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Abstract. The pointfree transform offers to the predicate calculustwhe La-
place transform offers to the differential/integral calsa the possibility of chang-
ing the underlying mathematical space so as to enable dgédbraic calculation.
This paper addresses the foundations of the transform arapjilication to a
calculational approach to extended static checking (E8@hé context of ab-
stract modeling. In particular, a calculus is given whodegnelp in breaking
the complexity of the proof obligations involved in statisecking arguments.
The close connection between such calculus and that of wepke-conditions
makes it possible to use the latter in ESC proof obligatieclurge, where point-
free notation is again used, this time to calculate withiiiarg properties to be
maintained.

A connection with théeverything is a relation”lemma of Alloy is established,
showing how close to each other the pointfree and Alloy martatare. The main
advantage of this connection is that of complementing pehgmper pointfree
calculations with model checking support wherever validasizable abstract
models.

Keywords: Theoretical foundations; formal methods; proof obligasipextended
static checking.

“Certaines personnes ont [I'affectation] d’éviter en agmence
toute espece de calcul, en traduisant par des phrases fort
longues ce qui s’exprime trés brievement par l'algebee,
ajoutant ainsi a la longueur des opérations, les longsadiun
langage qui n'est pas fait pour les exprimer. Ces persoriaes-
sont en arriere de cent ans.”

Evariste Galois (1831)

1 Introduction

Much of our programming effort goes into making sure that ember of“good” re-
lationshipshold among the software artifacts we build. There are twonmeays of
ensuring that such good things happen. According to the fiirstintended relationship
is firstpostulatedhs a logic statement and theerified We shall refer to this as the “in-
vent & verify” way. Alternatively, one may try andalculatethe intended relationship
out of other valid relationships using an algebra, or th@dmglationships. This will be
referred to as the “correct by construction” approach.
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Let us illustrate the contrast between these two approaglteexamples. When-
ever Haskell programmers declare function types, eg.

f s a—b (1)
~—~ SN——
function type

they are postulating‘ds of type” relationship involving two kinds of artifact: functions
(A-expressions) and types-éxpressions). It is quite common to declgre: ¢ — b
first, write the body off afterwards and then wait for the interpreter’s reactiopdty
checker) when verifying the consistency of both declaratio

Clearly, this is arinvent & verifyapproach to writing type correct functional code.
What about theorrect by constructioralternative? It goes the other way round: one
writes the body off first and lets the interpretealculate(by polymorphic type infer-
ence) its principal type, which can be instantiated lafepnvenient.

Note that absence of type errors in tineent & verify approach does not ensure
associating a function to its most generic type: the prognans guess (invention) may
happen to be stronger, implicitly reducing the scope ofigppbn of the function being
declared. This is also a dangerio¥ent & verifyapplied toextended typed checkiag
in, for instance, typing code using Hoare triples:

{r}P{q}

This postulate about piece of codiecaptures relationshifis such that pre-condition
p ensures post-conditiaff . So it could be alternatively written as

P = p—q (2
program

predicative type

involving, as artifacts, programs (imperative code) aralgwst conditions (predicates).
Theinvent & verifyway of handling Hoare triples consists of writirfg, inventingp
andgq and finally proving tha{p} P{q} holds. Thecorrect by constructioequivalent
consists of writing two of the ingrediengs P andp and calculating the third. Typically,
one will calculate the weakest pre-conditiomp] for ¢ to hold upon execution oP.
Again, the calculated pre-conditiprmay be strengthened at a later stage, if convenient.

Our third and last example, in the area of discrete mathsgrisgps the most elo-
quent in contrasting verification against calculation.nkhof how to postulate that a
given functionf is a bijection: one may provginjective, total and surjective or, in typ-
ical invent & verifymode, guess its convergé and then prove the two cancellations
~Vz = fo(fx)=z)andVy :: f(f°y) = y). By contrast, a constructive, calcula-
tional alternative will go as follows: using relation algabone calculateg®, which in
general is a relation, not a function; boftand f° will be bijective iff a functionf® is
obtained. The approach is constructiyé {s calculated, not guessed) and simpler.

From the examples above it can be observed that “tradittbireding” in maths and
software design tends to follow tivevent & verifyreasoning style. This paper is devoted
to the alternative, constructive approach to buildingecdtrcode. In particular, it focuses
on a calculational approach to discharging proof obligetimvolved in writing type
correct software, a discipline which can be framed into théewtopic of extended
static type checkin¢ESC) [24].
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Our starting point is the observation that thinking conduely requires a “turn
of mind”. And this raises the question: are the logics andudaive traditionally rely
upon up-to-date for such a turn of mind? In an excellent esadlze history of scientific
technology, Russo [55] writes:

The immense usefulness of exact science consists in pivididels of the real world
within which there is a guaranteed method for telling falsstesments from true. (...)
Such models, of course, allow one to describe and prediaralgphenomena, by trans-
lating them to the theoretical level via correspondencessuithen solving the “exer-
cises” thus obtained and translating the solutions obtdiback to the real world.

The verdict is that disciplines unable to build themselvesiad exerciseshould be
regarded apre-scientific

This fits neatly into the current paper’s overall message. i@ea is to invest in
a scientific theory for software development whereby codebisined by solving ex-
ercises whose solutions are the artifacts one wants to peodo, the formulee and
equations involved in such exercises should range overanogand properties of pro-
grams (assertions, specifications, etc) and not over theplar data values handled
(stored, retrieved etc) by such programs. This identifiessh ¢hallenge: to devise a
way of abstracting from program control/data structuresedond challenge consists
in finding a single notation unifying properties of prograp®gram data, the programs
themselves (or models thereof) and their “desirable” iatahips.

Fortunately, such a unified notation exists already and doeseed to be (re)in-
vented: it is the notation of the pointfree relation cala60, 13, 7]. The link between
conventional point-level logic and such a relation calsulia transformation which
abstracts from quantifiers and bound variables (pointshdadn predicates and con-
verts these to formulee involving binary relations only. isfpointfree transforn{PF-
transform for short) [60, 50] variables are removed fromgpam descriptions in the
same way Backus develops his algebra of programs [10]. Tl difference stays in
the fact that one is transforming logical formulae while Bagkloes so for functional
terms only'.

Structure of the papeiThe remainder of this paper is organized as follows: sestio
5 are concerned with motivation, background and relatedkwiextended static check-
ing (ESC) is addressed in sections 6 and 7. The PF-transfodmedational calculus,
which are central to the whole paper, are given in sectio®sa®d 12. PF-transformed
ESC reasoning leads to the ESC/PF calculus for typing fanstivhich is the subject
of sections 8, 10 and 11. The generalization of this to m@atis given in sections 14,
15and 17. Sections 13 and 18 are concerned with case stldétrmting the use of the
ESC/PF calculus. The second of these case studies, ingddusectionl6, is a real-
life problem tackled in the context of the Verified Softwandtihtive. The connection
with Alloy is addressed in sections 4 and 19. Conclusionsfathute work are given
in sections 20 and 21, respectively. Annex A lists a numbéaws$ of the Eindhoven
quantifier calculus which are relevant to the PF-transform.

! See section 5 for more details on the pointfree notation hadtigins of relational methods
in computer science.
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2 Motivation

Consider the following fragment of requirements put by adtiptical telecom com-
pany:
(...) For eachlist of callsstored in the mobile phone (eg. numbers dialed, SMS messages
lost calls), thestoreoperation should work in a way such that (a) the more recemtly

callis made the more accessible it should be; (b) no number appeédce in a list; (c)
only the last 10 entries are stored in each list.

Itis not difficult to write a functional model for the requitetoreoperation on finite
lists of calls,

storecl & takel0 (c:[x|x—1,xz#c]) (3)

wherec : [ denotes list prefixed by call numbet andtake n [ returns the prefix of
of lengthn, orl itself if n > length [, as in the Haskell notation and standard libraries
[33]. However, how can one be sure that all requirementsrayggply met by (3)? Think
of clause (b), for instance. Intuitively, missing# ¢ in the list comprehension would
compromise this property. But, is this enough? too strong?

Following the standard practice in formal methods, onediratl needs to formalize
requirement (b) in the form of a predicate on lists of célls

noDuplicatesl & (Vi,j : 1<i4,j<lengthl: (li)=({j)=i=j) (4)

Next, we need to formulate and discharge the proof obligatibich ensures that the
storeoperation on lists of calls maintains propenyDuplicates:

(Ve,l : noDuplicates ! : noDuplicates(store cl)) (5)

Desirable properties such as (4) which should be maintdigiedl operations of a given
software application are known &ssariant properties [32, 31]. Our toy requirements
include other such properties, for instance that corredipgrto clause (c):

leql01 2 lengthl <10 (6)

Ensuring that invariants are preserved by software omeratentails the need for
formal proofs. The complexity of such proofs grows dranadljcwith the complexity
of the formal models of both invariant properties and openst So, any effort to mod-
ularize such models and proofs is welcome. In the case ofdB)nstance, it can be
observed thattore is the “pipeline” of three sub-operations: filterindirst, consing
it afterwards and finally taking 10 elements at most. Thiséely expressed by writing

store ¢ & (take 10) - (c:) - filter(c #) @)

where filter is the obvious list processing function and combinatdrdenotes func-
tion composition:

(f-9)a 2 f(ga) (8)

2 \We use notationY = : R : T) to meanfor all z in range R it is the case thaf” holds
Properties of this notation, known as tBEendhoven quantifier notatiofv, 4], are given in
appendix A.
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Note that (7) abstracts from input variabiléof type list of calls) thanks to (8) and to
extensional functional equality:

f=g & (Va: fa=ga) (9)
Also note the use of sectiorisake 10) and(c :) in converting curried binary operators
take and(:) into unary ones by “freezing” the first argument.

The main advantage of (7) when compared to (3) is that difteirezariants may
happen to be maintained by different stages of the pipeledycing the overall com-
plexity of proof obligations. For instancé;q10 has to do with lists not going beyond
10 elements: clearly, this is ensured by the outermost stiage,

(V1 :: length(take 101) < 10) (10)

independently of how argument lisis built. Property (10) can in fact be shown to hold
for function

take 0 - =]
take (1= ]
take (n+1) (z: xzs) =z : taken xs

Clearly, proving (10) requires less effort that provingtthay10 is preserved by the
whole functionstore:

(Ve @ lengthl <10: length(take 10 (¢: [z |z — 1,z # ¢])) <10)  (11)

The use of notation (7) instead of (3) above is an example efr&@isformation:
instead of writingf (g a) such as in the right hand side of (8), one wrifegy and drops
variable (pointk. This kind of transformation, which is not a privilege of fitions, is
introduced in the section which follows.

3 Overview of the PF-transform

Composing relationsFunctional composition (8) is a special casaaitional com-
position

b(R-S)e < (Ja :: bRa A aSc) (12)

whereR, S are binary relations and notatigiizz: means' y is related tox by R” .

No other concept traverses human knowledge more ubiqiytthen that of are-
lation, from philosophy to mathematics, to information systerhg eg. of relational
databases [38]), etc. Symh&lin y Rz can stand for virtually any relationship we may
think of: not only those expressed by the “::” symbol in tymsertions (1,2) but also
those expressing facts as simple as'ay). prefiz_of "ab" among stringsp < n + 1
among natural numbersRUE € {TRUE, FALSE} in the Booleans, etc. In particulak,
can be a functiorf, in which case; f = means thay is the output off for inputz.

Before going further, note the notation convention of wgtioutputs on the left
hand side and inputs on the right hand side, as suggestee logtial way of declaring
functions in ordinary mathematicg,= f z, wherey ranges over outputs (cf. the ver-
tical axis of the Cartesian plane) amdver inputs (cf. the other, horizontal axis). This
convention is adopted consistently throughout this textiarextended to relations, as
already seen above.



6 J.N. Oliveira

Comparing relations. The main advantage of relational thinking lies in its powérf
combinators and associated laws, of which compositioni€l@nong the most useful:
it expresses data flow in maths formulae in a natural, imphiely while dropping exis-
tential quantifiers. Removing quantifiers from formulee nsatkeese more amenable to
calculation. For instance, the rule which introdugedational inclusion

RCS & (Ybya:bRa:bSa) (13)

can be regarded (if read from right to left) as a way of dropggirvery common pattern
of universal quantification. (Reald C S as “R is at mostS”, meaning thatS is either
more defined or less deterministic th&n)

Relational equality is usually established by circulatus®on:

R=S & RCSASCR (14)

A less obvious, but very useful way of calculating the edqualf two relations is the
method ofindirect equality{1, 13]:

R=S & (VX = (XCR&eXCS) (15)

The reader unaware of this way of indirectly setting algebeajualities will recog-
nize that the same pattern of indirection is used when éskahy set equality via the
membership relation,cfd =B < (Vz :: x € A< x € B).

Dividing relations. It is easy to check thak - S (12) has anultiplicativeflavour: it is
associative (albeit not commutative), it distributes derunion of two relation®U S,
defined by

b(RUS)a 2 bRaV bSa

and it has a unit element, the identity relatiahdefined in the obvious way:id a iff

b = a. Given such a multiplicative flavour, one may question: er¢hany reasonable
notion ofrelation divisior? It turns out that the following property holds, for all biga
relationsR, S andT'

X-RCS & XCS/R (16)
whereS/ R is the relation whose pointwise meaning is
a(S/R)b < (Vec:bRc:aSc) a7

Again note the economy of notatic¢ty R when compared to its pointwise expansion as
a universal quantification. Expanding the whole of (16) Vei#id to formula

(Vbya : (3¢ : bXc: cRa): bSa) & (Vb,e: bXc: (Va : cRa: bSa))

which expresses a trading rule between existential ancetsal quantification harder
to parse and memorize.

Phrasepointfree transfornfor PF-transformfor short) will denote, throughout this
paper, this process of transforming predicate calculusesgons into their equivalent
relational combinator based representations.
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Coreflexives. Given a binary predicate, we will denote byR,, the binary relation
such thath R, a < p(b,a) holds, for all suitably typed: andb. How does one
transform a unary predicateq into abinaryrelation? We will see that this can be done
in more than one way, for instance by building the relatignsuch that ¢,, « means
(b =a) A (ua). Thatis,®, is the relation that maps evemywhich satisfies. (and
only sucha) onto itself. Clearly, such relation is a fragment of theniily relation:
@, Cid.

Relations at mostd are referred to asoreflexiverelations and those larger théih
asreflexiverelations. Coreflexives will be denoted by uppercase Gretérk ¢, ¥) as
in the case o®,,.

Composition with coreflexives expresses pre-conditioaingd) post-conditioning in
a natural way, cfR - & and¥ - R, respectively. Coreflexives also act as ddtars. For
instance, suppose we need to transform the following vaohthe right hand side of
(12),(3a : wa: bRa A a Sc), whereu shrinks the range of the quantification. It
can be easily checked that- @, - S is the corresponding extension to (£2)

Arrow notation and diagramsWe will use arrows to depict relations. In general, arrow

B<% A denotes a binary relation with source tydeand target type3. We will
say thatB<——A is thetypeof R and writeb R a to mean that paifb, a) is in R.

Type declaration3<2— A and A—Z~B mean the same. Arrow notation makes it
possible to explain relational formulae in terms of diagrafts instance,

R A id C

C C
XJ/ c equivalent to Xl
B

N

S/R
S /

BTB

helps in understanding (16).

Galois connectionsProperties such as (16) are known@alois connection§GCs)
[51] and prove very useful in problem understanding andmeiag), while bearing par-
ticular resemblance with school algebra: compare, foaimst, (16) with a similar prop-
erty defining integer division, for all, n,q € IN (d > 0) *:

gxd<n & g<n/d Z}% (18)

By substitutingX := S/R in (16) we obtain(S/R) - R C S meaning thatS/R ap-
proximatesS once composed witlR; by reading (16) from left to right, we obtain
implicationX - R C S = X C S/R, which means that/R is largest among all such
approximations. S&/ R is a supremum (as is quotiemntd).

% See section 9 in the sequel for more about this importans daeelations.

4 See [56] for a derivation of the algorithm of integer divisisom Galois connection (18) as
an example of PF-calculation performed by tBalculator, the prototype of a proof assistant
solely based on the algebra of Galois connections and Ffemagy.



8 J.N. Oliveira

Table 1. Sample of PF-transform rules.

Pointwise Pointfree
(3a::bRa NaSc b(R-S)c
Mz : zRb: z Sa) b(R\ S)a
(Ve:bRc: aSc a(S/ R)b

bRa NcSa (b,0)(R, S)a
bRa NdSc (b,d)(R x S)(a,c)
bRa ANbSa b(RNS)a
bRa N —-bSa b(R—S)a
bRaVbSa b(RUS)a
(fb) R(ga) b(f*- R-g)a
TRUE bTa

FALSE bla

(Vba : bRa: bSa) RCS
Ma :: aRa) idC R

As example of other Galois connections bearing relatignshih school algebra
consider the following, which captures the operation wligtibtracts” relations,

X—-RCY & XCYUR
and is analogue of number subtraction:

r—n<y & z<y+n

(19)

(20)

Table 1 lists the most common relational operators assatiatthe PF-transform.
RN S denotes the intersection (oreej of two relationsk andS. T is the largest rela-
tion of its type. Its dual isL, the smallest such relation (the empty one). The following
universal properties of relationaleetandjoin are also Galois connections:

XCRNS & XCRAXCS
RUSCX & RCXASCX

(21)
(22)

The two variants of division in table 1 arise from the facttttedation composition
is not commutative, the Galois connection o1 S being similar to (16):

R-XCS&XCR\S

(23)

. R R . R°
ConversesEvery relationA—— B has a converse, which is relatioh«—— B such

that
a(R°)b<bRa

(24)

holds. Two important properties of converse follow: it isiavolution

(R°)° =R

(25)

and it commutes with composition in a contravariant way:

(R-S)° =5°-R°

(26)
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Functions.Lowercase symbolsf( g) stand for relations which afenctions The inter-
play between functions and relations is a rich part of theuyimelation calculus [13].
From table 1 we single out rule

b(f° R-g)a < (fb)R(ga) cf diagram ¢ <2—

B<—
f°-Rg

(27)

which involves two functions’, ¢ and relationk and plays a special role in pushing
variables out of relational expressions.

The exact characterization of functions as special caseslatfons is achieved in
terms of converse, which is in fact of paramount importamcestablishing the whole
taxonomy of binary relations depicted in figure 1. First, vedirte two important no-
tions: thekernelof a relationR, ker R 2 R°- RanditsdualimgR 2 R-R°,the

imageof R °.
From (25, 26) one immediately draws
ker (R°) =imgR (28)
img (R°) = kerR (29)

Kernel and image lead to the four top criteria of the taxonaffygure 1:

| || Reflexive | Coreflexive|

ker R entireR injective R (30)
img R|| surjectiveR | simpleR

In words: a relationR is said to beentire (or total) iff its kernel is reflexive and to be
simple(or functional) iff its image is coreflexive. Dually is surjectiveiff R° is entire,
andR is injectiveiff R° is simple.

Let us check (30) with examples. First, we PF-transform tbmtwise formula
which captures function injectivity:

f is injective
& { recall definition from school mathg

Vyz: (fy)=(U2):y=2 31)
& { introduceid (twice) }

Vy,z : (fy)id(f ) : y(id)z)
& {@n}

Vy,x = y(f°-id- flz: y(id)x)

5 These operators are relational extensions of two conceptgidr from set theory: the image
of a function f, which corresponds to the set of gllsuch that3 =z :: y = f ), and the
kernel of f, which is the equivalence relatio(ker fla < fb = fa.(See exercise 3
later on.)
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binary relation

— ~
injective entire simple surjective
representation function abstraction
~ — ~ ~
injection surjection

~ —

bijection

Fig. 1. Binary relation taxonomy

& { id s the unit of composition; then go pointfree via (13)
fo-fcid

& { definition }
ker f Cid

Going the other way round, let us now see what img f means:

id Cimg f
& { definition }
idC f-f°
& { relational inclusion (13)}
(Vy,z : ylidz: y(f - f°)x)
& { identity relation ; composition (12}
(Vyz:y=x: Tz yfznzfa)
& { converse (24)}
(Vyo:y=a: Fzuyfznafz)
& { v-one point rule (175) ; trivia ; functioff }
Ve = (Fz = xz=f2)
& { recalling definition from school math$

f is surjective

The interested reader is welcome to convert the two remguemtries of (30) to point-
wise notation.

Exercise 1.Resort to (28,29) and (30) to prove the following four ruléshaimb:

— converse ofnjectiveis simple(and vice-versa)
— converse oentireis surjective(and vice-versa)
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— smaller than injective (simple) is injective (simple)
— larger than entire (surjective) is entire (surjective)

O

Exercise 2.Show that
RU Sisinjective < Risinjective A Sisinjective A R°-S C id (32)
RUSissimple & RissimpleA SissimpleA R-S° Cid (33)

Suggestion: resort to universal property (22).
O

Exercise 3.Given afunctionB<f—A, use (27) in the calculation of
bkerfla & fb= fa (34)

O

Constant functionsQuite often one needs to internalize particular constalutegain
PF-expressions. For instance, we may want to say that, giwaez, there exists some
z such thate > z andf z = ¢, for some fixed value. This requires théeverywhere
¢" constant function. In general, given a nonempty datatymndc € C, notationc
denotes such a function:

c: A——=C (35)

ca 2 c

Thanks to (35) and (27) it can be easily checked that PF-termf° - ¢ asserts the
requirement above.

Constant functions are also useful in PF-transformingq@adr relation pairs. For
instance, it is easy to check that ¢° is the singleton relatiof(b, ¢)}. Thenimgc is
the singleton coreflexivé(c, c)} which PF-transforms predicate:.z = c:

gpkw.z:c = Imgg (36)
Thanks to (34), it is easy to show thatis the kernel of every constant function,

<4 included, where functioh— read “!I" as “bang” — is the unique function of
its type, wherd denotes the singleton data domain.

Exercise 4.Check the meaning of relatidsi - c.
O

The Reynolds-Backhouse relation on functio@ensider two functiong andg related
in the following way: ify = f x holds theny < ¢ z holds, for a given ordering
< on the outputs of bottf andg . It is easy to see that this relationship between
and g PF-transforms tgf € < - g. Now suppose thaj is such thaty - < C < - g,
for < another ordering, this time on the input side. Back to poitiits re-writes to
Va, o' : x 22’ : gz < ga'), meaning thay is monotonic.

8 It is common to record this fact by writing < g, the so-called pointwise ordering on func-
tions.
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P —;] L .
Once PF-transformed, the two situations just above aranioss
fl < l‘l of the diagram aside, for suitable versions of relatidghisS and

C D functions.f?g (thes_e_two, in par_ticular, can be the same, as in the
R monotonicity condition). The diagram captures a very usefy
of relating functions and relations (note the higher-orfirour)
which was identified first by John Reynolds [54] and latertedan the pointfree style
by Roland Backhouse [5, 3].
We will refer to this as the relational “arrow combinatord, be writtenR < S.
GivenR andsS, R < S is a relation on functiong andg defined as follows:

f(R=S)g & [-SCR-yg (37)

With points, f(R— S)g meang¥ b,a : bSa: (fb)R(ga)), thatis,f andg produce
R-related outputg b andg a provided their inputs ar8-related § S a).

Properties and applications of this (PF) relational coratiincan be found in eg.
[3,12]. The special casg R S) f will suit our needs later on, and it will prove useful

to write R<f—S to meanf (R « S) f. Therefore, we will rely on equivalence

R<l 5 o f.SCR-f (38)

The notation just introduced captures the view that type&ioétions can be re-
garded as relations. This is indeed the essence of the etiistréheorem [54] on type
polymorphism which, as we shall see in section 11, play®itsin what is to come.

This important combinator closes our introduction to thkatienal combinators
involved in the PF-transform. Before proceeding to the ipfibn of this transform
to our topics of interest, let us frame it into a wider context

4 Haskell and Alloy: two PF-flavoured languages

As will become apparent throughout this paper, PF-notatitifle regarded as a single,
abstract (ie. technology free) unifying notation enconspag program specifications,
implementations, program data and program properties.fdiois such a notation from
programming languages and notations available from theroamity?

Most commercially available programming languages aretpase. But there are
notations and languages which embody a pointfree subsattibnal programming
languages with higher order functions have the power to définctional combinators
and therefore make it possible to program in the pointfrgle sAmong these, some
actually have pointfree constructs in their core syntaxskel [33] is one of these, as
we have already seen in the motivating example of sectiorofiader, the artifacts one
can build in Haskell do not go beyond partial functions, ieasimple relations.

Alloy [30] — a notation and associated model-checking toblal has been suc-
cessful inalloying a number of disparate approaches to software modeling, Ilgame
model-orientation, object-orientation, etc. — is a rararaple of a language where
relations and their combinators are the standard way ofgdibiimgs. In fact, the “ev-
erything is a relation” motto of Alloy matches perfectly withe view purported in the
current paper. Quoting [30]:
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(...)" All structures are represented as relations, and struelproperties are expressed
with a few simple but powerful operator§..) Sets are represented as relations with
a single column, and scalars as singleton séts) In the Alloy logic, all values are
relations[and]the unification of sets and relations makes the syntax singihee there

is no need to convert between sets and relations, or betwesgars and sets.{...) In
Alloy, everything’s a relation.

It is interesting to note that Haskell and Alloy complemeatte other in a nice way:
Haskell provides for models closer to implementations engénse that they are reactive
by construction: the idea is to evaluate typedxpressions which express the reaction
of a system to input stimuli. However, there is no native ayrtb express datatype
invariants, pre and post-conditions and assertions. Asakihg tool, Haskell invites
the software designer to invent test cases and check foridabaviour'.

Alloy is not functional, therefore it is a passive langua@ee writes uninterpreted
data models and predicates about such models, as well ai@ssabout such predi-
cates. The system runs checks for such assertions tryinfiratidg counter-examples
able to falsify such assertions. If no counter-example imébthen the formulanay be
valid. Purists often regard model-checking as the pootivelto theorem proving. Ex-
perience tells, however, that many subtleties and desigs ian be unveiled by model
checking. In other words: the checker does not prove thingsédrtain but is of great
help in improving what one wants to prove.

To catch a glimpse of the proximity between Alloy and the Ffation adopted in
the current paper, consider the Alloy pointwise definitiéa injective relationr &,

pred Injective {
al x, y: A, z:B|]zin xR &k z in yR => x=y
}

and its PF-equivalent,

pred Injective’ {
R.R in iden > A
}

—recallR°- R C id (30), for R° denoted byR andid denoted byden :> A . Also
note that composition is written in reverse order.

5 Related Work

The idea of encoding predicates in terms of relations wagiad by De Morgan in
the 1860s and followed by Peirce who, in the 1870s, foundéstang equational laws
of the calculus of binary relations [53]. The pointfree matof the notation which
emerged from this embryonic work was later further exptbitg Tarski and his stu-
dents [60]. In the 1980's, Freyd arkedrov [25] developed the notion of aliegory
(a category whose homsets are partially ordered) whichtaay accommodates the

7 Tools such as QuickCheck [15] help in this respect.
8 Note the transposed notatiarR meaning sefy |y R z}.
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binary relation calculus as special case. In this contex¢laion R is viewed as an

arrow (morphism)B<LA between object® and A, respectively referred to as the
target and source ad®. Composition of such arrows corresponds to relational asmp
sition (12), identity isid, and relational expressions can be “type-checked” by drgwi
diagrams such as in category theory.

Such advances in mathematics were meanwhile captured Hyitlddoven com-
puter science school in their development of program coottm as a mathematical
discipline [1, 8, 20, 13, 7] enhanced by judicious use of Gatennections, as already
illustrated above.

Our view of this approach as a kind béplace transforni37] for logic was first
expressed in [42]. Such a transform (the PF-transform) basdforth been applied to
several areas of the software sciences, namely relatiatabdse schema design [44, 2,
18], hashing[49], software components [11], coalgebraic reasoning, [Agorithmic
refinement [50], data refinement [18, 48] and separatiore If&H].

The remainder of this paper will be devoted to yet anothergpta of applica-
tion of the PF-transform which we regard as a particularfyressive illustration of its
power: extended static type checking (ESC) [24]. If perfedmt abstract model level,
ESC includes what is commonly known as invariant presesmatnd satisfiability proof
obligations in specification languages such as VDM [32, 2&2] A [57]. Hoare triples
[27] and weakest pre-condition calculus [19] are also eeldb ESC, as will be shown
later. With notable exceptions (eg. [9, 6]) these theoriesazailable in thgointwise
style, as most theories in computing are. Evidence will ln&igled not only of the uni-
fying effect of the PF-transform in putting together diffat (but related) theories in
programming but also of how it can be used and applied tosigad (non trivial) case
studies in connection with mechanical support provided logeh checking [30] and
theorem proving [26].

6 Extended static checking and datatype invariants

Type theory [52] is unanimously regarded as one of the mdist@od relevant branches
of computer science. Thanks to the conceptiyfe the quality of code can be checked
statically, ie. before execution. In programming langussiech as Haskell, for instance,
ill-typed programs simply don’t compile, meaning that tgee an effective way of
controlling software robustness.

The ESC acronym for “extended static checking” was coine@antpag SRC in
their development of a tool for Java (ESC/Java) able to de®enany programming
errors as possible at compile-time [24]:

Our group at the Systems Research Center has built and expetéd with two real-
izations of a new program checking technology that we cadreded static checking
(ESC): “static” because the checking is performed withauniming the program, and
“extended” because ESC catches more errors than are caugltobventional static
checkers such as type checkers.

If we look at the particular kinds of error which such a toohisle to catch — null
dereferencing, array bounds errors, negative array indete — we realize that these
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can be abstractly characterized by properties of particldtatypes which are violated
by the running program, and/or a pre-condition of a giverragi@en which is not en-

sured in some program trace. These two are related: theasthn@y of ensuring that
a particular property of a datatype is maintained consistdding pre-conditions to

operations which may put such properties at risk.

However, adding arbitrary run-time checks for every propéa style often referred
to asdefensive programmin@9]) may be counterproductive: one may write too many
or much too strong checks. In the limit, the context may hagipe&nsure the properties
one wants to maintain, thus rendering such checks useldsgedundant.

Properties statically associated to datatypes are knownvasiants[32] and as
state invariantsn case the particular datatypes embody the state of soreelsiaed
machine or system, often handled coalgebraically [31,A@]instance, in a system for
monitoring aircraft flight paths of in a controlled airspd@@], altitude, latitude and
longitude cannot be specified simply as

Alt = Lat = Lon = R

because altitudes cannot be negative, latitudes must tzetgeen—90° and90° and
longitudes between 180° and180°. Using traditional maths notation, one would write:

Alt={a € R|a >0} (39)
Lat={zr e R|—-90 <z <90}
Lon ={y € R|—180 < y < 180}

Formal modeling notations such as VDM and Z cater speciaflynivariants. In the
case of languages of the VDM family (eg. VDM-SL [22], VDM++3p the standard
notation is

Alt = R
inva2a>0
for Alt (39) (and similarly forLat and Lon), which implicitly defines a predicate

inv-Alt : R — B
inv-Alta 2 a>0

known as thenvariant of Alt. In general, gived and a predicatp : A — B, data
type declaration

T = A
invaz2pa
means the type whose extension is
T={xeA|pz}

Therefore, writinga € T"'meansa € A A p a. Note thatA itself can have its own
invariant, so the process of finding which properties holdwa given datatype is
inductive on the structure of types. (See more about thigdtien 17.)
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7 Invariants entail proof obligations

Static checking of formal models involving invariants isaplex process relying on
generation and discharge of proof obligations, as pointedmwore than two decades
ago by Jones [32]:

The valid objects oDatec are those which (...) satisfy inkatec. This has a profound
consequence for the type mechanism of the notation. (e.)nttusion of a sub-typing
mechanism which allows truth-valued functions forces ype thecking here to rely on
proofs.

The required proofs, which are known under the headingariant preservatioror
satisfiability[32] ° belong clearly to the ESC family. Recalling the mobile phtme
requirements of section 2, it should be clear by now thatipegelsnoDuplicates (4)
andleq10 (6) are components of the invariant of the list of calls dgiathandled by
store, say

ListOfCalls = Call*
inv [ 2 noDuplicatesl A leql01

and that (5) and (11) express two proof obligations entdikeduch an invariant, con-
cerning thestore operation.

In general, given a functiomL>B where bothA and B have invariants, ex-
tended static checking (ESC) ffmeans discharging proof obligation (PO)

(Va :inv-Aa: inv-B(f a)) (40)

which ensures thaf is invariant-preserving. The fact that invariants areimsic to
datatypes is better captured by the following version ofabeve,

(Va :a€A: (fa) e B) (42)

where memberships) should be understood in the broad sense of encompassing all
invariants. (Again we anticipate that this will be handladorecise terms later on in
section 17.) Also note the following variant of (41),

Va,b:a€c ANb=fa: beB) (42)

which is granted by thg-one-point rule (175).

How does one handle ESC POs? The sheer complexity of sucfspnoal-size
problems calls for mechanical support and this can be da#lgrdf three kinds: PO-
generation, model-checking and theorem-proving.

Generating all proof obligations (POs) needed for checléngarticular formal
model is a mechanical process available from tool-sets asey. the VDMTools [17].
In practice, the number of generated POs is larger than teghéecause of the adop-
tion of “rich types” such as sequences and finite mapping&wtan be regarded as
simplerelations (30), as we shall see. Such types, in a sense, aitleytarly common
invariants which “turn up” at PO-level.

The following situations can take place:

% This nuance will be explained in section 14.
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1. Independently of satisfying (42) or ndgt,is “semantically wrong” because it does
not behave according to the requirements. This calls forualtests, which may
include running the model as a prototype, should an intéeple available.

2. f survives all tests compiled in the previous step (includiggamic type checks)
and yet testers are not aware that it does not satisfy (42hisncase, a model
checker able to automatically generate counter-exampl@t?) which could sug-
gest how to improve is welcome.

3. The model checker of the step just above finds no countemples. In this case a
theorem prover is welcome to mechanically check (42).

4. Proof obligation (42) is too complex for the availabledtem prover. In this situa-
tion, our ultimate hope is a pen-and-paper manual proofooreskind of exercise
able to decompose too complex POs into smaller sub-proofs.

The main purpose of this paper is to show the suitability efftr-transform and rela-
tion calculus to carry out the pen-and-paper proofs (asceses in the sense of [55])
mentioned in the last step. The idea is to regard such POssisclfiss citizens” which
are represented by arrows which, in turn, can be put togettdgcomposed in simpler
ones using a suitable PO-calculus supported by the refdtiatculus.

8 PF-transformed ESC

In [46] it is argued that the complexity of POs mentioned ab@vpartly due to the
pointwise notation itself, which does not scale up very wetomplex models, leading
to long, unreadable POs full of nested quantifications. Egpee in PF-transforming
such formulae invariably leads to much shorter, sharp weldtvel formulse which (al-
beit more cryptic) convey the essence of the proof, whichegaiten has to do with
particular relationships between data flows.

In this section we set ourselves the task of investigatingr&fsformed ESC proof
obligations. As we shall see, these include invariant pvesen, satisfiability and
Hoare triples. We begin with a very simple example: chechkifignction which doubles
even numbers,

twice : Even — FEven

twicen 2 2n

where
FEven = INy
invna 3k : ke Ng: n=2k) (43)

even n

Istwice properly typed? To be so, the following instance of (42)nglthat function
twice preserves even numbers

Va,y : evenx A y=twicex: eveny) (44)
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should be discharged. According to our strategy, the fiept sbnsists in PF-transforming
(44). We tackle the range of quantification (44) first,

y = twice x N\ even T
& { 3-one-point (176)}
(3z: z=x: y=twicez N even z)
& { 3-trading (174) ; introduce coreflexivBe,c, }

(Fz my=twicez N z=1x N even z)
~—————

2z Peven T
& { composition (12)}

y(twice - Peyen )

cf. diagram Ny ZDeven, Ny
twicel
INg

which expressegvice pre-conditioned byven. Next, we proceed to the whole thing:

(Va,y : y=twicex N evenx: eveny)
= { justabove}
(Va,y : y{twice - Peyen)x : eveny)
& { 3-one-point (176)}
Va,y : y(twice  Peyen)r: (32 1 2=y : even z))
& { predicate calculup A TRUE=p }
(Va,y : ytwice - Peyen)xr: (2 = y=2 A even z A TRUE))
& { T is the topmost relation, cf. table }
(Va,y : y(wice  Peyen)x: (32 2 Y Peyen 2 N 2Tx))
= { composition (12)}
Va,y : ytwice - Peyen)T : Y(Peven * 1))
& { go pointfree (13)}
twice - Peyen T Peven * T (45)

Note that the two occurrences of unary predicaten in (44) are PF-transformed
in two different but related ways: via coreflexidg,.,, on the lower side of (45) and
via ®.,e,, - T 0On the upper side — a so-called (lefndition'. Coreflexives relate to

10 For a detailed account of this duality see thenotype-condition isomorphisformalised in
[20].
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conditions in a number of ways, nhamely in what concerns peg/restrictions:
R-®=RNT-& (46)
W-R=RNV-T (47)
This makes it possible to transform (45) even further:
(45)
& { (21), sincetwice - Peven C twice }

twice - Peyen, T twice N Peyen, = 1

& {@n}

N

twice - Peyen Deven - twice

& {@8}

¢€’U€n Md)even (48)

cf. diagram

Peve
ﬂVO even ﬂVO

twicel - ltwice

No Deven No
In retrospect, PF-statement (48) of proof obligation (44pteresting from a num-
ber of viewpoints: notationally, it is of great economy; ceptually, it really purports
the idea that ESC has to do with types, which are now regarsipdagicates (encoded
by coreflexives); last of not least, it is of great calculatibvalue, as we shall soon see.
Let us generalize what we have obtained thus far:

Definition 1 (Predicative types of functions) Let functionB<LA and predicates
B<2—A and B<—~—B be given. We say thgthaspredicative type

b, (49)
wherever
[0, C Py f (50)
holds, cf. diagram P A—
1"
B<~————B

Condition (50) — which is equivalent to
[Py C Dy T (51)
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as we have seen above — is the PF-transform of ESC proof tiblig&y  : p z :
q (f x)) stating that functionf ensures property; on the output once property is
granted on the input.

a

Stating that a given function is of a particular predicatiyge is an assertion which
needs to be checked. Predicative types obey to a numbeeoésting and useful prop-
erties which can be proved using the PF-calculus alone. Bragherties, together with
the relational calculus itself, make proof obligation targe more structured and eas-
ier, as we shall soon see. Prior to this, we need to presettieantiore of the relational
calculus itself.

9 More about the relational calculus

Coreflexives.Recall from section 3 that unary predicates PF-transforfratgments of
1d (coreflexives) as captured by the following universal prope

V=90, & (Vyz:yParxsy=x Apy) (52)
Via cancellation? := &,, (52) yields
yPpx & y=x Apy (53)

A setS can also be PF-transformed into a coreflexive by calculaking,, cf. eg. the
following graphic display of the transform of sgt, 2, 3,4}:

v

(4,4)

- 3,3)
Pef1,234y) = A
1,1)

5 10

Coreflexive for
set{1,2,3,4}

Thanks to the isomorphism between predicates and corefekivplicit in (52), it
is easy to show that predicate algebra can be expressedrin tdrcoreflexives alone
[7]. In particular, given predicates g, we have

DPong = Pp- Py (54)
Dpvg = PpU D, (55)
P, = id— &, (56)
glf)false = 1 (57)
Dirye = id (58)

wherefalse (resp.true) denote the everywher@ESE (resp. everywhereRUE) pred-
icates and? — S denotes relational difference (19).
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Coreflexives are symmetric and transitive relations, that i
== (59)
hold for @ coreflexive. The fact that meet of coreflexives is compasitio
PN =¥ (60)

is of great calculational advantage since it enables ongtdipe restrictions (or con-
ditions) while taking advantage of the central role playgatbmposition in the whole
calculus.

Exercise 5.Given a functionB<f—A, show thatimg f is the coreflexivep, of predicate
pb2 (Ja = b= fa).
O

Domain and rangeThe coreflexive fragments of kernel and image are nadoedain
(6) andrange(p)

0R 2 kerRnid (61)
pR 2 iImgRNid (62)
Therefore:
R-6R =R = pR-R (63)
Clearly:
0 R = ker R & R is injective (64)
pR=imgR < Rissimple (65)
0 R =R =pR < Ris coreflexive (66)

In particular, range and image of functions coincide.
From the definitions above we easily recover their pointwéigaivalents. For in-
stance, let us calculagetwice:

y(p twice)x
& {69}
y(twice - twice® )z
& { exercise 5 ; coreflexiveg
y=x A {(Tk = y=twicek)
& { definition oftwice }
y=xz AN (3k = y=2k)
& { (53) ; definition ofeven (43) }

Y Peven T
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So, the range dfwice is the same relation a&.,..,,. Taking advantage of this, we check
predicative type assertion (48) of the previous section:

twice
Qseven P

= { (49,50) }

even

twice - Pepen T Popen * twice
< { Peven = ptwice (above) }
twice - Peyen, C ptwice - twice
& {3}
twice - Pepen, C twice
<= { composition is monotonic
Deven C 1d
& { ®Peven is coreflexive }

TRUE

This first ESC/PF exercise gives an idea of the flavour of disgihg proof obliga-
tions by calculation. The example is very simple and so tetadce between this and
the equivalent pointwise proof stemming directly from (4ghnhot much. Non-trivial
examples to be given later in sections 13 and 18 will provibletéer idea of the advan-
tages of doing things in the pointfree style.

It should be noted that the closed formulee given above (§ Hé2ot provide the
best way to infer properties such as the above. It is muchlein rely on universal
properties which domain and range enjoy and which are (oga#paGalois connec-
tions, as explained below.

Structuring the calculus.As anticipated in section 3, Galois connections provide a
convenient way to structure the relational calculus in #vess that they offer (univer-
sal) properties which implicitly capture the meaning of tive relational combinators
(termedadjointg involved in each connectiofi.

A paradigmatic example is that of capturing the meaning otfions: it can be
shown that functions arexactlythose relations: which obey the following Galois
connection, for all other (suitably typed) relatioRsS:

h-RCS< RCh®-S (67)
Taking converses, this is equivalentfo

R-h°CS<RCS-h (68)
Wapproach to the relational calculus was pioneeredénl®90s by the Mathematics of

Program Construction (MPC) school, see eg. reference9[2R 62, 7].
12 These Galois connections are often referred tshamting ruleg13].



ESC by Calculation using the Pointfree Transform 23

Again we stress on the resemblance with school algebranilikebem in (20), function
h in (67,68) can be shifted back and forth in relational exgitess by “swapping sign”
(which in the relational context means taking converses).

The fact thait mostand equality coincide in the case of functions

fS€9e f=9g% [29g (69)
is among several other beneficial consequences of these(sale eg. [13]).

Exercise 6.Use the shunting rules (67,68) to show thatR is always simple and - ¢° is
always injective, for all suitably typef, S.
ad

Domain and range are characterized by Galois connections

JRCP=RCT-@ (70)
pPRCOPSRCP-T (71)
where® ranges over coreflexives, from which a number of propertise agnamely:
T-0R=T-R (72)
pR-T=R-T (73)
PCYV Pl T ¥ (74)
SRC§SeRCT-S (75)
SJ(R-S)=0(R-S) (76)
p(R-S)=p(R-pS) (77)

In general, all such Galois connections instantiate thé/atgnce at the top of table
2. It should be mentioned that some rules in this table apipetire literature under
different guises and usually not identified as G€g-or a thorough presentation of the
relational calculus in terms of GCs see [1, 7]. There mamyadvantages in such an
approach: further to the systematic tabulation of opesafof which table 2 is just a
sample), GCs have a rich algebra of properties, namely:

— both adjointsf andg in a GC are monotonic;

— lower adjointf commutes with join and upper-adjoinptommutes with meet;

— two cancellation laws holdR C ¢(f R) and f(g S) C S, respectively known as
left-cancellatiorandright-cancellation

In summary, all relational combinators involved in tabler@ monotonic. The ones in
the f-column distribute ove, eg.

(RUS)°=R°US" (78)
f-(RUS)=f-RUf-S (79)
and the ones in the-column distribute oven, eg.:
(RNS)°>=R°NS° (80)
(RNS)-f=R-fNnS-f (81)

13 For instanceshuntingrule (67) is calleccancellation lawin [66].
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Table 2. Tabulation of Galois connections in the relational calaulsample). The general for-
mula given on top is a logical equivalence universally gifeett on.S and R. It has a left part
involving lower adjointf and a right part involving upper adjoing. These are expressed using
sections of binary operators. So, each line in the tableesponds in fact to &amily of adjoints
indexed by the argument frozen in each sectionhég.(h-), (h°-) in the line markedshunting
rule.

(fRICS< RC(gS)
Description ‘ f ‘ g ‘ Comment
converse ()° ()°
shuntingrule (h) | (h®) h is a function
“converse’shuntingrule| (-h°) | (-h) h is a function
difference —=R)|(RU)
Left-division (R) |(R\) read ‘R under ...”
Right-division (‘R) |( /R) read “...overR"
domain ) (T9) left C restricted to coreflexives
range p (-T) left C restricted to coreflexives

Simplicity. Simple relations (also known as partial functions) will tetcularly rel-
evant in the sequel because of their ubiquity in softwareeting. In particular, they
can be used to model data structures “embodying a functiepEndency” such as eg.
mappings from object identifiers to object attribute valj4es 48].

In the same way simple relations generalize functions asshofigure 1,shunting
rules (67, 68) generalize to

S RCT« (5S)-RCS°-T (82)
R-S°CT& R-§SCT-S (83)

for S simple. In the case of coreflexives (which are special cakssnple relations),
rules (82,83) instantiate to

- RCSed RCP-S (84)
ROPCSeR-PCS & (85)

Harpoon arrowsB B _Aor A—L-Bin diagrams indicate thaR is simple.
Later on we will need to describe simple relations at poiséatevel. The notation we
shall adopt for this purpose is borrowed from VDM [32], whitiie known asmapping
comprehensionThis notation exploits the applicative nature of a simjglationS by
writing b S a as

ac€domS Nb=Sa (86)
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where A should be understood non-strict on the right arguméaind dom S is the
set-theoretic version of coreflexives, that is,

5.8 = P(iom s) (87)

holds (cf. the isomorphism between sets and coreflexiveshid way, relatiort itself
can be written aga — S a | a € dom S} and projectionf - S - g° as

{gar f(Sa)|aecdomS} (88)

providedsS satisfies functional dependengy— f, to ensure simplicity (see exercise
8).

Exercise 7.Further to exercise 2 show that condition
M- N°Cid (89)

(which ensures that the union of two simple relatiddsand N is simple) converts to pointwise
notation as follows,

Va : a€(domMnNdom N): (Ma)=(N a))

— a condition known as (magpmpatibilityin the VDM terminology [22].
O

Exercise 8.A relation S is said to satisfy functional dependengy— f wherever projection
f+S-g°issimple, that s, iff

ker (g-S°) C ker f (90)
holds [45].

1. Show that (90) trivially holds whereveris injective andS is simple, for all (suitably typed)

2. Resort to (86), (90) and to the rules of both the PF-transfand the Eindhoven quanti-
fier calculus (appendix A) to show that the healthiness ¢ad{90) imposed on mapping
comprehension (88) is equivalent to

Ma,b: a,bedomS A (ga)=(gb): f(Sa)= f(Sb))

10 Building up the ESC/PF calculus
What we have seen so far about the PF relational calculusisgrto start developing

our own calculus of ESC predicative type assertions, stemgrmom definition 1. Let
us see, for instance, what happens wherever the input atedic(49) is a disjunction:

¢q<f—¢p1 U Py,
< {60}

14 vDM embodies a logic of partial functions (LPF) which takbistinto account [32].
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f’(q)m qum) gq)q'f
& { distribution (79) }

f'q)m U f.gl')p2 - GZi)q'f
&= { U-universal (22) }

f'd)pl ggbq-f A f'dspz gd)q'f
& { (50) twice }

f f
Sy<~—D, N Py<~—-D,,
Thus distributive law
f f f

Py=< Dp, UDp, & Pg=< Dp, N Pg=< Dy, (91)

holds. The dual rule,

By, Byt B, & By<—B, N By~ (92)
is calculated in the same way.

The fact that predicative arrows compose,

v e wt ATl (93)

follows straight from (49, 50), as does the obvious rule esning identity
7<% ¢ o dCWw (94)

Whereby¢<L§Z5 always holds. Thus it makes sense to draw predicative dizgra
such as, for instance,

T

v Ux T —2 T (95)

; (f,g>T /
@

where predicates (coreflexives) are promoted to objectde@in diagrams). In this
case, the diagram explains the ESC behaviour of the conadviwdiich pairs the results
of two functions,

(fig)c 2 (fege) (96)

recall table 1. In the literature, this is often referred satlaesplit or fork combinator.
The two projections , m» are such that

mi(a,b) =a A ma(a,b) =b (97)
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and¥ x 7 instantiates relational produ&t x S of table 1. The diagram expresses the
two cancellation properties

7T1'<fag>:f A 7T2'<fag>:g (98)

The question is: is diagram (95) properly typed?

We defer to section 11 the discussion about the arrows kbelith 7, , 7o (which
are instances of a more general result) and focus on &gifoyy. We need to recall the
universal property of relationablits

XC(RS) © m - XCRAmm-XCS (99)
(another Galois connection, see exercise 9) andsthabsorption holds [13]:

(R-T,S-U)=(RxS) (T,U) (100)
Then we reason:

A ek

& { (49,50) }
& { absorption (100)}
& { universal property (99)}
T (f,9) PCU-f N m-(fg) PCT g
& { cancellations (98)}
[ @CY-f N g-PCT-g
& { (49,50) twice }

vl o A <L @
In summary, we have calculated ESC/PF rule

x5 o vl AT (101)

which justifies the existence of arroly, g) in diagram (95).
Exercise 9.Show that

(R,S) = (m1-R)N (73 - 5) (102)
is the PF-transform of the clause given for this combinatdable 1. Furthermore infer (99) from

(102) and universal property (21).
O
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Let us finally see how to handle conditional expressions efthm:f (c x) then
(f x) else (g x), which PF-transform into the following version of McCarthgondi-
tional combinator:

c—=f,9 =[P Ug P (103)

In this case, (51) offers a better standpoint for calcufatian (50), as the reader may
check in calculating the following rule for conditionals:
& c—f.g & f g
P o Py<~—-9D, - D N Py=~—-D, - D (104)

Further ESC/PF rules can calculated on the same basisr eldt®orating on the
predicate structure or on the combinator structure. Howellgéhe cases above involve
functions only and the semantics of computations are, ieigérelations. So our strat-
egy is to generalize definition 1 to relations and develog#ieulus on such a generic
basis. Before this, let us present a generic result whitthhas to do with functions and
is of great interest to type checking.

11 ESC “for free”

In his well-known papeTheorems for fregl64], Philip Wadler writes:

From the type of a polymorphic function we can derive a thextieat it satis-
fies.(...) How useful are the theorems so generated? Only time and iexger
will tell.

The generosity of this quotation stems from John Reynalustraction theorenon
parametric polymorphism [54] of which several applicatidrave been found in the
meantime, namely in program transformation [59], abstiatefrpretation and safety
analysis [3], relation calculus [49], program correctrié8], etc.'®

In this section we identify a class of ESC/PF rules which ammltaries of this
theorem and which, as such, do not need to be discharged. W& fihe pointfree
styled presentation of this theorem given in [3], which imagkably elegant: lef be
a polymorphidfunction f : ¢, whose typé can be written according to the following
<<grammar-> of types:

ti=t 1"
t:=F(t1,...,t,)  forn-ary parametric typ&
t:=v  forwv atype variable (= polymorphisri<dimension->)

LetV be the set of type variables involved in tyhd R, } ., be aV/-indexed family of
relations (f, in case all suctR, are functions) and?, be a relation defined inductively
as follows:

Rt::t’<—t” = Rt’ «— Rt” (105)
Rt::F(tl,...,tn) = F(Rtl Yo Rtn) (106)
Rt::v = Ru (107)

15 For the automatic generation of free theorems (in Haskeitasy) see Janis Voigtlaender's
home pagehttp://linux.tcs.inf.tu-dresden.de/ voigt/ft
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where Ry «— Ry is defined by (37) and symbél is overloaded in (106): it denotes
a parametric type on the left hand side andsthary relator [35, 8] which captures its
semantics on the right hand side. (More details to follow.)

Thefree theorem of typéthen reads as followsgiven any functiorf : ¢t and V'
as abovef R; f holds for any relational instantiation of type variablesih Note
that this theorem is a result abauand holds forany polymorphic function of type
independentlyf its actual definitiort®.

Before proceeding to the application of this theorem, we

A FA need to explain the meaning Bfin (106). Technically, the para-
RJ/ lF r  Mmetricity of F is captured by regarding it asr@lator [8], a con-
cept which extendfunctorsto relations:F R is a relation from
B e FB F A to F B whereverR is a relation fromA to B (see diagram
aside).

By definition, relators are monotonic
RCS=FRCFS (108)

and commute with composition, converse and the identity:

F(R-S)=(FR)-(FS) (109)
F(R°) = (FR)° (110)
Fid = id (111)

The most simple relators are tiaentity relatorld, which is such thatd A = A and
Id R = R, and theconstantrelator K which, for a particular concrete data typg is
suchthakK A = K andK R = idk.

Relators can also be multi-parametric. Two well-known eplas of binary relators
are product and sum,

RXS=<R'7T1,S'7T2> (112)
R+S =iy R,iy- S (113)

wherem, T2 are the projections of a Cartesian product (9v,)i» are the injections of
a disjoint union, and thsplit/eitherrelational combinators are defined by (102) and

[R,S]=(R-4])U (S -1i3) (114)

respectively. By putting product, sum, identity and constalators together with fix-
point definitions one is able to specify a large class of patamstructures — referred
to aspolynomial— such as those implementable in Haskell, for instance.

Let us see how the free theorem of projectiansand, justifies (for free) arrows

<" ¥ x T and¥ x T—=>7in diagram (95). The polymorphic type of being
t=a+axb, onehask; = R, — R, x Ry. We reason:

1 (Ry)m

16 See [3] for comprehensive evidence on the power of this #rearhen combined with Galois
connections.
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& { abbreviatingR., Ry := R, S }
m(R— R x S)m

< {@n}
m-(RxS)CR-m

< { @9}

R<" (R xS)

Thus, R<—R x S holds forall (suitably typed)R, S, thus covering coreflexives
and? as special cases. (The calculation/ix S>3 identical.)

The free theorem of a polymorphic type conveys the idea s too “are rela-
tions”. Its wide scope is better appreciated once dealitiy igher-order combinators.
Let us see the case of functional compositignwhich is of typet = (¢ < a) « (b~
a) — (c < b):

()Re(:)
& { (109) to (111) }
(V(Re « Ra) « (Rp < Ra) < (Re < Ry))(")
< { introducing abbreviations such as in the previous calmnaj
(WU = R) = (S —=R) = (U < 9)()
&  {@n}
() U=9C(U=R)=(S<=R))-()
< {6}
U=85c() - (U=R)=(S=R))-()
& { (13) assuming/-quantification implicit ; (27) }
fU = 8)g=(f)((U—R)—(S<R))(g)
& { (37) twice }
f-SCU-g=(f)-(S—=R) S (U<R)-(g)
& { (67) again}
f-SCU-g=(S<R)C(f)-U—R)-(g)
& { (13); (27) again}
[-SCU-g=hS—R)j=(f-h)U<=R)g-j)
< {@n}
f-SCU-gNh-RCS-j=f-h-RCU-g-j
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Substitutingf, j, R, S, U := g, h,®,7, ¥ we obtain
g T CU - gANh-PCT -h=9g-h-PCW-g-h

which is nothing but composition rule (93) already preséngo, (93) is an example of
“ESC for free”, as is the= part of equivalence (1015.

Reference [12] elaborates on these corollaries of the lie@rém of functional com-
binators in building a categoifyred of “predicates as objects” proposed as a suitable
universe for describing coalgebraic systems subject tariamts.Pred’s objects are

predicates, represented by coreflexives. An ar![owf—QS in Pred means a function
which ensures property on its output whenever property holds on its input. Ar-
rows inPred can therefore be seen as ESC proof-obligations concernefyhctions
involved.

Exercise 10.From the free theorem of<—— A and factker! = T infer
f-RCT-S&RCT-S (115)

12 Calculating pre-conditions for ESC

Wherever a functiory does not ensure preservation of a given invariant that is,

@im<f—¢>im does not hold, there is always a pre-conditipre which enforces
this at the cost opartializing f. In the limit, pre is the everywhere false predicate.
Programmers often become aware of the need for such pratiomsdat runtime, in the
testing phase. One can do better and find it much earlier,egiifggation (modeling)
time, when trying to discharge the standard proof obligatio

Va : inva: inv(f a)) (116)
which then extends to
(Va :inva A prea: inv(f a)) (117)

Bound toinventpre, one will hope to guess theeakessuch pre-condition. Otherwise,
future use off will be spuriously constrained. However, how can one be sfiraving
hit such weakest pre-condition?

As it will be explained below, predicatew(f a) in (117) is itself the weakest
pre-condition forinv to hold upon execution of. In our ESC/PF approach we will
proceed as follows: we take the PF-transfornvaf( f a) — at data level — as starting
point and attempt to rewrite it into the conjunction of piateinv a (or weaker) and
possibly “something else” — thealculatedpre-conditiorpre. So we strengthen (117)
to equivalence

inva A prea < inv(f a) (118)

thus meaning thaire will be not only sufficient but also necessary taw to be main-
tained byf. This method works provided all calculation steps are eajaiwes. Let us
start by detailing this strategy.

17 See eg. [49] for the derivation of the free theorem of the fional split combinator.
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Weakest pre-conditionsBack to definition 1, let us transform (49) according to the
PF-calculus studied so far:

Dy <f—¢p

& {6}
fPp C Dy T
< {0}
P (ji' QSP) g; qu
On the other hand,
f-®Pp C Dy T
& {67}
D, C fO-Py-T
Putting everything together, we obtain GC
pUf @) C Dy & &, C [ Dy T (119)

which is the expected composition of GCs (71) and (67). Thehkend side of (119)
tells that®, is sufficientas a pre-condition fof to ensured, on the output. Its right
hand side tells thaf° - &, - T is the largest (weakest) such conditiénin other words,
f°- @, - T isnecessaryor g to hold onf’s output.

Weakest pre-conditions have been studied extensivelyeititdrature, both in the
pointwise and pointfree style [19, 6]. As we shall soon seey have a calculus of their
own which is closely related to that of predicative typesisidonnection between the
two calculi will be given in section 15, where it will be preged in its full generality,
that is, concerning relations in general instead of fumstio

Let us, for the moment, refrain from going into such founaliadl work and see two
examples of ESC ensured by weakest pre-condition PF-eign!]

13 ESC/PF calculus at work — case study 1

Recalling the mobile phone case study of section 2, we wasnsare thatore main-

store

tains invarianinv = noDuplicates A leql0, thatis, to checkb;,,, <—®;,,, . Thanks

store

to ESC/PF rule (92), we know we can split this ind8,, puplicates<——Piny A

store

Dleqio<—Din, - We address the first of these arrows in this section.
Thanks to the pipelined structure gbre (7), we can split the problem in two. First

we addressl)noDuplicateS&@im and then we promote this resultdtore.
When compared to the definition of injective function (3hg pointwise definition
of noDuplicates (4) is suggestive of what needs to be done towards a calonédti

18 Back to points, this is predicates z :: ¢(f z)).
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PF-argument: a list has no duplicates if and only if, regdrde a (partial) function
from indices to elements, it is injective. Thus we can repnéa list/ of elements irC'

by asimplerelation inIV — C telling which elements take which positions in list, and
define

noDuplicates L & L°-L Cid (120)
In this context, appendingat the front of listZ, becomes relational operator
c:L 2 ¢-1°UL- succ® (121)

wheresucen 2 n+ 1 is the successor function #,. (Mind thatZ indices exclud®.)
Back to points and using mapping notation for simple refeti(88), the body of (121)
becomes the expectdd — c} U{i + 1 — (L) | i< dom L}.

13.1 ESC calculations for(c :)
First of all, we need to show thét :) preserves simplicity:
c: L issimple
& { (121) followed by (33) }
L - succ® issimple A ¢-1° issimple A L - succ®-1-¢° Cid
& { exercise 6succ®-1=0 }
L - succ® issimpleA L-0-¢° Cid
= { succis an injection, thusucc® - succ =id }
Lissimple A L-0-¢° Cid
= { 0isnotin the domain of. }
Lissimple A 1 -c° Cid
& { Lis at most anything}
L is simple

Since all steps in the calculation are equivalenéebeing simple is theveakespre-
condition forc : L being simple.

Next we calculate witmoDuplicates(c : L) aiming at splitting this into invariant
noDuplicates L plus “something else” — the calculated weakest pre-comdifor
noDuplicates preservation:

noDuplicates(c: L)
& { (121,120)}

c-1°U L - succ® is injective
& {6}

c¢-1°isinjective A L - succ® isinjective A (¢-1°)°- L - succ® C id
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& { exercise 6; definition of injective ; shunting (67,68)
succ- L° - L-succ® Cid N c®-L C1°-succ
& { shunting again (67,68}
L°- L Csucc®-suce A c®-L C1°-succ
< { kersucc=1id }
L°-LCuid N c®-L C1°- succ
= { definition }
Lisinjective A ¢° - L C 1° - succ (122)
In summary, we have calculated:

¢: Lhasnoduplicates> Lisinjective A ¢°-L C1°-succ (123)

no duplicates il wp
We finish the exercise by calculating the pointwise-expamef wp:

c®- L C1°- succ

& { go pointwise: (27) twice}
(Vn:cLn:1=1+n)

s {@8)}
(Vn:ne€domL AN c=Ln:1=1+n)

& { 1 =1+ nalways false® ¢ dom L) ; V-trading (173) }
(Vn : n€ domL: c=Ln= FALSE)

= { predicate calculug
(Vn :née domL: c#Ln)

We obtain the expected pre-condition preventinfjom being in the list already. In
summary:

(c)

dsnoDuplicates < dsnoDuplicates A wp ¢

holds, forupc L 2 (Vn : n€ dom L: ¢# Ln).

13.2 ESC calculation for(c :) - filter(c #)

Next we address arrow store . Note that, looking at (7), it is suffi-

noDuplicates <—Pins
cientto show thatc :) - filter(c #) preservesoDuplicates, sincetake n L is at most
L, for all n, andsmaller than injective is injectiv@exercise 1). Also note that, defined
over PF-transformed listgilter becomes

filterpL & &,-L (124)
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Thus

filter(c A)L = (-pe¢) - L (125)
where the negated range operatop) is defined by-p R 2 id — p R and satisfies
property

dPC—pReP-RC L (126)

That filtering preserves simplicity follows immediatelypn exercise 1gmaller than
simple is simple Concerning the injectivity of : (filter(c #)L), we reason:
c: (filter(c #)L) is injective
< { (123);(125) }
(mpc) - L isinjective A ¢° - (=pc)- L C 1°- succ
& { converses}
(=pc) - L isinjective A L° - (—pc) - ¢ C succ® -1
& { (=pc) - ¢ = L by left-cancellation of (126)}
(mpc)- L isinjective A L° - L C succ® -1
& { Lis below anything}
(mpc) - L isinjective
In this case, the calculated (weakest) pre-condition i eveaker than the invariant

to maintain, sincel injective implies(—pc¢) - L injective. Smaller than injective is
injective recall exercise 1 once again.) In summary, we have checked:

(e2)- filter(c#)

énoDuplicates dsnoDuplicates

In retrospect, note that not having PF-transformed lidts simple relations would
lead to definingroDuplicates inductively on lists, in turn leading to an inductive proof.
The PF-transform has, in a sense, “converted inductiondattuction” (calculation).

Exercise 11.Show that (126) stems from Galois connection [1]
#C0R=RCL/P (127)

(among others) whered R = id — ¢ R.
O

14 From functional to relational ESC

Computer programs have, in general, a relational semaasdhey can be partial (eg.
non-terminating) and non-deterministic. What is the intpgamoving from function
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A—L B torelation A—=~ B in definition 1? We reason:
R-®, C &,-R
& { @47,21)}
R- &, C &, T
< {@}
$, C R\ (@, T)
& {(13:63}
(Va:pa: a(R\ (P, T)a)
& { table 1}
(Va :pa: (Vb : bRa: b(P,-T)a))
& { (53);table 1}
Va :pa: (Vb : bRa: qb))

This means that, for all inputs t& satisfyingp, all outputs (if any) will satisfy; 1°. So
p is sufficient for ensuring on the output. What is the weakest syghlt is easy to
repeat the reasoning which lead to (119), this time for i@taR instead of functiory,

and for GC (23) instead of (67):

p(R-Pp) CPy =P, CR\ (P,-T) (128)
——
Rad,
Notation R & ¢ for the weakest (liberal) pre-conditions is taken from [&fljective
liberal stresses the fact that the condition encompasses all isfugs for whichR is
undefined. Thus the definition which follows:
Definition 2 (Relational predicative types).LetB<LA be arelation and B—2— A

and B<-— B be predicates. We shall say th&thaspredicative type

D, <", (129)
wherever
R-®, C &,-R (130)

holds. The following are equivalent ways of stating (130):
by<"b, & R-®, C &, T (131)
& ¢, C Red, (132)
m|

19 This will be related to the concept eftisfiability[32] in the sequel.
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Relationship with Hoare LogicSupposer = [P] is the semantics of a given program

P running over state spacg that is,SﬂiﬂS. Writing s L s for s'Rs, meaning that
programP mayreach state’ once executing over starting statdact éqﬂdip PF-
transforms to

(Vs :ps: <Vs/:s£>s/:qs'>> (133)
which is nothing but the meaning of Hoare triple

{p}P{q} (134)

Hoare triples are thus special cases of predicative typesiggested in the introduction
by writing (2). In summary, “declaration”

v @ (135)
can be regarded as the type assertion that, if fed with vdbrestarting on states) “of
type®” computationR yields results (or moves to states) “of tyg& (if it terminates).
So ESC proof obligations and Hoare triples are one and the shvice: a way to
type computations, be them specified as (always terminadietg@rministic) functions
or encoded into (possibly non-terminating, non-detergtic) programs. This means
that all relational ESC/PF calculation rules to follow apfa Hoare triples.

Satisfiability. Definition 2 is related to another notion of predicative tygpknown as
satisfiability[32]: given R, p andq as in definition 2,R is said to besatisfiablewith
respect tdp, q) iff

(Va :pa: (3b: qb: bRa))
holds, that is

¢, C R°-&,-R (136)

in PF-notation. (As expected, shifting from the left to the right hand side of (130)
turns universal into existential quantification.) Usugtlyandg are the invariants asso-
ciated to (respectively) the input and output types of of@na whose semantics are
captured by pre/post-condition pairs "a la VDM”, that igsp-conditions relating out-
puts to inputs, of pattern

R:(b:B)« (a:A)

pre ...a...

post ...b...a...

In this case, the satisfiability condition becomes, usingodMlike syntax
(Va : a€A: preERa=(3b : be B: postR(b,a))) (137)

Clearly, (137) has to do with a particular semantic intetigiien of R’s non-determinism:
vaguenesdg-or instance, post-conditidn= 2a V b = a + 1 for A, B := Even (43)
specifies an operation which is satisfiable but fails to na#nnv-Even.
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The relationship between invariant preservation (130) satésfiability (136) de-
pends on the kind of relatioR involved. ForR simple, satisfiability is stronger than
invariant preservation. FaR entire, the former is weaker than the latter (see exercise
12 below). Therefore, both notions coincide in the case otfions.

Exercise 12.Show that

— for R entire, (130) entails (136) and, f@t simple, (136) entails (130). Hint: resort to the
shunting rules of simple relations.
— (136) can be written alternatively as

&, CH(Py-R) (138)
and therefore as
&, CT -®,-R (139)

Hint: resort to the properties éfand of coreflexive relations in general (section 9).
O

15 Relational ESC/PF calculus

We are now in position to list rules of the relational ESC/Riicalus stemming from
definition 2. Some of these rules actually extend those @yrgaven in section 10. In
general, they help in breaking complexity of ESC/PF oblgat. Note that most rules
areequivalencemot just implications, as they tend to be written in eg. Hdagic. So
they contribute to ensuring ESC/PF predicative tyipesonstruction

Relational ESC/PF rulesWe begin by presenting and justifying the rule which extends
relators to predicative types:

— Relators rule

Fr< Fo « vl o (140)

holds for every relatoF.

This is easy to justify:

Fr<"f Fg

< {180}
FR-FOCFV-FR

< { (209) }
F(R-®) CF( - R)

<= { (108) }
R-¢CU-R

< {180}

v

Further to (92,94,104) and (140), the following rules hold:
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— Trivia:

id<f @ < TRUE & O<2 | (141)
— Trading:

r<f ¢.v o r&2w (142)

As we shall see soon, (142) is useful for trading coreflextbetaieen the input type
of a given ESC arrow and the relation typed by the arrow.
— Composition(Fusion):
v o = g B r AT oo (143)
This rule extends (93) to relations.
— Split by conjunction:
U U<t @ o U<Bd A Ty<lE (144)

This equivalence generalizes (92).
— Weakening/strengthening

<2 ¢ =« UDOANO<E T ATDOP (145)
— Separation
r o<t ov « r<f o r o<y (146)
This rule follows from (144,145).
— Splitting:
ox 18V o wB .55 A T<S0.5R (147)
This generalizes (101) from functions to arbitrary relatio
— Product:
VLo o d<E A< (148)

Note that rule (140) already ensures parbf equivalence (148).
— Conditional: equivalence

L R I SR SR S (149)
where
¢c—R,S 2 R-®,US-b_, (150)

generalizes (103) to relatio”%

The interested reader is welcome to provide PF-calculafionall rules listed above.
Exercise 13.The Hoare logic rule corresponding to (143) is

{p}Pi{q}, {a} P2{s}
{p}Pr; P2{s}
ford = &, ¥ =&,,7 = &4, S = [P1], R = [] and[P; Q] = [Q] - [P]. Check which
other Hoare logic rules correspond to which ESC/PF ruleatibg in mind that some of latter

may split into two of the former because they are equivalgneet implications.
O

20 For a wider generalization of conditionals to relations ege[1].
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Formal correspondence with WLP calcullRecall from (128) that the weakest (liberal)
pre-condition operatdiRe) is the upper adjoint of a GC which combines two adjoints
already seen — range (71) and left division (23). The poiséwiersionwip R g of
Rad,is

wlpRq 2 <\/p : (Vb,a : bRa A pa: qb): p)

Also recall (132), which tells that checkin@<L¢p is the same as first calculating
R & &, and then showing that this is weaker thdp This leads to the constructive
method for ESC which has already been adopted in the casgaitsdction 13.

Besides this practical application, (132) is central todlese relationship between
the ESC/PF calculus and the WLP-calculus. In fact, the twiy@aches are related by
indirect equality (15). Let us take as example a rule of titedaalculus

Ra(T-¥)=(ReT)-(ReV)

which holds sincé Ru) is an upper-adjoint and therefore distributes over meetpie-
position in the case of coreflexives [9]. We reason:

Ry (T-%) = (R%T)-(R¥¥)
& { indirect equality (15)}

(V& :: PCRe(T-¥) & PC(RRY) - (Ra¥))
& {(60);(21) }

(V& :: CRQ(T-W) & GCReT A &C RaW)

& { (132) three times, omitting universal quantificatign

r o<t o o r<f oA vt o

We thus obtain (144), the equivalent ESC/PF-rule. A morerégting example is the
transformation of WLP-rule

(S-R)x® =R (54 ®)
into ESC/PF format:
Ry (S%d)=(S-R) %o
& { indirect equality (15)}
YCRe(Sep) = C(S-R)ed
= { (132) twice }

(S-R)

(SRo)<"tp & gt

The outcome is a ESC/PF rule which, still involving theperator, is an advantageous
replacement for (143), since it is an equivalence.
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16 Case study 2 — Verified File System

Our second group of experiments with the ESC/PF calculugdhéde with a real-life
project. In the context of the Verified Software Initiativeg], we want to validate a
formal model of a file system as part of a broader exercise oviging a verified file
system (VFS) on flash memory — a challenge put forward by Raleshi and Gerard
Holzmann of NASA JPL [34].

An explanation of the overall approach to the problem, imvaj not only formal
modeling but also model checking in Alloy and theorem prgviim HOL [26] can be
found in [21]. Below we shall be concerned only with showihg tole of the PF-
transform in statically checking the model by pen-and-papkulation.

As explained in [21], the problem has two levels — the POSi¢land the NAND
flash level. The work so far has focussed on the top levelntpis working document
Intel's Flash File System Core Reference Gujdé]. This is a layered collection of
APIs, of which we are considering'S (file system), the top one. Figure 2 gives an
idea of what is to be modeled for each file system operatiothisncase the one which
enables file/directory deletion.

L}
File System API Reference I ntel &

4.6 FS_DeleteFileDir

Deletes a single file/directory from the media

Syntax

FFS_Status FS_DeleteFileDir (
mOS_char *full_path,
UINT8 static_info_type );

Parameters

Parameter Description

*full_path (IN) This is the full path of the filename for the file or directory to be deleted.

static_info_type (IN) This tells whether this function is called to delete a file or a directory.

Error Codes/Return Values

FFS_StatusSuccess Success

FFS_StatusNotlnitialized Failure
FFS_StatusinvalidPath Failure
FFS_StatusinvalidTarget Failure
FFS_StatusFileStillOpen Failure

Fig. 2. Example of API specification in [16]. (Permission to reproelthis excerpt is kindly
granted by Intel Corporation.)

Data model.By inspecting reference guide [16] we have arrived at a forreational
model of the file system structure which, stripped of defaitdevant for the operation



42 J.N. Oliveira

of figure 2, can be depicted in the relational diagram whidlotes:

FileHandler ——~ OpenF'ileDescriptor (151)
path
Path ~ File

This tells that there are two simple relations in the modak @V in the diagram)
relating paths to file contents and anoth&f {n the diagram) giving details of each
opened file identified by a file handler. These two data strastare linked by function
path which selects paths from the information recorde@jren F'ile Descriptors and
is central to the main invariant of the model — the referdimizgrity condition which
ensures that non-existing files cannot be opened:

System = {table : OpenFileDescriptorTable, fs: FStore}
inv sys 2 (Vd : d € rng (table sys) : path d € dom (fs sys)) (152)
In this “linguistic version” of diagram (151) the choice ofig identifiers is justified
by practical reasons, due to the overall complexity of theleimodel. While datatypes
OpenF'ileDescriptorTable = FileHandler — OpenF'ileDescriptor
OpenFileDescriptor = {path : Path, ...}
are subject to no invariant (in this simplified version), keres should be such that
father directories always exist and are indeed directories
FStore = Path — File
inv store 2 (¥ p : p € dom store : dirName(p) € dom store A
fileType(attributes(store(dirName p))) = Directory)  (153)
The functiondir Name : Path — Path tells the father path of a given path. There
exists a topmost patRoot in the path hierarchy which, according to the requirements

[16], is such thatlir Name Root = Root. Files have attributes angiieType is one
such attribute. For space economy, we omit all other dethilse model’s data types.

Modeling the operationsLet us focus on the API operation which enables file deletion
(figure 2) modeled after the requirements in [16] as follows:
FS_DeleteFileDir : Path — System — (System x FFS_Status)
FS_DeleteFileDir p sys &
if p# Root A p € dom (fs sys) A pre-FS_DeleteFileDir_System p sys
then (FS_DeleteFileDir_System p sys, FF'S_StatusSuccess)
else (sys, F'S_Delete File Dir_Exception p sys)
This is a function that either deletes th&tore entry whose path is given or raises an

exception, leaving the state unchanged and returning fv®ppate error code (of type
FFS_Status). FunctionF'S_DeleteFile Dir_Exception returning error codes does
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not interfere with ESC and is therefore omitted. By confrds core of the success
trace is the (partial) function which updates the systemeahe specified entry can
indeed be deleted:

FS_DeleteFileDir_System : Path — System — System
FS_DeleteFileDir_System p (h,t) 2

(h, FS_DeleteFileDir _F Store {p} t)
pre (Vd : d €rngh: pathd # p) A pre-FS_DeleteFileDir_FStore {p}t

This, in turn, calls a function whose scope is #8tore component ofSystem. This
is where things actually happen:

FS_DeleteFileDir_FStore : PPath — FStore — F Store
FS_DeleteFileDir_FStore s store & store \ s
pre (Vp : p € dom store A dirNamep € s: p € s) (154)

This function actually deletes sets of entries (and noviddial ones) using thdomain
restricted byoperatorM \ S typical of model-oriented specification languages such as
VDM or Z, whose meaning iselect the largest sub-relation 8f whose keys are not

in S. Formally, the PF-transform of this operator is

[M\ S] = M - &g (155)

Note thatF'S_Delete Fiile Dir _System andF'S_Delete F'ile Dir _F Store are sub-
ject to pre-conditionmventedby the software analyst who wrote the model. Such pre-
conditions are the main target of our reasoning below. $¢\grestions arise: how
“good” are these? are theyfficientfor the invariants to be maintained? are they too
strong? which are concerned with ESC alone and which are restiefimsed by the
API specifier derived from POSIX recommendations or coinsisa

Before answering these questions, we should say that reblgmns such as this
have the merit of showingshere the complexity actually,iand part of it has to do with
the (often intricate) structure of datatypes involvingtedsnvariants. This calls for an
effective way of calculating which invariants hold at whiekels of a given data model
in terms of the associated coreflexives, as shown next.

17 Invariant structural synthesis

Let us denote b¥, the fact that data type constructois constrained by invariapt Of
courseF itself can be defined in terms of other type constructorstcaimed by their
own invariants. We writeg, to denote the coreflexive which captuwds constraints
involved in declaring typd-,. This is defined by induction on the structure of type
constructors (relatorg}:

€, = (&) &, (156)

2L The choice of symbol €” instead of “€”, which would be more natural regarding its use in
eg. (42), is due to the fact that notatien is already taken bgtructural membershif29], a
related but different concept.
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e = id (157)
€4 =1id (158)
€Fxc = €F X €6 (159)
€r+6 =€F + €6 (160)
€r.c = F(€q) (161)

For instancefven = (INy).,,,.,,» recall (43). ThuE gyen, = Peven by direct appli-
cation of (156) and (157). In the calculation®§,s.., which follows we abbreviate
its invariant declared in (152) by predicate(for “referential integrity”) andF' Store’s
invariant (153) bypc (for “paths closed”):

€5ystem
= { definition of System (152) }
€(OpenFileDescriptorTablex FStore)
= { (156) and datatype definitionk
(€FileHandler—OpenFileDescriptor X €(Path—File),.) * Pri
= { (157) and (156)}
(id X €path—Fite - Ppe) - Pri
= { @57}
(id x B,e) - Bys (162)

18 ESC/PF calculus at work — case study 2

Now that we know the pointfree structuf@l x &,,..) - @,; of the overall invariant which
we have to ESC for, let us investigate the structure of theadjmsm we want to check
— F'S_DeleteFile Dir. Our main goal is to discharge proof obligation

FS_DeleteFileDir p
€System>< FFS_Status System (163)

We start by using the PF-transform to “find structure” in tipedfication text. By
freezing parameter (which is not active in the specification of the operation] &r-
transformingF'S_DeleteFile Dir p we obtain a PF-expression which has the “shape”
of a McCarthy conditional (150)

c—(f.k), (id,g) (164)
where

— cabbreviates sectidf p) of the condition of the main if-then-else, thatig sys 2 p #
Root A p € dom (fs sys) N pre-F'S_DeleteFileDir_System p sys

— f abbreviated’S_DeleteFiile Dir_System p

— k abbreviated’ 'S _StatusSuccess, the success output code

— g abbreviated'S_Delete Flile Dir _Exception p.



ESC by Calculation using the Pointfree Transform 45

Facing complexity. What's the advantage of PF-pattern (164)? Below we show bow t
apply the ESC/PF calculus of section 15 to (164) in a “dividd aonquer” manner,
thus breaking the complexity of the target proof obligaiin63):

FS_DeleteFileDir p
€System>< FFS_Status €System

& { (164), (159) ancEr rsgrarus = id (157) }

. c—(f.k),(id,g)
€System X id €System

& { conditional (149)}

. (f.k) ., (id,g)
€System X id <——F— €System : QSC A €System X 2d<—€System . d)ﬁc

& { splitting (101) }

f . k
€System%€5ystem . QZ)C A Zd%€5’yste1n : dsc
N

id . g
€System%€5ystem Do A Zd%€Systefn D

& { (141), (94) }

f
€System%€5ystem . dsc
& { trading (142) and unfoldin€system (162) }

(id X Bpo) - Bri <2 (id x D) - By

= { separating (146)}

D . D,
6L 0 A idx BpL L id x B

Clearly, the focus has moved from the main functiod't®_Delete F'ile Dir_System p
(abbreviated tgf above) with respect to two (noseparatgproofs: one concerning path
referential integrity ) and the other concerning path closupe)(

It can be further observed that conditiersplits in two independent parts, that is,
¢, = b, x D, where??

caph2 (Vd : de€rngh: pathd+# p)
capt 2 p# Root A p€domt A pre-F'S_DeleteFileDir_FStore {p}t

Moreover,
f = FS_DeleteFileDir_System p

22 Note the somewhat arbitrary decision of adding conditigd Root to co. We shall have more
to say about this. Also note the notation convention of aliatig sectiongc; p) and(c2 p)
by ¢1 ande; in coreflexives’ subscripts.
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= id x F'S_DeleteFileDir_F Store {p} (165)
=1d X fg (166)

introducing abbreviatiorf; to save space. So we can calculate further:

D . D,
6L 0 A idx 8L id x B,

& { &c =, x D, ; f =id x fo; x-relator (109) }

'-QSC . éc Xf 'éc .
G L2 p N idx B T2 i g,

= { (148);(141) }

'@C f "pc
eri(f—q)ri A épcgdspc

& { trading (142) }

bl o, 0, N O<l 0, o, (167)

Going “in-the-small”. So much for ESC/PF calculatidn-the-large Going in-the-
smallmeans spelling out invariants, functions and pre-conastiand reason as in the
previous case study.

Let us pick the first proof obligation in (1674‘;”»<f—q5”» - &... Following (132)
as earlier on, we go pointwise and try to rewrite weakesigareditionri(f (M, N)) —
whereM handles open file descriptors aidfile contents, recall diagram (151) — into
ri(M, N) and a pre-condition, which will be the weakest for maintagni: provided
all steps in the calculation are equivalences. Then we coartha outcome with what
the designer wrotef(.).

Taking advantage of the fact that both data structideand N are relations, we
choose to start by PF-transforming

ri(M,N) & p(path-M)CJ§N

according to diagram (151) and thus investing on PF-natatifain. This expression for
ri, which clearly spells out the referential integrity coastt relating paths in opened
file descriptors and paths in the file stave further transforms to

ri(M,N) & path-M C N°-T (168)
cf. diagram
OpenF'ileDescriptor M RileHandler
pathl - lT
Path File
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On the other hand, (165, 166) and (155) lead to

ri(f(M,N)) = ri(FS_DeleteFileDir_System p (M, N))
=ri(M, N - Pg(p)))
In the calculation below we generalifg} to any setS of paths:
ri(M, N - & (4s))
e { (168) }
path - M C (N -Pgg))° - T
& { converses (26,59}
path - M C &ggy - N°- T
< {@n}
path - M C N°-TNPggy - T
& { N-universal (21)}
path-M C N°-T A path-M C ®gg)- T
& { (168) ; shunting (67)}
ri(M,N) AN M C path®-Pgs) - T

wp

The obtained weakest pre-conditiep converts back to the pointwisg b : b €
rng M : path b ¢ S) which instantiates tdqv b : b € rng M : path b # p)
for S := {p}. This is in fact a conjunct of pré&-S_Delete File Dir_System, itself a
conjunct ofc p, the condition ofF’'S_Delete File Dir’'s if-then-else. So we are done as
far invariantri is concerned.

Before moving to invarianc, note two levels of reasoning in ESC/PF calculations:
thein-the-largelevel using the ESC/PF arrow calculus anditihe-smallevel, where
PF-notation describes data and properties of data, typioghriants.

Checking for paths-closed invariant preservatiddur last ESC/PF exercise has to do
with the remaining proof obligation

FS_DeleteFileDir_F Store {p}

Dpe Dpe - Do, (169)
whereF'S_DeleteFile Dir_F Store {p} PF-transforms to
(FS_DeleteFileDir FStore S) N = N - ®gg) (170)

generalizing{p} to an arbitrary set of pathS, as we have seen. The PF-transform of
invariantpc,

pc N 2 Directory - N C fileType - attributes - N - dir Name (172)
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is explained by the rectangle added below to diagram (151):

FileHandler —2~ OpenFileDescriptor

path
N ib
Path File attribules, Attributes
dirNameT Ul lfileType
Path N File Directory leeType

Again, our strategy will be to ignoré.., in (169) for a moment and calculate the weak-
est pre-condition fol"'S_Delete Flile Dir_F Store S to preservepc; then we compare
., with the pre-condition thus obtained. For improved realitgbive introduce ab-
breviationsft := fileType - attributes andd := Directory:

pc(F'S_DeleteFileDir_FStore S N)
& { (170) and (171)}
d-(N-®gs)) C ft-(N-Pgsy) - dirName
& { shunting (69) }
d-N-®gs)-dirName® C ft- N - Dgg)
<  {@s}
d-N-Pgg)-dirName® C ft - NNT - Dgg)
& { N-universal ; shunting}
d-N-®gg) C ft-N-dirName N d-N-®gg) C T Pgg)-dirName
& { T absorbsi (115) }
d-N-®gg) C ft-N-dirName N N Pgg) C T Pgg)-dirName

weaker thampc(N) wp

This ends the PF-calculation of this ESC proof obligatibreinains to compare,
with wp just above which, back to points, re-writes to:

Vg :qgedom N AN q¢S: dirNameq ¢ S)
= { predicate logic}
(Vg : qedom N A (dirNameq) € S: qeS)

This is pre-condition (154) which, in words, meaiigarent directory of existing path
q is marked for deletion than so must &eConditionc, involves this pre-condition, for

S = {p},

(Vq : gedom N A (dirNameq) =p: q=Dp)
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but adds further constraints. $gis stronger than the calculated weakest pre-condition
and, thanks to (132), we are done. In particutardoesn’t allow for Root deletion.
Conditionwp enables so (sincér Name Root = Root) provided no other files exist

in the file system.

The interest of these observations, which we have reachezloylation, lies in
the fact that the POSIX standard itself [58] is ambiguoushis matter. Whether the
minimal F'Store is the empty relation or whether it must be the root direcssingle-
ton is a bit of a philosophical question. In the POSIX Systeterface [58] one reads,
concerning themdir()  system call:

The rmdir() function shall remove a directory whose namevsmgby path. The direc-
tory shall be removed only if it is an empty directory. If thedtory is the root directory
or the current working directory of any process, it is unsfied whether the function
succeeds, or whether it shall fail and set errno to [EBUSY].

Another aspect of the starting specification is clapuse dom (fs sys). From the
calculations above we infer that no harm arises from tryinddlete a non-existing file,
as nothing happens to the system. So, the correspondingede should be interpreted
more as a warning than as an exception.

19 Alloy friendship

The “everything is a relation” lemma of Alloy and the PF-flavaf its notation turn
the Alloy Analyzer into a very helpful tool supporting the ®&nsform on practical
grounds. This tool has been developed by the Software D&&ignp at MIT for an-
alyzing models written in a simple structural modeling laage based on first-order
logic. Being a model checker, it does not discharge proofsuak but is very useful
in finding (via counter-examples) design flaws, as reporigd1] concerning the VFS
project.

Space constraints prevent us from giving the Alloy modelétad. We focus on
invariantpc which PF-transforms to (171). Note the similarity betwe#&nl() and the
corresponding code in Alloy syntax,

pred pclnvariant[t: FStore]{
RelCalc/Simple[t.map, Path]
(t.map).(File->Directory)
in dirName.(t.map).attributes.fileType

}

where predicat8imple is available from libraryrelCalc (it checks for relation sim-
plicity), composition is written in reverse order amép has to do with the declaration
of F'Store as an Alloy signature [30]:

sig FStore {
map: Path -> File,
}

Note howFile->Directory elegantly represents the constant functidirectory
in (171). The alternative, pointwise versiomafis written in Alloy as follows:
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pred pclnvariantPWI[t: FStore]{
RelCalc/Simple[t.map, Path]
all p: Path |
p in RelCalc/dom[t.map] =>
p.dirName in RelCalc/dom[t.map] &&
t.map[p.dirName].attributes.fileType =
Directory

}

Checking (not proving!) the equivalence of these two alitwe predicates can be ex-
pressed in Alloy by running assertion

assert equivPWPF {
all t: FStore | pclnvariant[t] <=> pclnvariantPW([t]

}
See [21] for more about the role of Alloy in the VFS case study.

Exercise 14.Alloy will find counter-examples to the assertion above otiw simplicity re-
quirementRelCalc/Simple[t.map, Path] is dropped from both predicates. Resort to
the PF-calculus and show why the calculations which lead7a) are not valid for arbitraryv.

O

20 Conclusions

In full-fledged formal software development one is obligedptovide mathematical
proofs that desirable properties of software systems Watddmportant class of such
properties has to do with (extended) type checking and dedithose which ensure
that datatype invariants are not violated by some trace efsirstem at runtime. A
way to prevent this consists of abstractly modeling thendéal system using a formal
language, formulating such proof obligations and provimgnt. Because this is not
done at run-time, this class of proof belongs to #tatic world of software quality
checking and is known under the ES&x{ended static checkipgcronym.

ESC proofs can either be performed as paper-and-pencitisgsror, in case of
sizeable models, be supported by theorem provers and moeekers. Real-life case
studies show thall such approaches to adding quality to a formal model are Lisefu
their own way and have a proper place in software engineesiig formal methods.

The main novelty of the approach put forward in the currepgpaesides in the cho-
sen method of proof construction: first-order formulae ingbrabligations are subject
to the PF-transform before they are reasoned about. Thigldce flavoured” trans-
formation eliminates quantifiers and bound variables addaes complex formulas to
algebraic relational expressions which are more agile lmutste with. Suitable rela-
tional encoding of recursive structures often makes itiptesto perform non-inductive
proofs over such structures.

The overall approach is structured in two layers: one is mébrset of rules (the
ESC/PF calculus) which enable one to break complex prodfjatidbns into smaller
ones, by exploiting both the structure of the predicateslired (expressed as coreflex-
ive relations) and the PF structure of the software oparatlweing checked. This is
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referred to as thin-the-largeESC/PF level, which uses arrow notation clearly remind-
ing the user that one is doing (extended) type checking.

One moves into tha-the-smallevel wherever discharging elementary proofs, that
is, ESC-arrows which cannot be further decomposednbiye-large calculation. In
spite of the reasoning going pointwise at this level, thecBIEulus turns up again wher-
ever the particular data structures are encoded as redatiahinvariants as PF-formulae
involving such relations. As already stressed in [48], thia novel ingredient in PF-
calculation, since most work on the pointfree relation chls has so far been focused
on reasoning about programs (ie. algorithms) [13]. Advaeseof our proposal tani-
formly PF-transform both programs and data are already appaneradical level, see
eg. the work reported in [41]. The approach contrasts with\BM tradition where
universal quantifications over finite lists and finite mapygiare carried out by induc-
tion on such structures [32]. It should be noted, howevat,itiboteveryproof obligation
leads to such calculations. The encoding of lists into simglations, for instance, does
not takefinitenessaspects (eg. counting elements, etc) into account.

Last but not least, this paper helps in better characterittia notion oftypeof an
arbitrary piece of code, since Hoare logic is shown to be utideumbrella of ESC/PF,
as is the weakest pre-condition calculus.

21 Future work

This paper finds its roots in the excellent background for pot@r science research
developed by the MPC (Mathematics of Program Constructipayp [1,29, 13, 7].
Surely there is still much to explore. For instance, Voers®RhD thesis [62] inves-
tigates the use of PERs (partial equivalence relations) ddehdatatypes subject to
axioms, as in the classic abstract data type (ADT) tradit@@oreflexives are minimal
PERSs, so the view oforeflexives as typamplicit in the current paper can surely be
extended to that dPERs as typeddow much is gained in this generalization needs to
be balanced against what is likely to be lost.

The idea that the proposed ESC/PF calculus bridges Hoaiedog type theory
needs to be better exploited, in particular concerning thekwy Kozen [36] on sub-
suming propositional Hoare logic under Kleene algebra tétits (of which the rela-
tional calculus is a well known instance [7]) and the work egiteg on Hoare type
theory(HTT) [40], which should be carefully studied. Still on thgte theory track, the
alternative use of dependent types to model types subjectaniants and the way in
which ESC proofs are carried out by systems such as Agda lipd]ld be compared to
the current paper’s approach.

The arrow notation adopted in the ESC/PF calculus not ordglesjuate to express
proof obligation discharge as a type-system kind of problamalso triggers synergies
with similar notation used in other branches of computinigk Runctional dependence

(FD) theory [38], for instance, where one Writﬁsji g to mean that in database relation
R (set of tuples), attributg is functionally dependent on attribufe

Wttt €eR: ft=ft =gt=gt)



52 J.N. Oliveira

Compare, for instance, (145) with tdecompositiomxiom of FDs

hiken>fnfBgng=k

where< compares (sets of) attributes. In the PF-approach to FBrjraeveloped in

[45,47]%, Rin f Eid g is modeled by a coreflexive relation and attribufeg by func-
tions. (So functions and coreflexives swap places when coedpaith ESC arrows.)
Checking how much structure is shared among these two (spéat) theories is some-
thing the PF-transform has potential for.

As far as tool support is concerned, reference [41] alreadygmts visible progress
in the automation of the relational calculus applied to HRE situations. Calculations
are performed using a Haskell term rewriting system writtethe strategic program-
ming style. Another related line of research is the desigthefGalculator [56], a
prototype of a proof assistant of a special brand: it is gdielsed on the algebra of
Galois connections. When combined with the PF-transfordtactics such as indirect
equality (15), it offers a powerful, generic device to tackhe complexity of proofs
in program verification. Moreover, we think the ESC/PF chlsicould be of help in
designing ayenericproof obligation generator which could be instantiatedadipular
tool-sets such as, for instance, the one developed by Vemi6él] for VDM.

The ESC/PF calculus can be further developed taking intowattather aspects of
model-based reasoning such as, for instance, refineme®qBX he reader is left with
an exercise which provides a foretaste of ESC rules enthjlexperation refinement.

Exercise 15.The refinement ordering on pre/post-specification pains@ieas binary relations
can be defined by

SFR & §SC(R\S)NSR 172)

meaning thatS (the specification) is smaller domain-wise and vaguer ramge thanR (the
implementation) [50]. That is, implementations can onlyni@e defined and more deterministic
than specifications.

From¥<—>—& andS + Rinferw<"—&.5 5.
]
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A Background — Eindhoven quantifier calculus

When writingV, 3-quantified expressions is useful to know a number of ruleghvh
help in reasoning about them. Throughout this paper we abegindhoven quantifier
notation and calculus [7, 4] whereby

NVx:R:T)
(3x : R: T)

mean, respectively

— “forall xzinrangeR itis the case thai™
— “there existsz in range R such thatl™.

Some useful rules abovit 3 follow, taken from [7]%%:

— Trading:
Mi:RANS:T)=Ni:R: S=T) (173)
Fi:RANS:T)=3Fi: R: SAT) (174)
— One-point:
~Vk :k=e: T)=T[k:=¢] (175)
3k k=e: T)=T[k:=¢€] (176)
— de Morgan:
-(Vi: R: T)=(3i: R: -T) a77)
-(3i: R: T)=(Ni: R: -T) (178)
Nesting:
Ma,b: RANS:T)y=(Na:R: (¥Vb:S:T)) (179)
(Fa,b: RANS:Ty=(3a: R: (3b:8:T)) (180)
— Empty range:
(Vk : FALSE: T) = TRUE (181)
(3k : FALSE: T) = FALSE (182)
— Splitting:
VMj:R: Vk:S:T)=Nk:{3j:R:S5:T) (183)
Fj:R: 3k:S:T)y)=3k:3j:R:5:T) (184)

24 As forewarned in [7], the application of a rule is invalid(#) it results in the capture of free
variables or release of bound variablés) a variable ends up occurring more than once in a
list of dummies.
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