
Durham E-Theses

Acquiring data designs from existing data-intensive

programs

Yang, Hongji

How to cite:

Yang, Hongji (1994) Acquiring data designs from existing data-intensive programs, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5161/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5161/
 http://etheses.dur.ac.uk/5161/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

A C Q U I R I N G DATA DESIGNS
F R O M E X I S T I N G

D A T A - I N T E N S I V E P R O G R A M S

Ph.D Thesis

University of Durham
Department of Computer Science

Hongji Yang

1994

HAY mi

Abstract

The problem area addressed in this thesis is extraction of a data design

from existing data intensive program code. The purpose of this is to help a

software maintainer to understand a software system more easily because a view

of a software system at a high abstraction level can be obtained.

Acquiring a data design from existing data intensive program code is an

important part of reverse engineering in software maintenance. A large proportion

of software systems currently needing maintenance is data intensive. The research

results in this thesis can be directly used in a reverse engineering tool.

A method has been developed for acquiring data designs from existing data

intensive programs, COBOL programs in particular. Program transformation is

used as the main tool. Abstraction techniques and the method of crossing levels

of abstraction are also studied for acquiring data designs.

A prototype system has been implemented based on the method developed.

This involved implementing a number of program transformations for data ab

straction, and thus contributing to the production of a tool. Several case studies,

including one case study using a real program with 7000 lines of source code, are

presented. The experiment results show that the Entity-Relationship Attribute

Diagrams derived from the prototype can represent the data designs of the original

data intensive programs.

The original contribution of the thesis is that the approach presented in

this thesis can identify and extract data relationships from the existing code by

combining analysis of data with analysis of code. The approach is believed to be

able to provide better capabilities than other work in the field.

The method has indicated that acquiring a data design from existing data

intensive program code by program transformation with human assistance is an

effective method in software maintenance. Future work is suggested at the end of

the thesis including extending the method to build an industrial strength tool.

Acknowledgements

I wish to acknowledge the Department of Trade and Industry (of the United King

dom), the Science and Engineering Research Council (of the United Kingdom) and

I B M (UK) for the financial support of the research.

I wish to thank Prof. K. H. Bennett sincerely for agreeing to be my super

visor, for his invaluable advice and encouragement and for his skillful supervision

and administration throughout this research project.

I would Hke to thank Dr. Martin Ward, Dr. Tim Bull, Mr. Nigel Scriven,

Mr. Brendan Hodgson, Dr. Roger Hutty, Dr. Brian Bramer and Mr. Tom

Ronton for their useful advice in research techniques, support in working environ

ment, encouragement in completing the thesis and help in improving my English

language.

I would also like to thank my wife Xiaodong Zhang for her unselfish support

and to admit that I am in debt to my son Tianxiu Yang for being unable to spend

enough time with him which I should whilst undertaking this study.

The thesis is prepared with I^T^X [97,99].

Copyright

The copyright of this thesis rests with the author. No quotation from it should

be published without his prior written consent and information derived from it

should be acknowledged.

n

Statement

The material offered in this thesis has not been submitted wholly or in part for

any academic award or qualification other than that for which it is now submitted.

During the period of registered study in which this thesis was prepared, the author

has not been registered for any other academic award or qualification.

ni

Contents

1 Introduction 1

1.1 Purpose of the Research and Overview of Problem 1

1.2 Scope of the Thesis and Original Contribution 3

1.3 Criteria for Success 5

1.4 Thesis Structure 6

2 Software Engineering 7

2.1 Software and Software Engineering 7

2.1.1 Computer System Evolution 7

2.1.2 Software Engineering and its Paradigms 9

2.1.3 Advantages and Disadvantages of Three Software Engineer

ing Paradigms 11

2.1.4 A Generic View of Software Engineering 12

2.1.5 Software Quality and Software QuaHty Assurance 14

2.1.6 Current State of Software Engineering 15

2.2 Software Maintenance 17

2.3 Reverse Engineering 22

2.4 Summary 25

3 Work Related to Reverse Engineering 27

3.1 Introduction 27

3.2 Formal Specification 29

3.2.1 Specifications 29

3.2.2 Algebraic Specification Languages 32

I V

Contents v

3.2.3 State-Machine Specification Languages 36

3.2.4 Abstract Model Specification Languages 37

3.2.5 A Comparison of the Approaches 41

3.3 Program Transformation Systems 42

3.3.1 Refinement and Transformational Programming 42

3.3.2 Features of Transformation Systems 44

3.3.3 Program Transformation Systems 46

3.3.4 Summary 49

3.4 Program Verification 49

3.4.1 Concept of Proof (Program Proving) 49

3.4.2 Examples of Existing Program Verification Tools 53

3.4.3 Summary 56

3.5 An Overview of the Main Existing Reverse Engineering Ap

proaches Used in Software Maintenance Projects 57

3.5.1 MACS 58

3.5.2 Reverse Engineering in REDO 59

3.5.a Sneed'sWork 60

3.5.4 A CASE Tool for Reverse Engineering 62

3.5.5 T M M 63

3.5.6 A Concept Recognition-Based Program Transforma

tion System 64

3.5.7 REFORM 65

3.6 Summary 65

4 Proposed Research Problem 68

4.1 Features of Data-Intensive Programs 69

4.1.1 Software Design Process 69

4.1.2 Structured Systems Analysis and Design Method 71

4.1.3 Features of Data-Intensive Programs 76

4.2 Representing Data Designs Using Entity-Relationship

Attribute Diagrams 78

4.2.1 Entity Models 78

Contents vi

4.2.2 Entity-Relationship Attribute Diagrams in SSADM 79

4.3 Reverse Engineering Through Data Abstraction 81

4.3.1 Abstraction Techniques in Programming 81

4.3.2 Data Abstraction 83

4.3.3 Data Type 84

4.3.4 Abstract Data Types 88

4.3.5 Abstraction Levels of Data and Software 88

4.4 Definition of Proposed Research Problem 90

5 Working Environment and Design Recovery Method 92

5.1 Working Environment 92

5.1.1 Ward's Work and its Application in the REFORM Project 93

5.1.2 The Wide Spectrum Language 94

5.1.3 Advantages of Using Program Transformation and WSL . 102

5.1.4 The Original Design of the Maintainer's Assistant 103

5.1.5 The State of the Maintainer's Assistant by 1991 104

5.2 Review of the Maintainer's Assistant 109

5.3 Recovering Data Designs I l l

5.3.1 Combining Code Analysis with Data Abstraction I l l

5.3.2 Using Program Transformations and WSL I l l

5.3.3 Analysis of the Problems with Data-Intensive Programs 112

5.3.4 A Design Recovery Method 113

5.3.5 Enhancement Design of the Maintainer's Assistant for Ac

quiring Data Designs from Data-intensive Programs . . . 114

6 Extending and Using W S L 117

6.1 Introduction to the WSL Extension 117

6.2 Extension of WSL 119

6.2.1 Representing Records and Files 120

6.2.2 Representing Basic Data Types and User-Defined Abstract

Data Types 130

6.2.3 Representing Entity-Relationship Attribute Diagrams 133

Contents vii

6.3 Extension of Meta-WSL 136

6.4 Embedding WSL in COMMON LISP 138

6.5 Translating Data Intensive Programs to WSL 140

6.5.1 Consideration and Decision 140

6.5.2 An Example of Translating A COBOL Program into WSL 141

6.6 Program Transformation Writing 146

7 Program Transformations and Data Abstraction 149

7.1 Introduction 149

7.2 Influence of Forward Engineering on Reverse Engineering . . . 150

7.2.1 Crossing Levels of Data Abstraction 150

7.2.2 Role of Human Knowledge 153

7.3 Acquiring Data Designs from Program Code Using Program

Transformation 156

7.3.1 Different Types of Transformation and Abstraction Levels 156

7.3.2 "Back Tracking" 158

7.3.3 Formal Definition of Three Types of Transformation 159

7.4 Issues on Inventing and Proving Program Transformations 162

7.5 Program Transformations of Data Abstraction 164

7.5.1 Transformations for Deriving Records 164

7.5.2 From Records to Data at the Conceptual Level 166

7.5.3 From Code Level Data Operations to Data Relations . 168

7.5.4 Abstraction from Code 173

7.5.5 From User-Defined Data Types to Data Design 177

7.5.6 Deriving Data Designs from Data and Code . 178

7.5.7 Transformations for Manipulating Program Items 183

8 Design and Implementation 184

8.1 Design of the Prototype 184

8.1.1 Transformations for Data Design Recovery 184

8.1.2 Program Structure Database 185

8.1.3 General Simplifier 186

Contents viii

8.1.4 Metric Facility 188

8.2 Extension of WSL 189

8.3 Transformations 190

8.4 Program Structure Database 195

8.4.1 Use of Recursion Programming Techniques 195

8.4.2 Dealing with A l l Kinds of WSL Construct 196

8.4.3 Deriving Database Query Functions from Their Specifi

cations . . . 196

8.4.4 An Example of Implementing a Database Query Function 197

8.5 General Simplifier (SymboHc Executor) 198

8.6 The Metric Facility 204

8.6.1 Collecting Program Property Information 204

8.6.2 Processing Metrics 206

8.6.3 Plotting Metric Graphs 206

8.7 The Interface 207

8.8 Integration of the Prototype 209

9 The Use of the Prototype System and Results 211

9.1 Introduction : 211

9.2 Case Study 1 — A File Copying Program 212

9.2.1 Modelling File Operations by Queue Operations 212

9.2.2 Transforming Records into Entities 214

9.2.3 Turning Assignments into Relate Statements 215

9.2.4 Ignoring Useless Relate Statements 217

9.2.5 Abstracting Branching Structures and Loop Structures 218

9.2.6 The Resultant "Program" in WSL and its Entity-Relationship

Attribute Diagram 219

9.3 Case Study 2 — A Program Using Abas 222

9.4 Case Study 3 — A Vetting and Pricing Program Used in a

Telephone Company 224

9.4.1 Introduction to the Program 225

9.4.2 Translating the Program into WSL and Initial "Tidy-up" 225

Contents ix

9.4.3 Obtaining relate Statements 226

9.4.4 Aliased Records 226

9.4.5 Obtaining Entities : 226

9.4.6 Obtaining Relationships 226

9.4.7 Final Tidy-up and Result 229

9.5 Case Study 4 — A Customer Account Ledger Program Used in

A Telephone Company 229

9.5.1 About the Program 229

9.5.2 Experiments to the Program 230

9.5.3 Comments 231

9.6 Case Study 5 — A Public Library Administration System . 233

9.6.1 Background of the Program 233

9.6.2 Prepreparing the Program for the Prototype 234

9.6.3 Dealing with CICS Calls 235

9.6.4 Resultant Entity-Relationship Attribute Diagrams 236

9.6.5 Understanding the Program Through A Data Design . 236

9.7 An Example of Using the Metric FaciHty 238

10 Conclusions 243

10.1 Summary of Thesis 243

10.2 Evaluation 245

10.3 Assessment 248

10.4 Future Directions 251

A Syntax of WSL Extension 252

A . l Introduction 252

A.2 Programs 252

A.3 Commands 252

A.4 Names 253

A.5 Expressions 253

A.6 Specification Statements : 254

A.7 Declarations 255

Contents x

A.8 Parameters 256

A. 9 Lexicon 257

B Semantics of WSL Extension 259

B. l Introduction 259

B.2 Commands 259

B.3 Expressions 260

B.4 Specification Statements 260

B. 5 Declarations 261

C Syntax and Semantics of Meta-WSL Extension 262

C. l Notations 262

C.2 Specification of Program Structure Database Queries 264

C.2.1 Query: [Variables] 264

C.2.2 Query: [Assigned] 265

C.2.3 Query: [Used] 265

C.2.4 Query: [Used-Only] 266

C.2.5 Query: [Assd-Only] 266

C.2-.6 Query: [Assn-to-self] 266

C.2.7 Query: [Depth] 267

C.2.8 Query: [Primitive?] 267

C.2.9 Query: [Terminal-value] 268

G.2.10 Query: [Regular?] 268

C.2.11 Query: [Regular-system?] 270

C.2.12 Query: [Terminal?] 270

C.2.13 Query: [Proper?] 273

C.2.14 Query: [Reducible?] 274

C.2.15 Query: [Improper?] 275

C.2.16 Query: [Dummy?] 275

C.2.17 Query: [Calls] 275

C.2.18 Query: [Statements] 276

C.2.19 Query: [Calls-terminal?] 276

Contents xi

C.2.20 Query: [Calls-term-sys?] 277

C.2.21 Query: [Size] 277

C.3 Specification of General Simplifier 277

C. 4 Specification of Metric FaciHty 278

C.4.1 Preliminary Definitions For Metrics Functions: 278

C.4.2 Metric: [MCCABE] 280

C.4.3 Metric: [Structural] 280

C.4.4 Metric: [LOG] 280

C.4.5 Metric: [L0C2] 280

C.4.6 Metric: [CFDF] 281

C.4.7 Metric: [BL] 281

D Program Transformations for Data Abstraction 282

D. l Deriving Records 282

D.2 From Records to Data in Design Level 282

D.3 From Code Level Data Operation to Data Relations 283

D.4 Abstraction from Code 284

D.5 From User-Defined Data Type to Data Design 284

D.6 Deriving Data Design from Data and Code 284

D.7 Manipulating Program Items 285

References 286

List of Figures

1.1 Evolution of Data Design and Code 2

3.1 Stages of Program Development 28

3.2 Languages for Software Development 29

3.3 A Stack Specification in an Algebraic Specification Language (OBJ) 34

3.4 A Stack Specification in a State-machine Specification Language . 37

3.5 An Array Specification in an Algebraic Specification Language . . 39

3.6 A Stack Specification in an Abstract Model Specification Language

(based on pre- and post-conditions) 39

3.7 Inverse Transformation of Software from Code to Specification . . 61

3.8 Re-Engineering Cycle 63

4.1 SSADM Stages 74

4.2 An Entity-Relationship Attribute Diagram 79

4.3 Relationships in Entity-Relationship Attribute Diagrams 82

5.1 From Source Code to a Program in Low-Level WSL 104

5.2 From a Program in Low-Level WSL to a Program in High-Level WSL105

5.3 From a Program in High-Level WSL to Z Specification 105

5.4 The X-Windows Front End 108

5.5 A Data Design Recovery Method 114

6.1 WSL Language Levels and Their Usage 118

6.2 Storage Model 127

6.3 Entities and Relationships in WSL 137

6.4 Diagrammatic Form of a WSL Syntax Tree . 139

xu

List of Figures xiii

6.5 COBOL Sequential Files 143

7.1 Three Ways of Crossing Levels of Abstraction 152

7.2 Three Types of Program Transformation 157

7.3 "Back Tracking" 159

7.4 Approach of Deriving Entity-relationship Attribute Diagrams . . . 165

7.5 Deriving a Relationship from a Record with Subrecord 168

7.6 Modelling a Sequential File by Two Queues 170

7.7 Deriving a Relationship from an Abstract Data Type 180

7.8 Deriving a Relationship from a Foreign Key 181

8.1 Design of the Prototype 185

8.2 Program Structure Database Queries 187

8.3 WSL Syntax Table 191

8.4 Organisation of Boyer-Moore Theorem Prover 199

8.5 The Metrics Menu 208

9.1 The Result from File Copying Program on X-Windows Front End 220

9.2 The Entity-Relationship Attribute Diagram for "File-Copy" Program221

9.3 Final Report on Customer Account Records 232

9.4 Books in a Library 237

9.5 The Measure Result of Lines of Code 240

9.6 The Measure Result of Control-flow and Data-flow Complexity . . 241

9.7 Measure Results of Using Metric FaciHty 242

Chapter 1

Introduction

1.1 Purpose of the Research and Overview of

Problem

The research described in this thesis was motivated by the increasing industrial

demand to carry out software maintenance more efficiently, because software main

tenance has become the most costly stage of the software lifecycle [21,22]. Study

shows that reverse engineering is the first step in understanding the software to

be maintained. Reverse engineering consists of two main activities - redocumen-

tation and design recovery, and design recovery is the more challenging subset of

reverse engineering [25,52]. Data design recovery of software is an important part

of general design recovery. The purpose of the research is to establish the feasibil

ity of using data abstraction techniques within a transformational programming

approach by acquiring data designs from existing legacy programs.

In the typical waterfall software fife cycle, the stage of design exists after the

stage of requirements analysis and before the stage of implementation. Require

ments analysis establishes what the system should do and under what circum

stances it is to be done, whereas design establishes how it is to be done. Data

design establishes what data should be held by the software system and how that

data should be organised and used.

Data design recovery is the process in reverse. It should produce the in-

C h a p t e r 1. Introduct ion

1960 1961 1992

Banking World Banking World

Evolution

Banking World

Data Design Data Design Data Design

Code + Data

Modifications

Code + Data Code + Data

Figure 1.1: Evolution of Data Design and Code

formation required for a software maintainer to understand what software does,

how i t does i t and why i t does i t , and so for th , via the data which the software

uses. Usually, data design recovery recreates data abstractions f rom a combina

t ion of code, existing design documentation (i f available), personal experience,

and general knowledge about problem and application domains.

I n practice, most software is heavily modified. The actual data design exist

ing now w i l l typically be very different f rom the original data design. Therefore,

i t may be thought very diff icult and meaningless to extract the original data de

sign. But data usually models the real world which we understand. There may

be an opportunity to extract the current data design f rom the current version of

the code, as the current data design should represent the reality. For example,

a banking system might have been in use since (say) 1960. As the real banking

world changes, the data/code of the banking system has to be modified. By 1992,

i t is probably not necessary to recover the data design of the system for 1960.

Nevertheless, i t is possible to recover the data design for 1992 f rom the code and

the general knowledge of the banking world of 1992 (Figure 1.1). This suggests

C h a p t e r 1. Introduct ion

major understanding of data and/or code w i l l be needed along the way.

Data plays a significant role in software. A good understanding of data

used in a software system w i l l assist a software maintainer in understanding the

software system, so as to improve the maintenance activity.

The terms used in the chapter, such as software maintenance, reverse engi

neering, etc., w i l l be defined in the following chapters.

1.2 Scope of the Thesis and Original

Contribution

The primary goal of reverse engineering a software system is to increase the overall

comprehensibility of the system in the software maintenance process. Five key ob

jectives encompassed by the goal of software understanding are identified by [52]:

to cope w i t h complexity, to generate alternate views, to recover lost information,

to detect side effects and to synthesise higher abstractions. According to these

five general objectives, five concrete objectives were identified correspondingly for

the research in this thesis:

1. Bui lding A Tool — A key to tackling the complexity and volume of software

is automated support. I n reverse engineering an effective method is only

commercially viable when i t is backed up by tools. So a prototype system

should be bui ld as a demonstrator of this research.

2. Generating Entity-Relationship At t r ibu te Diagrams — Graphical represen

tations are good aids to understanding. Entity-Relational At t r ibute Dia

grams have long been used as representations for data design. To derive

data designs presented as Entity-Relational At t r ibu te Diagrams is another

objective of this research.

3. Recovering Lost Information — Information useful to software maintainers

may be lost i n the process of software evolution, in particular that software

being heavily maintained. For example, modifications are often not recorded

in the documentation, especially at a level higher than the code itself. Data

C h a p t e r 1. Introduct ion

design recovery can assist us to salvage f r o m the existing code potentially

useful information.

4. Detecting Possible Faults — Mistakes could have been made when a software

was first bui l t or when a modification was carried out in the software's

history. Data design recovery can be directly helpful in detecting faults in

the software, because the obtained data design can show the true structure

of the code and i t is easier to spot faults in data design than in code.

5. Viewing Software at a Higher Abstraction Level — Software can be viewed at

different abstraction levels. In particular, data, which is the main component

of software, can be viewed at the code level and conceptual level (to be

discussed in detail i n later chapters). Obtaining data designs which belong

to a conceptual data level makes i t possible to view software at a higher

abstraction level.

The scope of the thesis includes:

• Development of a data design recovery method: a method is established for

discovering possible data designs f r o m existing data-intensive programs for

the purpose of reverse engineering.

• Implementation of a prototype system: a system is constructed for demon

strating the success of the above method.

• Experimentation w i t h example programs: a number of programs are used

for experiments w i t h the prototype system and common problems in the

programs, such foreign keys, are examined.

The original contribution of the thesis is to combine formal methods, trans

formational programming, data abstraction techniques and crossing levels of ab

straction techniques for acquiring data designs f r o m the existing programs. A

method is proposed in the thesis and the result of applying the method shows

that data relationships which exist only in the code can be identified and ex

tracted. A prototype is bui l t to demonstrate the research results.

C h a p t e r 1. Introduct ion

The literature survey in Chapter 2 and 3 shows that there are no reverse

engineering tools currently existing which are able to acquire an Entity-Relational

A t t r ibu te Diagram directly f r o m program code in this way.

Proving the correctness of transformations is not a focus of this thesis because

i t has been addressed in other research such as in [155]. I t is also not intended to

bui ld an industrial-strength tool but i t is pointed out that future research can be

f r u i t f u l i f carried out along the direction which is proposed in this thesis.

1.3 Criteria for Success

The success of the research described in this thesis is determined by the following

criteria:

• I f we start w i t h old, heavily modified code which has never been developed

using a formal or informal method, how viable is i t to extract a program

data design or specification f r o m the code?

• I f i t is possible under certain restrictions, what are these restrictions? What

exactly does the user need to supply?

• What is the method for extracting data design f rom the existing data inten

sive code?

• Obviously the process involves crossing levels of abstraction. How do we

cope w i t h this i n order to obtain a data design f r o m existing data intensive

code?

• Can we bui ld a tool to demonstrate the approach developed in this thesis?

• What is the metric to measure the resultant code (or data design) which

has been reverse engineered by this method?

C h a p t e r 1. Introduct ion

1.4 Thesis Structure

The structure of the thesis is as follows:

Chapter 2 provides an overview of the software engineering process and shows

how reverse engineering fits into the process.

Chapter 3 gives an overview of related research in reverse engineering and

current research in the area of reverse engineering.

The remaining chapters describe the research undertaken wi th in the project.

Chapter 4 introduces data abstraction techniques, data abstraction levels

and data design representations used in forward engineering and discusses the

way in which they are used in reverse engineering. I t also describes the problems

of acquiring data designs f r o m existing data-intensive programs.

Chapter 5 introduces the environment i n which the prototype components

of the Maintainer's Assistant for acquiring data designs f rom existing code are to

be developed, and proposes a design recovery method.

Chapter 6 gives the reason why and how the existing WSL has to be ex

tended and how the approach of transformational programming is used in the

Maintainer's Assistant.

Chapter 7 discusses the use of crossing levels of abstraction to acquire data

designs.

Chapter 8 describes the prototype components of Maintainer's Assistant

which apply the result of the research in this thesis and the implementation of the

prototype components.

Chapter 9 describes the details of experimenting wi th real program examples

w i t h the prototype, and shows the results obtained f rom the use of the prototype.

Chapter 10 summarises the thesis, assessing the research carried out in this

thesis against the proposed criteria and suggesting areas for future research.

Statement: Although this research has been carried out in a collaborative

project, R E F O R M , all work i n this thesis is by the author (an original member

of the R E F O R M project) , except where exphcitly stated.

Chapter 2

Software Engineering

2.1 Software and Software Engineering

2.1.1 Computer System Evolution

Although the technological revolution of computing is just a few decades old, a

number of significant subrevolutions have taken place. During this t ime, software.

development has been closely coupled to computer system evolution.

Computer system evolution can be divided into four eras [132]. The first era

was f r o m the late 1940s to the mid-1960s. During this period, hardware underwent

continual change and software development was largely unmanaged. Also batch

orientation was used for most systems; software was customer designed for each

application, often implemented by a single person and seen as a "craft", and had

a relatively l imi ted distribution.

The second era of computer system evolution spanned the decade f rom the

mid-1960s to the late 1970s. Mult iprogramming and multi-user systems intro

duced new concepts of human-machine interaction. Real-time systems could col

lect, analyse, and transform data f r o m multiple sources, thereby controlling pro

cesses and producing output in milliseconds rather than minutes. Advances in

on-line storage devices led to the first generation of data base management sys

tems. A t the same t ime, people started to use product software and software was

developed for widespread distribution in a multidisciplinary market. Software

C h a p t e r 2. Software Engineer ing 8

purchased f r o m outside the organisation was extended by the addition of new
program statements to meet new needs. A l l of these software products had to
be corrected when faults were detected, modified as user requirements changed,
or adapted to new hardware. These activities were collectively called software
maintenance. Efforts spent on software maintenance began to absorb resources
at an alarming rate, and the personaHsed nature of programs made them very
diff icul t to maintain. A software crisis had begun.

The t h i r d era of computer system evolution began in the mid-1970s. Dis

t r ibuted systems greatly increased the size complexity of computer-based systems.

Global and local area networks, high band-width digital communications and in

creasing demands for data access put heavy demands on software developers.

Microprocessors and personal computers were widely used. The personal com

puter has been the catalyst for the growth of many software companies. While

the software companies of the second era sold hundreds or thousands of copies of

their programs, the software companies of the th i rd era sell tens and even hun

dreds of thousands of copies. Personal computer hardware is rapidly becoming

a commodity, w i t h software providing the differentiating characteristics. Many

people i n industry and at home spent more money on software than they did to

purchase the computer on which the software runs.

The four th era in software is just beginning. Fourth generation techniques

(4GT) for software development are changing the manner in which some segments

of the software community bui ld computer programs. Object-oriented technolo

gies are rapidly displacing more conventional software development approaches in

many application ares. Expert systems and artificial intelligence software have fi

nally moved f r o m laboratory into practical application for wide-ranging problems

in the real world. Ar t i f i c i a l neural network software has opened exciting possibil

ities for pattern recognition and human-Uke information processing abihties. As

we move into the four th era, the software crisis continues to intensify.

The software crisis alludes to a set of problems encountered in the develop

ment of computer software. The problems are not l imi ted to software that "does

not funct ion properly" according to required criteria. Rather, the software crisis

C h a p t e r 2. Software Engineer ing

encompasses problems associated w i t h how we develop software, how we maintain

a growing volume of existing software, and how we can expect to keep pace wi th

a growing demand for more software.

Problems associated w i t h the software crisis have been caused by the char

acter of software itself. Software is a logical rather than physical system element;

therefore, success is measured by the standard of a single entity rather than many

manufactured entities. Software does not wear out. I f faults are encountered,

there is a high probabili ty that each was inadvertently introduced during devel

opment and went undetected during testing. We replace "defective parts" during

software maintenance, but we have few, i f any, spare parts; i.e., maintenance often

includes correction or modification to design.

Recognising problems and their causes is the first step towards finding so

lutions. Then the solutions themselves must provide practical assistance to the

software developer, improve software quality, and allow the "software world" to

keep pace wi th the hardware world.

. There is no single best approach to a solution for the software crisis. How

ever, by combining comprehensive methods for all phases in software development:

better tools for automating these methods; more powerful building blocks for soft

ware implementations; better techniques for software quality assurance; and an

overriding philosophy for coordination, control, and management, we can achieve

a discipline for software development — a discipHne called software engineering.

2.1.2 Software Engineering and its Paradigms

Use of the term "software engineering" can be traced back at least as far as a 1968

N A T O conference held i n Garmisch, West Germany and the follow-up conference

held near Rome, Italy, in 1969. The following definition is f rom Naur [125 .

Software engineering is the establishment and use of sound engineering

principles in order to obtain economically software that is reliable and works effi

ciently on real machines.

This was par t ly prompted by the problems encounted in developing the Op

erating System OS360 for the IBM-360 computer.

C h a p t e r 2. Software Engineer ing 10

Software engineering encompasses a set of three key elements — methods,
tools, and processes. Software engineering methods provide the techniques for
building software. Methods encompass a broad array of tasks that include: de
sign of data structures, program architecture, and algorithmic procedure; coding;
testing; and maintenance. Software engineering tools provide automated or semi-
automated support for methods. Tools exist to support each of the methods noted
above. Software engineering processes are the glue that holds the methods and
tools together and enables rational and t imely development of computer software.
Processes define the sequence in which methods would be applied, the deliverables
(documents, reports, forms, etc.) that are required, the controls that help assure
quality and coordinate change, and the milestones that enable software managers
to assess progress.

The above three components of software engineering are often referred to

as software engineering paradigms. A paradigm for software engineering is

chosen based on the nature of the project and application, the methods and tools

to be used, and the controls and deliverables that are required. Three paradigms

have been widely discussed and debated [132]. They are "the classic Hfe cycle",

"prototyping" and "fourth generation techniques".

The classic life cycle paradigm is sometimes called the "waterfall model",

because there is no iteration in the process f rom the beginning to the end of a

project. I t demands a systematic sequential approach to software development.

The life cycle paradigm encompasses the following activities:

• software requirements analysis,

• design,

• coding,

• testing, and

• maintenance.

Prototyping is a process that enables the developer to create a model of the

software to be bui l t and this process allows problems and requirements to be seen

C h a p t e r 2. Software Engineer ing 11

quickly [46]. Prototyping begins w i t h requirements gathering. Developer and
customer meet and define the overall objects for the software, identify whatever
requirements are known, and outline areas where further definition is mandatory.
A "quick design" then occurs. The quick design focuses on a representation of
those aspects of the software visible to the user. The quick design leads to the
construction of a prototype. The prototype is evaluated by the customer/user
and is used to refine requirements for the software to be developed. A process of
i teration occurs as the prototype is "tuned" to satisfy the need of the customer,
while at the same t ime enabling the developer to understand better what needs
to be done.

Fourth generation techniques encompasses a broad array of software tools

that have one thing i n common: each enables the software developer to specify

some characteristic of software at a high level [71]. The tool then automatically

generates source code based on the developer's specification. The 4GT paradigm

for software engineering focuses on the abil i ty to specify software to a machine at

a level that is close to natural language or i n a notation that imparts significant

funct ion, but i t tends to be used in a single, well defined application domain. Also

the 4GT reuses existing packages, databases etc. rather than reinvents them.

2.1.3 Advantages and Disadvantages of Three Software

Engineering Paradigms

The classic Hfe cycle is the oldest and the most widely used paradigm for software

engineering, and has a definite and important place in software engineering work.

I t provides a template into which methods for analysis, design, coding, testing,

and maintenance can be placed. I t has weaknesses as well: real projects rarely

follow the sequential flow that the model proposes, i.e., iteration always occurs

and creates problems in the application of the program; i t is often difficult in the

beginning for the customer to state all requirements explicitly, while the classic life

cycle requires this and has diff icul ty accommodating the natural uncertainty that

exists at the beginning of many projects; and the customer must be patient — a

working version of the program(s) w i l l not be available unt i l late in the project

C h a p t e r 2. Software Engineer ing 12

t ime span [132 .

Prototyping is an effective paradigm for software engineering. The key is to

define the rules of the game at the beginning; that is, the customer and developer

must both agree that the prototype is buil t to serve as a mechanism for defining

requirements. I t is to be discarded (at least in part) , and the actual software

engineered w i t h an eye towards quality and maintainability. The problems wi th

this paradigm are: the customer sees what appears to be a working version of

the software, unaware that in the rush to get i t working overall software qual

i ty or long term maintainabil i ty have not been considered; the developer often

makes implementation compromises (e.g., using inappropriate operating system

or programming language, and inefficient algorithms) i n order to get a prototype

working quickly; etc.

Though i t has been claimed that the four th generation techniques are likely

to become an increasingly important part of software development during the

next decade because of the dramatic reductions in software development time and

greatly improved product ivi ty for people who build software, current 4GT tools

are not much easier to use than programming languages because the source code

produced by such tools is "inefficient" and the maintainability of large software

systems developed using 4GT is open to question. Problems existing are: imple

mentation using a 4GT enables the software developer to describe desired results

which are translated automatically into source code to produce those results, but

a data structure w i t h relevant information must exist and be readily accessible

by the 4GT; to transform a 4GT implementation into a product, the developer

must conduct thorough testing, develop meaningful documentation, and perform

all other "transition activities" required in other software engineering paradigms;

the 4GT developed software must be buil t i n a manner that enables maintenance

to be performed expeditiously.

2.1.4 A Generic View of Software Engineering

A generic view of software engineering can be obtained by examining the process

of software development [132]. The software development process contains three

C h a p t e r 2. Software Engineer ing 13

generic phases regardless of the software engineering paradigm chosen. The three
phases, definition, development, and maintenance, are encountered in all software
development, regardless of application area, project size, or complexity.

The definition phase focuses on what. That is, during definition, the software

developer attempts to identify what information is to be processed, what function

and performance are desired, what interfaces are to be estabhshed, what design

constraints exist, and what validation criteria are required to define a successful

system. Thus, the key requirements of the system and the software are identified.

Three specific subprocesses occur i n this phase:

System analysis defines the role of each element in a computer-based system,

ul t imately allocating the role software w i l l play.

Software project planning allocates resources, estimates costs, defines work

tasks and schedules, and sets quality plans (and identifies risks).

Requirements analysis defines a more detailed information domain and soft

ware funct ion before work can begin.

The development phase focuses on how. That is, during development, the

software developer attempts to describe how data structure and software archi

tecture are to be designed, how procedural details are to be implemented, how

the design w i l l be translated into a programming language, and how testing w i l l

be performed. Three specific steps also occur in this phase:

Software design. Design translates the requirements for the software into

a set of representations (some graphical, other tabular or language based) that

describe data structure, architecture, and algorithmic procedure.

Coding. Design representations must be translated into an artificial language

that results in instructions executable by the computer. The coding step performs

this translation.

Software testing. Once the software is implemented in machine-executable

fo rm , i t must be tested to uncover defects in function, in logic, and in implemen

tat ion.

The maintenance phase focuses on change that is associated wi th error cor

rection, adaptations required as the software's environment evolves, and modifi-

C h a p t e r 2. Software Engineer ing 14

cations due to enhancements brought about by changing customer requirements.
The maintenance phase reapplies the steps of the definition and development
phases, but does so i n the context of existing software. Three types of change are
encountered during the maintenance phase:

Correction. Even w i t h the best quahty assurance activities, i t is Hkely that

the customer w i l l discover defects in the software.

Adaptation. Over t ime the original environment (e.g., CPU, operating sys

tem, peripherals) for which the software was developed is likely to change.

Enhancement. As software is used, the customer/user w i l l recognise addi

tional functions that would provide benefit.

2.1.5 Software Quality and Software Quality Assurance

Software engineering works toward a single goal: to produce high-quality software.

I t is therefore useful to clarify the terms "quality" and "software quality assur

ance" (SQA).

Software quality is defined as: conformance to explicitly stated functional

and performance requirements, explicit ly documented development standards, im

plici t characteristics that are expected of all professionally developed software

132 .

Software quality factors include [117]: correctness (the extent to which a

program satisfies its specification and fulf i l ls the customer's mission objectives),

reliability (the extent to which a program can be expected to perform its intended

funct ion w i t h the required precision), efficiency (the amount of computing re

sources and code required by a program to perform its function), integrity (the

extent to which access to software or data by unauthorised persons can be con

trolled), usability (the effort require to learn, operate, prepare input, and interpret

the output of a program), maintainability (the effort required to locate and f ix

an error or other change in a program) (the maintainabihty of a software wi l l be

addressed later), flexibility (the effort required to modify an operational program),

testability (the effort required to test a program to ensure that i t performs its in

tended funct ion) , portability (the effort required to transfer the program f rom one

C h a p t e r 2. Software Engineer ing 15

hardware and/or software system environment to another), reusability (the extent
to which a program can (or part of a program) be reused in other apphcations),
and interoperability (the effort required to couple one system to another).

Software quality assurance is an activity that is applied at each step in the

software engineering process. Software quality assurance encompasses procedures

for the effective application of methods and tools, formal technical reviews, testing

strategies and techniques, procedures for change control, procedures for assuring

compliance to standards, and measurement and reporting mechanisms.

2.1.6 Current State of Software Engineering

A n important consideration in the development of a software system is the entire

development environment. I n its most general sense, the development environ

ment includes the technical methods, the management procedures, the computing

equipment, the mode of computer use (batch or interactive, centraHsed or dis

t r ibuted) , the automated tools to support development, the software development

staff, and the physical work space. A n ideal development environment should en

hance the product ivi ty of the information system developers and provide a set of

tools (both manual and automated) that simplifies the process of software produc

t ion. The environment should contain facilities both for the individual member

of a development group and for the overall management of the project [157 .

Now, software engineering has become a well defined, constantly evolving

discipline. Software production is much different now f rom that prior to the year

1968 when the concept of software engineering was first introduced. The state of

the art of software production then can be seen by the problem being discussed

when the two N A T O conferences on software engineering of 1968 and 1969 were

held. For example, questions were [133,134]:

• problems of scale,

• in what orders to do things,

• strategies and techniques to use.

C h a p t e r 2. Software Engineer ing 16

• how to specify software systems,

• projects planning and control,

• proliferation of unreliable software, etc.

Though some of these are st i l l problems today, areas where progress has

especially been made are :

• Modelling: requirements, systems.

• Formalisation: specification, verification.

• Computer science: languages, software concepts such as modularity and

abstract data types.

• Method/design paradigm: structured programming, object oriented design,

etc.

• Support: database, tool, software development environments.

• Human factors: user participation, project management, human-computer

interface.

• Metrics: quality, reliability, costing.

Nevertheless, despite such advances, there are st i l l many problems unsolved

in the following areas:

• Formal methods: fur ther development of specification and verification and

their scaling up to cope w i t h large 'real-life' problems, particularly wi th tool

support.

• Metrics: improved methods for assessing and predicting cost, and software

quality and reliability, maintainability, and other quality attributes.

• Reuse: software reusability w i l l potentially represent a major way of effecting

desperately needed increases in productivity, i f software practice is going to

have any chance of coping w i t h the demand for software products.

C h a p t e r 2. Software Engineer ing 17

• Maintenance: improved and new methods to reduce the cost and to increase
the maintainability.

• Management: more reliable, more effective techniques for managing the life

cycle i n all aspects.

• Coping w i t h existing systems (that were wri t ten using old technology).

• Tool support: increased provision of automated software tools for supporting

all activities of software engineering, both on an individual basis and as

integrated support environment.

• Applied technologies: application of other techniques, e.g., A I , to the general

enhancement of software enginering .

I t can be seen f r o m the above analysis that software maintenance is a very

important part i n software engineering. Further issues of software maintenance

w i l l be reviewed in the next section.

2.2 Software Maintenance

I n the early days of computing (1950s and early 1960s), software maintenance

comprised a very small part of the software lifecycle. In the late 1960s and the

1970s, as more and more software was produced, people began to reahse that

old software does not simply die, and at that point software maintenance started

to be recognised as a major activity. By the late 1970s, industry was suffering

major problems w i t h the applications backlog, and software maintenance was now

taking more effort than in i t ia l development in some sectors. In the 1980s, i t was

becoming evident that old architectures were severely constraining new design

[21]. A l l of these were placing demands that the changes to the software were

performed. Changes include, for instance, fixing errors, adding enhancements and

making optimisations. Besides the problems whose solutions required the changes

in the first place, the implementation of the changes themselves create additional

problems.

C h a p t e r 2. Software Engineer ing 18

One of the five Lehman's laws of the evolution of a software system directly
addresses the modification of software. I t states that "a program that is used
in a real world environment must change or become less and less useful in that
environment" [105]. So mechanisms must be developed for evaluating, controlling,
and making changes.

Software Maintenance is defined as the modification of a software product

after delivery to correct faults, to improve performance or other attributes, or to

adapt the product to a changed environment [2 .

Software maintenance is required to meet the needs of three principal "change"

types described in the .previous section. So maintenance activities can be di

vided into these categories correspondingly [149].

The first category is called corrective maintenance. There may be a fault

i n the software, so that its behaviour does not conform to its specification. This

fault may contradict the specification, or i t may demonstrate that the specification

is incomplete (or possibly inconsistent), so that the user's assumed specification

is not sustained. Corrective maintenance involves removing these faults.

Even i f a software system is fault-free, the environment in which i t operates

w i l l often be subject to change, e.g., the upgrade of computer hardware or mov

ing a system f r o m a mainframe to a PC. Modifications performed as a result of

changes to the external environment are categorised as adaptive maintenance,

e.g., the manufacturer may introduce new versions of the operating system, or

remove support for existing facilities, and the software may be ported to a new

environment, or to different hardware.

The th i rd category of maintenance is call perfective maintenance. This

is undertaken as a consequence of a change in user requirements of the software.

For example, a payroll suite may need to be altered to reflect new taxation laws;

a real-time power station control system may need upgrading to meet new safety

standards.

Finally, preventive maintenance may be undertaken on a system in or

der to anticipate future problems and make subsequent maintenance easier [20].

For example, a particular part of a large suite may have been found to require

C h a p t e r 2. Software Engineer ing 19

sustained corrective maintenance over a period of t ime. I t could be sensible to
re-implement this part, using modern software engineering technology, in the ex
pectation that subsequent errors w i l l be much reduced.

The large cost associated w i t h software maintenance is the result of the

fact that software has proved diff icult to maintain. Early systems tended to be

unstructured and ad hoc. This makes i t hard to understand their underlying logic.

System documentation is often incomplete, or out of date. W i t h current methods

i t is often diff icul t to retest or verify a system after a change has been made.

Successful software w i l l inevitably evolve, but the process of evolution wi l l lead to

degraded structure and increasing complexity [23,69,105].

Now i t is well established that software maintenance is the most costly stage

of the software lifecycle for most projects. I n 1970s, 30 - 40 % of the budget

was used on software maintenance, and 40 -60 % in 1980s. Now the budget for

software maintenance is up to 70 - 80 % [29,106,128,132,173 .

Software maintenance has its own life cycle and its own features. Over the

years, several software task models have been proposed, while the model by Ben

nett [21] is used here. Software maintenance can occur due to changing user needs,

to errors which must be fixed, and to a changing environment. Although these

types are different at the detailed level, at a high level they can be described by

an iterative three stage process:

1. request control: the information about the request is collected; the change

is analysed using impact analysis to assess cost/benefit; and a priori ty is

assigned to each request.

2. change control: the next request is taken f rom the top of the priori ty list;

the problem is reproduced (i f there is one); the code (and design and the

specifications i f available) are analysed; the changes are designed and docu

mented and tests produced; the code modifications are writ ten; and quality

assurance is implemented.

3. release control: the new release is determined; the release is built ; confidence

testing is undertaken; the release is distributed; and acceptance testing by

C h a p t e r 2. Software Engineer ing 20

the customer takes place.

Currently, these three steps are almost always undertaken in terms of source

code. Design information and even adequate documentation often do not exist.

Thus software maintenance is thought of predominantly as a source code activity.

Understanding the functions and behaviour of a system f rom the code is hence a

v i ta l part of the maintenance programmer's task [136]. Approaches to program

comprehension w i l l be described in later chapters.

Most of the effort for software maintenance research has focused upon the

methods, techniques and tools which support the maintenance process.

When maintenance activities are carried out, an essential characteristic of

all software — maintainabil i ty — must be considered. Maintainabili ty is a key

goal that guides the steps of a software maintenance method, as well as software

engineering method. Software maintainabi l i ty is the ease wi th which software

can be understood, corrected, adapted, and/or enhanced [132].

The maintainabil i ty of software is affected by many factors. I t is difficult to

quantify the software maintainabil i ty (no adequate, widely accepted, quantitative

definition exists). However, many efforts have been made to tackle this problem

f r o m different angles. Here are three of them.

Kopetz [98] defined a number of factors that are related to the develop

ment environment: availabihty of quaHfied software staff, understandable system

structure, ease of system handling, use of standardised programming languages,

use of standardised operating systems, standardised structure of documentation,

availability of test cases, bui l t - in debugging facilities and availabihty of a proper

computer to conduct maintenance.

Gilb [76] provided the maintainabili ty metrics by measuring the effort ex

pended during maintenance in terms problem recognition time, administrative

t ime, maintenance tools collection t ime, problem analysis t ime, change specifica

t ion t ime, active correction t ime, local testing time, global testing time, mainte

nance review t ime and total recovery t ime.

Sneed [143] measured the maintainabili ty i n terms of the original develop

ment expenditure. The smaller the expenditure on maintaining the system —

C h a p t e r 2. Software Engineer ing 21

relative to the expenditure on development — the greater the maintainability.
The expenditure includes:

• modularity — an operating measure of the extent to which a system can be

broken down into small independent building blocks;

• flexibility — an operating measure of a software system's independence f rom

any specific application;

• portability — an operating measure of a software system's independence

f r o m its technical environment;

• complexity — an operating measure of a software system's aggregation and

distr ibution of components/complexes [62 .

Attr ibutes of software can be divided into two types, internal and external.

Internal attributes are a property of the software itself, e.g., complexity, size,

data structure, coupling, cohesion, quality, reliability, etc. External attributes

are a property of the environment, e.g., availability of debugging tools, skill and

training, repository, management, etc.

Possibly the most important factor that affects maintainabihty is planning

for maintainabili ty. I f software is viewed as a system element that w i l l inevitably

undergo change, the changes that maintainable software w i l l be produced are

likely to increase substantially [132]. However, maintainabihty is also dependent

on the process as well as the software itself [98]. A major problem wi th main

tenance is changes which were not even conceived of when the software was first

designed and this cannot be planned for. Nevertheless, because maintainability

is an essential characteristic of software, at each stage of the software engineering

process, maintainabil i ty must be considered. For example, during the require

ments stage, areas of fu ture enhancement and potential revision should be noted,

software portabi l i ty issues discussed, and system interfaces that might impact

software maintenance considered; during design stage, data design, architecture

design, and procedural design should be evaluated for ease of modification, mod

ularity, and functional independence; during the coding stage, style and internal

C h a p t e r 2. Software Engineer ing 22

documentation, two factors that have an influence on maintainability should be
stressed; etc.

Also, maintenance activities should be carried in a careful way, because mod

ification of software is dangerous in the sense that errors and other undesirable

behaviours may occur as the result of software modification. The term side effects

are used to refer these errors or undesirable behaviours [132]. Software mainte

nance side effects include coding side effects, data side effects and documentation

side effects. Coding side effects are caused by the change of code. Data side ef

fects occur when data changes in the software design may no longer fit the data,

and when modifications are made to software information structures. Documen

ta t ion side effects occur when changes to source code are not refiected in design

documentation or user-oriented manuals.

Although progress in software maintenance research has been achieved re

cently, there are s t i l l many problems to be solved. One of the research topics

identified by [21] for software maintenance is Reverse Engineering, which is the

topic the thesis w i l l address.

2.3 Reverse Engineering

Reverse Engineer ing is the process of analysing a subject system to identify the

system's components and their inter relationships, and to create representations

of the system in another form or at a higher level of abstraction [48 .

Reverse engineering involves the identification or "recovery" of program re

quirements and/or design specifications that can aid in understanding and modi

fy ing the program. The main objective is to discover the underlying features of a

software system including requirements, specification, design and implementation.

In other words, i t is to recover and record high level information about the system

including:

• the system structure i n terms of its components and their interrelationships

expressed by interface,

• funct ional i ty in terms of what operations are performed on what compo-

C h a p t e r 2. Software Engineer ing 23

nents,

• the dynamic behaviour of the system in understanding how input is trans

formed to output,

• rationale — design involves deciding between a number of alternatives at

each design step,

• construction — modules, documentation, test suites etc.

There are several purposes for undertaking reverse engineering listed in [21 .

They can be separated into the quality issues (e.g., to simplify complex software,

to improve the quality of software which contains errors, to remove side effects

f r o m software, etc.), management issues (e.g., to enforce a programming standard,

to enable better software maintenance management techniques, etc.) and technical

issues (e.g., to allow major changes in a software to be implemented, to discover

and record the design of the system, and to discover and represent the underlying

business model impl ic i t i n the software, etc.).

I t is seen that reverse engineering is an activity which neither changes the

subject system, nor creates a new system based on the reversed engineered subject

system. I t is a process of examination and understanding of the object system,

and of recording the results of that examination and understanding. On the other

hand, reverse engineering is a key to the rest of the process of software mainte

nance, because i t enables us to take an existing software system which is being

maintained (e.g., i n terms of its source code), and recover an abstract representa

t ion which can be used for subsequent maintenance or even reimplementation.

Because the techniques and methods of reverse engineering are st i l l imma

ture, the following precautions must be considered when reverse engineering is

carried out:

1. the code may be specific, and not generic, so that few advantages are gained

when the system is reengineered,

2. the code may have errors and i t is not clear i f i t is useful to reverse engineer

error filled code.

C h a p t e r 2. Software Engineer ing 24

3. reverse engineering itself may introduce errors, and revalidation wi l l be es
sential i n the project plan,

4. reverse engineering can be very expensive and the returns are not clear and

a cost benefit analysis w i l l be needed,

5. there are no standards or standard methods for reverse engineering,

6. there are no well established measures of maintainabihty.

I n most cases, reverse engineering is the first step of software maintenance.

The analysis of the object software is crucially important to accomplish the request

control stage of software maintenance.

One typical reverse engineering objective is to extract the program design

or specification f r o m the program code. There are two reasons for this. The first

reason is that i n order to achieve major productivi ty gains, software maintenance

must be undertaken at a higher abstraction level than code, i.e., at the design

level or specification level, because [21]:

1. The representation of a system at higher levels of abstraction is more com

pact than at lower levels, so the system is easier to understand as a whole.

2. The objects which represent the system at high levels of abstraction (e.g.,

modules, requirements, specifications etc.) are structures which encourage

highly maintainable systems. Furthermore, they are closer to the apphcation

domain in terms of which many changes are expressed.

3. The documentation for systems maintained in this way can be clearly spec

ified.

4. Modificat ion can be better controlled leading to less structural degradation.

5. Modern software engineering techniques become available to the software

engineer, leading to high quahty in the software maintenance phase.

6. The high abstraction level objects are appropriate vehicles in which to ex

press the testing plan.

C h a p t e r 2. Software Engineer ing 25

From another point of view, software expressed at a higher level of abstraction
is more maintainable than at a lower level of abstraction.

The second reason is that the need is often encountered in software main

tenance projects. Firstly, the documents and relevant reference materials are

not complete, and the personnel who may have relevant knowledge have already

forgotten about i t or have lef t . Secondly, there might be even some documents

available, but the software may not be implemented consistently the documents.

Thirdly , the original documents and reference materials were not wri t ten in a

modern specification language and they can not be used in a modern software

maintenance environment, not even be machine readable.

This means that the extraction of the program design or specification of

an old program code is a v i t a l step especially when the program is the only

available documentation or is the only source on which to rely. The purpose of

this k ind of reverse engineering is (a) to reimplement the system or (b) to help

understand the existing software. Someone may challenge by asking "Why do not

you simply reimplement the software instead of carrying out reverse engineering of

the old software even w i t h no documentation?". I t is because that there has been

considerable investment i n existing software, and i t is often not cost effective to

throw away existing software and rewrite i t w i th the latest development technique.

The significance of reverse engineering can be seen by the setting up many reverse

engineering projects, for example [7,9,41,63,144 .

2.4 Summary

Due to the rapid development of computer hardware and software, the demands

and costs of software maintenance are increasing continuously. Software mainte

nance now comprises a major part i n the software engineering lifecycle costs. The

first step for conducting software maintenance is to understand the software to

be maintained and the abstraction of the program design and specification f rom

the existing source code is one of the methods which helps us to understand soft

ware systems. Reverse engineering is to carry out this task. Reverse engineering

C h a p t e r 2. Software Engineer ing 26

is part icularly important when the source code is the only source wi th which to
work. That is why the R E F O R M project was set up (more details on the RE
F O R M project w i l l be provided later). The final aim of the R E F O R M project is
to discover designs and eventually specifications given only source program code.
The R E F O R M project is based on a transformation approach and its aim is to
find out the formal relation between program code and its design and eventually
specification. There is not an existing method completed yet to be used in the
project for acquiring a program design or specification f rom program code. This
problem is tackled in this thesis.

Related research results are reviewed in the next chapter.

Chapter 3

Work Related to Reverse

Engineering

3.1 Introduction

I n the second chapter, the principles of each step in the software engineering lifecy

cle were described. This chapter w i l l describe some existing software development

approaches which are relevant to the thesis, together w i th several existing reverse

engineering projects. This w i l l help to clarify the research problem to be solved

in this thesis.

I n this context, i t is necessary to restrict the scope so as to avoid discussion

of a great many approaches. Although some of the ideas discussed below could be

applied to the hardware development and the development of concurrent or real

t ime systems, they are out of the scope of this thesis. In this sense, a specification

only refers to the functional specification, which describes the effect of software

on its external environment, not to performance specification, which describes

constraints on the speed and resource utilisation of the software, etc.

Let us start w i t h the software system development. The most widely used

method is to derive the final program f r o m a specification. We use SP to represent

a specification of requirement which the software system is expected to f u l f i l l ,

expressed in some specification language SL (if any); and P to represent the

ul t imate object program which satisfies the specification in SP, wri t ten in some

27

C h a p t e r 3. W o r k Re la ted to Reverse Engineering 28

given programming language PL.

The usual way to proceed is to construct P by whatever means are available,

making informal reference to SP in the progress, and then verify in some way

that P does indeed satisfy SP. The only practical verification method available at

present is to test P, checking that i n certain selected cases that the input/output

relation i t computes satisfies the constraints imposed by SP. This has the obvious

disadvantage that (except for t r iv ia l programs) correctness of P is never guaran

teed by this process, even i f the correct output is produced in all test cases. A n

alternative to testing is a formal proof that the program P is correct wi th respect

to specification SP.

Most recent work in this area has focused on methods for developing pro

grams f r o m specification in such a way that the resulting program is guaranteed

to be correct by construction. The main idea is to develop P f rom SP via a se

ries of small refinement steps, inspired by the programming disciphne of stepwise

refinement [163]. Each refinement step captures a single design decision, for in

stance a choice between several algorithms which implement the same function

or between several ways of efficiently representing a given data type. This yields

the following diagram (Figure 3.1) {SPQ represents the in i t ia l specification; those

steps in between SPQ and P are represented by SPi, SP2, and etc.).

Let SL represent the corresponding specification language for the specifica

t ion and PL the programming language. Thus, languages needed for software

development are shown in Figure 3.2.

SPo—>SPi—>SP2

Figure 3.1: Stages of Program Development

I f each individual refinement step (SPQ—>SPi,SPi—>SP2 and so on) can

C h a p t e r 3. W o r k Re la ted to Reverse Engineering 29

SLo^SLi—^SL2^... ~^PL

Figure 3.2: Languages for Software Development

be proved correct, the P itself is guaranteed to be correct. Each of these proofs is

orders of magnitude easier than a proof that P itself is correct since each refinement

step is small.

As described above, we are interested in answers to questions such as "How

to represent the process?"; "What does refinement mean and under what cir

cumstances is a refinement step correct?" and "What methods are available for

proving the correctness of refinement steps?". I n the remaining parts of the chap

ter, formal specification, program transformation and program verification tools

are reviewed in the context of the above questions. We then address the relevance

of these approaches to reverse engineering. Finally, several software maintenance

projects involving reverse engineering w i l l be introduced.

3.2 Formal Specification

3.2.1 Specifications

A specification of a software system may serve different purposes [90 .

• Specifications are used for program documentation.

• Specifications serve as a mechanism for generating questions. The construc

t ion of specifications forces the designers to think about the requirements

definition and the intrinsic properties and functionalities of the software

system to be designed.

• A specification can be considered as a k ind of contract between the design

ers of a program and its customers (in the commercial world, vendors and

customers).

C h a p t e r 3. W o r k Re la ted to Reverse Engineer ing 30

• Specifications are a powerful tool i n the development of a program during
its software life cycle. The presence of a good specification helps not only
designers, but also implementors and maintainers.

• W i t h regard to program validation, specifications may be very helpful to

collect test cases to fo rm a vahdation suite for the software system.

Important properties of a specification are:

• completeness — the specification must cover the functionali ty of the require

ment, and

• consistent — the specification does not contain internal contradiction. A

specification which is to be implemented must not be inconsistent (or else

i t cannot be implemented).

Any specification must be expressed in some specification language. Usually

language sheds considerable light on a system's abilities. Although some systems

are conceptually independent of a particular language, each implementation is in

the end t ied to a particular language.

There are compilers for low-level languages (e.g., assembly language) and

high-level languages (e.g., C, BASIC, PASCAL, LISP, etc.) [120]. They allow

us to wri te components of "programs", which suggest how the desired result is

to be computed [75]. This is contrasted wi th a specification language which is a

description giving details of what is required and no more. A specification language

is mainly used to wri te the specification of the requirements of the software system.

Specification languages may be classified into two major classes: formal spec

ification languages and informal specification languages [17,72,86,87,127].

Formal specifications have a mathematical (usually formal logic) basis and

employ a formal notation to model system requirements.

The advantages of using formal specification [146] are as follows:

• The development of a formal specification provides insights into and under

standing of the software requirements and the software design.

C h a p t e r 3. W o r k Re la ted to Reverse Engineer ing 31

• Given a formal system specification and a complete formal programming
language definition, i t may be possible to prove that a program conforms to
its specification. Thus, the absence of certain classes of system error may
be demonstrated.

• Formal specifications may be automatically processed. Software tools can

be bui l t to assist w i t h their development, understanding and debugging.

• Depending on the formal specification language used, i t may be possible to

animate a formal system specification to provide a prototype system.

• Formal software specifications are mathematical entities and may be studied

and analysed using mathematical methods. In particular, can the system

even be implemented adequately.

• Formal specification may be used as a guide to the tester of a component in

ident i fying appropriate test cases.

Informal specification languages, on the other hand, use a combination of

graphics and semiformal textual grammars to describe and specify system re

quirements. Given the graphical and "English-like" nature of these languages,

they provide a vehicle for eliciting user requirements and communicating the an

alyst's understanding of the requirements back to the user for verification.

The two approaches have complementary strengths and weaknesses. Whereas

informal specifications have advantages for requirements ehcitation, ease of learn

ing and communication, formal languages provide conciseness, clarity and preci

sion, and are more suitable for analysis and verification. Therefore, formal and

informal specifications must not be regarded as competitive but rather as com

plementary.

However, the use of formal specifications is the most distinguishing feature of

a formal method. The term formal methods is used to cover the use of mathematics

in software development. The main activities are [84,95]:

• wr i t ing a formal specification.

C h a p t e r 3. W o r k Re la ted to Reverse Engineering 32

• proving properties about the specification, e.g., its consistency,

• constructing a program by mathematically manipulating the specification,

and

• verifying a program by mathematical argument.

In fact, formal methods are all about specifications. Formal methods are

used in the thesis for undertaking reverse engineering, so that the key issue of

using formal methods — formal specification languages — w i l l be reviewed in the

next section..

3.2.2 Algebraic Specification Languages

There exist three basic families of specification approaches:, the algebraic, the

state-machine, and the abstract model [24,108].

The approach of algebraic specification languages is based on the concept of

abstract data type (A D T) [85,90]. The idea (originated by Guttag [82]) is that

for specification purposes a functional program can be modelled as a many-sorted

algebra, i.e., as a number of sets of data values (one set of values for each data type)

together w i t h a number of operations on those sets corresponding to the functions

in the program. The many-sorted algebra is needed because many interesting

operations i n computing involve more than one sort, e.g., equals: Int x Int

—>• Boolean. A n abstract data type is a class of many-sorted algebras wi th

same signature and same specified common properties. A n algebraic data type

is a definition of an abstract data type by a signature and some axioms. This

abstracts away f r o m the algorithms used to compute the functions and how those

algorithms are expressed in a given programming language, focusing instead on the

representation of data and the input /output behaviour of functions. I t is possible

to extend this paradigm to handle imperative programs as well by modelling

imperative programs as functional programs or else by using a different notion of

algebra [137]. The original motivation for this work was to provide a formal basis

for the use of data abstraction in program development.

C h a p t e r 3. W o r k Re la ted to Reverse Engineering 33

I n this approach, a specification consists of a signature — a set of sorts (data
type names) and a set of funct ion names w i t h their types — together wi th a set
of equational axioms expressing constraints which the functions must satisfy. For
example [24], Figure 3.3 is an algebraic specification of a bounded stack wi th a
bounded size of three.

The sort part lists the abstract data types being described. In this example

there is only one type, namely Stack. The operators part lists the services avail

able on instances of the type Stack and syntactically describes how they have to

be called. These parts are called the signature of the algebraic specification. The

axioms part formally describes the semantic properties of the algebraic specifica

t ion.

The basic idea of algebras is to write down a set of key properties of the A D T

in terms of equations (equational logic). We want a min imum set of such properties

(no duplication etc.). These are the axioms, and this allows an axiomatisation of

the theory. From the axioms and rules of inference we can generate any valid

formula.

There are two basic approaches to semantics, initial algebra (e.g., OBJ) and

loose algebra (e.g., CIP-L) .

Algebraic specification techniques can also be used in a wide-spectrum lan

guage [18,90,137,139], which is viewed as a specification language when used to

wri te software specifications. A wide-spectrum language incorporates a variety

of constructs, f r o m high-level specification constructs down to low-level machine-

oriented ones, to permit expression of broad range of the stages in the development

of a program. Furthermore, in the intermediate steps of transformation, which

is done incrementally, i t is natural for specification constructs to be mixed freely

w i t h programming constructs because of the way that high-level specification are

gradually refined to programs. This also avoids various problems which arise when

separate specification and programming languages are used: there is no essential

difference between refinement of programs and refinement of specifications; the

same modularisation constructs can be used to construct specification as well as

programs; there is no sudden leap f r o m one notation to another but rather a

Chapter 3. Work Related to Reverse Engineering 34

1. obj Stack { basic object in OBJ, which corresponds to an abstract data type.
} ~ "
2. sort Stack/integer, boolean; { new type definition, old type used following the
" / " . }
3. ok-ops
4. push: Stack, integer -> Stack; { "underline sign" denotes a key word of the
language or a known type.}
5. pop: Stack -> Stack;
6. top: Stack -> integer;
7. empty: Stack -> boolean;
8. newstack: -> stack;
9. depth:stack -> integer; hidden; { hidden function is not accessible to an
abstract progra,m.}
10. error-ops
11. underflow -> stack;
12. no_more -> integer;
13. overflow -> Stack;
14. ok-eqn's {these are axioms.}
15. pop(push(s, item)) = item;
16. top(push(s, item)) = item;
17. empty(newstack) = true;
18. empty(push(s, n)) = false;
19. depth(newstack) = 0;
20. depth(push(s, item)) = 1 + depth(s);
21. error-eqn's '
22. pop(newstack) = underflow;
23. top(newstack) = no_more;
24. push (s, item) = overflow if depth(s) > 2;
25. jbo

Figure 3.3: A Stack Specification in an Algebraic Specification Language (OBJ)

Chapter 3. Work Related to Reverse Engineering 35

gradual transition from high-level specification to efficient program.

A brief review of the main existing algebraic specification languages is now

given:

C L E A R The specification language CLEAR [40,137] provides a small num

ber of specification-building operations which allow large and complicated speci

fications to be built in a structured way from small, understandable and reusable

pieces. The operations provide ways of combining two specifications, of enriching

a specification by some new sorts, function and axioms, of renaming and/or for

getting some of the sorts and functions of a specification, and of constructing and

applying parameterised specifications.

The semantics of CLEAR allows it to be used with different kinds of axioms

(not just equations) to specify different kinds of algebras. This allows appropri

ate treatment of exceptions, non-terminating functions and imperative programs,

among other things.

C I P - L CIP-L [18] is the language on which the CIP project was based.

CIP-L is a wide-spectrum language which includes constructs for writing high-

level specifications, functional programs, imperative programs and unstructured

programs with gotos.

The language provides constructs for the specification and implementation

of data structures as well as constructs for the specification and implementation

of control structures. Algebraic (data) types provide a means for giving the alge

braic specification of data. They can be implemented by computation structures

combining data and algorithms. Modes are described by specific types for which

computation structures can be provided automatically. Based on algebraic types

and/or computation structures, program can be specified using predicate logic,

description, comprehensive choice, and fully typed set operations.

Larch The Larch [83,137] family of specification languages was developed

at M I T and Xerox PARC to support the productive use of formal specifications in

programming. Each Larch language is composed of two components: the interface

Chapter 3. Work Related to Reverse Engineering 36

language which is specific to the particular programming language under consid
eration and the shared language which is common to all programming languages.
The interface language is used to specify program modules using predicate logic
with equality and constructs to deal with side effects, exception handling and
other aspects of the given programming language. The shared language is an
algebraic specification language used to describe programming-language indepen
dent abstractions using equational axioms which may be referred to by interface
language specifications. The role of a specification in the shared language is to
define the concepts in terms of which program modules may be specified.

Other algebraic specification languages [90,137,138] are ACT ONE, OBJ fam

ily [78], HOPE, etc.

To summarise, the strengths of the algebraic approach are:

• theory now well established,

• structuring techniques for large systems introduced, e.g., parameterisation,

• seemingly promising for transformation systems, refinement and reuse,

• some tools becoming also available,

• some theorem provers also available;

and the weaknesses:

• still at laboratory stage,

• needing considerable mathematical ability,

• not accessible to practitioner, and

• difficult to scale.

3.2.3 State-Machine Specification Languages

A state-machine specification defines a set of functions that specify transforma

tions on inputs. The set of functions may be viewed (depending on the particular

Chapter 3. Work Related to Reverse Engineering 37

1. module Stack;
2. declarations integer index, item; boolean; flag
3. functions
4. vfun h_depth -> index;
5. hidden;
6. initially index = 0;
7. vfun h_set_of_items (index) -> item;
8. hidden;
9. initially item = ?; { "?" means "undefined". }
10. ofun push (item);
11. exceptions h_depth > 2;
12. effects 'h_set_of_items (h_depth) = item;
13. 'h_depth = h_depth -|- 1;
14. ofun pop;
15. exceptions h_depth < 0;
16. effects 'h_depth = h_depth - 1;
17. vfun top 0 -> item;
18. exceptions h_depth < 0;
19. derivation item = lLJset_of_Jtems (h_depth - 1);
20. vfun empty () -> flag;
21. derivation flag = (h_depth = 0);
22. end module:

Figure 3.4: A Stack Specification in a State-machine Specification Language

specification) as defining the nature of an abstract data type or describing the

behaviour of an abstract machine. A state-machine specification is given in terms

of states and transitions. Its functions are divided into two classes: V-functions

allow an element of the state to be observed but do not define any aspect of

transitions; 0-functions define transitions by means of effects. The effect of an

0-function is to change the state, which is done by denoting a V-function and

altering the value it will return. Specification languages based on this approach

include SPECIAL and IN A JO [24]. The example in Figure 3.4 is in SPECIAL.

3.2.4 Abstract IModel Specification Languages

The model based approach describes the key objects in terms of foundational

objects which we assume exist (are given). We use the foundational objects plus

construction operations to build compound objects which model our system. A

Chapter 3. Work Related to Reverse Engineering 38

model (here) is a mathematical theory expressing the aspects of the system we
wish to describe and analyse. A model will often be at quite a high level of
abstraction, ignoring much of the unnecessary detail.

A model (for specification) comprises:

1. a state space

2. operations, functions on this space

3. state invariant — defines valid states.

The basic types are typically sets, cartesian products, sequences, schemas (in

Z), etc. We should (like any mathematical theory) be able to deduce interesting

theorems about the system. The abstract model technique [24,108] differs in both

syntax and semantics from the techniques of previous two method. For syntax it

uses the basic precondition/postcondition format. It defines its function in terms

of an underlying abstraction that is selected by the specifier. The specifier can use

any abstraction (sets, lists, arrays, and so on) about which it is possible to reason

formally. The usefulness of a given abstract model specification depends greatly

upon the appropriateness of the selected underlying abstraction to the functions

being specified. In order to illustrate the relationship between an abstract model

specification and the underlying abstraction, a bounded integer stack is specified

in terms of arrays (Figure 3.5 and Figure 3.6).

Two widely used specification languages, VDM and Z, belong to this ap

proach.

V D M V D M [93] (the Vienna Development Method) is a method for rig

orous (not formal) program development, and also a modelling notation. The

objective is to produce programs by a process similar to the procedure in which

the individual refinement steps are shown to be correct using arguments which

are formalisable rather than formal, thus approximating the level of rigour used in

mathematics. This is supposed to yield most of the advantages of formal program

development by ensuring that sloppiness is avoided without the foundational and

notational overhead of fu l l formality.

Chapter 3. Work Related to Reverse Engineering 39

1. obj iarray
2. sort iarray/integer;
3. ok-ops
4. new: -> iarray;
5. assign: integer, iarray, integer -> iarray;
6. read: iarray, integer -> integer;
7. error-ops
8. empty -> integer;
9. ok-eqn's
10. read (assign (val, array, index 1), index 2)

if index 1 = index 2
11. then val
12. else read (array, index 2);
13. error-eqn's
14. read (new, index) = empty;
15. jbo

Figure 3.5: An Array Specification in an Algebraic Specification Language

1. type stack;
2. stack is modeled as iarray and (depth: integer);
3. invariant 0 < depth < 2;
4. initially stack = new and depth = 0;
5. functions
6. push (item: integer)
7. pre 0 < %
8. post stack' = assign (item, stack, depth) and depth' - depth -|- 1;
9. pop
10. pre stack / new;
11. post depth' = depth - 1; •
12. top returns (item: integer)
13. pre stack ^ new;
14. post item = read (stack, depth - 1);
15. empty returns (flag: boolean)
16. post flag = (stack = new);
22. end;

Figure 3.6: A Stack Specification in an Abstract Model Specification Language
(based on pre- and post-conditions)

Chapter 3. Work Related to Reverse Engineering 40

V D M uses a model-oriented approach to describing data types. Models are
built using functions, relations and sets. A simple example is the following speci
fication of dates:

Date :: Year : Nat MONTH: {Jan, Feb, Dec} DAY: { 1:31 }

This models dates as triples, but does not require that dates be represented

as triples in the final program. Not all of the values of type Date are valid; the

legal ones are characterised by the following data type invariant:

inv-date (< y, m, d >) = <ie/

(m e {Jan, Mar, May, Jul, Aug, Oct, Dec } 1 < d < 31) A

(m 6 {Apr, Jun, Sep, Nov} =^ 1 < d < 30) A

(m = Feb A is-leap-year (y) =^ 1 < d < 28) A

(m = Feb A is-leap-year (y) 1 < d < 29)

Problems with V D M are that it is easy to overspecify a system and that it

may bring side effects when pre- and post-conditions are used to specify procedures

126 .

Z Z [119,147,148] is a specification language based on the principle that

program and data can be described using set theory just as all of mathematics

can be built on a set theoretic basis. Thus, Z is no more that a formal notation for

ordinary naive set theory. The first version of Z used a rather clumsy and verbose

notation but the current version adopts a more concise and elegant notation based

on the idea of a schema which generalises the sort of thing behind mathematical

notations.

Schemas are used to describe a system by both static aspects (the states it

can occupy; and the invariant relationships that are maintained as the system

moves from state to state) and dynamic aspects (the operations that are possible;

the relationship between their inputs and outputs; and the changes of state that

happen) [148 .

A simple example of Z specification, A Birthday Book, is cited here. It is a

system for recording people's birthdays, and is able to issue a reminder when the

Chapter 3. Work Related to Reverse Engineering 41

day comes. A schema is used to describe the state space of the system.

. Birthday Book.

Known : P NAME

birthday : NAME DATE

Known — dom birthday

One of the operations on the system, adding a new birthday, is described by

another schema.

. AddBirthday

A BirthdayBook

n? : NAME

dl : DATE

n? ^ known

birthday' = birthday U {n? H-* dl}

Z has been used with success in UK industry to specify real systems. The

main problems are, for example, that the Z language is hard to be used for the

purpose of theorem proving and program refinement.

3.2.5 A Comparison of the Approaches

The similarities among the three approaches are that they are all nonprocedural

and use sets of function definitions to specify the effect of operations in terms

of known mathematical objects [24]. Each approach also has its own feature.

For instance, in an algebraic approach, it is difficult to get the equations right

for complex systems; and in the modelling approach, basic and well understood

concepts (e.g., sets) are used so that it is more natural to specify objects in terms

of such well understood mathematical objects.

State-machine and abstract model techniques, which both rely on explicit

Chapter 3. Work Related to Reverse Engineering ' 42

state descriptions, can be transformed into each other; a set of functions defined
algebraically (and therefore side-effect-free) can always be transformed one-for-one
into functions in either of the other two that permit side effects, but a function
with side effects may have to be split into several visible and hidden functions
when the algebraic approach is taken.

It was interesting that at the Refinement conference in January 1992 [54],

almost all the papers were on the modelling approach, while none was on the

algebraic approach.

3.3 Program Transformation Systems

3.3.1 Refinement and Transformational Programming

The term refinement has been referred earlier in this thesis. We now discuss

more details of refinement. We describe refinement as a technique to produce

correct implementations from specifications [161,163]. From this, we know that

specification and implementation are two essential elements in the refinement

process.

For most approaches of program development (whether formal or informal),

a design stage is involved. Refinement takes the notion of a rigorous treatment

of design a stage further. Each time a design decision is taken, a new version of

the specification, incorporating this new information, is produced. We can now

check that the new specification is acceptable with respect to the previous one, or

more formally, that it "satisfies" i t . Additionally, this new specification provides

the basis for further refinement, so we can also ensure that our separate decision

interact correctly. This notion of refinement also gives us a framework in which to

consider the enhancement of the functional constraints discussed in requirements

document. As we make decisions we can then check that this new information

is consistent with satisfying the constraints, and finally we can check that the

implementation does indeed satisfy them.

Refinement can be carried out informally or formally. Figure 3.1 presented

a general picture of formal program development in which programs were evolved

Chapter 3. Work Related to Reverse Engineering 43

from specifications in a gradual fashion via a series of refinement steps. Proba
bly the most useful potential application of formal specifications is to the formal
development of programs by gradual refinement from a high-level specification to
a low-level "program" or "executable specification" [70,94,140]. Actually, some
refinement steps are more or less routine. Such refinement steps can typically be
described schematically as transformational rules. The process of changing a pro
gram (specification) to a different program (specification) with the same semantics
as the original program (specification) is called program transformation.

Any refinement obtained by instantiating a transformation rule will be cor

rect. Rather than proving correctness separately for each instantiation, the rule

itself can be proved correct and then applied as desired without further proof.

Sometimes such a rule will be correct only provided certain conditions are met

by the program fragments matching the schematic variables or by the context in

which the rule is applied; in this case the proof obhgation is reduced to checking

that these conditions are satisfied.

This led to a method of program construction — transformational pro

gramming, i.e., to construct program by successive application of transformation

rules. Usually this process starts with a formal specification and ends with an ex

ecutable program.

Much recent work has been focused on the program transformation as one

kind of programming paradigm in which the development from specification to

implementation is a formal, mechanically supported process. Research on pro

gram transformation aims at developing appropriate formalisms and notations,

building computer-based systems for handling the bookkeeping involved in ap

plying transformation rules, compiling libraries of useful transformation rules,

developing strategies for conducting the transformation process automatically or

semi-automatically. The long range objective of this paradigm is dramatically to

improve the construction, reliability, maintenance, and extensibility of software.

An implemented system for supporting transformational programming is

called a program transformation system. Those languages designed with

some of the techniques used in expressing transformations and developments are

Chapter 3. Work Related to Reverse Engineering 44

called transformation support languages. Researchers have built a number
of systems for transformational programming.

3.3.2 Features of Transformation Systems

To compare the various systems [67,129,130], we consider the following aspects:

• Purpose

Generally speaking, transformation systems are built to experiment with

the mechanically assisted development of a broad range of programs.

A first goal of program transformation is program synthesis: the generation

of an equivalent, executable, and efficient program from a (formal) descrip

tion of the problem. Program synthesis may start from specifications in

(restricted) natural language, or from mathematical specification. It is cor

rect with respect to the specification.

The second goal is general support for program modification. This includes:

optimisation of control structures, efficient implementation of data struc

tures, and the adaptation of data structures and given programs to particu

lar styles of programming (e.g., applicative, procedural, machine oriented).

A third goal is that of program adaptation to particular environments. For.

example, a program written in one language may need to be adapted to a

related language with different primitives.

• Functions

1. Transformation data base

The system consists of a facility for keeping the (predefined) collection

of transformations for use by the end user.

2. User Guidance

Nearly all transformation systems are interactive. Even the "fully auto-

. matic" ones require an initial user input and rely (interactively) on the

user to resolve unexpected events. The system's reaction to input may

Chapter 3. Work Related to Reverse Engineering 45

include automatic checks on the "reasonableness" of given commands,
as well as incremental interactive parsing using correction mechanisms.

3. History recording

Most systems also have some facility for documenting the development

process — one of the promising aspects of the transformational ap

proach. These facilities include internal preservation of the source

program, of final output, and of all intermediate versions. The doc

umentation itself ranges from a simple sequential log of the terminal

session (bookkeeping) to rather sophisticated database mechanisms.

4. Assessment of Programs

Assessment of programs can be supported in quahtatively different

ways: the system may incorporate some execution facility, such as an

interpreter or a compiler to some target level, or it may utilise aids for

"testing", such as symbolic evaluators. Occasionally the system will

also have tools for program analysis, either for aiding in the selection

of transformation rules or simply for "measuring" the effect of some

transformation.

• Working Mode

1. A "manual" system makes the user responsible for selecting and apply

ing every single transformation step. It is the simplest implementation

and the system must provide some means for building up compact and

powerful transformation rules. System checks application of use.

2. A fully automatic system enables the selection and appropriate rules

to be determined completely by the system using built-in heuristics,

machine evaluation of different possibilities, or other strategic consid

eration.

3. A semi-automatic system works both autonomously for predefined sub-

tasks and manually for unsolvable problems.

• Type of transformation

Chapter 3. Work Related to Reverse Engineering 46

Basically, there are two different methods for keeping transformations in the
system: the catalogue approach and the generative set approach.

A catalogue of rules is a linearly or hierarchically structured collection of

transformation rules relevant for a particular aspect of development process.

Catalogues may contain, for example, rules about programming knowledge,

optimisations based on language features, or rules reflecting data domain

knowledge. A user can select certain transformation rules from the catalogue

and apply the selected transformation.

By a generative set we mean a small set of powerful elementary transforma

tions to be used as a basis for constructing new rules. A user can decide

what transformation rules are to be constructed from the generative set.

To judge whether a transformation system is good eventually depends on the

extent to which it can fulf i l l the goal — transforming a specification to a running

program. However, it is not the only purpose of this review, and a more important

aspect is to learn what can be used in undertaking reverse engineering.

3.3.3 Program Transformation Systems

In this section, the features of transformation system listed in last section are

used to comment on existing transformation systems used in forward engineering

according to available information. Other information may include, e.g., the year

that a work was done, the specification and programming languages used, the

result, etc.

Optimising Compilers Program transformation techniques have been used

for many years in optimising compilers, because inefficient programs can be trans

formed into efficient programs (e.g., loop induction, strength reduction, expression

reordering, symbolic evaluation, constant propagation, loop jamming).

Burstall and Darlington's Work The work on program transformation by

Burstall and Darlington was done in the mid-1970's [39,130]. Their system was

Chapter 3. Work Related to Reverse Engineering 47

based on schema-driven method for transforming applicative recursive program
into imperative ones with improving efficiency as the ultimate goal. The system
worked largely automatically, according to a set of built-in rules, with only a small
amount of user control. The rule set contained only seven simple rules and the
system could only work on simple programs.

Balzer's Work Balzer built an implementation system for program transfor

mation [14,15,16]. This system was designed mechanically to transform formal

program specifications into efficient implementations under interactive user con

trol. He expressed the problem by a formal specification language GIST, which

was operational (i.e., having an executable semantics). He used this system to

solve a small (but nontrivial) example, the "eight queens" problem. The result

was that the optimisation and the conversion of the program into conventional

form remained incomplete. His system depended too much on user guidance, and

the specification was also not at a high level.

Z A P Feather's ZAP system [68] is based on the Burstall/DarHngton system

with a special emphasis on software development by supporting large-program

transformation. The input/target language of the system is NPL (an applicative

language for first-order recursion equations). The system provides the user with

a means for expressing guidance. An overall transformation strategy is hand-

expanded by the user into a set of transformation tactics such as combining,

tupling, generalisation.

It is claimed that ZAP system can deal with example programs ranging

from "toy" to small but realistic ones. Unfortunately, the system has to operate

partially informally and even entirely by hand.

D E D A L U S System The DEDALUS system (DEDuctive Algorithm

Ur-Synthesiser) by Manna and Waldinger was implemented in QLISP [111]. Its

goal was to derive LISP programs automatically and deductively from high-level

input-output specifications in a LISP-like representation of mathematical-logical

notation.

Chapter 3. Work Related to Reverse Engineering 48

The system incorporates an automatic theorem prover and includes a number
of strategies designed to direct it away from rule applications unlikely to lead
success. The system is considered by its designers to be a laboratory tool rather
a practical tool. The examples being treated by DEDALUS system were toy
examples, like the greatest common divisor of two numbers.

The D R A C O System The DRACO System [130] is a general mechanism for

software construction based on the paradigm of "reusable software". "Reusable"

here means that the analysis and design of some library program can be reused,

but not its code. DRACO is an interactive system that enables a user to refine a

problem, stated in a high level problem domain specific language, into an efficient

LISP program. The DRACO ideas have been implemented in a prototype system

running under TOPS-10 on a DEC PDP-10 computer. Results show that only

small programs (tens of lines) can be created using this prototype. The main

reason of this considered by the designer was restricted by memory size.

C I P - S CIP-S is the approach of the Project CIP (computer-aided, intuition-

guided programming) [19], which is to develop along the idea of transformational

programming within an integrated environment, including methodology, language,

and system for the construction of "correct" software. The system uses a wide-

spectrum language, CIP-L (introduced in section 3.2.2).

A prototype system has been implemented. The system is interactive and the

development process is guided by the programmer who has to choose appropriate

transformation rules. The system is language-independent and is based on the

algebraic view of language definition; any algebraically defined language is suited

for manipulation, provided respective facihties for translating between external

and internal representations are available.

It is claimed that the system not only allows the treatment of concrete pro

grams, but also the formal derivation of new, complex rules within the system.

The CIP project has developed several theories for program transformation, such

as well-founded theories of nondeterminism, abstract data type, algebraic lan

guage definition, and correctness of transformation rules and the CIP-L language

Chapter 3. Work Related to Reverse Engineering 49

turned out to be successful both as an educational vehicle in teaching beginners,
and as a tool in developing software. It is also noted that the prototype served
as the essential software tool in developing CIP-S itself. However, the prototype
system can only deal with programs of a small scale and the proposed system
(CIP-S) itself is under construction.

Other transformation-related system include the "SETL System" [59], the

"TAMPR System" [32], the "FOCUS System" [135], and Morgan's work on the

Refinement Calculus [121,122], the "Programrner's Apprentice" [158], etc.

3.3.4 Summary

There is widespread demand for safe, verified, and reliable software. This de

mand arises from economic considerations, ethical reasons, safety requirements,

and strategic demands. Transformational programming can clearly make a valu

able contribution toward this goal. It already covers several phases of the classic

software engineering lifecycle and shows promise of covering the remaining ones.

But, after near twenty year's research, existing transformation systems are still

experimental and the problems they are capable of coping with are still more or

less toy problems. To make practical use of transformation systems is no doubt

the key problem to be solved in transformational programming.

3.4 Program Verification

Program verification is used when the program already exists and has been de

veloped by informal development methods. It is contrasted with the correctness

of software developed by transformational programming, which is guaranteed by

the process itself (assuming that the transformations are correct).

3.4.1 Concept of Proof (Program Proving)

The concept of "correctness" is a relative notion. When we refer to a program

being correct we mean relative to some given specification. Generally, the spec

ification of a programming problem consists of a precondition describing the

Chapter 3. Work Related to Reverse Engineering 50

properties of the supplied data and a postcondition describing the desired effect
of the computation. There may also be a state invariant defining valid states.

A proof of conditional or partial correctness assumes that the execution of a

process terminates and concentrates on estabhshing that its specification is met.

A complete proof also includes a proof of termination, e.g., by showing that some

variable decrements on each loop down to a test on zero.

When the word "proof" is used it can generally be understood in two different

ways. An informal proof, the sort most commonly used by mathematicians,

consists of an outline of, or a strategy for constructing, a formal proof. A formal

proof is a sequence of statements, each of which is a well-established theorem

or which follows from earlier statements by a process (an inference or axiom).

A formal proof is conducted in an artificial (or "formal") language consisting

entirely of signs and symbols; a mathematician's proof, on the other hand, will

make significant use of natural language (such as English) as well as sign and

symbols where they are considered appropriate. Both types of proof have their

own characteristic type of complexity.

There are two basic approaches to program verification, one using inference

rules originally developed by C.A.R. Hoare [88] and the other using so-called

"predicate transformers" developed by E.W. Dijkstra [60]. The two approaches

are related, although different.

Proofs are a central part of the program development method. One property

of a formal specification is that proofs can be written which clarify its conse

quences. In order for proofs to be useful, they must possess a number of proper

ties. One of these requirements is that the proofs should be natural and that they

should ensure certainty.

It is difficult to be precise about what constitutes a natural proof. The

concept of informal proof is to indicate how a proof could be constructed: the

major steps are given in the knowledge that further details can be provided if

these major steps are in doubt.

Another aspect of what constitutes a natural proof concerns the crucial dis

tinction between the discovery and presentation of a proof. A proof is often found

Chapter 3. Work Related to Reverse Engineering 51

by working back from the goal; sub-goals are created and discharged until the
sub-goals correspond to known facts. In order to show how the steps relate, it is
normal to present an argument working forwards from the known facts towards
the goal. This forward presentation is more natural to read. But when readers
become writers, they must learn to discover proofs one way and present their steps
in a different order.

It should be clear that the claim that something has been proved must elim

inate doubt. Unfortunately, informal arguments cannot create certainty. In order

to achieve the same level of certainty with a proof, it is necessary to reduce proof

construction to a "game with symbols": each proof step must depend only on

known (i.e., proven) theorems or axioms and be justified by one of a fixed set of

inference rules. The inference rules themselves must require only the mechanical

rearrangement of symbols. Such proofs are called formal proofs.

A formal proof uses formal semantics of a programming language. The formal

semantics of a programming language maps every syntactically correct language

construct into a metalanguage that is based on a well-understood mathematical

notation. Consequently, formal semantics can be specified as a set of translation

rules from the domain of language constructs to the range of well-formed formulas

of the formalism.

The most important benefit of formal semantics is that it produces the basis

for correctness proof of implementation and basis for program correctness proofs.

The formal semantics has the potential of providing mechanical support to cor

rectness proofs. The only way for a computer to aid in verification of a language

implementation or the correctness of a program is to start from a precise, formal

language definition.

There are two kinds of formal semantics: axiomatic semantics and denota-

tional semantics. Axiomatic semantics describes the meaning of each syntactically

correct program by associating it to properties of variables (in terms of predicate

calculus) that hold before execution starts and after the program halts. Axiomatic

semantics is based on mathematical logic. In the axiomatic semantics approach

24] of program verification, the metalanguage used is a logic language, such as

Chapter 3. Work Related to Reverse Engineering 52

predicate calculus. Please refer to the example in VDM section (Section 3.2.4).

Denotational semantics [4,10,80] defines the meaning of a program written

in a language £ by a mapping from the syntax of £ to functions denoted. De

notational semantics of programming constructs of a programming language are

defined by so-called semantics valuation functions. Semantics valuation functions

map programming constructs to values (numbers, truth values, functions, and so

on) that they denote. These valuation functions are usually defined recursively:

the value denoted by a construct is given in terms of the values of its constituent

parts, and an emphasis on the value denoted by the constituent parts gives the

approach its name. In the denotational semantics of program verification, the

metalanguage used is that of functional calculus (i.e., lambda calculus). For ex

ample, the following is the denotational semantics of decimal numbers of a simple

language:

Syntax:

<number> ::= <number><digit>|<digit>

<digit> ::= 0|1|2|3|4|5|6|7|8|9

We now define a valuation function V from the syntax to the functions de

noted. We do this for each syntcix rule:

V: Num - > Integer (Number is the language defined by the syntax above)

So

V[<number><digit>] = 10 * V[<number>] -f- V[<digit>

V[0] = 0

V[l] = 1

V[9] = 9 .

For each sentence in this simple language, the above valuation defines the

meaning. For instance, the number is 724:

V[724] = V[<number><4>

= 10 * V[<number>] + V[<4>'

= 10 * (10 * V[7] + V[<2>]) + V[4]

Chapter 3. Work Related to Reverse Engineering 53

= 10 * (10 * 7 2) + 4
= 724

which gives us the answer we expect.

Formal verification is the application of reasoning expressed in a mathemat

ical formalism, i.e., a formal system such as first order predicate logic. Because

formal reasoning programs involves a large amount of tedious symbol manipu

lation which is a perfect job for a machine; tools, such as theorem provers and

program verifiers, have been built for this purpose.

3.4.2 Examples of Existing Program Verification Tools

Program verification tools give rise to a variety of different approaches to formal

reasoning about a variety of different tasks, especially the programs. It is difficult

to compare program verification systems directly [107], because the problems they

have been designed to tackle are often quite different. The important properties of

existing systems are listed below and attention is drawn to the following aspects.

• Object language — The logical language in which propositions are expressed

and reasoned about will be called the object language of the system. The

class of object languages supported is usually a major factor in determining

the usefulness of a program verification tool to formal reasoning tasks.

• Theories — When using a theorem prover systematically and over a long

period of time, it is important to be able to build up "theories", going from

simple properties of data structures to deeper and stronger results about

their relationship.

A "theory" of a program verification tool is the fundamental principle on

which the tool is based. A theory is specified by giving its "signature", a set

of axioms and rules of inference. Usually, the basic specification of a theory

module consists of: its name, the modules on which it is built, the new sorts

it will use, the new operators it will use, a collection of axioms and derived

facts (theorems, lemmas, etc.). Taking the Boyer-Moore theorem prover as

Chapter 3. Work Related to Reverse Engineering 54

an example, the theory of it is to prove theorems by induction, mainly in
the style of proofs in elementary number theory.

• Automated deduction and user interaction — Once the object language and

a theory are fixed and a conjecture is stated, the search for a proof begins.

If a machine can be programmed to recognise the truth (i.e., provability)

of certain conjectures, it is needed to set a test which, when applied to

a conjecture, returns one of the following answers: "established", "open"

or "contradictory". The test should be consistent with the object theory.

There are two types of systems: automated and interactive. In an automated

system, the test is generated by the system; in an interactive system, on the

other hand, the test is usually generated with user involvement. Eventually,

it is known that in principle there can be no way of determining whether or

not a conjecture is provable. I t will be up to the user, with the machine's

help, to discover a proof.

A number of program verification tools are listed below as examples:

The Stanford Pascal Verifier The Stanford Pascal Verifier (SPV) [107,118], is

a program which basically checks the correctness of the proof of a Pascal program.

It was written in a version of LISP for use on the PDP 10 range of computers.

The SPV basically attempts to automate the inductive assertions method. The

first action of the verifier is to generate sets of verification conditions which have

to be satisfied. In the second phase the verifier employs a theorem prover which

takes as input the verification conditions which have to be established and also a

set of rules which can be used by the theorem prover. The SPV system is basically

interactive.

Unless some precautions are taken the system will eventually run into the

problem of being unable to decide on the equivalence of two equivalent arithmetic

expressions (this problem is in general undecidable).

Verifier's Assistant The Designer/Verifier's Assistant is a system that parses

programs and specifications and generates and proves verification conditions. In

Chapter 3. Work Related to Reverse Engineering 55

addition it can provide an understanding of the kinds of structures that can be
changed and added and the ways in which these interact [123]. To do this the
verifier employs the use of the wide spectrum language Gypsy [79] in connection
with knowledge-based techniques. This system pays more attention to reasoning
about changes at the implementation level in terms of pre and post assertions
on program modules, rather than addressing the maintenance of specifications
and development histories. It is by concentrating on these latter aspects that we
might gain a better insight into the consequences of maintaining both changes to
documentation (expressed as a specification) and implementation.

L C F (Logic for Computable Functions) There are several version of LCF

107] (at Stanford, Edinburgh, Cambridge, etc.) and the Edinburgh version is

probably the best-known and most used of them all. The fundamental principle

of LCF is that new theorems can only be formed by applying inference rules to

axioms and already-formed theorems. LCF is implemented as a cluster of abstract

data types in the ML language: 'term' and 'form' for terms and formulae of the

object language. Edinburgh LCF has virtually no proof management facilities:

proof trees are not built; validations must be done by hand; and partial proofs

are not stored. Multiple proof attempts are possible, but no help is given for

organising them.

The Gypsy Verification Environment (G V E) GVE [107] is a highly in

tegrated specification and verification environment, originally targeted at com

munications processing systems of 1000-2000 lines of code. It is one of the few

development systems that can handle concurrency (which it does by message pass

ing), and it is perhaps the only one that maintains dependencies between proof,

(parts of) specifications and (parts of) programs. A particularly strong point is

the high degree of unification of specification and programming constructs in the

Gypsy language. The user can invoke a proof strategy which will apply rules

automatically according to built-in heuristics. Very simple proofs can be finished

without user intervention. This facility is a particularly heavy user of resources,

and suffers from most of the problems of fully automatic theorem provers, without

Chapter 3. Work Related to Reverse Engineering 56

being particularly strong.

The Boyer-Moore Theorem Prover The Boyer-Moore Theorem Prover

(BMTP) [30,31] takes programs written in pure LISP. Properties of these programs

are also stated as expression which themselves are expressed in LISP. The theorem

prover then attempts to show that the program possesses the desired properties.

It does this by applying simple heuristics and also structural induction - LISP

programs tend to be heavily recursive. The theorem prover could be used as a

verification tool to establish properties of programs about as complex as a sorting

procedure but not much more.

Though the Boyer-Moore Theorem Prover is viewed as one of the successful

systems for mechanical program verification, there are still some problems. The

user supplies a conjecture with which BMTP tries to prove from axioms and

already-proven results, but without direct assistance from the user. The object

language is very expressive, but its type structure is very limiting and probably

not suited to many applications. It incorporates some very effective heuristics for

inductive proofs; unfortunately they seem to be inextricably bound up with the

object language, and it would probably be quite difficult to use them directly.

The Boyer-Moore Theorem Prover is a heavy user of resources, e.g., memory and

CPU time.

The Boyer-Moore Theorem Prover has been used in the REFORM Project

167] (see Chapter 8).

Other program verification tools include [96,107], the "Interactive Proof Ed

itor", "AFFIRM", "Interactive Proof Editor", "NuPRL", "B Tool [5,115]", etc.

3.4.3 Summary

Generally speaking, the following points are weaknesses: for the languages, a

wide range of symbols (especially mathematical symbols) should be available,

and mixed operators should be allowed, so that programs at higher level of ab

straction (specifications) can be taken into the verification process; to the theories.

Chapter 3. Work Related to Reverse Engineering 57

they should also include many other things such as tactics, decision procedures,
simplification methods, normal forms, and so on, but none of above systems have
done this; to other aspects, the nature of finding proofs is to experiment, therefore,
speed of response, help facilities, comprehensibility (especially for a novice) and
so on are also crucial factors to be stressed. This is also the problem of writing
correct mechanical theorem provers.

3.5 An Overview of the Main Existing Reverse

Engineering Approaches Used in

Software Maintenance Projects

The review in the previous section addressed obtaining programs from specifica

tions. At present, there is increasing interest in the reverse direction — obtain

ing specifications from programs (i.e., reverse engineering). Reverse engineering

is often one early part of a software maintenance project. This area is being

researched in many projects in seeking a good method to achieve the goal —

obtaining specifications from programs. This section will review several existing

reverse engineering approaches in software maintenance projects. This will help

to determine the advantages as well as disadvantages of these approaches and will

help the further development of the REFORM project. The REFORM project is

introduced very briefly in this section and will be described in detail in a later

section.

Reverse engineering techniques are of two kinds: a maintainer-driven de

sign recovery and a knowledge-based design recovery. In the first approach, the

maintainer is facing a set of tools without any assistant guidance; in the second

approach, tools rely only on syntactic level code analysis. Two kinds of assis

tance are provided: (1) assistance in determining the functional intent behind a

piece of code (automatic meaning recovery), (2) assistance in maintenance process

guidance. In both techniques, the tools can be integrated or not integrated.

Chapter 3. Work Related to Reverse Engineering 58

3.5.1 M A C S

MACS (Maintenance Assistance Capability for Software) has as its objective the

definition and implementation of a software maintenance assistance system [57,

73]. The basic premise of MACS is "maintenance through understanding". The

main design objective of MACS is to aid the acquiring, ordering and exploring a

structure representing facts and assumptions about the application to be main

tained. In particular, MACS offers aid in the following areas:

• comprehension of the application design and development process: the WHY

of the application,

• understanding and capture of the existent: the WHAT of the apphcation,

and

• assistance in maintenance actions: the HOW of maintenance actions in the

context of the application.

The MACS project is developing an integrated tool-set which is built on

a common repository. The "What" tool consists of two major parts called the

Change Management World (managing the changes during the maintenance pro

cess) and the Abstraction Recovery World (providing filtered or abstracted views

of the code using Dimensional Design). The "Why" tool is called the Reasoning

World (for understanding the domain and design decisions) with a Domain Knowl

edge Base as its main component. Another major part of the tool-set is called the

Interconnection World (for understanding inter-world relations and code semantic

understanding).

According to available literature [58], the major achievements of the first

two years (by January 1992) have been the design of the MACS architecture, the

complete realisation of the Change Management system, the Reasoning World

and the "syntactical" Abstraction Recovery World. The MACS project still uses

informal analysis, though the need for merging informal and formal approaches is

identified as a long-term plan.

MACS uses a conventional Change Management System for configuration

management. Its representation for abstraction is a diagrammatic representation

Chapter 3. Work Related to Reverse Engineering 59

called "Dimensional Design". This is an enhanced flow chart on which sequencing
is represented vertically, the components of loops and conditions horizontally, and
procedural abstraction at 45°. A similar notation is used for data structures.
Therefore, the abstract representation is at a relatively low level.

Of more interested is the representation of the "Reasoning World". This

amounts to a very flexible data base in which the user can add information incre

mentally. For example, consider the situation occurs in which an error is found.

Once the module is located, the user can, via a graphical WIMP interface, add

an extra node giving free text information about the error, and then link it to

the module. A new version of the module can also be created, and linked via the

CMS.

Note that a great deal is left up to the user to enter information. The

attraction of MACS lies in the power of the Hnks; the user can navigate from a

module to its source, to its dimensional design, to its version records etc. This is

the integration mechanism. The tools on their own provide very little semantic

interpretation — that is left to the user.

MACS is built on the IPSYS ECLIPSE system, which provides the repository

mechanism and common front end user interface.

3.5.2 Reverse Engineering in R E D O

R E D O (Restructuring, Maintenance, Validation, and Documentation of Software

Systems) is an ESPRIT I I project, which started in 1989, and is concerned with

"rejuvenating" existing applications into more maintainable forms by improving

documentation, by restructuring code, and by validating the code against the

original intentions. As one part of REDO project, reverse engineering (reverse-

engineering COBOL programs into Z specifications) was carried out at Oxford

University [33,34,35,100,101,102,103]. There are three stages in their process:

• clean — Translation to the intermediate language UNIFORM, eliminating

redundant language constructs (for restricting the original language to a

small subset of permissible constructs, because UNIFORM is more compact

and COBOL semantics are woolly).

Chapter 3. Work Related to Reverse Engineering 60

• specify — Using data-flow diagrams for guidance, associated variables are
grouped together to create prototype objects, but as yet containing no list
of associated operators. The code is also split into phases at this point.
Equational descriptions of the functionahty associated with these phases
are obtained automatically and transcribed into the intermediate functional
language, simplifying transforms being automatically appHed in order to
reduce the equational presentation to a normal form.

• simplify — The abstracted functional descriptions are incorporated into the

outline objects as descriptions of their operations, thus filling in the seman

tics of the prototype objects identified at the first stage. A ful l specification

(in the language Z or Z"*""*") is then printed out using the object-orientated

abstraction as a basis, along with associated textual documentation.

The project was to develop a set of tools to serve as a useful aid in the

comprehension of raw code, and also to transform it into a concise mathematical

representation which can support further development work.

The strategy here is to perform abstraction first, and then perform trans

formation on the high level language. This will no doubt increase the degree of

difficulty in the second stage, because the original code might not be structured

and hence understandable at all. So far, only a few toy examples have been done

by hand (about 40% of the COBOL language has been treated [102]) and have

been presented by this project, and support for providing automated tools for pro

gram comprehension and the generation of technical documentation from software

systems as part of maintenance still need to be done.

3.5.3 Sneed's Work

Sneed and Jandrasics use automated tools to support the retranslation of software

code in COBOL back into an appHcation specification by the process of reverse

engineering [144]. Two steps are needed, to recover a program design from the

source code and to recover a program specification from the program design.

In the first step, the code of COBOL programs is translated into an interme-

Chapter 3. Work Related to Reverse Engineering 61

MAP'S

Application Description

System Specification

2. Retransformation

Data
Design

Program
Design

1. Retransformation

DBD's COPY'S Module JCL

Program Components

Figure 3.7: Inverse Transformation of Software from Code to Specification

diate design schema based on a set of normalised relational tables for the modules,

data capsules, and interfaces extracted from the source programs (see Figure 3.7).

Secondly, two activities are carried out jointly in this step, i.e., data design

recovery and program design recovery. The data design part contains five design

elements: database structure design, file design, data communication design, data

capsule design, and data constant design. The program design part also contains

five parts: process structure design, component design, data flow design, module

interface design, and module design.

A set of transformation rules for mapping COBOL source code back into

the design schema is obtained by inverting those rules used to generate COBOL

programs from the design. The programs are modularised and restructured as a

by-product of the reverse transformation process.

In the second step, the intermediate design representation is retransformed

into a specification schema based on the entity/relationship model. The detail of

how the authors did this is not available.

Chapter 3. Work Related to Reverse Engineering 62

Though the authors claimed "it is not only possible to retranslate programs
into a program design but that it is also possible to retranslate a set of program
designs into a system specification", the experiments that they carried out were
mainly limited to a low level of abstraction and there is still work to do to reach
high level of abstraction. It seems the authors did most of work by hand and have
not developed a ful l system in accomplishing their ideas.

3.5.4 A C A S E Tool for Reverse Engineering

Bachman introduced a CASE tool, DOCMAN, for reverse engineering COBOL

programs [12]. The Re-Engineering Cycle chart (Figure 3.8) provides an architec

tural view of this CASE tool, which features both forward and reverse engineering.

Particularly, reverse engineering begins at the bottom left with the definition of

existing applications and raises the applications to successively higher levels of

abstraction. At the top, the design objects created by the reverse engineering

steps are enhanced and validated to become the revised design objects used in the

forward engineering process. At the bottom, a new applications system becomes

an existing applications system at the moment that it goes into production.

The following points are stressed by this philosophy:

reverse engineering enables the CASE tool to extract business rules from

old applications and use them as the basis for refurbishing and maintaining

those applications,

• reverse engineering also involves the removal of optimisation mechanisms

and implementation artifacts that were introduced in an earlier implemen

tation of the application,

• it is impossible to reverse engineer a file, database definition, or program

automatically, because some of the information essential to the task is not

present in existing COBOL programs, and

• a reverse engineering product built as an expert system can work interac

tively with the professional user and identify the missing information, de-

Chapter 3. Work Related to Reverse Engineering 63

Level
Reverse

Engineering
Forward

Engineering

Requirements Business Analyst

Specifications
Data Analyst

System Analyst

Implementation Programmer

DBA

Operation
Existing

Application
New

Application

Figure 3.8: Re-Engineering Cycle

termine its nature, propose alternatives, and insert the user's choice where

required to complete the process.

Because the CASE tool is commercial, which is not available at Durham,

several questions about the usability of the tool remain unknown.

3.5.5 T M M

A method was proposed in [9] for recovering abstractions and design decisions

that were made during implementation. This method is called Transformation-

based Maintenance Model (TMM). The purpose of this system is to reimplement

a system in order to adapt it to a new environment through reuse. The abstrac

tions and design decisions of software must be recovered first before the software

is reimplemented. The recovery work in T M M paradigm is done by maintenance

by abstraction (MBA). Apart from working on the assumption that the documen-

Chapter 3. Work Related to Reverse Engineering 64

tation of the program exists, the T M M will also work assuming that the specifi
cation and refinement history of the program are not available, but a systematic
approach must be used to recapture implementation knowledge before the T M M
can be applied. Unfortunately the abstraction recovery was carried out manually
and human experience plays a vital role. Tools need to be developed to aid this
approach.

3.5.6 A Concept Recognition-Based Program

Transformation System

This is an approach that applies a transformation paradigm to automate soft

ware maintenance activities [63]. The characteristic of this approach is its use

of concept recognition, the understanding and abstraction of high-level program

ming and domain entities in programs, as the basis for transformations. Four

understanding levels are defined: the text level, the syntactic level, the semantic

level, and the concept level. The program transformation system depends on its

program understanding capabihties up to the concept level. The key component

is a concept library which contains the knowledge about programming and ap

plication domain concepts, and the knowledge about how these concepts are to

be transformed. Concept recognition is done by pattern matching. This work is

based on program plans (please also see Section 7.2.2). A program transformation

tool has been developed to support the migration of a large manufacturing control

system written in COBOL.

At present, the maintainer has to write correct and complete transforma

tions. In the experiment, the system only contains 60 concept recognition and

transformation rules. The result shows that the speed of the system need to be

improved. Another problem is that the system does not provide a facility for the

maintainer to guide the transformation, but this is necessary because complete

automation of maintenance modifications is not always possible. It is also found

out that the system still needs a browser to support the high-level editing.

Chapter 3. Work Related to Reverse Engineering 65

3.5.7 R E F O R M

REFORM - Reverse Engineering using FORmal Methods - is a joint project be

tween University of Durham, CSM Ltd. and IBM (UK) to develop a tool called

the Maintainer's Assistant. The main objective of the tool is to develop a formal

specification from old code. It will also reduce the costs of maintenance by the

application of new technology and increase quality so producing improved cus

tomer satisfaction. The old code in this project is the IBM CICS. The aims of the

Maintainer's Assistant are to provide a tool to assist the human maintainer, han

dling assembler and Z in an easy to use way. The Maintainer's Assistant system

will be discussed in detail in later chapters.

Other systems may be seen in [162].

3.6 Summary

The purpose of the chapter is to discuss the state of the art in the area of ac

quiring a design/specification from program code in two aspects: the experience

of forward engineering which is useful for reverse engineering (because acquiring

a specification from an existing program covers many stages of software develop

ment), and the latest developments in reverse engineering.

Problems and lessons learned from forward engineering In the specifi

cation phase, formal specifications can be found in many appHcations and they

have shown many advantages over informal specification languages. Some of the

languages in previous section have been relatively widely used, such as VDM and

Z, but they still have same problems. For example, they cannot meet the needs of

representing all levels of abstraction in acquiring a specification from the program

code; the specifications written in them cannot be easily verified formally, be

cause it is not easy to integrate them with program verification tools. Probably, a

wide spectrum language is better than other types of language when undertaking

reverse engineering.

In the development phase, existing transformation systems have shown their

Chapter 3. W o r k Related to Reverse Engineering 66

potential power. These systems suffer from various problems. For instance, the
CIP is one of the most representative projects of transformation system. It started
in 1975. By 1989 when [19] was published, the conclusion is still ".. experiences
... strengthened our belief that transformational programming will become an
important factor in software engineering." This implies that it will take a long
time for the paradigm of transformational programming to become practical. In
a general sense, the reviewed systems in the previous section almost all fall into at
least one of the following categories: theoretical problems to be solved; only "toy"
or comparatively simple example programs being experimented; and operations
being carried out informally or even entirely by hand.

In the verification phase, we can identify a number of verification systems,

but they are not built for the purpose of reverse engineering. The author has

carried out experiments with the Boyer-Moore Theorem Prover [167] for building

a supporting tool of a program transformer for the REFORM project. Experi

ences show that the Boyer-Moore Theorem Prover is a powerful verification tool.

The disadvantages can also be seen: a user has to spend time trying to find the

right intermediate lemmas for the prover; and the prover is a major consumer of

resources. One idea is to use one of the program tools for reverse engineering at

some stage of the research.

This suggests that the research of the thesis be carried out by using a for

mal or rigorous method, particularly using a formal language to represent both

specification and program; developing a transformation system to transform spec

ifications (or programs) into equivalent specifications (or programs), and using

program verification tools to obtain transformation rules (including transforma

tions for crossing levels of abstraction).

Problems and lessons learned f r o m reverse engineering From the re

viewed systems, we know that a great effort is still needed to put the paradigm

of reverse engineering into practical use. It is particularly a hard job to reverse

an existing program back to its design or specification. For instance, one of the

problems with reviewed systems is that the availability and accuracy of the design

Chapter 3. W o r k Related to Reverse Engineering 67

information are both assumed. Actually, such information is typically obsolete or
lacking in systems which have gone through years of maintenance. For such sys
tems, source code is the only reliable source of information. Another problem is
that there is not a method for coping crossing levels of abstraction covering all
abstraction levels in these systems.

The state of the art in reverse engineering may be summarised as follows.

Most existing commercial tools are basically restructurers, and these operate at

the same level of abstraction.. Even module recovery tools, such as those in MACS

or Sneed's work, operate at the syntactical level, e.g., grouping variables and

operations on them. Where genuine crossing of levels of abstraction occurs, this is

done manually, e.g., in Sneed's system for COBOL, or in redocumentation systems

such as DOCMAN. The recent Refinement conference [54] is also a reference of

the state of the art.

The most relevant work to this thesis is that of Breuer and Lano, and Bach-

man. Work is also being done on the business use of reverse engineering but this

is only indirectly of relevance to this thesis.

It should pointed out that reverse engineering is still an activity of high risk

and high cost from the management's point of view. It has been argued that

for large systems deriving formally correct designs or specifications from existing

source code is impracticable [36], because the importance of a design or specifica

tion as a model of the application domain is ignored, as well as a description of

the code itself. This argument claimed that the reasons for unsuccessful reverse

engineering include that the original design or specification might not exist at all

and that the implementer of the software did not observe the design or specifica

tion (if existed). Nevertheless, these problems had been addressed by the project

before the paper. [36] was published. The aim of the project also includes finding

out the possibility of dealing with large scaled software.

The author of this thesis would see acquiring designs and specifications for

data-intensive programs as redesigning the original programs rather than seeking

the (possible) original designs.

Chapter 4

Proposed Research Problem

As we have seen in previous chapters, acquiring a program design or specification

from program code is important and significant in reverse engineering. The thesis

takes this topic as its subject.

After studying the subject, problems which are related to this issue are iden

tified in this chapter. The general area chosen is that of crossing levels of data

abstraction to extract data design from existing code. The thesis focuses on data

design recovery for data intensive programs — those whose computational com

plexity is low, but whose data complexity is high. Many COBOL programs are of

this type.

Program design often starts with data and there are many data intensive

programs existing now in the form of COBOL programs. The Entity-Relationship

Attribute Diagram is one of the good forms of data design for a data intensive

program; for example, Entity-Relationship Attribute Diagrams are used as the

tool for representing data designs in Structured Systems Analysis and Design

Method (SSADM).

The aim of the research is to tackle not just "toy" program code, but also

real program code, including heavily maintained industry scale program code. The

code is of modest scale, e.g., a few hundred lines or even up to a few thousand

lines. Coping with a large scale program also needs further research, which has to

be studied in the next step and is beyond the scope of the thesis. Real-time and

concurrent programs are not considered, because the theoretical and foundation

68

Chapter 4. Proposed Research Problem 69

work is still in progress.

The features of data-intensive programs are first introduced in this chapter.

4.1 Features of Data-Intensive Programs

Design processes (SSADM in particular) in forward engineering are briefly re

viewed in this section in order to understand the reverse direction and to under

stand features of data-intensive programs.

4.1.1 Software Design Process

Design is the process of applying various techniques and principles for the purpose

of defining a device, a process or a system in sufficient detail to permit its physical

realisation. It is the first step in the development phase for any engineering

product or system [132].

Usually the design phase starts once software requirements have been estab

lished, regardless of the software engineering paradigm applied. From the technical

point of view, design comprises three activities: data design, architectural design

and procedural design.

The main goal of data design is to select logical representations of data objects

(data structures) identified during the requirements definition phase. Data design

is the most important design activity for some program classes among the three

design activities, because well-designed data can lead to better program structure,

modularity, and reduced procedural complexity, no matter which design technique

was used.

The main goal of architectural design is to develop a modular program struc

ture and represent the control relationship between modules. Furthermore, archi

tectural design melds program structure and data structure and defines interfaces

enabling data to flow throughout the program. The main goal of •procedural de

sign is to define algorithmic details after data and program structure have been

established.

Effective software design is best accomplished by using a consistent design

Chapter 4. Proposed Research Problem 70

method. There have been a vast number of design methods developed and used in
different application during last four decades. Essentially, most of these method
ologies can be grouped into one of three categories [132,146]:

• Data structure-oriented design. This method is to transform a representation

of data structure, (information structure) into a representation of software.

The idea behind it is that input data, internally stored information and out

put data may each have a unique structure and these structures can be used

as a foundation for the development of software. In addition there is an inti

mate relationship between software and data — the original concept behind

the stored program computer is that programs could be viewed as data and

data interpreted as programs. It has been shown that data structure has an

important impact on the complexity and efficiency of algorithms designed

to process information. The approach may be successfully applied in appli

cations that have a well-defined, hierarchical structure of information, e.g.,

business information systems applications and systems applications.

• Data flow-oriented design. This method is to provide a systematic approach

for the derivation of program structure. The idea behind it is that infor

mation may be represented as a continuous flow that undergoes a series of

processes as it evolves from input to output. The data flow diagram is used

as a graphical tool to depict information flow. The approach is particularly

useful when information is processed sequentially and no formal hierarchical

data structure exists.

• Object-oriented design. This method is to create a representation of the real-

world problem domain and map it into a solution domain that is software. It

results in a design that interconnects data objects and processing operations

in a way that modularises in formation and processing rather than processing

alone. This approach has been developed more recently than the other

design methods.

Compared with the data flow-oriented design, data structure-oriented de

sign is more suitable for data-intensive programs, because data structure-oriented

Chapter 4. Proposed Research Problem 71

design is more powerful in coping with more complicated data structures. Data-
intensive programs currently in need of maintenance were usually developed before
the object-oriented design method existed. In siimmary quite a number of data-
intensive programs to be maintained today were developed by the data structure-
oriented design method.

In the next section, a widely used data structure-oriented design method is

described.

4.1.2 Structured Systems Analysis and Design IVIethod

Structured Systems Analysis and Design Method (SSADM) [11,53,61] is one of

family of systems development methods which has led the methods field in Britain

during the 1980s. The method was accepted by the UK government's Central

Computer and Telecommunications Agency (CCTA) and became mandatory for

systems analysis and design in the UK in January 1983. It is constantly being

updated, and version 3 was released in July 1986.

The importance of software design is to help producing "quality" software.

It explains why SSADM is one of the most mature and widely used structured

methods in the UK though it requires a significant investment in training — it

provides good quality to software product which was developed by SSADM.

SSADM prescribes how a systems development effort should be conducted.

The prescription is adjusted to suit individual needs. It breaks down a project into

phases which are then divided into stages. Each stage is subdivided into steps.

Each step has a list of tasks, inputs and outputs. SSADM provides structural and

procedural standards.

SSADM consists of three phases: feasibility, analysis and design. The fea

sibility phase is optional. The analysis and design phases are divided into three

stages each. The three analysis stages of the analysis phase and the three stages

of the design phases are:

1. Analysis of system operations and current problems: to investigate the cur

rent system

Chapter 4. Proposed Research Problem 72

2. Specification of requirements: to redraw the current system view built up
in stage 1 to extract what system does without any indication of how this
is achieved; to complete Business System Operations; and to build up and
check a detailed specification of the required system.

3. Selection of technical options: to cost out the purchase of new computer

equipment, etc., if required and to weigh the benefits against the costs to

give the user some help in choosing the final solution, e.g., selecting the final

system hardware.

4. Detailed data design: to . build up the logical data design so that all the

required data will be included.

5. Detailed process design: to expand the definition developed in stage 2 to a

very high level of detail so that the constructor can be given all the detail

necessary to build the system.

6. Physical design control: to convert the complete logical design — both data

and processing — into a design that will run on the target environment.

SSADM is a data driven approach. Within SSADM several different views

of data are employed. The analysis and design of processes is a part of SSAMD,

but the context within which these are done is determined by the data. SSADM

takes three basic views of an information system:

• Logical Data Structures — showing what information is stored and how it

is interrelated;

• Data Flow Diagrams — showing how information is passed around;

• Entity Life Histories — showing how information is changed during its life

time.

The first view of the data structure is developed as a model of the organisa

tion's information base using the logical data structuring technique (LDST). This

Chapter 4. Proposed Research Problem 73

technique tries to capture a picture of the underlying and stable information on
which the organisation and its information system and based.

The method of data modelling is based on an entity relationship model [47 .

The model recognises two different classes of relations, entity relation and rela

tionship relation. An entity relation has data on all entities of the same type,

and has one tuple per entity, including a key to identify the particular entity. All

other fields should be functionally dependent on this key. A relationship relation

links the keys of two or more entity relations. It may also have attributes that are

functionally dependent on this relationship [81]. The major, real world entities in

which the organisation is interested are represented on a diagram. The relation

ships between entities are examined to ensure that all, and only the useful ones

are included in the model. The nature of the relationships are also explored and

details included.

This technique is a top-down approach to data modelling and relies upon

the modeller's perception of the information being modelled. It is quite simple,

and moderate-sized diagrams can be quickly produced. These can be intelligible

to users, who may thereby contribute their understanding to the development

process.

A second view of the data is represented by dataflow diagrams (DFDs).

These show the data which flow into, out of, and around an information system,

as well as the processes which transform i t , the entities which are external to the

system but which communicate with i t , and the stores of data within a system.

A third view of the data is represented by the use of entity life histories

(ELHs) and their associated ELH metrics. LDST takes a static view of the data,

DFDs look at the movement of data and the dependency of processes upon certain

flows. ELHs complement these perspectives by looking at how entities change over

time.

Each of these views is developed through system analysis (stage 1-3) and

logical design (stage 4 and 5) before conversion to an executable physical design.

In each part of SSADM all three of these views are used and interrelated. There

are several steps in one stage. The task belonging to each of the three views can

Chapter 4. Proposed Research Problem 74

Stage 1
Analysis of system]

operations and
current problems

Stage 2
Specification of

requirements

Stage 3
Selection of

Technical options

System
specification

Stage 4 Stage 5

Data design Process design Data design

Stage 6

Physical Design

Figure 4.1: SSADM Stages

Chapter 4. Proposed Research Problem 75

be done in one or more steps in a stage, or even does not appear in one stage. The
convention of naming a step is to use a 3-digit number, first number indicating
the stage where the step is in. For instance, step 110 is in stage 1 and step 260 is
in stage 2.

The first view of data is corresponding to one of the three design activities

— data design. Since data design is the emphasis of the research, only those

steps relating to the first view (Logical Data Structures) are discussed here. Steps

directly related to Logical Data Structures at the logical design phase are step

125, step 245, step 410 and 420.

In step 125, Investigating system data structure, the Logical Data Structure

Diagram and its supporting documentation are produced. Development of Log

ical Data Structure involves identifying entities, identifying direct relationships

between entities, creating a diagram representing the entities and their relation

ships, producing supporting documentation to the diagram, validating against the

processing requirements and validating with the user.

In step 240, Creating required system data structure, the Current System

Logical Data Structure and supporting documentation are expanded to define the

required system data structure. This involves defining new requirements which the

Logical Data Structure must support by the chosen Business System Option and

the Problems/Requirements List, amending the Problems/Requirements List to

describe any solutions adopted, and validating the Required System Logical Data

Structure against the required system processing and extending the Entity/Data

Store Cross Reference.

In step 410, Relational data analysis, a set of normaHsed relations which

minimise redundancy of data and avoid consistency problems are produced.

In step 420, Composite Logical Data Design, the Logical Data Structure,

and the relations derived from relational data analysis are combined to form the

Composite Logical Data Design. This involves representing the relations as a data

structure diagram to aid comparison with the Logical Data Structure, merging two

diagrams and resolving differences with reference to the processing requirements

and to the user,' extending the Entity Description to show the ful l data content

Chapter 4. Proposed Research Problem 76

defined by the relations, completing any remaining documentation of the system
data and consolidating all volumetric information on the data.

4.1.3 Features of Data-Intensive Programs

Data-intensive programs and computation-intensive programs are comparative no

tions. There is no clear distinction between these two sorts of programs. Data-

intensive programs mean programs which are written in data-intensive program

ming languages that provide complex data structuring mechanisms and high-

level composite operations to manipulate them. Computational-intensive pro

grams mean programs which are written in computational-intensive languages

that provide ways to express computations using relatively simple operations on

elementary objects [74]. COBOL is a typical data-intensive programming lan

guage.

Since examples of data-intensive program are needed in the research, COBOL

has been selected as the data-intensive language. The features of COBOL pro

grams are studied as an example of data-intensive program in general. In this

text, all examples of data-intensive program are in COBOL. It is believed that

the generality of the research will not be limited by this assumption. On the other

hand, there are claimed to be 800 biUion lines of COBOL programs existing in

the world [104] and the result of the research can be easily applied to maintain

COBOL software.

The COBOL language was first developed in 1959. The CODASYL commit

tee (Conference on Data Systems Languages) produced the initial specification

of COBOL in 1960, and a revised version appeared in 1961. The first ANSI

(American National Standard Institute) specification of the COBOL language

was published in 1968. Later standards were the ANSI 1974 and the ANSI 1985

Standard. COBOL offers the following advantages within the standard language

92], which are related to the research:

1. Uniform treatment of all data as records.

2. Extensive capabilities for defining and handling files.

Chapter 4. Proposed Research Problem 77

3. Incorporation of many functions which in other contexts would be regarded
as the province of system utilities.

4. The ability to construct large programs from independently compiled mod

ules which communicate with each other by passing parameters or by using

common files.

The COBOL language used in this research not only is unrestricted to any

dialect of COBOL but also covers features written in ANSI COBOL Standard

1985. More importantly, this research will be not only of benefit to COBOL

programs but also to other data intensive programs written in other languages.

However, programs (such as those written in COBOL) with built-in calls to data

base management packages will not be addressed in this thesis and this surely is

a good area for future research.

Programs written in COBOL have characteristics which are different to those

of typical computation-intensive programs, and these are important constraints

in reverse engineering such systems, e.g.:

• Important data is represented in the form of records and operations on data

are therefore heavily record based.

• COBOL programs are often designed using Entity-Relationship Attribute

Diagrams, rather than process based design methods.

• COBOL allows the programmer to specify that two different records (with

different structures) may share the same memory location. This is known

as the aliasing problem and is found in many COBOL programs.

• COBOL programs usually have external calls to the operating system and

database management system.

• COBOL programs may use many foreign keys to represent complex data

structures which in other languages would use pointers.

Chapter 4. Proposed Research Problem 78

4.2 Representing Data Designs Using
Entity-Relationship Attribute Diagrams

It can be seen that the SSADM's first view of data, i.e.. Logic Data Structures,

may be used in reverse engineering, i.e., to represent data design by Logical Data

Structures when extracting a data design from existing code. How Logical Data

Structures can be used is a problem to be solved in the thesis.

4.2.1 Entity]VIodels

Entity models provide a system view of the data structures and data relationships

within the system [47,53,55,114]. Al l systems possess an underlying generic entity

model which remains fairly static in time. The entity model reflects the logic of

the system data, not the physical implementation.

Entity models provide an excellent graphical representation of the generic

data structures and relationships. They provide a clear view of the logical struc

ture of data within the boundary of interest and allow the analyst to model the

data without considering its physical form. Entity modelling provides a system

view independent of current processing; it is a system-wide view not a functionally

decomposed view.

An ent i ty is something, real or abstract, about which we store data [114 .

The name of each type entity type should be a noun, sometimes with a modifier

word. An entity type may be thought of as having the properties of a noun. An

entity has various attributes that we wish to record. An entity type is a named

class of entities that have the same set of attribute types. An entity instance is

one specific occurrence of an entity type.

We can describe data in terms of entity types and attributes by using Entity-

Relationship Attribute Diagrams. On an Entity-Relationship Attribute Diagram

the boxes are interconnected by Hnks that represent associations between entity

types. In Figure 4.2 there are four entities: CUSTOMER, PART, CONTRACT,

and CONTRACT-ITEM. This diagram shows that a customer can have multiple

contracts. A contract is for one customer and can be for more than one contract

Chapter 4. Proposed Research Problem 79

CUSTOMER

< CONTRACT

<

PART

0
C O N T R A C T -

ITEM

Key

One A is associated with one B:

One A is associated with one or more B's:

One A is associated with zero or one B:

One A is associated with zero or one or more B's: A

A 1 B A 1 B

< B

-O- B

- O ^ B

Figure 4.2: An Entity-Relationship Attribute Diagram

item. There are zero, one, or many contracts for each part. A contract item

relates to one contract and zero or one part.

4.2.2 Entity-Relationship Attribute Diagrams in SSADM

Entity models are sometimes called logical data structures, as before we use

SSADM as our examples. Entity-Relationship Attribute Diagrams used in SSADM

are revised versions of generally used Entity-Relationship Attribute Diagrams

shown in Figure 4.2.

Chapter 4. Proposed Research Problem 80

Entities, Data Items and Identifiers

An entity is something of significance to the system about which information is

held [11]. An entity type represents a number of entity occurrences. According to

convention, entity is always used to refer to the entity type and entity occurrence

is always used to refer to a specific entity occurrence.

A data item is the smallest discrete component of the system information

that is meanful (in other approaches a data item defined here is usually called an

attribute).

Each entity is made up of a number of data items.

A data item which can be used to identify uniquely each entity occurrence

is called the primary key.

An entity is represented as a box in a Logical Data Structure Diagram.

Relations

A relation is a group of non-repeating data items identified by a unique key [11 .

Mathematically a relation is defined as a set of tuples and that this set is a subset

of the cartesian product of a fixed number of domains [81 .

Relationships

A relationship is a logical association between two entities on a data structure

that is important to the system. Relationships are normally described as verbs.

The degree of relationships Between two entities A and B there are four

possible degrees of relationships:

1. One A can be related to many B's.

2. Many A's can be related to one B.

3. Many A's can be related to many B's

4. One A can be related to one B.

Chapter 4. Proposed Research Problem 81

1 and 2 are examples of one-to-many relationships. It is assumed that both
one-to-one and many-to-many relationships rarely exist. So only one-to-many
relationships are drawn on Logical Data Structure Diagrams.

Exclusive relationships This is when the existence of one relationship pre

cludes the existence of another (see Case B in Figure 4.3).

Recursive relationships This is when entity occurrences have direct relation

ships with other entity occurrences of the same type (see Case C in Figure 4.3).

Logical Data Structure Diagrams

Case A in Figure 4.3 shows a one-to-many relationship. The line with the crow's

foot describes the relationship. The crow's foot is always shown at the 'many' end.

The entity at the one end is often referred as the master entity and the entity at

the 'many' end referred to as the detailed entity.

The components of the Logical Data Structure are entities and relationships.

The Logical Data Structure deals with entity and relationship types only rather

than their occurrences. Relationships relate one entity to another and indicate ac

cess from one entity occurrence to all the related ones. The Logical Data Structure

Diagram is supported by entity descriptions and sometimes relationship descrip

tions.

4.3 Reverse Engineering Through Data

Abstraction

4.3.1 Abstraction Techniques in Programming

Abstraction techniques are widely used in "forward engineering" [49,51,56,109].

There are two advantages by using abstraction: firstly, the abstractions allow large

systems to be broken into smaller parts with logical interfaces based upon the data

being handled. These interfaces stand alone as the specification of the system with

C h a p t e r 4. P r o p o s e d R e s e a r c h P r o b l e m 82

B

(A) A one-to-many relationship

(B) A n exclusive relationship

(C) A recursive relationship

F igu re 4.3: Rela t ionships i n E n t i t y - R e l a t i o n s h i p A t t r i b u t e Diagrams

the ac tua l i m p l e m e n t a t i o n be ing h idden and flexible; secondly, the abstractions

can be de f ined i n a r igorous m a t h e m a t i c a l fash ion , w h i c h means t h a t the da ta

t y p e i t se l f is a w e l l def ined m a t h e m a t i c a l system. A systematic development of a

b o d y of knowledge is thus made possible.

Abstraction is t he process of i gno r ing cer ta in details i n order t o s i m p l i f y the

p r o b l e m and so fac i l i t a t es the speci f ica t ion , design and i m p l e m e n t a t i o n of a system

t o proceed i n a step-wise fash ion .

The re are three stages i n th i s process. T h e first requi rement i n designing

C h a p t e r 4. P r o p o s e d R e s e a r c h P r o b l e m 83

a p r o g r a m i n f o r w a r d engineer ing is t o concentrate on relevant features of the
sys tem, and t o ignore fac tors w h i c h are bel ieved i r re levant . T h e next stage i n
p r o g r a m design is t he decision of the manner i n w h i c h the abstracted i n f o r m a t i o n
is t o be represented i n the compute r . F i n a l l y there comes the task of p r o g r a m m i n g
the compu te r t o get i t t o ca r ry ou t these man ipu la t i ons at the representat ion of
t he da ta t h a t corresponds t o the man ipu l a t i ons i n the real w o r l d i n w h i c h we are
in teres ted .

Th ree basic abstract ions have been used i n p r o g r a m m i n g [109,110,141]:

P r o c e d u r a l a b s t r a c t i o n combines the methods of abs t rac t ion by parame-

te r i s a t ion and spec i f ica t ion i n a way t h a t allows us t o abstract a single opera t ion

or event . A procedure provides a m a p p i n g f r o m i n p u t arguments t o o u t p u t ar

guments . I n another words , i t is a m a p p i n g f r o m a set of i n p u t arguments t o a

set of o u t p u t results . Desirable proper t ies of a procedure inc lude s i m p l i c i t y and

general i ty .

D a t a a b s t r a c t i o n allows us t o ex tend the base t y p e level w i t h new types

of da ta . D a t a abs t rac t ion is t he mos t i m p o r t a n t m e t h o d i n p r o g r a m design.

Choos ing the r i g h t da t a s t ructures is c ruc ia l t o achieve an eff ic ient p rog ram. I n

the absence of da t a abs t rac t ion , da ta s t ructures mus t be def ined too early , i.e.,

t hey m u s t be specif ied before the imp lemen ta t ions of modules w h i c h use t h e m can

be designed.

I t e r a t i o n a b s t r a c t i o n , or i t e r a t o r f o r short , is a generahsation of the

i t e r a t i o n me thods available i n most p r o g r a m m i n g languages. T h e y p e r m i t users

t o i t e ra t e over a r b i t r a r y types of da t a i n a convenient and eff ic ient way. I n other

words , i t e ra to rs are a mechan i sm t h a t solve the p r o b l e m i n the adequacy of data

types t h a t are col lect ions o f objec ts .

4.3.2 Data Abstraction

D a t a is essential t o p r o g r a m m i n g . One of the most i m p o r t a n t object ives of pro

g r a m m i n g is t o process da ta or t o achieve cer ta in goal t h r o u g h processing data.

T h e p r o g r a m development process can be described i n t e rms of data . D a t a ab

s t r a c t i o n has f o l l o w i n g i m p o r t a n t aspects [50]:

C h a p t e r 4 . P r o p o s e d R e s e a r c h P r o b l e m 84

• D a t a abst ract ions separate the use of a da ta t y p e f r o m the i m p l e m e n t a t i o n
of a da t a t y p e .

• D a t a abst ract ions s i m p l i f y issues of correctness.

• D a t a abst ract ions p e r m i t the exchange of (cor rec t) implemen ta t ions . Per

f o r m a n c e is i dea l ly the o n l y c r i t e r i o n f o r choosing an i m p l e m e n t a t i o n .

• D a t a abs t r ac t ion is a sof tware design technique t h a t promotes m o d u l a r i t y

and independent development of da ta abs t rac t ion i m p l e m e n t a t i o n and the

a p p l i c a t i o n p r o g r a m .

4.3.3 Data Type

A data type defines a set of v a l i d values and the operat ions on these values. A n

other way t o state th i s is t h a t a da ta t y p e is a language mechanism to enforce

a u t h e n t i c a t i o n and secur i ty [28,124]. A s u m m a r y of some of the i m p o r t a n t points

da t a t y p e was g iven by C. A . R . Hoare [89]:

1. A t y p e determines the set of values w h i c h m a y be assumed by a value or

expression.

2. E v e r y value belongs t o one t y p e only.

3. T h e t y p e of a value denoted by any constant , var iable , or expression m a y

be deduced f r o m i t s f o r m or contex t , w i t h o u t any knowledge of i ts value as

c o m p u t e d at r u n - t i m e .
a

4. Each opera tor expects operands of fixed t ype , and delivers a result of some

f i x e d t y p e . W h e r e the same s y m b o l is appl ied t o several d i f fe ren t types, th is

s y m b o l m a y be regarded as ambiguous , deno t ing several d i f fe ren t ac tua l

operators . T h e reso lu t ion of such systemat ic a m b i g u i t y can always be made

at c o m p i l e - t i m e .

5. T h e proper t ies o f the values of a t y p e and of the p r i m i t i v e operations defined

over t h e m are specif ied by means of a set of axioms.

C h a p t e r 4. P r o p o s e d R e s e a r c h P r o b l e m 85

6. T y p e i n f o r m a t i o n is used i n a h igh- level language b o t h t o prevent or detect
meaningless cons t ruc t i on i n a p r o g r a m , and t o de te rmine the m e t h o d of
represent ing and m a n i p u l a t i n g da ta on a compute r .

7. Types can be cons t ruc ted f r o m a n u m b e r of p r i m i t i v e types, i.e., by con

s t ruc tors . These inc lude Car tes ian produc ts , d i s c r im ina t ed unions, sets,

f u n c t i o n s , sequences and recursive s t ructures .

Each t y p e has a range o f basic operat ions associated w i t h i t . Usua l ly these

are the operat ions p r o v i d e d b y the basic hardware of the compute r system and

t h e y w i l l a p p l y d i r e c t l y t o the basic types [151]. Fur the r operations w i l l be defined

i n t e rms of th i s basic set. M o r e generally, the operat ions associated w i t h a t y p e

are:

• Ass ignment and test f o r equa l i t y w i l l be requi red fo r b o t h p r i m i t i v e and

s t r u c t u r e d types .

• Transfer or conversion f u n c t i o n s are requi red t o convert values of one t y p e

t o another .

• Cons t ruc tors are necessary t o donate the cons t ruc t ion of a new type f r o m

component types .

• Selectors are r equ i red t o access the component values of a s t ruc tu red type .

A l l types are cons t ruc ted f r o m f u r t h e r types, w h i c h u l t i m a t e l y mus t be ei ther

p r i m i t i v e (p r o b a b l y suppor ted d i r e c t l y by the computer ' s hardware) or are defined

by the p r o g r a m m e r b y using t y p e constructors . T h e constructors (f u n d a m e n t a l

da t a types) f o r types are as fo l lows [89,151]:

• U n s t r u c t u r e d da ta types — A l l s t ruc tu red da ta mus t be b u i l t up f r o m un

s t r u c t u r e d components , be longing t o a p r i m i t i v e or uns t ruc tu r ed type . Some

of these u n s t r u c t u r e d types (fo r example , reals and integers) m a y be taken

as g iven b y a p r o g r a m m i n g language. A l t h o u g h these p r i m i t i v e types are

t heo re t i c a l l y adequate f o r a l l purpose, there are s t rong p rac t i ca l reasons fo r

C h a p t e r 4. P r o p o s e d R e s e a r c h P r o b l e m 86

encouraging a p r o g r a m m e r t o define his or her o w n u n s t r u c t u r e d types. Th i s
can be done by an enumeration, i .e., i n d i c a t i n g the set of values t h a t can
be t aken b y an u n s t r u c t u r e d type . For instance, t y p e D a y is defined as
{ M O N , T U E , W E D , T H U , F R I , S A T , S U N } . Othe r examples inc lude the
boolean t y p e (w i t h o n l y t w o values, false and t r u e) and the char t y p e (w i t h
a l l characters i n the A S C I I tab le , r ang ing f r o m A S C I I value 32 to 126).

• T h e Car tes ian P r o d u c t — T h e Cartes ian P roduc t is a da ta s t r uc tu r ing

m e t h o d w h i c h gives the space of possible values of a composi te type . Such

s t ruc tures usua l ly have a fixed size and are cal led records or s tructures i n

p r o g r a m m i n g languages, where t he i r components can be named, e.g.:

t y p e DATE i s

r e c o r d

D: DAYS;
M: MONTHS;
Y: YEARS;

end r e c o r d ;

I t m u s t be possible t o refer t o t he i n d i v i d u a l components of a Cartesian

p r o d u c t .

• T h e D i s c r i m i n a t e d U n i o n — A d i s c r imina t ed u n i o n is a t y p e w h i c h is the

u n i o n of t w o or m o r e sets of values, each of w h i c h m a y have components i n

c o m m o n . I t is usua l ly specified by l i s t i n g the components t h a t the sets have

i n c o m m o n , f o l l o w e d by the components w h i c h d i f fe r .

t y p e PERSON i s

r e c o r d

NAME: STRINGS;
SEX: (M o r F);
IDENTIFICATION:

C h a p t e r 4. P r o p o s e d R e s e a r c h P r o b l e m 87

case: STUDENT: STUDENT CARD NUMBER;
EMPLOYED: NI NUMBER

end case;
end record;

• T h e A r r a y — I t is available i n a lmost every language. V i e w i n g abs t rac t ly

i t is a m a p p i n g between the subscript values and the elements of the array.

• T h e Power Set — T h e powerset of a g iven set is def ined as the set of a l l

subsets of t h a t set; and a powerset t y p e is a t y p e whose values are sets of

values selected f r o m some other t y p e k n o w n as the base o f the powerset.

• T h e Sequence — T h e c a r d i n a l i t y of a sequence cannot be decided at com

pi l e t i m e , because a sequence of values m a y be i n d e f i n i t e l y long and, more

p rac t i ca l ly , m a y va ry as t he p r o g r a m executes. A sequence can be regarded

as an a r b i t r a r y n u m b e r of i t ems of g iven t y p e placed i n a pa r t i cu la r order.

Such sequences inc lude str ings, stacks, queues and so on . T h e sequence is

the abs t r ac t ion n o t i o n and there are various representations of th is abstract

n o t i o n .

• Sparse D a t a St ructures — I f the set p o t e n t i a l l y contains a very large number

of elements or i f the range of possible subscript values is very large, t hen the

da ta t y p e is said t o be sparse i f o n l y a smal l p r o p o r t i o n of possible values

are present. A p a r t i c u l a r example is an array w h i c h represents a d i c t iona ry

and is indexed by character str ings corresponding t o words. Th i s array can

be declared as:

t y p e D I C T I O N A R Y = sparse ar ray W O R D of D E F I N I T I O N .

_ Sparse da ta s t ructures can be represented by keeping tables t o m a p the index

values i n t o e i ther m a i n store addresses or posi t ions i n a file. Sparse da ta

s t ructures , i n general sense, are not recognised i n p r o g r a m m i n g languages.

• Pointers — A po in te r can be t hough t of as the name of the place where an

ob j ec t is kept ; usua l ly i t w i l l be i m p l e m e n t e d as an address. Pointers are

C h a p t e r 4. P r o p o s e d R e s e a r c h P r o b l e m 88

usua l ly used t o b u i l d da t a s t ructures whose size is, i n general, u n k n o w n at
compi l e t i m e .

4.3.4 Abstract Data Types

T h e m a j o r conceptua l idea of abstract data types is t o separate the use of a t ype

f r o m the representa t ion and i m p l e m e n t a t i o n of a t ype . T h e use of a t y p e should

depend o n l y on the set of values and operat ions. I t should not depend on ei ther

i ts representa t ion or i ts i m p l e m e n t a t i o n .

D a t a abs t r ac t ion allows the descr ip t ion of abstract da ta types. Usually, a

da t a abs t r ac t ion consists of "objects" and "operat ions". To i m p l e m e n t the da ta

abs t rac t ion , we i m p l e m e n t the operat ions i n t e rms of the chosen representat ion,

and we m u s t r e i m p l e m e n t t he operat ions i f we change the representat ion. How

ever, we do no t need t o r e i m p l e m e n t the p r o g r a m by using th is abs t rac t ion, be

cause the p r o g r a m depends o n l y on the operat ions and not on the representat ion.

I t is i m p o r t a n t t o unders tand th i s . For example , a stack can be viewed as an

abs t rac ted da ta t y p e . A stack is def ined i n t e rms of a representat ion (such as an

a r r ay) and several operat ions (such as N E W , P U S H , POP , R E A D and E M P T Y) .

I f these operat ions are m e t i n a p r o g r a m , t hey can be abst racted t o a "stack".

4.3.5 Abstraction Levels of Data and Software

T h e A N S I - S P A R C S tandard has established three d i s t inc t abs t rac t ion levels i n

v i e w i n g data . These are t he physical level, logical level and conceptual level [1].

D a t a a t t h e p h y s i c a l l e v e l A t the phys ica l level , da ta is v iewed as a set of

records connected t h r o u g h po in te r arrays, i nve r t ed l is ts , etc., depending on the

t y p e of phys ica l i m p l e m e n t a t i o n , e.g., h ie rarchica l , ne twork , or re la t iona l . The

f o r m s of da t a are:

• r aw da ta — consis t ing of b i t s , bytes and words.

• scalar types — such as n a t u r a l numbers , integers, reals, characters and

boolean variables together w i t h po in te r variables (represent ing m e m o r y ad-

C h a p t e r 4. P r o p o s e d R e s e a r c h P r o b l e m 89

dresses). '

• da t a s t ruc tures — re fe r r ing t o c o m p o u n d s tructures w h i c h are d i r ec t ly sup

p o r t e d b y p r o g r a m m i n g languages such as arrays, heterogeneous structures

(e.g., the record i n C O B O L) , sets, l is ts , s imple user def inable types and per

sistent s t ruc tures such as files (r a n d o m , sequential , e tc .) . Associated w i t h

t he da ta s t ructures are the operat ions used t o m a n i p u l a t e t h e m .

D a t a a t t h e l o g i c a l l e v e l A t the logical level , da ta is v iewed as tables of nor

mal i sed re la t ions or tuples of da t a elements Hnked by keys, w h i c h are independent

of any p a r t i c u l a r phys ica l i m p l e m e n t a t i o n , e.g., the da ta m a n i p u l a t i o n language.

T h e basic f o r m of da t a here is data items. D a t a i t ems of an abstract class,

as opposed t o values of an abstract da ta t ype , encapsulate the d e f i n i t i o n of an

i n t e r n a l state and are associated w i t h a set of accessing operations, w h i c h m a y

upda t e a n d / o r query the ob j ec t state. T h e assumpt ion is t h a t the classes of

abst ract i t ems w i l l be i n i t i a t e d as independent subsystems i n d i f ferent contexts .

T h e i t e m classes inc lude stack, queue, sets, bags, etc. A n abstract da ta type is at

th i s level .

D a t a a t t h e c o n c e p t u a l l e v e l A t t he conceptual level , da ta is v iewed as a

n e t w o r k o f ent i t ies w i t h a t t r i bu t e s and relat ionships among one another, e.g., the

e n t i t y / r e l a t i o n s h i p m o d e l . A t th i s level , da ta is ex is t ing i n the f o r m of appHcation

ob jec t s and i t is m o r e close t o the concept of real w o r l d ra ther t h a n t o the software.

A b s t r a c t i o n l e v e l s o f s o f t w a r e I n p r i n c i p a l , the three da ta levels also app ly

t o sof tware [51,144,174]. A t the phys ica l level sof tware exists as a set of discrete

un i t s of code o f various types — modules , maps , da ta descript ions, access paths,

and c o m m a n d procedures — l i n k edi tors and loaders of the opera t ing system. A t

t he log ica l level , sof tware exists i n the f o r m of a m e t a language, w h i c h describes

processing un i t s — modules , da ta capsules, and interfaces of any pa r t i cu la r imp le

m e n t a t i o n language. A t the conceptual level , sof tware, Hke da ta , can be viewed

as a set of abst ract en t i t ies , such as da ta objec ts , da ta elements, processes and

C h a p t e r 4. P r o p o s e d R e s e a r c h P r o b l e m 90

re la t ionships among one another . A t the conceptual sof tware models some real
w o r l d a p p l i c a t i o n .

T h e sof tware at t he phys ica l and logical level is t y p i c a l l y executable and

hence i t can be re fe r red as t h a t t he s o f t w a r e is a t the c o d e l e v e l . W h i l s t the

s o f t w a r e a t t he c o n c e p t u a l l e v e l is t y p i c a l l y not executable and can be v iewed

as t he design and spec i f ica t ion .

4.4 Definition of Proposed Research Problem

I n seeking solut ions t o t he problems described i n Chapter 1 (Section 1.3), Chap

te r 2 and Chap te r 3 reviewed the w o r k (done i n sof tware engineering and i n

reverse engineer ing i n ' p a r t i c u l a r) re la ted t o th is thesis, and the previous sections

i n th i s chapter addressed features of da ta intensive programs, En t i t y -Re la t i onsh ip

A t t r i b u t e D iag rams and da ta abs t rac t ion techniques. Th i s enables the research

p rob lems proposed i n Section 1.3 t o be def ined more precisely as fo l lows:

• Can da ta in tens ive programs be reverse engineered t o En t i t y -Re l a t i onsh ip

A t t r i b u t e Diagrams? W h a t are t he d i f f icu l t ies? H o w do we use code and

data structure i n t he sources?

• H o w do we cope w i t h source code techniques such as

1. f o r e ign keys

2. a l ias ing

3. i n p u t / o u t p u t

4. abst ract da t a t y p e , and

• Is i t possible t o reverse engineer da t a intensive programs w h i c h have been

heav i ly m a i n t a i n e d and hence whose s t ruc tu re has become heavi ly degraded?

• W h a t is t he m e t h o d t o ex t rac t p r o g r a m data designs (represented i n E n t i t y -

Re la t ionsh ip A t t r i b u t e D iag rams) f r o m the ex is t ing da ta intensive code?

• W i t h w h a t size of code can th i s m e t h o d cope?

C h a p t e r 4. P r o p o s e d R e s e a r c h P r o b l e m 91

• W h a t i n f o r m a t i o n do we t h r o w away when crossing abs t rac t ion levels?

• W h a t can be a u t o m a t e d and w h a t can be done by humans?

• Suppose t h a t th i s m e t h o d is demons t ra ted by ex tend ing the Main ta ine r ' s

Ass is tan t . W h a t changes have t o be made t o W S L ? W h a t extension has t o

be made t o the t r a n s f o r m a t i o n l i b r a ry? W h a t other suppor t ing components

should be imp lemen ted?

• H o w do we k n o w w h a t we have done is correct? H o w do we measure our

success?

I t is c l a imed t h a t answers t o the above questions are m a k i n g a c o n t r i b u t i o n

t o research i n c o m p u t e r science.

Because th i s research aims at developing a m e t h o d (and a t o o l) t o ext rac t

p r o g r a m da ta designs f r o m the ex i s t ing da ta intensive code, i t should be po in ted

o u t t h a t t he m e t h o d should o n l y be used under cer ta in circumstances where, fo r

example , ma in tenance t o a re la t ive self-contained m o d u l e needs ca r ry ing out . Th i s

means t h a t t he m e t h o d w o u l d no t be ve ry h e l p f u l when a m i n o r change (e.g., a

change t o one l ine of code) is needed. T h e reason is t h a t an En t i t y -Re l a t i onsh ip

A t t r i b u t e D i a g r a m can o n l y be ex t r ac t ed f r o m a b lock of code (con ta in ing b o t h

c o n t r o l and da ta s t ruc tures) ra ther t h a n j u s t one or t w o lines of code.

Chapter 5

Working Environment and

Design Recovery Method

As the research described i n th i s thesis is pa r t of the R E F O R M pro jec t , the

background of R E F O R M and the w o r k i n g env i ronment are i n t roduced i n th is

chapter .

5.1 Working Environment

T h e R E F O R M p r o j e c t s ta r ted i n J u l y 1989 [44,156]. As men t ioned i n Chapter 3,

t he a i m of t he p r o j e c t is t o b u i l d a p r o t o t y p e t o o l — the Ma in t a ine r ' s Assistant

— w h i c h w i l l t ake ex i s t ing sof tware w r i t t e n i n low-level p rocedura l language (i n

p a r t i c u l a r , I B M C I C S code w r i t t e n i n I B M - 3 7 0 assembler), t h r o u g h a process of

successive t r a n s f o r m a t i o n , t u r n i t i n t o an equivalent h igh- level abstract specifi

c a t i o n expressed i n t e rms of non-procedura l abstract speci f ica t ion language (i n

p a r t i c u l a r , Z) . T h e theore t i ca l f o u n d a t i o n f o r the p ro jec t was established by the

w o r k ca r r ied ou t at O x f o r d and D u r h a m by M . W a r d [155]. N a t u r a l l y , as the

process of a p p l y i n g p r o g r a m t r ans fo rma t ions cannot be t o t a l l y au tomated , the

M a i n t a i n e r ' s Ass is tant is an in t e rac t ive t o o l i n c l u d i n g an in t e rac t ive interface.

92

C h a p t e r 5. W o r k i n g E n v i r o n m e n t a n d D e s i g n R e c o v e r y M e t h o d 93

5.1.1 Ward's Work and its Application in the R E F O R M
Project

T h e R E F O R M P r o j e c t has i ts roots i n Ward ' s w o r k [155], i n w h i c h he developed

me thods of p r o v i n g ref inements and t r ans fo rmat ions of programs. A l t h o u g h he

used the popu la r approach of de f in ing a core "kernel" language w i t h denota t ional

semantics, and p e r m i t t i n g d e f i n i t i o n a l extensions i n t e rms of the basic constructs,

he d i d no t use a p u r e l y app l i ca t ive kernel ; instead, the concept of states is i n

c luded , us ing a specification statement w h i c h also allows specif icat ion expressed i n

first order logic as p a r t of t he language (thus p r o v i d i n g a genuine wide spec t rum

language) .

I n contras t t o o ther w o r k . W a r d used i n f i n i t a r y first order logic (an exten

sion of first order logic w h i c h allows i n f i n i t e l y long f o r m u l a e) b o t h t o express the

weakest p recondi t ions of programs [60] and t o define assertions and guards i n

the kerne l language. Engeler [64] was the first t o use i n f i n i t a r y logic to describe

proper t ies of p rograms and Back [13] used such a logic t o express the weakest pre

c o n d i t i o n of a p r o g r a m as a logic f o r m u l a b u t his kernel language was l i m i t e d t o

s imple i t e r a t i v e programs. W a r d used a d i f fe ren t kernel language w h i c h includes

recurs ion and guards, and he showed t h a t the i n t r o d u c t i o n of i n f i n i t a r y logic as

p a r t of t he language (ra ther t h a n j u s t the metalanguage of weakest precondi t ions) ,

together w i t h a c o m b i n a t i o n of p roo f methods using b o t h denota t iona l semantics

and weakest p r e c o n d i t i o n , is a p o w e r f u l theore t ica l t o o l w h i c h allows some general

t r an s fo rma t ions and representat ions theorems t o be proved.

I n W a r d ' s approach [155], i t is possible t o prove t h a t t w o versions of a pro

g r a m are equivalent . Programs are def ined t o be equivalent i f t hey have the

same semant ic f u n c t i o n . Hence equivalent programs are i den t i ca l i n t e rms of the i r

i n p u t - o u t p u t behaviour , a l t hough t hey m a y have d i f fe ren t r u n n i n g t imes and use

d i f f e ren t i n t e r n a l . da t a s t ructures . A re f inement of a p r o g r a m , or specif icat ion,

is another p r o g r a m w h i c h w i l l t e r m i n a t e on each i n i t i a l state f o r w h i c h the first

p r o g r a m t e rmina te s , and w i l l t e r m i n a t e i n one of the possible final states fo r the

first p r o g r a m . I n o ther words a re f inement of a speci f ica t ion is an acceptable i m

p l e m e n t a t i o n of t he spec i f ica t ion and a re f inement of a p r o g r a m is an acceptable

C h a p t e r 5. W o r k i n g E n v i r o n m e n t a n d D e s i g n R e c o v e r y M e t h o d 94

subs t i t u t e f o r t he p r o g r a m .

Here is a ve ry b r i e f look at Ward ' s approach t o p r o v i n g the equivalence of

t w o programs i n t e rms of D i j k s t r a ' s weakest p recond i t ion . For a given p rog ram

S and on the final state R the weakest p recond i t i on WP{S, R) is the weakest

c o n d i t i o n on the i n i t i a l s tate such t h a t the p r o g r a m w i l l t e r m i n a t e i n a state

s a t i s fy ing c o n d i t i o n R . I t is possible t o express the weakest p recond i t ion of any

p r o g r a m or spec i f ica t ion as a single f o r m u l a i n i n f i n i t a r y logic. T h e value of

weakest p recondi t ions lies i n the f ac t t h a t t w o programs are equivalent i f and on ly

i f t h e y have equivalent weakest precondi t ions [152,153,154,155 .

Ward ' s w o r k can be used not o n l y i n the p r o g r a m development b u t also i n

t he sof tware main tenance w h i c h has been overlooked t r a d i t i o n a l l y by the people

w h o were b u i l d i n g t r a n s f o r m a t i o n systems. T h e a i m of the R E F O R M pro j ec t is

t o develop a computer-based, semi-au tomated t r a n s f o r m a t i o n system, founded on

W a r d ' s approach, f o r use i n sof tware maintenance and especially reverse engineer

i n g .

5.1.2 The Wide Spectrum Language

I n t he process (w i t h i n the R E F O R M p r o j e c t) of acqu i r ing a specif icat ion f r o m the

p r o g r a m code, a n o t a t i o n (or a language) is needed t o represent the p rog ram and

spec i f ica t ion at a l l i n t e r m e d i a t e steps, especially as objects (p r og r am or specifica

t i o n) are changed f r o m one f o r m to another . As we have seen, a wide spec t rum

language is a su i table language f o r th i s , so t h a t a wide spec t rum language named

W S L has been def ined b y W a r d , w h i c h incorporates a va r ie ty of constructs , f r o m

low- leve l machine-or ien ted constructs up t o h igh- level specif icat ion ones.

T h e W S L [37,155] consists of t w o types of const ruct : W S L constructs and

M e t a - W S L const ructs . W S L constructs inc lude s tatements , func t ions , expres

sions, logic and a r i t h m e t i c operator and test, etc., fo r representing b o t h p r o g r a m

code and p r o g r a m speci f ica t ion; M e t a - W S L constructs inc lude M e t a - W S L state

ments , M e t a - W S L f u n c t i o n , M e t a - W S L p a t t e r n , M e t a - W S L cond i t i on and etc.,

f o r represent ing p r o g r a m t r ans fo rma t ions . B o t h types of W S L constructs were

o r i g i n a t e d f r o m the kerne l language.

C h a p t e r 5. W o r k i n g E n v i r o n m e n t a n d D e s i g n R e c o v e r y M e t h o d 95

T h e syn tax and semantics of expressions and fo rmu lae are discussed here
first and t hey are used t o define the kerne l W S L and the first level W S L i n this
chapter , and w i l l be used t o ex t end W S L and prove p r o g r a m t rans fo rmat ions later
i n t h i s thesis.

S y n t a x o f E x p r e s s i o n s

N u m e r i c o p e r a t o r s : ei + 62, ei - 62, e i / e2 , e^^ 6 1 * * 6 2 , ei mod 63, ei

div 62, frac(ei), abs{ei), sgn(ei), max{ei, 62, . . .) , m m (e i , 63, . . .) , w i t h the usual

meanings .

S e q u e n c e s : 5 = (a i , 0 2 , a„) is a sequence, the zth element is denoted

s[i], s[i .. j] is t he subsequence (s[i], s[i 1], s\j\) , where s[i .. j] = Q (the

e m p t y sequence) i f i > j. T h e l eng th of sequence s is denoted £[s), so s[i{s)] is the

last e lement of 5. s[i . .] is used as an abb rev i a t i on f o r s[i .. i{s)]. reverse{s) = {

an, flm-i, (^2, <Ji) , head{s) is the same as 5[1] , tail{s) is s[2 . .] , last(s) is s[l(s)

and butlast{s) is 5[1 .. s [^ (s)] - 1].

S e q u e n c e C o n c a t e n a t i o n : 51 - f f S2 = (s i [l] , S i [- ^ (5 i)] , S 2 [l] , S2[i{s2)])-

T h e append function, append{si, s^, s „) , is the same as S i -H- S2 + f ... -\+ s „ .

S u b s e q u e n c e s : T h e assignment s[i.. j] :— t[k .. l\ where j - i— I - k assigns

s t he value (5 [1] , s[i- 1] , t[k], t[l\, s[j + 1], s[i(s)]).

S t a c k s : Sequences are also used t o i m p l e m e n t stacks, fo r th is purpose the

f o l l o w i n g n o t a t i o n is used: For a sequence s and var iable x: x <^ s means x :=

s[l]; s : = s[2..] w h i c h pops an element of the stack i n t o var iable x. To push the

value of the expression e on to stack s: s 1 ^ e is used t o represent: s : = (e) -H- s.

Se t s : T h e usual set operat ions U (u n i o n) , f l (in te rsec t ion) , - (set difference) ,

C (subset) , G (e lement) and V (powerset) are used. { x G A \ P{x)} is the set of

a l l elements i n A w h i c h sa t i s fy predicate P. For the sequence s, set(s) is the set of

elements of the sequence, i.e., 56^(5) = { s[i] \ a < i < £{s)}.

R e l a t i o n s a n d F u n c t i o n s : A re l a t i on is a (f i n i t e or i n f i n i t e) set of pairs, a

subset oi AxB where A is the d o m a i n and B the range. A re l a t i on / i s a f u n c t i o n

i f Va;, 2/1, t/2-(((a;, Vi) € f A (x, y^) e J) ̂ ^ 2/2)- I n th i s c a s e ^ x) = y i s w r i t t e n

w h e n (x, J/) € / .

C h a p t e r 5. W o r k i n g E n v i r o n m e n t a n d D e s i g n R e c o v e r y M e t h o d 96

M a p : T h e m a p opera tor * re turns the sequence ob ta ined by a p p l y i n g a given
f u n c t i o n t o each e lement of a g iven sequence: (/ * (a i , 0 2 , a^)) = {J{ai), J{a2),

J{an)). T h e m a p opera t ion can also be app l ied t o set i n the same way [26,27 .

R e d u c e : T h e reduce opera tor / appHes an associative b i n a r y operator to a

l i s t and re tu rns the r e su l t ing value: (®) / (a i , 02 , o,n)) = ai © 02 © ... © a^.

So f o r example , i f 5 is a l i s t o f integers t h e n -\-/s is the s u m of a l l the integers i n

t he l i s t .

S y n t a x o f F o r m u l a e

I n t h e f o l l o w i n g , Q , Q i , Q 2 , etc. represent a r b i t r a r y fo rmu lae and e i , 62 , etc.

a r b i t r a r y expressions:

R e l a t i o n s : ei = 62, ei / 62, ei < 62, ei < 62, ei > 62, ei > 62, evenl{ei),

oddl{e{)-

L o g i c a l O p e r a t o r s : ->Q, not Q , Q i V Q 2 , Q i A Q2]

Q u a n t i f i e r s : V v . Q , 3 v . Q .

S y n t a x o f S t a t e m e n t s

T h e ke rne l language i n the R E F O R M approach has t w o p r i m i t i v e statements: the

a t o m i c spec i f ica t ion and the gua rd s ta tement . T h e a tomic specif icat ion [155] is

w r i t t e n x / y . Q , where Q is a f o r m u l a of first order logic and x and y are sequences

of variables. I t s effect is t o add the variables i n x t o the state space, assign new

values t o t h e m such t h a t Q is sat isf ied, remove the variables i n y f r o m the state

and t e r m i n a t e . I f there is no assignment t o the variables i n x w h i c h satisfies Q

t h e n the a t o m i c spec i f ica t ion does not t e r m i n a t e . T h e gua rd s ta tement is w r i t t e n

[P] , where P is a f o r m u l a of first order logic. T h e s ta tement [P] always terminates ;

i t enforces P t o be t r u e at th i s p o i n t i n the p rog ram; i t has the effect of res t r i c t ing

previous n o n d e t e r m i n i s m to those cases w h i c h leave P t r u e at th is po in t . I f th is

cannot be ensured t h e n the set of possible final states is empty , and therefore, a l l

possible final states w i l l sa t i s fy any desired cond i t i on .

T h e ke rne l language is cons t ruc ted f r o m these t w o p r i m i t i v e statements, a

set of statement variables (these are symbols w h i c h w i l l be used t o represent the

C h a p t e r 5. W o r k i n g E n v i r o n m e n t a n d D e s i g n R e c o v e r y M e t h o d 97

recursive calls of recursive s ta tements) and the f o l l o w i n g three compounds:

1. S e q u e n t i a l C o m p o s i t i o n : (S i ; S2) — F i r s t S i is executed and then S2.

2. C h o i c e : (S i nS2) — One of the s tatements S i or S2 is chosen fo r execut ion.

3. R e c u r s i v e P r o c e d u r e : (f i X . S i) — W i t h i n the b o d y of S i , occurrences of

the s ta tement var iable X represent recursive calls t o the procedure.

S e m a n t i c s o f K e r n e l W S L

I n order t o i n t e r p r e t s ta tements as programs, the i n i t i a l and final state spaces

of t he s ta tements (i .e . , t he i n i t i a l set of variables (i n p u t variables) , and the final

set of variables (o u t p u t var iables)) need t o be k n o w n . These mus t be re la ted

p r o p e r l y according t o the syn tax of the s ta tement . For a s ta tement S and a finite

n o n - e m p t y set of variables V a n d W , i t is def ined t h a t t h e r e l a t i on S: V W t o

be t r u e w h e n V and W are sui table i n p u t and o u t p u t state spaces f o r S. Thus :

1. x / y . Q : V - > W i f f W = (V U x) - y (where x is the set of variables i n

sequence x) ,

2. [P j : V - > W i f f V = W and V contains a l l the variables i n P ,

3. (S i ; S2): V ^ W i f f 3 V ' . (S i : V V A S2: V ' ^ W) ,

4. (S i n S2) V ^ W i f f S i : V ^ W and S2: V ^ W ,

5. (/ /A- .S!) V W i f f V = W and S i : V ^ V .

For example , three f u n d a m e n t a l s tatements can be def ined immed ia t e ly :

a b o r t =DF () / () - f a l s e n u l l =DF [fa l se] s k i p —DF () / () - t r u e

For any finite, n o n - e m p t y set V of variables: a b o r t : V V , n u l l : V —> V and

s k i p : V - > V .

A weakest p r e c o n d i t i o n (W P) f o r kernel language statements is defined as a

f o r m u l a o f i n f i n i t a r y logic. W P is a f u n c t i o n w h i c h takes a s ta tement (a syntact ic

o b j e c t) a n d a f o r m u l a f r o m C (another syn tac t ic o b j e c t) and re turns another

f o r m u l a i n £ . T h e W P s f o r those five s tatements i n the kernel language are

def ined as fo l lows :

C h a p t e r 5. W o r k i n g E n v i r o n m e n t a n d D e s i g n R e c o v e r y M e t h o d 98

1. W P (x / y . Q , R) =DF (3 x . Q A V x . (Q ^ R))

2. W P ([P] , R)=DFP

3. W P (S i ; S 2 , R) =DF W P (S a , W P (S 2 , R))

4. W P (S i n S 2 , R) =DF W P (S i , R) A W P (S 2 , R)

5. WPiifiX.S), R) =DF yn<.WP((fiX.S)\ R)

For the three f u n d a m e n t a l s ta tements i n the previous example , the i r W P s

are: W P (a b o r t , R) = f a l s e , W P (s k i p , R) = R and W P (n u l l , R) = t r u e .

T h e F i r s t L e v e l L a n g u a g e

T h e kerne l language j u s t described is p a r t i c u l a r l y elegant and t rac table b u t is

t oo p r i m i t i v e t o f o r m a use fu l w ide spec t rum language f o r the t r ans fo rma t iona l

deve lopment of p rograms. For th i s purpose the language needs t o be extended

b y d e f i n i n g new constructs i n t e rms of the ex i s t ing ones using "de f in i t i ona l trans

f o r m a t i o n s " . A series of new "language levels" is b u i l t up , w i t h the language at

each level be ing def ined i n t e rms of the previous level ; the kernel language is the

" level zero" language w h i c h f o r m s the f o u n d a t i o n f o r a l l the others. Each new

language level a u t o m a t i c a l l y inher i t s the t r ans fo rmat ions proved at previous level

and these f o r m the basis of a new t r a n s f o r m a t i o n catalogue. Transformat ions of

new language cons t ruc t are p roved by appeal ing t o the d e f i n i t i o n a l t r a n s f o r m a t i o n

o f t he cons t ruc t and c a r r y i n g ou t the ac tua l m a n i p u l a t i o n i n the previous level

language. T h i s technique has p roved ex t r eme ly p o w e r f u l i n the development of a

p r a c t i c a l t r a n s f o r m a t i o n system such as the Ma in t a ine r ' s Assis tant .

T h e first set of language extensions are as fo l lows .

1. Sequent ia l compos i t i on : T h e sequencing operator is associative so the brack

ets can be e l i m i n a t e d :

S i ; S 2 ; S3; ... ; Sn =DF (• • • ((Si ; S 2) ; S3); ... ; S^)

2. D e t e r m i n i s t i c Choice: Guards can be used t o t u r n a nonde te rmin i s t i c choice

i n t o a d e t e r m i n i s t i c choice:

C h a p t e r 5. W o r k i n g E n v i r o n m e n t a n d D e s i g n R e c o v e r y M e t h o d 99

i f B t h e n S i e lse S 2 fi =DF (([B] ; S I) n ([- B] ; 8 3))

3. Asse r t ion : A n assertion is a p a r t i a l s k i p s ta tement ; i t aborts i f the cond i t ion

is false b u t does n o t h i n g i f the c o n d i t i o n is t rue . I t can be defined using an

a t o m i c spec i f ica t ion w h i c h changes no variables:

{ B } =nF {) / () . B

4. Ass ignment : A general assignment can be expressed using a pa i r of a tomic

specif icat ions:

x : = x ' . Q =DF x ' / O - Q ; x / x ' . (x = x ')

5. S imp le Ass ignment : I f Q is of the f o r m x ' = t where t is a l i s t o f te rms and

x " is a l i s t o f new variables, t hen :

x : = t =DF x ' 7 () . (x - t) ; x 7 x " . (x ' = x ")

6. D e t e r m i n i s t i c I t e r a t i o n : A w h i l e loop is def ined using a new recursive pro

cedure X w h i c h does no t occur f ree i n S:

w h i l e B d o S o d =DF (/ x A ' . (([B] ; S; X) n [- B]))

7. I n i t i a l i s e d L o c a l Variables :

v a r x : = t : S e n d =DF x / () . (x = t) ; S ; () / x . t r u e

8. Coun t ed I t e r a t i o n :

f o r i : = b t o f s t e p s d o S o d —up v a r i : = b :

w h i l e i < f d o

S; i : = i + s o d e n d

9. Procedure C a l l :

p r o c X = S. =DF ifiX.S)

10. B l o c k w i t h loca l procedure:

b e g i n S i w h e r e p r o c X = S 2 . e n d -DF S I [p r o c A! = S2./X

11 . C o m m e n t s :

c o m m e n t : "any t e x t s t r i ng" = DF s k i p

C h a p t e r 5. W o r k i n g E n v i r o n m e n t a n d D e s i g n R e c o v e r y M e t h o d 100

These go t o make up the " f i r s t l eve l" language. Subsequent extensions w i l l
be def ined i n t e rms of t he first level language. For the purposes of th is thesis on ly
a subset of t he first level language is described.

M e t a - W S L

I n order t o express p r o g r a m t r ans fo rma t ions (i .e . , i n contrast t o programs) , a

language is needed. I n the Ma in t a ine r ' s Assis tant , ex tend ing W S L to include

sui table s ta tements and expressions f o r w r i t i n g t r ans fo rmat ions is chosen ra ther

t h a n w r i t i n g a comple t e ly new language f o r th i s purpose. Th i s language is called

M e t a - W S L [37,38], r e f l ec t ing the fac t t h a t i t is b o t h an extension of W S L , and

designed t o m a n i p u l a t e W S L . T h i s contrasts w i t h the C I P p ro jec t w h i c h uses

several languages [18] f o r f o r m u l a t i n g p r o g r a m schemes, t r a n s f o r m a t i o n a lgor i thms

and a p p l i c a b i l i t y tests.

I t is assumed t h a t t he cur ren t p r o g r a m be ing t r ans fo rmed is stored as a tree

i n some g loba l var iable , so t h a t a l l t h a t a t r a n s f o r m a t i o n needs t o do is to m o d i f y

t he contents of th i s var iable . I n f ac t , W S L is a general language so i t can be

used t o w r i t e t r an s fo rma t ions , since W S L can be used t o operate on the variable

w h i c h holds the p r o g r a m tree. T h e t e r m "p rogram tree" here refers t o the in t e rna l

representa t ion of W S L programs i n L I S P . T h e m a i n reason fo r designing Me ta -

W S L is because the pure W S L lacks s tatements and expressions fo r m a n i p u l a t i n g

the p r o g r a m tree e f f i c i en t l y whereas M e t a - W S L allows w r i t i n g t rans format ions

easily and e f f i c ien t ly .

I n a d d i t i o n t o i n c o r p o r a t i n g W S L , M e t a - W S L includes the f o l l o w i n g m a i n

extensions t o W S L :

P r o g r a m E d i t i n g S t a t e m e n t s These inc lude "(@ D e l) " (t o delete current i t e m) ,

(@Change_To T h i n g) (t o change the current i t e m to " T h i n g " w h i c h is the

new i t e m t o replace the o l d i t e m) , etc.

P a t t e r n M a t c h i n g a n d T e m p l a t e F i l l i n g Th i s includes a f u n c t i o n w h i c h

matches a sect ion of a W S L p r o g r a m tree against a g iven p a t t e r n and re turns

the resul t i n a t ab le , and a f u n c t i o n w h i c h takes a p a t t e r n and a table and

C h a p t e r 5. W o r k i n g E n v i r o n m e n t a n d D e s i g n R e c o v e r y M e t h o d 101

replaces the tokens i n t he p a t t e r n w i t h values f r o m the table . For example ,
"([_Match_] T y p e P a t t e r n Tab le) " (t o m a t c h the p a t t e r n w i t h the current
i t e m w h e n i t s generic t y p e is " T y p e " and p u t the results i n the "Table") ,
([_Fi l l_In_] T y p e P a t t e r n Table) (t o fill i n the current i t e m w i t h the contents
i n t he Table w h e n the p a t t e r n m a t c h e d) , etc.

M o v e m e n t S t a t e m e n t s These includes s tatements f o r m o v i n g to d i f fe ren t parts

of t he p r o g r a m tree. T h o u g h -the section of code on w h i c h the t r a n s f o r m a t i o n

is t o be p e r f o r m e d is first selected, i t m a y be necessary f o r the t r a n s f o r m a t i o n

t e m p o r a r i l y t o select another section of the p r o g r a m i n order t o p e r f o r m a

t r a n s f o r m a t i o n . For instance, " (@ U p) " (t o move t o the f a the r node i n the

t ree) , " (@ D o w n) " (t o move d o w n to the first b ranch node of the t ree) ,

" (@ «) " (t o move t o the l e f t - h a n d node of the t ree) , " (@ ») " (to move to

the r i g h t - h a n d node of the t ree) , etc.

M o v e m e n t A p p l i c a b i l i t y T e s t i n g F u n c t i o n s These are func t ions w h i c h test

t he a p p l i c a b i l i t y of a p a r t i c u l a r f o r m of movement w i t h i n a p r o g r a m tree

since a specific movement w i t h i n a tree is not always possible. Examples

o f these f u n c t i o n s inc lude : "([_Up?_])" (t o move t o the fa the r node i n the

t ree) , " ([_Down?_])" (t o move d o w n to the first b ranch node of the t ree) ,

" ([- < < ? -]) " (t o move t o the l e f t - h a n d node of the t ree) , " ([_ » ? _]) " (to

move t o the r i g h t - h a n d node of the t ree) , etc.

R e p e t i t i o n S t a t e m e n t s I t is o f t e n necessary w i t h i n a t r a n s f o r m a t i o n t o test a

c o n d i t i o n or p e r f o r m some opera t ion at every subnode of the p rog ram tree,

subsubnode and so on w i t h i n the selected p r o g r a m i t e m . T h e r epe t i t i on

s ta tements a l low th i s t o be done easily, such as " (@ E x i t _ W h e n) " (to ex i t

t he cur ren t loop w h e n some c o n d i t i o n meets) and "(@No_Deeper)" (t o go

no deep t h a n the cur ren t node when some c o n d i t i o n meets) .

O t h e r S t a t e m e n t s a n d F u n c t i o n s These inc lude:

• s ta tements f o r se t t ing state flags — "(@Pass)" and " (@Fai l) " , etc.;

• a s ta tement f o r caUing other t r ans fo rmat ions — "(Trans N a m e ") ;

OUlC

C h a p t e r 5. W o r k i n g E n v i r o n m e n t a n d D e s i g n R e c o v e r y M e t h o d 102

• F u n c t i o n f o r o ther code checking — "([_S_Type?_])", "([_P_Type?_])",
etc. ;

• A f u n c t i o n f o r t e s t ing a p p l i c a b i l i t y — "([_Trans?_] N a m e) " ; and etc.

5.1.3 Advantages of Using Program Transformation and

W S L

T h e R E F O R M approach used p r o g r a m t r a n s f o r m a t i o n and a w ide spec t rum lan

guage because there are a n u m b e r of benefi ts f r o m using t h e m . T h e benefits of

us ing p r o g r a m t r ans fo rma t ions are:

• Increased r e l i a b i l i t y : bugs and inconsistencies are easier t o spot.

• F o r m a l l i nks between speci f ica t ion and code can be ma in ta ined .

• Ma in tenance can be car r ied out at the speci f ica t ion level .

• Large r e s t r u c t u r i n g changes can be made t o the p r o g r a m w i t h the confidence

t h a t t he f u n c t i o n a l i t y is unchanged.

• P rograms can be i n c r e m e n t a l l y i m p r o v e d — instead of be ing inc rementa l ly

degraded.

• D a t a s t ruc tures and the i m p l e m e n t a t i o n of abstract da ta types can be

changed easily.

A p a r t f r o m the general advantages of a wide spec t rum language, the benefits

of us ing a w i d e s p e c t r u m language i n the Ma in t a ine r ' s Assis tant are:

• The re is flexibility f o r ex t end ing the system to b u i l d a wide set of t rans forma

t ions . T h e W S L can be extended by a p p l y i n g d e f i n i t i o n a l t r ans format ions .

T h i s is p a r t i c u l a r l y use fu l when new W S L constructs are needed to w r i t i n g

new p r o g r a m t r ans fo rma t ions .

• T h e W S L is an in t e rmed ia t e language. T h e advantage of using an inter

med ia t e language is t h a t the sys tem of acqu i r ing the speci f ica t ion f r o m the

C h a p t e r 5. W o r k i n g E n v i r o n m e n t a n d D e s i g n R e c o v e r y M e t h o d 103

p r o g r a m code needs o n l y be ing developed once. Programs w r i t t e n i n any
language can be t r ans la ted i n t o the W S L as long as the W S L t ransla tor fo r
t h a t p a r t i c u l a r language has been b u i l t .

5.1.4 The Original Design of the Maintainer's Assistant

I n t he o r i g i n a l design of t h e M a i n t a i n e r ' s Assis tant , the system supports the trans

f o r m a t i o n of an ex i s t ing source code t o a speci f ica t ion i n three phases [156,164].

I n phase 1, a "Source- to -WSL" t rans la tor takes the assembler (or other lan

guage) and t rans la te i t i n t o i t s equivalent W S L . T h e ma in ta ine r undertakes a l l

operat ions t h r o u g h the Browser . T h e Browser t hen checks the p r o g r a m and uses

the P r o g r a m Sheer [6,43,160] t o chop the p r o g r a m i n t o smaller programs w h i c h

are i n manageable size. T h e m a i n t a i n e r m a y conduct the process more t h a n once

u n t i l sat isf ied t h a t (s)he has sp l i t t he code i n such a way t h a t i t is ready fo r trans

f o r m a t i o n . Even tua l ly , th i s code is saved t o the database i n order to assemble

specif icat ions of those code modules (refer t o F igu re 5.1).

I n t he second phase, the m a i n t a i n e r w i l l take one piece of code out f r o m

the database w i t h w h i c h t o w o r k . T h e Browser allows the ma in ta ine r t o look

at and al ter the code under s t r i c t condi t ions and the ma in t a ine r can also select

t r a n s f o r m a t i o n s t o a p p l y t o the code. T h e p r o g r a m t r ans fo rmer works i n an

i n t e r ac t i ve mode . I t presents W S L on screen i n p r e t t y p r i n t e d f o r m f o r m a t and

searches a catalogue o f p roven t r ans fo rma t ions t o find appl icable t ransformat ions

f o r any selected piece of code. These are displayed i n the user interface 's w i n d o w

sys tem. W h e n the P r o g r a m Trans fo rmer is w o r k i n g , i t also depends on the General

S i m p l i f i e r , t he P r o g r a m S t ruc tu r e Database and the Knowledge Base System (not

yet i m p l e m e n t e d) [142] by sending t h e m requests. T h e ma in t a ine r can app ly these

t r a n s f o r m a t i o n s or get help f r o m the Knowledge Base as t o w h i c h t r a n s f o r m a t i o n

are appl icable . Once a t r a n s f o r m a t i o n is selected i t is a u t o m a t i c a l l y appl ied .

These t r ans fo rma t ions can be used t o s i m p l i f y code and expose errors. F ina l ly ,

t he code is t r a n s f o r m e d t o a f o r m at higher level of abs t rac t ion , w h i c h can be

t r ans l a t ed i n t o specif icat ions i n Z, and the code is saved back t o the DataBase

(F i g u r e 5.2).

C h a p t e r 5. W o r k i n g E n v i r o n m e n t a n d D e s i g n R e c o v e r y M e t h o d 104

Source Code

in Assembler
T o - W S L
Translator

For Figure 5 .1 , 5.2 & 5.3

J

System Components-

Data Representations

Da ta or Control Flows

M) The Maintainer

Internal >
Representation
of W S L code ,

Front E n d
(X-Windows
or P C Menu)

DataBase

Program
Slicer Interface

Figure 5 .1 : F r o m Source Code t o a P r o g r a m i n Low-Leve l W S L

T h e t h i r d phase comes w h e n a l l the source code i n the DataBase has been

t r a n s f o r m e d . A P r o g r a m In teg ra to r is cal led t o assemble the code or specifications

i n t o a single p r o g r a m i n h igh- leve l W S L . A W S L to Z t rans la tor w i l l t ransla te this

h i g h l y abs t rac ted spec i f ica t ion i n W S L i n t o speci f ica t ion i n Z (F igure 5.3).

5.1.5 The State of the Maintainer's Assistant by 1991

B y the s u m m e r of 1991, t he M a i n t a i n e r ' s Assistant'^ consists of:

• an Assembler t o W S L t rans la tor ,

• a H i s t o r y / F u t u r e Database

• a S t ruc tu re E d i t o r

• a Browser ,

^The Program Structure Database and the General Simplifier were investigated by the author,
and other components of the Maintainer's Assistant were studied by other three members of the
R E F O R M research team.

C h a p t e r 5. W o r k i n g E n v i r o n m e n t a n d D e s i g n R e c o v e r y M e t h o d 105

M

DataBase

Front E n d
(X-Windows
or P C Menn)

Browser
Interface

Internal

Representatio]

of W S L code.

Structure
Editor

Program
Transformer

Transformer
Supporting
Tools

History/
Future
Database

General
Simplifier

Program
Structure

Database

Knowledge
Base

System

Figu re 5.2: F r o m a P r o g r a m i n L o w - L e v e l W S L to a P r o g r a m i n High-Leve l W S L

DataBase - H

Internal
of W S L code
Representatior

Program
Integrator

' Program
in

High-Level WSt

W S L to Z

Translator

Browser
Interface

Fron
(X - W
or P C

b E n d
indows

Menu)

Specification
In Z

Figu re 5.3: F r o m a P r o g r a m i n H igh -Leve l W S L t o Z Specif ica t ion

C h a p t e r 5. W o r k i n g E n v i r o n m e n t a n d D e s i g n R e c o v e r y M e t h o d 106

• a F ron t E n d ,

• a P r o g r a m S t ruc tu re Database,

• a Genera l S i m p l i f i e r , and

• a P r o g r a m Trans fo rmer and a l i b r a r y of over 400 t r ans fo rmat ions .

I B M - A s s e m b l e r - t o - W S L T r a n s l a t o r A n IBM-assembler t o W S L t ransla tor

was i m p l e m e n t e d . T h i s t r an s l a t i on process use ex i s t ing compi le r w r i t i n g technol

o g y

H i s t o r y / F u t u r e D a t a b a s e T h i s is i nc luded t o a l low the ma in ta ine r to go

back t o an older vers ion of the p r o g r a m (s)he has t r ans fo rmed . I t is usual fo r

t h e m a i n t a i n e r t o move fo rwards and backwards several t imes t h r o u g h a sequence

of t r a n s f o r m a t i o n s i n order t o reach an o p t i m a l version of the p rogram. T w o

commands " U n d o " and "Redo" are p rov ided . " U n d o " is used t o retr ieve the

previous vers ion of the p r o g r a m , before the last p r o g r a m ed i t i ng or t r a n s f o r m i n g

ope ra t i on . T h e "Redo" c o m m a n d undoes the last " U n d o " c o m m a n d .

S t r u c t u r e E d i t o r T h e S t ruc tu re E d i t o r is usual ly used as a last resort to re

move errors (i n the code) f o u n d b y the ma in ta ine r . T h e ma in ta ine r can select an

ed i t c o m m a n d f r o m the F ron t E n d (F igure 5.4). For example , i f the "Change"

b u t t o n is cHcked, t he change m e n u is displayed. I t allows the ma in ta ine r to change

the c u r r e n t l y selected i t e m i n the p r o g r a m w i t h an i t e m (s)he specifies or a defaul t

i t e m of t he same generic t y p e .

B r o w s e r a n d X - W i n d o w F r o n t E n d T h e Browser and the X - W i n d o w Front

E n d are i m p l e m e n t e d together as a g raph ica l user in ter face t o the other subsystems

of t he M a i n t a i n e r ' s Ass is tant us ing the X - W i n d o w s System. I t provides a l l the

commands necessary t o use o ther M a i n t a i n e r ' s Assis tant programs v i a bu t tons and

pop-up menus and uses several windows t o display the o u t p u t f r o m the system

and t o receive t e x t i n p u t f r o m the user. I n pa r t i cu l a r i t provides a browser t o

d isp lay the p r o g r a m be ing t r a n s f o r m e d by the Trans former , and has fac i l i t ies not

C h a p t e r 5. W o r k i n g E n v i r o n m e n t a n d D e s i g n R e c o v e r y M e t h o d 107

p r o v i d e d b y the t r an s fo rmer such as p r e t t y p r i n t i n g the p r o g r a m and a mechanism
t o f o l d or u n f o l d sections of code. I t displays a f r a m e made up of three windows
(F i g u r e 5.4). T h e first w i n d o w is a box con ta in ing several bu t tons and labels.
B y c l i c k i n g these bu t t ons the user can invoke various commands , change options,
and pop-up o ther w indows . T h e second w i n d o w (the app l i ca t ion w i n d o w) is an
in te r face t o the t r an s fo rmer c o m m a n d d r i v e n user in terface and the t h i r d w i n d o w
(the d isp lay w i n d o w) is used t o display the p r o g r a m being t r ans fo rmed by the
user. A m a n u a l page f o r the f r o n t end is available f o r t he novice user.

P r o g r a m S t r u c t u r e D a t a b a s e T h e P r o g r a m Trans former o f t e n needs to know

the proper t ies of cur ren t p r o g r a m i t e m to be t r ans fo rmed . These propert ies m a y

be used several t imes d u r i n g the t r a n s f o r m a t i o n process. T h e P r o g r a m St ruc ture

Database f a c i l i t y can figure ou t the proper t ies of the p r o g r a m i t e m and save t h e m

i n t he database i n case these proper t ies need t o be ca lcula ted several t imes .

T h e P r o g r a m S t ruc tu re Database is a d y n a m i c database m a i n l y serving the

P r o g r a m Trans fo rmer . T h e P r o g r a m Trans former accesses the Database v i a the

Database Manager . W h e n the P r o g r a m Trans former is t r a n s f o r m i n g a section

of p r o g r a m code, queries about the p r o g r a m are sent t o the Database Manager.

W h e n a query is made f o r the first t i m e , the Database Manager w i l l go t h r o u g h

the p r o g r a m s t ruc tu re and calculate t he answer t o t h a t query. For instance, the

P r o g r a m Trans fo rmer m a y ask t h a t " w h i c h variables are used i n th is section of

t he p rog ram?" . T h e resul t w i l l b o t h be sent t o the P r o g r a m Transformer and

saved i n the database. A n y e x t r a i n f o r m a t i o n p roduced by the ca lcu la t ion , w h i c h

m a y be used t o answer o ther queries, w i l l also be recorded i n the database. W h e n

the ques t ion is asked again, t he database manager w i l l check the database and

s i m p l y r e t u r n the resul t .

W h e n the P r o g r a m Trans fo rmer changes the o l d p r o g r a m i n t o a new version

of t he p r o g r a m i t is necessary t o create a new version of the database. T h e o ld data

corresponding t o the previous p r o g r a m is saved i n the H i s t o r y / F u t u r e Database.

F u r t h e r m o r e , t he P r o g r a m Trans fo rmer m a y have also m o d i f i e d (or edi ted)

t he da ta (questions and answers) i n the Database, since i t p e r f o r m e d the last

C h a p t e r 5. W o r k i n g E n v i r o n m e n t a n d D e s i g n R e c o v e r y M e t h o d 108

Quit Load Save Neu Undo Redo S t a r t Stop Replay F i x CICS

Pr e t t y p r i n t | P r i n t options

E d i t

Font s i z e Reprint LaTeX R s c i i

I n s / D e l Change E d i t connent Fold Unfold Parse data? [N O "

Transforn Move Join Separate Use/Prune Reurite I n s e r t UeleteJ|Multiple 1 1Conplex

((fiCTIONS (fl)
(f i (COND

(« P Q> (ASSIGN (X D) (CfiLL A 0))
((E L S E) (ASSIGN (Y D) (CALL B O))))

(B (ASSIGN (X 2)) (CALL C 0) (ASSIGN (Y 2>) (CALL B 0))
(C (ASSIGN (X 3)) (CALL D O)) (D (ASSIGN (X 4)) (CALL E 0))
(E (CGND ((= P Q) (CALL Z 0)) ((E L S E) (CALL A O))))))

NRME NRME (1 2 1)

actions: A:

if (p<q) then x-=l; call A+Oelse y:=/: call B+0 fi.
B== x:=2; call C+0; y:=2; call B+Or
C== x:=3; call D+Or
D== x:=4> call
E==

if (p=g) then call Z+0
else call A+0 fl* end-actions

Figu re 5.4: T h e X - W i n d o w s Front E n d

C h a p t e r 5. W o r k i n g E n v i r o n m e n t a n d D e s i g n R e c o v e r y M e t h o d 109

t r a n s f o r m a t i o n , and the da ta re la ted t o the changed p r o g r a m w i l l no t be suitable
f o r answer ing the same questions a second t i m e . Thus , the database manager
needs t o manage the a l t e r a t i on i n the database. L I S P makes th is easy t o do.

T h e database manager w i l l also serve the Knowledge Base System when this

is i m p l e m e n t e d .

G e n e r a l S i m p l i f i e r T h e P r o g r a m Trans fo rmer o f t e n needs t o carry out sym

bo l i c ca lcula t ions i n m a t h e m a t i c s and logic. T h i s is i m p l e m e n t e d by sending

queries t o the Genera l S i m p l i f i e r . I t can help the Trans former by ca lcu la t ing the

c o n d i t i o n a l s ta tement i n t he p r o g r a m .

T h e P r o g r a m T r a n s f o r m e r a n d t h e T r a n s f o r m a t i o n L i b r a r y T h e pro

g r a m t r a n s f o r m e r [37] works i n an in te rac t ive mode . I t goes t h r o u g h a piece of

g iven code i n W S L and p r o m p t s a catalogue of appl icable t r ans format ions about

t he piece of code. These are d isplayed i n the user interface 's w i n d o w system.

T h e m a i n t a i n e r can i n s t r u c t t he sys tem b y c l i ck ing the mouse on a chosen W S L

cons t ruc t , and t h e n c l i c k i n g on a t r a n s f o r m a t i o n class.

P roven t r ans fo rma t ions are s tored i n a l i b ra ry . Once a t r a n s f o r m a t i o n is

selected i t is a u t o m a t i c a l l y appl ied . These t r ans fo rmat ions can be used t o s i m p l i f y

code and expose errors. The re are about 400 t r ans fo rmat ions i n the l i b r a r y

5.2 Review of the Maintainer's Assistant

T h e p r o t o t y p e of t he M a i n t a i n e r ' s Assis tant (described i n 5.1.5) is a t e a m ef

f o r t . T h e au thor c o n t r i b u t e d t o the design of the Ma in t a ine r ' s Assistant , the

i m p l e m e n t a t i o n of the P r o g r a m S t ruc tu re Database and the General S imphf ie r .

E x p e r i m e n t s were car r ied ou t w i t h a n u m b e r of p r o g r a m examples using the M a i n

ta iner ' s Ass is tant . U p t o the summer of 1991 (t w o years i n t o the p r o j e c t) , the

f o l l o w i n g po in ts were no t i ced b y the au thor :

• A l m o s t a l l p r o g r a m t r ans fo rma t ions i n the t r a n s f o r m a t i o n Hbrary based on

W a r d ' s w o r k were m a i n l y f o r deal ing w i t h f u n c t i o n a l abs t rac t ion (or con t ro l

C h a p t e r 5. W o r k i n g E n v i r o n m e n t a n d D e s i g n R e c o v e r y M e t h o d 110

abs t rac t ion) — mos t t r ans fo rma t ions operated on con t ro l structures of a
p r o g r a m w h i l e f ew t r ans fo rma t ions on da ta s t ructures . I n another words,
t he sys tem was o n l y sui table t o operate on computa t ion- in tens ive programs,
no t data- in tensive programs. T h e p r o g r a m t r ans fo rmer can on ly deal w i t h
t he cons t ruc t i on o f we l l - s t ruc tu red code.

• To o b t a i n a spec i f ica t ion expressed i n Z is a long t e r m goal f o r the R E F O R M

p r o j e c t . M o s t of t he p r o g r a m t r ans fo rma t ions can o n l y be used fo r restruc

t u r i n g p rograms at t he code level , i .e., b o t h programs before and af ter the

t r a n s f o r m a t i o n be ing app l i ed are i n the same abs t rac t ion level .

• M o s t of t he p r o g r a m t r ans fo rma t ions t h a t cu r r en t l y are imp lemen ted can

o n l y be used f o r r e s t r u c t u r i n g programs at r e l a t ive ly low levels of abstrac

t i o n .

• N o representat ions of types , complex da ta s t ructures and da ta design yet

exist i n W S L .

• A new a p p l i c a t i o n area of the t o o l was i d e n t i f i e d as acqui r ing da ta de

sign f r o m data- in tensive programs w r i t t e n i n e.g. C O B O L . A f t e r seeing

the d e m o n s t r a t i o n of t he p r o t o t y p e of the Mai r i t a ine r ' s Assistant , many i n

dus t r ia l i s t s were d i sappoin ted w i t h the t o o l f o r be ing unable t o deal w i t h

C O B O L programs t h o u g h t hey c o n f i r m e d the p o t e n t i a l capabiHty of the

M a i n t a i n e r ' s Ass is tant .

These fac ts u rged a new research d i r ec t i on t o be set up w i t h i n the R E F O R M

p r o j e c t , i .e., a cqu i r i ng da ta designs f r o m data- intensive programs. I n par t i cu la r ,

t he new research d i r e c t i o n s ta r ted w i t h data- intensive programs, employ ing pro

g r a m t r a n s f o r m a t i o n technique emphasis ing da ta abs t rac t ion and t o end up w i t h

da t a designs. I t was decided by the p r o j e c t leaders t o s tar t th is research wh i l e

t he o r i g i n a l research d i r e c t i o n was s t i l l going on .

C h a p t e r 5. W o r k i n g E n v i r o n m e n t a n d D e s i g n R e c o v e r y M e t h o d 111

5.3 Recovering Data Designs

T h e i d e n t i f i c a t i o n of the new research d i r ec t ion raises a number of questions to

solve, such as t he m e t h o d t o tackle th i s p r o b l e m , the theory of a new approach

and a new t o o l t o i m p l e m e n t the m e t h o d developed.

5.3.1 Combining Code Analysis with Data Abstraction

T h e m o t i v a t i o n f o r acqu i r ing a da t a design f r o m data- intensive code is the same

as t h a t of o b t a i n i n g a Z speci f ica t ion f o r m assembler code — software can be best

unders tood , a l te red and enhanced at the conceptual level ra ther t h a n at the code

level where the main ta iners ' s v i ew is o f t e n obs t ruc ted by i m p l e m e n t a t i o n details.

T h i s means t h a t crossing levels of da ta abs t rac t ion is needed t o move f r o m code

t o a da t a design.

One o f the character is t ics of da ta intensive t h i r d generat ion languages is t h a t

h i g h level da t a designs o f t e n t rans la te at the i m p l e m e n t a t i o n level t o constructs

i n b o t h the code and data . For example , a reference i n the da ta design between

t w o da ta s t ruc tures is t y p i c a l l y i m p l e m e n t e d i n C O B O L by a fo re ign key, i.e., an

integer index f r o m one t o the o ther . T h e r e l a t ion between the t w o da ta structures

can o n l y be discovered by e x a m i n a t i o n of the da ta and the code, not the da ta

alone. E x i s t i n g reverse engineer ing techniques have d i f f i c u l t y hand l ing th is . I t

seemed to us t h a t f o r m a l t r a n s f o r m a t i o n offered p o t e n t i a l t o solve th is p rob lem.

D a t a abs t rac t ion is w i d e l y used i n f o r w a r d engineering. • T h e use of da ta

abs t r ac t ion i n reverse engineer ing is i n a p r i m a r y stage. I t is proposed i n th is thesis

t h a t the da ta abs t r ac t ion process be car r ied ou t w i t h the help of code analysis,

because code analysis can collect i n f o r m a t i o n needed f o r da ta abs t rac t ion.

5.3.2 Using Program Transformations and W S L

I t is considered t h a t t he approach using p r o g r a m t rans fo rmat ions is also a suitable

m e t h o d f o r a cqu i r i ng da ta designs, because p e r f o r m i n g da ta abs t rac t ion opera

t ions also needs the proper t ies of p r o g r a m t r ans fo rmat ions , such as the preserva

t i o n of semantics and s u i t a b i l i t y f o r tools , etc.

C h a p t e r 5. W o r k i n g E n v i r o n m e n t a n d D e s i g n R e c o v e r y M e t h o d 112

A l t h o u g h a t r a n s f o r m a t i o n a l sys tem f o r acqu i r ing da ta designs has to cope
w i t h a d i f f e ren t k inds of abs t rac t ion f r o m b o t h the systems f o r f o r w a r d engineering
and the t r a n s f o r m a t i o n sys tem i n R E F O R M by then , a l l the p r o g r a m t ransforma
t i o n systems have one t h i n g i n c o m m o n , i.e., t h a t p r o g r a m t r a n s f o r m a t i o n changes
the syn tax b u t no t the semantics of programs b o t h i n sof tware development and
main tenance . There fo re , a w i d e s p e c t r u m language is also used t o b u i l d a pro
g r a m t r a n s f o r m a t i o n sys tem f o r acqu i r ing da ta designs j u s t as a wide spec t rum
language was used by some of the f o r w a r d engineering t r ans fo rma t iona l system
(e.g., C I P p r o j e c t [18]) and by the Ma in t a ine r ' s Assis tant .

5.3.3 Analysis of the Problems with Data-Intensive

Programs

W S L c u r r e n t l y has declarat ions w h i c h in t roduce the name of an iden t i f i e r w i t h o u t

i t s t y p e . There fo re , variables are not t y p e d , b u t a l l values i n W S L have a type

w h i c h belongs t o a d i s t i n c t set of values. T h i s means t h a t a W S L variable can

at d i f f e ren t t imes h o l d values of d i f fe ren t types. A d d i n g t y p e is essential t o avoid

los ing i m p o r t a n t a t t r i bu t e s of the source p r o g r a m , such as logical connections

be tween data . There fore , da t a s t r u c t u r i n g such as records are needed. C O B O L

is b u i l t on a low level m o d e l of storage, i n v o l v i n g the exp l i c i t layout of da ta i n

m e m o r y , the size of da t a i n characters, etc. A chal lenging p r o b l e m fo r reverse en

gineer ing is t he use of al iasing t o use m e m o r y f o r several purposes. Since C O B O L

treats a l l s igni f icant da t a as records, de f in ing "records" i n W S L fo r mode l l i ng

C O B O L records is a clear r equ i rement .

T h e ex t e rna l calls t o t he u n d e r l i n i n g ope ra t ing sys tem and the embedded

database can be m o d e l l e d as ex te rna l procedure calls and ex te rna l func t ions . W S L

a l ready has mechanisms f o r deahng w i t h ex te rna l calls. T h e fo re ign key p r o b l e m

can be deal t w i t h b y p r o g r a m t r ans fo rma t ions . These t r ans fo rmat ions analyse the

code w i t h fo r e ign keys and relat ions between modules us ing fo re ign keys could be

f o u n d . A n example w i l l be presented i n section 7.8.

E n t i t y - R e l a t i o n s h i p A t t r i b u t e Diagrams are based on entity models [47,53,

55,114]. E n t i t y models p rov ide a sys tem v iew of the da ta s t ructures and da ta

C h a p t e r 5. W o r k i n g . E n v i r o n m e n t a n d D e s i g n R e c o v e r y M e t h o d 113

re la t ionships w i t h i n t he system. A l l systems possess an u n d e r l y i n g generic e n t i t y
m o d e l w h i c h remains f a i r l y s ta t ic i n t i m e . T h e e n t i t y m o d e l reflects the logic
o f t he sys tem data , no t the phys ica l i m p l e m e n t a t i o n . E n t i t y models provide an
excel lent g raph ica l representa t ion of the generic da ta s t ructures and relat ionships.
There fo re , E n t i t y - R e l a t i o n s h i p A t t r i b u t e Diagrams are sui table fo rms fo r repre
sent ing da ta designs f o r data- intensive programs and W S L needed t o be extended
t o inc lude E n t i t y - R e l a t i o n s h i p A t t r i b u t e Diagrams .

5.3.4 A Design Recovery Method

A m e t h o d f o r da t a design recovery is proposed i n th i s section, w h i c h is i l l u s t r a t ed

i n F igu re 5.5. T h e m e t h o d consists of f o l l o w i n g m a j o r steps:

1. T r a n s l a t i n g a data- in tensive p r o g r a m (i n C O B O L i n th is case) i n t o an i n

t e rmed ia t e language (a w ide spec t rum language cal led W S L i n this case)

(a u t o m a t i c a l l y) .

2. A p p l y i n g p r o g r a m t r a n s f o r m a t i o n (s) t o the p r o g r a m i n the in te rmedia te

language at t he code level t o o b t a i n ent i t ies and relat ionships also i n the

same i n t e r m e d i a t e language b u t at the conceptual level under cont ro l of

h u m a n .

3. I n t e r p r e t i n g the ent i t ies and rela t ionships i n the in t e rmed ia t e language i n t o

the ent i t ies and re la t ionships i n some language dedicated t o a t o o l fo r dis

p l a y i n g or p r i n t i n g an E n t i t y - R e l a t i o n s h i p A t t r i b u t e D i a g r a m .

I t is stressed t h a t the m a i n reason f o r using a w ide spec t rum language (W S L

i n th i s p r o j e c t) is t h a t the language can represent b o t h C O B O L programs and

E n t i t y - R e l a t i o n s h i p A t t r i b u t e Diagrams . P r o g r a m t rans fo rmat ions change pro

grams i n W S L t o programs i n W S L as w e l l and also p r o g r a m t rans format ions

themselves are w r i t t e n i n the language, and therefore, p r o g r a m t rans format ions

need j u s t b u i l d i n g once no m a t t e r w h a t language i n w h i c h the source code was

w r i t t e n .

C h a p t e r 5. W o r k i n g E n v i r o n m e n t a n d Des ign Recove ry M e t h o d 114

Entity + Relationship Entity- Relationship

Conceptual Level in W S L Processing Attribute Diagram

Transformation(s)

Data-intensive Code + Data
Code Level

Program (C O B O L) Translation in W S L
Code Level

Figure 5.5: A Data Design Recovery Method

5.3.5 Enhancement Design of the Maintainer's Assistant

for Acquiring Data Designs from Data-intensive

Programs

To implement a tool applying the above method, the problems to be solved can

clearly be summarised:

• Design and implementation of the representation for data-intensive pro

grams: after assessing the features of data-intensive programs, the aim is to

design and implement the representational fo rm of the programs in an inter

mediate language on which the programs can be operated by tools. COBOL

programs are used and discussed as typical data-intensive programs.

• Design and implementation of the representation for Entity-Relationship

At t r ibu te Diagrams: after assessing the features of Entity-Relationship At

t r ibute Diagrams, the aim is to design and implement the representational

f o r m of Entity-Rela.tionship At t r ibu te Diagrams in an intermediate language

on which they can be operated by tools.

C h a p t e r 5. W o r k i n g E n v i r o n m e n t a n d Des ign Recovery M e t h o d 115

• Development of techniques for crossing levels of data abstraction: the ap
plication of data abstraction techniques in reverse engineering is explored
even though data abstraction has been widely used in forward engineering;
and to develop the techniques of crossing levels of data abstraction which is
extremely important to obtaining data designs f r o m the programs.

• Design and implementation of program transformations for data design re

covery: the aim is to invent and implement program transformations for

manipulating both data-intensive programs (represented in an intermediate

language) and Entity-Relationship At t r ibu te Diagrams (represented in the

same intermediate language).

Af te r the working environment has been examined, i t is found out that the

Maintainer's Assistant needs enhancing substantially. The enhancement includes

three main parts:

1. E x t e n s i o n o f W S L

WSL constructs are needed at both the code level and the conceptual level,

e.g., constructs for representing COBOL programs at the code level and

Entity-Relationship At t r ibu te Diagrams at the conceptual level.

2. E x t e n s i o n o f P r o g r a m T r a n s f o r m a t i o n L i b r a r y

Program transformations are also needed to manipulate code and data at

all levels, particularly for crossing levels of data abstraction.

3. E x t e n s i o n o f S t r u c t u r e Database and Des ign o f M e t r i c s F a c i l i t y

New database queries are required by code analysis and transformation im

plementation.

The objectives of using metrics i n R E F O R M are to help the user to select

transformations (to help develop heuristics), to measure the progress made

in optimising the program code and to measure the resulting quahty of the

program being transformed.

C h a p t e r 5. W o r k i n g E n v i r o n m e n t and Des ign Recove ry M e t h o d 116

Existing WSL constructs arid program transformations can be directly used
in conjunction w i t h newly defined WSL constructs and newly developed transfor
mations.

Chapter 6

Extending and Using WSL

Wide spectrum languages and program transformation techniques in general were

discussed in detail i n previous chapters. However, when a real program transfor

mation system is buil t (as w i l l be described in Chapter 8), many practical decisions

have to be made. Therefore, the extension and use of WSL, the wide spectrum

language used in R E F O R M , are introduced in this chapter; the definition of pro

gram transformations needed for the extension of the Maintainer's Assistant w i l l

be introduced in the next chapter.

6.1 Introduction to the W S L Extension

WSL has as its theoretical foundation a kernel language wi th five statements.

Any other WSL constructs are either extensions to the kernel language, or to

existing WSL constructs which themselves are ini t ia l ly derived f rom the kernel.

This principle is observed in the research in order that proofs are not invahdated.

For example, the first level language was developed observing this principle (Fig

ure 6.1). The first level WSL is used for representing programs (which are not

data-intensive) and the first level Meta-WSL is used for implementing program

transformations.

The second level language needs designing and this w i l l be discussed in detail

later i n this chapter. The second level WSL is needed for providing more features,

which are mainly needed for representing data-intensive programs. The second

117

C h a p t e r 6. E x t e n d i n g a n d U s i n g W S L 118

WSL

Program-Specification WSL

Second Level

Language

First Level
Language

Meta-WSL

Second Level

Meta-WSL

First Level
Meta-WSL

The Kernel

Figure 6.1: WSL Language Levels and Their Usage

level Meta-WSL is needed for implementing supporting tools, such as the Program

Structure Database, the General Simplifier and the Metric Facility.

I n extending WSL precisely,. completely and unambiguously for represent

ing data-intensive programs and data designs, i t is essential that the syntax and

semantics of such an extension should be well defined.

The specification of the semantics uses the existing WSL kernel and first

level language in line w i t h the aforementioned. The specification of the syntax

is achieved w i t h a context-free grammar (so called because the well-formedness of

each phrase is independent of its context), using B N F notation ^.

^ A formal definition of the syntax of a programming language is usually called a grammar. A

C h a p t e r 6. E x t e n d i n g a n d U s i n g W S L 119

Apar t f r o m the formal specification of syntax and semantics, an informal
semantics specification, possible operations on a newly defined WSL construct
and an internal format are also defined, i.e., five jobs need carrying out:

1. Formal specification of syntax — this is wri t ten in B N F notation. This is

also the format in PASCAL-like fo rm to be displayed in the tool interface.

2. Informal semantics specification — this is wri t ten in Enghsh and can be

used as a comment on the newly defined component by the implementer

and the user of the language.

3. Formal semantics specification — this is wri t ten in existing WSL whose

semantics is denotational semantics.

4. Operations — these are wri t ten both in English and WSL to describe avail

able operations on the newly defined construct.

5. Internal format (LISP format) — this is the same LISP form in which WSL

is represented and is used for wri t ing program transformations.

6.2 Extension of W S L

As introduced in section 4.3.3, fundamental data types in programming languages

include unstructured data type, Cartesian product, discriminated union, array, set,

sequence, sparse data structure and pointer. We shall extend WSL to have all these

types to meet the needs of dealing w i t h data-intensive programs. However, i t must

be ensured that adding a type does not invalidate existing proofs of equivalence

and transformations.

grammar consists of a set of definitions (termed rules or 'productions) which specify the sequences
of characters (or lexical items) that form allowable programs in the language being defined. A
formal grammar is just a grammar specified using a strictly defined notation and the best-
known notation is BNF [8,131,159]. In the original version of B N F , nonterminal symbols were
written with angle brackets to distinguish them clearly from terminal symbols. In this thesis, a
distinctive font, such as P r o g r a m , is used for this purpose. In addition, the EBNF, or Extended
Backus-Naur Form [159], is also used in this thesis.

C h a p t e r 6. E x t e n d i n g a n d U s i n g W S L 120

WSL uses the concept of most fundamental data types to define its kernel
but most of these data types were not supported by WSL language. WSL provides
only unstructured data type and array fox representing programs to be manipulated
in the first level language. More data types, such as sequence, and its operations
should be added to the language. Also, though set was already defined in the first
level language, more operations such as "insert" are needed. Since COBOL does
not support sparse data structures, recursive data structures and pointer types
(COBOL programs do have these data types but programmers get round them by
using foreign keys, etc.), these data types are not considered for acquiring data
designs i n this thesis.

COBOL records and "redefine" structures can be viewed as Cartesian prod

ucts and discriminated unions respectively. They w i l l be defined first in this

section together w i t h "file" structure. Then WSL components for supporting

data types set and sequence w i l l be defined, together w i th two other commonly

used data types, stack and queue. A structure for user-defined abstract data

types w i l l also be defined. A t the end of this section structures for representing

Entity-Relationship At t r ibu te Diagrams w i l l be introduced into WSL.

6.2.1 Representing Records and Files

Records

As discussed earlier i n this thesis, COBOL (and also Assembler) is buil t on a low

level model of storage, which includes how data is laid out i n memory, size of data

in characters, etc.

The particular problem of aliasing, at memory level, means that to solve this

problem, low level data information needs to be kept i n the WSL translation of

COBOL (there is a similar problem in F O R T R A N wi th Common and Equivalence

statements).

Since COBOL treats all significant data as records, defining "records" in

WSL for modelling COBOL records w i l l receive close attention.

Unless the WSL is extended (WSL has only untyped variables), the only way

C h a p t e r 6. E x t e n d i n g a n d U s i n g W S L 121

to model C O B O L records is to use simple variables in existing WSL, i.e., COBOL
records are translated into simple variables. I t would be very difi icult to derive
Entity-Relationship At t r ibu te Diagrams f r o m these simple variables, because use
f u l information contained in the COBOL records would be lost when these records
are first translated into WSL simple variables. For example, the definition of a
COBOL record includes the type of the record (character, integer, etc.), the length
of the record (number of bytes in the memory) and the relationship between the
record and its parent record. This information which is not represented by sim
ple WSL variables is v i ta l for deriving Entity-Relationship At t r ibute Diagrams
and should not be thrown away (or at least not at this early stage of reverse
engineering).

Therefore, extending the existing WSL to represent COBOL recods is nec

essary. The new construct i n WSL is also called a record.

The five-step process for defining "records" in WSL in this section is illus

trated in detail. Owing to the length l imi ta t ion of the thesis, other new WSL

components w i l l not be presented individually in the main text. The f u l l spec

ification of the syntax of the WSL extension developed in this research can be

referred to i n Appendix A and the f u l l semantics specification in Appendix B.

A WSL r e c o r d is defined in :

1. Formal specification of syntax

Record-Def

: := r e c o r d Rec-Identifier [Integer-Literal o f Type-Char-Literal] end;

r e c o r d Rec-Identifier w i t h Records-Def end;

Records-Def

: := Record-Def | Record-Def Records-Def

Rec-Identifier : := Identifier

Type-Char-Literal : := char | int

Note: please see Appendix A for the definitions of Identifier and Integer-

Literal .

C h a p t e r 6. E x t e n d i n g and Us ing W S L 122

2. Informal specification of semantics

This is the WSL declaration for a record variable whose components are

variables capable of selective updating. A record can be declared either wi th

type and length i n terms of sequence of bytes i n memory or w i t h other records

("subrecord") as its components. A record has its own name (identifier).

The type of such a record is associated wi th the Cartesian product of the

domains w i t h which the component records ("subrecords") are associated.

For example, expression recl.rec2 may then be type checked by requiring

that the type of reel be a record type having rec2 as a record name. Then

the type of the whole expression is the corresponding type of the lowest level

record, i.e., rec2 i n this case. A record can be recursively defined.

3. Semantics specification

A record is defined in terms of sequence in the kernel language, e.g.:

record x w i th

record i [6 of int

record j [6 of int]

record k [6 of char

end;

=DF xe {{i,j,k)\i e i A j e J A k e K]

=DF X e I X J X K

where "6 of int" means an integer of 6 digit position and "6 of char" means

a string of 6 characters; I , J, K are sets of values, i.e., I , J 6 { 0 ... 999999

} and K G { (' A ' , .., 'Z ' , 'a', .., 'z') (' A ' , .., 'Z ' , 'a', .., 'z') (' A ' , .., 'Z ' ,

'a', .., 'z') (' A ' , .., 'Z' , . 'a ' , .., 'z') (' A ' , .., 'Z ' , 'a', .., 'z') (' A ' , .., 'Z ' , 'a',

V) }.

. I f another record is declared as:

record y w i th

record / [6 of int

C h a p t e r 6. E x t e n d i n g and Us ing W S L 123

record m [6 of ini
record n [6 of char

end;

the semantics of a; : = y is' defined as:

X := y

= x.i := y.l A x.j := y.m A x.k := y.n

D P {i,j,k) : = (/ , m , n)

4. Operations of records

Two types of operations are available on records. When two records have

an identical structure, one record can be assigned to another, e.g., as shown

in the above semantics definition. Secondly, an expression can be assigned

to a record whose type should be the same as that of the expression.

5. Internal format

For example, i f the display format of a record is:

record Rec-Identifier [Integer-Literal of Type-Char-Literal] end;

the internal format w i l l be:

(record r e c - i d e n t i f i e r l e n g t h - l i t e r a l t y p e - c h a r - l i t e r a l)

When a record is defined in WSL i t can be used to represent a COBOL

record. For instance, the WSL record

record student-info w i th

record student-id-no [8 of ini

record name w i th

record first-name [9 of char]

record last-name [11 oi char

C h a p t e r 6. E x t e n d i n g a n d U s i n g W S L 124

e n d

r e c o r d address w i t h

r e c o r d street [15 of char

r e c o r d city [10 of char

r e c o r d county [15 of char]

r e c o r d postal-code [8 o f char

e n d

r e c o r d phone [10 of int

end:

represents a segment of COBOL program:

01 STUDEMT-INFD.
05 STUDENT-ID-NO PIC 9(8) .
05 NAME.

10 FIRST-NAME PIC X(9).
10 LAST-NAME PIC X (l l) .

05 ADDRESS.
10 STREET PIC X(15).

10 CITY PIC X(10) .
10 COUNTY PIC X(15).
10 POSTAL-CODE PIC X(8).

05 PHONE PIC 9(10).

A l i a s e d Records

Another reason that simple WSL variables cannot cope wi th representing "struc

tures" such as COBOL records and "record" has to be defined in WSL is the

aliasing problem. There are two purposes in using aliases. The first purpose is

to share storage space. I n the early days of computing when memories were very

expensive, i t was a "ski l l" that several variables used the same piece of storage

at separate times. The second purpose was to control storage scope. In early

languages, which did not have block structure, there was no way to use scope

C h a p t e r 6. E x t e n d i n g a n d U s i n g W S L 125

control storage allocation so the only "ski l l" was to use aliasing, where an alias is
used to wri te a value of one type and read out as a value of another type. This
"ski l l" brought enormous difficulties to reverse engineering today.

For example, the following is a COBOL program w i t h abased records:

01 X.
03 FOO PIC X(6)
03 BAR PIC X(6)

01 Y REDEFINES X.
03 TOP PIC X(4)
03 MIDDLE PIC X(4)
03 BOTTOM PIC X(4)

When the value of x.foo is changed, the values of both y.too and y.middle

are also changed.

Aliasing is surely something to be removed in reverse engineering. There

might be many solutions but one method is proposed in this research. To get

r i d of aliasing, the fiirst step may st i l l have to include representing the abased

records i n WSL. Apart f r o m defining "records" in WSL, a WSL construct called

"redefine" is also needed for representing the aliased COBOL records (in the terms

of mathematics, records aliasing can be viewed as a discriminated union) and its

WSL external format is:

r ede f ine record-name 1 w i t h record-name^,

Then the above COBOL program w i t h aliased records can be translated

into 2.

^Whether variables are aliased in C O B O L can be detected by the C O B O L keyword " R E
D E F I N E S " . However, the detection of aliased variables in other data-intensive programming
languages such as pointers in C may need some further study.

C h a p t e r 6. E x t e n d i n g and Us ing W S L 126

record x w i th

record foo [6 of char

record bar [6 of char

end;

record y w i th

record top [4 of char

record middle [4 of char

record bottom [4 of char

end;

redefine x w i th y;

I n terms of the WSL kernel language, x occupies a sequence of twelve bytes of

memory, i.e., {xi,X2,X3,Xi,X5,Xe,X7,Xs,XQ,xio,xii,xi2), where Xi e {0..255}. This

means x.foo x x.bar = {xi,X2,X3,X4,X5,xe) x {X7,X8,XQ,XIO,XU,XI2)-

Similarly, we have y = (yi, y^, ys, y^, J/s, 2/6,2/7,2/8,2/9,2/io, 2/n, 2/12), and y.top x

y.middle x y.bottom = (y i , 2/2, ys, 2/4) X (ys, 2/6, av, X s) X (xg, 2:10, X n , 0:12).

However, the "redefine" statement specifies that the record x and the record y

use the same segment of the underlying memory, i.e., {xi, X2, X3, X4, X5, XQ, X7, xg, xg,

a;io, a;ii, 2:12) and (y i , y2, ya, yi, ys, y6, y?, ys, yg, yio, y i i , yi2) represent the same mem

ory. I f a new sequence m is given to represent this memory, we have:

X = y — (mi, m2, ms, m4, m5,7716, mr, 7718, r?T9, mio, mil, 77112); x.foo x x.bar

= (mi, 77i2, ms, m4, m 5 , 7726) X (mr, 77i8, mg, mio, mil, mi2); and y.top x y.middle x

y.bottom = (mi, 7712, ms, mj^) x {m^, m^, mj, mg) x {m^, m^, mn, mi2) (Figure 6.2).

There are two issues to address in solving the aliasing problem: i t is necessary

to determine which records are aliased; and, more challenging, i t is necessary to

determine a mapping between the different records, based on the memory used by

each component of the record. The former can usually be determined by the dec

larations and the latter can be done by defining a function (or procedure) which

maps f r o m a record to a sequence of bytes (the representation of that record in

memory), and f r o m a sequence of bytes to a record. These functions (or proce

dures) need to know the structure of the record in terms of the number of bytes

occupied by each component. Thus a "write" to aliased memory is described by

C h a p t e r 6. E x t e n d i n g and Us ing W S L 127

X foo bar

destruct struct

memory mj m^

destruct struct

y top middle bottom

Figure 6.2: Storage Model

a funct ion (or procedure) which maps the COBOL data structure to low level

memory; a "read" is represented by a funct ion (or procedure) which describes the

mapping in the reverse direction. In our system, these functions (or procedures)

are explicit ly inserted, i n preparation for later simphfication using transforma

tions. Because the use of these functions (or procedures) involves accessing the

underlying storage (which can be viewed as a hidden state), the concept of an

abstract data type is employed here.

I f the following statement occurs i n the procedure division of the original

COBOL program shown previously in this section,

M O V E "PASSED" T O FOO.

we w i l l translate i t into five WSL statements (last four statements are added in

to address the aliasing problem):

x.foo :— "passed";
redefine-write{x.foo, "passed");

C h a p t e r 6. E x t e n d i n g and Us ing W S L 128

y.top :— redefine-read{y.top);
y.middle := redefine-read{y.middle);
y.bottom := redefine-read(y.bottom);

where;

proc redefine-write(rec, rec-value) =

adt_proc_cal l rede fine-record, destruct [rec, rec-value, state-variable)

funct redefine-read{rec) =

adt_funct_cal l rede fine-record, struct {rec, state-variable).

and

adt redefine-record [state-variable){parameters) =DF

proc destruct(rec, rec-value, state-variable)

var (sub-state-variable) :

sub-state-variable := truncate(rec, state-variable);

sub-state-variable := if int-type?(rec) —y byte{rec-value)

• char-type?(rec) —> ascii * {break[rec-value))

fi end;

funct struct[rec, state-variable) —DF

i f int-typel{rec) —> integer(truncate{rec, state-variable))

• char-type?(rec) chr{truncate{rec, state-variable)) fi

tda.

The procedure redefine-write and function redefine-read w i l l call the

corresponding "abstract data type" procedures, redefine-record.destruct and

funct ion redefine-record.struct, and the variable state-variable is the hidden state

in the abstract data type.

The procedure destruct maps a record to a sequence of n bytes (where n is

length of the record). The funct ion struct takes a record and a sequence of bytes

C h a p t e r 6. E x t e n d i n g and Us ing W S L 129

and updates the record so that its destructured representation is the sequence of
bytes^.

I n the definition of the abstraction data type, truncate{rec) returns the seg

ment of underlying state which corresponds to the record rec and the length of

the segment is the number of bytes of the record rec; int-type1{rec) returns true

when rec has a type of "integer"; char-type1{rec) returns true when rec has a

type of "char"; byte{rec) returns a sequence of n integers giving the 7i-byte rep

resentation of rec [n is the length of rec); break(s) returns all components of 7"ec;

ascii(s) returns the A S C I I value of character of s; integer{rec) returns an integer

assembled f r o m the individual memory bytes; chr{rec) returns a character string

converted f r o m the individual memory bytes'*.

I n the above example,

redefine-write (x.foo, "passed");

a<it—proc—ca[\redefine-record.destmct {x.foo, "passed", m)

=^ sub-state-variable := truncate (x.foo, m);

=^ sub-state-variable := (mi, 7712, ma, m4, m5, 7776);

(mi, 77i2, ma, m4, ms, me)

(mi, m2, ma, m4, ms, m^)

(mi, m2, ma, m4, ms, 77i6)

= ascii * (break("passed")) ;

= ascn *((p , a , s , s , e , d) j ,

= (112,97,115,115,101,100);

y.top : = redefine-read(y.iop);

=^ y.top : = adt_funct_cal l redefine-record.struct (y.top, m);

y.top : = chr(truncate (y.top, m));

^ y.top : = chr({mi, m2, ma, m4));
^ y.top : = c/ir((112,97,115,115));

y.top : = "pass";

^The procedure destruct and the function struct here have only dealt with integer and char
acter types; it would be necessary to extend the definitions of the procedure and the function
when additional types such as reals (as found in C or F O R T R A N) are introduced to W S L .

^It should be recognised that aliasing has to take account the underlying machine represen
tation of the data. The definitions of the functions in this paragraph are all based on that the
"byte" of the underlying memory is represented in A S C I I code. Different function definitions
would be needed with other types of representation for underlying memory model.

Chapter 6. Extending and Using W S L 130

y.middle can be worked out in a similar way. Since y.bottom is not affected

by the change of x.foo, the statement

y.bottom := read-rec{y.bottom);

will be made redundant by transformations.

The above example showed the way in which how an alias used for the first

purpose (storage sharing) was dealt with. In fact, the variable usage was disjoint,

and although very complicated WSL was generated from the alias and much of

the WSL can be removed as it was redundant (i.e., aliased variables can be treated

separately). It was only needed when aliasing was used for the second purpose

(storage allocation control), which is a more difficult use to handle (an example

of this case will be addressed in one of the case studies in a later chapter).

Files

A file is defined as a sequence of records, and its external WSL format is:

File-def ::= file File-Identifier w i t h Records end;

Records ::= Record-Def | Record-Def Records

The operations of files will be discussed in a later section.

6.2.2 Representing Basic Data Types and User-Defined

Abstract Data Types

Basic Data Types

The main concern in defining the new components described in this section is

still to prevent loss of information at an early stage of reverse engineering. For

instance, sequence, queue and stack types can be modelled in theory by array,

which exists in WSL. But if data in these types in data intensive programs (written

in programming languages other than COBOL) are all translated directly to data

in array type, the properties of the original data may be lost immediately. The

idea used in this thesis is to define new WSL constructs supporting types such as

Chapter 6. Extending and Using W S L 131

sequence, queue and stack first and then build program transformations to handle
data abstraction. More new components defined will be listed in the following
subsections, where it is implicit that the reason is to prevent information loss.

New components for supporting basic data types, set, sequence, queue and

stack are defined for the second level WSL with their usual meanings. Detailed

definitions can be seen in Appendix A. In this section, only how new components

are supporting a queue data type is defined.

A WSL queue and operations on queue are defined as:

• Formal specification of syntax

Command

::= i n i t - q Q-Variable;

I q-append Q-Variable Expression;

Expression

::= q-concat(Q-Variablel Q-Variable2)

q-rem-first(Q-Variable)

I q-length(Q-Variable)

• Informal specification of semantics

A queue is a sequence in which component selection and deletion are re

stricted to one end and insertion is restricted to the other end. The con

catenation of one queue to another will form a third queue.

• Semantics specification

Suppose s, 5i and 52 are sequences, p, pi and p2 variables, e an expression,

and X and y also variables:

i n i t _ q p = p:=s

q_append p e = p := {s[l], s[2],s[n], e)

X := q_concat(pi pz) = DP a: := (SI[1], 5I[2], s ifn], szfl] , 5 2 (2] , 5 2 [n])

Chapter 6. Extending and Using W S L 132

X :— q-_rem_first(p) — a; := 5[1] A p := (5[2], s[3], ...s[n])
y := q-Iength(p) = £{s)

• Internal format

the internal formats of the above five constructs will be:

(Init-Q P)
(Q_Append P E)
(Assign (X (Q.Concat PI P2)))

(Assign (X (q_Rem_First P)))
(Assign (Y (Q-Length P)))

User-Defined Abstract Data Type

As introduced earlier, an abstract data type consists of "objects" and "opera

tions". Objects are usually implemented as variables and operations are imple

mented as procedures and functions. In reverse engineering, an abstract data

type may be formed by looking for a closure of a group of variables and a group

of procedures (or functions). No matter whether a closure was originally used for

an abstract data type, if an abstract data type is obtained from this closure in the

code, it is helpful in viewing the code at a higher abstraction level. To cross levels

of data abstraction by looking for user-defined data types is a novel contribution

of this thesis.

The way of implementing this idea is to provide a structure first in WSL.

Five constructs are defined for the definition of a user-defined data type, user-

defined data type procedure call and user-defined data type function call. The

key words for these constructs are: user-adt, user-adt-funct, user-adt-proc,

user-adt-funct-call and user-adt-proc-call (refer to Appendix A for details).

The application of these constructs will be described in the following chapters.

A few previous projects have addressed recognising user-defined abstract

data types and Canfora's work [45] is a typical example. The method proposed

Chapter 6. Extending and Using W S L 133

in [45] is based on user defined data types and exploits the relationships existing
between these types and the procedure-like components that use them in their
headings (i.e., declared formal parameters and/or return values). [45] also pro
posed a logic based approach to the definition of both the candidature criterion
and the model to apply i t . According to such an approach the model to apply
the candidature criteria consists of a set of direct relations which summarise and
describe the meaningful relationships among the components of a software sys
tem. A candidature criterion consists of summary relations obtained by combining
direct relations in expressions. The application of a logic-based candidature crite
rion requires (i) a repository to collect the direct relations produced by the static
code analysis; (ii) a query language to express the abstractions to be looked for
and (iii) a formalism to link the direct relations to form the summary relations
which will enable the above queries to be answered. Canfora's algorithm is much
more complex than the one proposed in this thesis and therefore, his algorithm
has not been implemented in the thesis (however, this could be easily included if
necessary).

6.2.3 Representing Entity-Relationship Attribute

Diagrams

Entities and their relationships are objects at high abstraction levels. To cross

levels of abstraction and to represent Entity-Relationship Attribute Diagrams,

entities and their relationships have to be defined in WSL. Statements representing

entities and their relationships are called specification statements because they

represent program designs, which indicate what programs do without saying how

they do i t .

Specification statements cannot be executed and therefore, there are usu

ally no operations on them within the language. Their semantics can usually be

defined as pairs, triples, quadruples, etc. However, they can be operated on by

program transformations. For example, many of the simple statements may be

interchanged directly with these specification statements. Also, the specification

statement can be mixed freely with other statements because of the wide spectrum

Chapter 6. Extending and Using W S L 134

nature of WSL. Three specification statements are defined in this research.

A Construct for Relat ing Two Data Objects

In the process of abstraction, some data objects may be in conceptual form and

others may be still in code form. If these two kinds of data objects need to occur

in the same program statement, a WSL construct for relating these data objects

is needed. This construct is defined as relate. The semantics of the construct is

a pair. For example, the following WSL statement represents that the first record

(or entity) is related to the second record (or entity).

Relate-Def

::= relate Rec-Identifierl/Ent-Identifierl to Rec-Identifier2/Ent-Identifier2;

In the term of WSL kernel, this means that these two objects form a pair.

Def ini t ions of E n t i t y and Relationship

Entities and entity relationships are defined as:

Entity-def

::= ent i ty Ent-Identifier end;

ent i ty Ent-Identifier w i t h Attributes end;

Attributes

::= a t t r Attribute-Identifier

Attributes a t t r Attribute-Identifier

Relationship-Def

::= relationship ent i ty Ent-Identifier 1

has Relation-Degreel Relationship-Name

relat ion w i t h Relation-Degree2 ent i ty Ent-Identifier2;

=DF { { Ent-Identifierl, Relation-Degreel),

(Ent-Identifier2, Relation-Degree2)) G Relationship-Name

i.e., a relationship is a mathematical "relation" of two sequence in which the first

element of the sequence is the object and the second element is the number of

Chapter 6. Extending and Using W S L 135

times it appears.

The corresponding diagrams are shown in Figure 6.3 for the following exam

ples of Entity-Relationship Attribute diagrams in WSL display format:

(A)

ent i ty El w i t h

a t t r Al

a t t r A2

a t t r AS

a t t r A4

end;

(B)

ent i ty E2 end;

(C)

paragraph

ent i ty E3 end;

ent i ty E4 end;

relationship ent i ty E3 has one Rl relat ion w i t h many ent i ty E4\

end;

(D)

paragraph

ent i ty E5 end;

ent i ty E6 end;

relationship ent i ty E5 has one R2 relation w i t h one ent i ty E6\

end;

(E)

paragraph

Chapter 6. Extending and Using W S L 136

en t i ty E7 w i t h
a t t r A5
a t t r A6

end;

relationship ent i ty E7 has one R3 relat ion w i t h one ent i ty E7\

end;

(F)

paragraph

ent i ty E8 end;

ent i ty E9 end;

en t i ty ElO end;

relationship ent i ty E8 has one R4 relat ion w i t h

{many ent i ty E9} or {many ent i ty ElO};

end;

6.3 Extension of Meta-WSL

As introduced in the previous chapter, the Maintainer's Assistant consists of sev

eral supporting tools. When the new research direction — recovering data designs

— was decided, the way of implementing those supporting tools was also reviewed.

Because the Program Structure Database, the General Simplifier and the Metric

Facility are most relevant to data abstraction, they are discussed in the thesis. It is

found necessary that each single service provided by the supporting tools, such as

a database query or a metric measure, should be a Meta-WSL procedure or func

tion. This is because each Meta-WSL construct can be defined by existing WSL

constructs and this approach will make the prototype and future extension of the

prototype theoretically well-founded. Therefore, the services provided by these

three supporting tools are defined in terms of Meta-WSL. Detailed Meta-WSL

extension for the three supporting tools are systematically defined in Appendix

C. According to the definition, the design and the implementation of these three

tools will be discussed in detail in Chapter 8.

Chapter 6. Extending and Using W S L 137

(A) An Entity with Attributes

E3

one

many

E4

(C) An One-to-Many Relationship

CM) CS

one

(E) A Recursive Relationship

E2

(B) An Entity without Attributes

E5

one

R2.

one

E6

(D) An One-to-One Relationship

one

one many

E9 ElO

(F) A Mutually Exclusive Relationship

Figure 6.3: Entities and Relationships in WSL

Chapter 6. Extending and Using W S L 138

6.4 Embedding W S L in C O M M O N LISP

One of the advantages of formally defining the semantics of a language (using de-

notational semantics) is that the effect of a program written in the language can

be obtained by analysing the semantics of the program rather than actually exe

cuting the program. This suggests that the language used to represent programs

to be transformed in a transformation system can have some non-executable state

ments. The WSL used in the Maintainer's Assistant is such a language, which

can have non-executable statements for representing objects at a high abstraction

level, such as Entity-Relationship Attribute Diagrams.

In essence, the effect of applying program transformations on the programs

represented in WSL is to change the syntax of those programs in WSL. It is crucial

to understand how the WSL is represented in the Maintainer's Assistant.

WSL is embedded in COMMON LISR WSL has two forms, external form and

internal form. The external form uses familiar notations which are commonly used

in programming language such as ALGOL and PASCAL. The internal form uses

syntax trees on which transformations are easily performed. The external form

is more user-friendly than the internal form. The interface of the Maintainer's

Assistant converts between the external and the internal forms.

In a syntax tree, each node (and its corresponding subtree) represents a single

syntactic object. The branches of that node are the components of the object.

For instance, a portion of the tree for an assign statement is shown in Figure 6.4.

In fact, the syntax tree shown in the diagram is a simplified internal form. An

internal form of WSL also includes the database tables, embedded comments, and

some information relating to the type of each item.

The figure shows an "Assign" statement represented as a tree. The "Assign"

statement has as its component one "Assignment", which has as its component a

variable which will be assigned to an expression. This piece of code would itself

be part of a large structure. At the top level, a program is a single "Statements"

object; that is, it consists of a sequence of statements.

In order to enable the LISP program to work on these trees they are repre

sented internally as nested lists, so that the code above would be stored as

Chapter 6. Extending and Using W S L 139

A Sequence of Statements

(Assign (X (+ A B)))

(X (+ A B))

X (+ A B)

Figure 6.4: Diagrammatic Form of a WSL Syntax Tree

(Assign (X (+ A B))) .

The main advantages of adopting the tree-based approach include:

• It is relatively easy to construct an interpreter to execute most WSL code

within LISP;

• We can then "move" through the program (left, right, up and down) in order

to select the piece of code, that is a leaf or branch of the tree, that we wish

to transform;

• The transformations work mostly on syntactic objects, and these can be

easily manipulated as branches or leaves within the tree structure.

From the representation of WSL programs, it can been seen that applying

a program transformation to a part of a program is equivalent to replacing that

part with something which is syntactically different but semantically the same.

In particular, the core activity is to search a node in the syntax tree which meets

certain conditions, and replace this node with another node according to the rule

defined in the transformation.

Chapter 6. Extending and Using W S L 140

6.5 Translating Data Intensive Programs
to W S L

Although the discussion in this section employs COBOL as the data-intensive

programming language, the results of the discussion should be applicable to other

data-intensive programming languages.

6.5.1 Consideration and Decision

As a COBOL to WSL translator is not yet available, translating COBOL programs

to WSL has been done manually in the research described in this thesis.

A set of general rules of translation was first estabhshed based on the features

of the two languages, including a mapping table between some COBOL constructs

and their equivalent WSL constructs. For instance, translating a COBOL verb

M O V E to a WSL assignment statement is one such rule.

Translation is carried out entirely according to the semantics of the programs.

For example, a COBOL record can be initiahsed in its declaration by a V A L U E

construct:

01 YEAR PIC X(4) VALUE "1994". •

Since WSL records cannot be initialised in a similar way, the above COBOL

statement wil l be translated into two WSL statements:

record year [4 of char] end;

year := "1994";

As manual translation is an informal process, it is impossible to prove that

the translation is correct. Therefore, the approach used in the research is to make

the translation rules as simple as possible, taking pains to capture all the effects

of each COBOL statement. Once these are captured in WSL (a formal language),

program transformation can be used to eliminate any redundancies which this

simple approach to translation may have introduced.

Accurate translation of every COBOL construct may not be practical or even

Chapter 6. Extending and Using W S L 141

desirable: getting the last few percent of the language to translate accurately may
increase the amount of effort by an order of magnitude. In this research the
occurrences of those constructs which are rarely used are treated as special cases,
e.g., the COBOL verb A L T E R .

A typical COBOL program has four divisions[3,91,92]:

1. Identification Division. This division identifies a program and its origin.

2. Environment Division. This division may contain a Configuration section

that defines the computer environment and an Input-Output section that

defines the input/output devices.

3. Data Division. This division contains sections that define data and areas

that a program references.

4. Procedure Division. This division contains all the executable statements

that perform the program's logic and processing.

The Identification Division and the Environment Division are not directly

translated into WSL, but the information in these two divisions might be used

in translating the other two divisions. The Data division and Procedure Division

are directly reflected in the WSL programs.

6.5.2 An Example of Translating A C O B O L Program

into W S L

The example program used in this section was taken from a COBOL text book

92] and its COBOL source code is as follows:

Chapter 6. Extending and Using W S L 142

**
* *
* *
* THIS PROGRAM SEQUENTIALLY ACCESSES TO TWO SEQUENTIAL •
* FILES, ONE IN INPUT MODE AND ONE IN OUTPUT MODE. *
* *
**
IDENTIFICATION DIVISION.
PROGRAM-ID. COPY-CUSTDHER-LIST.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CUSTOMER-LIST ASSIGN TO XYZ
ORGANISATION SEQUENTIAL
ACCESS MODE IS SEQUENTIAL.

SELECT CUSTOMER-LIST-BACK ASSIGN TO WXY
ORGANISATION SEQUENTIAL
ACCESS MODE IS SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD CUSTOMER-LIST.
01 CUSTOMER-RECORD.

02 NAME PIC X(20).
02 ADDRESS PIC X(50).
02 PHONENUM PIC X(20).

FD CUSTOMER-LIST-BACKUP.
01 BACKUP-RECORD.

02 B-NAME PIC X(20).
02 B-ADDRESS PIC X(50).
02 B-PHONENUM PIC X(20).

WORKING-STORAGE SECTION.
01 EOF PIC X.

PROCEDURE DIVISION.
MAIN.

OPEN INPUT CUSTOMER-LIST
OUTPUT CUSTOMER-LIST-BACKUP

PERFORM, WITH TEST AFTER, UNTIL EOF = "T"
READ CUSTOMER-LIST NEXT;
AT END

MOVE "T" TO EOF
NOT AT END

MOVE "F" TO EOF
MOVE CUSTOMER-RECORD TO BACKUP-RECORD
WRITE BACKUP-RECORD;

END-PERFORM
* THE STOP RUN STATEMENT CLOSES THE FILES

STOP RUN.

Chapter 6. Extending and Using W S L 143

Organisation

~Qjien Mo3e ~—
Access Methods Operation

Sequential Organisation

~Qjien Mo3e ~—
Access Methods Operation I 0 I/O EX

Sequential

Read X X

Sequential
Read Next X X

Sequential

Write X X

Sequential

Rewrite X

(X indicates where an operation is available.)

Figure 6.5: COBOL Sequential Files

The identification division is translated into a comment statement. Infor

mation in the environment division will be used when data division and procedure

division are translated, i.e., the files in the code are sequential files.

In the data division, COBOL records and files are translated into WSL

records and files. COBOL files sequentially organised and sequentially accessed

(see Figure 6.5) are used to illustrate the method developed in this thesis. The

same principle can be applied to COBOL indexed and random access files by

modelling them using arrays which are available in WSL.

The following file operations are translated into WSL as external procedures

(denoted by !p which is the WSL function existing in the first level language to

call an external procedure for which it is known definitely which variables will

be changed) or external functions (denoted by ! f which the the WSL function

existing in the first level language to call a named external function):

Chapter 6. Extending and Using W S L 144

C O B O L Constructs W S L Constructs

O P E N !p open_file

CLOSE !p close_file

R E A D !p read_file

R E A D N E X T !p readnext

W R I T E !p wr i te_f i le

R E W R I T E !p rewri te

EOF? ! f eof ?

In the procedure division, a PERFORM statement is translated into a while

statement in WSL, the IF statement into i f statement in WSL, an OPEN state

ment into !p open-file and a MOVE into an assignment. Therefore, this program

is translated into:

segment

comment : "program-id: copy-customer-list";

file customer-list w i t h

record customer-record w i t h

record name [20 of char

record address [50 of char

record phonenum [20 of char]

end;

end:

file customer-list-backup w i t h

record backup-record w i t h

record b -name [20 of char]

record b-address [50 of char

record b-phonenum [20 of char]

Chapter 6. Extending and Using W S L 145

end;
end;

record eof [1 of char] end;

!p open-file (i var customer-list);

!p open-file (o var customer-list-backup);

while (eo/7^ "T") do

i f non_empty? (j f eof? (customer-list))

then eof:= "T"

else eo/:= "F";

!p read-file (customer-record var mailing-list);

backup-record\= customer-record;

!p write-file (backup-record var customer-list-backup);

fi;

od;

end;

I t is worth noting that in some languages such as in PASCAL variables can

be declared in two ways:

(1) type r = record

X , y: int

end

var i , j : r.

(2) var i : record

X , y: int

end

: v a r j : record

X , y: int

end.

and these two declarations are equivalent. However, WSL does not support the

first approach. I f this case occurs, the second approach is used to translate the

source code into WSL.

C h a p t e r 6 . E x t e n d i n g a n d U s i n g W S L 146

6.6 Program Transformation Writing

Trans fo rma t ions are a l l w r i t t e n i n M e t a - W S L (w h i c h contains W S L) . A new trans

f o r m a t i o n is added i n t o the T r a n s f o r m a t i o n L i b r a r y by a f u n c t i o n called " A D D -

T R A N S " (also i n M e t a - W S L) . T h e " A D D - T R A N S " f u n c t i o n takes eleven param

eters. For example , i f a t r a n s f o r m a t i o n is needed t o swap posit ions between two

records, i.e., f r o m

r e c o r d name [20 o fcAar] e n d ;

r e c o r d address [50 o f char] e n d ;

t o

r e c o r d address [50 o f char] e n d ;

r e c o r d name [20 ofcfear] e n d ;

t he t r a n s f o r m a t i o n is as fo l lows :

(Add_trans
'Record
'Any
'Swap-with-next-record
'Global
'Always
'(Rewrite)

To swap a record with next record.

N i l
'((Cond ((And ([_S_Type?_] Record)

([_»?_]))
(@»)
(Cond (([_S_Type?_] Record) (OPass))

((E l s e) (O F a i l))))
((E l s e) (O F a i l))))

'((ODel) (OUndel.after))
)

C h a p t e r 6 . E x t e n d i n g a n d U s i n g W S L 147

T h e eleven parameters inc lude :

1. t h e general t y p e on w h i c h the t r a n s f o r m a t i o n operates (i n th is case, "Record") ;

2. t h e specific t y p e on w h i c h the t r a n s f o r m a t i o n operates (i n th i s case, "Record") ;

3. t he name of t he t r a n s f o r m a t i o n (i n th i s case, "Swap-wi th-next - record") ;

4. the scope o f t he t r a n s f o r m a t i o n , e i ther "G loba l " or "Loca l " (i n this case,

" G l o b a l ") ;

5. an i n d i c a t o r w h i c h determines w h e n the t r a n s f o r m a t i o n w o u l d appear on a

m e n u (i n th i s case, " A l w a y s ") ;

6. t he l i s t o f menus on w h i c h the t r a n s f o r m a t i o n appears (i n th i s case " R e w r i t e ") ;

7. t he d o c u m e n t a t i o n f o r the t r a n s f o r m a t i o n ;

8. t he p r o m p t f o r any i n f o r m a t i o n w h i c h m a y need t o be entered by the user

(i n t h i s case, (" ") ;

9. the t y p e of any i n f o r m a t i o n w h i c h m a y need t o be entered by the user, (i n

th i s case, " N i l ") ;

10. t he code i n " M e t a - W S L " f o r t es t ing f o r the t r ans fo rma t ion ' s app l i cab ih ty ;

and

11 . the code i n " M e t a - W S L " t o p e r f o r m the changes requi red t o effect the trans

f o r m a t i o n .

T h e last t w o parameters are the most i m p o r t a n t because they require the

w r i t i n g of some " M e t a - W S L " code.

T h e 10 th parameter ,

'((Cond ((And ([_S_Type?_] Record)

([_»?_]))
(@»)

C h a p t e r 6 . E x t e n d i n g a n d U s i n g W S L 148

(Cond (([_S_Type?_] Record) (QPass))
((E l s e) (O F a i l))))

((E l s e) (O F a i l)))) ,

means: i f t he c u r r e n t l y selected i t e m is a "Record" and a f te r th is i t e m there is

another i t e m (the cur ren t i t e m is no t the last i t e m of a sequence of i t ems) , fo l low-

on tests are ca r r ied out ; o therwise the t r a n s f o r m a t i o n is not appl icable t o the i t e m .

I n t he f o l l o w - o n t e s t ing steps, t he nex t i t e m is selected by m o v i n g f o r w a r d one step

(i .e . , (@ > >)) . I f t he n e w l y selected i t e m is also a "Record" , the appHcabi l i ty of

t he t r a n s f o r m a t i o n is c o n f i r m e d by the "(@Pass)" s ta tement . I f the newly selected

i t e m is no t a "Record" , the a p p l i c a b i l i t y of the t r a n s f o r m a t i o n is denied by the

" (@Fa i l) " s ta tement .

T h e 11 th parameter ,

'((ODel) (OUndel.after)),

means: delete the cur ren t i t e m (ac tua l ly the nex t i t e m becomes the current i t e m)

and undele te i t a f t e r t he cur ren t i t e m (i .e . , the deleted i t e m becomes next i t e m) ,

so t h a t t w o records are swapped.

Chapter 7

Program Transformations and

Data Abstraction

I n t h i s chapter , t he use of p r o g r a m t r ans fo rma t ions and da ta abs t rac t ion tech

niques, and the d e f i n i t i o n of new p r o g r a m t r ans fo rma t ions are expla ined.

7.1 Introduction

T h i s chapter s tarts addressing the a d d i t i o n of p r o g r a m t rans fo rmat ions fo r data

abs t r ac t ion i n t o the p r o t o t y p e sys tem by discussing a n u m b e r of questions t h a t

m a y concern reverse engineerers. These questions inc lude :

• W h i c h process should be used f o r crossing level of da ta abs t rac t ion , top-

down or bottom-up'?

• W h a t role does h u m a n knowledge play?

• W h a t types of abs t rac t ion are needed f o r da ta abstract ion?

• W h e n should back-tracking be used?

• H o w can p r o g r a m t r ans fo rma t ions be def ined f o r m a l l y ?

• H o w t o prove p r o g r a m t rans format ions?

149

C h a p t e r 7. P r o g r a m T r a n s f o r m a t i o n s a n d D a t a A b s t r a c t i o n 150

Answers t o t he above questions w o u l d ce r t a in ly be con t r ibu t ions to the re
search f i e l d , b u t the appHcat ion of t he answers to h and l ing data-intensive pro
grams is m o r e i m p o r t a n t . Perhaps the m a i n novel c o n t r i b u t i o n of th is research is
i n abs t rac t ing f r o m both t he l ow level code and da ta constructs; exp lor ing wha t
i n f o r m a t i o n should be t h r o w n away i n m o v i n g f r o m code and da ta t o higher level
abst ract ions represented especially i n E n t i t y - R e l a t i o n s h i p A t t r i b u t e Diagrams;
and h a n d l i n g c o m m o n l y encountered problems, such as fo re ign keys and alias
i n g . These are i m p l e m e n t e d by p r o g r a m t r ans fo rma t ions f o r m a n i p u l a t i n g data-
in tens ive p rograms .

The re are classes of low level t o h i g h level da ta abstract ions: f r o m a record

t o an e n t i t y ; f r o m a segment of u n s t r u c t u r e d code t o a user-defined da ta type;

f r o m code and da ta t o h i g h level data; f r o m aliased m e m o r y t o separate variables;

etc. Each category m a y consist of a n u m b e r of t r ans fo rmat ions . Transformat ions

developed i n th i s research are i n t r o d u c e d under these categories.

T rans fo rma t ions f r o m d i f fe ren t categories m a y be used t o solve one p rob l em

i n one data- in tensive p r o g r a m . For example , there m a y a fo re ign key i n one

segment of code. T h e so lu t ion is t o combine the analysis of code and data. I t

m a y need a n u m b e r of t r ans fo rma t ions f r o m the class, " f r o m record t o e n t i t y " , a

n u m b e r of t r an s fo rma t ions " f r o m code and da ta t o h i g h level da ta" , etc.

T h e organisa t ion of the p r o g r a m t rans fo rmat ions developed i n thesis, and

the a d d i t i o n of n e w l y def ined t r ans fo rma t ions t o the p r o t o t y p e w i l l be in t roduced

i n t he nex t chapter .

7.2 Influence of Forward Engineering on

Reverse Engineering

7.2.1 Crossing Levels of Data Abstraction

As w e l l as t h e i r use i n f o r w a r d engineering, abs t rac t ion techniques are of i m p o r

tance i n reverse engineer ing. I n reverse engineering, abs t rac t ion is the process of

i d e n t i f y i n g the i m p o r t a n t qual i t ies or propert ies of the phenomenon being m o d -

C h a p t e r 7. P r o g r a m T r a n s f o r m a t i o n s a n d D a t a A b s t r a c t i o n 151

el led. T h e y abstract f r o m i r re levant detai ls , descr ibing on ly those details t ha t are
relevant t o t he p r o b l e m at hand , e.g., unders tanding the design.

Usua l ly , p r o g r a m code and i t s design are not at the same level of abstrac

t i o n — the design is m o r e abstract t h a n the code. I t is necessary t o reduce the

a m o u n t of c o m p l e x i t y t h a t m u s t be considered at any one t i m e , so t h a t cer ta in

n u m b e r of abs t rac t ion levels m a y exist d u r i n g the speci f ica t ion ex t r ac t ion process.

Each "layer" can be considered as a p r o g r a m i n a language p rov ided by a v i r t u a l

compu te r , i m p l e m e n t e d b y the layer below. A t the lowest layer, we have a real

mach ine .

T h e process of acqu i r ing a p r o g r a m design or speci f ica t ion f r o m p r o g r a m code

has three d i f f e ren t ways t o cross levels of abs t rac t ion . T h e first way is to refine

a h i g h level hypothesis of p r o g r a m design w h i c h the p r o g r a m code m i g h t have

heading t o the code (see case (A) i n F igu re 7.1) (Pcode stands fo r p r o g r a m at the

code level , PDconcertuai f o r p r o g r a m design at the conceptual level and Pi, P2,

Pn s t and f o r i n t e r m e d i a t e f o r m s i n between Pcode and PDconceptuai)- T h e advantage

of t h i s is t h a t the . t echn ique of r e f i n ing specifications is r e l a t ive ly we l l developed,

b u t t he disadvantage is t h a t i t is ve ry d i f f i c u l t t o guide the re f inement towards the

g iven p r o g r a m code. W h e n p r o g r a m code is ob ta ined f r o m the p r o g r a m design, i t

is h a r d t o prove the ob ta ined p r o g r a m is equivalent t o the o r i g ina l l y g iven p rog ram

code and i n general i t is an undecidable p r o b l e m .

T h e second way is t o move f r o m the p r o g r a m code towards the specif icat ion

(see case (B) i n F igu re 7.1). W e do no t need t o prove the equivalence of the

ob ta ined p r o g r a m design and the suspected p r o g r a m design, b u t a t t e n t i o n must

be p a i d t o s trategic d i r e c t i o n because the ob ta ined design m a y no t be the best

one. I n general , there are an i n d e f i n i t e n u m b e r of designs w h i c h a g iven piece

of code satisfies. A l so , because the reverse steps are usual ly d i f f i c u l t , necessary

guidance m u s t be p r o v i d e d b y the user t o keep the process i n the correct d i rec t ion .

T h e t h i r d way is t o move f r o m b o t h ends — to abstract the p r o g r a m and to

ref ine the design — t o meet i n the m i d d l e . T h i s also has the same problems as

t he first and the second m e t h o d (refer t o case (C) i n F igure 7.1).

However , i t seems clear t h a t sa t is factory abs t rac t ion cannot be ob ta ined

C h a p t e r 7. P r o g r a m T r a n s f o r m a t i o n s a n d D a t a A b s t r a c t i o n 152

w i t h o u t a user w h o is an exper t b o t h i n sof tware engineering and i n the appl ica t ion
d o m a i n . For example , we m a y w i s h t o reverse engineer a compi le r f r o m i ts source
code. W r i t i n g d o w n the p r o g r a m design of the compi le r , and w o r k i n g top down,
has a l l t he d i f f i c u l t i e s of v e r i f y i n g an ex i s t ing p r o g r a m . I n contrast , an expert
compi l e r w r i t e r , s t a r t i n g f r o m the source code, w i l l look f o r the lex ica l and syntax
analysis , access t o the s y m b o l tab le etc., and use d o m a i n knowledge i n f o r m a l l y b u t
e f fec t ive ly i n g u i d i n g the process. Therefore , ins tead of us ing the t h i r d m e t h o d
(v i z . b o t h ends towards the m i d d l e) i t m a y be appropr ia te t o use the second
m e t h o d .

coie' - Pi < P2 < • • • •« Pn < PDconcevtua.1

(A) Ref inement f r o m a P r o g r a m Design Towards a P r o g r a m Code

coit > P l ^ P 2 ^ . . . — ^ P n - ~^ PD conce'ptiLa.l

(B) Stepwise A b s t r a c t i o n of P r o g r a m Towards P r o g r a m Design

code' >Pl >... >Pi< ...< Pu< PDconceftual

(C) M e e t i n g of P r o g r a m A b s t r a c t i o n and P r o g r a m Design Ref inement

F igu re 7 .1 : Three Ways of Crossing Levels of A b s t r a c t i o n

T h e " b o t t o m - u p " process is used i n th i s thesis. T h e a i m of the process is

t he acqu i s i t i on of t he design of the source code. T h e design der ived m a y not

be equivalent t o the p r o g r a m design w h i c h was o r ig ina l ly used even i f i t existed.

F u r t h e r m o r e , t he o r i g i n a l p r o g r a m design no longer exists a f te r heavy mod i f i ca -

C h a p t e r 7. P r o g r a m T r a n s f o r m a t i o n s a n d D a t a A b s t r a c t i o n 153

t i o n . O u r research w i l l pay a t t e n t i o n t o these poin ts . I n any case, the derived
design w i l l be b o t h h e l p f u l t o software maintenance (maintenance carr ied out at
t he conceptua l level) and t o software reuse (components of the software at the
conceptua l level can be p o t e n t i a l l y used i n another con tex t) .

7.2.2 Role of Human Knowledge

To o b t a i n a m o d e l of acqu i r ing a p r o g r a m design or speci f ica t ion f r o m p rog ram

code, p r o g r a m unders t and ing techniques, cogni t ive models and personal experi

ence are decisive fac tors .

Approaches t o p r o g r a m comprehension are summar ised by [136], i n w h i c h

three p r o g r a m comprehension problems are discussed.

• Theories of p r o g r a m comprehension:

1. e x a m i n i n g of t he en t i re p r o g r a m and w o r k i n g out the in teract ions be

tween various modules ,

2. unde r s t and ing the p r o g r a m b y syntac t ic and semantic knowledge,

3. se t t ing a hypothesis of a m a p p i n g between the p r o b l e m d o m a i n and

the p r o g r a m m i n g d o m a i n ,

4. us ing b o t h t o p - d o w n and b o t t o m - u p strategies at the same t i m e .

• Code reading: T h e crudest m e t h o d of unders tand ing p r o g r a m is code read

i n g . Factors a f fec t ing code reading are:

1. t he design m e t h o d employed i n the i m p l e m e n t a t i o n of the p rog ram,

2. t he s tyle of w r i t i n g the p r o g r a m , f o r example , using m e a n i n g f u l variable

names, inden ta t ions , comments , etc.

• P r o g r a m analysis: S ta t i c a n d d y n a m i c analysis — t o o b t a i n useful in for

m a t i o n , such as cross reference l i s t ings , ca l l graphs, s l ic ing, and symbol ic

execu t ion , etc.

C h a p t e r 7 . P r o g r a m T r a n s f o r m a t i o n s a n d D a t a A b s t r a c t i o n 154

Soloway and E i r l i c h c l a i m [145] t h a t exper t p rogrammers have and use two
types of p r o g r a m m i n g knowledge: p r o g r a m m i n g p l a n s , w h i c h are generic pro
g r a m f r agmen t s t h a t represent s tereotypic ac t ion sequences i n p r o g r a m m i n g , and
r u l e s o f p i r o g r a m m i n g d i s c o u r s e , w h i c h capture the conventions i n p rogram
m i n g and govern the compos i t i on of the plans i n t o programs.

T h e personal experience (of more t h a n t e n years) of the au thor i n p rogram

m i n g supports the above arguments , i .e. , t h a t programs are composed f r o m pro

g r a m m i n g plans t h a t have been m o d i f i e d t o fit the needs of the specific p rob l em

and t h a t t he c o m p o s i t i o n of those plans are governed by rules of p r o g r a m m i n g

discourse. P r o g r a m m i n g knowledge w i l l also p lay a p o w e r f u l role i n p r o g r a m

comprehens ion [77]. Usual ly , advanced programmers have s t rong expectat ions

of w h a t programs should look l i ke and p r o g r a m m i n g knowledge is the base of a

p r o g r a m m e r ' s expec ta t ion .

H u m a n knowledge plays an i m p o r t a n t role t h roughou t the whole process of

acqu i r i ng a da t a design f r o m code. T h i s f ac t is b o t h c ruc ia l t o the researcher (t o o l

b u i l d e r) and m a i n t a i n e r (t o o l user) . To the reverse engineer, h u m a n knowledge

assists i n t he f o l l o w i n g aspects:

1. M o d u l a r i s a t i o n of source code. T h e first step i n deal ing w i t h real software

is t o modu la r i se t he sof tware i n t o manageable sized modules w h i c h ought

t o be f u n c t i o n a l l y independent . T h i s is done by p r o g r a m reading, i.e., the

m a i n t a i n e r reads the source code and divides i t i n t o smaller modules accord

i n g t o the i n f o r m a t i o n f o u n d i n the source code, e.g., the d iv i s ion ident i f iers

i n C O B O L .

2. Searching f o r and n a m i n g abstract da ta types. A n abstract da ta t y p e is an

i m p o r t a n t concept of da ta abs t rac t ion . A n i m p o r t a n t m e t h o d of crossing

levels of da ta abs t rac t ion i n th i s thesis is t o gather i n f o r m a t i o n i n the source

code and t o f o r m an abstract da ta t ype . I t is the ma in ta ine r who guides

t h e M a i n t a i n e r ' s Assis tant i n searching f o r an abstract da ta t y p e and names

the ob ta ined abst ract da ta t y p e . T h e name of an abstract da ta t y p e ought

t o be g iven according t o the i n f o r m a t i o n gathered f r o m the code. Also the

n a m e of an abstract da ta t y p e affects f u r t h e r abs t rac t ion f r o m the abstract

C h a p t e r 7. P r o g r a m T r a n s f o r m a t i o n s a n d D a t a A b s t r a c t i o n 155

da ta t y p e . T h o u g h too l s can help i n th i s case, e.g., w o r k of Sneed [144], the
role of h u m a n is decisive.

3. Searching and n a m i n g e n t i t y re la t ionships . I n e x t r a c t i n g relat ionships of

ent i t ies f r o m code, i t is again the ma in ta ine r w h o directs the search fo r

re la t ionships between ent i t ies . T h i s includes questions of where t o look fo r ,

and how t o name, re la t ionships .

4. Select ing o ther t r ans fo rma t ions . A p a r t f r o m a id ing the selection of trans

f o r m a t i o n s f o r abstract da t a types and e n t i t y re la t ionships , the main ta iner ' s

knowledge assists selecting a l l o ther t r ans fo rmat ions . Selecting t rans forma

t ions relies on a c o m b i n a t i o n of the f o l l o w i n g :

• any p o t e n t i a l l y use fu l i n f o r m a t i o n v is ib le i n the code, e.g., m e a n i n g f u l

var iab le names, comments , i nden t a t i on , procedure and f u n c t i o n names,

etc.

• p r o g r a m syn tax components , e.g., con t ro l led variable of a loop, assign

m e n t s ta tement , etc.

• user's hypothesis made according t o sof tware engineering knowledge

and d o m a i n knowledge. T h e user's hypothesis can be cont inuously

u p d a t e d a l l the t i m e as t he process of a p p l y i n g t r ans fo rmat ions is going

on .

• help i n f o r m a t i o n f r o m the Ma in t a ine r ' s Assis tant . There is a b u i l t -

i n m a n u a l f a c i l i t y f o r a l l t he t r ans fo rmat ions i n the l ib ra ry . Also the

help i n f o r m a t i o n w i l l be p r o m p t e d by the p r o g r a m t r ans fo rmer when

necessary.

Examples of t he above f o u r po in ts w i l l be i l l u s t r a t e d la ter i n th is thesis.

To t he reverse engineer ing researcher, the p r o b l e m of how t o accommodate

the use of h u m a n knowledge i n the t o o l (the Ma in t a ine r ' s Assis tant i n th is re

search) has t o be solved. I n f ac t , the use of a p r o g r a m t r ans fo rmer covers the

aspect o f s ta t ic p r o g r a m analysis. O the r aspects, such as present ing useful i n

f o r m a t i o n (e.g., comments i n a p r o g r a m) , p r o v i d i n g the user w i t h a f a c i l i t y fo r

C h a p t e r 7. P r o g r a m T r a n s f o r m a t i o n s a n d D a t a A b s t r a c t i o n 156

n a m i n g e n t i t y re la t ionships , etc., w i l l be discussed i n the section 8 .1 , "Design of
the P r o t o t y p e " .

7.3 Acquiring Data Designs from Program

Code Using Program Transformation

7.3.1 Different Types of Transformation and Abstraction

Levels

T o under s t and the process of acqu i r ing a da ta design f r o m code, i t is necessary

t o def ine c lear ly three types of p r o g r a m t r a n s f o r m a t i o n and the i r relat ions w i t h

p r o g r a m abs t rac t ion levels (F igu re 7.2).

I n s i m p l i f y i n g the i l l u s t r a t i o n , i t is assumed t h a t o n l y one presentat ion of the

p r o g r a m design or p r o g r a m exists i n each abs t rac t ion level , i.e., P r o g r a m I m a y

have m o r e t h a n one semant ica l ly equivalent f o r m b u t o n l y one f o r m is presented

i n t he d i a g r a m .

The re are three types of t r a n s f o r m a t i o n : equivalence transformation, refine

ment transformation and abstraction transformation. W h e n an equivalence trans

f o r m a t i o n is app l i ed t o a p r o g r a m (e.g.. P r o g r a m I) the p r o g r a m der ived (P r o g r a m

I I) has t h e same semantics as t he o r i g i n a l . T h e equivalence t r a n s f o r m a t i o n is

represented b y 4^ . Usual ly , at the code level , programs are represented by a con

crete p r o g r a m m i n g language w i t h def ined syntax and the semantics so t h a t these

programs can be analysed b y the p r o g r a m t rans fo rmer . Therefore , i n the M a i n

ta iner ' s Ass is tant , t he p r o g r a m t r ans fo rma t ions i n the t r a n s f o r m a t i o n l i b r a r y are

a l l equivalence t r ans fo rma t ions , and are appl icable on ly t o programs at the code

level . A t the conceptua l level , "programs" (i n f ac t , p r o g r a m specifications or pro

g r a m designs) are represented i n a conceptual f o r m , such as, En t i t y -Re l a t i onsh ip

A t t r i b u t e Diagrams . A t th i s level , equivalence t r ans fo rmat ions m a y also exist and

can be used t o t r a n s f o r m a p r o g r a m design f r o m one f o r m to another equivalent

f o r m .

Since the a i m of t he research is t o acquire a da ta design f r o m p r o g r a m code.

C h a p t e r 7. P r o g r a m T r a n s f o r m a t i o n s a n d D a t a A b s t r a c t i o n 157

Conceptual Level
Progreim
Design I

Equivalence Transformation

K M
Program
Design II

Refinement Transformation Abstraction Transfonnktion

Code Level
Equivalence Transformation

Program I Program II

Figu re 7.2: Th ree Types of P r o g r a m T r a n s f o r m a t i o n

the concerned representa t ion of a " p r o g r a m " at the conceptual level is res t r ic ted

t o p r o g r a m designs. A re f inement t r a n s f o r m a t i o n is used t o t r a n s f o r m a p rog ram

design (P rogram-Des ign I , i n th i s case) i n t o a p r o g r a m (P r o g r a m I , i n th is case).

T h i s t y p e of t r a n s f o r m a t i o n is o n l y u n i d i r e c t i o n a l — f r o m an ob jec t at the con

cep tua l level t o an ob jec t at the code level . I t means t h a t a f te r a ref inement

t r a n s f o r m a t i o n is app l i ed the p r o g r a m der ived is the semantic ref inement of the

p r o g r a m design, b u t no t necessarily v ice versa.

A n abs t rac t ion t r a n s f o r m a t i o n is used t o t r a n s f o r m a p r o g r a m (P r o g r a m I I ,

i n t h i s case) back t o p r o g r a m design (Program-Des ign I I , i n th i s case). Th i s

t y p e of t r a n s f o r m a t i o n also can o n l y be app l ied t o a p r o g r a m . I n another words,

t h o u g h Program-Des ign I I is ob t a ined by a p p l y i n g an abstract t r a n s f o r m a t i o n to

P r o g r a m I I , there does no t have t o be a t r a n s f o r m a t i o n available t o t r a n s f o r m

Prog ram-Des ign I I i n t o P r o g r a m I I .

A l t h o u g h three types of t r a n s f o r m a t i o n are a l l needed i n acqui r ing p r o g r a m

designs (the need f o r r e f inement t r ans fo rma t ions is discussed i n the next section

"Back T r a c k i n g ") mos t a t t e n t i o n has been p a i d t o abs t rac t ion t r ans fo rmat ions

and equivalent t r ans fo rma t ions . Ref inement t r ans fo rmat ions have been s tudied

C h a p t e r 7. P r o g r a m T r a n s f o r m a t i o n s a n d D a t a A b s t r a c t i o n 158

b y W a r d [155] and therefore , are no t a focus i n th i s thesis; f o r the same reason,
equivalent t r a n s f o r m a t i o n s discussed i n th i s thesis are m a i n l y on da ta abs t rac t ion
and are supp lemen ta ry t o Ward ' s w o r k .

7.3.2 "Back Tracking"

T h e d i a g r a m i l l u s t r a t e d i n F igu re 7.2 also supports one a rgument proposed earlier

i n t h i s thesis t h a t the p r o g r a m design ex t rac ted f r o m a source p r o g r a m can be

diflFerent f r o m the o r i g i n a l p r o g r a m design of the source p r o g r a m . Th i s is because

e x t r a i n f o r m a t i o n was added by the i m p l e m e n t o r when the source code was first

i m p l e m e n t e d accord ing t o t h e o r i g i n a l p r o g r a m design, and i n f o r m a t i o n can be

lost w h e n the p r o g r a m design is abs t rac ted out f r o m the source p rog ram. T h e

use of a p r o g r a m t r a n s f o r m a t i o n approach can best preserve i n f o r m a t i o n when

t h e source is m a n i p u l a t e d , since equivalence t r ans fo rmat ions w i l l no t change the

semantics of the source p r o g r a m . For example . P r o g r a m I and P rog ram I I have

the same semantics, so th i s approach keep the i n f o r m a t i o n loss t o a m i n i m u m .

I t should be no t i ced t h a t t he scenario described i n F igure 7.2 is an ideal

case. I n prac t ice , there m a y be several choices at each stage of the t rans forma

t i o n process. Some of these choices m a y no t lead i n the r i g h t d i r ec t ion and the

m a i n t a i n e r m a y need t o re t rea t t o some previous stage and star t again. Here the

"back t r a c k i n g " technique has t o be .employed (F igure 7.3).

F igu re 7.3 shows t h a t i t takes a n u m b e r of steps t o t r a n s f o r m P r o g r a m I

i n t o P r o g r a m Design I . I n th i s figure, c ircle 1 represents P r o g r a m I and circle 13

p r o g r a m Design I ; o ther circles represent the in t e rmed ia t e programs; and lines

w i t h arrows represent t he a p p l i c a t i o n of t r ans fo rma t ions . For some in t e rmed ia t e

p rograms , there is m o r e t h a n one t r a n s f o r m a t i o n available, e.g., the p rog ram

represented by c i rc le 2. A s s u m i n g the rou te 2-3-4-5 is selected, the user w i l l soon

find o u t t h a t no su i tab le t r a n s f o r m a t i o n is available at 5 t o reach 13. T h e user has

t o u n d o a f e w t r ans fo rma t ions t o go back t o 2. T h e whole d i ag ram indicates a l l

t he steps poss ibly done b y a ma in t a ine r , i .e., 1-2-3-4-5-4-3-2-6-7-8-7-9-10-11-10-

12-13. T h o u g h the best k n o w n rou te is 1-2-6-7-9-10-12-13, th is rou te can seldom

be f o u n d i m m e d i a t e l y . P r o g r a m unders tand ing approaches can a id th i s process.

C h a p t e r 7. P r o g r a m T r a n s f o r m a t i o n s a n d D a t a A b s t r a c t i o n 159

T r a n s f o r m a t i o n

r

P r o g r a m I P rog ram

Design I

F igu re 7.3: "Back T r a c k i n g "

7.3.3 Formal Definition of Three Types of

Transformation

Three types of p r o g r a m t r a n s f o r m a t i o n are def ined i n th is subsection-^.

M e a n i n g s o f P r o g r a m

A p r o g r a m S is a piece of f o r m a l t e x t , i .e. , a sequence of f o r m a l symbols . There

are t w o ways i n w h i c h the mean ing of these texts can be g iven [155]:

1. G i v e n a s t ruc tu re ^ M f o r the logica l language £ f r o m w h i c h the programs

are cons t ruc ted , and an i n i t i a l state space (f r o m w h i c h a sui table final state

^The "refinement" part of the subsection is based on Ward [155] and the "abstraction" part
was extended by the author.

structure for a logical language C consists of a set of values, plus a mapping between
constant symbols, function symbols and relation symbols of C and elements, functions and
relations on the set of values.

C h a p t e r 7. P r o g r a m T r a n s f o r m a t i o n s a n d D a t a A b s t r a c t i o n 160

space can be cons t ruc ted) , the p r o g r a m can be in t e rp re t ed as a f u n c t i o n / (a
state transformation) w h i c h maps each i n i t i a l state s t o the set of possible
final states f o r s. There fore , a p r o g r a m can be i n t e rp re t ed as a f u n c t i o n f r o m
s t ruc tures t o state t r ans fo rma t ions ;

2. G i v e n any f o r m u l a R (w h i c h represents a c o n d i t i o n on the final s tate) , a

f o r m u l a W P (S , R) can be cons t ruc ted . Th i s f o r m u l a is usual ly called the

weakest precondition o f S on R and is the weakest cond i t i on on the i n i t i a l

s tate such t h a t t he p r o g r a m S is guaranteed t o t e r m i n a t e i n a state sa t i s fy ing

R o n l y i f i t s t a r ted i n a state sa t i s fy ing W P (S , R) .

Because of these t w o ways of i n t e r p r e t i n g programs, t w o corresponding re

finement me thods were generated: semantic refinement and proof-theoretic refine

ment.

S e m a n t i c R e f i n e m e n t

A state is a co l l ec t ion of variables (the state space) w i t h values assigned t o t h e m ;

thus a state is a f u n c t i o n w h i c h maps f r o m a (f i n i t e , n o n - e m p t y) set V of variables

t o a set H o f values. The re is a special ex t r a state . L w h i c h is used t o represent

n o n t e r m i n a t i o n or error condi t ions . A state t r a n s f o r m a t i o n / maps each i n i t i a l

s tate s i n one state space, t o t he set of possible final states f(^s), w h i c h m a y be i n

a d i f f e ren t state space. For convenience, i f ± is i n j (s) t hen so is every other state

and y (±) is also requ i red t o be the set of a l l state (i n c l u d i n g ±) . However, the set

of final states is no t r equ i red t o be empty .

Semant ic re f inement is def ined i n t e rms of these state t r ans fo rmat ions . A

state t r a n s f o r m a t i o n / is a re f inement of a state t r a n s f o r m a t i o n g i f t hey have the

same i n i t i a l and final state spaces and f(^s) C g(s) f o r every i n i t i a l state s. No te

t h a t i f - L G g{s) f o r some s, t h e n f(^s) can be a n y t h i n g at a l l , i .e., an "undef ined"

p r o g r a m can be co r rec t ly re f ined t o do a n y t h i n g . I f / i s a re f inement of g (i .e . , g is

r e f ined b y /) , i t is denoted hy g < f . I f the i n t e r p r e t a t i o n of s ta tement S i under

t he s t r uc tu r e M is r e f ined by the i n t e r p r e t a t i o n of s ta tement S2 under the same

s t ruc tu re , t h e n th i s is: S i <M S2. I f t h i s is t r u e f o r every s t ruc tu re w h i c h is a

C h a p t e r 7. P r o g r a m T r a n s f o r m a t i o n s a n d D a t a A b s t r a c t i o n 161

m o d e l ^ f o r a set A of sentences of £ t h e n th i s is w r i t t e n A |= Si < Sg.

P r o o f - T h e o r e t i c R e f i n e m e n t

G i v e n t w o s ta tements Si and 82, and f o r m u l a R , t w o f o r m u l a e W P (S i , R) and

WP(S2, R) can be cons t ruc ted . I f there exists a p roof of the f o r m u l a W P(S i ,

R) =^ WP(S2, R) us ing the set A as assumptions, t hen th i s is represented as

A h W P (S i , R) WP(S2, R) . For S2 t o be a re f inement of Si, th is result

has t o h o l d f o r every p o s t c o n d i t i o n R . To avoid the need f o r qua l i f i ca t i on over

f o r m u l a e , and r e m a i n i n first order logic, the language £ can be extended by

add ing a new r e l a t i on s y m b o l G(w) where w is a l i s t o f a l l the free variables i n

Si and S2. I f i t can be p roved t h a t A h W P (S i , ^ (w)) WP(S2, G (w)) i n

t he ex tended language £ ' t h e n the p roo f makes no assumpt ion about G (w) and

therefore remains v a l i d w h e n G (w) is replaced by any other f o r m u l a . I n this case

th i s is w r i t t e n : A t~ Si < S2.

A f u n d a m e n t a l resul t , p roved i n [155], is t h a t these t w o not ions of ref inement

are equivalent :

A ^ Si < S2 < ^ A H Si < S2

S e m a n t i c A b s t r a c t i o n

I f F(s)eVn and G€^VH are state t r ans fo rmat ions where V C V and

V s G V . F (S) = G (S) (i .e . , F a n d G have the same values on variables i n V) t hen i t

is said t h a t i ^ s) is m o r e abstract t h a n G{s) (or G{s) is more concrete t h a n F{s)),

and i t is w r i t t e n G • F(s), i .e., F is an abs t rac t ion of G {F abstracts G, or G is

abs t rac ted b y F). I f t he i n t e r p r e t a t i o n of s ta tement Si under the s t ruc tu re M i s

abs t rac ted by the i n t e r p r e t a t i o n of s ta tement S2 under the same s t ruc ture , t hen

th i s is w r i t t e n Si • M S2.

model for a set of sentences (formulae with no free variables) is a structure for the language
such that each of the sentences is interpreted as true.

Chapter 7. Program Transformations and Data Abstract ion 162

Refinement, Equivalence and Abstract ion Transformations

If Si is refined by S2, there is a program transformation from Si to S2. This is

written:

Si < S2

and the program transformation is defined as a refinement transformation.

If Si refines S2 and also S2 refines Si, there is a program transformation

from Si to S2 and vice versa. This is written:

Si ^ S2

and the program transformation is defined as a equivalence transformation.

If Si is abstracted by S2, there is a program transformation from Si to S2.

This is written:

Si • S2

and the program transformation is defined as a abstraction transformation. This

means that any specification which S2 satisfies is guaranteed to be satisfied by Si.

7.4 Issues on Inventing and Proving Program

Transfor mat ions

In this thesis, program transformations have been invented, based on the research

result of data abstraction, to best serve the need of acquiring data designs from

programs.

It is crucial to ensure that all program transformations and and abstractions

preserve the correctness of program semantics. Since proving program refinements

and transformations is not the subject of this thesis (please refer to [155] for more

details), one example demonstrates here how a transformation is proved.

The example chosen addresses two programs:

Chapter 7. Program Transformations and Data Abstract ion 163

PUSH{Sx); .
y := Pop (5).

and

y := X.

Suppose that one program transformation called "Merge-Push-Pop" is vahd

to transform the first program into the second one. Two methods are presented

to prove the validity.

M e t h o d 1: To use the weakest preconditions. This is to compare the weakest

pre-conditions of the two programs. If their weakest pre-conditions are same,

these two programs are equivalent.

WP(PUSH (x,S); y := POP (S), R)

^ WP(S := (X) ^ S; y := HD(S); S := TL(S), R)

^ R[TL(S)/S] [HD(S)/y] [(x)-ff S/S]

^ R[TL(.(X)+f S/S] [HD((X)-ff S)/y]

<^ R[S/S][x/y

^ R[x/y]

^ WP (y := X , R)

M e t h o d 2: To use the existing WSL constructs and their properties.

PUSH (x,S); y := POP (S)

^ S[2 ...] := S[l . . .] ; S[l] := x; y := S[l]; S[l ...] := S[2 . . .] ;

4»S[2 ...] :=S[1 . . .] ;y : = x

^ y : = x ; S[2 ...] := S[l ...]

^ y := x; S[l ...] := S[l

<^ y := x;

S[l ...] := S[2 . . .] ;

S[l ...] := S[2 . . .] ;

In essence, the second method is same as the first one, because the exising

WSL constructs were derived at earlier stages via definitional transformations

which were proven by using weakest preconditions.

Chapter 7. Program Transformations and Data Abstract ion 164

7.5 Program Transformations of Data
Abstraction

Transformations developed in this thesis for data abstraction are divided into

seven categories. Each category will be discussed in one subsection in this section.

Because it will not be appropriate to explain every transformation, one or a few

examples are usually given in each category.

The approach proposed in the research is shown in Figure 7.4. Lines with

arrows in the figure represent where transformations are applied. Data Designs

represented in Entity-Relationship Attribute Diagrams are mainly derived from

combining entities whose source is data, and relations whose source is code.

It can be seen easily that program transformations fall into the following

categories: (1) Data not in the form of records are transformed into records; (2)

Records are abstracted to entities or even entities plus relationships; (3) In the

code part, statements representing operations on data are abstracted to relations

between entities. A typical example is that operations on files are transformed

to operations on basic data types first, and then from operations on basic data

types to relations between data objects; (4) Control statements and statements

representing operations on data together are abstracted to relations or to user-

defined abstract data types; (5) User-defined abstract data types are abstracted

to both entities and relations; And (6) Entities and their relations are abstracted

to form Entity-Relationship Attribute Diagrams.

The seventh category consists of a number of supporting transformations for

data abstraction.

7.5.1 Transformations for Deriving Records

Transformations in this category are used to transform data, e.g., in the form

of files and variables, which are not in the form of record, into records. For the

sake of convenience in the research, the only form of data at the code level which

will be abstracted to the data at the conceptual level (i.e., entities) is the record.

Section 7.5.3 will address transforming the operations on files to the operations

Chapter 7. Program Transformations and Data Abstract ion 165

Code Level Conceptual Level

Data
FUe

Variable

Record

Control Statement

Code X ^ /
Operation on

(E.g.:FUe Op " A D T Op

User-ADT

Relation

Entity-Relationship
Attribute Diagram

Relation)

Figure 7.4: Approach of Deriving Entity-relationship Attribute Diagrams

of records.

As discussed earlier in the thesis, simple variables are unable to represent

records but fortunately records can represent simple variables properly because

a simple variable can be modelled by a record without losing any information.

When a simple variable is transformed into a record, the type information of the

variable is also recorded in the WSL record. For example, the following is a piece

of code in WSL, where local variables a and h are declared and used.

var (a := 0, 6 := " ") :

a := 100;

h — "ok";

end;

This program can be transformed into the program shown below. The local

variable environment (denoted by var) is changed to local record environment

(denoted by segment). The Program Transformer checks the whole segment of

the code, and decides the types for each record (in this case, the type for a is

Chapter 7. Program Transformations and Data Abstract ion 166

int and b char) and gives the length of each record depending on the longest
constant assigned to that record (in this case, 3 for a and 2 for b). Note that,
the display form for a variable and a record variable are the same though their
internal formats are different.

segment

record a [3 of int];

record 6 [2 of char];

a := 100;

b := "ok";

end;

7.5.2 Prom Records to Data at the Conceptual Level

From Record to E n t i t y

In forward engineering, a "01 level" COBOL record is usually used to implement

an entity in an Entity-Relationship Attribute Diagram. Therefore, in reverse

engineering, a record without any field can be abstracted to an entity without

any attribute; and a record with just fields can be abstracted to an entity with

attributes. For example, a record and an entity abstracted from the record are

illustrated below. When the record is transformed into the entity, information

such as length and type of each field is thrown away, because the information was

not usually in the original data design and was added in by the implementor.

record El w i t h ent i ty El w i t h

record Al [n of char] a t t r Al

record A2 [n of char] • a t t r A2

record A3 [n of char] a t t r AS

record Ai [n of char] a t t r A4

end; end;

Chapter 7. Program Transformations and Data Abstract ion 167

Acqu i r i ng a Relationship f r o m a Record w i t h Subrecords

When a subrecord of a record can be abstracted into an entity and the record can

be abstracted into an entity as well, there exists a relationship between the entity

derived from the record and the entity derived from the subrecord. For example,

in the given record author.

record author w i t h

record name [40 of char

record address [50 of char

record book w i t h

record title [50 of char

record ISBN [20 of char

end

end;

the subrecord book can be abstracted into an entity while the record author can be

extracted into an entity author, according to the knowledge in forward engineer

ing. At the same time, a relationship "write" is put in by user from the logical

connection between the record and the subrecord, i.e.:

paragraph

ent i ty author w i t h

a t t r name

a t t r address

end;

ent i ty book w i t h

a t t r title

a t t r ISBN

end;

relationship ent i ty author has one write relation w i t h many ent i ty book;

end;

Chapter 7. Program Transformations and Data Abstract ion 168

Name

Author

Address

Write

one

ISBN

Figure 7.5: Deriving a Relationship from a Record with Subrecord

Note that information on the implementation details is also thrown away in

the process of abstraction. An Entity-Relationship Attribute Diagram for this

example is shown in Figure 7.5.

7.5.3 From Code Level Data Operations to Data

Relations

Transformations for Mode l l ing Sequential Files

File input/output is a central problem in most data-intensive programs. File

operations in a programming language usually involve access to external storage.

In COBOL, a serial file is a sequence of records, i.e., a record is the unit with

which a physical file can be accessed. Though COBOL file operations can be

translated into WSL as external procedures and external functions (Section 6.5.2),

Chapter 7. Program Transformations and Data Abstract ion 169

more suitable forms of data presentations are required to replace these external
procedures and functions in order to examine file operations at a high abstraction
level.

A queue data type is proposed to model COBOL sequential files and opera

tions on these files, in order that files (external storage objects) can be transformed

into queues (internal mathematical objects).

Assuming a file has n records, iEi, R^, . . . , R i , R i + i , Ri+2t ••• , R n - i , Rn,

sequential file operations can be modelled by operations on two queues (Head-

Queue and Tail-Queue) of records, and one record variable Vr'.

Open-file = Head-Queue := {};

Tail-Queue := Ri -\-\-R2 + + ••• + + R n - (++ is concatenation)

Read-file = Vr := head (Tail-Queue);

Tail-Queue := tail (Tail-Queue)]

Head-Queue := Head-Queue ++ Vr-

Write-file = Head-Queue :— Head-Queue ++ Vr]

Tail-Queue := tail{Tail-Queue).

Close-file = Tail-Queue := Head-Queue -H- Tail-Queue;

Head-Queue := {}•

eof? = empty^ Tail-Queue).

Accordingly, five transformations with the above meaning can be invented:

• Model-OpenFile-by-QueueOP

def in i t ion :

Chapter 7. Program Transformations and Data Abstract ion 170

Status of a File Head-Queue Tail-Queue

(A) Just opened
Empty Ri R. R n-^ R

n

(B) After the i th

record being
accessed

R i R2 R i R i + i Rn-l Rn

Ri+2 Rn-1 Rn
(C) After the
(i + l) t h record

being accessed
R i R2 R i + i

(D) After the last
record being
accessed

R i R2 Rn-l Rn Empty

(E) Closed
Empty R i R. R n-i Rn

Figure 7.6: Modelling a Sequential File by Two Queues

Chapter 7. Program Transformations and Data Abstract ion 171

!p open_file DATAFILE; ^
i n i t _ q DATAFILE-head;

DATAFILE-tail := (_conca.t{DATAFILE-head, DATAFILE-tait);

• Model-ReadFile-by-QueueOP

def in i t ion :

!p readjile (DATARECORD, DATAFILE); ^

DATARECORD := q_rem_Rrst{DATAFILE-tail);

DATAFILE-head := q^concat{DATAFILE-head, DATARECORD);

• Model-WriteFile-by-QueueOP

def in i t ion :

!p write^file {DATARECORD, DATAFILE);

DATAFILE-head := q^^oncat(DATAFILE-head, DATARECORD);

DATARECORD := q^em_Rrst{DATAFILE-tail);

• Model-Eof?-by-QueueOP

def in i t ion :

!p eof! (DATAFILE); ^

empty? (DATAFILE-tail);

Model-CloseFile-by-QueueOP

def in i t ion :

Chapter 7. Program Transformations and Data Abstract ion 172

Ip close_file DATAFILE; ^
i n i t _ q DATAFILE-head;

DATAFILE-tail := q_concat(DATAFILE-head, DATAFILE-tail);

Transformations on Basic Data Types

Transformations in this class deal with simplifying data objects in basic data

types according to the properties of the data type. The data types that the

transformations in this class can deal with include stack, set, sequence and queue.

For example, the transformation,

push(S, x); pop(y, S) <^ y := x.

is based on the properties of a stack. Another two examples are:

q_append p e • relate p to e;

and

X := q_rem_first(p)

X := head{p); p := tail(p);

• relate x to p; relate p to p;

Handl ing Aliased Records

Suppose we have a COBOL program as below:

01 X PIC X(8).
01 Y REDEFINES X. PIC X(8).
01 Z • PIC X(8).

Chapter 7. Program Transformations and Data Abstract ion 173

MOVE Z TO X.

It will be translated into WSL:

record x [5 of char];

record y [5 of char];

redefine x w i t h y;

record z [8 g{ char];

x:=z;
y := read-rec(x, y);

The second statement in the above program can be simplified by transformations,

i.e.:

y := read-rec(x, y);

^ y-=z]

7.5.4 Abstraction from Code

A number of examples are given in this subsection to illustrate how code is ab

stracted towards data design.

Abs t rac t ing f r o m Assignment Statement

An assignment statement is a simple but straightforward measure to implement

a relation between two data objects, which, at the data design level, may be two

entities. Therefore, an assignment can be usually abstracted to a relation, e.g.,

X := y; 3 relate x to y;

This simply means that x relates to y. How this relation will be used to obtain

Entity-Relationship Attribute Diagrams will be discussed later in this section.

Chapter 7. Program Transformations and Data Abstract ion 174

Abst rac t ing f r o m Branching Structure

A branching statement, such as i f .. then else .. if , is used as a control

structure in implementing programs. But the structure itself did not appear in the

original data design and neither did the condition part of the branching structure.

Therefore, these parts will not contribute to the Entity-Relationship Attribute

Diagram. Information appearing in both arms of an i f .. then .. else .. fi

statement may exist in the Entity-Relationship Attribute Diagram. Therefore, an

i f .. then .. else fi statement can be abstracted to a sequence of two groups

of statement (each group comes from each arm of the i f then .. else .. fi

statement). For instance,

i f a; > 0
then X :— y

else X := z

fi;

is abstracted to

relate x to y;

relate x to z;

Looping Statement

Looping statements, such as while and for, are also used as a control structure in

implementing programs but do not appear in the original data design. A looping

statement can be treated as enumerating the same operation on every instance of

entities. The condition part of the loop also does not contribute to the Entity-

Relationship Attribute Diagram. So a while loop can be removed just leaving

the body of the loop. For example,

i := 0;
while i < 10 do

Chapter 7. Program Transformations and Data Abstract ion 175

x[i] := y[i];
i :=. i + 1;

od;

is equivalent to

for z — 0 to 9 step 1

begin

x[i] := y[i];

end;

and they both can be abstracted to:

relate x to y;

The example shows that, at the code level, the elements of the array x are assigned
f

with the elements of the array y and this can be abstracted to that, at the data

design level, entity x has a relation with entity y.

Transformations for Forming Abstract Data Type

Transformations in this class address looking for a user-defined abstract data type.

An example is given below:

var iset := 0, rest := 0, x:= 0,y := 0, m:= 0,n := 0,

intl := 0, int2 := 0, reall := 0, real2 := 0 :

begin

iinsert (intl);

idelete (intB);

rinsert (reall);

rdelete [real2);

where

proc iinsert (x) == iset := iset V {x};

Chapter 7. Program Transformations and Data Abstract ion 176

proc idelete (y) == iset— {y};

proc rinsert (m) == rset := rset V {m};
proc rdelete [n) == rset — {n}.

Here we assume that the variables x and y are not used in (...) parts (this

can be easily confirmed in Meta-WSL). If we start with variable x which is used

by procedure definition iinsert, it is found that variable iset is also used by the

same procedure definition. There is no other procedure definitions using x, but

the procedure definition idelete uses variable iset and y. Following the same steps,

a closure can at last be recognised which contains three variables {x, y , iset)

and two procedures (iinsert, idelete). Hence an abstract data type is formed (and

named intset). The above program can be transformed into the following:

var rest := 0, m := 0, n := 0, intl := 0, int2 := 0,

reall := 0, real2 := 0 :

begin

user-adt-proc-call intset.insert (intl);

user-adt-proc-call intset.idelete {int2);

rinsert (reall);

rdelete {real2);

where

user-adt intset {iset := 0, x := 0,y :— 0) (nil)

user-adt-proc iinsert (x) = = iset := iset V {a;} :
user-adt-proc idelete (y) = = iset — {y} :

proc rinsert (m) == rset:— rset V {TO} :

proc rdelete (n) - rset — {n}.

Note that in the original program any procedure call which is involved in the

newly formed abstract data type is transformed into adt-proc-call. The search for

a closure can be started with a procedure definition (or function definition) as well

Chapter 7. Program Transformations and Data Abstract ion 177

as a variable, and the result is the same. For example, if we start with procedure
definition iinsert, we will first get variable x and iset involved; then search for
procedure definitions using these two variables; and finally get the same closure
as we start with the variable x.

Program transformations for searching and forming an abstract data type

only involve presentational changes to programs so that their correctness can be

easily proven.

I t should be pointed out that the above method of identifying a user-defined

abstract data type can be implemented satisfactorily in the program transforma

tion approach because the program transformer is a powerful analyser in searching

for a closure. Other methods of identifying an abstract data type, such as using

retrieve function, though they have been considered, still need further study before

they can be implemented in the tool.

7.5.5 From User-Defined Data Types to Data Design

Transformations in this category deal with transforming data objects, such as

records and abstract data types, into entities.

For example, an abstract data type usually involves a data object and a

number of operations on this object. The operations are implemented in terms

of procedures and functions, which take parameters. At the data design level,

the data object can be viewed as an entity; each parameter can be viewed as a

different entity; and the operations can be viewed as relations between the data

object and other data objects that are represented by the parameters.

Therefore, a user-defined abstract data type can be abstracted to an entity

while all statements accessing this abstract data type have to be changed accord

ingly and "ADT->Entity" is such a transformation. By applying this transfor

mation, the following program will be abstracted from

var

begin

Chapter 7. Program Transformations and Data Abstract ion 178

user-adt-proc-call intset.insert (intl);
user-adt-proc-call intset.idelete {int2);

where

user-adt intset {iset := 0, x:=0,y := 0) {nil)

user-adt-proc iinsert {x) == iset := iset V {x};

user-adt-proc idelete (y) == iset - {y};

to

paragraph

ent i ty intl

ent i ty int2

ent i ty intset

relate intl to intset; comment : insert intl to intset]

relate int2 to intset] comment : delete intl from intset]

end

In this process, the abstract data type intset becomes an entity, and so do the

two parameters involved. Two procedure call statements become two relations. In

order to abstract the program further, useful information is recorded by comment

statements.

7.5.6 Deriving Data Designs from Data and Code

Transformations in this category deal with deriving entity relationships.

Handl ing Relations

When a relate statement relates two entities there must by definition be a re

lationship between these two entities. So a relationship can be derived from the

Chapter 7. Program Transformations and Data Abstract ion 179

statement and the name of the relationship is provided by the user according
to the information in the program. When a relate statement relates one or no
entities, i.e., one or two of the components of the relate statement are neither
entities nor records which may be transformed into entities, it means that this re
late statement does not represent a relationship of any entity and can be deleted.
For example, the following statement can be abstracted to a skip because "3" is
a.constant and was usually not part of the data design but was just used for the
purpose of control in the implementation.

relate a; to 3; • skip;

Acqu i r ing Relationship f r o m Abstract Data Type

Let us carry on with the example in Section 7.5.5. A relate statement has two

components of which one is an entity derived from an abstract data type. Then

the other component is a variable or a record without any subrecord (these two

are equivalent and there are transformations available in the prototype for trans

forming one into the other), this relate statement can be transformed into a

relationship. The name of the relationship has to be provided by the user accord

ing to the information existing in the code. The program can be transformed into

the following WSL form and its Entity-Relationship Attribute Diagram is shown

in Figure 7.7.

paragraph

ent i ty intset;

ent i ty intl;

ent i ty int2;

relationship ent i ty intl has one is-member-of relation w i t h one ent i ty intset;

relationship ent i ty int2 has one is-not-member-of relat ion w i t h one ent i ty intset;

end

Chapter 7. Program Transformations and Data Abstract ion 180

one one

is-not-member-of is-member-of

one

Intset

Figure 7.7: Deriving a Relationship from an Abstract Data Type

Acqu i r ing a Relationship f r o m a Foreign Key

One example is given here for Acquiring Relationship from Foreign Key. A rela

tionship can exist between two entities that both have the same attribute (known

as a foreign key). Suppose two entities have been derived already from source code

(e.g., record definitions) and two relations between two pairs of entity attributes

(e.g., assignment statements):

paragraph

ent i ty employee

a t t r nks-number

a t t r name

a t t r department

a t t r vehicle-num-plate

Chapter 7. Program Transformations and Data Abstract ion 181

Department NHS-number
Person

Name Vehicle-num-plate

many one

is-driven-by

man one

Manufacturer

Reg-number

Model

Figure 7.8: Deriving a Relationship from a Foreign Key

end;

en t i ty car

a t t r reg-number

a t t r manufacturer

a t t r model

a t t r driver

end;

relate employee.vehicle-num-plate to car. reg-number,

comment : one employee.vehicle-num-plate relates to many car.reg-number,

relate car.driver to employee.nhs-number;

comment : one car.driver relates to many employee.nhs-number,

end;

Chapter 7. Program Transformations and Data Abstract ion 182

Program transformations analyse code as well as data. For example, before
these entities and relations were obtained, employee was a record variable and
employee.vehicle-num-plate a field variable. The first relate statement records
the fact that the variable employee.vehicle-num-plate ("one" variable) was as
signed to by an expression typed car.reg-number for more than once [''''many"
times); and this statement is used by a user in asserting a relationship later. By
this stage, as shown above, it can be identified that the first entity has a foreign
key, employee.vehicle-num-plate and the second entity has an entity car.driver.
If we start with the entity employee., a one-to-many relationship is derived, i.e.,
that a person can drive more than one car. When we start with the entity car,
a one-to-many relationship is also asserted by the user, i.e., that one car can be
driven by more than one person. Therefore, the WSL presentation and the Entity-
Relationship Attribute Diagram is shown below and in Figure 7.8 respectively.

paragraph

ent i ty employee

a t t r nhs-number

a t t r name

a t t r department

a t t r vehicle-num-plate

end;

ent i ty car

a t t r reg-number

a t t r manufacturer

a t t r model

a t t r driver

end;

relationship ent i ty employee has one drive relation w i t h

many ent i ty car;

relationship en t i ty car has one driven-by relation w i t h

many en t i ty employee end;

end;

Chapter 7. Program Transformations and Data Abstract ion 183

7.5.7 Transformations for Manipulating Program Items

Transformations in this category deal with manipulating program items for the

preparation of data abstraction. Examples of these transformations are, "Join-

Records" (when more than one record can be joined together in order to form

an entity), "Split-Record-Into-Subrecords" (when a record needs to be split up in

order to form more than one entity), "Swap-With-Next-Record" (when a record

can be moved a position where is closer to another record and they may be joined

together to form an entity), etc.

Chapter 8

Design and Implementation

This chapter describes the prototype system's design and implementation in terms

of those major components of the Maintainer's Assistant built by the author: an

extension to the WSL language (Chapter 6), and extension to the Transformation

Library (Chapter 7), the Program Structure Database, the General Simplifier and

the Metric Facility. Although the prototype is still not an industrial-strength tool,

all components are aimed to be fully operational and to be able to demonstrate the

feasibility of the method developed in this thesis. Case studies will be described

in the next chapter. In this thesis, unless otherwise stated, the interface software

is running on a SUN 3/50 workstation and the rest of the prototype is running in

COMMON LISP on an I B M RS6000 workstation.

8.1 Design of the Prototype

The components of the prototype needing design and implementation/enhancement

includes the Representation of WSL, the Transformation Library, the Program

Structure Database, the General Simplifier and the Metric Facility (Figure 8.1) .

8.1.1 Transformations for Data Design Recovery

Transformations for acquiring data design will be the extension of the transforma

tion library and these transformations will be divided into the following categories:

184

Chapter 8. Design and Implementa t ion 185

Front End
(X-Windows
or P C Menu)

Internal
Representation
of WSL code

/
Browser
Interface

Program
Transformer

Transformation]

Library

Transformer
Supporting
Tools
History/

Future
Database

General
Simplifier

Program
Structure
Database

Metric
Facility

Figure 8.1: Design of the Prototype

1. deriving records,

2. from records to data in design level,

3. from code level data operation to data relations,

4. abstraction from code,

5. from user-defined data type to data design,

6. deriving data design from data and code, and

7. manipulating program items.

The program transformations to be implemented in the prototype is listed

in Appendix D.

8.1.2 Program Structure Database

Examples of the database query definitions (in Enghsh) are listed in Figure 8.2,

and the specification of all the database queries is in Appendix C which was

Chapter 8 . Design and Implementa t ion 186

originally defined in [154,165 .

8.1.3 General Simplifier

Basically, the General Simplifier is able to simplify a mathematical or logical

expression, or to prove the equivalence of two expressions.

Mathematical and logical operations defined in the system are: -|-, - , *, / , **,

Min, Max, Div, Mod, = , > , < , < > , Not, And, Or, etc. ^; and three commands

defined are:

• [Simplify] Expression

• [Equivalent!] [Expression, Expression)

• [Impliesl] (Expression, Expression)

In the first command, the "Expression" can be any symbolic algebraic ex

pression. When receiving this query from the Program Transformer, the General

Simplifier returns the expression in its simplest form. See the following for exam

ples:

• [Simplify] (2 + 3) = = = 5

• [Simplify] ((A B) / (A + B)) = = = 1

• [Simplify] (A ** (B ** 0)) = = = A

• [Simplify] (B * B * B * B) = = = (B ** 4).

When receiving the second or the third query from the Program Transformer,

the General Simplifier returns T or N i l accordingly. See the following for exam

ples:

• [Equivalent?] ((And A B) or (And A C), (A and (Or B C))) = = = T

^These definitions are in normal mathematical and logical sense and subject to normal limi
tations, e.g., zero cannot be divided by other expressions.

Chapter 8. Design and Implementa t ion 187

Queries Description
[Trans?] Returns "T" or "Nil" depending on whether the named

transformation is applicable.
[Variables] [Used] [Assigned].
[Used-only] [Assigned-only]

Returns lists of variables in the currently selected program
item according to whether variables are assigned
to, referenced, both, or neither.

[Depth] Returns the depth which is defined as the number of
enclosing unbounded (do...od) loops.

[Primitive?] Returns "T" or "Nil' depending on whether the statement
given is primitive. A primitive statement is defined
to be neither an unbounded loop nor conditional statement.

[Terminal-Value] Returns the terminal value of the given statement. The
terminal value is the capacity of a statement for jumping out
loops.

[Terminal?] Returns "T" or "Nil" depending on whether the
statement given is terminal, i.e., whether the statement
is in a terminal position or causes termination of
a loop which is in a terminal position.

[Proper?] Returns "T" or "Nil" depending on whether the statement
is proper. The statement S is a proper sequence
if every terminal statement of S has terminal value zero.

[Regular?] Returns "T" or "Nil" depending on whether the
program item is regular, e.g., an item is regular if
every execution of that item leads to an action call.

[Reducible?] Returns "T" or "Nil" depending on whether
a statement is reducible. The statement S is
reducible if replacing any terminal statement EXIT(k) ,
which has terminal value one, by EXIT(k- l) gives a
terminal statement of S.

[Improper?] Returns "T" if all the terminal statements of S have a
terminal value greater than zero.

[Dummy?] Returns "T" if the statement S is both reducible and all
terminal statements of S have a terminal value greater than
zero.

[Calls] Returns all the action call names and how many times
they are called in the given program item.

[Statements] Returns all the statement names in the given program item.

Figure 8.2: Program Structure Database Queries

Chapter 8. Design and Implementa t ion 188

• [Implies?] (X > Y, (Max X Y) - X) = = = T

• [Equivalent?] ((A + B) * (A - B), (A * A) - (B * B)) = = = T

• [Equivalent?] ((A + B) * (A + B), (A * A) - (B * B)) = = = N i l .

8.1.4 Metric Facility

The objectives of using metrics in REFORM are to help the user to select transfor

mations (to help develop heuristics), to measure the progress made in optimising

the program code and to measure the resulting quality of the program being

transformed.

The question with which a user is mainly concerned is how to make the pro

gram "better" (easier to understand). This is an optimising process which includes

removing redundant code, removing unreachable nodes, detecting and removing

bugs in the program, restructuring the program and reducing data complexity.

Therefore, the measures needed initially in REFORM are "code" measures.

They must reflect the complexity of the code and include control flow complexity

(connections between nodes, branches and loops), structural complexity, data flow

complexity and the size of the program.

Six metrics were defined for WSL programs in the prototype of the Main

tainer's Assistant.

A button named "Metrics" in the X-Windows interface of the Maintainer's

Assistant is needed. By clicking this button, a user can calculate any one or all

the metrics, applied either to the current program item on which he or she is

working or to the whole program.

During the process of transforming a program, the metrics at each stage can

be recorded and the results can be plotted as and when required.

The six metrics defined (to be implemented) in the prototype are:

• McCabe Complexity (MCCABE) — the number of linearly independent

circuits in a program flowgraph [116]. It is calculated as the number of

predicates plus one.

Chapter 8. Design and Implementa t ion 189

• Structural (STRUCT) — the sum of the weights of every construct in the
program. The weight of each WSL construct is defined subjectively accord
ing to experience gained by REFORM researchers and users. A loop, for
example, is more difficult to understand than an assignment statement, so
a loop statement is given a bigger weight than an assignment statement.

• Lines Of Code(I) (LOG) — the number of statements.

• Lines Of Code(II) (L0C2) — the number of nodes in the abstract syntax

. tree. This reflects the overall size of the program.

• Control-Flow and Data-Flow Complexity (CFDF) — the number of edges

in the flowgraph plus the number of times that variables are used (defined

and referred). It is a modification of the measure defined by Oviedo [175 .

• Branch-Loop Complexity (BL) — the number of non-loop predicates plus

the number of loops. It is a modification of the measure defined by Moawad

and Hassan [175]. The measure is sensitive both to branches and to loops.

The implementation details of program transformations and components of

the prototype designed in this section will be described in the following sections.

8.2 Extension of W S L

The WSL is embedded in LISP which means that executable WSL is represented

in a LISP form so that it can be executed by a LISP interpreter simply by pro

viding suitable macro and function definitions and non-executable WSL is also

represented in a LISP form so that a LISP interpreter can check the correctness

of the syntajc. The interpreter checks the syntax of WSL by looking up a syntax

table in which every WSL component is defined in terms of its name, type, etc.

When new WSL components are needed, their definitions are added to the table.

The table has to be loaded before the system can interpret any WSL components.

The implementation of expanding the WSL only involves defining entries of

the WSL Syntax Table. The table in Figure 8.3 shows examples of the newly de

fined entries, for representing data abstraction and Entity-Relationship Attribute

Chapter 8. Design and Implementa t ion 190

Diagrams. Some of the new WSL components are defined in terms of existing
WSL components (please see Appendix A and Appendix B for their syntax and
semantics). In the table there are the following entries:

Number This is the number of the type number that is passed to the pretty-

printer as a more efficient alternative to passing the actual type of the object.

This both reduces the amount of information which needs to be passed, and

also speeds up the process of finding the form of the pretty-printed version.

The newly defined entries start with 400.

Name This is the name of the item.

Generic Type This is the "parent" type of the given type. For example, "Relate"

is a type of statement and "Depth" is a type of expression.

Leading Token This is either "yes" or "no" if and only if the type of the item

is the first part of the printed form. For example, an "Relate" statement

begins with the word "Relate".

M i n i m u m Size This is the least number of components that the type can have.

Example are an "Relate" statement which must have at least two (in fact only

two) components and a "Record" which must have at least five components,

whereas a list of records can have any number.

Component Types This holds the types of components of the given type (if

there are any). For example, the components of an "Insert" are an assigned

variable and an expression. If there is an unlimited number of components

for a given item, any additional components must have the same type as the

last component. For example, a "Segment" must have a section of files, a

section of records, and it can have any number of statements in i t .

8.3 Transformations

Program transformations defined in the previous chapter using WSL are imple

mented in Meta-WSL (about 4000 lines of source code). A general process of

Chapter 8. Design and Implementa t ion 191

Num Name Generic Leading Min Component
Type Token Size Types

401 A_Def Thing Yes 4 Name Number Name Expression
402 E_Def Thing No 2 Name A==S
403 F_Def Thing No 0 —
404 R_Def Thing No 0 —
405 Segment Statement Yes 3 Files Records Statement ...
406 Records A—List No 0 Record ...
407 Record R_Def Yes 5 Name Expression Name Expression

Records
408 Rec Variable Yes 1 Variable ...
409 Redefine R_Def Yes 2 Record Record
410 File F_Def Yes 2 Ncime Records ...
411 Files A—List No 0 File ...
412 Paragraph Statement Yes 2 E==S Statement ...
413 Ent Variable Yes 1 Veiriable ...
414 E = = E-Def Yes 2 Name A==S
415 E==S A—List No 0 E-Def ...
416 A== A_Def Yes 4 Name Number Netme Expression
417 A==S A—List No 0 A-Def ...
418 Relationship Statement Yes 5 Name Expression Name Expression

Name
419 And—Relationship Statement Yes 7 Name Expression Name Expression

Name Expression Name
420 Or—Relationship Statement Yes 7 Nfime Expression Name Expression

Name expression Name
421 Adt Definition Yes 4 Name Assignments Records Definition

422 Adt-Proc-Call Statement Yes 4 Njime Name Expressions Variables
423 Adt-Funct-Call Expression Yes 3 Name Name Expressions
424 Create Statement Yes 1 Assd—Var
425 Insert Statement Yes 2 Expression Assd—Var
426 Del-Element Statement Yes 2 Expression Assd_Var
427 Dis_Union Expression Yes 1 Expression
428 Dis—Intersection Expression Yes 1 Expression
429 Init-Q Statement Yes 1 Assd_Var
430 Q_A.ppend Statement Yes 2 Assd—Var Expression
431 Q—Concat Expression Yes 2 Expression Expression
432 Q-Rem-First Expression Yes 1 Assd—Var
433 Relate Statement Yes 2 . Expression Expression
434 And—Relate Statement Yes 3 Expression Expression Expression
435 Or-Relate Statement Yes 3 Expression Expression Expression
436 Seq—Concat Expression Yes 2 Expression ...
437 Seq—Remove Statement Yes 2 Expression Assd—Var
438 Sub—Seq Expression Yes 3 Expression Number Nvunber
439 Sub_Seq? Condition Yes 2 Expression Expression
440 Metke-Seq Statement Yes 1 Assd—Var
441 Seq_Append Statement Yes 2 Assd—Var Expression
442 Init-Stack Statement Yes 1 Assd—Var
443 Top Expression Yes 1 Expression
444 Depth Expression Yes 1 Expression

Figure 8.3: WSL Syntax Table

Chapter 8. Design and Implementa t ion 192

writing a program transformation consists of the following steps:

1. Study the definition of a transformation and design the implementation in

pseudo code.

2. Write the transformation according to the design. This includes:

• checking the applicability of the transformation to the selected program

item — pattern matching the selected item with the defined pattern

and collecting information from the given item; and

• editing the given item to what is defined by the transformation defini

tion.

3. Test the implemented transformation. This is done using path analysis.

In illustrating these steps, a previously used example is presented again. If

the following two statements appear adjacent in the program, where S is a stack:

PUSH (S x);

y := Pop (S).

they can be merged into one statement:

y := X.

This transformation is named as "Merge-Push-Pop". It is designed that

this transformation can be applied by either selecting the "Push" statement or

the "Assignment" statement with a "Pop" function as the expression to assign.

Firstly the design is written in pseudo code which is like:

Chapter 8. Design and Implementa t ion 193

Transformat ion: Merge-Push-Pop

(a) Applicability

if (current-statement = "Push") A

(current-statement / last-statement)

then current-statement := next-statement fi.

i f (current-statement ^ "Pop")

then flag = "Fa i l "

else buffer 1 := stack-name-in-pop;

current-statement := previous-statement

if (current-statement = "Push") A

(stack-name-in-push = bufferl)

then flag = "Pass"

else flag = "Fa i l "

fi

fi.

(b) Transforming

it (current-statement = "Push")

then current-statement:— next-statement fi.

bufferl := variable-name-in-pop;

current-statement := previous-statement;

delete next-statement;

buffers := variable-name-in-push;

(insert a "Assignment" statement) A (bufferl := buffer2);

delete next-statement.

Secondly, the transformation itself is written in Meta-WSL:

Chapter 8. Design and Implementation 194

(Add_trcLns
'Statement
'Any
'Merge_Push_Pop
'Global
'Always
'(Rewrite)

Transformation to merge a PUSH statement and a statement using
POP function.

N i l
'((Var ((Table Empty))

(Cond ((And ([_S_Type?_] Push) ([_»?_])) (@»)))
(Assign (Table ([_Match_] Statement

(Assign ((">?- V)
(Pop (~>?~ S))))

Table)))
(Cond ((Empty? Table) (O F a i l))

((E l s e)
(Cond ((Not ([_«?_])) (O F a i l))

((E l s e)

(@«)
(Assign (Table ([_Match_] Statement

(Push (~<?~ S)
(->?- E))

Table)))
(Cond ((Empty? Table) (O F a i l))

((E l s e) (Q P a s s)))))))))
'((Var ((Table Empty))

(Cond ((C _ S _ T y p e ? _] Push) (@»)))
(Assign (Table ([_Match_] Statement

(Assign ((">?- V)
(Pop (~>?~ S))))

Table)))
(Odel.back)
(Assign (Table ([_Match_] Statement

(Push ("<?" S) (~>?~ E))
Table)))

(®Change_To ([_ F i l l _ i n _] Statement
(Assign (("<?- V) (-<?- E)))
T a b l e)))))

Chapter 8. Design and Implementation 195

Finally, this transformation is tested with the path analysis method.

This example is still a simple transformation, just for showing how a transfor

mation is implemented. Most transformations written for the research described

in this thesis is far more complicated than this transformation (up to several

hundred Hnes of Meta-WSL).

Most of the 60 transformations implemented are "rewrite" transformations

because these transformations deal with alterations to the structure of the selected

program items. These transformations will therefore appear in the "Rewrite"

menu in the interface and the other transformations, such as "Swap-with-next-

record", will appear in other menus, such as "(Re)Move" menu.

8.4 Program Structure Database

The Program Structure Database is implemented in COMMON LISP and it con

sists of a total of around 3000 lines of source code. The features of the implemen

tation are summarised in the following sections.

8.4.1 Use of Recursion Programming Techniques

In the Program Structure Database, a database query is usually implemented by

one database query function (LISP function) which may call subsidiary functions.

The Database Manager is implemented as a group of LISP functions. To collect

adequate information about a given program, a database query function usually

needs to examine all the components of the program. For example, to answer

the query "which variables are used in the program", the database query function

"[Variables]" should check every place in the program where a variable can possibly

occur. This can be very complicated and requires some operations to be carried

out repeatedly. Recursive functions are therefore useful weapons to deal with such

operations. LISP provides a powerful recursion feature and this is fully used by

the database query functions.

Chapter 8. Design and Implementation 196

8.4.2 Dealing with Al l Kinds of W S L Construct

The result of some database queries entirely depend on the structure of the given

program, e.g., whether or not the program consists of a conditional statement, a

loop, etc., so that the corresponding database functions must be able to calculate

the answers according to different program structures. For instance, whether a

given program item is "regular" depends on:

• when the item is a sequence of statements, whether every statement is "reg

ular";

• when the item is a "if...then...else" statement, whether both clauses of the

statement are "regular";

• when the item is an "action", whether every execution of the action leads

to an action call;

• when the item is an "action system", whether every action in the system is

"regular".

Generally, this type of database query functions was organised with a branch

ing section as the following:

if prog-item = sequence" then sequence-subfunction

else_if proQ-item = "if-then-else" then if-then-else-subfunction

else_if prog-item = "do-od" then do-od-subfunction

else_if prog-item = "action" then action-sub function

else_if prog-item — "exit" then exit-subfunction

else other-subfunction fi.

8.4.3 Deriving Database Query Functions from Their

Specifications

The specifications of database query may directly provide clues for implementing

corresponding database query functions. Examples of the clues include:

Chapter 8. Design and Implementation 197

• an "if-then-else" can be implemented as a "cond" statement in LISP;

Size^item)

• an " [J " operation can be implemented as a "while" loop with a
i=i

condition of "1 < i < size{item) ";

• a "function" together with a "map" operation (f *) can usually be imple

mented as applying a recursive function to a sequence of components (an

example can be seen in the next section);

• logical operations "A", "V" and "not" can be implemented by corresponding

LISP functions;

• set operations " G " , " U " , " f l " and " \" can be directly implemented by cor

responding LISP functions; etc.

8.4.4 A n Example of Implementing a Database Query

Function

The example chosen is a database query "[Statements]" whose definition is

funct [Statements] (item) =

Specific-type * {P G Posns(item)\[Gen-type](Get-n(item, P)) = Statement}.

This definition means that the query function must return all the statement

names in the given program item. Firstly, since the function needs to check every

component (including leaf node because a statement can be a leaf node in the

syntax tree) and a "map" operation "*" appears in the definition, a recursive

function may be required. Secondly, the result is a set of statement names, a

union operation may be needed. Thirdly, the function needs to check the data

table to see whether the same query has been made before, and to return the

result directly if it was in the datatable or to calculate (and save) the result. So

a database query function is developed like this:

Chapter 8. Design and Implementation 198

(Defun [Statements] (Item)
(I f (Leaf_Item? Item)

(And (Eq (Gen_Type Item) 'Statement)
(L i s t (Specific_Type I tem)))

(Let ((S (Get_From_Table Item 'Statements)))
(I f S

(Cdr S)
(Add_To_Table!
Item
'Statements
(Let ((Args (Args Item))

(Result (And (Eq (Gen.Type Item) 'Statement)
(L i s t (Specific_Type I t e m)))))

(Do l i s t (X Args Result)
(Setq Result (Union Result ([Statements] X)))))))))) .

In this program, "Leaf_Item?" is a function that identifies whether the cur

rent item is a leaf node; "Get_From_Table" is a function that retrieves information

in the data table indexed by 'Statement; and "Add_To_Table!" is a function that

saves the result of this query into the data table.

8.5 General Simplifier (Symbolic Executor)

The prototype of the General SimpHfier makes use of two pubHc domain soft

ware packages, Maxima and the Boyer-Moore Theorem Prover. The "Simplify"

command is mainly based on the Meixima, and the "Prove" command on the

Boyer-Moore Theorem Prover. In order to be used by the General Simplifier, the

input and output programs of these two packages have been changed.

The Boyer-Moore Theorem Prover is a program developed by Boyer and

Moore based on a "computational logic" (the logic) described in their book A

Computational Logic [30] published in 1979. The logic is both oriented towards

discussion of computation and mechanised, so that proofs can be checked by com

putation; and the logic is quantifier-free logic. Its axioms and rules of inference

are obtained from the propositional calculus with equality and function symbols

by adding (1) axioms characterising certain basic function symbols, (2) two "ex

tension principles", with which one can add new axioms to the logic to introduce

Chapter 8. Design and Implementation 199

Simplification

User

Induction o

Destructor elimination

O Cross-fertilisation

Generalisation

Elimination of irrelevance

Figure 8.4: Organisation of Boyer-Moore Theorem Prover

"new" inductively defined "data types" and recursive functions, and (3) mathe

matical induction as a rule of inference.

The Boyer-Moore Theorem Prover is based on the generalised principle of

induction and the majority of its heuristics (proof techniques) are oriented towards

induction proofs. Any proof using structural induction can be converted into a

proof with the given formal system. One advantage of using derived rules of

inference is that they permit the formal logic to be relatively primitive while

allowing the production of sophisticated proofs, for example, a well-known and

very useful rule of inference that the Boyer-Moore Theorem Prover uses is the

tautology theorem: a formula of propositional calculus has a proof if and only if it

is valid under a truth table. More complicated derived rules are those that justify

the use of equality decision procedures and certain arithmetic decision procedure.

The Boyer-Moore Theorem Prover uses a variety of such high-level derived rules

of inference to discover and describe its proofs. In particular it uses the following

six proof techniques:

Chapter 8. Design and Implementation 200

1. Simplification This involves the use of axioms (including definitions and
shell axioms) and previously proved lemmas to simplify the conjecture.

2. Destructor Elimination This involves the trading of "bad" terms for

"good" by choosing an appropriate representation for the objects being ma

nipulated. For example, operations such as / and - might be traded for

operations such as * and + .

3. Cross-fertilisation When the conjecture being proved has an equality as

one of its hypotheses, the equality is sometimes used to substitute one of its

operands for the other in the remainder of the conjecture and then removed

from the conjecture.

4. Generalisation This involves the adoption of a more general goal obtained

by replacing terms in the given goal by new variables. The generahsation

is designed to help prepare a conjecture for induction. Conjectures must

frequently be generalised before they can be proved because without gen

eralisation the induction hypothesis may not be sufficiently strong to prove

the theorem.

5. Elimination of Irrelevance This involves the discarding of apparently

unimportant hypothesis.

6. Induction Inductions are formulated from information collected when def

initions are added to the system and from information available at the time

of induction.

As implemented, each of these proof techniques is a computer program that

takes a formula as input and yields a set of formulas as output; the input formula

is provable if each of the output formulas is. Each of these six programs is called a

"process". Not every process is appHcable to every formula. For instance, it may

not be possible further to simplify a formula. When a process recognises that its

input is a theorem, it produces an empty set as the output set.

The Boyer-Moore Theorem Prover is organised around a "pool" of goal for

mulae [31]. Initially the user places an input conjecture into the pool. Formulas

Chapter 8. Design and Implementation 201

are drawn out of the pool one at each time for consideration. Each formula is
passed in turn to the six processes in the order shown in Figure 8.4 until some
process is applicable. When an applicable process produces a new set of subgoals,
each is added to the pool. The consideration of goals in the pool continues until
either the pool is empty and no new subgoals are produced — in which case the
system has "won" — or one of several termination conditions is met — in which
case the system has "lost". The system may "run forever" until the host system
resources are exhausted.

When the system wins — i.e., the pool is finally empty — the trace of the

theorem prover is a proof of the input conjecture, provided each of the six processes

is considered a derived rule of inference. When system loses, the user should infer

nothing about the validity of the original conjecture; the initial problem may or

may not be a theorem.

In certain applications the theorem prover resembles a sophisticated proof

checker more than an automatic theorem prover. This is because the theorem

prover's behaviour on a given problem is determined by a data base of rules.

The rules are derived by the system from the axioms, definitions, and theorems

summited by the user. Three of those six processes mentioned earher, namely

simplification, destructor ehmination and generalisation, can be heavily influenced

by these rules. Each time a new theorem is proved it is converted into rule form

and stored in the data base. When new theorems are submitted the currently

"enable" rules determine how certain parts of the theorem prover behave. In this

way the user can lead the machine to the proofs of exceedingly deep theorems by

presenting it with an appropriate graduated sequence of lemmas. An experiment

shows that the theorem prover cannot prove the equation, a^ — b"^ = (a-|-6)(a — 6),

until the theorem, ab = ba, is presented to the theorem prover. In another words,

the more rules are in the data base, the more clever the theorem is.

In order to make use of the Boyer-Moore Theorem Prover, the source code

of the prover (more than 900,000 bytes) was analysed. Through the analysis, not

only the programs to implement those six processes but other details such as input

and output functions, global flags, etc. were also found. Therefore, the following

Chapter 8. Design and Implementation 202

changes were made to the Boyer-Moore Theorem Prover to enable it to serve the
program transformer as a Symbolic Executor:

• Input — The Boyer-Moore Theorem Prover accepts user commands from

the keyboard. In particular, the commands attempting to prove a conjecture

is "Prove-Lemma". This command is rewritten together with a new query

function, "[Prove]", so the system will accept a query made by another LISP

function rather than a command typed in from the keyboard.

• Output — Similarly, the Boyer-Moore Theorem Prover prints its proving

results on the screen while our new system requires the output returned back

to the query originating function. A LISP function is written to intercept

the output originally dedicated to the screen and to return the output to

the calling function. Output messages include "Lemma-proved", "Lemma-

not-proved" and "Faulty-lemma-format".

• Monitoring messages — while the Boyer-Moore Theorem Prover is attempt

ing to prove a conjecture, monitoring messages are sent to the screen letting

the user informed what is going on. These messages range from which pro

cess is running to which theorem the theorem prover is employing at the

moment to prove the problem. There are several functions in the original

Boyer-Moore Theorem Prover to produce these messages, "PPR", "Prind",

"PPRl", "PPR2", "Print-States", "Print5*", "PRINC", etc. These func

tions are all rewritten to become dummy functions and information which

used to be generated by those functions is collected in forming the result of

the query.

• Forever runs — Forever runs must be prevented from happening when the

system serves as a query, because the caUing function is not able to stop

a forever run (this is different from that the Boyer-Moore Theorem Prover

is used since the user can interrupt by pressing keys.). This is done by

monitoring check points inserted in the Induction process. When the induc

tion process has been called five times to prove a same lemma, the system

Chapter 8. Design and Implementation 203

assumes that it is not worth while trying any more and sets the global vari
able, "Do-not-use-induction-flag", to be "True" and no more induction will
be invoked.

• Data base of rules — Once a theorem which is found useful for the future

use has been proved, the theorem can be added as a new axiom to the data

base of rules by the command, "Add-Axiom". For example,

(Add-Axiom axiomlOO (rewr i t e)

(equal (times (plus a b) (d i f fe rence a b))

(d i f f e rence (times a a) (times b b))))

The data base of rules used by the Symbolic Executor is built with the

material in a file included with the standard distribution of the Boyer-Moore

Theorem Prover. The file, "basic.events", with about 470 definitions and 970

theorems, contains most of the Appendix A of i4 Computational Logic, which

includes the major examples of that book, covering theorems of number

theory and theorems of algebra, as well as the Newton's binomial theorem

and the Church-Rosser theorem, etc. In this file theorems are in the forms

of lemma. These theorems are all treated as axioms by command "Add-

Axiom" when being loaded to the data base of rules.

The original plan was to use the simplification part of the Boyer-Moore The

orem Prover as a simplifier. It was soon found out by experiments the simplifying

capability of this part is very limited and could not meet the need of serving the

program transformer. These experiments triggered an investigation of another

public domain software package — Maxima. The system Maxima is a Common

LISP implementation due to William F. Schelter, and is based on the original

implementation of Macsyma [65,66] at MIT. It was found out through experi

ments that the simplifying capability of Maxima is much better than that of the

Boyer-Moore Theorem Prover.

The process of turning Maxima into a part of the Symbolic Executor to

serve the program transformer is very similar to the process of turning the Boyer-

Chapter 8. Design and Implementation 204

Moore Theorem Prover into a part of the Symbohc Executor, so only main steps
are briefly listed here:

• analysing Maxima and obtaining information for changes;

• writing a new input interface for the Maxima;

• writing a new output interface for the Maxima; and

D

• removing monitoring messages by altering corresponding programs of the

Maxima.

The Symbolic Executor is implemented in COMMON LISP and the total of

the source code is about 7000 lines including the data base of rules.

8.6 The Metric Facility

The Metric Facility [170] is implemented as a program module with a number of

LISP functions and flags. It also uses the Program Structural Database to retain

the resultant metrics of code.

8.6.1 Collecting Program Property Information

The key program in the Metric FaciHty is called "Collect-Prog-Info". This pro

gram analyses a given program item (in WSL internal format) by going down to

the program item recursively and returns eleven properties of the program item.

These properties are (refer Section 8.1.4):

1. index number of Mccabe;

2. index number of the Structural Complexity;

3. number of nodes;

4. number of statements;

5. number of edges;

Chapter 8. Design and Implementation 205

6. number of predicates;

7. number of loops

8. number of data items;

9. number of back-edges;

10. number of procedure or function calls; and

11. number of action calls.

A natural way of constructing this program is to go through the structure of

the given WSL program item once and to collect all those eleven properties. These

eleven properties are comparatively independent (so defined) and can be directly

calculated or collected. For example, the index number of MCCABE is calculated

as "the number of predicates plus 1" or "the number of calls in an irregular action

system plus 1 (it has been proved that an action call in an irregular action system

is equivalent to a predicate in a non-action system)" or "the number of predicates

plus number of calls to itself in an recursive definition"; the index number of the

Structural Complexity is obtained by checking the Structural Complexity Table

in which every WSL construct is given an index number; and the number of

statement is assigned to " 1 " when the current item is a statement, or "0" when

the current item is not a statement.

The final calculation result is the sum of the (index) number of the current

item and the sum of (index) numbers of its all subitems. The property information

collecting program (a LISP function) searches through the given program item

recursively, i.e., the function is calling itself when a subitem is entered. At each

time the function is called, the function always makes a query to the Program

Structure Database. If the result is already in the database, the function can

immediately return the information stored in the database as the result. If the

result is not in the database, the function does the calculation. While returning

the result, the function saves the result in the database if the current item is not

a leaf node.

Chapter 8. Design and Implementation 206

8.6.2 Processing Metrics

Using the Metric Facility, a user may calculate the metrics, apphed either to the

current program item on which (s)he is working or to the whole program. The

format of user command is:

Metric] whole-prog [current-item.

On receiving this command, the LISP function, "[_Metric_]", parses the param

eters; calls the function "Collect-Prog-Info"; calculates metrics according to the

obtained information; and finally returns the metrics according to the parameters.

The Metric Facility allows metrics at each stage to be recorded automatically

during the process of transforming a program. A user can start the automatic

recording mechanism by the command "Start-Auto-Metric"; stop the automatic

recording mechanism by the command "Stop-Auto-Metric"; and reset the metric

record by the command "Init-Metric-Record". When a transformation is applied

to the program, i f the auto metric flag is on, the name of the transformation just

applied together with the six metrics of the program is recorded. The results can

be either saved to a file for future analysis or plotted on the screen.

8.6.3 Plotting IVIetric Graphs

The Metric Facility provides a command, "[_Plot_Metrics_]", to plot a graph of

the metric result, using the record generated by the automatic mechanism. One

of the six metrics is plotted in one graph, including the name of the metric, the

(index) number of the metric at each line, and the name of the transformation

applied. Considering, by the time a graph is going to be plotted, that the number

of transformation applied may be more than the maximum number of characters

which can be displayed in one line on the screen, we plot the graph vertically, i.e.,

the graph forwarding downwards. Figure 9.5 and Figure 9.6 are examples of the

graphs (refer to the next chapter).

Chapter 8. Design and Implementation 207

8.7 The Interface

The Interface has been built for the existing Maintainer's Assistant by other mem

bers of the research team. It needed expanding when new WSL components for

representing^data abstraction and Entity-Relationship Attribute Diagrams were

introduced. Also a change had to be made to accommodate the Metric Facility.

Similar to expanding the WSL (described in Section 8.2), expanding the

interface to display new WSL components involves defining new entries of the

WSL Parsing Table in which the display format of all WSL components is defined.

The Interface uses this table to convert the internal format of WSL to the external

format of WSL. For example, the internal (LISP) WSL format of a record is (entry

407 in the table of Section 8.2):

. (Record Name Expression Name Records)

and the external WSL format is:

record Name [Number of Name] with Records.

The internal WSL format of an abstract function call is (entry 420):

(Adt-funct-call Name Name Expression)

and the external WSL format:

user-adt-funct-call Name.Name [Expression).

When the Interface displays WSL programs, WSL key words (such as record

and adt_funct_call) and other symbols (such as " [" , "] " , "=" , etc.) are added.

The complete parsing table is ful l of tedious symbols and therefore it is omitted

here.

The Metric Facility is implemented the Interface as a button with which

a pop-up menu can be invoked (Figure 8.5). The Metric menu consists of the

following options:

• "Auto Metric" — This option switches "on" or "off" the automatic metrics

"history" recording mechanism.

Chapter 8. Design and Implementation 208

Metrics
K

Metrics

Auto Metrics

Current Program

Current Item

New History

Graph

Graph

MCCABE

STRUCTURAL

LOC

L0C2

CFDF

BL

Figure 8.5: The Metrics Menu

Chapter 8. Design and Implementation 209

• "Current Program" — This option returns the metrics of the current pro
gram.

• "Current item" — This option returns the metrics of the current item.

• "New History" — This option resets the metric history record.

• "Graph" — this option invokes a sub-menu, "Graph" menu. When one of

the options in the sub-menu is selected, the metric history record for the

current program is plotted for that particular metric.

8.8 Integration of the Prototype

To emphasise how implementation of the prototype designed in this thesis extends

the Maintainer's Assistant, the following steps of building a new version of the

Maintainer's Assistant is shown below:

• to load LISP, and in LISP,

• to load existing components of the Maintainer's Assistant which were not

developed in this thesis but includes the WSL part developed in this thesis;

• to load the programs containing transformations developed in this thesis,

"dataabstract.cHsp";

• to load the Boyer-Moore Theorem Prover, "bm.clisp";

• to load the Maxima, "maxima, chsp";

• to load the SymboHc Executor (which overwrites some parts of the Boyer-

Moore Theorem Prover and the Maxima, turning them into the SymboHc

Executor), "symboHc.clisp";

• to load the database of rules used by the Symbolic Executor, "basicax-

ioms.clisp";

• to load the Program Structure Database, "database.clisp";

Chapter 8. Design and Implementation 210

• to load the Metric Facility, "metric.clisp"; and then

• to save the LISP image as an executable file, which is a new version of the

Maintainer's Assistant.

Chapter 9

The Use of the Prototype

System and Results

This chapter describes how the method developed in this thesis and the prototype

implemented are used to demonstrate the feasibihty of acquiring data designs from

data-intensive programs.

9.1 Introduction

Among the research problems set out in Section 4.4, the central problem is the

method of extracting Entity-Relationship Attribute Diagrams from data-intensive

programs. Although this problem and the other problems have been partly an

swered in previous chapters, i t is still necessary to examine the central problem

specifically by looking at the results of applying the method. The following ques

tions are to be considered:

• does the method work?

• how well does it work?

•. where does it work well?

• where does it not work well?

• is it better than other approaches, such as those used by Sneed and REDO?

211

Chapter 9. The Use of the Prototype System and Results 212

Five case studies are presented in this chapter to demonstrate the use of
the prototype and to.examine the method proposed in this thesis. In the first
case study, the process of transforming a COBOL program, which copies a file
to another, into an Entity-Relationship Attribute Diagram is illustrated in detail.
This case study emphases how we obtain Entity-Relationship Attribute Diagrams
by analysing COBOL statements in the "Procedure Division". In the second case,
a program where an alias was used for the second purpose of aliasing is dealt with.
In the third case, a real program (of 3750 lines in COBOL) used in a national
telephone company was thoroughly investigated. The fourth case study shows the
results of experimenting with a COBOL program which was also used in the same
telephone company. The example code used in this case is approximately 7000
lines of COBOL source. In the final case study, a section of COBOL program,
which is a Public Library Administration System, is studied in the prototype.

The intention of selecting these five case studies was to cover as much ap

plication of the method developed (or in terms of the prototype, as many as the

transformations) as possible. Also, the first case shows a detailed process in which

entities and their relationships are obtained, so that similar details may be omit

ted in later cases. The selection of the third and the fourth case was aimed to

find out what really happens to a real program at a scale of a few thousand lines.

The selection of the f i f th case was mainly because it has complicated embedded

calls to CICS/TOTAL in code, which is typical in practice.

9.2 Case Study 1 — A File Copying Program

The source code of this COBOL program was presented in Section 6.5.2 and its

WSL equivalent form was in Section 6.5. In this case study, this program is

manipulated further.

9.2.1 Modelling File Operations by Queue Operations

Following the application of the transformations to represent file operations in

terms of queue operations, the program in Section 6.5 can be transformed into:

Chapter 9. The Use of the Prototype System and Results 213

segment

comment : :"Program-ID: Copy-Customer-List";

file customer-list with

record customer-record with

record name [20 of char

record address [50 of char

record phonenum [20 of char] end

end;

file customer-list-backup with

record backup-record with

record b-name [20 of char

record b-address [50 of char

record b-phonenum [20 of char] end

end;

record eof [1 of char] end;

customer-list-tail := q_concat {customer-list-head, customer-list-tail);

customer-list-head := empty;

customer-list-backup-tail:— q_concat [customer-list-backup-head,

customer-list-backup-tail);

customer-list-backup-head := empty;

while ieof^ "T") do

if empty? (customer-list-tail)

then eof:= "T"

else eof:= "F";

customer-record := q_rem_first mailing-list-tail;

q—append (mailing-list-head, customer-record);

backup-record:— customer-record;

q—append (mailing-list-backup-head, backup-record);

backup-record := q_rem_first custom-list-backup-tail;

fi od

end;

Chapter 9. The Use of the Prototype System and Results 214

9.2.2 Transforming Records into Entities

A record without any subrecords is transformed into an entity with no attribute.

The entity keeps the same name as the record. In this case,

record eof [1 of c/iar] end;

is transformed into

entity eof end;

A record with subrecords containing no subrecords is transformed into an

entity with attributes. The entity keeps the same name as the record while at

tributes keep the same names as subrecords. In this case,

record customer-record with

record name [20 of char

record address [50 of char]

record phonenum [20 of char] end;

is transformed into

entity customer-record with

attr name

attr address

attr phonenum end;

By now the program in the previous section is turned into:

paragraph,

entity customer-record with

attr name

Chapter 9. The Use of the Prototype System and Results 215

attr address

attr phonenum end;

entity backup-record with

attr b-name

attr b-address

attr b-phonenum end;

entity eof end;

customer-list-tail := q_concat (customer-list-head, customer-list-tail);

customer-list-head := empty;

customer-list-backup-tail := q_concat (customer-list-backup-head

customer-list-backup-tail);

customer-list-backup-head := empty;

while (eo// "T") do

if empty? (customer-list-tail)

then eo/:= "T"
else eo/:= "F";

customer-record := q_rem—first mailing-list-tail;

q^ppend (mailing-list-head, customer-record);

backup-record := customer-record;

q^ppend (mailing-list-backup-head, backup-record);

backup-record := q_rem_first custom-list-backup-tail;

fi od

end;

9.2.3 Turning Assignments into Relate Statements

When a record is transformed into an entity, any program statement using this

record must be changed accordingly. Because transforming a record into an entity

is an abstraction, the statement using the obtained entity must be expressed at

a higher abstraction level. The relate statement in WSL was just defined for

Chapter 9. The Use of the Prototype System and Results 216

this purpose. The statement takes two parameters which each can be an entity, a
record, a variable, a file name, i.e.:

relate parameterl to parameter^,

For instance, when the record customer-record is transformed into an entity

customer-record, all the statements using this record are to be changed, i.e., from

customer-record := q_rem_first mailing-list-tail;

q_append [mailing-list-head, customer-record);

backup-record:— customer-record;

to

relate customer-record to mailing-list-tail;

relate mailing-list-head to customer-record;

relate backup-record to customer-record;

comment: "copy a record";

A newer version of the program in the previous section is obtained:

paragraph

entity customer-record with

attr name

attr address

attr phonenum end;

entity backup-record with

attr b-name

attr b-address

attr b-phonenum end;

entity eof end;

relate customer-list-tail to customer-list-head;

relate customer-list-head to empty;

Chapter 9. The Use of the Prototype System and Results 217

relate customer-list-backup-tail to customer-list-backup-head;
relate customer-list-backup-head to empty;

while (eo// "T") do

if empty? (customer-list-tail)

then eof:= "T"
else eof:= "F";

relate customer-record to mailing-list-tail;

relate mailing-list-head to customer-record;

relate backup-record to customer-record;

comment : "copy a record";

relate mailing-list-backup-head to backup-record

relate backup-record to custom-list-backup-tail

fi od

end;

9.2.4 Ignoring Useless Relate Statements

When a relate statement relates two entities there must by definition be a re

lationship between these two entities. So a relationship can be derived from the

statement and the name of the relationship is provided by the user according

to the information in the program. When a relate statement relates one or no

entities, i.e., one or two of the components of the relate statement are neither

entities nor records which may be transformed into entities, it means that this re

late statement does not represent a relationship of any entity and can be deleted.

In the following program:

relate customer-record to mailing-list-tail;

relate mailing-list-head to customer-record;

relate backup-record to customer-record;

comment: "copy a record";

Chapter 9. The Use of the Prototype System and Results 218

mailing-list-tail and mailing-list-head are not entities or records so that the
first two relate statements do not represent relationships. So the above can be
simplified into:

relate backup-record to customer-record;

comment: "copy a record";

So far the program in the previous section has become:

paragraph

entity customer-record with

attr name

attr address

attr phonenum end;

entity backup-record with

attr b-name

attr b-address

attr b-phonenum end;

entity eof end;

while (eof^ "T") do

if empty? [customer-list-tail)

then eof:= "T"
else eof:= "F";

relate backup-record to customer-record;

comment : "copy a record";

fi

end;

9.2.5 Abstracting Branching Structures and Loop

Structures

As discussed in Section 7.5.4, the if ... fi statement in the program,

Chapter 9. The Use of the Prototype System and Results 219

if empty? {customer-list-tail)
then eof:= "T"
else eof:= "F"

fi;

is abstracted to

relate eof to "T";
relate eof to "F";

By turning these two statements into relate statements and they both do

not contribute to a relationship statement and hence are ignored eventually.

A while ... do ... od, is also discussed in Section 7.5.4, i.e., a while loop

can be removed just leaving the body of the loop. In this example, the while

statement,

while (eo/^ "T") do

backup-record := customer-record;

comment : "copy a record";

od;

is supposed to implement copying all the records from the original file to the

backup file. At the higher abstraction level, it is to say that there is a "copy"

relationship between two entities. Each record is one instance of an entity. The

above program is transformed into

relationship entity backup-record has one copy relation

with one entity customer-record;

9.2.6 The Resultant "Program" in W S L and its Entity-

Relationship Attribute Diagram

Chapter 9. The Use of the Prototype System and Results 220

X m a Version 4.002d:04

File Options Edit Metrics Info Help

Xgoto '(4 3 2 2 1 1 D)
(4 3 2 2 1 1 1)

Undo I Redo Redo Demol Start 1
Stop| Replaal

(Re)Move Join] Use/Apply Reorder Rewrite Insert SimpliFy/Delete Multiple Complex ml

-a-EXPRESSION VARIABLE (4 3 2 2 1 1 1)

paragraph

entity customer-record with

attr name

attr address

attr phonenum end:

entity backup-record with

attr b-name

attr b-address

attr b-phonenum end;

relationship entity backup-record has one copy relation

with one entity customer-record;

end;

Figure 9.1: The Result from File Copying Program on X-Windows Front End

Chapter 9. The Use of the Prototype System and Results 221

Customer- Record

one

one

Backup-Record

Figure 9.2: The Entity-Relationship Attribute Diagram for "File-Copy" Program

After applying transformations discussed in this section, the final result of the

"file-copy" program can be shown by an Entity-Relationship Attribute Diagram.

The result displayed on X-Window interface is in Figure 9.1; the following is in

WSL representation and the diagram itself is in Figure 9.2.

paragraph

entity customer-record with

attr name

attr address

attr phonenum end;

entity backup-record with

attr b-name

attr b-address

attr b-phonenum end;

relationship entity backup-record has one copy relation

with one entity customer-record;

end;

Chapter 9. The Use of the Prototype System and Results 222

9.3 Case Study 2 — A Program Using Alias

Aliasing problem was already discussed in detail in Chapter 6. An example pro

gram in COBOL is given here as an additional illustration to show how an alias

used for the second purpose of aliasing. The original program is like this:

WORKING-STORAGE SECTION.
01 ALPHANUMERIC-ITEMS.

05 MONTH-DISP PIC X(09).
01 NUM-MONTH-REC.

05 NUM-MONTH-IN PIC 9(02).
01 MONTH-TABLE.

05 FILLER PIC X(09
05 FILLER PIC X(09
05 FILLER PIC X(09
05 FILLER PIC X(09
05 FILLER PIC X(09
05 FILLER PIC X(09
05 FILLER PIC X(09
05 FILLER PIC X(09
05 FILLER PIC X(09
05 FILLER PIC X(09
05 FILLER PIC X(09
05 FILLER PIC X(09

VALUE 'JANUARY'.
VALUE 'FEBRUARY'.
VALUE 'MARCH'.
VALUE 'APRIL'.
VALUE 'MAY'.
VALUE 'JUNE'.
VALUE 'JULY'.
VALUE 'AUGUST'..
VALUE 'SEPTEMBER'.
VALUE 'OCTOBER'.
VALUE 'NOVEMBER'.
VALUE 'DECEMBER'.

01 MONTH-TABLE-RED REDEFINES MONTH-TABLE.
05 MONTH-DESCRN PIC X(09) OCCURS 12 TIMES,

PROCEDURE DIVISION.
MAIL SECTION.

ACCEPT NUM-MONTH-REC.
IF NUM-MONTH-IN < 01 OR > 12

DISPLAY 'INVALID MONTH'

Chapter 9. The Use of the Prototype System and Results 223

ELSE
MOVE MQNTH-DESCRN (NUM-MQNTH-IN) TO MONTH-DISP
DISPLAY NUMBER-MONTH-IN, ' = MONTH-DISP.

STOP RUM.

According to the experience obtained from the first case study, the only rel

evant statement in the procedure section is the MOVE statement. In addition,

since the translation process from COBOL to WSL has been demonstrated in

previous chapters and therefore, the program shown below is the translated pro

gram. Also, initial simplifications were already made to the program by applying

program transformations. In particular, record "month-table" was simpHfied to

having one field, "month-name" and record "month-table-red" to having on field,

"month-descrn".

record alphanumeric-items with

record month-disp [9 of chaj] end

end;

record num-month-rec with

record num-month-in [2 of chai] end

end;

record month-table with

record month-name [9 of char] end

end;

record month-table-red with

record month-descrn [9 of char] end

end;

redefine month-table with month-table-red;

month-disp := month-descrn;

Since record "month-table-read" redefines record "month-table", "month-

disp" is also related to "month-name". When records in above program are trans

lated in the entities, the following program is obtained.

Chapter 9. The Use of the Prototype System and Results 224

entity alphanumeric-items with

attr month-disp end;

entity month-table with

attr month-name end;

entity month-table-red with

attr month-descrn end;

relate month-disp to month-descrn;

relate month-disp to month-name;

Further transformations will bring the above program into:

entity alphanumeric-items with

attr month-disp end;

entity month-table with

attr month-name end;

relationship entity alphanumeric-items has one represent relation

with one entity month-table;

9.4 Case Study 3 — A Vetting and Pricing

Program Used in a Telephone Company

The program selected for this case study is a real program which could still be in

operation in a national telephone company. The emphasis of the case study is on

how to tackle a real and heavily maintained program with the method developed

in this thesis. Owing to the confidentiality agreement between the telephone

company and the REFORM research group, the details of the program will not

be presented in this section.

Chapter 9. The Use of the Prototype System and Results 225

9.4.1 Introduction to the Program

The input of the this program is from specification tape copies and the output

consists of two files which priced a valid calls file and a data vet reject file. The

program consists of 3750 lines of code written in COBOL. The experiments with

the program carried out using the prototype tool are described in detail in the

next section.

Experimenting with this program went through several stages.

9.4.2 Translating the Program into W S L and Initial

"Tidy-up"

According to the experience obtained in the first case study, some of the COBOL

control statements will not contribute to the eventual Entity-Relationship At

tribute Diagrams and these statements can be omitted at this stage. These

constructs include DISPLAY, REMOVE, INITIALIZE, PERFORM, IF, WHEN,

UNTIL, GOTO, SEARCH, ACCEPT, etc.

Some of the "data" statements which are not able contribute to the even

tual Entity-Relationship Attribute Diagrams are also omitted. For example,

COBOL statements, such as MOVE 0 TO A-VARIABLE, MOVE SPACES TO A-

VARIABLE, MOVE "NOTHING" TO A-VARIABLE, ADD 0 TO A-VARIABLE,

SUBSTRACT 0 FROM A-VARIABLE, SET A-VARIABLE TO 0, INSPECT

statements, COMPUTE statements, etc. were omitted.

After the initial tidy-up, the translated COBOL program in WSL was very

much ready for further transformation. It is worth mentioning that information

that could be useful in the future abstraction was recorded by WSL comment

statements.

When the stage finished, there were 1879 lines of WSL code left. Among

these WSL statements, 208 were record definitions, and 216 were assignment

statements.

C h a p t e r 9. T h e Use o f t h e P r o t o t y p e Sys t em and Resul t s 226

9.4.3 Obtaining relate Statements

Almost all the assignment statements that were originally translated f rom the

M O V E statements i n COBOL were abstracted to re la te statements. So were

those assignment statements originally f r o m A D D and S U B T R A C T statements.

A c o m m e h t statement was usually added along wi th each abstraction in order

to record information which w i l l be used to decided the degree of the relationship

between the two entities which would be obtain f rom the two records linked by

the r e l a t e statement later on.

9.4.4 Aliased Records

The REDEFINES statements i n the original COBOL program were translated

into r ede f ine statements i n WSL. According to observation, all original records

to be redefined were i n the same data types as that of the redefining records.

The conclusion of applying those functions discussed in Chapter 6 for dealing

w i t h alised records was that aliased records would not affect each other in the

abstraction process. Therefore, a record and its redefining record was able to be

treated as independent records.

27 records were redefined in the original program.

9.4.5 Obtaining Entities

Entities were abstracted f r o m records and this is the starting point of moving

f r o m the code level to the conceptual level (refer to Figure 7.4). And this was

done when all the restructuring work at the code level had been finished.

9.4.6 Obtaining Relationships

Relationships were mainly derived f r o m the re la te statements and information

recorded by the c o m m e n t statements were used to decide the degrees for the

relationships.

Relationships can also be obtained f rom other sources. For example, rela

tionships were able to be obtained f r o m the declaration of a record in COBOL.

C h a p t e r 9. T h e Use o f t h e P r o t o t y p e Sys t em and Resul t s 227

When a subrecord occurs for more than once, the subrecord and the record can
both be abstracted to an entity and a relationship between these two entities can
also be obtained, i.e.:

r e c o r d XO4-TARIFF-SSU-TABLE w i t h

r e c o r d X03-TARIFF-SSU-DETAILS w i t h

r e c o r d X03-SSU-GHARGE-BAND end

r e c o r d X03-SSU-NEW end

e n d

end;

c o m m e n t : "X03-TARIFF-SSU-DETAILS OCCURS 25";

became

e n t i t y XO4-TARIFF-SSU-TABLE end;

e n t i t y X03- TARIFF-SSU-DETAILS w i t h

a t t r X03-SSU-CHARGE-BAND

a t t r X03-SSU-NEW end:

r e l a t i o n s h i p e n t i t y XOi-TARIFF-SSU-TABLE has one contain

r e l a t i o n w i t h many e n t i t y XO4-TARIFF-SSU-DETAILS;

end;

The comment statement was translated f rom the OCCURS construct in the

COBOL and was used to decide the degree for the relationship. There were 14

OCCURS constructs in the original COBOL program and therefore, 28 entities

and 14 relationships were obtained in this way.

Another example is that a record w i t h multiple levels of subrecords was able

to be abstracted to more than one entity, especially when one of the subrecords

was assigned to by another record. A t the meantime, a relationship between the

entities can also be obtained, i.e.,

r e c o r d B43-FACILITY-RATES-RECORD end:

r e c o r d X03- TARIFF-FAG- TABLE w i t h

r e c o r d X03-TARIFF-FAG-DETAILS w i t h

C h a p t e r 9. T h e Use o f t h e P r o t o t y p e S y s t e m a n d Resul t s 228

r e c o r d X03-FACILITY-TYPE

r e c o r d X03-FAC-LOCAL-NEW

r e c o r d X03-FAC-LOCAL-OLD

r e c o r d X03-FAC-TRUNK-NEW

r e c o r d X03-FAC-TRUNK-OLD

e n d

end;

r e l a t e B43-FACILITY-RATES-RECORD t o X03-TARIFF-FAC-TABLE;

was abstracted to:

e n t i t y B43-FAGILITY-RATES-RECORD end;

e n t i t y X03-TARIFF-FAC-TABLE end:

e n t i t y X03-TARIFF-FAG-DETAILS w i t h

r e c o r d X03-FACILITY-TYPE

r e c o r d X03-FAG-LOCAL-NEW

r e c o r d X03-FAG-LOGAL-OLD

r e c o r d X03-FAG-TRUNK-NEW

r e c o r d X03-FAC-TRUNK-OLD end;

r e l a t i o n s h i p e n t i t y X03-TARIFF-FAC-TABLE has one copy

r e l a t i o n w i t h one e n t i t y X03-TARIFF-FAG-DETAILS;

r e l a t i o n s h i p e n t i t y B43-FACILITY-RATES-REGORD has one copy

r e l a t i o n w i t h one e n t i t y X03-TARIFF-FAG-DETAILS;

There were 10 cases like the example in this program and therefore, these

were dealt w i t h i n a similar way.

The "back tracking" technique introduced in Chapter 7 was apphed when the

above example was experimented. A t first the record wi th multiple levels of sub-

records were dealt w i t h independently to obtain entities and relationships. Other

routes were also experimented before the solution introduced here was reached.

By the t ime the stage finished, there were 1486 fines of WSL left .

C h a p t e r 9. T h e Use o f t h e P r o t o t y p e Sys t em a n d Resul t s 229

9.4.7 Final Tidy-up and Result

Finally, duplicate enti ty relationships which might be obtained f rom different

places of the program, and these were checked and removed. A l l the c o m m e n t

statements were removed. The resultant WSL program for representing obtained

Entity-Relationship At t r ibu te Diagrams for the original COBOL program was 999

in length, containing 267 entities (excluding 482 lines representing attributes to

some of the entities) and 250 entity-relationships.

The case study turned out exactly the way as shown in Figure 7.4, in which

records, entities and relationships were obtained, in particular. This case study

demonstrates true the hypothesis made in Figure 7.4. Nevertheless, foreign keys

were not found used in the example.

9.5 Case Study 4 — A Customer Account

Ledger Program Used in A Telephone

Company

A n experiment was also carried out w i t h another real program.

9.5.1 About the Program

The program presented in the section is named "Customer Account Ledger Ex

tract", being composed of 7070 lines of COBOL source code. The program is

physically wr i t t en as "one program", i.e., having one data division, one procedure

division, etc., and being stored in one file.

The only information source is the source code itself. According to the

comments i n the code, there were 23 amendments during the period f rom August

1985 when the code was first wr i t ten and November 1991 when the most recent

compilation of the program took place before i t was sent to the R E F O R M research

group to be studied.

C h a p t e r 9. T h e Use o f t h e P r o t o t y p e Sys t em a n d Resul t s 230

9.5.2 Experiments to the Program

Experiments carried out can be summarised as follows:

M o d u l a r i s i n g t h e p r o g r a m b y i n s p e c t i o n

The first step to analyse the program was to inspect the code and divide i t into

smaller manageable blocks.

The identification division and the environment division of the COBOL pro

gram consists of about 200 lines, mainly including comments serving as an "in

formation area". The data division consists of about 2400 lines, declaring six files

and 230 records. The procedure division consists of the remaining 4500 lines of

source code, i n which there are four modules, namely main control section, in i

tialisation section, main processing section and final section. The main control

section calls the other three sections sequentially.

F i l e a n d r e c o r d dec la ra t ions

Translating file and record declarations into WSL is straightforward and when

they become WSL records, they would be considered as candidates of entities.

Not all WSL records are loaded into the prototype at the same time. Any record

is only loaded in conjunction w i t h a block of code in which the record w i l l be used.

T h e i n i t i a l i s a t i o n sec t ion

This section consists of 400 lines of code including 100 lines of comments. About

100 lines of code which open those six files declared earlier and initialise data

parameters are transformed into WSL. The rest of the code in this section are

used to initialise input and output devices and have therefore not been dealt

w i t h . A number of entities and relationships are obtained using the prototype

f r o m this section.

C h a p t e r 9. T h e Use o f t h e P r o t o t y p e Sys t em and Resul t s 231

T h e m a i n process ing sec t ion

The main processing section is composed of 32 functionally independent sub

programs. One of these subprograms acts as the "main" subprogram which co

ordinates the remaining subprograms to process all customer account records.

Each of the remaining 31 subprograms performs one function, such as "Read-

customer-account-balance" , "Check-unbilled-amount", "Output-ledger-records",

etc. Some of these subprograms were translated into WSL and each t ime one

subprogram was loaded into the prototype together w i t h the records (having been

translated earlier) used by the subprogram. A number of Entity-Relationship

At t r ibu te Diagrams are obtained by manipulating these subprograms in the pro

totype tool .

T h e final sec t ion

The final section consists of about 200 fines COBOL source code excluding com

ment lines. This section mainly writes a final report of customer account ledger.

The section of code was translated into WSL. The obtained Entity-Relationship

At t r ibu te Diagram (Figure 9.3) clearly shows the data structure of a final customer

account ledger report.

9.5.3 Comments

So far, the file record declaration section and a number of code segments in other

sections in the program have been studied in depth, and the following results have

been obtained:

• One line of COBOL code is typically translated into one line of WSL.

• A number of entities and relationships were successfully derived f rom the

code (approximately 200 entities were extracted f rom the original 01 level

records, and other entities were derived f rom file operations and f rom ab

stract data types; about 50 relationships were derived f r o m those records

which had subrecords, abstract data types and foreign keys).

C h a p t e r 9. T h e Use o f t h e P r o t o t y p e Sys t em and Resul t s 232

Final-report

Start-of -report

No-of-cust-ac-read

No-of-open-cust-ac-read

No-of-history-cust-ac-read

No-of-writtenoff-cust-ac-read •

No-of-tmp-cust-ac-read

No-of-unbilled-revenue-record-read

No-of-prod-group-unbilled-records-written

3

3
No-of-ledg-records-witten 3

Accounting-and-date

Period-yyyy-mm-dd

3

End-of-report 3
Figure 9.3: Final Report on Customer Account Records

C h a p t e r 9. T h e Use o f t h e P r o t o t y p e Sys t em and Resul t s 233

• Data designs obtained f r o m programs made these programs much more com
prehensible.

• Deriving data designs by using the tool is a faster and more reliable process

than doing i t manually (even when that is possible).

• Metr ic graphs monitoring the process of transforming programs show that

programs have been considerably simplified, i.e., by becoming more abstract.

• The Entity-Relations At t r ibu te model is useful when a static, but not dy

namic, view of a software system is sought, because the model only describes

the relationships between data objects (or entities) and i t does not describe

how data flows in a system.

• At tent ion should be paid and more analysis should be done when using the

information obtained during the reverse engineering process, for example,

relationships obtain such as "file-backup" in Case Study 1 emerged f rom

reverse engineering but were not really a part of the application domain.

In a word, w i t h the help of the method and the prototype tool bui l t , reading a

real program such as a program of 7000 lines is no longer a frightening task.

9.6 Case Study 5 — A Public Library

Administration System

In addition to the experiments presented in previous sections, an experiment was

carried out w i t h a public l ibrary administration system which was implemented

in COBOL.

9.6.1 Background of the Program

This program [42] was buil t to manage a public library in order to get a better

control over all the operations related wi th the books in stock during all their life

cycle.

C h a p t e r 9. T h e Use o f t h e P r o t o t y p e Sys t em and Resu l t s 234

W i t h a source code of over 4000 lines, the program was developed for exe
cution in a typical mainframe environment: DOS/VSE, the most common main
frame operating system; CICS: the most common teleprocessing monitor; and
T O T A L , very old but very common DBMS. CICS was used for the communica
t ion between this program and the end user; T O T A L was used to store details of
books.

9.6.2 Prepreparing the Program for the Prototype

Before i t was loaded into the prototype the library management program was

pre-processsed as follows:

The source code of this program was first manually divided into eight COBOL

modules (temporarily named L i b l , Lib2, Lib8) according to the layout of the

source code. I t was soon found out that one of the modules (Lib8) was a batch

process program which is used for updating a back-up file and printing out an

inventory of all the books in stock. Because this program (Lib8) was implemented

mainly w i t h CICS calls and T O T A L calls ^, an analysis to this module seemed not

directly relevant to the research and therefore not carried out. I t was also found

that another module, i.e., Lib7, was an "include" file which defined common

data structures for the system. L i b l to Lib6 are main components of the library

management system and Lib7 was included by these six components.

L i b l to Lib7 were then manually translated into WSL separately. CICS

calls and T O T A L calls were translated into external procedure calls and external

funct ion calls. Because the frequent occurrences of CICS and T O T A L calls in

between COBOL source lines l i terally made a detailed analysis to the control part

of the system more diff icul t , experiments had to be carried out w i th the following

guide-line i n mind: to obtain data design as much as possible f rom the data part

of the system. Every eifort was made in deriving Entity-Relationship At t r ibute

Diagrams f r o m data divisions in L i b l to Lib6.

^It was observed that an analysis of the parameter list of a CICS or T O T A L call would show
the data declaration of that CICS or T O T A L call and this information could be therefore used
by the program transformer.

C h a p t e r 9. T h e Use o f t h e P r o t o t y p e Sys t em and Resu l t s 235

9.6.3 Dealing with CICS Calls

Fortunately, most GIGS/TOTAL calls in this COBOL source code are used for

handling simple "interfacing" operations so that they can be translated into ex

ternal procedure (function) calls i n WSL. take the following segment of code as

an example:

I F OPTIQNOII = 'C

EXEC CICS START TRANSID ('CREATE')

TERMID ('EIBTRMID')- END-EXEC

EXEC CICS RETURN END-EXEC

ELSE

I F DPTIONOII = 'D'

EXEC CICS START TRANSID ('DROP')

TERMID CEIBTRMID') END-EXEC

EXEC CICS RETURN END-EXEC

This segment was taken f r o m the part which examines user options. When

' C is input , CICS is called to invoke the execution of ' C R E A T E ' program (to

create a book i n the l ibrary) . Similarly user option ' D ' invokes 'DROP' program

(to drop a book f r o m the Hbrary). In both ' I F ' cases, after the 'CREATE ' or the

'DROP ' program is executed, CICS is called afterwards to return the control to

the caller. This CICS call w i l l not l i terally appear in the WSL program, because

when the first CICS call was translated into a WSL external procedure call, the

return of the control was semantically covered by using a procedure. Therefore,

the above program may be translated into:

i f optionOli = 1

C h a p t e r 9. T h e Use o f t h e P r o t o t y p e Sys t em and Resul t s 236

t h e n !p cics (start va r redl, eibtrmid)
else

i f optionOli = 2

t h e n !p cics (start va r red2, eibtrmid)

9.6.4 Resultant Entity-Relationship Attribute Diagrams

After being loaded into the prototype, program modules, L i b l to Lib7, were each

manipulated. Typically several entities and their relationships were extracted f rom

each module. For example, among entities and relationships obtained f rom Lib7,

five entities and four relationships can be used to draw an Entity-Relationship

At t r ibu te Diagram shown in Figure 9.4.

9.6.5 Understanding the Program Through A Data

Design

A n analysis to the Entity-Relationship At t r ibu te Diagram in Figure 9.4 has pro

vided a better understanding to the original program.

A l ibrary has many books in i t . One book has one identifier and may have

more than one copy. A book identifier is composed of a title, a publishing house,

one or many authors, ISBN and publishing year. There may be more than one copy

for the same book and each copy has a reference number, a piece of information on

its physical location and a status flag on whether or not the copy is in the library.

To ident ify a book is to confirm the identifier of the book because a book has

only one identifier (see the Entity-Relationship At t r ibu te Diagram in Figure 9.4).

Informat ion may have to be provided by a user up to all components of the iden

tif ier (in the Entity-Relationship At t r ibu te Diagram, the entity "Identifier" has

four attributes and another enti ty "Author" attached), i.e., t i t le , publisher, ISBN,

publishing year and author(s). I t can be deduced that, in the actual program, the

process of consulting about the existence in the library of a certain book should

C h a p t e r 9. T h e Use o f t h e P r o t o t y p e Sys t em a n d Resul t s 237

Library

one

many

Identifier

o n e ^ \ . manŷ

Author

one

many

Title ^ PubHs^ ISBN ^ (^PubYear^ RefNo ^ Loc ^ Status^

Figure 9.4: Books in a Library

C h a p t e r 9. T h e Use o f t h e P r o t o t y p e Sys t em a n d Resul t s 238

be a process of identifying i f there is such a book in the library according to the
information supplied by a user.

Similarly, when a new book is created in the hbrary, while all information

constructing the identifier of the book would be recorded in the library system, a

new copy (of the book) should also be created by allocating a reference number

and a location in the library, and setting up the status of the book as " in library".

9.7 An Example of Using the Metric Facility

A n experiment has been conducted i n obtaining measuring results on the following

program (by monitoring the metrics as transformation progressed):

YaT{Tn:=0,p:=0,last:= " ") :
ac t ions PROG:
PROG =

(line := " " , m : = 0,i:= 1);
ca l l INHERE.

L -

i:={i+iy,
i f {i = {n-t 1)) t h e n c a l l ALLDONE g;
m : = 1;
i f {item['i\ ^ last)

t h e n write{line va r std—ou£)\
line := " ";
m : = 0;
ca l l INHERE fi;

ca l l MORE.
INHERE =

p := number[i];
line := item[i];
line := { { l i n e " ") -+ f p);
ca l l MORE.

MORE ~

'if{m—l) t h e n p := number[i];
line := { (l i n e \ ") 4f p) fi;

C h a p t e r 9. T h e Use o f t h e P r o t o t y p e Sys t em and Resu l t s 239

last := item[T\;
ca l l L.

ALLDONE =

write(line va r std^out);
ca l l Z. endac t ions end

Af te r transformations have been applied to this program, i t becomes:

{line : = " " , i : = 1);
w h i l e (i^(l + n)) do

line := ((item[i] -H- " ") -H- number[i]);
i:=(l + i);
w h i l e ((i 7̂ (1 + n)) A (item[i] = item[(i- 1)]))

do line := ((line -H- " j ") -H- number[i]);
i : = (1 + i) od ;

write(lineva.r std^out) o d

The measuring results for LOC and CFDF can be seen in Figure 9.5 and

Figure 9.6 respectively. Results for other metrics are similar to the results shown

in those two figures and , therefore, are not included. Figure 9.5 and Figure 9.6

are actual screen dumps. Their equivalent forms are shown in Figure 9.7.

C h a p t e r 9. T h e Use o f t h e P r o t o t y p e Sys t em a n d Resul t s 240

Lines
32

of Code

4^ 4^ 4^ 4^ 4^ 4b 4h 4^ Qk 4^ ^k ^k ^k 4k ^k
^P ^P ^P ^p ^P ^P ^p ^p ^p ^p ^p ^p ^p ^p ^p ^p aT> ^p

^k
^p Mn tn tn an tn

4k 4h 4k
*iP in ^p »n »n ^p ^p ^p « l J> *p *p ip »n »n ^p ^p ^p *p

4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4 ! 4k 4k 4k 4k
^p ^p ^p ^p ^p ^p ^p ^p ^p ^p ^p ^p ^p ^p ^p ^p ^p ^p

4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4 ! 4k 4k 4 ! 4 ! 4 ! 4k 4k 4k 4k 4k 4k 4k 4k 4k
^p ^p ^p ^p ^p ^p ^p ^p ^p ^p ^p ^p *p *p *p *p »lp ^p ^p ^p tp *p *ft *p

4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4 ! 4k 4k 4k 4k
^p ^P ^P ^P ^p ̂ P ^P ^P ̂ P ^P ̂ P *|P ^p ̂ P ^p ^P ^p ^Tl ^P ^P

4k
*p ^p ^p ^p aP ^p ^p *p ^p *p *n *p *n ^p *p *p ip *p »p ip ip ip

^k 4^ 4^ 4^ ^k ^k 4k ^k 4^ 4k 4^ ^k
tn ^p ^p ^P ^p ^P ^p ^p tp ^p ^p

^k ^k ^k 4k ^k 4^ ^k 4k ^k ^k ^k ^k ^k
^p ^p ^p ^p ^p ^p ^p ^P ^p tn ^P ̂ P

4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k
^p »n aP ^p *P ^p ^p ^p ^p ^p ^p ^p ^p ^p ^p

^k ^k ^k ^k ^k ^k ^k ^k ^k ^k ^k ^k ^k ^k •p t p ^p tp tp tp tp tp tp tp tp tp tp tp

^k ^k ^k ^k ^k ^k ^k ^k ^k ^k ^k ^k ^k ^p ^p ^p ^p ^p ^p ^p ^p ^p ^p ^p ^p ^p

4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k
^p ^p ip ip »p »p »p »p »p tp »p »p

4^ 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k
^p ^p ^p ^p ^p ^p ^p ^p ^Tl ^p

4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k
•p ip ip »p »p »p »p ^p »p »p »p ^p

^k ^k
*IP ^p ^p ^p ^p

4k 4k 4k 4k 4k 4k 4k 4k 4k
^p ^p 1P ^p ^p ^p ^p ^p ^p

^k ^k ^k ^k ^k ^k ^k ^k ^k ^p ̂ P ̂ P ^P ^P ^P ap

+->
'EXPAND_ACTION_CALL
'EXPAND_ACTION_CALL
'COLLAPSE_ACTIDN_SYSTEM
'«~MERGE
'APPLY~»
'«~MERGE
'APPLY~»
'APPLY~»
'REMOVE_REDUNDANT_VARS
'PUT_IN_NEW_OUTER_LOOP
'ADD_ASSERT
'INSERT_ASSERT
'MERGE~»
'TAKE_OUTSIDE_LOOP
'DELETE_ALL_ASSERTIONS
'«—MERGE
'JOIW_ALL_CASES
'LOOP->WHILE
NIL
'LOOP->WHILE
'DELETE
NIL

Transformations Jame of The Transformation Used)

Figure 9.5: The Measure Result of Lines of Code

C h a p t e r 9. T h e Use o f t h e P r o t o t y p e Sys t em a n d Resul t s 241

Control-Flow and Data-Flow Compl
0 84

+ + + + +

m m m {p QJ m \ ^ th ̂ th th th ih \J
CT> ff> ff> ff> ^p ̂ p ̂ p ^p tf* ̂p ̂ p ̂ p ̂ p ̂ p

W W W W w w W W V w

^p ̂ p ̂ p ^p

fft tf* ^p ̂ p ̂ p tf^ ̂P ̂ p ̂ p ̂ p ̂ p ̂ p ̂ p
u) u) u) $ w w 3) Q) w u) u) u) u) ^ w \ P

^P ^P ̂ p ̂ p ^p ̂ p ̂ p ̂ p ̂ p ̂ p ̂ p ̂ p ̂ p

^P ^P ̂ P ̂ p ̂ p ̂ p ̂ p ̂ p ̂ p ̂ p ̂ p

^p ̂ p ̂ p ̂ p ̂ p ̂ p ̂ p ̂ p ̂ p ̂ p ̂ p

^p ̂ p ̂ p ffl ff^ tf^ ̂p fft fft fft ̂p ̂ p
w w u) $ $ u) d) i p i l) w w u)

n% Qk n% n% ff%

e x i t y

- — >

'EXPAND_ACTION_CALL
'EXPAND_ACTION_CALL
'COLLAPSE_ACTIOM_SYSTEM
'«—MERGE
'APPLY—»

MERGE
'APPLY—»

'APPLY—»
'REMOVE_REDUNDANT_VARS
'PUT_IN_NEW_OUTER_LOOP
'ADD_ASSERT
'INSERT_ASSERT
'MERGE—»
'TAKE_OUTSIDE_LOOP
'DELETE_ALL_ASSERT10NS
'«—MERGE
'JOIN_ALL_CASES
'LOOP->WHILE
NIL
'LOOP->WHILE
'DELETE
NIL

Transformations (Name of The Transformation Used)

Figure 9.6: The Measure Result of Control-flow and Data-flow Complexity

Chapter 9. The Use of the Prototype System and Results 242

Lines of Codes (I)

32 4-

16 4-

Transformations

80 4

40 4-

Control-flow and Data-flow Complexity Index Number

10 15 20 Transformations

Figure 9.7: Measure Results of Using Metric Facility

Chapter 10

Conclusions

The conclusions of this thesis can be divided into three parts. The first part,

summary of the thesis, summarises what has been done in this thesis; the second

part, assessment, demonstrates how the work done in the thesis has achieved the

predefined goals and points out what else ought to be carried out in making full

use of the results achieved in this thesis; and the third part, future directions,

suggests some research topics which have been stimulated by this research.

10.1 Summary of Thesis

This thesis has undertaken an original investigation and feasibility study of the

problems concerning obtaining program designs from data intensive programs us

ing a program transformation approach. A systematic method has been developed

and a prototype has been implemented based on the method developed [169 .

The investigation was started by addressing the overall process of software

engineering. Software maintenance is nowadays the most expensive stage in the

software life cycle and enormous maintenance problems desperately await solu

tions. Furthermore, reverse engineering is a crucial part of software maintenance.

The work related to reverse engineering was examined in detail. Formal

specification and program transformation techniques which were mainly used in

forward engineering before are proposed to have their new applications in reverse

engineering. Existing program verification tools are reviewed to show not only

243

Chapter 10. Conclusions 244

that one of these tools is borrowed to build a component of the prototype (the
Symbolic Executor) but also that transformational programming approach has
more strengths in constructing a reverse engineering tool than program proving
approach. The main existing reverse engineering approaches have been analysed
and criticised so that an original method of reverse engineering can be proposed.

The method proposed in this thesis is to derive a program data design from a

data intensive program through program transformations. Program design is rep

resented in Entity-Relationship Attribute Diagrams and the source data intensive

programs in the study are in COBOL (mainly), C, etc. In order to apply program

transformations, a suitable language which can represent both source programs

and Entity-Relationship Attribute Diagrams is needed. We used a wide spectrum

language (WSL) for this purpose.

The source program has to be translated into its semantically equivalent form

in WSL. Since a program in this form is basically at the "physical" abstraction

level, abstraction levels have to be crossed to get a program design which is at the

"conceptual" level. Problems of crossing levels of data abstraction are discussed

in this thesis.

Another goal of the research is to build a tool based on the method devel

oped. Because the method itself is a substantial extension of the REFORM ap

proach, the prototype is designed as an extension of the existing tool — the "Main-

tainer's Assistant". The extension includes extending the existing WSL to support

representing COBOL programs and Entity-Relationship Attribute Diagrams, im

plementing program transformations for crossing levels of data abstraction and

deriving Entity-Relationship Attribute Diagrams, and implementing supporting

components of the tool.

The designed prototype has been fully implemented. Experiments have been

carried out and results of those experiments are presented.

Chapter 10. Conclusions 245

10.2 Evaluation

The project is evaluated in this section by examining it against the main criteria

predefined in Chapter 4 (Section 4.4) for success.

Crossing levels of abstraction is accomplished by applying those program

transformations which transform a program to another at a higher abstraction

level. The transformations were invented based on the research result of the

project on crossing levels of abstraction.

A prototype has been implemented by extending the existing Maintainer's

Assistant. While using the Maintainer's Assistant as a platform, the prototype

has made a substantial extension to the existing Maintainer's Assistant, includ

ing the extension to the WSL, the extension to the Transformation Library, and

extensions to supporting tools.

One way to measure the success of acquiring data designs from the code is

to use metrics. Six metric measures (code measures) have been defined to reflect

the features of reverse engineering and a metric facility has been implemented as

a supporting component of the prototype.

It has been demonstrated viable to extract data design from the code if using

the method developed in this thesis. The method works and it works well:

Entity-Relationship Attribute Diagrams have been produced from a large

number of COBOL programs.

• The abstracted Entity-Relationship-Attribute Diagrams are able to repre

sent the designs of the original programs. The correctness of the obtained

ERA diagrams is at present checked manually based on human knowledge

and expertise. During the duration of this project, experts on COBOL pro

gramming were consulted to identify the features of data-intensive programs

and for evaluating the resultant Entity-Relationship Attribute Diagrams ob

tained from the example programs using the prototype tool. It was agreed

by the experts that the obtained Entity-Relationship Attribute Diagrams

represented viable designs for these example programs and can be used as

possible data designs for subsequent forward engineering of the programs.

Chapter 10. Conclusions 246

In some cases it can be done in an inverse way, i.e., checking whether the
original program is an implementation of the obtained Entity-Relationship
Attribute Diagram. In some cases, such as in Case Study 1, it can be done in
an inverse way, i.e., checking whether the original program is an implemen
tation of the obtained Entity-Relationship Attribute Diagram. Of course,
the eventual aim is to assure correctness by proving that the transformations
are semantic preserving. This has been done for some transformations.

• The method combines analysis of data and code, and therefore, it can ad

dress two major problems common to data-intensive programs, i.e., aliases

and relations (like foreign keys) that affect both data and code. This dis

tinguishes our approach from others, e.g., Bachman's work.

• The method is sufficiently general to apply to data intensive programs writ

ten in other source languages though COBOL programs have been mainly

used in experiments to date. For example, a program written in the C pro

gramming language can be reverse engineered using the approach as long

as the C program is translated into WSL. In fact, a few examples in the

experiments were derived from C programs, for instance, the example (in

WSL) used in Section 7.5.4 was translated from a C program.

• This method only requires source code as its input and it can be applied to

heavily modified code typical in systems which have been maintained over

many years.

• There are few restrictions on the approach developed in this research. Per

haps the only restriction is that the user needs to supply the source code to

be reverse engineered. The approach is, however, fundamentally interactive,

and the tool supports the expert maintainer in restructuring code and then

extracting designs. It is not automatic. The user-driven mode is common

with the approach used in almost all other reverse engineering approaches.

The user's role is well taken into consideration when the approach was stud

ied and a user-friendly interface was designed and implemented when the

prototype tool was built.

Chapter 10. Conclusions 247

• The development of the method and the implementation of the prototype
show that this approach has covered a scope from theory to practice [170 .
I t has not been seen so far in the literature that any other system can
derive data designs represented in Entity-Relationship Attribute Diagrams.
Therefore, it is believed that the approach described in this thesis cater
what others do not — no other projects have gone as far as this project has.
This can be ensured by re-examining other reverse engineering approaches
introduced in Section 3.5. For example, in the REDO project [100,101], it
was just shown that there was a method by which COBOL code can be
abstracted to produce explicit mathematical descriptions of functionahty.
However, more work still has to be devoted to make the REDO approach
more practical.

It appears to be at first that the method developed could be applied man

ually (i.e., manipulating COBOL code by hand and extracting entities and their

relationships from the code directly) and therefore, it might not necessary to build

a tool to implement the method. This argument might be true when a program is

fairly small (like the program in the first case), but when the size of a program to

be maintained increases building a tool for doing this will apparently show many

advantages.

Three kinds of transformations defined earlier have been used alternatively

during the process of manipulating the example cases. For example, in the first

case, equivalence transformations were used first to handle file operations, and

then abstraction transformations are apphed to derive entities and entity rela

tionships. Refinement transformations were used when "back tracking" is needed.

The role of human knowledge was to guide the whole application process

of the method. When COBOL programs are translated into WSL, because a

COBOL-to-WSL translator has not been built (or even when building the trans

lator), human knowledge has to be used to ensure that WSL programs are seman-

tically equivalent to the original COBOL programs. It can be seen that human

knowledge plays a decisive role in choosing transformations, in particular, abstrac

tion transformations. Finally it is also human knowledge that determines whether

Chapter 10. Conclusions 248

the obtained Entity-Relationship Attribute Diagrams represents a reasonable data
design of the original COBOL program.

Where the method developed in this thesis needs improving was observed

as well. The method developed in this thesis can powerfully deal with most ex

ample cases studied in the project. In particular, COBOL records and files are

able to be represented in WSL and this is crucial to the implementation of the

prototype as well as the successful application of the method. Therefore, it is

comparatively easier to extract Entity-Relationship Attribute Diagrams from a

relatively independent (self-contained) segment of COBOL code with record (file)

definitions, but i t is more difficult for a COBOL segment with many calls to other

segments (i.e., with many PERFORM statements) because the structural com

plexity is increasing. The problem has to be helped by building more powerful

"restructuring" transformations, which is not a main thrust of the thesis. Another

reason that this method can cater for most example cases is that the translation

from COBOL to WSL is currently done manually. Building a translator needs to

consider all possible syntax combinations of COBOL language while hand transla

tion can tailor any program as long as the program is semantically translated into

an equivalent form in WSL. Once a program is represented in WSL, according the

author's experience, there are always some transformations available to simplify

and eventually to abstract Entity-Relationship Attribute Diagrams from i t , and

some entities and entity relationships were almost always derived (representing

part of the data design, not the ful l data design).

10.3 Assessment

The research described in the thesis brings us valuable detailed understanding in

this field.

The method developed in the thesis is a successful outcome of the project.

This method combines transformational programming and data abstraction and

thus give us the confidence when we manipulate the programs.

Another feature of this approach is to employ Entity-Relationship Attribute

Chapter 10. Conclusions 249

Diagrams to represent the final products (data designs). The existing WSL has
been extended to represent the original programs and Entity-Relationship At
tribute Diagrams. Therefore, the original objects and the target objects can both
be represented and manipulated in the same language.

In order to capture any useful information for data abstraction, all materials

associated with data are to be made ful l use, i.e., records, assignment statements,

etc.

Common data structures used in programming, data-intensive programming

in particular, have been investigated, for example, foreign keys, aliasing problem,

file operations, ADTs, etc.

One of the useful features of the prototype is that the system can be eas

ily extended. When more program transformations are available, they can be

integrated into the system with ease.

Since the project made a novel attempt to solve the problem of acquiring

data designs from data intensive programs, it may have some weaknesses as well

as strengths. The research described in this thesis includes several subjects within

the scope of software engineering. Although the author has managed tackling the

main issues of the project, further research into some side issues may make the

project even more promising. During the course of this project, a number of

drawbacks have been exposed both in the method and its implementation.

The method relies on a certain amount of user expertise. In particular a

user must understand the principle of program transformation and be capable

of choosing program transformations in order to reverse engineer the code more

efficiently. Also, since a user is heavily involved in naming relationships in Entity-

Relationship Attribute Diagrams, the user's misunderstanding to the original pro

gram might lead to an inconsistent or even a wrong Entity-Relationship Attribute

Diagram.

More supporting components should be built. In this thesis, the translation

from program in COBOL or in other data-intensive programming languages to its

equivalent program in WSL was done by hand. This is because the techniques of

translating programs between programming languages are comparatively mature

Chapter 10. Conclusions 250

and therefore, no more effort should be made in the research. Another supporting
component is a tool deahng with Entity-Relationship Attribute Diagrams, i.e.,
printing Entity-Relationship Attribute Diagrams on the screen or to a printer. At
present, the end results of Entity-Relationship Attribute Diagram are represented
in WSL. When the resource of enhancing the prototype to a fully tool-supported
system is available, the COBOL-to-WSL translator can be implemented by exist
ing compiler-writing techniques and the Entity-Relationship Attribute Diagram
processor can be built referring existing tools, such as ERDRAW [112,113,150].

More experiments should also be carried out with data intensive programs

in other programming languages. This includes not only building translators for

translating programs in other languages but also studying the features of programs

in those languages. At present, the prototype is mainly COBOL-specific and it

can only deal with those data structures that exist in COBOL. However, the

method developed in this thesis is general enough to cope with data-intensive

programs in other languages. For example, programming languages such as C

provide data structures such as pointers that are not supported by COBOL and

therefore transformations for dealing with pointers are needed.

When the source code scales up, the method developed in the thesis would

still work well provided program segments in a manageable size could still be

found. The scale of the source code would affect the method in a situation

where smaller program segments are all not comparatively self-contained, i.e.,

self-contained segments are already not in a manageable size. One possible solu

tion could be to build an Information Database. When the Program Transformer

is working on a program segment which has many calls to other segments, it is the

Information Database that collects all the necessary information from the called

segments for the Transformer so that the Transformer does not need to load in

those segments.

One of the leftovers of the project is that some of the transformations used

need proving. As argued in early chapters, proving program transformations is

not a main thrust of this thesis and it is only worth while proving all the transfor

mations when they are identified suitable for future use. Also, existing transfor-

Chapter 10. Conclusions 251

mations may still need optimising and more transformations should be involved
particularly when source data intensive programs not written in COBOL are to
be experimented with the prototype tool.

However, the original goal of this thesis was to demonstrate the feasibility

of acquiring data designs from data-intensive programs and it is a huge task. The

author of the thesis hopes to be able to argue fairly that this thesis has achieved

this original goal extremely well despite the existence of the above mentioned

problems.

10.4 Future Directions

The future research directions can be suggested directly from the assessments to

this project.

An area for future research is to find out whether the approach developed in

this thesis can be used to acquire specifications (e.g., specification written in Z)

from programs, which is the original aim of the REFORM project.

Metric measures need to be defined for measuring both codes and specifica

tions — to meet the needs of reverse engineering. It is perhaps important that a

metric measure can reflect the process of crossing levels of abstraction.

This research has so far indicated that the approach of program transforma

tion can be used to acquire data designs from data intensive programs. However,

the real application of this approach will not be seen until an industrial-strength

tool has beed built. Therefore, more research should be conducted to improve the

prototype developed in this thesis into a practical tool.

Finally, the work described in this thesis provides a summary of the state

of the art in the field of reverse engineering using formal methods [166]. Using

formal methods can be a good solution to the software evolution problem, because

software maintenance [168], software reuse [171] and software testing [172] are

main parts in software evolution. Therefore, the outcomes of this thesis may be

a starting point for the research into software evolution using formal program

transformations.

Appendix A

Syntax of WSL Extension

A . l Introduction

This appendix just specifies the abstract syntax of the WSL extension for data abstrac

tion and basic WSL definitions which are used for the extension. The abstract syntax of

existing WSL has not been included. The semantics specification of the WSL extension

can be seen in Appendix B.

A. 2 Programs

Program ::= Command

A.3 Commands

Command

::= - empty

Command

Command Command

segment Files Records Command end;

paragraph Entities Specification-Statements end:

create-set Set-Variable;

set-insert Expression Set-Variable;

del-element Expression Set-Variable;

252

Appendix A. Syntax of WSL Extension 253

init-q Q-Variable;

q-append Q-Variable Expression;

make-seq Seq-Variable;

seq-remove Seq-Variable;

seq-append Seq-Variable Expression;

init-stack Stack-Variable;

push Expression Stack-Variable;

redefine Rec-Identifier 1 wi th Rec_Identifier2;

user-adt-proc-call(Actual-Parameter-Sequence);

Files ::= File-def | File-def File-def

Records ::= Record-Def | Record-Def Records

Entities ::= Entity-Def | Entities Entity-Def

Specification-Statements

::= Specification-Statement

I Specification-Statements Specification-Statement

A.4 Names

V-name :: = Identifier | V-name.Identifier

A.5 Expressions

Expression

::= Integer-Literal

I Character-Literal

I V-name

I Operator Expression

I Expression Operator Expression

I Record-Aggregate

I Ent-Identifier

I dis- union (Expression)

Appendix A. Syntax of WSL Extension 254

dis-intersection(Expression)

q-concat(Q-Variable Q-Variable)

q-rem-flrst(Q-Variable)

q-length(Q-Variable)

seq-concat(Expression Expression)

sub-seq(Expression Indexl Index2)

sub-seq?(Expression Expression)

pop(Expression)

top(Expression)

dept h (Expression)

user-adt-funct-call(Actual-Parameter-Sequence)

Rec-Aggregate

::= Rec-Identifier

[Rec-Identifier.Rec-Identifier

Set-Variable ::= V-Name

Q-Variable ::= V-Name

Seq-Variable ::= V-Name

• Stack-Variable ::= V-Name

A.6 Specification Statements

Specification-Statement

::= - Empty

I Specification-Statement

I Specification-Statement Specification-Statement

I Entity-Def

I Relate-Def

I Relationship-Def

Entity-def

::= entity Ent-Identifier end:

I entity Ent-Identifier wi th Attributes end:

Attributes

Appendix A. Syntax of W S L Extension 255

::= attr Attribute-Identifier

I Attributes attr Attribute-Identifier

Relate-Def

::= relate Rec-Identifierl/Ent-Identifierl to Rec-Identifier2/Ent-Identifier2;;

I relate Rec-Identifier 1/Ent-Identifierl to

{ Rec-Identifier2/Ent-Identifier2 and Rec-Identifier3/Ent-Identifier3};

I relate Rec-Identifierl/Ent-Identifierl to

{ Rec-Identifier2/Ent-Identifier2 or Rec-Identifier3/Ent-Identifier3};

Relationship-Def

::= relationship entity Ent-Identifierl has Relation-Degreel Relationship-Name

relation with Relation-Degree2 entity Ent-Identifier2;

I relationship entity Ent-Identlfierl has Relation-Degreel Relationship-Name

relation with { Relation-Degree2 entity Ent-Identifier2 } and

{Relation-Degree3 entity Ent-Identifier3 };

I relationship entity Ent-Identifierl has Relation-Degreel Relationship-Name

relation with { Relation-Degree2 entity Ent-Identifier2 } or

{ Relation-Degrees entity Ent-Identifiers };

Ent-Name-Def ::= Ent-Identifier

Ent-identifier ::= Identifier

Entity-Identifier ::= Identifier

Relation-Degree ::= one | many

Relationship-Name ::= Identifier

A.7 Declarations

Declaration

::= Declaration Declaration

I File-Def

I Record-Def

I User-Adt-Def

I User-Adt-Funct-Def

I User-Adt-Proc-Def

Appendix A. Syntax of WSL Extension 256

File-def ::= file File-Identifier with Records-Def end;
Records-Def

::= Record-Def | Record-Def Records-Def

Record-Def

::= record Rec-Identifier [Integer-Literal of Type-Char-Literal] end;

I record Rec-Identifier with Records-Def end;

Rec-Identifier ::= Identifier

Type-Char-Literal ::= char | int

User-Adt-Def ::= user-adt Identifier (Formal-Parameter-Sequence)

User-Adt-Defs end;

User-Adt-Defs ::= User-Adt-Def User-Adt-Defs

User-Adt-Def ::= User-Adt-Funct-Def | User-Adt-Proc-Def

User-Adt-Funct-Def

::= user-adt-funct Identifier (Formal-Parameter-Sequence)

Expression end:

User-Adt-Proc-Def

::= user-adt-proc Identifier (Formal-Parameter-Sequence)

Command end;

A. 8 Parameters

Formal-Parameter-Sequence

::= - empty

I Formal-Parameter

I Formal-Parameter, Formal-Parameter-Sequence

Formal-Parameter ::= Identifier

Actual-Parameter-Sequence

::= - empty

I Actual-Parameter

I Actual-Parameter Actual-Parameter-Sequence

Actual-Parameter ::= Expression

Appendix A. Syntax of WSL Extension 257

A.9 Lexicon
Program ::= (Token | Comment | Blank)*

Token ::= Integer-Literal | Character-Literal | Identifier

I Operator!. | : | ; | , | := | ~ | (j) | [|] | { | }

I attr I create-set | depth | del-element

I dis-intersection | dis-union | ent | entity | file | in | init-q

I init-stack | set-insert | make-seq | paragraph

I q-append | q-concat | q-rem-first | rec

I relate | relationship | segment | seq-append

I seq-concat (seq-remove | sub-seq | sub-seq? | top

I user-adt | user-adt-funct | adt-funct-call | user-adt-proc

I user-adt-proc-call

Integer-Literal ::= Digit Digit*

Character-Literal ::= 'Graphic'

Identifier ::= Letter (Letter | Digit)*

Operator ::= Op-character Op-character*

Comment ::= comment Graphic* end-of-hne

Blank ::= space | tab) end-of-Une

Graphic
::= Letter | Digit | Op-character | space | tab

I • I : I ; M ~ I (I) I [I]

I { I } I -1 M ! n ' I " I # I $

Letter

: : = a | b | c | d | e | f | g | h | i | j | k | l | m

Appendix A. Syntax of WSL Extension 258

| n | o | p | q | r | s | t | u | v | w | x | y | z

| A | B | C | D | E | F | G | H | I | J | K | L | M

| N | 0 | P | Q | R | S | T | U | V | W | X | Y | Z

Digit : : = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Op-character " = + | - | * | / | = | | | \ | & | @ | % T | ?

Note: EBNF is used in this section.

Appendix B

Semantics of W S L Extension

B . l Introduction

This appendix specifies the semantics of the WSL extension for data abstraction. I t

is based on the syntax of the WSL extension in Appendix A. I t is assumed that the

semantics of the existing WSL has already been specified.

B.2 Commands

segment file f = p; record r = q; S end = ĵ j,

(file f , record r ') / () . (f i le / = p; record r = q; S); ()/(file f . record r).true

paragraph entity e; 5 end =

entity e/().(entity e; 5); ()/entity e.true

create-set P = OF P { }

set_insert e p - p Li e

delete—element e p — p := p — e

in i t -q P = P •= {)
q^ppend p e = p := {s[l], s[2],s[n], e)

make_seq = p := {)

seq—remove s = p := {s[2],s[n])

seq^appendse = j,p p := {s[l], s[2],s[n], e)

init_stack i = i :—

push e i = DP {e,t[l],...,i[n])

259

Appendix B . Semantics of WSL Extension 260

user-adt-proc-call A* = S. = {fiX.S)

B.3 Expressions

X dis_union(p) = DP ^ -̂ ^ ^/P

X := dis—intersect ion (p) = x := n/p

X := q_concat(yi pz) = DP S : = (SI[1] , SI[2], si[n], sjfl], S2[2], safn])

X := q_rem_first(p) = DP ^ — A p := (s[2], s[3], ...s[n])

y := q_tength(p) = ^ P • ^ («)

X := seq_concat(5i sg) = 2 := (si[l], s i [2] ,s i fra] , 52[1], S 2 [2] , S 2 M)

X := suh^eqjpij) = x := { s[i],s[n])

y sub_seq?(piP2) = DP I f « i N) = («2W, S2[y]) A (n - 1 = j - z)

then y := true else y := false fi

x : = p o p (0 = p̂ x:=i[l]Ai:=(<[2], . . . , i[n])

2: := top(i) = D P 2; :=

2/ := depth(y) = DP f == K ^)

V :— user-adt-funct-call X = S. = y := {y.X.F)

B.4 Specification Statements

entity x = e end =

entity .entity x = e; ()/entity e.true

relate x to y = {x, y) EH * 11 is a relation.

relationship ENTITY x has d l r relation with d2 entityy

= {x dl r d2 y) eV * V is a five-tuple.

Appendix B . Semantics of WSL Extension 261

B.5 Declarations

user-adt a<H{X) user-adt-funct adtfunct y = S. end;

= p̂ adt(x)[funct y = s./y]

user-adt adi(X) user-adt-proc adtproc Z = S. end

= J3P adi(X)[pToc Z = S./Z]

Appendix C

Syntax and Semantics of

Meta-WSL Extension

C . l Notations
Basic definitions and functions are presented here in order to read the specification of

Meta-WSL extension. These notations are in WSL [165].

1. Programs

Definit ions:

Program = Items*

{set of finite sequences of elements of Items = [J Items'^

where Items^ = Items, 7iems"-+^ = Items x Items'^)

Items = {{table, comment, {t-i, t2, c)) ++ components\{table G Tables) A

{comment £ Comments) A (̂ i 6 Specific-types) A

(<2 £ Gen-types) A {components G Items*)}

Items is a set of quadruples. Nth component is a sequence of items.

Names = name of item

Numbers = Z

262

Appendix C. Syntax and Semantics of Meta-WSL Extension 263

Strings = set of ASCII string
Comments = any combination of ASCII strings
Content = Names U Numbers U Strings U {true, false}
Gen-types = {Thing, Statement, Expression, Variable , . . . }
Specific-type = {Name, Var, Skip, C a l l , . . . }

Functions:

Gen-type : Items Gen-types

Specific-type : Items —y Specific-types

Size : Items —> N

Get-n : Items x N Items

Contents : Items Content

Val-N{item,n) - p̂ Contents{Get-n{item, n))

2. Database Table

Definit ion:

Tables = P((Names U Strings) x Contents)

An element of Tables is a set of pairs — a function.

Appendix C. Syntax and Semantics of Meta-WSL Extension 264

Funct ions:

Get-table : Items —> Tables

Set-table : Items x Tables —• Items

Add-to-table : Items x Key x Data

—> Items f« Set-table(item,{get-table{item) x Key)® Data)

Gei-from-iable(item, key) = get-table(item) x key

The Meta-WSL extension consists of three parts of construct for implementing the

Program Structure Database, the General SimpHfier and the Metric Facility.

Please note that aU Meta-WSL construct defined in the appendix are in square

brackets, e.g., [Variables]. Other entries are all assistant definitions.

C.2 Specification of Program Structure

Database Queries

The following database queries are specified in this section: [Variables], [Used], [As

signed], [Used-Only], [Assd-Only], [Assn-to-self], [Regular?], [Regular-system?], [Depth],

[Primitive?], [Terminal-Value], [Terminal?], [Proper?], [Reducible?], [Improper?],

[Dummy?], [Calls], [Calls-terminal?], [CaDs-term-sys?], [Statements] and [Size]. More

information can be found in "Catalogue of Program Transformations" [154].

C.2.1 Query: [Variables

Definit ion:

funct [Variables]{item) =

if Size{item) = 0

then if Gen-type(item) G {Variable, Assd-Vcir }

then {Contents{iiem)}

else 0 fi

else

Appendix C. Syntax and Semantics of Meta-WSL Extension 265

Size{item)
[J ['i''ariables]{Get-n{item,i))
i=i

fi

Comment: The query function returns all variables occurring ([Variables] : Items

• P(Names)).

C.2.2 Query: [Assigned

Definit ion:

funct [Assigned\{item) =

if Size{item) = 0

then if {Gen-tvpe{item) = Assd-var)

A {Specific-type{item) = Variable)

then {Contents{item)}

else 0 fi

else
Size{item)

\^ [Assigned]{Get-n{item, i))
1=1

fi

Comment: The query function returns those variables assigned in the assignment

statements.

C.2.3 Query: [Used

Definit ion:

funct [Used]{iiem) =

if Size{iiem) = 0

then if Specific-iype{iiem) — Variable

then Contents {item)

else 0 fi

else
Size{item)

[j [Used]{Get-n(item, i))

Appendix C. Syntax and Semantics of Meta-WSL Extension 266

fi

Comment: The query function returns those variables used in the assignment state

ments and variables used in non-assignment statements.

C.2.4 Query: [Used-Only]

Definit ion:

funct [Used-Onlv]{item) = [Used]{item)\[Assigned]{item)

Comment: The query function returns those variables used (refer to [Used]) but not

assigned (refer to [Assigned]).

C.2.5 Query: [Assd-Only

Definit ion:

funct [Assd-Only]{item) = [Assigned]{item)\[Used\{item)

Comment: The query function returns those variables assigned but not used.

C.2.6 Query: [Assn-to-self

Definit ion:

funct Purely-used{iiem) =

if {Size{item) = 0) V {Gen-type{item) = Assignment)

then if Gen-type{item) = Assignment

then [Used-Only]{item)

else 0 fi

else
Size(item)

[J Purely-used{Get-n{item,i))

fi

Comment: Purely-used returns those variables used but not assigned to themselves.

Appendix C. Syntax and Semantics of Meta-WSL Extension 267

Definit ion:

funct [Assn-to-self\{item) = [Assigned]{item)\Purely-used(item)

Comment: The query function returns those variables only used in assignments to

itself or only assigned to.

C.2.7 Query: [Depth

Definit ion:

funct If-fioop[item) = if Specific-type(item) = Floop

then 1

else 0 fl

Comment: I t returns 1 i f the item is a Floop, otherwise 0.

Definit ion:

funct [Depth] {item,posn-offset) = -\-/ If-floop * Get-n H^i^rn posn-offset

Comment: The query function "Depth" returns the depth of the given program com

pared to the position represented by posn-offset. Depth is defined as the number of

enclosing unbounded (do...od) loops (Floop).

C.2.8 Query: [Primitive?

Definit ion:

funct [Primitivel] (item) =

if Specific-type{item) ^ {Floop, Cond, D - i l }

then true

else false fi

Comment: The query function "Primitive?" returns "true" or "false" depending on

whether or not the statement given is primitive. A primitive statement to be either an

exit statement or an assignment or an assertion.

Appendix C. Syntax and Semantics of Meta-WSL Extension 268

C.2.9 Query: [Terminal-value]

Definit ion:

funct [Terminal-value] {item,posn-offset) =

l^fioop-layers := +/If-floop * Get-n f\iem posn-offset;

exit-value :=

if Specific-type{Get-from-posn{item, posn-offset)) = Ex i t

then Contents{Get-from-posn{item, posn-offset), 1)

if Specific-type{Get-from-pos'n(item, posn-offset)) = C a l l

then Contents{Get-from-posn{item, posn-offset), 2)

else 0 fi fi;

terminal-value := exit-value — floop-layers;

terminal-valne_\

Comment: The query function "Terminal-Value" returns the terminal value of the

given program compared to the comparative position represented by posn-offset. The

terminal value is the difference of the capacity for jumping out loops (exiting value, e.g.,

k in "Exit k") and the number of loops. ^

C.2.10 Query: [Regular?
(a - { 0 }) U 6 i f O G a

a otherwise
Definit ion: a l+J 6 =

Comment: I t is a conditional union operation.

Definit ion:

funct Tv-list {item)

if Specific-type{item) — Ex i t

then { Val-N{item, 1)}

elsif Specific-type{item) = C a l l

then {Val-N{item, 2)}

elsif Specific-type{item) G {Cond,D-if}

then
Size(item)

(J Tv-list(Gei-n{tiem,i))
i=l

Appendix C. Syntax and Semantics of Meta-WSL Extension 269

elsif (Specific-tvpe(item) ^ {Statements, Floop, Guarded}) V
(Size(item) = 0)
then 0
else

Size(item)
(+) Tv-lisi(Get-n(item,i))
i = l

fl

Comment: I t returns a set of terminal values of the given item.

Definit ion:

funct Tv-list-for-calls (item) =

if Specific-type{item) — Ex i t

then {Val-N(item.l)}

elsif Specific-type{item) — C a l l

then {*big-num*}

elsif Specific-iype{item) G {Cond,D-if}

then
Size{item)

U Tv-lis1{Get-n{item,i))

elsif (Specific-tvpe(item) ^ {Statements, Floop, Guarded}) V

(Size(item) = 0)

then { 0 }

else
Size(item)

(+) Tv-list{Get-n{item,i))
1=1

fl

Comment: The function is the same as Tv-list, apart from that the terminal value

caused by Call statement is marked *.big—num * .

Definit ion:

funct [Regular'!] (item) = Tv-lisl(item) = {*big-num*}

Appendix C. Syntax and Semantics of Meta-WSL Extension 270

Comment: This query function returns "true" or "false" depending on whether or
not the program item (or called "action") is regular or not. For example, an action is
regular if every execution of the action leads to an action call.

C.2.11 Query: [Regular-system?

Defini t ion:

funct [Regular-systeml] {item) =

if Specific-type{item) — Action

then V i , 2 < I < Size{item) • [Regularl]{Get-n{item, i))

else false

fi

Comment: This query function returns "true" or "false" depending on whether or not

the given action system is regular or hot. An action system is regidar i f every action in

the system is regular.

C.2.12 Query: [Terminal?

Definit ion:

Get-from-posn{item, posn)
{ item i f posn = ()

Get-from-posn{ Get-n{item, posn[l]), posr{2,...]) otherwise DP

Comment: I t returns the sub-item in the position offset of the given item.

Definit ion:

funct Sub-items {item, posn-offset) =

{0 < i < l{posn-offset)\Get-from-posn{item,posn-offset[i]))

Comment: The function returns all sub-items from the item going down to the sub-

item at position offset, e.g., sub-item (item, '(1,2,3,4)) = { item, Get-from-posn(item,

Appendix C. Syntax and Semantics of Meta-WSL Extension 271

'(1)), Get-from-posn(item, '(1,2)), Get-from-posn(item, '(1,2,3)), Get-from-posn(item,
' (1>2,3,4))}.

Definit ion:

funct terminal-component? (item, n) =

(Specific-type(Get-n(item, n)) G {Cond,D-if}) V

((Specific-type(Get-n(item, n)) ^ Floop) A (Size(item) = n)) V (n = 0)

then true

else false fi

Comment: It returns "true" if the nth element of the item is a terminal component,

otherwise "false".

Definit ion:

funct Terminal-posnl (item, posn-offset) =

A / (terminal-component! * zip(sub-items(item, posn-offset), {(f}{J

posn-offset))

Comment: I t returns "true" i f the sub-item at position offset of the item is in a

terminal position, otherwise "false".

Definit ion:

funct Posn-prefix (item, key, {pi,P2, • • • ,Pn)) =

{Pi,P2, • • •,Pi)\fJ'i * Specific-type(get-from-posn(item, posni)) = key

Comment: It returns a sub-position-offset of the position olfset. This " i " is the small

est.

Definit ion:

funct Sub-posn (item,j,{pi,p2,...,Pn)) = ^j-j<n\{pi,p2,...,Pj}

Comment: I t returns a sub-position-offset of the position offset.

Appendix C. Syntax and Semantics of Meta-WSL Extension 272

Definit ion:

funct Outmost-floop-terminall {item, posn-offset) =

if Floop ^ Specific-type * {Sub-items{item, posn-offset)

then false

else Terminal-posn1{item, Posn-prefix{item, Floop, posn-offset))

fi

Comment: I t returns "true" i f the outmost floops is terminal, other "false".

Definit ion:

funct [TerminaP.] {item, posn-offset) =

if z G (1 , . . . , length{posn-offset)) • {j E {I, •.. ,Pi - I) •

({ 0 } G /Tv- l i s t* {Get-from-posn{item, sub-posn{posn-offset, i - 1)U

j)))) = true

then

if Terminal-posnl {item, posn-offset)

then true

elsif (Svecific-tyj)e(Get-from-posn(item, posn-offset)) = Exit) A

{Val-N{Get-from-posn{item,posn-offset), 1) >

[Depth]{item, posn-offset)) V

{Specific-type{Get-from-posn{item, posn-offset)) = Cal l) A

(Val-N{Get-from-posn{item, posn-offset), 2) >

[Depth]{item, posn-offset))

then true

elsif {{Svecific-typeiGet-from-posn{item, posn-offset)) = Exi t) A

(Val-N{Get-from-posn{item, posn-offset), 1) =

[Depth]{item, posn-offset)) V

{Specific-type{Get-from-posn{item, posn-offset)) = Cal l) A

(Val-N{ Get-from-posn{item, posn-offset), 2) =

[Depth]{item, posn-offset))) A

{Outmost-floop-terminall {item, posn-offset))

then true

else false

Appendix C. Syntax and Semantics of Meta-WSL Extension 273

Comment: The query function "Terminal?" returns "true" or "false" depending on

whether or not the statement given is terminal. I.e., for any statements T, S (where

T is primitive) and integers n, d, the predicate ts(n, T, S, d) is interpreted "the nth

occurrence of T in S is a terminal statement of S which leave d enclosing loops".

C.2.13 Query: [Proper?

Definit ion:

Posnso = {()}

Posns„+i = {P -|-|-(iV)|P G Posnsn A I < N < Size(Get-from-posn(iiem, P))}

funct Posns(iiem) = [J Posns^
n.<w

Comment: I t returns all position offsets in the item.

Definit ion:

Posns-of-primitive-statements(item)

= {P E Posns(item)\[Primitivel](Get-from-posv{item, P))}

Comment: I t returns all positions of the primitive statements in the item.

Definit ion:

funct Terminal-Posns(item) =

{P G Posns(item)\Terminal-posn'!(Get-from-posn(item, P))}

Comment: I t returns all terminal positions in the item.

Definit ion:

funct Terminal-staiements(iiem) =

{P G Posns(item)\[Terminan](Get-from-posn(item, P))}

Comment: I t returns aU positions of the terminal statements in the item.

Appendix C. Syntax and Semantics of Meta-WSL Extension 274

Definit ion:

funct [Proper!] (item) =

A / (= 0) * {[Terminal-value]{Uem, •) * {Terminal-statements{iiemi)))

Comment: The query function "Proper?" returns "true" or "false" depending on

whether or not the statement at the current point in item is proper. The statement S

is a proper sequence if every terminal statement of S has terminal value zero.

C.2.14 Query: [Reducible?]

Definit ion:

funct If-reducihlejitem, posn-offsei) =

if (Terminal-posn'!{item, posn-offset)) V

{{[DepiK\{item,posn-offset) > 0) A

{Outmost-floop-terminaU{item, posn-offset)))

then true

else false

fi

Comment: I t returns "true" i f the sub-item in the position offset of the item is re

ducible, otherwise "false".

Defini t ion:

funct [Reducihlel] (item) =

A / If-reducihlel{item, •)*

{P G Posns{item)\{[TerminaU\{Get-from-posv{item,P))) A

{[Terminal-valu^{Get-from-posn{item, P)) = 1)}

Comment: The query function "Reducible?" returns "true" or "false" depending on

whether or not a statement is reducible. I.e., The statement S is reducible if replacing

any terminal statement EXIT(k) , which has terminal value one, by EXIT(k- l) gives a

terminal statement of S.

Appendix C. Syntajc and Semantics of Meta-WSL Extension 275

C.2.15 Query: [Improper?]

Definit ion:

funct [Improper!] {Hem) =

A / (> 0) * ([Terminal-value](Uem, •) * {Terminal-siaiements{Uem)))

Comment: The query function "Improper" returns "true" if all terminal statements

of S have terminal value greater than zero, otherwise "false".

C.2.16 Query: [Dummy?]

Definit ion:

funct [Dummyl] (Hem) = [Reducible'?] (item) A [Improper^^item)

Comment: The query function "Dummy?" returns "true" if both a statement S

is reducible and all terminal statements of S have terminal value greater than zero,

otherwise "false".

C.2.17 Query: [Calls

Definit ion:

funct Make-yairjthing) = (thing,!)

Comment:

Def init ion:

S :={ixi,h),ix2,h),...,{xk,lk)}

funct Summarize(S) = {{x,n\3m • {x,m) E S A n =+'/{m\{x,m) E S})}

Comment: For example. Summarize { (a 3), (a 4), (b 3) } = { (a 7), (b 3) }

Appendix C. Syntax and Semantics of Meta-WSL Extension 276

Definit ion:

funct [Calls] (item) =

f C i := Get-n(item, •)*

{P e Posns(item)\[Specific-type](Gei-n(item, P)) = Ca l l } ;

02-.= Val-N(;l)*Ci;

C3 := Make-pair* C2;

C4 : = Summarize(C3);

C4J

Comment: The query function returns aU the action call names and how many times

they are to be called in the given program item.

C.2.18 Query: [Statements

Definit ion:

funct [Statements] (item) =

Specific-type * {P E Posns(iiem)\[Gen-iype](Get-n{item, P)) = Statement}

Comment: The query function returns all the statement names in the given program

item.

C.2.19 Query: [Calls-terminal?

Definit ion:

funct [Calls-terminat!] (item) =

if { P G Posns(item)\Specific-type(Get-n(item, P))

= C a l l } = Terminal-statements (item)

then true

else false

fi

Comment: I t returns "true" i f all Call statements in the item are terminal, otherwise

"false".

Appendix C. Syntax and Semantics of Meta-WSL Extension 277

C.2.20 Query: [Calls-term-sys?
Definit ion:

funct [Calls-term-sys'!] {item) =

if Specific-type{item) = Actions

then A / [Calls-terminaU] * { i £ 2 , . . . , Size{item)\Get-n{item, i)}

else false

fi

Comment: I t returns "true" i f all Call statements in an action system in the given

item are terminal, otherwise "false".

C.2.21 Query: [Size

Definit ion:

funct [Size] (item) =

length{P G Posns{item)\Size{Get-n{item, P)) = 0)

Comment: I t returns the number of leaf nodes in the given item.

C.3 Specification of General Simplifier

The General Simplifier simplifies a mathematical or logical expression, or to "prove"

the equivalence or implication of two expressions. Mathematical and logical operations

defined in the system are: -|-, - , *, / , **, Min, Max, Div, Mod, = , > , < , < > , Not, And,

Or, etc. and these definitions are in normal mathematical and logical sense.

Definit ion:

funct [Simplify] {expression) = simplified-expression

Comment: The "Expression" can be any symboUc algebraic expression. The

function returns the expression in its simplest form.

funct [Equivalentl] {expressionl, expression2) = T V Nil

Appendix C. Syntax and Semantics of Meta-WSL Extension 278

Comment: The function returns T or Nil according to whether the two expres
sion are equivalent.

funct [Implies"!] (expressionl, expression2) = T V Nil

Comment: The function returns T or Nil according to whether the first expres

sion implies the second one.

C.4 Specification of Metric Facility

The six metrics have been defined.

C.4.1 Preliminary Definitions For Metrics Functions:

funct If-predicate(item) = if (Svecific-type(item) = Cond) V

(Specific-type(item) = D- i f) V

(Specific-type(item) = D-do) V

(Specific-type(item) = While) V

(Specific-type(item) = For) V

(Specific-type(item) = I f)

then 1

else 0 fi

Comment: I t returns 1 i f the item is a predicate. otherwise 0

funct Struct-index(item) = case Specific-type (item) of

Abort : 10

Assert : - 5

Assign : 1

Where : 1

While : 15

end

Comment: I t returns the structural complexity index of the item.

Appendix C. Syntax and Semantics of Meta-WSL Extension 279

funct If-node{item) = if Gen-type{item) = Expression V Statement V ...

Thing V Variable

then 1

else 0 fi

Comment: I t returns 1 i f the item is a node in the abstract syntax tree of the program,

otherwise 0.

funct If-statement{item) = if Gen-type{item) = Statement

then 1

else 0 fl

Comment: I t returns 1 i f the item is a statement, otherwise 0.

funct If-edge{item) = if Gen-type{item) = Actions

then - 1

else If-statement{item) fl

Comment: I t returns 1 i f the item is a statement, otherwise 0.

funct If-loov{item) = ii Specific-type{item) = D-do V Floop V ...

For V While

then 1

else 0 fi

Comment: I t returns 1 i f the item is the key word of a loop, otherwise 0.

funct If-datajitem) = {Gen-type{item) = kssd-vai:) V

{Gen-type{item) = Variable)

then 1

else 0 fi

Comment: I t returns 1 i f the item is a variable, otherwise 0.

Appendix C. Syntax and Semantics of Meta-WSL Extension 280

C.4.2 Metric: [M C C A B E

Definit ion:

funct [MCCAB^ (item) =

1 -h (-\-/If-predicate * {P E Posns(item)\Get-n(item, P)})

Comment: McCabe Complexity (MCCABE) — the number of linearly independent

circuits in a program flowgraph [116]. I t is calculated as the number of predicates plus

one.

C.4.3 Metric: [Structural

Definit ion:

funct [STRUCT] (item) =

+/Struci-index * {P E Posns(item)\Get-n(iiem, P)}

Comment: Structural (STRUCT) — the sum of the weights of every construct in

the program. The weight of each WSL construct is defined subjectively according to

experience gained by REFORM researchers and users. A loop, for example, is more

difficult to understand than an assignment statement, so a loop statement is given a

bigger weight than an assignment statement.

C.4.4 Metric: [LOC

Definit ion:

funct [LOC] (item) =

+/If-statement * {P E Posns(item)\Get-n(item, P)}

Comment: Lines Of Code(I) (LOC) — the number of statements.

C.4.5 Metric: [LOC2

Definit ion:

funct [L0C2] (Hem) =

+/If-n6de *{P E Posns(iiem)\Get-n(item, P)}

Appendix C. Syntax and Semantics of Meta-WSL Extension 281

Comment: Lines Of Code(I) (LOG) — the number of statements. Lines Of Gode(II)
(L0G2) — the number of nodes in the abstract syntax tree. This reflects the overall
size of the program.

C.4.6 Metric: [C F D F

Definit ion:

funct [CFDF] (item) =

{+/If-edge*{P G Posns{item)\Get-n{item, P)})+

{+/If-data*{P e Posns{item)\Get-n{item, P)})

Comment: Gontrol-Flow and Data-Flow Complexity (CFDF) — the number of edges

in the flowgraph plus the number of times that variables are used (defined and referred).

I t is a modification of the measure defined by Oviedo [175].

C.4.7 Metric: [BL]

Definit ion:

funct [BL] {item) =

{+/If-predicate*{P G Posns{item)\Get-n{item, P)})+

{+/If-floop *{P e Posns{item)\Get-n{item, P)})

Comment: Branch-Loop Complexity (BL) — the number of non-loop predicates plus

the number of loops. I t is a modification of the measure defined by Moawad and Hassan

[175]. The measure is sensitive both to branches and to loops.

Appendix D

Program Transformations for

Data Abstraction

D . l Deriving Records

• Split-Record-Into-Subrecords

• Join-Records

« Absorb-Single-Record-In-Record

• Variable-> Record

• One-level-Record->Variable

D.2 From Records to Data in Design Level

• Record-Of-File->Entity

• Record-Of-Top-Level->Entity

• Record- Without-Subrecord- >Entity

• ArrayOfRecord->Entities-And-Relationship

282

Appendix D. Program Transformations for Data Abstraction 283

D.3 From Code Level Data Operation to Data
Relations

• Model-OpenFile-By-QueueOP

• Model-CloseFile-By-QueueOP

• Model-EOF?-By-QueueOP

• Model-ReadFile-By-QueueOP

• Model-WriteFile-By-QueueOP

• SimpUfy-Queue-InitiaUse

• Simplify-Queue-Append

• Simplify-Queue-Remove-First

• Simply-Set-Initialise

• Simplify-Set-Insert

• Simplify-Set-Delete

• Assert-EmptySet-From-Setlnitialise

• Merge-Push-Pop

• Assert-Hd-From-Push

• Assert-EmptyStack-From-Push

• Assert-EmptyStack-From-Stacklnitialise

• Assert-StackDepth-From-Stacklnitialise

• Simplify-Stacklnitialise

• Simplify-Top

• Simplify-Depth

• Simplify-Push

• Simplify-Pop

Appendix D. Program Transformations for Data Abstraction 284

D.4 Abstraction from Code
• Find-Data-Object

• Recognise-ADT-Starting-With-Proc

• Recognise-ADT-Starting-With-Funct

• Recognise-ADT-Starting-With-Variable

• Intance->Entity

• Assign->Relate

• Remove-Useless-Relate

• Abstr act-If- Then- Else- St atement

• Abstract-If-Then-Statement

• Eliminate-Irrelevant-Statement

D.5 From User-Defined Data Type to Data

Design

• ADT->Ent i ty

D.6 Deriving Data Design from Data and Code

• Derive- Relationship- From- Foreign- Key

• D eri ve- Entity- and- Relationship- From- Code 1

• Derive- Entity- and- Relationship-From- Code2

• Derive-Entity-and-Relationship-From-Code3

Appendix D. Program Transformations for Data Abstraction 285

D.7 Manipulating Program Items
• Swap-With-Next-Record

• Create-Segment-From-Var

• Create-Paragraph-From-Var

• Create-Segment-And-Paragraph-From-Var

• Create-Var-From-Segment

• Create-Paragraph-From-Segment

• Remove-Dummy-VarStruct

• Remove-Dummy-Segment

• Remove-Dummy-Paragraph

• Swap-With-Next-Entity

• Swap-With-Next-Relationship

• Rename-Relationship

• Adjust-Relationship-Degree

• Normalise-Entity-Relationship-Diagram

References

[1] ANSI, "Report on Study Group on Database Management Systems", Interim Report,

FDT, 1975.

[2] ANSI, Standard 729, IEEE Standard Glossary of Software Engineering Terminology,

1983.

[3] Abel, P., COBOL Programming Language — A Structured Approach, Prentice-Hall

International, Inc., London, 1989.

[4] Abelson, H. and Sussman, G. J., Structure and Interpretation of Computer Programs,

The M I T Press, McGraw-Hill Book Company, 1985.

[5] Abrial, J. R., Gardiner, P. H., Morgan, C. C. and Spivey, J. M . , "A Formal Approach

to Large Software Construction", Technical Report, Programming Research Group,

Oxford, 1988.

[6] Agrawal, H. and Horgan, J. R., "Dynamic Program Slicing", ACM SIGPLAN'90

Conference on Programming Language Design and Implementation, New York , June

1990.

[7] Antonini, P., Benedusi, P., Cantone, G. and Cimitile, A., "Maintenance and Reverse

Engineering: Low-level Design Documents Production and Improvement", IEEE Con

ference on Software Maintenance-1987, Austin, Texas, 1987.

[8] Appleby, D., Programming Languages: Paradigm and Practice, McGraw-HiU Book

Company, New York, 1991.

[9] Arango, G., Baxter, I . , Freeman, P. and Pidgeon, C , " T M M : Software Maintenance

by Transformation", IEEE Software, May, 1986.

10] Arsac, J., In Foundations of Programming, Academic Press, Inc., London,' 1985.

[11] Ashworth, C. and Goodland, M . , SSADM: A Practical Approach, McGraw-Hill Book

Company, London, 1990.

286

References 287

[12] Bachman, R., A CASE for Reverse Engineering, Cahners Publishing Company, July,
1988, reprinted from DATAMATION.

[13] Back, R. J. R., "Correctness Preserving Program Refinements", Mathematical Centre

Tracts No. 131, Mathematisch Centrum, 1980.

[14] Balzer, R., "Transformational Implementation: An Example", IEEE Transactions on

Software Engineering, Vol. SE-7, No. 1, pp. 3-14 (January 1981).

[15] Balzer, R., "A 15 Year Prospective on Automatic Programming", IEEE Transactions

on Software Engineering, Vol. SE-11, No. 11, pp. 1257-1267 (November 1985).

[16] Balzer, R., Goldman, N. and Wile, D., "On the Transformational Implementation Ap

proach to Programming", The 2nd International Conference on Software Engineering,

San Francisco, California, 1976.

[17] Balzer, R. and Sartout, W., "On the Inevitable Intertwining of Specification and

Implementation", in Software Specification Techniques, Addison-Wesley Pubhshing

Company, 1986.

[18] Bauer, F. L. , Berghammer, R. and et. al., "The Munich Project CIP - The Wide

Spectrum Language CIP-L ", in Lecture Notes in Computer Science 292, Springer-

Verlag, New York, 1985.

[19] Bauer, F. L. , MoUer, B. B., Partsch, H. and Pepper, P., "Formal Program Construc

tion by Transformation — Computer-Aided, Intuition-Guided Programming", IEEE

Transactions on Software Engineering, Vol. 15, No. 2, pp. 165-180 (February 1989).

[20] Bennett, K. H. , "The Software Maintenance of Large Software Systems: Management

Method and Tools", Technical Report, Durham University, 1989.

[21] Bennett, K. H. , "An Overview of Maintenance and Reverse Engineering", in T ie

REDO Compendium, John Wiley & Sons, Inc., Chichester, 1993.

[22] Bennett, K. H. , Cornelius, B. J., Munro, M . and Robson, D. J., "Software Mainte

nance", in Software Engineer's Reference Book, Butterworth Heinemann, 1991, pp.

20/1-20/18 .

[23] Bennett, K. H., Denier, J. and Estublier, J., "Environments for Software Mainte

nance", Technical Report, Durham University, 1989.

References 288

[24] Berg, H. K., Boebert, W. E., Franta, W. R. and Moher, T. G., FormaJ Methods of
Program Verification and Specification, Prentice-Hall International, L i e , Englewood
Cliffs, New Jersey, 1982.

[25] Biggerstaff, T. J., "Design Recovery for Maintenance and Reuse", IEEE Computer,

Vol. 22, No. 7, pp. 36-49 (July 1989).

[26] Bird, R., "A Calculus of Functions for Program Derivation", Technical Monograph

PRG-64, Oxford University, 1987.

[27] Bird, R., "Lectures on Constructive Functional Programming", Technical Monograph

PRG-69, Oxford University , September, 1988.

[28] Bishop, J., Data Abstraction in Programming Languages, Addison-Wesley Publishing

Company, Wokingham, 1986.

[29] Boehm, B. W., Software Engineering Economics, Prentice-Hall International, Inc.,

Englewood Cliffs, New Jersey, 1981.

[30] Boyer, R. S. and Moore, J. S., A Computational Logic, Academic Press, Inc., New

York, 1979.

[31] Boyer, R. S. and Moore, J. S., A Computational Logic Handbook, Academic Press,

Inc., New York, 1988.

[32] Boyle, J. M . , "LISP To FORTRAN - Program Transformation Apphed", in NATO

ASI Series F: Computer and Systems Science, Vol. 8 (P.Peper, Ed.), Springer-Verlag,

1984.

[33] Breuer, P., "Tackling Reverse Engineering", Technical Report (ESPRIT Project:

2487-TN-PRG-1037), Programming Research Group, Oxford University, 1990.

[34] Breuer, P., "Inverse Engineering: The First Step Backwards", Technical Report (ES

PRIT Project: 2487-TN-PRG-1031), Programming Research Group, Oxford Univer

sity, 1990.

[35] Breuer, P., Lano, K. and Bowen, J., "Understanding Programs through Formal Meth

ods", Technical Report, Programming Research Group, Oxford University, 1991.

[36] Brown, A. , "Specifications and Reverse Engineering", Software Maintenance: Re

search and Practice, Vol. 5 , No. 3 (1993).

[37] BuU, T., "An Introduction to the WSL Program Transformer", IEEE Conference on

Software Maintenance-1990, San Diego, California, 1990.

References 289

[38] BuU, T., "Software Maintenance by Program Transformations in A Wide Spectrum
Language", Ph.D. Thesis, Durham University, 1994.

[39] Burstall, R. M . and Darlington, J. A., "A Transformation System for Developing

Recursive Programs", JournaJ of the ACM, Vol. 24, pp. 44-67 (1977).

[40] Burstall, R. M . and Goguen, J. A., "An Informal Introduction to Specifications Using

Clear", in Software Specification Techniques (N. Gehani and A. D. McGettrick,

Eds.), Addison-Wesley Publishing Company, 1986.

[41] Bush, E., "Reverse Engineering: What and Why", Software Maintenance Workshop,

Durham, 1990.

[42] CENTRISA, "Case Study No. 1: Implementation", Technical Report (ESPRIT

Project: 2487-MLCE-1020) , CENTRISA, October, 1989.

[43] Calliss, F. W., "Inter-Module Code Analysis Techniques for Software Maintenance",

Ph.D. Thesis, Durham University, 1989.

[44] Calliss, F. W., Khalil, M . , Munro, M . and Ward, M . , "A Knowledge-Based System for

Software Maintenance", IEEE Conference on Software Maintenance-1988, Phoenix,

Arizona, 1988.

[45] Canfora, G., Cimitile, A. and Munro, M . , "A Reverse Engineering Method for Identi

fying Reusable Abstract Data Type", Durham University Technical Report, Durham,

1992.

[46] Carey, J. M . , "Prototyping: Alternative Systems Development Methodology", Jhfor-

mation and Software Technology, Vol. 32, No. 2 (1990).

[47] Chen, P. P., "The Entity-Relationship Model — Toward a Unified View of Data",

, ACM Transaction on Database Systems, Vol. 1, No. 1 (March 1976).

[48] Chikofsky, E. J. and Cross, J. H., "Reverse Engineering and Design Recovery: A

Taxonomy", IEEE Software , Vol. 7 , No. 1 (1990).

[49] Claybrook, B. G., "A Specification Method for Specifying Data and Procedural Ab

straction", IEEE Transactions on Software Engineering, Vol. SE-8, No. 5 (September

1982).

[50] Cleaveland, J. C , An Introduction to Data Types, Addison-Wesley Pubhshing Com

pany, 1991.

References 290

[51] Colbrook, A. and Smythe, C, "The Retrospective Introduction of Abstraction into
Software", IEEE Conference on Software Maintenance-1989, Miami, Florida, 1989.

[52] Cross, J. H., Chikofsky, E. J. and Jr., C. H. M., "Reverse Engineering", Advances in

Computers , Vol. 35 (1992).

[53] Cutts, G., Structured Systems Analysis and Design Methodology, Paradigm Publish

ing Company, London, 1987.

[54] DTI, The Proceedings on the Fifth Refinement Workshop, London, January 1992,

sponsored by Lloyd's Register, DTI and Program Validation Limited.

[55] Date, C. J., An Jhtroduction to Database Systems, Vol. I , Addison-Wesley Publishing

Company, Manchester, 1986.

[56] Dershowitz, N., "Program Abstraction and Instantiation", ACM Transactions on

Programmings and Systems, Vol. 7, No. 3 (July 1985).

[57] Desclaux, C, "Capturing Design and Maintenance Decisions with MACS", Software

Maintenance Workshop, Durham, 1990.

[58] Desclaux, C. and Ribault, M., "MACS: Maintenance Assistance Capability for Soft

ware — A K.A.D.M.E. ", IEEE Conference on Software Maintenance-1991, Sorrento,

Italy , 1991.

[59] Dewar, R. B. K., Schonberg, E. and Schwartz, J. T., "Higher Level Programming:

Introduction to the Use of the Set-theoretic Programming Language SETL", Courant

Institute of Mathematical Science, New York University, 1981.

[60] Dijkstra, E. W., A Discipline of Programming, Prentice-Hall International, Inc., 1972.

[61] Downs, E., Clare, P. and Coe, I . , Structured Systems Analysis and Design Method

— Appiication and Context, Prentice-Hall International, Inc., London, 1988.

[62] Ejiogu, L. 0., Software Engineering with Formal Metrics, McGraw-Hill Book Com

pany, London,1991.

[63] Engberts, A., Kozaczynski, W. and Ning, J., "Concept Recognition-Based Program

Transformation", IEEE Conference on Software Maintenance-1991, Sorrento, Italy,

1991.

[64] Engeler, E., Formal Language: Automata and Structures, Markham, Chicago, 1968.

65] Fateman, R. J., "Macsyma's General Simplifier: Philosophy and Operation ", 1979

MACSYMA User's Conference, Washington D.C., June 1979.

References 291

[66] Fateman, R. J., "A Review of Macsyma ", IEEE Transactions on Knowledge and
Data Engineering, Vol. 1, No. 1, pp. 133-145 (March 1989).

[67] Feather, M. S., "A Survey and Classification of Some Program Transformation Tech

niques", in Program Specification and Transformation, Elsevier Science PubUshers,

The Netherlands, 1987, pp. 165-195.

[68] Feather, M.S., "A System for Assisting Program Transformation", ACM Transactions

on Programming Language Systems , January, 1982.

[69] Federal Information Processing Standards, "Guidelines on Software Maintenance",

U.S. Department Commerce/National Bureau of Standards, Standard FIPS PUB

106, June, 1984.

[70] Fickas, S. F., "Automating the Transformational Development of Software", IEEE

Transactions on Software Engineering, Vol. SE-11 , No. 11 (November 1985).

[71] Fisher, A. S., CASE — Using Software Development Tools, John Wiley & Sons, Inc.,

1988.

[72] Eraser, M. D., Kumer, K. and Vaishnavi, V. K., "Informal and Formal Requirements

Specification Languages: Bridging the Gap", IEEE Transactions on Software Engi

neering, Vol. SE-17, No. 5 (May 1991).

[73] Georges, M., "MACS: Maintenance Assistance Capabihty for Software", Software

Maintenance Workshop, Durham University, 1990.

[74] Ghezzi, C, "Modern Non-Conventional Programming Language Concepts", in Soft

ware Engineer's Reference Book, Butterworth Heinemann, 1991, pp. 44/1-44/16 .

[75] Ghezzi, C. and Jazayeri, M., Programming Language Concepts (2nd Edn.), John

Wiley & Sons, Inc., 1987 .

[76] Gilb, T., "A Comment on the Definition of Reliability", ACM Software Engineering

Notes, Vol. 4, No. 3 (July 1979).

[77] Gilmore, D. J., "Models of Debugging", Fifth European Conference on Cognitive

Ergonomics, Urbino, Italy, September, 1990.

[78] Goguen, J. A. and Tardo, J. J., "An Introduction to OBJ: A Language for Writ

ing and Testing Formal Algebraic Program Specifications", in Software Specification

Techniques, Addison-Wesley Publishing Company, 1986.

References 292

[79] Good, D. I . , London, R. L. and Bledsoe, W. W., "An Interactive Program Verification
System", IEEE Transactions on Software Engineering, Vol. SE-1 (March 1975).

[80] Goos, G. and Hartmanis, J., Program Construction — Lecture Notes in Computer

Science, Vol. 69, Soringer-Verlag, 1979.

[81] Gray, P. M. D., Logic, Algebra and Databases, EUis Horwood Limited, Chichester,

1984.

[82] Guttag, J. v., "The Specification and Application to Programming of Abstract Data

Type", Ph.D Thesis, Department of Computer Science, University of Toronto, 1975.

[83] Guttag, J. V. and Horning, J. J., "Preliminary Report on the Larch Shared Lan

guage", Technical Report (CSL-83-6), Xerox PARC, 1983.

[84] Hall, A., "Seven Myths of Formal Methods", IEEE Software, September, 1990.

[85] Hawksley, C, "Coercion in Class-Based Software Environments", Ph.D. Thesis, Keele

University, 1987.

[86] Hayes, I . , Specification Case Studies, Prentice-Hall International, Inc., 1987.

[87] Hayes, I . and Jones, C. B., "Specifications Are Not (Necessarily) Executable", Tech

nical Report (UMCS-89-12-1), University of Manchester, 1989.

[88] Hoare, C. A. R., "Proof of A Structured Program: The Sieve of Eratosthenes", Com

puter , Vol. 14, No. 4 (1972).

[89] Hoare, C. A. R., "Notes on Data Structuring", in Structured Programming, Academic

Press, Inc., London, 1972.

[90] Horebeek, I . V. and Lewi, J., Algebraic Specifications in Software Engineering,

Springer-Verlag, Berlin, 1989.

[91] Hutty, R., COBOL 85 Programming, MacmiUan Education Ltd., London, 1990.

[92] Inglis, J., COBOL 85 for Programmers, John Wiley & Sons, Inc., Chichester, 1989.

[93] Jones, C. B., Systematic Software Development Using VDM, Prentice-HaU Interna

tional, Inc., London, 1986.

[94] Kant, E., "Efficient Synthesis of Efficient Programs", in Artificial Intelligence and

Software Engineering, 1986, pp. 157-188.

[95] Kemmerer, R. A., "Integrating Formal Methods into the Development Process", IEEE

Software, September, 1990 .

References 293

[96] Kljaich, J., Smith, B. T. and Wojcik, A. S., "Formal Verification of Fault Tolerance
Using Theorem Proving Techniques", IEEE Transaction on Computers, Vol. 38 , No.
3 (March 1989).

[97] Knuth, D. E., The TEKhook, Addison Wesley Publishing Company, Reading, Mas

sachusetts, June, 1986.

[98] Kopetz, H., Software Reliability, Springer-Verlag, 1979.

[99] Lamport, L., M g X ; A Document Preparation System, Addison Wesley PubUshing

Company, Reading, Massachusetts, 1986.

[100] Lano, K. and Breuer, P., "Reverse-Engineering and Validating COBOL", Techni

cal Report (ESPRIT Project: 2487-TN-PRG-1049), Programming Research Group,

Oxford University, 1991.

[101] Lano, K. and Breuer, P. T., "From Programs to Z Specifications", Technical Report

, Oxford University, 1990.

[102] Lano, K., Breuer, P. T., Haughton, H. and Estdale, J., "Reverse-Engineering COBOL

Via Formal Methods", in TAe REDO Handbooi, August, 1991.

[103] Lano, K. and Haughton, H., "Applying Formal Methods to Maintenance", Techni

cal Report (ESPRIT Project: 2487-TN-PRG-1042), Programming Research Group ,

Oxford University, 1990.

[104] Layzell, P. J., "The Identification and Management of Latent Software Assets", In

ternational JournaJ of Information Management, Vol. 14, No. 6, pp. 427-442 (1994).

[105] Lehman, M. M., "Programs, Life Cycles, and Laws of Software Evolution", Proc.

IEEE, Vol. 68, No. 9 (1980).

[106] Lientz, B. P. and Swanson, E. B., Software Maintenance Management, Addison-

Wesley Publishing Company, 1980.

[107] Lindsay, P. A., Moore, R. C. and Ritchie, B., "Review of Existing Theorem Trovers",

Technical Report (UMCS-87-8-2), Department of Computer Science, University of

Manchester, 1989.

[108] Liskov, B. and Berzins, V., "An Appraisal of Program Specifications", in Software

Specification Techniques (N. Gehani and A. McGettrick, Eds.), Addison-Wesley Pub

lishing Company, 1979.

References 294

[109] Liskov, B. and Guttag, J., Abstraction and Specification in Program Development,
The MIT Press, McGraw-Hill Book Company, 1986.

[110] Liskov, B. and ZiUis, S. N., "Specification Techniques for Data Abstractions", IEEE

Transaction on Software Engineering, March, 1975.

[I l l] Manna, Z. and Waldinger, -., "A Deductive Approach to Program Synthesis", ACM

Transactions on Programming Language Systems, February, 1980.

[112] Markowitz, V. and Makowsky, J. A., "Identifying Extended Entity-Relationship Ob

ject Structures in Relational Schemas", ACM Ti-ansactions on Software Engineering,

Vol. 16, No. 8, pp. 777-790 (August 1990).

[113] Markowitz, V. and Shoshani, A., "Representing Extended Entity-Relationship Struc

tures in Relational Databases: A Modular Approach", ACM Ti-ansactions on Database

Systems, Vol. 17, No. 3, pp. 423-464 (September 1992).

[114] Martin, J. and McClure, C, Structured Techniques for Computing, Prentice-HaU

International, Inc., Englewood Cliffs, New Jersey, 1985.

[115] Masso, S., "The Power of Algebraic Proofs", M.Sc. Thesis, Computing Laboratory,

Oxford University, 1988.

[116] McCabe, T. J., "A Complexity Measure", IEEE Transaction on Software Engineering,

Vol. SE-2, No. 4, pp. 308-320 (December 1976).

[117] McCall, J., Richards, P. and Walters, G., "Factors in Software Quality", NTIS,

November, 1977.

[118] McGettrick, A. D., Program Verification Using Ada, Cambridge University Press,

London,1982.

[119] McMorran, M. A. and Nicholls, J. E., "Z User Manual", Technical Report, IBM (UK)

Laboratories, Winchester, England, July, 1989.

[120] Meek, B. L., "Software Maintenance", in Software Engineer's Reference Book, But-

terworth Heinemann, 1991, pp. 43/1-43/17.

[121] Morgan, C, Programming from Specification, Prentice-Hall International, Inc., 1990.

[122] Morgan, C, "The Specification Statement", ACM H-ansaction on Programming Lan

guages and Systems, Vol. 10, No. 3, pp. 403-419 (July 1988).

[123] Moriconi, M. S., "A Designer/Verifier's Assistant", IEEE Transactions on Software

Engineering, Vol. SE-5, No. 4, pp. 387-401 (July 1979).

References 295

[124] Morris, J., "Type Are Not Sets", Proceedings of First ACM Symposium on Principles
of Programming Languages, New York, 1973.

[125] Naur, P. and RandeU, B., Software Engineering: A Report on A Conference Sponsored

by the NATO Science Committee, NATO, 1969.

[126] Nielsen, M., Havelund, K. and Wagner, K., "The RAISE Language, Method and

Tools", Formal Aspects of Computing, 1989.

[127] Noonan, R. E., "Structured Programming and Formal Specification", IEEE Transac

tions on Software Engineering , Vol. SE-1, pp. 421-425 (December 1975).

[128] Oman, P., "Maintenance Tools", IEEE Software, May, 1990.

[129] Partsch, H., Specification and Transformation of Programs, Springer-Verlag, London,

1990.

[130] Partsch, H. and Steinbruggen, R., "Program Transformation Systems", Computing

Surveys, Vol. 15, No. 3, pp. 198-236 (September 1983).

[131] Pratt, T. W., Programming Languages; Design and Impiementation (2Edn.), Prentice-

HaU International, Inc., London, 1984.

[132] Pressman, R. S., Software Engineering — A Practitioner's Approach, McGraw-HaU

Book Company, New York, 1987.

[133] Ramamoorthy, C. V., Prakash, A., Tsai, W. and Usuda, Y., "Software Engineering:

Problems and Perspectives ", IEEE Computer, October, 1984.

[134] RatclifF, B., Software Engineering Principles and Methods, BlackweU Scientific Pub

lications, Oxford, 1987.

[135] Reddy, U. S., "Transformational Derivation of Programs Using the FOCUS System",

ACM Symposium on Software Development Environments, December, 1988.

[136] Robson, D. J., Bennett, K. H., Cornelius, B. J. and Munro, M., "Approaches to

Program Comprehension", Journal of Systems Software, 1991.

[137] Sannella, D., "A Survey of Formal Software Development Methods", Expository Re

port, Laboratory for Foundations of Computer Science, University of Edinburgh,

1988.

[138] Sannella, D., "Toward Formal Development of ML Programs: Foundations and Method

ology", Expository Report, Laboratory for Foundations of Computer Science, Uni

versity of Edinburgh, 1989.

References 296

[139] SanneUa, D. and Tarlecki, A., "Extended ML: An Institution-independent Framework
for Formal Program Development", Expository Report, Laboratory for Foundations
of Computer Science, University of Edinburgh, 1986.

[140] SanneUa, D. and Tarlecki, A., "Toward Formal Development of Programs from Alge

braic Specification: Implementation Revisited", ACTA Informatica, 1988.

[141] Shaw, M., "Abstraction Techniques in Modern Programming Languages Empirical

Studies of Programming Knowledge", IEEE Transaction on Software Engineering,

Vol. SE-10, No. 5, pp. 595-609 (September 1984).

[142] Smith, D. R. and Pressburger, T. T., Knowiedge-Based Software Development Toois,

Kestrel Institute, California, September, 1986.

[143] Sneed, H. M., Software Engineering Management, Ellis Horwood Limited, Chichester,

1989.

[144] Sneed, H. M. and Jandrasics, G., "Inverse Transformation of Software from Code to

Specification", IEEE Conference on Software Maintenance-1988, Phoenix, Arizona,

1988.

[145] Soloway, E. and Ehrlich, K., "Empirical Studies of Programming Knowledge", IEEE

Transaction on Software Engineering, Vol. SE-10, No. 5, pp. 595-609 (September

1984).

[146] SommerviUe, I . , Software Engineering (3rd Edn.), Addison-Wesley Publishing Com

pany, Wokingham, 1989.

[147] Spivey, J. M., Understanding Z, Cambridge University Press, 1988.

[148] Spivey, J. M., The Z Notation, Prentice-HaU International, Inc., London, 1989.

[149] Swanson, E. B., "The Dimension of Maintenance", Second International Conference

on Software Engineering, Los Alamitos, California, 1976.

[150] Szeto, E. and Markowitz, V., ERDRAW: A Graphical Schema Specification Tool

Reference Manual, Lawrence Berkeley Laboratory, Berkeley, California, May, 1991.

[151] Wand, I . C , "Features of Modern Imperative Programming Languages", in Software

Engineer's Reference Book, Butterworth Heinemann, 1991.

[152] Ward, M., "Transforming A Program into A Specification", Technical Report, Durham

University, 1988.

References 297

[153] Ward, M., "Constructive Specifications and Program Transformations", Technical
Report, Durham University, 1988.

[154] Ward, M., "A Catalogue of Program Transformations", Technical Report, Durham

University, 1988.

[155] Ward, M., "Proving Program Refinements and Transformations", Ph.D. Thesis, Ox

ford University, 1989.

[156] Ward, M., Munro, M. and Calliss, F. W., "The Maintainer's Assistant", IEEE Con

ference on Software Maintenance-1989, Miami, Florida, 1989.

[157] Wasserman, A. I . , "Software Engineering Environments", Advances in Computers,

VoL 22 (1983).

[158] Waters, R. C, "The Programmer's Apprentice: Knowledge Based Program Editing",

IEEE Transactions on Software Engineering, Vol. SE-8, No. 1 (January 1982).

[159] Watt, D. A., Programming Language Syntax and Semantics, Prentice-Hall Interna

tional, Inc., 1991.

[160] Weiser, M., "Program Slicing ", IEEE Transactions on Software Engineering, Vol.

SE-10, No. 4, pp. 352-257 (July 1984).

[161] WhysaU, P., "Refinement", in Software Engineer's Reference Book, Butterworth Heine

mann, 1991.

[162] Wilde, N. and Thebaut, S. M., "The Maintenance Assistant: Work in Progress", Tie

Journal of Systems and Software, Vol. 9 , No. 1 (January 1989).

[163] Wirth, N., "Program Development by Stepwise Refinement", CACM, Vol. 14, No. 4

(1971).

[164] Yang, H., "How Does the Maintainer's Assistant Start? ", Technical Report, Durham

University, 1989.

[165] Yang, H., "The Specification of Program Structure Database Queries", REFORM

Research Group, Durham University, 1991.

[166] Yang, H., "Software Maintenance in Europe and the Maintainer's Assistant", Invited

Paper, Conference on Software Engineering Technology, Hong Kong, June, 1994.

[167] Yang, H., "The Supporting Environment for A Reverse Engineering System — The

Maintainer's Assistant", IEEE Conference on Software Maintenance-1991, Sorrento,

Italy, October, 1991.

References 298

[168] Yang, H., "Formal Methods and Software Maintenance — Some Experience With the
REFORM Project", Position Paper, Workshop on Formal Methods, Montery, USA,
September, 1994. .

[169] Yang, H. and Bennett, K. H., "Extension of A Transformation System for Mainte

nance — Dealing With Data-Intensive Programs", IEEE International Conference on

Software Maintenance (ICSM '94), Victoria, Canada, September, 1994.

[170] Yang, H., BuU, T. and Bennett, K. H., "A Transformation System for Maintenance

— Turning Theory into Practice", IEEE Conference on Software Maintenance-1992,

Orlando, Florida, November, 1992.

[171] Yang, H. and Chu, W. C, "Component Reuse Through Reverse Engineering and Se

mantic Interface Analysis", Accepted by The 19th IEEE Annual Computer Software

Application Conference (CompSac '95), DaUas, Texas, August, 1995.

[172] Yang, H., Luqi and Zhang, X., "Constructing An Automated Testing Oracle: An

Effort to Produce Reliable Software", The 18th IEEE Annual Computer Software

AppUcation Conference (CompSac '94), Taipei, Taiwan, November, 1994.

[173] Yau, S. S. and CoUofeUo, J. S., "Some Stabihty Measures For Software Maintenance",

IEEE Transactions on Software Engineering, Vol. SE-6, No. 6 (November 1980).

[174] Zimmer, J. A., "Restructuring for Style", Software — Practice and Experience, Vol.

20, No. 4, pp. 365-389 (April 1990).

[175] Zuse, H., Software Complexity — Measures and Methods, Walter de Gruyter, New

York, 1991.

