational instantiation of type variables inV . Note
that this theorem is a result aboutt and holds foranypolymorphic function of typet
independentlyof its actual definition16.

A

R

��

FA

F R

��
B FB

Before proceeding to the application of this theorem, we
need to explain the meaning ofF in (106). Technically, the para-
metricity ofF is captured by regarding it as arelator [8], a con-
cept which extendsfunctorsto relations:FR is a relation from
FA to FB whereverR is a relation fromA to B (see diagram
aside).

By definition, relators are monotonic

R ⊆ S ⇒ FR ⊆ FS (108)

and commute with composition, converse and the identity:

F (R · S) = (FR) · (FS) (109)

F (R◦) = (FR)◦ (110)

F id = id (111)

The most simple relators are theidentity relatorId, which is such thatId A = A and
Id R = R, and theconstantrelatorK which, for a particular concrete data typeK, is
such thatK A = K andK R = idK .

Relators can also be multi-parametric. Two well-known examples of binary relators
are product and sum,

R× S = 〈R · π1, S · π2〉 (112)

R+ S = [i1 · R , i2 · S] (113)

whereπ1, π2 are the projections of a Cartesian product (97),i1, i2 are the injections of
a disjoint union, and thesplit/eitherrelational combinators are defined by (102) and

[R ,S] = (R · i◦1) ∪ (S · i◦2) (114)

respectively. By putting product, sum, identity and constant relators together with fix-
point definitions one is able to specify a large class of parametric structures — referred
to aspolynomial— such as those implementable in Haskell, for instance.

Let us see how the free theorem of projectionsπ1 andπ2 justifies (for free) arrows

Ψ Ψ × Υ
π1oo andΨ × Υ

π2 //Υ in diagram (95). The polymorphic type ofπ1 being
t = a← a× b, one hasRt = Ra←Ra ×Rb. We reason:

π1(Rt)π1

16 See [3] for comprehensive evidence on the power of this theorem when combined with Galois
connections.
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⇔ { abbreviatingRa, Rb := R, S }

π1(R←R× S)π1

⇔ { (37) }

π1 · (R × S) ⊆ R · π1

⇔ { (38) }

R (R× S)
π1oo

Thus,R R × S
π1oo holds forall (suitably typed)R,S, thus covering coreflexivesΨ

andΥ as special cases. (The calculation ofR× S
π2 //S is identical.)

The free theorem of a polymorphic type conveys the idea that types too “are rela-
tions”. Its wide scope is better appreciated once dealing with higher-order combinators.
Let us see the case of functional composition(·), which is of typet = (c← a)← (b←
a)← (c← b):

(·)Rt(·)

⇔ { (109) to (111)}

(·)((Rc← Ra)← (Rb← Ra)← (Rc←Rb))(·)

⇔ { introducing abbreviations such as in the previous calculation }

(·)((U ← R)← (S←R)← (U ← S))(·)

⇔ { (37) }

(·) · (U ← S) ⊆ ((U ←R)← (S← R)) · (·)

⇔ { (67) }

(U ← S) ⊆ (·)◦ · ((U ←R)← (S←R)) · (·)

⇔ { (13) assuming∀-quantification implicit ; (27)}

f(U ← S)g⇒ (f ·)((U ←R)← (S← R))(g·)

⇔ { (37) twice }

f · S ⊆ U · g⇒ (f ·) · (S← R) ⊆ (U ←R) · (g·)

⇔ { (67) again}

f · S ⊆ U · g⇒ (S← R) ⊆ (f ·)◦ · (U ← R) · (g·)

⇔ { (13) ; (27) again}

f · S ⊆ U · g⇒ h(S← R)j⇒ (f · h)(U ←R)(g · j)

⇔ { (37) }

f · S ⊆ U · g ∧ h ·R ⊆ S · j ⇒ f · h · R ⊆ U · g · j
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Substitutingf, j, R, S, U := g, h, Φ, Υ, Ψ we obtain

g · Υ ⊆ Ψ · g ∧ h · Φ ⊆ Υ · h ⇒ g · h · Φ ⊆ Ψ · g · h

which is nothing but composition rule (93) already presented. So, (93) is an example of
“ESC for free”, as is the⇒ part of equivalence (101)17.

Reference [12] elaborates on these corollaries of the free theorem of functional com-
binators in building a categoryPred of “predicates as objects” proposed as a suitable
universe for describing coalgebraic systems subject to invariants.Pred’s objects are

predicates, represented by coreflexives. An arrowΨ Φ
foo in Pred means a function

which ensures propertyΨ on its output whenever propertyΦ holds on its input. Ar-
rows inPred can therefore be seen as ESC proof-obligations concerning the functions
involved.

Exercise 10.From the free theorem of1 A
!oo and factker ! = ⊤ infer

f · R ⊆ ⊤ · S ⇔ R ⊆ ⊤ · S (115)

2

12 Calculating pre-conditions for ESC

Wherever a functionf does not ensure preservation of a given invariantinv, that is,

Φinv Φinv
foo does not hold, there is always a pre-conditionpre which enforces

this at the cost ofpartializing f . In the limit, pre is the everywhere false predicate.
Programmers often become aware of the need for such pre-conditions at runtime, in the
testing phase. One can do better and find it much earlier, at specification (modeling)
time, when trying to discharge the standard proof obligation

〈∀ a : inv a : inv(f a)〉 (116)

which then extends to

〈∀ a : inv a ∧ pre a : inv(f a)〉 (117)

Bound toinventpre, one will hope to guess theweakestsuch pre-condition. Otherwise,
future use off will be spuriously constrained. However, how can one be sureof having
hit such weakest pre-condition?

As it will be explained below, predicateinv(f a) in (117) is itself the weakest
pre-condition forinv to hold upon execution off . In our ESC/PF approach we will
proceed as follows: we take the PF-transform ofinv(f a) — at data level — as starting
point and attempt to rewrite it into the conjunction of predicateinv a (or weaker) and
possibly “something else” — thecalculatedpre-conditionpre. So we strengthen (117)
to equivalence

inv a ∧ pre a⇔ inv(f a) (118)

thus meaning thatpre will be not only sufficient but also necessary forinv to be main-
tained byf . This method works provided all calculation steps are equivalences. Let us
start by detailing this strategy.
17 See eg. [49] for the derivation of the free theorem of the functional split combinator.
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Weakest pre-conditions.Back to definition 1, let us transform (49) according to the
PF-calculus studied so far:

Φq Φp
foo

⇔ { (51) }

f · Φp ⊆ Φq · ⊤

⇔ { (71) }

ρ (f · Φp) ⊆ Φq

On the other hand,

f · Φp ⊆ Φq · ⊤

⇔ { (67) }

Φp ⊆ f◦ · Φq · ⊤

Putting everything together, we obtain GC

ρ (f · Φp) ⊆ Φq ⇔ Φp ⊆ f◦ · Φq · ⊤ (119)

which is the expected composition of GCs (71) and (67). The left hand side of (119)
tells thatΦp is sufficientas a pre-condition forf to ensureΦq on the output. Its right
hand side tells thatf◦ ·Φq ·⊤ is the largest (weakest) such condition18. In other words,
f◦ · Φq · ⊤ is necessaryfor q to hold onf ’s output.

Weakest pre-conditions have been studied extensively in the literature, both in the
pointwise and pointfree style [19, 6]. As we shall soon see, they have a calculus of their
own which is closely related to that of predicative types. This connection between the
two calculi will be given in section 15, where it will be presented in its full generality,
that is, concerning relations in general instead of functions.

Let us, for the moment, refrain from going into such foundational work and see two
examples of ESC ensured by weakest pre-condition PF-calculation.

13 ESC/PF calculus at work — case study 1

Recalling the mobile phone case study of section 2, we want toensure thatstore main-

tains invariantinv = noDuplicates ∧ leq10, that is, to checkΦinv Φinv
storeoo . Thanks

to ESC/PF rule (92), we know we can split this intoΦnoDuplicates Φinv
storeoo ∧

Φleq10 Φinv
storeoo . We address the first of these arrows in this section.

Thanks to the pipelined structure ofstore (7), we can split the problem in two. First

we addressΦnoDuplicates Φinv
(c:)oo and then we promote this result tostore.

When compared to the definition of injective function (31), the pointwise definition
of noDuplicates (4) is suggestive of what needs to be done towards a calculational,

18 Back to points, this is predicate〈λ x :: q(f x)〉.
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PF-argument: a list has no duplicates if and only if, regarded as a (partial) function
from indices to elements, it is injective. Thus we can represent a listl of elements inC
by asimplerelation inIN ⇀ C telling which elements take which positions in list, and
define

noDuplicates L △ L◦ · L ⊆ id (120)

In this context, appendingc at the front of listL becomes relational operator

c : L △ c · 1◦ ∪ L · succ◦ (121)

wheresucc n △ n+1 is the successor function inIN0. (Mind thatL indices exclude0.)
Back to points and using mapping notation for simple relations (88), the body of (121)
becomes the expected{1 7→ c} ∪ {i+ 1 7→ (L i) | i← dom L}.

13.1 ESC calculations for(c :)

First of all, we need to show that(c :) preserves simplicity:

c : L is simple

⇔ { (121) followed by (33)}

L · succ◦ is simple∧ c · 1◦ is simple∧ L · succ◦ · 1 · c◦ ⊆ id

⇔ { exercise 6;succ◦ · 1 = 0 }

L · succ◦ is simple∧ L · 0 · c◦ ⊆ id

⇔ { succ is an injection, thussucc◦ · succ = id }

L is simple∧ L · 0 · c◦ ⊆ id

⇔ { 0 is not in the domain ofL }

L is simple∧ ⊥ · c◦ ⊆ id

⇔ { ⊥ is at most anything}

L is simple

Since all steps in the calculation are equivalences,L being simple is theweakestpre-
condition forc : L being simple.

Next we calculate withnoDuplicates(c : L) aiming at splitting this into invariant
noDuplicates L plus “something else” — the calculated weakest pre-condition for
noDuplicates preservation:

noDuplicates(c : L)

⇔ { (121, 120)}

c · 1◦ ∪ L · succ◦ is injective

⇔ { (32) }

c · 1◦ is injective ∧ L · succ◦ is injective ∧ (c · 1◦)◦ · L · succ◦ ⊆ id
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⇔ { exercise 6; definition of injective ; shunting (67,68)}

succ · L◦ · L · succ◦ ⊆ id ∧ c◦ · L ⊆ 1◦ · succ

⇔ { shunting again (67,68)}

L◦ · L ⊆ succ◦ · succ ∧ c◦ · L ⊆ 1◦ · succ

⇔ { ker succ = id }

L◦ · L ⊆ id ∧ c◦ · L ⊆ 1◦ · succ

⇔ { definition }

L is injective ∧ c◦ · L ⊆ 1◦ · succ (122)

In summary, we have calculated:

c : L has no duplicates⇔ L is injective
︸ ︷︷ ︸

no duplicates inL

∧ c◦ · L ⊆ 1◦ · succ
︸ ︷︷ ︸

wp

(123)

We finish the exercise by calculating the pointwise-expansion ofwp:

c◦ · L ⊆ 1◦ · succ

⇔ { go pointwise: (27) twice}

〈∀ n : c L n : 1 = 1 + n〉

⇔ { (86) }

〈∀ n : n ∈ dom L ∧ c = L n : 1 = 1 + n〉

⇔ { 1 = 1 + n always false (n 6∈ dom L) ; ∀-trading (173)}

〈∀ n : n ∈ dom L : c = L n⇒ FALSE〉

⇔ { predicate calculus}

〈∀ n : n ∈ dom L : c 6= L n〉

We obtain the expected pre-condition preventingc from being in the list already. In
summary:

ΦnoDuplicates ΦnoDuplicates ∧ wp c
(c:)oo

holds, forwp c L △ 〈∀ n : n ∈ dom L : c 6= L n〉.

13.2 ESC calculation for(c :) · filter(c 6=)

Next we address arrowΦnoDuplicates Φinv
storeoo . Note that, looking at (7), it is suffi-

cient to show that(c :) ·filter(c 6=) preservesnoDuplicates, sincetake n L is at most
L, for all n, andsmaller than injective is injective(exercise 1). Also note that, defined
over PF-transformed lists,filter becomes

filter p L △ Φp · L (124)
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Thus

filter(c 6=)L = (¬ρ c) · L (125)

where the negated range operator (¬ρ) is defined by¬ρR △ id − ρR and satisfies
property

Φ ⊆ ¬ρR⇔ Φ · R ⊆ ⊥ (126)

That filtering preserves simplicity follows immediately from exercise 1 (smaller than
simple is simple). Concerning the injectivity ofc : (filter(c 6=)L), we reason:

c : (filter(c 6=)L) is injective

⇔ { (123) ; (125) }

(¬ρ c) · L is injective ∧ c◦ · (¬ρ c) · L ⊆ 1◦ · succ

⇔ { converses}

(¬ρ c) · L is injective ∧ L◦ · (¬ρ c) · c ⊆ succ◦ · 1

⇔ { (¬ρ c) · c = ⊥ by left-cancellation of (126)}

(¬ρ c) · L is injective ∧ L◦ · ⊥ ⊆ succ◦ · 1

⇔ { ⊥ is below anything}

(¬ρ c) · L is injective

In this case, the calculated (weakest) pre-condition is even weaker than the invariant
to maintain, sinceL injective implies(¬ρ c) · L injective. (Smaller than injective is
injective, recall exercise 1 once again.) In summary, we have checked:

ΦnoDuplicates ΦnoDuplicates
(c:)·filter(c 6=)oo

In retrospect, note that not having PF-transformed lists into simple relations would
lead to definingnoDuplicates inductively on lists, in turn leading to an inductive proof.
The PF-transform has, in a sense, “converted induction intodeduction” (calculation).

Exercise 11.Show that (126) stems from Galois connection [1]

Φ ⊆ ¬δ R ⇔ R ⊆ ⊥/Φ (127)

(among others) where¬δ R = id − δ R.
2

14 From functional to relational ESC

Computer programs have, in general, a relational semantics, as they can be partial (eg.
non-terminating) and non-deterministic. What is the impact of moving from function
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A
f //B to relationA R //B in definition 1? We reason:

R · Φp ⊆ Φq ·R

⇔ { (47, 21) }

R · Φp ⊆ Φq · ⊤

⇔ { (23) }

Φp ⊆ R \ (Φq · ⊤)

⇔ { (13) ; (53) }

〈∀ a : p a : a(R \ (Φq · ⊤))a〉

⇔ { table 1 }

〈∀ a : p a : 〈∀ b : bRa : b(Φq · ⊤)a〉〉

⇔ { (53) ; table 1}

〈∀ a : p a : 〈∀ b : bRa : q b〉〉

This means that, for all inputs toR satisfyingp, all outputs (if any) will satisfyq 19. So
p is sufficient for ensuringq on the output. What is the weakest suchp? It is easy to
repeat the reasoning which lead to (119), this time for relationR instead of functionf ,
and for GC (23) instead of (67):

ρ (R · Φp) ⊆ Φq ⇔ Φp ⊆ R \ (Φq · ⊤)
︸ ︷︷ ︸

R\•Φq

(128)

NotationR \• Φ for the weakest (liberal) pre-conditions is taken from [6].Adjective
liberal stresses the fact that the condition encompasses all input values for whichR is
undefined. Thus the definition which follows:

Definition 2 (Relational predicative types).LetB A
Roo be a relation and IB A

poo

and IB B
qoo be predicates. We shall say thatR haspredicative type

Φq Φp
Roo (129)

wherever

R · Φp ⊆ Φq · R (130)

holds. The following are equivalent ways of stating (130):

Φq Φp
Roo ⇔ R · Φp ⊆ Φq · ⊤ (131)

⇔ Φp ⊆ R \• Φq (132)

2

19 This will be related to the concept ofsatisfiability[32] in the sequel.
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Relationship with Hoare Logic.SupposeR = [[P ]] is the semantics of a given program

P running over state spaceS, that is,S
R=[[P ]]//S . Writing s

P
7→ s′ for s′Rs, meaning that

programP mayreach states′ once executing over starting states, factΦq Φp
[[P ]]oo PF-

transforms to

〈∀ s : p s : 〈∀ s′ : s
P
7→ s′ : q s′〉〉 (133)

which is nothing but the meaning of Hoare triple

{p}P{q} (134)

Hoare triples are thus special cases of predicative types, as suggested in the introduction
by writing (2). In summary, “declaration”

Ψ Φ
Roo (135)

can be regarded as the type assertion that, if fed with values(or starting on states) “of
typeΦ” computationR yields results (or moves to states) “of typeΨ ” (if it terminates).
So ESC proof obligations and Hoare triples are one and the same device: a way to
type computations, be them specified as (always terminating, deterministic) functions
or encoded into (possibly non-terminating, non-deterministic) programs. This means
that all relational ESC/PF calculation rules to follow apply to Hoare triples.

Satisfiability. Definition 2 is related to another notion of predicative typing known as
satisfiability [32]: givenR, p andq as in definition 2,R is said to besatisfiablewith
respect to(p, q) iff

〈∀ a : p a : 〈∃ b : q b : bRa〉〉

holds, that is

Φp ⊆ R◦ · Φq · R (136)

in PF-notation. (As expected, shiftingR from the left to the right hand side of (130)
turns universal into existential quantification.) Usually, p andq are the invariants asso-
ciated to (respectively) the input and output types of operations whose semantics are
captured by pre/post-condition pairs ”à la VDM”, that is, post-conditions relating out-
puts to inputs, of pattern

R : (b : B)← (a : A)

pre . . . a . . .

post . . . b . . . a . . .

In this case, the satisfiability condition becomes, using a VDM-like syntax

〈∀ a : a ∈ A : pre-R a⇒ 〈∃ b : b ∈ B : post-R(b, a)〉〉 (137)

Clearly, (137) has to do with a particular semantic interpretation ofR’s non-determinism:
vagueness. For instance, post-conditionb = 2a ∨ b = a + 1 for A,B := Even (43)
specifies an operation which is satisfiable but fails to maintain inv-Even.
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The relationship between invariant preservation (130) andsatisfiability (136) de-
pends on the kind of relationR involved. ForR simple, satisfiability is stronger than
invariant preservation. ForR entire, the former is weaker than the latter (see exercise
12 below). Therefore, both notions coincide in the case of functions.

Exercise 12.Show that

– for R entire, (130) entails (136) and, forR simple, (136) entails (130). Hint: resort to the
shunting rules of simple relations.

– (136) can be written alternatively as

Φp ⊆ δ (Φq · R) (138)

and therefore as

Φp ⊆ ⊤ · Φq · R (139)

Hint: resort to the properties ofδ and of coreflexive relations in general (section 9).

2

15 Relational ESC/PF calculus

We are now in position to list rules of the relational ESC/PF calculus stemming from
definition 2. Some of these rules actually extend those already given in section 10. In
general, they help in breaking complexity of ESC/PF obligations. Note that most rules
areequivalences, not just implications, as they tend to be written in eg. Hoare logic. So
they contribute to ensuring ESC/PF predicative typesby construction.

Relational ESC/PF rules.We begin by presenting and justifying the rule which extends
relators to predicative types:

– Relators: rule

FΨ FΦ
F Roo ⇐ Ψ Φ

Roo (140)

holds for every relatorF.

This is easy to justify:

FΨ FΦ
F Roo

⇔ { (130) }

FR · FΦ ⊆ FΨ · FR

⇔ { (109) }

F(R · Φ) ⊆ F(Ψ · R)

⇐ { (108) }

R · Φ ⊆ Ψ ·R

⇔ { (130) }

Ψ Φ
Roo

Further to (92,94,104) and (140), the following rules hold:
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– Trivia :

id Φ
Roo ⇔ TRUE ⇔ Φ ⊥

Roo (141)

– Trading:

Υ Φ · Ψ
Roo ⇔ Υ Ψ

R·Φoo (142)

As we shall see soon, (142) is useful for trading coreflexivesbetween the input type
of a given ESC arrow and the relation typed by the arrow.

– Composition(Fusion):

Ψ Φ
R·Soo ⇐ Ψ Υ

Roo ∧ Υ Φ
Soo (143)

This rule extends (93) to relations.
– Split by conjunction:

Ψ1 · Ψ2 Φ
Roo ⇔ Ψ1 Φ

Roo ∧ Ψ2 Φ
Roo (144)

This equivalence generalizes (92).
– Weakening/strengthening:

Ψ Φ
Roo ⇐ Ψ ⊇ Θ ∧ Θ Υ

Roo ∧ Υ ⊇ Φ (145)

– Separation:

Υ ·Θ Φ · Ψ
Roo ⇐ Υ Φ

Roo ∧ Θ Ψ
Roo (146)

This rule follows from (144,145).
– Splitting:

Ψ × Υ Φ
〈R,S〉oo ⇔ Ψ Φ · δ S

Roo ∧ Υ Φ · δ R
Soo (147)

This generalizes (101) from functions to arbitrary relations.
– Product:

Φ′ × Ψ ′ Φ× Ψ
R×Soo ⇔ Φ′ Φ

Roo ∧ Ψ ′ Ψ
Soo (148)

Note that rule (140) already ensures part⇐ of equivalence (148).
– Conditional: equivalence

Ψ Φ
c→R,Soo ⇔ Ψ Φ · Φc

Roo ∧ Ψ Φ · Φ¬c
Soo (149)

where

c→R , S △ R · Φc ∪ S · Φ¬c (150)

generalizes (103) to relations20.

The interested reader is welcome to provide PF-calculations for all rules listed above.

Exercise 13.The Hoare logic rule corresponding to (143) is

{p}P1{q} , {q}P2{s}

{p}P1; P2{s}

for Φ = Φp, Ψ = Φs, Υ = Φq , S = [[P1]], R = [[P2]] and[[P ; Q]] = [[Q]] · [[P ]]. Check which
other Hoare logic rules correspond to which ESC/PF rules, bearing in mind that some of latter
may split into two of the former because they are equivalences, not implications.
2

20 For a wider generalization of conditionals to relations seeeg. [1].
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Formal correspondence with WLP calculus.Recall from (128) that the weakest (liberal)
pre-condition operator(R\•) is the upper adjoint of a GC which combines two adjoints
already seen — range (71) and left division (23). The pointwise versionwlp R q of
R \• Φq is

wlp R q △ 〈
∨

p : 〈∀ b, a : b R a ∧ p a : q b〉 : p〉

Also recall (132), which tells that checkingΦq Φp
Roo is the same as first calculating

R \• Φq and then showing that this is weaker thanΦp. This leads to the constructive
method for ESC which has already been adopted in the case study of section 13.

Besides this practical application, (132) is central to theclose relationship between
the ESC/PF calculus and the WLP-calculus. In fact, the two approaches are related by
indirect equality (15). Let us take as example a rule of the latter calculus

R \• (Υ · Ψ) = (R \• Υ ) · (R \• Ψ)

which holds since(R\•) is an upper-adjoint and therefore distributes over meet, ie. com-
position in the case of coreflexives [9]. We reason:

R \• (Υ · Ψ) = (R \• Υ ) · (R \• Ψ)

⇔ { indirect equality (15)}

〈∀ Φ :: Φ ⊆ R \• (Υ · Ψ) ⇔ Φ ⊆ (R \• Υ ) · (R \• Ψ)〉

⇔ { (60) ; (21) }

〈∀ Φ :: Φ ⊆ R \• (Υ · Ψ) ⇔ Φ ⊆ R \• Υ ∧ Φ ⊆ R \• Ψ〉

⇔ { (132) three times, omitting universal quantification}

Υ · Ψ Φ
Roo ⇔ Υ Φ

Roo ∧ Ψ Φ
Roo

We thus obtain (144), the equivalent ESC/PF-rule. A more interesting example is the
transformation of WLP-rule

(S ·R) \• Φ = R \• (S \• Φ)

into ESC/PF format:

R \• (S \• φ) = (S ·R) \• φ

⇔ { indirect equality (15)}

ψ ⊆ R \• (S \• φ)⇔ ψ ⊆ (S ·R) \• φ

⇔ { (132) twice }

(S \• φ) ψ
Roo ⇔ φ ψ

(S·R)oo

The outcome is a ESC/PF rule which, still involving the\• operator, is an advantageous
replacement for (143), since it is an equivalence.
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16 Case study 2 — Verified File System

Our second group of experiments with the ESC/PF calculus hasto do with a real-life
project. In the context of the Verified Software Initiative [28], we want to validate a
formal model of a file system as part of a broader exercise on providing a verified file
system (VFS) on flash memory — a challenge put forward by Rajeev Joshi and Gerard
Holzmann of NASA JPL [34].

An explanation of the overall approach to the problem, involving not only formal
modeling but also model checking in Alloy and theorem proving in HOL [26] can be
found in [21]. Below we shall be concerned only with showing the role of the PF-
transform in statically checking the model by pen-and-paper calculation.

As explained in [21], the problem has two levels — the POSIX level and the NAND
flash level. The work so far has focussed on the top level, taking as working document
Intel’s Flash File System Core Reference Guide[16]. This is a layered collection of
APIs, of which we are consideringFS (file system), the top one. Figure 2 gives an
idea of what is to be modeled for each file system operation, inthis case the one which
enables file/directory deletion.

Fig. 2. Example of API specification in [16]. (Permission to reproduce this excerpt is kindly
granted by Intel Corporation.)

Data model.By inspecting reference guide [16] we have arrived at a formal, relational
model of the file system structure which, stripped of detailsirrelevant for the operation
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of figure 2, can be depicted in the relational diagram which follows:

FileHandler
M / OpenFileDescriptor

path
uukkkkkkkkkkkkkkk

Path
N

/ File

(151)

This tells that there are two simple relations in the model, one (N in the diagram)
relating paths to file contents and another (M in the diagram) giving details of each
opened file identified by a file handler. These two data structures are linked by function
path which selects paths from the information recorded inOpenFileDescriptors and
is central to the main invariant of the model — the referential integrity condition which
ensures that non-existing files cannot be opened:

System = {table : OpenFileDescriptorTable, fs : FStore}

inv sys △ 〈∀ d : d ∈ rng (table sys) : path d ∈ dom (fs sys)〉 (152)

In this “linguistic version” of diagram (151) the choice of long identifiers is justified
by practical reasons, due to the overall complexity of the whole model. While datatypes

OpenFileDescriptorTable= FileHandler ⇀ OpenFileDescriptor

OpenFileDescriptor = {path : Path, ...}

are subject to no invariant (in this simplified version), filestores should be such that
father directories always exist and are indeed directories:

FStore = Path ⇀ File

inv store △ 〈∀ p : p ∈ dom store : dirName(p) ∈ dom store ∧

fileT ype(attributes(store(dirName p))) = Directory〉 (153)

The functiondirName : Path→ Path tells the father path of a given path. There
exists a topmost pathRoot in the path hierarchy which, according to the requirements
[16], is such thatdirName Root = Root. Files have attributes andfileT ype is one
such attribute. For space economy, we omit all other detailsof the model’s data types.

Modeling the operations.Let us focus on the API operation which enables file deletion
(figure 2) modeled after the requirements in [16] as follows:

FS DeleteF ileDir : Path→ System→ (System× FFS Status)

FS DeleteF ileDir p sys △

if p 6= Root ∧ p ∈ dom (fs sys) ∧ pre-FS DeleteF ileDir System p sys

then (FS DeleteF ileDir System p sys, FFS StatusSuccess)

else (sys, FS DeleteF ileDir Exception p sys)

This is a function that either deletes theFStore entry whose pathp is given or raises an
exception, leaving the state unchanged and returning the appropriate error code (of type
FFS Status). FunctionFS DeleteF ileDir Exception returning error codes does
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not interfere with ESC and is therefore omitted. By contrast, the core of the success
trace is the (partial) function which updates the system once the specified entry can
indeed be deleted:

FS DeleteF ileDir System : Path→ System→ System

FS DeleteF ileDir System p (h, t) △

(h, FS DeleteF ileDir FStore {p} t)

pre 〈∀ d : d ∈ rng h : path d 6= p〉 ∧ pre-FS DeleteF ileDir FStore {p} t

This, in turn, calls a function whose scope is theFStore component ofSystem. This
is where things actually happen:

FS DeleteF ileDir FStore : PPath→ FStore→ FStore

FS DeleteF ileDir FStore s store △ store \ s

pre 〈∀ p : p ∈ dom store ∧ dirName p ∈ s : p ∈ s〉 (154)

This function actually deletes sets of entries (and not individual ones) using thedomain
restricted byoperatorM \ S typical of model-oriented specification languages such as
VDM or Z, whose meaning isselect the largest sub-relation ofM whose keys are not
in S. Formally, the PF-transform of this operator is

[[M \ S]] = M · Φ( 6∈S) (155)

Note thatFS DeleteF ileDir System andFS DeleteF ileDir FStore are sub-
ject to pre-conditionsinventedby the software analyst who wrote the model. Such pre-
conditions are the main target of our reasoning below. Several questions arise: how
“good” are these? are theysufficientfor the invariants to be maintained? are they too
strong? which are concerned with ESC alone and which are restrictions posed by the
API specifier derived from POSIX recommendations or constraints?

Before answering these questions, we should say that real problems such as this
have the merit of showingwhere the complexity actually is, and part of it has to do with
the (often intricate) structure of datatypes involving nested invariants. This calls for an
effective way of calculating which invariants hold at whichlevels of a given data model
in terms of the associated coreflexives, as shown next.

17 Invariant structural synthesis

Let us denote byFp the fact that data type constructorF is constrained by invariantp. Of
course,F itself can be defined in terms of other type constructors constrained by their
own invariants. We writeeFp

to denote the coreflexive which capturesall constraints
involved in declaring typeFp. This is defined by induction on the structure of type
constructors (relators)21:

eFp
= (eF) · Φp (156)

21 The choice of symbol “e” instead of “∈”, which would be more natural regarding its use in
eg. (42), is due to the fact that notation∈F is already taken bystructural membership[29], a
related but different concept.



44 J.N. Oliveira

eK = id (157)

eId = id (158)

eF×G = eF × eG (159)

eF+G = eF + eG (160)

eF·G = F(eG) (161)

For instance,Even = (IN0)even, recall (43). ThuseEven = Φeven by direct appli-
cation of (156) and (157). In the calculation ofeSystem which follows we abbreviate
its invariant declared in (152) by predicateri (for “referential integrity”) andFStore’s
invariant (153) bypc (for “paths closed”):

eSystem

= { definition ofSystem (152)}

e(OpenFileDescriptorTable×FStore)ri

= { (156) and datatype definitions}

(eFileHandler⇀OpenFileDescriptor × e(Path⇀File)pc
) · Φri

= { (157) and (156)}

(id× ePath⇀File · Φpc) · Φri

= { (157) }

(id× Φpc) · Φri (162)

18 ESC/PF calculus at work — case study 2

Now that we know the pointfree structure(id×Φpc) ·Φri of the overall invariant which
we have to ESC for, let us investigate the structure of the operation we want to check
— FS DeleteF ileDir. Our main goal is to discharge proof obligation

eSystem×FFS Status eSystem
FS DeleteFileDir poo (163)

We start by using the PF-transform to “find structure” in the specification text. By
freezing parameterp (which is not active in the specification of the operation) and PF-
transformingFS DeleteF ileDir p we obtain a PF-expression which has the “shape”
of a McCarthy conditional (150)

c→ 〈f, k〉 , 〈id, g〉 (164)

where

– c abbreviates section(c p) of the condition of the main if-then-else, that isc p sys △ p 6=
Root ∧ p ∈ dom (fs sys) ∧ pre-FS DeleteF ileDir System p sys

– f abbreviatesFS DeleteF ileDir System p
– k abbreviatesFFS StatusSuccess, the success output code
– g abbreviatesFS DeleteF ileDir Exception p.
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Facing complexity.What’s the advantage of PF-pattern (164)? Below we show how to
apply the ESC/PF calculus of section 15 to (164) in a “divide and conquer” manner,
thus breaking the complexity of the target proof obligation(163):

eSystem×FFS Status eSystem
FS DeleteFileDir poo

⇔ { (164), (159) andeF F SStatus = id (157) }

eSystem × id eSystem
c→〈f,k〉,〈id,g〉oo

⇔ { conditional (149)}

eSystem × id eSystem · Φc
〈f,k〉oo ∧ eSystem × id eSystem · Φ¬c

〈id,g〉oo

⇔ { splitting (101) }

eSystem eSystem · Φc
foo ∧ id eSystem · Φc

koo

∧

eSystem eSystem · Φ¬c
idoo ∧ id eSystem · Φ¬c

goo

⇔ { (141), (94) }

eSystem eSystem · Φc
foo

⇔ { trading (142) and unfoldingeSystem (162) }

(id× Φpc) · Φri (id× Φpc) · Φri
f ·Φcoo

⇐ { separating (146)}

Φri Φri
f ·Φcoo ∧ id× Φpc id× Φpc

f ·Φcoo

Clearly, the focus has moved from the main function toFS DeleteF ileDir System p
(abbreviated tof above) with respect to two (nowseparate) proofs: one concerning path
referential integrity (ri) and the other concerning path closure (pc).

It can be further observed that conditionc splits in two independent parts, that is,
Φc = Φc1

× Φc2
where22

c1 p h △ 〈∀ d : d ∈ rng h : path d 6= p〉

c2 p t △ p 6= Root ∧ p ∈ dom t ∧ pre-FS DeleteF ileDir FStore {p} t

Moreover,

f = FS DeleteF ileDir System p

22 Note the somewhat arbitrary decision of adding conditionp 6= Root to c2. We shall have more
to say about this. Also note the notation convention of abbreviating sections(c1 p) and(c2 p)
by c1 andc2 in coreflexives’ subscripts.
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= id× FS DeleteF ileDir FStore {p} (165)

= id× f2 (166)

introducing abbreviationf2 to save space. So we can calculate further:

Φri Φri
f ·Φcoo ∧ id× Φpc id× Φpc

f ·Φcoo

⇔ { Φc = Φc1 × Φc2 ; f = id × f2 ; ×-relator (109)}

Φri Φri
f ·Φcoo ∧ id× Φpc id× Φpc

Φc1
×f2·Φc2oo

⇔ { (148) ; (141) }

Φri Φri
f ·Φcoo ∧ Φpc Φpc

f2·Φc2oo

⇔ { trading (142)}

Φri Φri · Φc
foo ∧ Φpc Φpc · Φc2

f2oo (167)

Going “in-the-small”. So much for ESC/PF calculationin-the-large. Going in-the-
smallmeans spelling out invariants, functions and pre-conditions and reason as in the
previous case study.

Let us pick the first proof obligation in (167),Φri Φri · Φc
foo . Following (132)

as earlier on, we go pointwise and try to rewrite weakest pre-conditionri(f(M,N)) —
whereM handles open file descriptors andN file contents, recall diagram (151) — into
ri(M,N) and a pre-condition, which will be the weakest for maintaining ri provided
all steps in the calculation are equivalences. Then we compare the outcome with what
the designer wrote (Φc).

Taking advantage of the fact that both data structuresM andN are relations, we
choose to start by PF-transformingri

ri(M,N) △ ρ (path ·M) ⊆ δ N

according to diagram (151) and thus investing on PF-notation again. This expression for
ri, which clearly spells out the referential integrity constraint relating paths in opened
file descriptors and paths in the file storeN , further transforms to

ri(M,N) △ path ·M ⊆ N◦ · ⊤ (168)

cf. diagram

OpenFileDescriptor

path

��

FileHandler
Mo

⊤

��
⊆

Path F ile
N◦

oo



ESC by Calculation using the Pointfree Transform 47

On the other hand, (165, 166) and (155) lead to

ri(f(M,N)) = ri(FS DeleteF ileDir System p (M,N))

= ri(M,N · Φ( 6∈{p}))

In the calculation below we generalize{p} to any setS of paths:

ri(M,N · Φ( 6∈S))

⇔ { (168) }

path ·M ⊆ (N · Φ( 6∈S))
◦ · ⊤

⇔ { converses (26,59)}

path ·M ⊆ Φ( 6∈S) ·N
◦ · ⊤

⇔ { (47) }

path ·M ⊆ N◦ · ⊤ ∩ Φ( 6∈S) · ⊤

⇔ { ∩-universal (21)}

path ·M ⊆ N◦ · ⊤ ∧ path ·M ⊆ Φ( 6∈S) · ⊤

⇔ { (168) ; shunting (67)}

ri(M,N) ∧ M ⊆ path◦ · Φ( 6∈S) · ⊤
︸ ︷︷ ︸

wp

The obtained weakest pre-conditionwp converts back to the pointwise〈∀ b : b ∈
rng M : path b 6∈ S〉 which instantiates to〈∀ b : b ∈ rng M : path b 6= p〉
for S := {p}. This is in fact a conjunct of pre-FS DeleteF ileDir System, itself a
conjunct ofc p, the condition ofFS DeleteF ileDir’s if-then-else. So we are done as
far invariantri is concerned.

Before moving to invariantpc, note two levels of reasoning in ESC/PF calculations:
thein-the-largelevel using the ESC/PF arrow calculus and thein-the-smalllevel, where
PF-notation describes data and properties of data, typically invariants.

Checking for paths-closed invariant preservation.Our last ESC/PF exercise has to do
with the remaining proof obligation

Φpc Φpc · Φc2

FS DeleteFileDir FStore {p}oo (169)

whereFS DeleteF ileDir FStore {p} PF-transforms to

(FS DeleteF ileDir FStore S) N = N · Φ( 6∈S) (170)

generalizing{p} to an arbitrary set of pathsS, as we have seen. The PF-transform of
invariantpc,

pc N △ Directory ·N ⊆ fileT ype · attributes ·N · dirName (171)
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is explained by the rectangle added below to diagram (151):

FileHandler
M / OpenFileDescriptor

path

tthhhhhhhhhhhhhh

Path
N / File

attributes // Attributes

fileType

��

⊆

Path
N

/

dirName

OO

File
Directory

// FileT ype

Again, our strategy will be to ignoreΦc2
in (169) for a moment and calculate the weak-

est pre-condition forFS DeleteF ileDir FStore S to preservepc; then we compare
Φc2

with the pre-condition thus obtained. For improved readability, we introduce ab-
breviationsft := fileT ype · attributes andd := Directory:

pc(FS DeleteF ileDir FStore S N)

⇔ { (170) and (171)}

d · (N · Φ( 6∈S)) ⊆ ft · (N · Φ( 6∈S)) · dirName

⇔ { shunting (69)}

d ·N · Φ( 6∈S) · dirName
◦ ⊆ ft ·N · Φ( 6∈S)

⇔ { (46) }

d ·N · Φ( 6∈S) · dirName
◦ ⊆ ft ·N ∩ ⊤ · Φ( 6∈S)

⇔ { ∩-universal ; shunting}

d ·N · Φ( 6∈S) ⊆ ft ·N · dirName ∧ d ·N · Φ( 6∈S) ⊆ ⊤ · Φ( 6∈S) · dirName

⇔ { ⊤ absorbsd (115) }

d ·N · Φ( 6∈S) ⊆ ft ·N · dirName
︸ ︷︷ ︸

weaker thanpc(N)

∧ N · Φ( 6∈S) ⊆ ⊤ · Φ( 6∈S) · dirName
︸ ︷︷ ︸

wp

This ends the PF-calculation of this ESC proof obligation. It remains to comparec2
with wp just above which, back to points, re-writes to:

〈∀ q : q ∈ dom N ∧ q 6∈ S : dirName q 6∈ S〉

⇔ { predicate logic}

〈∀ q : q ∈ dom N ∧ (dirName q) ∈ S : q ∈ S〉

This is pre-condition (154) which, in words, means:if parent directory of existing path
q is marked for deletion than so must beq. Conditionc2 involves this pre-condition, for
S := {p},

〈∀ q : q ∈ dom N ∧ (dirName q) = p : q = p〉
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but adds further constraints. Soc2 is stronger than the calculated weakest pre-condition
and, thanks to (132), we are done. In particular,c2 doesn’t allow forRoot deletion.
Conditionwp enables so (sincedirName Root = Root) provided no other files exist
in the file system.

The interest of these observations, which we have reached bycalculation, lies in
the fact that the POSIX standard itself [58] is ambiguous in this matter. Whether the
minimalFStore is the empty relation or whether it must be the root directory’s single-
ton is a bit of a philosophical question. In the POSIX System Interface [58] one reads,
concerning thermdir() system call:

The rmdir() function shall remove a directory whose name is given by path. The direc-
tory shall be removed only if it is an empty directory. If the directory is the root directory
or the current working directory of any process, it is unspecified whether the function
succeeds, or whether it shall fail and set errno to [EBUSY].

Another aspect of the starting specification is clausep ∈ dom (fs sys). From the
calculations above we infer that no harm arises from trying to delete a non-existing file,
as nothing happens to the system. So, the corresponding error code should be interpreted
more as a warning than as an exception.

19 Alloy friendship

The “everything is a relation” lemma of Alloy and the PF-flavour of its notation turn
the Alloy Analyzer into a very helpful tool supporting the PF-transform on practical
grounds. This tool has been developed by the Software DesignGroup at MIT for an-
alyzing models written in a simple structural modeling language based on first-order
logic. Being a model checker, it does not discharge proofs assuch but is very useful
in finding (via counter-examples) design flaws, as reported in [21] concerning the VFS
project.

Space constraints prevent us from giving the Alloy model in detail. We focus on
invariantpc which PF-transforms to (171). Note the similarity between (171) and the
corresponding code in Alloy syntax,

pred pcInvariant[t: FStore]{
RelCalc/Simple[t.map, Path]
(t.map).(File->Directory)

in dirName.(t.map).attributes.fileType
}

where predicateSimple is available from libraryRelCalc (it checks for relation sim-
plicity), composition is written in reverse order andmaphas to do with the declaration
of FStore as an Alloy signature [30]:

sig FStore {
map: Path -> File,

}

Note howFile->Directory elegantly represents the constant functionDirectory
in (171). The alternative, pointwise version ofpc is written in Alloy as follows:
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pred pcInvariantPW[t: FStore]{
RelCalc/Simple[t.map, Path]
all p: Path |

p in RelCalc/dom[t.map] =>
p.dirName in RelCalc/dom[t.map] &&

t.map[p.dirName].attributes.fileType =
Directory

}

Checking (not proving!) the equivalence of these two alternative predicates can be ex-
pressed in Alloy by running assertion

assert equivPWPF {
all t: FStore | pcInvariant[t] <=> pcInvariantPW[t]

}

See [21] for more about the role of Alloy in the VFS case study.

Exercise 14.Alloy will find counter-examples to the assertion above oncethe simplicity re-
quirementRelCalc/Simple[t.map, Path] is dropped from both predicates. Resort to
the PF-calculus and show why the calculations which lead to (171) are not valid for arbitraryN .
2

20 Conclusions

In full-fledged formal software development one is obliged to provide mathematical
proofs that desirable properties of software systems hold.An important class of such
properties has to do with (extended) type checking and includes those which ensure
that datatype invariants are not violated by some trace of the system at runtime. A
way to prevent this consists of abstractly modeling the intended system using a formal
language, formulating such proof obligations and proving them. Because this is not
done at run-time, this class of proof belongs to thestatic world of software quality
checking and is known under the ESC (extended static checking) acronym.

ESC proofs can either be performed as paper-and-pencil exercises or, in case of
sizeable models, be supported by theorem provers and model checkers. Real-life case
studies show thatall such approaches to adding quality to a formal model are useful in
their own way and have a proper place in software engineeringusing formal methods.

The main novelty of the approach put forward in the current paper resides in the cho-
sen method of proof construction: first-order formulæ in proof obligations are subject
to the PF-transform before they are reasoned about. This “Laplace flavoured” trans-
formation eliminates quantifiers and bound variables and reduces complex formulas to
algebraic relational expressions which are more agile to calculate with. Suitable rela-
tional encoding of recursive structures often makes it possible to perform non-inductive
proofs over such structures.

The overall approach is structured in two layers: one is a formal set of rules (the
ESC/PF calculus) which enable one to break complex proof obligations into smaller
ones, by exploiting both the structure of the predicates involved (expressed as coreflex-
ive relations) and the PF structure of the software operations being checked. This is
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referred to as thein-the-largeESC/PF level, which uses arrow notation clearly remind-
ing the user that one is doing (extended) type checking.

One moves into thein-the-smalllevel wherever discharging elementary proofs, that
is, ESC-arrows which cannot be further decomposed byin-the-largecalculation. In
spite of the reasoning going pointwise at this level, the PF-calculus turns up again wher-
ever the particular data structures are encoded as relations and invariants as PF-formulæ
involving such relations. As already stressed in [48], thisis a novel ingredient in PF-
calculation, since most work on the pointfree relation calculus has so far been focused
on reasoning about programs (ie. algorithms) [13]. Advantages of our proposal touni-
formlyPF-transform both programs and data are already apparent atpractical level, see
eg. the work reported in [41]. The approach contrasts with the VDM tradition where
universal quantifications over finite lists and finite mappings are carried out by induc-
tion on such structures [32]. It should be noted, however, that noteveryproof obligation
leads to such calculations. The encoding of lists into simple relations, for instance, does
not takefinitenessaspects (eg. counting elements, etc) into account.

Last but not least, this paper helps in better characterizing the notion oftypeof an
arbitrary piece of code, since Hoare logic is shown to be under the umbrella of ESC/PF,
as is the weakest pre-condition calculus.

21 Future work

This paper finds its roots in the excellent background for computer science research
developed by the MPC (Mathematics of Program Construction)group [1, 29, 13, 7].
Surely there is still much to explore. For instance, Voermans’s PhD thesis [62] inves-
tigates the use of PERs (partial equivalence relations) to model datatypes subject to
axioms, as in the classic abstract data type (ADT) tradition. Coreflexives are minimal
PERs, so the view ofcoreflexives as typesimplicit in the current paper can surely be
extended to that ofPERs as types. How much is gained in this generalization needs to
be balanced against what is likely to be lost.

The idea that the proposed ESC/PF calculus bridges Hoare logic and type theory
needs to be better exploited, in particular concerning the work by Kozen [36] on sub-
suming propositional Hoare logic under Kleene algebra withtests (of which the rela-
tional calculus is a well known instance [7]) and the work emerging on Hoare type
theory(HTT) [40], which should be carefully studied. Still on the type theory track, the
alternative use of dependent types to model types subject toinvariants and the way in
which ESC proofs are carried out by systems such as Agda [14] should be compared to
the current paper’s approach.

The arrow notation adopted in the ESC/PF calculus not only isadequate to express
proof obligation discharge as a type-system kind of problem, but also triggers synergies
with similar notation used in other branches of computing. Pick functional dependence

(FD) theory [38], for instance, where one writesf
R
→g to mean that in database relation

R (set of tuples), attributeg is functionally dependent on attributef :

〈∀ t, t′ : t, t′ ∈ R : f t = f t′ ⇒ g t = g t′ 〉
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Compare, for instance, (145) with thedecompositionaxiom of FDs

h
R
→ k ⇐ h ≥ f ∧ f

R
→ g ∧ g ≥ k

where≤ compares (sets of) attributes. In the PF-approach to FD-theory developed in

[45, 47]23, R in f
R
→ g is modeled by a coreflexive relation and attributesf, g by func-

tions. (So functions and coreflexives swap places when compared with ESC arrows.)
Checking how much structure is shared among these two (so farapart) theories is some-
thing the PF-transform has potential for.

As far as tool support is concerned, reference [41] already presents visible progress
in the automation of the relational calculus applied to ESC-like situations. Calculations
are performed using a Haskell term rewriting system writtenin the strategic program-
ming style. Another related line of research is the design ofthe Galculator [56], a
prototype of a proof assistant of a special brand: it is solely based on the algebra of
Galois connections. When combined with the PF-transform and tactics such as indirect
equality (15), it offers a powerful, generic device to tackle the complexity of proofs
in program verification. Moreover, we think the ESC/PF calculus could be of help in
designing agenericproof obligation generator which could be instantiated to particular
tool-sets such as, for instance, the one developed by Vermolen [61] for VDM.

The ESC/PF calculus can be further developed taking into account other aspects of
model-based reasoning such as, for instance, refinement [32, 66]. The reader is left with
an exercise which provides a foretaste of ESC rules entailedby operation refinement.

Exercise 15.The refinement ordering on pre/post-specification pairs viewed as binary relations
can be defined by

S ⊢ R △ δ S ⊆ (R \ S) ∩ δ R (172)

meaning thatS (the specification) is smaller domain-wise and vaguer range-wise thanR (the
implementation) [50]. That is, implementations can only bemore defined and more deterministic
than specifications.

From Ψ Φ
Soo andS ⊢ R infer Ψ Φ · δ S

Roo .
2
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A Background — Eindhoven quantifier calculus

When writing∀, ∃-quantified expressions is useful to know a number of rules which
help in reasoning about them. Throughout this paper we adoptthe Eindhoven quantifier
notation and calculus [7, 4] whereby

〈∀ x : R : T 〉

〈∃ x : R : T 〉

mean, respectively

– “for all x in rangeR it is the case thatT ”
– “there existsx in rangeR such thatT ”.

Some useful rules about∀, ∃ follow, taken from [7]24:

– Trading:

〈∀ i : R ∧ S : T 〉 = 〈∀ i : R : S⇒ T 〉 (173)

〈∃ i : R ∧ S : T 〉 = 〈∃ i : R : S ∧ T 〉 (174)

– One-point:

〈∀ k : k = e : T 〉 = T [k := e] (175)

〈∃ k : k = e : T 〉 = T [k := e] (176)

– de Morgan:

¬〈∀ i : R : T 〉 = 〈∃ i : R : ¬T 〉 (177)

¬〈∃ i : R : T 〉 = 〈∀ i : R : ¬T 〉 (178)

Nesting:

〈∀ a, b : R ∧ S : T 〉 = 〈∀ a : R : 〈∀ b : S : T 〉〉 (179)

〈∃ a, b : R ∧ S : T 〉 = 〈∃ a : R : 〈∃ b : S : T 〉〉 (180)

– Empty range:

〈∀ k : FALSE : T 〉 = TRUE (181)

〈∃ k : FALSE : T 〉 = FALSE (182)

– Splitting:

〈∀ j : R : 〈∀ k : S : T 〉〉 = 〈∀ k : 〈∃ j : R : S〉 : T 〉 (183)

〈∃ j : R : 〈∃ k : S : T 〉〉 = 〈∃ k : 〈∃ j : R : S〉 : T 〉 (184)

24 As forewarned in [7], the application of a rule is invalid if(a) it results in the capture of free
variables or release of bound variables;(b) a variable ends up occurring more than once in a
list of dummies.
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2004. PUReCafé talk, DI-UM, 2004.5.20, PURE PROJECT(POSI/CHS/44304/2002).
44. J.N. Oliveira. Calculate databases with ‘simplicity’, September 2004. Presentation at the

IFIP WG 2.1 #59 Meeting, Nottingham, UK. (Slides available from the author’s website.).
45. J.N. Oliveira. Data dependency theory made generic — by calculation, December 2006.

Presentation at theIFIP WG 2.1 #62 Meeting, Namur, Belgium.
46. J.N. Oliveira.Reinvigorating pen-and-paper proofs in VDM: the pointfreeapproach, 2006.

Presented at the Third OVERTUREWorkshop: Newcastle, UK, 27-28 November 2006.
47. J.N. Oliveira. Pointfree foundations for (generic) lossless decomposition, 2008. (Submitted).
48. J.N. Oliveira.Transforming Data by Calculation. In GTTSE 2007, volume 5235 ofLNCS,

pages 134–192, 2008.



56 J.N. Oliveira

49. J.N. Oliveira and C.J. Rodrigues. Transposing relations: fromMaybefunctions to hash tables.
In MPC’04, volume 3125 ofLNCS, pages 334–356. Springer, 2004.

50. J.N. Oliveira and C.J. Rodrigues. Pointfree factorization of operation refinement. In FM’06,
volume 4085 ofLNCS, pages 236–251. Springer-Verlag, 2006.

51. O. Ore. Galois connexions, 1944. Trans. Amer. Math. Soc., 55:493-513.
52. B.C. Pierce.Types and programming languages. MIT Press, Cambridge, MA, USA, 2002.
53. V. Pratt. Origins of the calculus of binary relations. InProc. of the 7th Annual IEEE Symp.

on Logic in Computer Science, pages 248–254, Santa Cruz, CA, 1992. IEEE Comp. Soc.
54. J.C. Reynolds. Types, abstraction and parametric polymorphism. Information Processing

83, pages 513–523, 1983.
55. L. Russo.The Forgotten Revolution: How Science Was Born in 300BC and Why It Had to

Be Reborn. Springer-Verlag, September 2003.
56. P.F. Silva and J.N. Oliveira.’Galculator’: functional prototype of a Galois-connection based

proof assistant. In PPDP ’08: Proceedings of the 10th international ACM SIGPLANconfer-
ence on Principles and practice of declarative programming, pages 44–55, New York, NY,
USA, 2008. ACM.

57. J.M. Spivey.The Z Notation — A Reference Manual. Series in Computer Science. Prentice-
Hall International, 1989. C.A.R. Hoare (series editor).

58. Open Group Technical Standard. Standard for information technology - Portable operating
system interface (POSIX). System interfaces.IEEE Std 1003.1, 2004 Edition. The Open
Group Technical Standard. Base Specifications, Issue 6. Includes IEEE Std 1003.1-2001,
IEEE Std 1003.1-2001/Cor 1-2002 and IEEE Std 1003.1-2001/Cor 2-2004. System Inter-
faces, 2004.

59. A. Takano and E. Meijer. Shortcut to deforestation in calculational form. InProc. FPCA’95,
1995.

60. A. Tarski and S. Givant.A Formalization of Set Theory without Variables. American Mathe-
matical Society, 1987. AMS Colloquium Publications, volume 41, Providence, Rhode Island.

61. S.D. Vermolen. Automatically discharging VDM proof obligations using HOL. Master’s
thesis, Radboud University Nijmegen, Computing Science Department, June-August 2007.

62. T.S. Voermans.Inductive Datatypes with Laws and Subtyping — A Relational Model. PhD
thesis, University of Eindhoven, The Netherlands, 1999.

63. J. Voigtländer. Proving correctness via free theorems: The case of the destroy/build-rule. In
Robert Glück and Oege de Moor, editors,Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, San Francisco, California, Proceedings, pages 13–20. ACM
Press, January 2008.

64. P.L. Wadler. Theorems for free! In4th International Symposium on Functional Programming
Languages and Computer Architecture, pages 347–359, London, Sep. 1989. ACM.

65. Shuling Wang, L.S. Barbosa, and J.N. Oliveira.A Relational Model for Confined Separation
Logic. In TASE 2008, pages 263–270, Los Alamitos, CA, USA, 2008. IEEE Computer
Society.

66. J. Woodcock and J. Davies.Using Z: Specification, Refinement, and Proof. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1996.


