
THÈSE NO 1664 (1997)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE AU DÉPARTEMENT D'INFORMATIQUE

POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

Ingénieur informaticien diplômé EPF

originaire de Lausanne (VD)

acceptée sur proposition du jury:

Prof. A. Strohmeier, directeur de thèse
Dr D. Buchs, corapporteur

Prof. P. Estraillier, corapporteur
Dr R. Guerraoui, corapporteur

Prof. B. Hirsbrunner, corapporteur
Prof. Ch. Rapin, corapporteur

Lausanne, EPFL
1997

AN INCREMENTAL PROTOTYPING METHODOLOGY
FOR DISTRIBUTED SYSTEMS BASED

ON FORMAL SPECIFICATIONS

Geir Jarle HULAAS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147898963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

There are indeed two labyrinths of the human mind:
One concerns the composition of continuum,

the other the nature of freedom;
and both take their source at the very infinity.

De Libertate, Gottfried Wilhelm Leibniz (1646-1716)
i

iii

To Sandra

v

Acknowledgements

I am especially grateful to Professor Alfred Strohmeier who accepted the responsibility of
being my advisor; I particularly appreciated his concern to ensure the best possible condi-
tions for my research. It was a pleasure to be supported by his constant enthusiasm.

According to Knuth, natural computer scientists are « individuals who can rapidly change
levels of abstraction, simultaneously seeing things “in the large” and “in the small” ». My
scientific supervisor, Dr. Didier Buchs, positively has this quality. Didier provided me with
the right balance of guidance and freedom to fulfill this work. His friendliness undoubtedly
contributed to the success of this undertaking.

I would like to thank Professor Pascal Estraillier, Dr. Rachid Guerraoui, Professor Beat
Hirsbrunner and Professor Charles Rapin for their effort to criticize my work, which was
often only partly overlapping their respective research areas.

My sincere thanks to Professor Charles Rapin who also gave me the opportunity to work
in his team and to make my first steps as a teacher and researcher.

I am indebted to Professor Jean-Daniel Nicoud for setting me in contact with Didier when
I was searching for a subject in accordance with my interests and which could lead to a
thesis.

The work presented here has depended a lot on my colleagues and friends from Didier’s
ConForM group. In particular, I would like to mention Pascal Racloz for patiently reading
and listening to my (sometimes chaotic) ideas, and Nicolas Guelfi for providing his high-
level view of the semantics of CO-OPN. Mathieu Buffo certainly did a great job for the
implementation of the SANDS environment. Cécile, Giovanna, Julie, Christophe, Jacques,
Olivier and Stéphane also contributed to the friendly atmosphere in the group.

Finally I would like to thank my wife Sandra to whom I dedicate this thesis and the
members of my family who encouraged me to pursue these long studies.

This work was funded by the Swiss Federal Institute of Technology of Lausanne, the Euro-
pean Esprit Long Term Research Project 20072 “Design for Validation” (DeVa) through the
Swiss OFES (Office Fédéral pour l’Education et la Science), and the Swiss National
Science Foundation project 2000.40583.94 “Formal Methods for Concurrency”.

vii

Abstract

This thesis presents a new incremental prototyping methodology for formally specified
distributed systems. The objective of this methodology is to fill the gap which currently
exists between the phase where a specification is simulated, generally using some sequen-
tial logical inference tool, and the phase where the modeled system has a reliable, efficient
and maintainable distributed implementation in a main-stream object-oriented program-
ming language. This objective is realized by application of a methodology we call Mixed
Prototyping with Object-Orientation (in short: OOMP). This is an extension of an existing
approach, namely Mixed Prototyping, that we have adapted to the object-oriented paradigm,
of which we exploit the flexibility and inherent capability of modeling abstract entities.

The OOMP process proceeds as follows. First, the source specifications are automatically
translated into a class-based object-oriented language, thus providing a portable and high-
level initial implementation. The generated class hierarchy is designed so that the developer
may independently derive new sub-classes in order to make the prototype more efficient or
to add functionalities that could not be specified with the given formalism. This prototyping
process is performed incrementally in order to safely validate the modifications against the
semantics of the specification. The resulting prototype can finally be considered as the end-
user implementation of the specified software.

The originality of our approach is that we exploit object-oriented programming techniques
in the implementation of formal specifications in order to gain flexibility in the develop-
ment process. Simultaneously, the object paradigm gives the means to harness this newly
acquired freedom by allowing automatic generation of test routines which verify the
conformance of the hand-written code with respect to the specifications.

We demonstrate the generality of our prototyping scheme by applying it to a distributed
collaborative diary program within the frame of CO-OPN (Concurrent Object-Oriented
Petri Nets), a very powerful specification formalism which allows expressing concurrent
and non-deterministic behaviours, and which provides structuring facilities such as modu-
larity, encapsulation and genericity.

An important effort has also been accomplished in the development or adaptation of distrib-
uted algorithms for cooperative symbolic resolution. These algorithms are used in the run-
time support of the generated CO-OPN prototypes.

ix

Résumé

Cette thèse présente une nouvelle méthodologie de prototypage incrémental pour systèmes
répartis spécifiés formellement. L’objectif de cette méthodologie est de combler le vide qui
existe actuellement entre la phase où la spécification est simulée, généralement au moyen
d’un outil d’inférence séquentiel, et la phase où le système modélisé possède une implé-
mentation répartie, dans un langage de programmation à objets courant, et qui soit fiable,
efficace et permettant la maintenance. Cet objectif est atteint par l’application d’une
méthodologie que nous appelons le prototypage mixte à objets (sigle anglais: OOMP). Il
s’agit d’une extension d’une approche existante, le prototypage mixte, que nous adaptons au
paradigme objet dont nous exploitons la flexibilité et la capacité inhérente à modéliser des
entités abstraites.

Le processus OOMP se déroule comme suit. Premièrement, les spécifications sources sont
automatiquement traduites dans un langage à objets à structure de classes, fournissant ainsi
une implémentation initiale portable et de haut niveau. La hiérarchie de classes générée est
conçue de manière à laisser au développeur la liberté de dériver de façon indépendante de
nouvelles sous-classes afin de rendre le prototype plus efficace ou pour ajouter des fonc-
tionnalités qui ne peuvent pas être spécifiées dans le formalisme choisi. Ce processus de
prototypage est poursuivi par petits incréments, ce qui permet de valider chaque étape par
rapport à la sémantique de la spécification. Le prototype résultant peut finalement être
considéré comme l’implémentation définitive du logiciel spécifié.

L’originalité de notre approche réside dans l’exploitation de techniques de programmation
par objets pour l’implémentation de spécifications formelles afin d’augmenter la flexibilité
dans le processus de développement. Simultanément, le paradigme objet donne aussi les
moyens de maîtriser cette liberté nouvellement acquise en autorisant la génération automa-
tique de routines de test qui vérifient la conformité du code écrit à la main par rapport aux
spécifications.

Nous démontrons la généralité de notre méthode de prototypage par son application à un
programme d’agenda collaboratif réparti; cet exercice est effectué dans le cadre de CO-
OPN (Concurrent Object-Oriented Petri Nets), un formalisme de spécification très puissant
qui permet d’exprimer des comportements concurrents et non-déterministes, et qui fournit
de riches possibilités de structuration telles que modularité, encapsulation et généricité.

Un important travail a également été accompli pour développer ou adapter des algorithmes
répartis pour la résolution symbolique coopérative. Ces algorithmes sont utilisés dans le
support d’exécution des prototypes générés sur la base de spécifications CO-OPN.

Table of Contents

Chapter 1
Introduction

1.1 Our Motivation . 1
1.2 An Interesting Initial Solution: Mixed Prototyping . 2
1.3 Methodological Contributions. 3
1.4 Technical Contributions . 3
1.5 Structure of the Report . 4

Chapter 2
An Incremental Prototyping Methodology based on Formal Specifications

2.1 Foreword . 5
2.2 Introduction . 6
2.3 Prototyping in the Software Development Cycle . 7
2.4 Incremental and Heterogeneous Prototyping . 10
2.5 Mixed Prototyping. 12
2.6 Contributions of the Object-Oriented Paradigm . 15

2.6.1 A Class-Based Decomposition of Functionalities 15
2.6.2 The Flexibility of Prototype Objects . 17

2.7 The Incremental Prototyping Process . 20
2.7.1 Why Object-Oriented Design is Necessary . 24

2.8 An Error Detection Scheme for the Concrete Code . 24
2.9 Rationalization of Memory Management . 26
2.10 Assessment of OOMP . 27

2.10.1 Conditions for Semantic Validity. 27
2.10.2 Implementation of Object-Oriented Formalisms 29
2.10.3 The Inheritance Anomaly in Target Languages 30
2.10.4 Possible Sources of Inefficiency at Run-Time. 30

2.11 Putting OOMP to Work. 32
2.11.1 General View of the Prototyping Tool . 32
2.11.2 The Annotation File . 33

2.12 Open Problems and Possible Extensions . 34
2.13 Related Work. 35

2.13.1 Incremental and Heterogeneous Prototyping. 36
2.13.2 Related Work in Executable Assertions. 39

2.14 Epilogue . 40
xi

Chapter 3
The CO-OPN Specification Language

3.1 Introduction . 41
3.2 Historical Background. 42
3.3 Introductory Example: The Collaborative Diary . 43
3.4 CO-OPN Syntax . 50

3.4.1 Signature and Interface . 50
3.4.2 Variables, Terms and Equations . 51
3.4.3 Adt Module . 52
3.4.4 Multi-Sets. 53

3.5 CO-OPN Objects and Synchronizations . 53
3.5.1 Behavioral Axioms . 54
3.5.2 Object Module . 57
3.5.3 N-tuples as Tokens and Net Inscriptions . 57
3.5.4 CO-OPN Specification. 58

3.6 CO-OPN Semantics. 59
3.6.1 Algebras and Multi-set Extension . 59
3.6.2 Object States. 60
3.6.3 Inference Rules . 62
3.6.4 Partial Semantics of an Object . 62
3.6.5 Semantics of a CO-OPN Specification . 66
3.6.6 Semantic Discussion About the Diary Example 75
3.6.7 Anti-Inheritance of Instability . 77
3.6.8 Compositional Properties of CO-OPN Semantics 80
3.6.9 Summary of the Structured Operational Semantics of CO-OPN. 82

3.7 Refinement . 82
3.8 A Characterization of CO-OPN Events . 84

3.8.1 Method Calls Viewed as Rendez-Vous . 84
3.8.2 About Instantaneity and Strong Synchrony . 85
3.8.3 Ordering of Events in CO-OPN. 86
3.8.4 Kinds of Non-Determinism in CO-OPN . 87

3.9 Epilogue . 89

Chapter 4
Operational Semantics of AADTs

4.1 Introductory Example . 91
4.2 Rewrite Systems . 93
4.3 Semantics of the Source Language . 95
4.4 Semantics of the Target Language . 97
xii

4.4.1 Object-oriented features of the target language 101
4.5 The Compilation Algorithm . 102
4.6 Low-Level Optimizations . 104
4.7 Restrictions in Modular Specifications . 105
4.8 Compilation of Algebraic Terms in Petri Nets . 107
4.9 Epilogue . 109

Chapter 5
Prototyping of AADTs

5.1 Introduction . 111
5.2 General Mapping Rules. 111
5.3 An Example in Ada95 . 113

5.3.1 The Abstract Class . 113
5.3.2 The Symbolic Class . 117
5.3.3 The Concrete Class . 119
5.3.4 Implementation of a Concrete Class . 120

5.4 Special Cases of Mapping . 122
5.4.1 Derived Operations Not Having the Sort of Interest in Their Profile 122
5.4.2 Modules Without Sort Definitions . 123
5.4.3 Modules Defining Several Sorts . 123
5.4.4 Generic Modules . 124
5.4.5 Generic Parameter Modules. 124
5.4.6 Renaming and Morphisms . 125

5.5 About the Reliance Upon Generator Inverses. 127
5.6 Other Uses of Object-Orientation . 128

5.6.1 Redefinition of Input-Output Operations . 128
5.6.2 Subtyping . 129
5.6.3 Coercion . 129

5.7 Automatic Verification of Concrete Code. 130
5.8 Related Work in Compilation of AADTs . 132
5.9 Epilogue . 133

Chapter 6
Operational Semantics of CO-OPN Objects

6.1 Introduction . 135
6.2 General Implementation Model . 136

6.2.1 A Simple Example . 137
6.2.2 Structure of the Generated Prototypes . 138
xiii

6.2.3 Environment of a Distributed Prototype . 141
6.3 The Concurrency Control Layer . 143

6.3.1 Representing Synchronizations as State Diagrams 143
6.3.1.1 The Basic Synchronization . 143
6.3.1.2 The Sequential Synchronization . 144
6.3.1.3 The Simultaneous Synchronization . 145
6.3.1.4 The Alternative Synchronization . 146

6.3.2 Events viewed as Nested Transactions . 147
6.3.2.1 Failure Atomicity of the CO-OPN Model 147
6.3.2.2 Concurrency Atomicity of CO-OPN Implementations 148
6.3.2.3 Origin and Characteristics of Nested Transactions. 149
6.3.2.4 The Locking Protocol . 151
6.3.2.5 The Two Phase Commit Protocol . 155
6.3.2.6 Deadlock Avoidance . 156

6.3.3 Detection of Stability and Termination . 157
6.3.4 The Synchrony Hypothesis in an Asynchronous Environment 158

6.3.4.1 The Optimisitic Approach to Simultaneity. 158
6.3.4.2 The Notion of Synchronization Vector 159
6.3.4.3 How to Compute the Context of an Invocation 165

6.3.5 The Global Stabilization Process . 167
6.3.5.1 Identifying Stabilization Requests . 167
6.3.5.2 Organization and Optimization of The Stabilization Process. 169
6.3.5.3 Finalizing the Synchronization and Stabilization 173

6.3.6 Distributed Prototype Startup. 174
6.3.6.1 Establishment of a Total Order . 174
6.3.6.2 Stabilization at Startup . 174

6.4 The Resolution Layer . 175
6.4.1 Solving CO-OPN Events by Resolution . 175
6.4.2 Parallel and Distributed Prolog Variants . 175

6.4.2.1 Process-Based Prolog Extensions. 175
6.4.2.2 And-Parallel Implementations of Prolog 176

6.4.3 Assignment of Object and Request Priorities 178
6.4.3.1 The Problem of Deep Backtracking . 179
6.4.3.2 The Search within Sequences and Stabilizations 182

6.4.4 Levels of Parallelism Allowed by the Resolution Layer 183
6.5 The Generated Code . 184

6.5.1 Overview of the Model Structural Description Layer 184
6.5.2 The Application Layer . 185

6.5.2.1 General Objectives . 185
6.5.2.2 Mixing Procedural and Logic Styles 185
6.5.2.3 Taking Concurrency into Account . 189

6.6 Related Work. 190
6.6.1 Fault-Tolerance in Executable Specifications and Logic
xiv

Programming . 190
6.6.2 Distributing Strong Synchronous Systems. 191
6.6.3 Compilation of Petri Nets and Algebraic Petri Nets 191

6.7 Epilogue . 192

Chapter 7
Prototyping the Object Application Layer

7.1 Introduction . 195
7.2 General Mapping Rules. 195
7.3 Range of Action in the Prototyping of Objects . 196

7.3.1 Changing the Implementation of Places . 196
7.3.2 Guiding the Search. 197
7.3.3 Modifying the Synchronizations . 197

7.4 An Example of Prototyping. 198
7.4.1 The Abstract Class for Object DAL. 198
7.4.2 Prototyping of Method Act in Object DAL . 199
7.4.3 Possible Extensions . 201

7.5 Automatic Verification of Concrete Classes . 203
7.6 Epilogue . 204

Chapter 8
Conclusion

8.1 Overview of Results . 205
8.2 Limitations of our Approach . 207
8.3 Perspectives and Open Problems . 208

Bibliographic References . 209

Appendix A. Major Control Algorithms for CO-OPN . 225
A.1 Some Relations Between Method Calls . 225
A.2 Basic Synchronization Algorithms . 226
A.3 The Stabilization Procedure . 228
A.4 Internal Structure for Managing Synchronizations . 234

Appendix B. Messages Supported by the Control Layers 237
xv

Appendix C. Compilation of CO-OPN Objects. 239
C.1 Semantics of the Source Language . 239
C.2 Semantics of the Target Language . 244
C.3 Compilation of Behavioural Axioms . 246
C.4 Summary of Restrictions to CO-OPN Objects . 255

Appendix D. The Collaborative Diary Specification. 257

Appendix E. An Execution Cycle of the Collaborative Diary 267

Curriculum Vitae & Publications . 271
xvi

List of Figures

Chapter 2. An Incremental Prototyping Methodology based on Formal Specifications

Figure 1. The Software Life Cycle . 6
Figure 2. The Continuous Model . 10
Figure 3. The Concept of Mixed Prototyping . 13
Figure 4. Object-Oriented View of Mixed Prototyping. 15
Figure 5. Role of the Configuration Module . 18
Figure 6. Detailed View of the OOMP Class Pattern . 19
Figure 7. Activities and Formalisms within SANDS/CO-OPN 21
Figure 8. Our Proposal for an Incremental Prototyping Methodology 23
Figure 9. Position of the Testor Class in the Hierarchy. 25
Figure 10. The Continuous Evolution from Symbolic+Abstract to Concrete. 28
Figure 11. A Possible Implementation of Specified Inheritance. 29
Figure 12. Operations and Outputs in the Prototyping Tool . 33
Figure 13. Annotation File for Object Network . 34

Chapter 3. The CO-OPN Specification Language

Figure 14. Module Enrichment Relationships of the Diary Specification 44
Figure 15. Global View of Synchronizations in the Control of a Collaborative Diary . . 45
Figure 16. An algebraic Petri net: Internal view of object DAL. 46
Figure 17. Partial Specification of Object DAL . 47
Figure 18. Specification of Adt Event. 49
Figure 19. CO-OPN Object as Abstraction of the Network . 57
Figure 20. Algebraic Net Formulation of the Dining Philosophers Problem 64
Figure 21. CO-OPN Source for the Representation of Figure 20 65
Figure 22. The System of Dining Philosophers After p1 Having Taken his Forks. 66
Figure 23. A Problematic Case for the Total Order. 69
Figure 24. State Graph Construction for SemA((Ob ∪ Oa) ∪ Ot) 70
Figure 25. State Graph Construction for SemA((Ob ∪ Ot) ∪ Oa) 71
Figure 26. Object with Recursive Method Calls . 73
Figure 27. Derivation Tree for a Sequence with Recursive Method Calls 73
Figure 28. Divider Object with Internal Transitions . 74
Figure 29. Derivation Tree for a Sequential Synchronization with Divider Object 75
Figure 30. Specification of Object ADR . 76
Figure 31. Stability of an Object in Relation with an Enclosing Event 78
Figure 32. Evaluation of Invocation m2 . 79
xvii

Figure 33. Generic Derivation Tree for rule Beh-Seq . 81
Figure 34. Generic Derivation Tree for rule Beh-Sim. 81
Figure 35. Generic Derivation Tree for rule Beh-Alt . 81
Figure 36. Generic Derivation Tree for rule Sync. 82
Figure 37. Different Forms of Concurrency . 87

Chapter 4. Operational Semantics of AADTs

Figure 38. Specification of a Stack of natural numbers . 92
Figure 39. Ada95 Code Generated for Operation top . 92
Figure 40. Semantics of Rewr . 96
Figure 41. Semantics of Apply . 96
Figure 42. Semantics of Eval for Domain TLE . 100
Figure 43. Semantics of Eval for Domain TLB. 100
Figure 44. Rules for Compile For . 103
Figure 45. Rules for CompileRH . 104
Figure 46. Matching Function for the Constructor “push_on” 108

Chapter 5. Prototyping of AADTs

Figure 47. Partial Specification of Naturals . 113
Figure 48. Type Declarations and Class Methods for Naturals. 114
Figure 49. Declaration of Constructor Function zero . 114
Figure 50. Invoking Constructor zero in Ada95 and C++. 115
Figure 51. Definition of Wrapper for Constructor Function zero 115
Figure 52. Declaration of Generator and Generator Inverse for Succ. 115
Figure 53. Declaration of Generator and its Associated Enumerated Type 115
Figure 54. Some Predefined Operations . 116
Figure 55. The Defined Operations of the Specification. 116
Figure 56. Declaration of the Specified Operations . 116
Figure 57. Private Declarations of the Abstract Class. 116
Figure 58. Specification of Addition on Naturals . 117
Figure 59. Abstract Ada95 Implementation of Addition . 117
Figure 60. Package Specification of the Symbolic Natural Class 118
Figure 61. Pseudo-code for an Optimized Symbolic Implementation of Addition. . . . 118
Figure 62. Specializing the Symbolic Class . 119
Figure 63. A Concrete Implementation of Addition . 119
Figure 64. Incorporation of a Concrete Class . 120
Figure 65. Concrete Implementation of Constructor succ . 120
Figure 66. Concrete Implementation of succ-inverse . 121
Figure 67. Concrete Version of the Function Generator . 121
xviii

Figure 68. Providing a Prototype Object for Concrete_Natural 121
Figure 69. Partial Signature of a Hash Table Specification. 122
Figure 70. Signature of Nat-Fact . 123
Figure 71. Signature of Tree-of-Info . 123
Figure 72. Partial Definition of a Parameter Module . 125
Figure 73. Specification of a Generic Module Instantiation . 125
Figure 74. Mapping into Ada95 of the Renaming of a Defined Operation. 126
Figure 75. Default Textual I/O Routines used by Concrete_Natural 128
Figure 76. Pseudo-code for Testing the Concrete “+” Operator 130

Chapter 6. Operational Semantics of CO-OPN Objects

Figure 77. A simple Example . 138
Figure 78. Messages Exchanged for the Execution of the Simple Example. 138
Figure 79. General Prototype Architecture . 139
Figure 80. CO-OPN Object Implementation Model . 140
Figure 81. A CO-OPN Specification and its Environment . 141
Figure 82. State Diagram for the Basic Synchronization . 143
Figure 83. State Diagram for the Sequential Synchronization 145
Figure 84. State Diagram for the Simultaneous Synchronization 146
Figure 85. State Diagram for the Alternative Synchronization. 147
Figure 86. A CO-OPN Implementation with Isolation of Transaction Trees 149
Figure 87. Transactions and Subtransactions in a CO-OPN Implementation 153
Figure 88. Structure of a Subtransaction Id. 154
Figure 89. Structure of Two Subtransaction Xids . 154
Figure 90. Deadlock Involving Transactions Rooted at O4 and O3 156
Figure 91. The Wound-Wait Method. 157
Figure 92. Object Sharing in a Simultaneous Synchronization. 159
Figure 93. Update Rules for the Logical Clock. 160
Figure 94. Logical Clocks and Simultaneity . 160
Figure 95. Timestamping with Instantaneous Synchronizations. 161
Figure 96. Vector Clocks and Simultaneity. 162
Figure 97. Combination of Xids and Clock Vectors (without Stabilization) 162
Figure 98. Xids and Synchronization Vectors (without Stabilization) 164
Figure 99. Synchronization Vectors and Simultaneity (Without Stabilization) 165
Figure 100. Structure of a Synchronization with Some Stabilization Requests 168
Figure 101. Example where Stabilization of O2 is Reactivated after Call 170
Figure 102. Synchronization and Stabilization for figure 101 (1st part). 171
Figure 103. Synchronization and Stabilization for figure 101 (2nd part) 172
Figure 104. Stabilization by Extending Spheres . 172
Figure 105. Problematic Priority Assignments in Simultaneous Synchronizations 179
Figure 106. Example of Deep Backtracking from a Sequence back into a Sim 180
xix

Figure 107. Incompatibility of Request Priorities in Shared Objects 181
Figure 108. A Disallowed Object Topology and a Possible Remedy 182
Figure 109. Code Generated for Transition Divide. 187
Figure 110. Code Generated for a Transition with Synchronization. 189

Chapter 7. Prototyping the Object Application Layer
Figure 111. Public Type Declarations and Class Methods for DAL. 198
Figure 112. Functions for Constructing, Copying and Initializing DAL 198
Figure 113. Specified Methods of DAL . 199
Figure 114. Private Definitions of Abstract_DAL . 199
Figure 115. Automatically Generated Code for Method Act . 200
Figure 116. Concrete Implementation of Method Act . 200
Figure 117. Example with Labelling of Choice Points . 202

Appendix A. Major Control Algorithms for CO-OPN
Figure 118. Example for the Terminology (with some Stabilize Requests for O0) 225
Figure 119. Mutual Dependency of Stabilize and StabilizeLowerObjects 229
Figure 120. Internal Structure for Managing the Synchronizations 234

Appendix E. An Execution Cycle of the Collaborative Diary
Figure 121. Successful Addition of an Event into the Replicated Diary (1st part) 268
Figure 122. Successful Addition of an Event into the Replicated Diary (2nd part) 269
Figure 123. 2PC after the Addition of an Event into the Replicated Diary 270
xx

Chapter 1

Introduction

1.1 Our Motivation

One of the most compelling objectives of Software Engineering is to reduce the develop-
ment cost of computer programs. In a formal specification-based approach, automatic
implementation processes can reveal themselves particularly profitable, not only through
the reduced development time they may provide, but also because of their increased reli-
ability compared to entirely manual coding methods.

The advantage of formal methods resides by definition in their unambiguous nature. They
can thus be supported by tools which automatically verify the properties, extract useful
information or transform them into other representations. Moreover, they require a thorough
analysis of the modeled system during the very first levels of the development process. The
benefits of formal specifications become even more evident when they can be used continu-
ously through several stages of the software development cycle, like specification, imple-
mentation, integration and testing.

This ambition is however only partly fulfilled by existing methods, because the different
development phases are poorly integrated in several ways. The reasons emanate mainly
from unwanted paradigm shifts during the development cycle in the models, languages and
tools used. The purpose of this thesis is to fill the gap which currently exists between the
phase where a specification is simulated, generally using some logical inference tool, and
the phase where the modeled system has an efficient and maintainable implementation in a
main-stream object-oriented programming language. This objective is realized by applica-
tion of a new methodology we have named Mixed Prototyping with Object-Orientation
(OOMP): This is an extension of an existing approach, namely Mixed Prototyping
[Choppy 87], which it adapts to the object paradigm in order to exploit the flexibility and
inherent capability of modeling abstract entities.
1

1. Introduction
1.2 An Interesting Initial Solution: Mixed Prototyping

The principle of mixed prototyping is to produce programs in a high-level programming
language by compilation of formal specifications. The generated code is structured so as to
allow, with the help of a tool called the integrator, its progressive replacement by more effi-
cient or functionally more complete hand-written modules. A remarkable characteristic is
that the prototype may be executed at any stage of the development, with a total cooperation
between the modules of both environments: This is also sometimes referred to as heteroge-
neous prototyping.

Compared to previous approaches, mixed prototyping defines both a safer and more effi-
cient frame for the developer. It is safer, because it relies on the use of a strongly typed
programming language, Ada (in its initial version [Ada 83]), which limits the possibilities
of inconsistency. It is more efficient, because the data types which are shared between the
automatically generated and the hand-written environments do not need any run-time
conversions. Also, the prototyping tool must no longer necessarily provide an extensive set
of built-in data types and primitives to be attractive, since the user can himself easily supply
equivalently powerful libraries.

Apart from the purely programmatic advantages quoted above, mixed prototyping has
several positive implications on the methodological level [Choppy 87]:

• Mixed prototyping supports both top-down and bottom-up development strategies.
• It promotes systematic refinement schemes.
• There is no need for stubs or driver routines for interconnecting the automatically gener-

ated and the hand-written modules, since they are written in the same programming lan-
guage and are designed to cooperate following a predefined protocol.

• The interfaces and the behaviour of the specification modules are well defined at the very
beginning of the mixed prototyping process. The parts which have not yet received a con-
crete implementation may be entirely simulated by the automatically generated modules.
Therefore the need for integration tests becomes almost insignificant.

• Reuse of concrete basic modules brings instant efficiency to new developments.

All these properties show that mixed prototyping is well suited for concurrent engineering,
a methodology where the different parts of a product are developed simultaneously by
several teams, and where incremental and heterogeneous prototyping are of great value.
2

Methodological Contributions
1.3 Methodological Contributions

The proposal of this thesis is to adapt the technique of mixed prototyping in order to
generate the code in an object-oriented programming language, e.g. the last version of Ada
[Ada 95]. The result is a more natural and intuitive prototyping process since the intrinsic
resources of the object paradigm, such as inheritance and dynamic binding, eliminate the
need for an integrator tool. Our approach also provides additional flexibility, because it is
less language-dependent, and in any case the implementation granularity is not the module,
but the subprogram. Another important advantage is that the automatically generated code,
which is certified correct with respect to the specifications, is not deleted when the devel-
oper integrates a piece of hand-written code. Therefore the method not only promotes code
reuse, but also allows interesting combinations: It supports for instance a form of validation
of the hand-written modules by using the automatically generated code as assertions which
are tested at run-time. In all generality, the finer-grained incremental nature of the OOMP
process implies that it is easier to detect and localize deviations of the hand-written code
from its intended meaning. In other words, our extension of mixed prototyping gives better
guarantees that the resulting piece of software conforms to its specifications.

Since mixed prototyping with object-orientation is a prototyping method, which subsumes a
minimal level of responsiveness from the development environment, we have incorporated
an additional code pattern in the generated prototypes, the purpose of which is to reduce the
development time and make the interaction with the prototyping tool more comfortable: It
is a form of creational pattern [Gamma et al 95], i.e. a structure which allows us to inte-
grate new implementations of an abstract data type without having to edit and recompile all
the client modules. The secret of this flexibility lies in an extensive usage of abstract classes
and dynamic binding.

1.4 Technical Contributions

The concept of mixed prototyping was initially put into practice in the field of algebraic
specifications of abstract data types. This thesis extends that work by illustrating how
OOMP can similarly be exploited in the development of complex distributed software
systems specified with the CO-OPN formalism [Buchs&Guelfi 91]. We have designed a
compiler which automatically generates incremental prototypes for networks of distributed
memory machines on the basis of CO-OPN specifications. We expose here the original
techniques which were required to execute the prototypes in a distributed environment. The
difficulties were twofold: First, the semantics of CO-OPN requires a lot of global knowl-
edge about the system, which must be minimized in order not to overload the communica-
3

1. Introduction
tion channels, and it also displays many levels of non-determinism, which implies the
ability to restore previous states in a coordinated manner. The second difficulty was to
respect the additional constraints imposed by the prototyping frame: The generated code
must be readable, efficient and reliable. The combination of these non-trivial requirements
is discussed in depth in this report.

Another contribution, from a purely technical point of view, is that we give here the first
implementation scheme for algebraic Petri nets [Reisig 91]. This work was necessary since
CO-OPN is a strict superset of this formalism.

1.5 Structure of the Report

The plan of this thesis is as follows. In the next chapter we will first introduce the existing
notion of mixed prototyping [Choppy 87], and then our contribution, the incremental proto-
typing scheme which we call OOMP. This description will stay at a rather abstract level, in
order to show its general usability. From there on, the rest of this report will be devoted to
demonstrating the applicability of the methodology to the entirety of CO-OPN: This is an
interesting challenge, since CO-OPN is a specification language which comprises both
algebraic abstract data types (AADTs) [Ehrig&Mahr 85] and algebraic Petri nets (APN)
[Reisig 91], organized as objects interconnected by synchronization links
[Buchs&Guelfi 91]. This formalism also incorporates many structuring concepts which
makes it suitable for specifying large systems. Therefore, we continue with chapter 3 which
presents the CO-OPN language as it was designed by Buchs and Guelfi. Chapter 4 details
the compilation algorithm for AADTs, which is in fact a slight adaptation of the paper
[Schnoebelen 88]. Chapter 5 describes our new form of code generation in Ada95 and how
OOMP may be applied to it. In chapter 6, which constitutes the more technical contribution
of the thesis, we show how APN objects are compiled and describe the run-time support
needed for the distributed execution of the prototypes. Thereafter, chapter 7 shows to which
extent the OOMP process may be applied to CO-OPN objects. This latter part describes our
innovative work to apply mixed prototyping to objects with both concurrent and non-deter-
ministic behaviours. Finally, in the last chapter, we conclude the report with a synthesis of
the problems encountered and the contributions of the thesis.
4

Chapter 2

An Incremental Prototyping Methodology

based on Formal Specifications

2.1 Foreword

The objective of this chapter is to present the basic principles of our incremental proto-
typing methodology. We will stay at a rather abstract level, since we want to demonstrate
the generality of the approach. It is only in the following chapters that we will show how the
prototyping methodology applies to definite specification formalisms, which are, respec-
tively algebraic abstract data types and the CO-OPN version of modular algebraic Petri nets
[Buchs&Guelfi 91]. It may by the way be interesting to know that CO-OPN/2, the fully
object-oriented incarnation of the language [Biberstein&Buchs 95], has been chosen as
formalism for the European ESPRIT Project “Design for Validation” (DeVa).

The plan of this chapter is as follows: First we give an overview of the different existing
specification-based prototyping techniques and their role in the software development
cycle. Then we focus on the concept of mixed prototyping, explain how it is put into prac-
tice in terms of tools and programming language constructs. Thereafter we show the advan-
tages brought to the previous work by the object-oriented paradigm, subject which
constitutes the core of our contribution under the name of mixed prototyping with object-
orientation (OOMP).

The last sections of this chapter discuss the approach of OOMP on different levels. We start
by arguing about the validity of OOMP on the semantic plan, in order to demonstrate its
correctness. Having done this, we briefly present the interconnection of the tools which are
to support this methodology within the SANDS environment [Buchs et al 95]. Then we
briefly mention some problems left open by this thesis, before reviewing and comparing
with other existing incremental prototyping techniques.
5

2. An Incremental Prototyping Methodology based on Formal Specifications
2.2 Introduction

Whereas hardware is becoming increasingly cheaper and more reliable, making the applica-
tion domains of computers ever more numerous, not only in everyday life, but also in more
safety critical fields, software has not followed the same successful evolution. This is
because software engineering, and computer science in general, is by nature completely
different from other disciplines, due essentially to the fact that its constituents are immate-
rial. Computer science is developing the paradigms and methods for the exploration of the
world of information and intellectual processes that are not directly governed by physical
laws [Hartmanis 94]. This is what makes this branch so different from all other domains of
science and engineering, and at the same time so difficult to master.

Software engineering may be defined as the discipline which deals with developing system-
atic methods for the creation of computer programs that are useful, reliable and cost effec-
tive. This concern is expressed by the notion of software process, which models the range
of activities centered around the entire span of the software life-cycle (Figure 1).

Figure 1. The Software Life Cycle

Analysis

Design

Implementation

Test

Installation

maintenance
Operation and

Verification and validation

Configuration management

Documentation

Training

Retirement
Concept

exploration

Project planning

Project monitoring and control

Quality management

Project
initiation Evaluation

Development
Concept

exploration Retirement

Maintenance
and

assistance

Software development cycle

Software life cycle
6

Prototyping in the Software Development Cycle
In this figure (from [Strohmeier 96]) the part over the dashed line represents project
management tasks, while the lower portion shows the technical activities. The software life
cycle illustrated here is the traditional “waterfall” model, which has many slight variations.
Its specificity is that each phase of the development must be terminated according to precise
criteria, and the completed results are then frozen, before the next phase can begin.

There is however a frequent complaint about this model, saying is that its structure is too
rigid: It does not recognize the importance of iteration in the software process
[Sommerville 92], a flaw which hinders efficient exploitation of prototyping and formal
methods.

2.3 Prototyping in the Software Development Cycle

Prototyping can be applied with different objectives and at different levels of the develop-
ment process, for instance when:

• Determining the feasibility of the product;
• Evaluating the realization cost of the development;
• Establishing and validating the client’s requirements;
• Validating the functional specifications;
• Needing estimations about the performance of the system, like for instance an evaluation

of the execution costs;
• Using the prototype as a model, or a dynamic representation of it, especially during sys-

tem testing.

Prototyping may be simply considered as beneficial for the general know-how which is
acquired in building a given system.

Different Approaches to Prototyping

When starting from the initial requirements, [Hallmann 91] proposes a classification of
prototyping methods into three main categories:

• Exploratory programming is the most primitive method. It is very close to traditional
application development, in that there is no specification: Modules are added to the sys-
tem one after another, the ones not yet implemented being simulated to allow testing. This
approach may lead to unexpected results when integrating a new module because of its
side-effects. This problem is particularly acute in parallel environments.

• Throw-away prototyping, where the prototype mainly serves as a way of validating the
7

2. An Incremental Prototyping Methodology based on Formal Specifications
requirements - or part of them - after which the operational system has to be constructed
from scratch. This technique is to be used when the primary goal is rapid and flexible sys-
tem evaluation, and when the prototyping environment lacks reliability or execution effi-
ciency. In this category we differentiate simulated and stand-alone prototypes. In the
former, execution is possible only inside the development environment, whereas in the
latter, the resulting prototype is autonomous.

• Incremental prototyping, where the prototype is developed through various steps leading
to the real end-user application. This implies that the prototyping tool provides for accept-
able characteristics concerning completeness, efficiency and robustness. Within this cate-
gory, [Asur&Hufnagel 93] identify an additional subset: Prototyping may be said
evolutive as long as the developer still has some freedom at the level of the system archi-
tecture, by opposition to phases where the structure of the prototype is already freezed,
permitting only modifications to the functional aspects.

Our proposal belongs to the third kind of prototyping technique, since it stems from the
early stages of the software life cycle down to the complete implementation. We may
however precise that it is a combination of evolutive and simply incremental prototyping
methods, since the prototyping tool settles both the structure and the behaviour of the appli-
cation or module. During the first stages of development, prototyping is applied on the level
of the specifications: The automatically generated code is then only used for simulation
purposes and thrown away when the result is unsatisfactory. This is the evolutive part of the
prototyping process. When the developer decides that the specification has reached a suffi-
cient level of maturity, he can start working on the level of the programming language and
progressively replace the generated modules by more efficient or adequate hand-written
code. This last phase is the incremental style of prototyping (of which mixed prototyping is
a subset, as described later).

As a further classification, one can also distinguish different functional purposes for the
prototype:

• In vertical prototyping only certain critical functions are represented. They are considered
as independent from the rest of the system.

• In horizontal prototyping, all the functions of the final product are accounted for, but
sometimes only at the level of a draft, leaving aside certain aspects that are not mandatory
for the current aims.

One can easily combine these two approaches inside any given prototype, especially in
prototyping environments like ours, where emphasis is set on modularity.
8

Prototyping in the Software Development Cycle
The Benefits of Formal Specifications

A rigorous method, which allows proving certain characteristics of the specified system,
can only be formal, i.e. entirely based on mathematical concepts. The objective of the spec-
ification phase is to clearly state the set of functionalities awaited from the software. The
ever increasing complexity of software systems imposes a progressive procedure based on
abstraction, refinement and enrichment. To gain better control over this part of the develop-
ment, it is preferable to have structuring primitives. The possibility of organizing a
formalism or language in a modular way has become a necessary attribute for specifying
substantially sized systems. The CO-OPN language supports additionally a notion known
from traditional high-level languages, namely genericity. Moreover CO-OPN enforces hier-
archy and is therefore well-suited for large-scale systems.

What are the benefits gained from prototyping of formal specifications? They are multiple,
mainly:

• The formal approach provides security by its inherent unambiguous nature, and by the
support of tools which can automatically verify properties, extract information and trans-
form the specifications into other representations. Formal specifications force in-depth
analysis at an early stage. This is important since the sooner an error is caught in the
development process, the simpler - and less expensive - it is to remove.

• During the functional analysis, prototyping contributes to completing the specification of
the product: The engineer compares the behaviour of the prototype with what he intended
to specify. The feedback is immediate, since the prototype is the execution of the specifi-
cations.

• If the code generator of the specification compiler is certified correct, the prototypes pro-
duced may be considered as perfect implementations of the specifications. There is no risk
of misinterpreting the specifications, versus when a human programmer has to produce
the code manually from his understanding of the specifications.

• The prototype constitutes a model during the testing process, when it is not itself consid-
ered as the actual product.

Using formal specifications, this quantity of material is in fact obtained at very low
expense: The cost of producing a prototype is negligible, since it simply constitutes the
execution of the specification.

Refinement of Formal Specifications

Sommerville states that the only realistic way to construct a formal specification is to
proceed incrementally [Sommerville 92] (see Figure 2).
9

2. An Incremental Prototyping Methodology based on Formal Specifications
Figure 2. The Continuous Model

The initial perception of the system to build may be very vague, indeed. As analysis and
simultaneous validation progress, vision of the architecture, algorithms and associated data
structures improve until final implementation shape. An important aspect of refinement is
the problem of preserving the semantics of the specification. Therefore it is advisable to
proceed by small steps, which consist in easily provable modifications. This approach is
called the transformational development technique, and is naturally connected with code
generation tools which perform the translation of the most refined version of the formalism
into an implementation.

2.4 Incremental and Heterogeneous Prototyping

Use of formal specifications becomes especially attractive when they can be exploited
continuously through several stages of the software development cycle, like specification,
implementation, integration and testing. This ambition is however only partly fulfilled by
current methods, because the different development phases are poorly integrated in several
ways. The reasons emanate mainly from unwanted paradigm shifts during the development
cycle in the models, languages and tools used.

The question of deciding whether specifications should be executable or not is an old
controversy (see e.g. [Gravell&Henderson 96]). A major problem is that there is a trade-off
between the expressive power and the efficiency of implementation and validation of a
specification formalism; a compromise has to be found [Hansson et al 90]. The position we
will defend in this thesis is that the same language can (and should) be used for simulation
during a wide range of levels of abstraction: The role of the specification formalism may
span from the expression of the software requirements specification down to the detailed
design stage. Then, a high-level programming language has to provide the mechanisms for
a smooth translation from the formalism by keeping a similar level of abstraction. Finally,

Abstraction level

refinements,verifications

validation, prototyping
10

Incremental and Heterogeneous Prototyping
prototyping at the programming language level, by exploitation of the object paradigm,
allows specializing the code until a satisfactory implementation is found.

There seems at least to be a consensus about the fact that there is no universal formalism
which fits any problem domain [Murphy et al 89]. In this work we use CO-OPN, which is a
very complete specification language, but is for instance best suited for the description of
discrete systems.

A salient difficulty is to compile the specifications into both efficient and useful programs.
The specification compiler may generate a highly optimized and thus hardly legible code,
which makes it inappropriate for manual modifications. The developer might however want
to add functionalities, e.g. customized I/O or operations on irrational numbers, which often
cannot be specified in usual formalisms. This dichotomy has been answered by two
different approaches:

1. The usual solution is to apply transformations to the specifications in order to pro-
duce optimized code or to extract maximal parallelism. This is the approach of
[Bréant&Pradat-Peyre 94] for instance, and has also been applied to CO-OPN, but
upstream of the compilation phase [Buchs et al 96]. Then, in order to incorporate
hand-written code, the most primitive approach is to generate program skeletons,
where the developer is invited to fill empty subprograms which will be called auto-
matically at run-time. More sophisticated solutions exist, where a brief description
of the external components is included in the specification, which allows a seman-
tically cleaner connection with the generated prototype. One of the goals in
[Kordon 92] is to take into account pre-existing software components.

2. The second approach is to give the developer the possibility to progressively
replace the automatically generated modules by hand-written code. The European
IPTES project [IPTES 94] proposes a module interconnection protocol where the
developer has to define conversion routines for his hand-written code to exchange
data with the high-level specification simulator: This allows for instance the incor-
poration of components which are not judged critical enough to be completely
specified in a formal way. A consequence of the IPTES approach is that only bot-
tom-up implementation schemes are supported. On the other hand, mixed prototyp-
ing [Choppy 87], which we describe in the next section, does not require any run-
time conversion and also leaves open the choice of the development strategy.

The conjoint development and execution of modules at different abstraction levels is some-
times referred to as heterogeneous prototyping [Gabriel 89]. An interesting aspect of heter-
ogeneous prototyping is that it is well suited for concurrent engineering, a methodology
where the different parts of a product are developed simultaneously by several teams. The
objective of the IPTES Project was to experiment with Boehm’s spiral model [Boehm 88]
11

2. An Incremental Prototyping Methodology based on Formal Specifications
for software development [Pulli&Elmstrøm 93]. Briefly, this model gives more flexibility
than the traditional waterfall approach by focusing on risk management and teamwork.
Notions such as incremental prototyping and concurrent engineering fit well into this
model.

One inconvenience with the spiral model is however that it is very abstract. It is in fact a
meta-model which must instantiated according to a wide range of factors, such as: level of
understanding of the future product, technical ability of the development team, available
technology, time and budget pressure, or even legal and environmental concerns.

2.5 Mixed Prototyping

Based on both incremental and heterogeneous prototyping, mixed prototyping is a technique
which partly answers the desire of safety and continuity in the development. The principle
of mixed prototyping is to produce programs in an imperative programming language by
compilation of formal specifications. The generated code is structured so as to allow, with
the help of a tool called the integrator, its progressive replacement by more efficient or
functionally more complete hand-written modules. The automatically generated modules
are said abstract, and the user’s implementations are called concrete.

Figure 3 illustrates a hierarchy of modules under development where some modules are
abstract, some completely concrete, and some others in an intermediate state, called semi-
abstract. This situation still allows to execute the prototype, provided that it is in a mini-
mally coherent state.
12

Mixed Prototyping
Figure 3. The Concept of Mixed Prototyping

A remarkable characteristic of mixed prototyping is thus that the prototype may be executed
at any stage of the development, with a total cooperation between the modules of both envi-
ronments.

Compared to previous approaches, mixed prototyping defines both a safer and more effi-
cient frame for the developer. It is safer, because it relies on the use of a strongly typed
programming language, Ada (in its initial version [Ada 83]), which limits the possibilities
of inconsistencies. It is more efficient, because the data types which are shared between the
automatically generated and the hand-written environments do not need any run-time
conversions; this is easier to realize when the abstract and the concrete code are in the same
programming language. Also, the prototyping tool must no longer necessarily provide an
extensive set of built-in data types and primitives to be more attractive, since the user can
himself easily supply equivalently powerful libraries.

Apart from the above-mentioned purely programmatic advantages, mixed prototyping has
several positive implications on the methodological level [Choppy 87]:

• Mixed prototyping (in the version we use here, see section 5.5 on page 127 for other
approaches) supports both top-down and bottom-up development strategies.

• It promotes systematic refinement schemes.
• There is no need for stubs nor conversion routines for simulating or interconnecting the

automatically generated and the hand-written modules, since they are written in the same

Abstract module

Semi-abstract module

Concrete module

Enriches (or client of)
13

2. An Incremental Prototyping Methodology based on Formal Specifications
programming language and are designed to cooperate following a predefined protocol.
• The interfaces and the behaviour of the specification modules are well defined at the very

beginning of the mixed prototyping process. The parts which have not yet received a con-
crete implementation may be entirely simulated by the automatically generated modules.
Therefore the need for integration tests becomes almost insignificant.

• Reuse of concrete basic modules brings instant efficiency to new developments.

The correctness of partial implementations of models, which this technique is based on, was
formally proved in [Choppy&Kaplan 90]. The technique has been used exclusively in rela-
tion with algebraic specifications of abstract data types, although the authors have stated
that it was not at all limited to this kind of formalism [Choppy et al 89].

Mixed prototyping has been experimented with several programming languages such as C
or Lisp, but was essentially put into practice with the Ada language [Ada 83] because of its
strong typing and support for genericity. In this context the role of the prototyping tool,
ASSPEGIQUE (1) [Choppy 88], is to:

1. Provide dummy Ada function bodies for the operations which are not implemented
in the concrete code. This is necessary for the generic instantiation to take place.
Notice that the knowledge of which operations are concrete must either be directly
fed by the user or by syntactical analysis of the user’s code.

2. Generate some glue code, the role of which is to choose the concrete operations
and data types when available, and otherwise to take the abstract code.

3. Compile the client modules because of the generic package reinstantiation.

At first sight it would seem that Ada’s type derivation mechanism could have been used to
simplify this integration of the user’s definitions. The problem is that one cannot change the
internal representation of a derived type in Ada83, as opposed to Ada95. In ASSPEGIQUE,
type derivation is however used in some restricted cases to implement the notion of coer-
cion, which is a kind of inheritance mechanism in algebraic specifications.

An immediate remark about the scheme described above is that the integrator is very
present during the prototyping process and it is dependent on the target programming
language, since it must regenerate glue code at each modification of the concrete code, as
well as the required dummy function bodies. To be really user-friendly it should be able to
perform syntactical analysis of the concrete modules. This technique can probably be
slightly simplified when the implementation granularity is the module instead of the
subprogram.

1. ASSPEGIQUE stands for “ASsistance à la SPécification alGébrIQUE”.
14

Contributions of the Object-Oriented Paradigm
2.6 Contributions of the Object-Oriented Paradigm

Our proposal is to adapt the technique of mixed prototyping in order to generate the code in
an object-oriented programming language, e.g. the last version of Ada [Ada 95]. This seems
rather natural since the object paradigm is an ideal support for the notion of abstract data
type. We will basically use two mechanisms:

• Providing several implementations for a single abstraction. The abstraction is defined by
the formal specifications, both syntactically, through the reference to a unique interface,
and semantically, through the properties expressed by the axioms.

• Mixing a class-based and a prototype-based style of programming gives us the security
constraints of the first and the flexibility of the latter.

Figure 4. Object-Oriented View of Mixed Prototyping

2.6.1 A Class-Based Decomposition of Functionalities

We want to apply the results of mixed prototyping to the frame of object-oriented
languages, because they offer a intrinsic paradigm, which is to allow several implementa-
tions for the same abstraction. To this purpose, we adapt our terminology to the usual
object-oriented vocabulary: From now on we will talk of abstract classes, symbolic classes,
and concrete classes (Figure 4 depicts this organization). The former two are generated by
the compiler, and the latter category denotes everything which is hand-written. The abstract
class provides a set of methods, implemented by compilation of the specifications. It has
however no internal representation: That is the role of the symbolic class(2), which provides
the minimal implementation required for the methods of the abstract class to work properly.

Abstract Class

Concrete ClassSymbolic Class

generated

Automatic
ally

Inherits from (and implements)
15

2. An Incremental Prototyping Methodology based on Formal Specifications
To make these statements a bit more concrete, we may say that each module of the specifi-
cation formalism corresponds to a class hierarchy. In the case where the specification
language is itself object-oriented, we will of course try to map each class construct of the
source language to a class hierarchy of the target language. In general, if the specified entity
consists in a type definition, such as a sort in algebraic specifications, then it may be advan-
tageous to take that as central entity in the prototyping process. The choice of a mapping
strategy is done once for all according to the nature of the specification formalism when the
prototyping tool is designed.

Use of object-orientation adapts advantageously the principles of mixed prototyping to
modern programming languages and paradigms. Compared to previous results, we can state
the following additional improvements:

• The developer autonomously redefines and specializes operations of the abstract class.
The prototyping tool gets less language dependent because it does not have to know what
changes have been applied; it only needs the name of the class to be used as implementa-
tion. It becomes a pure code generator and is consequently easier to retarget to new pro-
gramming languages.

• There is no hidden mechanism: We exploit the natural resources of the object-oriented
paradigm. The prototyping process gains transparency.

• Memory management is transparent to the clients. The abstract class can even discharge
its own descendant classes of this burden. See section 2.9 on this subject.

• The methods of the abstract classes, which are guaranteed correct w.r.t the specifications,
are inherited by the concrete classes, and do no longer necessarily disappear when the
developer wants to redefine them: The method permits code reuse.

• Since it knows the interfaces of the specifications, it is possible for the prototyping tool to
automatically derive classes from the user’s hand-written code which will be transparently
incorporated and used by the client classes without their knowing. This opens the way to
new techniques for tracing the execution and testing the correctness of the concrete code,
as described in section 2.8.

We would like to emphasize that OOMP is based on well-established programming princi-
ples for data abstraction, see e.g. [Meyer 88]. The rules are that the code of the abstract
classes must never directly access the internal structures, but instead express all operations
in terms of accessor, transformer and constructor functions. The concrete classes are then
related to their abstract class by an abstraction function.

2. The name symbolic comes from the fact that the automatically generated data structures will often be
defined as in symbolic manipulation languages, i.e. by attaching to each object a tag which will be used as
type identification at run-time.
16

Contributions of the Object-Oriented Paradigm
What distinguishes OOMP from this classical approach is, of course, that part of the hier-
archy is the result of compiling formal specifications, but also the following: In usual
patterns we have one parent class with several equally important sibling implementations.
We propose instead a hierarchy with one privileged implementation, the one generated
automatically, which will serve as reference for ulterior hand-written class derivations.

2.6.2 The Flexibility of Prototype Objects

The most common application of object-orientation consists in designing and implementing
reusable software components, and the modeling power it provides does not have to be
proven anymore. Besides that, the notion of dynamic binding, which is inherent to this para-
digm, has been extensively exploited because it contributes to data abstraction, and also
because it provides more flexibility from a purely programmatic point of view.

For a prototyping environment to be comfortable, it must show a certain level of respon-
siveness: The activity of prototyping is inherently connected to the notion of speed. There-
fore we do not want client classes to be modified nor even recompiled when the developer
switches forth - and even possibly back - between the symbolic and the concrete classes.
Our objective is to reduce the impact of change through the use of prototype objects(3).

The notion of prototype object stems from single-hierarchy languages such as Self
[Ungar&Smith Randall 87]. Single-hierarchy means that there is no distinction between a
class and an instance. Moreover, classes are not viewed as static entities, but as real values:
They are said to be first class citizens(4). In the case of OOMP, this helps selecting provider
classes after compile-time. Thus it is no longer necessary to edit any source file when the
developer wants to switch from one implementation to another. We may say that it indi-
rectly reduces the risk of introducing typographical errors or other incoherences.

Our implementation language being class-based, we will have to simulate the mechanism of
prototype objects: This is possible since every object has an inherent information which
tells what class it belongs to. To exploit this, each abstract class will provide subprograms
to set and test which of its derived classes has been selected as implementation.

The selection of an implementation may be performed either by the developer himself in the
normal source text, or indirectly, by generation of a configuration module, which acts as a
universal client in the client-supplier graph (see Figure 5), and which will be activated at
program start-up.

3. This name clash is unfortunate, but corresponds to the normal usage. [Coplien 92] proposes the appellation
exemplar object.

4. Smalltalk [Goldberg 84] is however an example of class-based language where classes are first-class citi-
zens.
17

2. An Incremental Prototyping Methodology based on Formal Specifications
Figure 5. Role of the Configuration Module

Figure 5 shows a situation where the developer decides to try out his prototype, while
Module A is completely concrete, Module B semi-abstract, and Module C entirely abstract,
i.e. treated symbolically.

The prototype object is typically used when it comes to instantiating values, in the functions
implementing the constructors of a given class. Another situation, which may easily appear
in algebraic specifications, is when a method has no argument which attaches it to the
currently defined class; a possible solution is then to resort to the prototype object as

Inherits from (and implements)

Abstract module

Semi-abstract module

Concrete module

Enriches (specified clientship)

Client of (implementation-level)

Configuration Module

Module C

Module A

Module B
18

Contributions of the Object-Oriented Paradigm
dummy argument. Figure 6 shows the pattern which is used in OOMP. We could have
explicitly shown a method for copying objects, but this is usually provided by programming
languages under the form of a copy constructor. The class SubClassName may as well be
the automatically generated symbolic class, in which case the methods Operation1 to Oper-
ationo will not be redefined.

Figure 6. Detailed View of the OOMP Class Pattern

By decoupling the client from the provider we obtain the dynamics and the flexibility that
are needed for a prototyping method to be attractive. This use of object-orientation is related
to the general notion of open implementation [Kiczales 96], where the objective is to allow

SubClassName

Set_SubClassName_Prototype ()

Constructor1()

Constructorm()

Accessor1()

Accessorn()

Operation1()

Visible by
the heirs

Publicly
Abstract

Operationo()

Operationo()

Defined

Inherited

Class

variables

Instance

variables
visible

Inherits from

or redefined

methods

Client of

methods and

methods and

methods

methods

Abstract_ClientClass

Configuration_Module
(implementation-level)

(and implements)

Enriches
(specified clientship)

Configure ()

First step of

Initialization with any

Class
method

instance as parameter

Reference to
an instance of

initialization

Invocation:

Invocation:

Private

Constructorm()

Accessor1()

Abstract_ClassName

Prototype_Object

Set_Hierarchy_Prototype ()

Constructor1()

ClassName_Prototype ()

Accessorn()

Operation1()
19

2. An Incremental Prototyping Methodology based on Formal Specifications
the client to decide about some implementation details of the modules it uses. This is most
easily realized through reflexive languages and meta-object protocols (see e.g.
[Ichisugi, Matsuoka&Yonezawa 92]), but may be simulated in conventional languages like
C++ [Stroustrup 91] and Ada95 through the use of creational patterns [Gamma et al 95] as
we do(5). The term creational comes from the fact that we essentially want to overcome an
ultimate restriction to real scalability of class-based languages, namely the fact that one
must know the name of a class in order to create instances of it. Our use of prototype objects
allows the prototyping tool to generate abstract classes serving as protocol class, i.e. a
unique interface to the outside world for all the possible concrete implementations.

2.7 The Incremental Prototyping Process

Now that the generic mechanisms for the support of OOMP have been presented, we can
formulate a general development model. The approach taken in SANDS/CO-OPN proposes
a formal and incremental method which covers:

• Modeling by the means of an object-based (or object-oriented in [Biberstein&Buchs 95])
specification language supporting concurrency, refinement, analysis and simulation
[Buchs&Guelfi 91].

• Automatic code generation with a prototyping tool, as well as incremental incorporation
of hand-written code portions in order to obtain a satisfying end-user implementation
[Buchs&Hulaas 96].

• Specification-based test generation assorted with a test reduction technique founded on
the introduction of hypotheses about the program [Barbey, Buchs&Péraire 97].

Figure 7 gives an overview of the activities and formalisms involved in the SANDS/CO-
OPN methodology [Buchs 96].

5. Our pattern lies somewhere between the prototype and the abstract factory of [Gamma et al 95]. Our spec-
ificity is that the abstract class serves as prototype manager for its own hierarchy, and that the prototype is not
only used for object instantiation, but may also automatically provide a dummy receiver argument (i.e. a target
object) when needed, which results in public function profiles that are closer to the formal specification.
20

The Incremental Prototyping Process
Figure 7. Activities and Formalisms within SANDS/CO-OPN

There is no precise method on how to obtain a CO-OPN specification from the user’s
requirements. In general, there has been little research on the conjoint use of the transforma-
tional model with the waterfall or the spiral model [Boehm 88] in order to guide the refine-
ment of formal specifications, although it is recognized that both approaches are
complementary [Sommerville 92]. One exception is the work presented in [Kemmerer 90],
who distinguishes three levels of coupling:

1. The after-the-fact method, where the formal specification is produced at the end of
the development, just for verification purposes. This approach is very expensive,
since the formalization step does not profit to the other phases, and is therefore
advisable only for safety-critical projects.

2. The parallel method, where both models are followed at the same time, is in prin-
ciple executed by two dedicated teams, and requires a constant exchange of infor-
mation between both processes. This approach allows speeding up the time to
delivery of the final system, under the condition that the teams are well synchro-
nized. Here, the benefits of the formal methods may be exploited during the whole
development process.

3. The integrated method is presented as the most cost-effective. Its principle is to
have a single process and to report all design decisions directly in the formal spec-
ification language.

The last approach is interesting, but probably a bit over-enthusiastic about the possibilities
offered by formal notations. Our position is that it does not dispense from producing docu-
ments in a more conventional fashion in order e.g. to describe the non-functional aspects or
to have a written trace of the justifications for the different decisions.

Modeling

Refinement

Automatic

Object model

CO-OPN

Ada95

Test oracle

implementation
Incremental

Test generation

Final system

Analysis of properties

Simulation

Tests

implementation
21

2. An Incremental Prototyping Methodology based on Formal Specifications
In [Sinclair, Clynch&Stone 95] a methodology is presented, which uses OMT
[Rumbaugh et al 91] for analysis, “OMT*” for preliminary design, and SDL [CCITT 88]
for detailed design. Their intermediary “OMT*” dialect has well-defined semantics by
opposition to the original OMT notation, of which it is a subset, and helps filtering the
constructs which have no equivalent in SDL. The translation into the formal SDL descrip-
tion is semi-automatic, allowing finally the validation of the system with a simulation tool.
Automatic implementation is not provided.

A recent contribution, [André et al 96], resides in a structured and formal development
method for implementing reactive real-time systems in object-oriented languages. The
process starts with OMT, with some extensions in order to represent spontaneous events in
the object model, which is then translated into a formal graphical “SyncCharts” representa-
tion. This latter notation may be directly mapped into the Esterel language
[Berry&Gonthier 88], which is itself compiled into C++ by passing through two other inter-
mediate translation steps. Although a certain continuity is ensured from OMT to C++, in the
sense that there is no notational gap, it is not very clear in which phase of the development
the different notations are used, neither at which levels prototyping is possible.

Currently ongoing research in the SANDS/CO-OPN group aims at integrating object-
oriented development methods such as OMT or Fusion [Coleman et al 94] with CO-OPN.
An additional difficulty in this context is to take into account the concurrent and distributed
aspects in the modelled systems. Neither the original version of OMT nor that of Fusion
address modeling of distributed systems. The second generation of OMT has however
adopted some notations for concurrency [Rumbaugh 95]. It is therefore not our intention to
enter into more details about this subject and provide precise answers to these problems. We
will limit ourselves to indicating that, from a technical point of view, it is advisable to
perform a detailed design phase prior to the automatic code generation step (see sub-section
2.7.1). This is also the approach taken in [Kordon 92].
22

The Incremental Prototyping Process
Figure 8. Our Proposal for an Incremental Prototyping Methodology

Figure 8 shows the development process we propose in relation with OOMP, by empha-
sizing the fact that the prototype may be executed at any moment: The specifications may
be either simulated with an inference tool during the evolutive prototyping phase, or the
code compiled and executed on a network of workstations during the lower-level incre-
mental prototyping phase. The so-called concrete specifications are obtained partly by clas-
sical design techniques and partly by correctness-preserving refinement steps, e.g. with
semi-automatic transformations which increase the level of parallelism of the resulting
system [Buchs et al 96].

Abstract
Specification

Refine
 SANDS Transformation Tool

Concrete
Specification

Compile
SANDS Prototyping Tool

Abstract
Implementation

Specialize
Manual subclassing

Concrete
Implementation

SANDS
CO-OPN to Prolog

Sequential simulator

Ada 95 compiler

Distributed simulator

Evolutive prototyping

Incremental prototyping
(OOMP)
23

2. An Incremental Prototyping Methodology based on Formal Specifications
2.7.1 Why Object-Oriented Design is Necessary

As already mentioned, and as will be developed in chapter 5, there may be some technical
problems when it comes to translating specification formalisms which are not object-
oriented. The difficulty lies in the fact that, e.g. in algebraic specifications, the operations
are not necessarily attached to a specific type, whereas this is compulsory to be mapped
correctly into an object-oriented programming language. In those cases it will be indispens-
able to add a parameter, the controlling argument, to create an artificial link to the currently
defined class. Another unclear situation is when an operation definitely belongs to a partic-
ular class, but the latter is defined in another module: Statically typed languages like C++
and Ada95 declare such cases illegal. The prototyping tool may then circumvent the
problem by silently defining a new class to host the operation, or make the operation a
global function, i.e. which depends on no specific class and which can therefore not be rede-
fined by the developer in the concrete code.

To avoid these shaky constructions, one solution asserts itself: Before submitting a formal
specification to the compiler, it must undergo a phase of object-oriented design, for instance
with the Fusion method [Coleman et al 94], in order to make the interfaces compatible with
the idioms of the object paradigm. In the case of CO-OPN, this rule applies only to the alge-
braic specification part since, concerning the Petri net part, a module is in itself a type defi-
nition and has therefore naturally adequate interfaces.

2.8 An Error Detection Scheme for the Concrete Code

A Basic Idea and Some Applications

In our version of mixed prototyping, the methods of the abstract classes, which are guaran-
teed correct w.r.t the specifications, are inherited by the concrete classes, and do no longer
necessarily disappear when the developer wants to redefine them. This is because we
exploit inheritance instead of genericity. Moreover, since the interfaces of the specifications
are known, it is possible for the prototyping tool to derive new classes from the user’s hand-
written code. These classes may then be put to work transparently, because the consequence
of dynamic binding is that the clients do not know which subprograms they are really
calling. This opens the way to new techniques for tracing the execution and testing the
correctness of the concrete code.
24

An Error Detection Scheme for the Concrete Code
Figure 9. Position of the Testor Class in the Hierarchy

Figure 9 shows how the concrete class is “sandwiched” between two automatically gener-
ated classes. Some conceivable uses of this possibility are:

• To test that the operations of the abstract and the concrete classes have the same semantics
by calling them successively. This requires some means of comparing the results of the
operations, as well as the state of whole objects in formalisms which are not restricted to
immutable values.

• To perform the same test as above, but in a way which is less costly: Instead of comparing
states, the testor class can verify that some pre- or postconditions are respected. This solu-
tion is somewhat more difficult to implement automatically, but in compensation there
should be no noticeable slowdown at run-time.

• To monitor all the calls to the concrete class. We could imagine special classes writing
traces to files, or other tasks which are more conveniently fulfilled during normal execu-
tion than in a debugger, especially for distributed programs.

A Scheme for Automatic Generation of Executable Assertions

The test schemes of the two former points may simply be assimilated to the technique of
executable assertions which is enforced in defensive programming styles. An assertion is a
statement about a precondition, a postcondition, or an invariant, which must always hold,
otherwise the program must take some exceptional measure, like for instance to halt or to
transfer the control to an exception handler. This means that the program or module is run
as a whole, exactly as in normal conditions, except that special checks are performed before
and/or after each invocation to a method of the tested class.

Abstract Class

Concrete ClassSymbolic Class

generated

Automatic
ally

Testor Class

Inherits from

generated
Automatically
25

2. An Incremental Prototyping Methodology based on Formal Specifications
Techniques based on executable assertions may be exploited during different phases of the
software life-cycle [Rabéjac 95]:

• In the operational phase: [Andrews 79] proposes to use them for filtering input data of a
radar real-time control software in order to protect the software from hardware errors.

• In the testing phase: [Mahmood et al 84] describe an experiment which consisted in test-
ing a flight control software by the means of executable assertions, in order to detect
design errors.

For this approach to be attractive, the cost of checking the assertions must be very low. This
cost depends on how the assertions are built - which in turn depends on the nature of the
specification language - and where in the control flow they are placed by the prototyping
tool. We will give more concrete ideas about this approach in chapter 5 and 7, which are
devoted to the application of OOMP within specific formalisms.

Although we have not had the time to further explore the issue, we have good reasons to
think that the class pattern described for generating executable assertions may also, with a
few changes, provide an integrated framework for performing dynamic specification-based
testing: We have a test execution environment in the abstract code, which dispenses from
writing stubs and driver modules, and we have an oracle implemented by automatically
generated comparison operators.

The Problem of Correlated Errors

The scheme is however not perfect due to the fact that the comparison of states or results
(e.g. by an abstract equality operator) relies on the usage of hand-written constructor and
accessor functions. There may be wicked situations where an erroneous accessor compen-
sates for a bug in a tested operation, and thus “corrects” it. This is called a correlated error
and cannot be prevented. On the other hand, accessor functions are usually rather simple
functions, and therefore less error-prone.

2.9 Rationalization of Memory Management

From the the programmer’s point of view, object-oriented languages are also interesting
because they help relieving client modules from the burden of destroying objects created
dynamically. Some environments offer a general-purpose garbage collector, as in Eiffel
[Meyer 87], which is precious in the frame of prototyping, since it helps concentrating on
the problem to solve instead of on secondary implementation details. Unfortunately this
induces a hidden cost, which may reveal unsafe in critical applications. In other languages,
the root class can be used to implement memory reclamation, or can inherit this capability
26

Assessment of OOMP
from other classes. Ada95 provides two predefined root classes, the controlled and the
limited controlled classes, whereas C++ allows the programmer to redefine the new and the
assignment operators. In the latter two cases, one basically has two options:

1. Let the root class take care of the integrality of memory management;
2. Just use the root class to define a global frame, and implement the details of

memory-management inside the derived classes.

In the case of mixed prototyping, the second solution seems to be better adapted since the
internal representation can change radically between a symbolic implementation and its
corresponding concrete versions. For instance, for AADTs we use linked lists as supporting
representation during their symbolic treatment. They will however often receive a more
compact form, without pointers, in their corresponding concrete instances.

It is beyond the scope of this work to treat memory management in more detail, as this
subject depends on the source formalism, the target language, and also on the specific appli-
cation being developed.

2.10 Assessment of OOMP

We think that our incremental prototyping technique is realistic in the sense that it does not
only work on toy formalisms. We show in this thesis that it can be applied to the integrality
of CO-OPN, which is a very rich specification language including extensive structuring
possibilities, concurrency and non-determinism. Let us now try to discuss some potential
charges against our approach.

2.10.1 Conditions for Semantic Validity

For the mixed prototyping approach to be formally valid with respect to the semantics of a
given source language, then the latter must of course permit some form of refinement and
not be too restrictive in its acceptation of semantics preservation. The chosen formalism
should allow all the intermediate stages between the abstract and the concrete implementa-
tions, in other words, replacing just a fraction of its “normal refinement unit”. For instance,
partial implementation of a signature, for algebraic specifications, or partial implementation
of an Object module for the Petri net part of CO-OPN.
27

2. An Incremental Prototyping Methodology based on Formal Specifications
Figure 10. The Continuous Evolution from Symbolic+Abstract to Concrete

In the case of algebraic specifications, the paper [Choppy&Kaplan 90] stated the correct-
ness criterion as being the following. Let be two different algebraic values of a partial
model(6) defined only by the sorts and operations with concrete implementations. Then they
must keep the same equivalence relation in the models obtained by incorporating the
abstract definitions of the remaining operations. This criterion concentrates well on the
heterogeneous aspect of the evaluation, i.e. the fact that potentially only a subset of the
operations of a sort are concrete. This contrasts with all other existing approaches where the
implementation granularity is the module and not the operation.

Whereas the above-mentioned proof of implementation correctness w.r.t. the algebraic
specification is given on the model level, i.e. on state based homomorphisms, there exists
another viewpoint where equivalence is based on observable behaviours (as in
[Hennicker&Schmitz 96]).

In the case of CO-OPN Object modules, refinement is based on the relation of strong
concurrent bisimulation (see section 3.7). This property is however defined on the basis of
markings, a notion of state which is not modular. This unstructured approach implies that
fractional replacements of Objects are directly taken into account by the semantics, as long
as the algebraic model remains unique (definition 24 on page 83). For us, this uniqueness is
guaranteed by the fact that the generated implementation of the algebraic part is based on
term rewriting systems and by the condition that all hand-written variants stay within the
same model, hence the model is always the initial model (see [Ehrig&Mahr 85] for a defini-
tion): This is perfectly standard in implementations of algebraic specifications.

6. Informally, a model is a correct implementation of an algebraic specification. A formal definition will be
given in 3.6.1.

Abstract Class

Symbolic Class Concrete Class

Semi-abstract, heterogeneous classes
28

Assessment of OOMP
On the programming language level, strong and static typing contribute to the correctness of
the concrete code. It is nevertheless the duty of the programmer to ensure that the semantics
are truly respected. For instance, in the concrete code of a CO-OPN Object, one might
increase parallelism by firing concurrently events which are specified as sequential but are
in fact independent. A given Object must however keep strictly identical criteria for
deciding about his willingness to accept incoming events (when evaluating the guards): The
observable behaviour of offered services must not change. In other words, it is allowed to
ameliorate the response time of a system as long as the resulting state in the concrete
Objects is equivalent to what it would have been in the corresponding abstract Objects.

2.10.2 Implementation of Object-Oriented Formalisms

The formalism we demonstrate OOMP on is in fact object-based. Genuine object-oriented
specification languages still constitute an active research field - see for instance CO-OPN/2
[Biberstein&Buchs 95] - and it is hard to tell what kind of mechanisms they will finally
offer. The question is whether OOMP will interfere with the specification-level inheritance
hierarchies. Take for instance a Stack specification, having a derived Bounded-Stack
class specification.

Figure 11. A Possible Implementation of Specified Inheritance

Suppose that Concrete_Stack was implemented as a bounded array. Then, if this is
compatible with the specifications of Abstract_Bounded-Stack, it would be natural to

Abstract Stack

Concrete StackSymbolic Stack

Target language inheritance

Abstract

ConcreteSymbolic

Bounded-Stack

Bounded-Stack Bounded-Stack

Specification language inheritance

Target language type composition
29

2. An Incremental Prototyping Methodology based on Formal Specifications
reuse this code for the Concrete_Bounded-Stack. We do not need multiple inheritance to
do this, but as indicated in figure 11, only type composition, inducing a simple client-
furnisher relationship between those two concrete classes. Therefore OOMP will at least not
introduce repeated inheritance schemes which did not originally appear inside the source
specification hierarchy.

Another problem would be to conveniently and automatically map specification languages
with multiple inheritance such as VDM++ [Dürr&Plat 95], into single inheritance program-
ming languages(7). The object-oriented version of Ada [Ada 95], which the design team for
several reasons chose not to provide with multiple inheritance, has instead a set of specific
constructions, relying essentially on genericity, to cover some idiomatic forms of multiple
inheritance. The challenge would then be to identify these cases - probably not without
some hints from the developer - and to translate them accordingly.

We do not further develop this discussion, because it will invariably lead to both source and
target language-specific considerations. It is quite possible that object-oriented specification
idioms will evolve to much more powerful mechanisms than what can be directly mapped
onto current programming languages.

2.10.3 The Inheritance Anomaly in Target Languages

Most concurrent object-oriented languages present the problem that code reuse is not
possible when redefining inherited procedures which contain code for concurrency control.
This is called the inheritance anomaly [Matsuoka&Yonezawa 93]. The only solution for
users of these languages is to copy textually the inherited code and then to add the code
which is specific to the sub-class. Some research languages have solved this problem by
separating the functionality from the concurrency control, to which a declarative form must
additionnally be given [Frølund 92].

Since our intention is to support OOMP for distributed systems, it means that this problem
will be met as long as conventional programming languages (such as Ada) are used for the
implementation of prototypes. As a matter of fact, opportunities for code reuse are rare in
the implementation scheme we propose for CO-OPN Objects (see subsection 6.5.2.3).

2.10.4 Possible Sources of Inefficiency at Run-Time

We distinguish mainly two potential sources of inefficiency during the execution of proto-
types: the extensive usage of dynamic binding and the support for non-determinism.

7. There exists a tool [Plat&Voss 95] which compiles VDM++ into C++ (which itself provides multiple inher-
itance).
30

Assessment of OOMP
Slow-Down due to Object-Orientation

It is clear that in the current state-of-the-art in compiler technique, object-oriented program-
ming incurs a certain overhead. This is mainly due to the finer grained encapsulation units
and the use of dynamic binding. There does however already exist possible remedies: Some
Eiffel compilers are able to transform dynamic into static binding [Meyer 87]. Work on
eliminating unreachable procedures in object-oriented programs, such as [Srivastava 92],
focus on lowering the size of the resulting binary code. The BRUNEL project [Simons,
Kwang&Mei 94] aims at several optimizations such as link-time detection of class hierar-
chies where only one derived class provides instances. This allows collapsing the inherit-
ance hierarchy and performing static resolution of procedure calls, reducing simultaneously
both the code size and the alleged slowness. The flat tool of Eiffel has the same effect by
operating on the source code level.

The Cost of Non-Determinism

A useful specification device is the implicit concept of search non-determinism(8). It allows
the developer to concentrate more on the what than on the how because it eliminates the
need for all the control structures of procedural reasoning.

This comfort has unfortunately a certain cost at run-time. Search non-determinism is typi-
cally implemented by backtracking, a mechanism which is uneasy to reproduce in impera-
tive languages. The difficulty comes mainly from the requirement that the search space
must be explorable exhaustively - this is especially hard in distributed systems - and prefer-
rably without programmer intervention.

The way we propose to implement backtracking (in chapter 6) is essentially based on safety
and extensibility principles. It is possible that other solutions, attained by further reification,
i.e. conversion of any entity to the class construct, may achieve better performance, but at
the price of making the mapping between the specification and the generated code less intu-
itive. We think however that most of the inefficency will disappear at completion of the
mixed prototyping process, because we give the programmer the tools for manually trans-
forming backtracking into procedural control structures. The performance of the resulting
system will then finally depend essentially on the nature of the application, i.e. to which
extent it is search-oriented.

A currently successful approach in the field of logic programming is to annotate the defini-
tions with determinism indications (see e.g. Mercury [Henderson, Somogyi&Conway 96]).
Thus, it is always possible to know whether several solutions must be expected from a pred-
icate evaluation (or method call) and to optimize by preparing the run-time environment

8. Also called don’t know non-determinism.
31

2. An Incremental Prototyping Methodology based on Formal Specifications
accordingly. This alternative could reveal itself particularly fruitful in a distributed environ-
ment, where the delays due to remote procedure calls are especially perceptible.

In a more general sense, it is possible that the structuration patterns imposed by the OOMP
scheme may hinder some optimization techniques developed for the implementation of
certain specification languages. In the work we have done on algebraic specifications and
on Petri nets, the only meaningful problem seems to be the above-mentioned non-deter-
minism.

2.11 Putting OOMP to Work

In this section we will briefly give some more concrete indications about the interconnec-
tion of the tools which are to support our form of incremental prototyping within the
SANDS environment [Buchs et al 95], as well as the additional mechanisms by which the
developer gives implementation hints to the specification compiler.

2.11.1 General View of the Prototyping Tool

The prototyping tool is made of four parts, as depicted in figure 12 below:

• The CO-OPN checker(9), which executes lexical, syntactical and semantic analysis of the
source specifications written in CO-OPN. This module is common to all the tools, which
must thus be able to use the generated syntax tree;

• The front-end of the prototype compiler, which carries out additional semantic tests to
verify that the specification is concrete enough for the incremental prototyping phase. It
also records all user annotations written in separate files;

• The back-end(s) of the prototype compiler, which performs the proper compilation of the
specification by translating them into a procedural form. We may say that there is one
main compiler, and a set of auxiliary smaller modules, the role of which is e.g. to prepare
the testor classes;

• The code generator(s), which produces the class hierarchies in the target language. There
must be one code generator for each target language. Essentially their work consists in
adequately “packaging” the code into class and function definitions. An important aspect
is that they must have a perfect knowledge of the lexical conventions of their target lan-
guage in order to transcribe all identifiers of the source specifications into compilable and
easily recognizable identifiers in the generated code. This latter role is important for the
prototyping to proceed smoothly.

9. This part was implemented by Mathieu Buffo.
32

Putting OOMP to Work
Figure 12. Operations and Outputs in the Prototyping Tool

2.11.2 The Annotation File

In the previous sections, there has been several allusions to the possibility of easily
switching between implementations. But nowhere did we see how this was actually done:
That is the purpose of this sub-section.

Remember that the source language is CO-OPN, in which the dynamic properties of a
model is expressed by the means of modular algebraic Petri nets. Each Petri net Object
defines a sub-net which is connected to other sub-nets through synchronization links. Alge-
braic abstract data values can be transferred during the synchronization.

CO-OPN
Specification

CO-OPN Checker

Abstract
Syntax Tree

Front-End
Prototyping Tool

Annotated
Syntax Tree

User
Annotations

Ada95
Implementation

Main Back-End
Prototyping Tool

Testor Class
Generator

Ada95
Code Generator

Intermediate
Language

C++
Implementation

C++
Code Generator

Java
Implementation

Java
Code Generator

Monitoring Class
Generator
33

2. An Incremental Prototyping Methodology based on Formal Specifications
In this thesis it has been decided that the Petri net modules are to be implemented as sepa-
rate (coarse grained) processes executing on different nodes. Each process may use a locally
defined implementation of the data types it processes, which means that there is a large
support for heterogeneity between processes: This ability is described in section 5.6.1.

ANNOTATION Network;
INTERFACE

USE
Message -> TEST “Packed_Message”,
ID -> “Abstract_ID”;

METHODS
Put _ _ _ : message id id -> IN IN IN;
Get _ _ _ : message id id -> OUT IN OUT;

BODY
;; No private declarations to annotate

END Network;

Figure 13. Annotation File for Object Network

Figure 13 gives an intuition of how an annotation is associated to an Object called Network,
the source of which is given in Figure 19 on page 57. Briefly, we can see that the arrows
indicate different kinds of mappings:

• In the USE part, the arrow maps the name of an imported module to the corresponding
implementation. The keyword TEST tells the prototyping tool to generate testor classes
derived from the indicated implementations.

• In the METHODS part, the arrow associates with each method a strongly moded profile. This
is necessary as logical variables are not supported in the prototyping process, for safety
and efficiency reasons, and also because it yields code which is easier to interface with
(more on this in section 6.5.2.2).

Depending on the situation, more indications may be necessary, for instance if we want to
reuse precompiled or non-modifiable libraries which do not follow the naming conventions
of our prototyping tool. In any case it is a good idea to keep the annotations separate from
the specifications themselves in order to guarantee a maximal independence between the
different development tools: We could for instance have other kinds of auxiliary files for
associating test sets with each module. This approach also allows us to have several config-
urations for a given implementation.

2.12 Open Problems and Possible Extensions

These are some closely related problems that we have not had the time to examine in this
thesis:
34

Related Work
• The possibility of integrating existing software components, which are not formalized, by
e.g. introducing new enrichment declarations in CO-OPN. At the strict level of the speci-
fication language this must be completed by writing interfaces for the external compo-
nents. From a programming language point of view the situation is more delicate since the
calling conventions and the internal representations of common data types must be taken
into account, especially in mixed language environments. This subject has already been
considered on the formal level in [Kordon 92], and on the programming language level in
[IPTES 94] and [Fröhlich&Larsen 96].

• In a related area, mixed prototyping may be used to help reengineering of existing sys-
tems, to which it is desirable to retro-fit complete specifications (and not only interfaces).
The idea is then to remove errors, either in the specifications, or in the existing compo-
nents, by detecting different behaviours between the abstract code and the concrete code,
which is implemented by the original modules [Cherki&Choppy 96]. To put this concept
into practice, the above-mentioned problem of heterogeneity in the calling conventions
and data structures must first be resolved. It also needs some convenient way to compare
the behaviours: This may be done by the dynamic code verification principles presented in
this thesis. The paper [Zaremski&Wing 95] defines a formal specification-based classifi-
cation for determining how well two software components match. They use pre- and post-
conditions for establishing a scale ranging from syntactic interface compatibility to true
substitutability.

• It is necessary to map the specifications into equivalent programming language constructs
in an intuitive way, a requirement which is not present in other forms of prototyping. This
subsumes that easily recognizable identifiers may be generated. Ada is fortunately a gen-
erous language which allows many kinds of overloading, therefore identifier mangling
(coding in order to ensure uniqueness) is generally not needed. Mixed prototyping may be
less comfortable in languages, such as Eiffel, which do not support overloading.

2.13 Related Work

Since this is an introductory chapter on OOMP, we focus on related work in the general
fields of incremental prototyping and executable assertions. The chapters devoted to more
technical aspects of implementing algebraic specifications and CO-OPN Objects will
contain their own respective summary of related work.

It has long been recognized that object-oriented languages are suitable for prototyping in all
generality. Smalltalk [Goldberg 84] is usually the favourite in this context because of the
flexibility offered by its dynamic typing and its wealthy environment (see e.g. [Krief 92]).
Class derivation and specialization are the keywords for the support of incremental devel-
opment, the root classes being considered as the skeleton of the application. Another inter-
esting aspect of Smalltalk is the concept of meta-class, which lets the programmer
35

2. An Incremental Prototyping Methodology based on Formal Specifications
transparently modify the predefined mechanisms of the language, in a manner akin to
reflexive languages. This property allows quite elegant formulations of service layerings
such as fault-tolerant protocol stacks.

Nevertheless, because of its relative inefficiency, Smalltalk is more often used for throw-
away prototyping, the real application being then developed from scratch. Further, none of
these approaches are based on formal methods, nor on automatic generation of incremental
and heterogeneous prototypes.

2.13.1 Incremental and Heterogeneous Prototyping

Within this domain of prototyping, we can distinguish the works which additionally allow
concretizing the generated code from those that don’t.

In the formal methods community few approaches really try to tackle the problem of auto-
matically implementing end-user applications. Instead, they usually only support simula-
tion, in the sense of specification animation. There is also some confusion due simply to the
use of ill-defined terminology. In the case of Petri nets, one can often hear correct but
misleading sentences like: “The implementation is a simulation of the token game”.

For this reason, let us establish the following definitions: We will define simulation as the
process of animating a specification in order to observe and analyze its behaviour. This is
usually done in logic or functional languages within a closed environment (the development
tool), but also sometimes as stand-alone programs on dedicated parallel architectures.
Implementation aims at direct generation of application programs described by formal spec-
ifications. For efficiency reasons, prefence goes rather to the use of compiled procedural
languages.

Prototyping without Code Concretization

We consider here successively methods based on Petri nets, on algebraic specifications, and
finally on other formalisms. Interestingly, the two former notations are the most prolific
domains, because they contain comparatively more operational information.

• Some Petri Net Approaches
On the subject of prototyping based on Petri nets, we can mention e.g. [Bréant&Pradat-
Peyre 94] which generate implementations in OCCAM [INMOS 88] for parallel Trans-
puter machines. It is therefore questionable whether they do not address simulation more
than implementation. An example of research project which is more software engineer-
ing-oriented is [Kordon 92], which uses Ada83 as target language. Interestingly, in later
papers, the Petri net formalism is abandoned in favour of a more expressive semi-formal
language, and Well-Formed Coloured Petri nets [Chiola et al 91] are used as an internal
representation on which analysis techniques may in turn be applied
36

Related Work
[Kordon 94][Kordon 95]. An approach where object-orientation is exploited in the target
language is [Holvoet&Verbaeten 95], where the inheritance mechanism is presented as a
means for the developer to manually extend the basic class of models supported by the
source formalism and/or the prototyping tool. For instance, inhibitor arcs(10) may be built
by a derivation of the predefined arc class. This would also be possible to some extent in
OOMP, although we consider that the semantics should be strictly preserved in the con-
crete code.

• Algebraic Specifications
In the domain of algebraic specifications, there are some tools, e.g. [Garavel&Turlier 93],
where the abstract code, usually written in C [Kernighan&Ritchie 78], may be generated
so as to call hand-written functions, but the level of interaction is fairly limited, not to talk
about the resulting type safety. The work which is described in [van der Meulen 90],
although they use the term incremental implementation, is not aimed at implementing
algebraic specifications, but rather at their incremental rewriting and interpretation in
interactive environments.

• Other Formalisms
We can mention for instance the Statemate tool [Harel 90], which is capable of generating
prototypes in Ada or C on the basis of Statechart graphical specifications [Harel 87].
These prototypes may be combined with external modules at link time only. The VDM++
Toolbox [Plat&Voss 95], which generates C++ classes from VDM++ specifications,
requires the integration of hand-written C++ code for the parts of the source formalism
which are not executable, such as implicitly defined methods. In [Mañas&de Miguel 88] a
LOTOS [ISO 88] to C compiler is described where the generated code may call hand-
written routines and vice versa. The Ptolemy tool [Buck et al 94] is a generic framework
for system-level design which allows mixing models of computation. It is made of an
extensible set of domains, of which each domain contains the description of a model of
computation and its associated communication and scheduling rules. Therefore it supports
the simulation of heterogeneous prototypes without being itself restricted to a particular
formalism. A notation which is quite popular, Z [Spivey 89], is not appropriate for auto-
matic implementation, because it does not provide enough operational information. Only
Prolog-based simulators have been built for Z.

Prototyping with Code Concretization

To be considered within this category, tools or methods must additionally be designed for
incremental replacement of abstract modules by concrete modules. In fact the only candi-

10. Inhibitor arcs allow the firing of a transition only if its input place contains a number of tokens inferior to
a given value. This is the opposite of the behaviour of a standard arc, but provides more expressivity.
37

2. An Incremental Prototyping Methodology based on Formal Specifications
dates, mixed prototyping excluded, are the IPTES project [IPTES 94] and the directly
related [Fröhlich&Larsen 96].

The European IPTES (Incremental Prototyping of Technology for Embedded Systems)
project, which started in 1990 and lasted three years, had as objective to apply Boehm’s
spiral process model [Boehm 88] in the field of real-time systems. The result was a method-
ology and a supporting environment [Elmstrøm 93] for assisting in the development of
embedded real-time software as series of prototypes being incrementally refined, from
high-level logical description to code in the implementation language. IPTES prototypes are
described in a specification language which is an extension of SA/RT diagrams
[Ward&Mellor 85], complemented with descriptions in “Meta-IV”, a language based on
VDM [Jones 90], for specifying data and transformations. The timing requirements are
expressed using a net formalism they call “High Level Timed Petri Nets” into which the
SA/RT models are translated.

In the IPTES project, modules at different levels of abstraction may synchronize and
communicate through the technology they call run-time adaptation kernel. Here resides the
main difference with mixed prototyping: This approach requires converting the data struc-
tures at run-time for communication to take place between abstract and concrete environ-
ments. In fact, from a purely technical point of view, they really deserve the term of
heterogeneous, while it is less justified for mixed prototyping. There always remains a clear
distinction between the part which is simulated and the part which is implemented, while in
our approach the frontier is less visible.

The run-time adaptation kernel has the advantage that mixed language and mixed paradigm
interactions may be considered, resulting in potentially more important differences of
abstraction between modules during the development. On the other hand, it is unlikely, in
these conditions, that the concrete code may call functions of the simulated part. Only
purely procedural and sequential concrete code is effectively allowed, resulting in a strict
bottom-up development strategy. Last, but not least, there is no automatic code generation
in the IPTES toolbox: The abstract part is in fact the simulator itself.

In subsequent work, presented in [Fröhlich&Larsen 96], the interaction between abstract
and concrete code was ameliorated. Whereas the communication mechanism was previ-
ously based on C code, heavy-weight Unix processes and pipes, it was mutated to the
combination of C++ code, single-process execution and dynamic linking for the integration
of new implementations with the abstract parts. Instead of exploiting data abstraction prin-
ciples, they still oblige the developer to study their internal representations in order to write
the appropriate conversion routines. The specifications may now be automatically trans-
lated, and the concrete code is essentially seen as a means of providing the facilities which
cannot be specified with their formalism, e.g. I/O and trigonometric functions.
38

Related Work
In the above-mentioned related works, no one exploits the object paradigm for its natural
capacity of having several implementations for a single abstraction. Moreover, there is
nowhere a real prototyping phase on the concrete code.

2.13.2 Related Work in Executable Assertions

The principle of expressing assertions as predicates on abstract data types was described as
early as 1972 [Hoare 72]. To put this idea into practice, the key is to have a mapping
between the abstract values and the implementation values. This mapping is realized, in our
approach, by the abstract constructor and accessor functions (depicted in figure 6) which
delegate the low-level actions to the concrete class during the evalutation of an assertion. In
the specific case of algebraic specifications, the automatically generated syntactic equality
operators are built upon abstract accessors.

We consider from now on only tools and methods which are able to generate executable
assertions on the basis of formal specifications.

A famous representative of this category is the Larch project [Guttag, Horning&Wing 85],
which provides a formal description language to check that hand-written code does not
violate the specifications. To this purpose, two complementary formalisms are used: The
first one, the Larch Shared Language, is essentially the usual kind of algebraic specifica-
tions, and deals with the relationships between abstract data types and their associated oper-
ations. The second formalism is the model oriented family of Larch Interface Languages,
which are extensions of conventional programming languages like Modula-2 or C++. An
interface language provides the means of expressing invariants, input-output assertions
about the functions being implemented, and functions to map concrete values onto abstract
ones.

Anna [Luckham 87] is a formalism for annotating Ada sources in the form of comments.
After preprocessing and compiling, this results in a program with executable assertion code
which may raise exceptions. The adequate information for generating assertions is made
directly available at the right place by the programmer. The role of the preprocessor is
therefore trivial.

In the VDM formal notation [Jones 90], axioms may be stated explicitly and are easily iden-
tifiable by any specification compiler. They are however not used in procedural implemen-
tations, since VDM also provides a constructive part, which gives the operational
information required for more efficiently executable programs. Among the mentioned
axioms are pre- and postconditions: The VDM++ to C++ compiler [Plat&Voss 95] imple-
ments these as separate functions. If the developer wants to use them as assertions, he must
edit the generated code and insert the calls by hand.
39

2. An Incremental Prototyping Methodology based on Formal Specifications
2.14 Epilogue

We have now seen the fundamentals of mixed prototyping and the contributions brought to
it by a systematic usage of object-oriented principles such as data abstraction, incremental
programming, dynamic binding and creational patterns. The presentation was intentionally
very abstract, in order to show the generality of the approach. Some indications were given
concerning the usage of OOMP as a general development methodology, while it is out of
the scope of this work to elaborate the precise criteria for integrating a formal approach with
more classical structured methods. We can now formulate a wish list for the application of
OOMP to specific formalisms:

• It should be intuitive: The generated prototype must be structured adequately so that the
classes and methods at the programming language level correspond to easily identifiable
entities of the source formalism and the modelled system.

• It must lead to correct implementations: Since the generated code will permanently serve
as reference, it must give the best possible guarantee. The use of assertions during the
incremental concretization may also contribute to the quality of the resulting piece of soft-
ware.

• The generated code should be efficient although it is possible to hand-tune it: The devel-
oper should not be obliged to redefine everything in his concrete code.

• The run-time support should be robust since we are not doing throw-away prototyping. It
should provide the services required for the reliable execution of the resulting application,
especially in distributed environments.

The remaining chapters of this report are covering the answers to these requests. In partic-
ular, we demonstrate how mixed prototyping with object-orientation is put to work with
algebraic specifications and CO-OPN Petri net Objects.
40

Chapter 3

The CO-OPN Specification Language

3.1 Introduction

In this chapter we will perform a thoroughgoing presentation of the CO-OPN specification
language. This is necessary to understand the specificity of its semantics, and in particular
its original notion of object activity and synchronization. For this description we base
ourselves on the original CO-OPN paper [Buchs&Guelfi 91] and also partly on the PhD
thesis [Biberstein 97] from which it was possible to obtain a more polished formulation of
the former semantics. We completed this work with numerous examples and remarks in
order to orient the discourse in the direction of our more pragmatic approach of CO-OPN,
namely automatic implementation and prototyping of distributed systems.

The concurrent part of CO-OPN is currently defined by the means of an abstract syntax and
a very high-level form of operational semantics called structured operational semantics
(SOS) [Plotkin 77]. Concerning the syntax we will from time to time refer to its concrete
version too if we feel it may bring interesting insights into the more practical aspects of the
language. More importantly, we will also make sporadic digressions from the given opera-
tional semantics to equivalent lower-level point of views because we think that this will
provide a smoother transition to the algorithmic descriptions of chapter 6.

The SOS frame is directed towards deductive reasoning schemes built upon a set of
predefined axioms, to which one adds the inference rules specific to the formalism under
consideration. The resulting system may be used as a basis for calculating the allowed
behaviours of a given specification, either by hand, or by resorting to dedicated tools such
as the CO-OPN simulator [Buchs, Flumet&Racloz 93]. A prerequisite for such tools is
therefore the ability to manipulate inference rules: This is most easily realized by imple-
menting them in a logic programming language such as Prolog [Colmerauer 83]. The
advantage of this solution is that a resolution procedure is dispensed directly by the
language. In other words, the operational device by which correct reasonings are elaborated
and appropriate variable assignments are obtained is supplied for free. The purpose of this
41

3. The CO-OPN Specification Language
work is however to produce prototypes implemented in imperative programming languages,
which means that we must elicit the resolution mechanism, since it is no longer predefined.
It is not only this difficulty, but also the additional problems raised by the execution condi-
tions met in distributed systems - lack of global state, hardware failures - which must be
answered by the algorithmic design of chapter 6, hence the need for a progressive descent in
the levels of abstraction.

The rest of the chapter is organized as follows. After the preliminary remarks on the evolu-
tion of CO-OPN, we provide a gentle introduction to the language through a small example.
Then we gradually and formally introduce the different components of the formalism, first
syntactically and then semantically, from algebraic specifications to synchronized CO-OPN
objects. We assume however that the reader has some familiarity with classical Petri nets
[Reisig 85]. Finally, a discussion about the nature of the language and the compositionality
of its semantics will give the reader a better understanding of CO-OPN and help us proving
the correctness of the implementation scheme given in chapter 6. It should be noted that in
this thesis we emphasize the concurrent part of CO-OPN because the other facet of the
language, multi-sorted algebraic data types, is now a well-established formalism. Therefore
the corresponding compilation algorithm (see chapter 4) presents only minor changes
compared to existing results, modifications which are needed to enable incremental proto-
typing.

Sometimes we will use the term AADT as a general abbreviation for algebraic abstract data
type, while the name Adt will refer to specific syntactic or semantic entities of the CO-OPN
language such as Adt module. Similarly, object is a generic denomination for an encapsu-
lated Petri net, while Object denotes distinctively the module construct of CO-OPN.

3.2 Historical Background

The CO-OPN (Concurrent Object-Oriented Petri Nets) project [Buchs&Guelfi 91] was
initiated in order to propose a formal specification language for the design of large concur-
rent systems. This goal is attained through the definition of a modular specification
language combined with Petri nets. More precisely, CO-OPN objects are interconnected
modular entities described by algebraic nets. A set of tools, the SANDS environment, has
been built [Buchs, Flumet&Racloz 93][Buchs et al 95] to support this formalism, and
comprises utilities such as a graphical editor, a transformation tool and a sequential simu-
lator for assisting in the development of specifications.

The CO-OPN language is based on two simple and elegant concepts, algebraic abstract
data types (AADTs) [Ehrig&Mahr 85] and Petri nets [Petri 62][Reisig 85], mustered into a
more general model, algebraic nets [Reisig 91]. Although algebraic nets constitute an
42

Introductory Example: The Collaborative Diary
important improvement over classical Petri nets, they are quite useless when facing large
problems. Therefore, the following structuring facilities have been included in the CO-OPN
model:

• modularity and encapsulation
• genericity
• synchronization and communication between modules

Before pursuing our presentation of CO-OPN, it should be made clear that several versions
of the formalism have been elaborated during the research effort which started in 1989, and
that they have different views of the notion of object-orientation. The first version,
described in [Buchs&Guelfi 91] and [Buchs, Flumet&Racloz 93], is called CO-OPN v1.0
and does not provide inheritance nor dynamic object instantiation. It is therefore rather
object-based in the classical sense (see [Wegner 87]). The next formulation of CO-OPN is
version 1.5 and consists mainly in syntactical updates [Buchs et al 95]. Finally, CO-OPN/2
is the fully object-oriented manifestation of the language [Biberstein&Buchs 95]. Its defini-
tive semantics have been settled very recently [Biberstein 97] and this is why this report is
centered instead around the 1.5 version of CO-OPN.

3.3 Introductory Example: The Collaborative Diary

The formal model is based on an approach in which the notion of encapsulation is ensured
by methods and abstraction is supported by synchronization expressions between the
methods. An object is an algebraic Petri net, with parameterized transitions as methods and
the markings of the places as internal states.
43

3. The CO-OPN Specification Language
Figure 14. Module Enrichment Relationships of the Diary Specification

For our example we define a simple collaborative diary, with a replicated architecture, for
members of a ‘software engineering laboratory’. This diary assists in the management of
meetings in the laboratory conference room by letting several users view and modify its
contents simultaneously from their individual workstations, while preventing conflicts, i.e.
planning of overlapping events. The diary allows the following services: Consultation,
addition, cancellation and replacement of events. An event structure is simply composed of
a day, a beginning and ending time and a comment line. Each site has four components for
the diary of each member: the Abstract Document Representation (ADR), the Distributed
Synchronization Algorithm (DSA), the Data Access Layer (DAL) and the Graphical Inter-
face Layer (not represented in figure 14). This architecture is inspired from [Karsenty 96].

The DSA is to guarantee consistency between the replicas of the diary. To this end, we rely
upon a very simple mechanism: When a user modifies its copy of the diary, the corre-
sponding event modification must be accepted by the other participants. If by misfortune
another user wants to validate at the same moment a conflicting event, then the respective
DSAs will detect the problem and reject both updates. We will not bother specifying here
how the conflict is actually solved: Let us just imagine that the interface signals the error,
and that the humans are able to communicate by other means to arrive at an agreement.

From an algorithmic point of view, the validation of an event is implemented by an atomic
three step operation: First broadcast(1) the wish to validate an event, and then wait for all
participants to acknowledge by a vote. If a single answer is negative then broadcast an

In this figure each oval represents an object - one
Petri net - and each drum stands for an abstract data
type module.

 • ADR keeps all information concerning the diary
definition.

 • DSA ensures that the replicated information is con-
sistent.

 • DAL filters accesses to the ADR.

 • Network is a model of the services expected
from the real communication medium.

The abstract data type modules defined in this sys-
tem are: Message, ID, Action, Event,
ListEvent, Decision and Vote.
44

Introductory Example: The Collaborative Diary
abort, otherwise a commit order. This algorithm is called the two-phase commit protocol
(2PC) [Gray 78]: The first phase consists of the two first steps above, and the second phase
is the communication of the final decision.

Figure 15. Global View of the Synchronizations in the Control of a Collaborative Diary

According to our terminology, the events which represent the evolution of the net can be of
two types: methods or internal transitions. The methods of an object are activated exter-
nally while internal transitions are activated locally, as soon as their conditions are vali-
dated. The events modify the state of the system and the symbolic links between the objects
express synchronization constraints between the events of these objects. The constraints are
described by a combination of sequential (graphically or , textually “..”), simulta-
neous (, respectively “&”), alternative (+ and “+”) or empty synchronization operators.

1. Here a broadcast includes for simplicity the sender in the list of addressees, hence n messages are sent
instead of n-1, where n is the number of users of the distributed diary.
45

3. The CO-OPN Specification Language
In summary, our formalism is based on the following components:

• Algebraic abstract data types
• Petri nets
• Modularity and synchronizations

From a graphical point of view, a system can be seen at two different levels. The first level
is an abstract view of the application, which represents either the objects with their synchro-
nization links (figure 15) or the module enrichment - or clientship - relations (figure 14).
The second level represents the algebraic Petri net within each object and displays its
places, transitions and methods with parameters (Figure 16, which is equivalent to
figure 17). A method is the entry point for synchronizations originating from other objects.

Figure 16. An algebraic Petri net: Internal view of object DAL

Figure 17 (below) is the textual specification corresponding to the graphical representation
shown in figure 16. Only the behavior of method Act and one axiom of method Confirm is

This is the graphical representation of the behavior of object DAL:

• Method Act is offered to the clients of the diary in order to validate an action, i.e. a modifica-
tion to the current list of events. If a conflict can be detected locally, the action is directly
inserted into the conflicts place. Otherwise, the action is transmitted to the place wait-
transmit, so that the DSA object may, by calling the method Transmit, further validate it
globally on the network.

• Method Conflict allows the DSA to inform of actions that conflict with the other participants
of the diary.

• Method Confirm allows the DSA to provide actions that have been globally validated on the
network.

• Methods DisplayModif and DisplayConflict are to tell the graphical interface when
new events are available for displaying.
46

Introductory Example: The Collaborative Diary
listed here. Notice that CO-OPN is very liberal about the usage of parenthesis. Operands
may also be placed freely within or around their “operators” (generators, operations,
methods or places): This is sometimes called mixfix or distributed notation.

Figure 17. Partial Specification of Object DAL

In the interface of the object, the USE list reports the other objects with which we perform
synchronizations (ADR) and the Adts (ListEvent, Event, Action) needed in order to
declare the profiles of the exported methods (Act, DisplayModif, DisplayConflict,
Transmit, Confirm and Conflict). Each underscore character (‘_’) plays the role of a
place holder for an argument.

In the BODY of the DAL object, the WHERE keyword introduces the local variable declara-
tions. Although strongly typed, they should be considered as logic variables in the sense of
the Prolog programming language [Colmerauer 83], since they operate by unification
instead of destructive assignment.

The concrete syntax of the axiom describing an event, be it a method or a transition, is:

[[AxiomName “::”] AxiomCondition “=>”]
EventNameAndParams [“WITH” AxiomSynchronization] “:”

[AxiomPrecondition] “->” [AxiomPostcondition] “;”

OBJECT DAL;
INTERFACE
USE ADR, ListEvent, Event, Action;
METHODS
Act _ : action;
DisplayModif _ : listevent;
DisplayConflict _: action;
Transmit _ : action;
Confirm _ : action;
Conflict _ : action;

BODY
PLACES
confirmed _ : listevent;
conflicts _ : action;
wait-transmit _ : action;

AXIOMS
ActOk :: Consistent(a,l)=true =>

Act a WITH Consult(l) : -> wait-transmit a;
ActNotOk :: Consistent(a,l)=false =>

Act a WITH Consult(l) : -> conflicts a;
CnfAddEv :: Confirm (AddEvent(e)) WITH AddEvent(e) .. Consult(l)

: -> confirmed l;
...

WHERE
a : action;
l : listevent;

END DAL;
47

3. The CO-OPN Specification Language
The AxiomName part is completely optional, but may be helpful for locating errors during
compilation, for commenting the code, or, as we will see later, for clearly labelling the non-
deterministic choices according to the different axioms of the event. In our example, ActOk
and ActNotOk denote the cases for method Act where the action a to validate is locally
acceptable, respectively conflicts with the local view of the event list l.

AxiomCondition is a conjunction of general relations over the variables which we cannot
or do not want to state (by direct unification) in any other part of the axiom. The expression
Consistent(a,l)=true is an instance of such a condition.

EventNameAndParams tells which specific event the axiom defines, as well as the names of
its formal parameters in the case where the event denotes a method.

The synchronization expression is given in AxiomSynchronization. It states the names of
the methods which are called for establishing rendez-vous, and the terms through which
data are exchanged. Notice that the syntax of CO-OPN does not indicate the modes of the
parameters, i.e. whether they are read or written to: This characteristic is related to the oper-
ational view of the language which is again similar to Prolog, and is one of the mechanisms
which contribute to maintaining a high level of abstraction in the specifications.

The AxiomPrecondition and AxiomPostcondition parts establish the links to the input
and output places of the event in the sense of Petri nets, and state with algebraic expressions
the additional conditions or transformations to establish on the tokens.

The source specification of Adt Event is listed below (figure 18). It must be noted that we
do not provide any graphical representation for the internal structure of Adts.
48

Introductory Example: The Collaborative Diary
Figure 18. Specification of Adt Event

The syntactical structure of an Adt module is very similar to the one of object modules. In
the interface, the difference is that the former declares sorts (or types), generators (akin to
constructors in programming languages) and operations (the same as functions) where the
latter has methods. In the body, an Adt has only axioms and variable declarations(2).

The syntax of a generator or operation axiom is as follows:

[[AxiomName “::”] AxiomCondition “=>”]
GenOpNameAndParams “=” EquationRightHand “;”

The AxiomName and AxiomCondition parts are both optional and play here the same roles
as in event axioms. In contrast, it can be mentioned that AADTs do not exhibit comparable
levels of non-determinism as CO-OPN objects, since they provide only deterministic opera-
tions and immutable values (once created, they are not sensitive to their environment).

The mandatory part of the axiom is an equation. Its left-hand side, GenOpNameAndParams,
tells which generator or operation the axiom defines, as well as its formal parameters. The

2. In fact it may also contain theorems, which are formulas similar to axioms, except that they are considered
as comments since they express properties that are not intended to be interpreted.

ADT Event;
INTERFACE
(: Import standard modules :)
USE Booleans, String, Time;
SORT event;
GENERATORS
< _ _ _ _> : date, daytime, daytime, string -> event;

OPERATIONS
_ = _ : event event -> boolean;
Overlapping _ _ : event event -> boolean;

BODY
AXIOMS
(: Define equality :)
(< day1, start1, end1, cmnt1 > = < day2, start2, end2, cmnt2 >) =
(day1 = day2 AND start1 = start2 AND end1 = end2 AND cmnt1 = cmnt2);

(: Define ’Overlapping’ working hours :)
Overlapping < day1, start1, end1, cmnt1 >

< day2, start2, end2, cmnt2 > =
(day1 = day2 AND start1 <= end2 AND end1 > start2);

WHERE
day1, day2 : date;
start1, start2 : daytime;
end1, end2 : daytime;
cmnt1, cmnt2 : string;

END Event;
49

3. The CO-OPN Specification Language
right-hand side of the equation (EquationRightHand) is an expression and will be inter-
preted in this report in a rewrite approach, i.e. as the result of the generator or operation.
This subject needs however further clarifications and will be postponed until chapter 4,
which gives a more formal presentation of the interpretation and compilation of algebraic
specifications.

3.4 CO-OPN Syntax

The purpose of this section is to describe the abstract syntax of the CO-OPN formalism. The
concrete syntax will be referred to as seldom as possible, since we are more interested in the
semantic aspects of the language.

Recall that a CO-OPN specification is composed of two kinds of descriptions associated to
two kinds of modules: Adt modules and Object modules. Adt modules are used to describe
the algebraic abstract data types involved in a CO-OPN specification, while Object modules
correspond to the description of the individual algebraic Petri nets.

Throughout this paper we consider a universe which includes the disjoint sets: O, S, F, M, P,
X, N. These sets correspond, respectively, to the sets of all objects, sorts, functions,
methods, places, variables and axiom names. The “S-sorted” notation facilitates the subse-
quent development. Let S be a set, then a S-sorted set A is a family of sets indexed by S, and
we write A=(As)s∈S. A S-sorted set of disjoint sets of variables is called a S-sorted variable
set. Given two S-Sorted sets A and B, a S-sorted function µ : A → B is a family of functions
indexed by S denoted µ=(µs : As → Bs)s∈S.

3.4.1 Signature and Interface

As usual, a signature groups two elements of an algebraic abstract data type, i.e. a set of
sorts and some operations. However, in the context of structured specifications, a signature
can potentially use elements not locally defined, i.e. defined outside the signature itself;
otherwise the signature is said complete. Notice that in the next definition the profile of the
operations are defined on the set of all sort names S.

Definition 1: Adt Signature

An Adt signature is a couple Σ = < S,F > in which

- S is a set of sort names of S;
- F = (Fw,s)w ∈ S*, s ∈ S is a (S* × S)-sorted set of function names of F, where S*

denotes the sequences of sorts in S.

◊

50

We often denote a function name f ∈ by f : s1,...,sn → s, and a constant f ∈ Fε,s by
f : → s (ε being the empty sequence).

Definition 2: Constructors and Operations

Inside F we can distinguish C and OP, respectively a finite set of constructors, also
called generators, and a finite set of operations, sometimes called defined or derived
operations. The sets C and OP are disjoint. Moreover we have F = C ∪ OP. ◊

The distinction between generators and operations is needed for the interpretation of
AADTs within the frame of rewrite systems (chapter 4). At a more abstract level, these two
notions can be assimilated.

Similarly to the notion of Adt signature, the elements of an Object module which can be
used from the outside are grouped into an Object interface. The Object interface of an
Object module includes the identifier of the Object and the set of methods which corre-
spond to the services provided by the object.

Definition 3: Object Interface

An Object interface is a couple Ω = < {o},M > in which

- o ∈ O is the identifier of an Object module;
- M = (Mo,w)w ∈ S* is a finite S*-sorted set of method names of M.

◊

On this basis we will be able to build a global signature and a global interface.

Definition 4: Global Signature and Global Interface

Let Σ = be a set of Adt signatures and Ω = be a set of Object
interfaces such that Σi = < Si,Fi > and = < {oj},Mj >.

The global signature is: ΣΣ =

The global interface is: ΩΩ = ◊

3.4.2 Variables, Terms and Equations

As usual the properties of the operations of an AADT are described by means of equations
(more generally conditional positive equations) which consist of pairs of terms. The set of
terms of an AADT corresponds to the correct expressions of that type that can be written.

Fs1...sn s,

Σi()1 i n≤ ≤ Ωj()1 j m≤ ≤
Ωj

Si Fi
1 i n≤ ≤

∪,
1 i n≤ ≤

∪〈 〉

oj{ } Mj
1 j m≤ ≤
∪,

1 j m≤ ≤
∪〈 〉

3. The CO-OPN Specification Language
To describe properties that are as general as possible, we need beforehand the notion of
variable.

Definition 5: S-Sorted Variable Set

Let Σ = < S, F > be a complete signature. An S-sorted set of Σ-variables is an S-indexed
set X = (Xs)s∈S of disjoint subsets of X. ◊

A Σ-variable is usually simply called a variable.

Definition 6: Set of all Terms

Let Σ = < S, F > be a complete signature and X be an S-sorted variable set. The set of all
terms over Σ and X is the S-sorted set TΣ,X = ((TΣ,X)s)s∈S inductively defined as:

- x ∈ (TΣ,X)s ∀ x ∈ Xs;
- f ∈ (TΣ,X)s ∀ f : → s ∈ F;
- f(t1,...,tn) ∈ (TΣ,X)s ∀ f : s1,...,sn → s ∈ F and ∀ ti ∈ (1 ≤ i ≤ n).

◊

TΣ,X is simply written TΣ when X=∅.

Definition 7: Variables, Groundness and Linearity of Terms

Let Σ = < S, F > be a complete signature and X be an S-sorted variable set. Vars(t) is the
set of variables occurring in the term t ∈ (TΣ,X)s. When Vars(t)=∅, the term t is said
ground, and when each variable is present no more than once, t is said linear. ◊

Definition 8: Equation and Positive Conditional Equation

Let Σ = < S, F > be a complete signature and X be an S-sorted variable set. An equation is
a pair < t, t' > of equally sorted terms:∃ a sort s such that t,t' ∈ (TΣ,X)s. A positive condi-
tional equation is an expression e1 ∧ ... ∧ en ⇒ e where e,ei (1 ≤ i ≤ n) are equations. ◊

3.4.3 Adt Module

An Adt module consists of an Adt signature which may use elements not locally defined, a
set of positive conditional equations, and some variables.

Definition 9: Adt Module

Let Σ be a set of Adt signatures and Ω be a set of Object interfaces such that the global
ΣΣ,Ω = < S, F > is complete. An Adt module is a triplet AMΣ,Ω = < Σ,X,Φ > in which

- Σ is an Adt signature;

TΣ X,()
si
52

CO-OPN Objects and Synchronizations
- X = (Xs)s ∈ S is an S-sorted variable set;
- Φ a set of positive conditional equations over ΣΣ,Ω and X.

◊

In the concrete syntax of CO-OPN, it is possible to associate a name n ∈ N to each axiom.
The name n must be unique within the defining module. An axiom name has no semantic
meaning: It constitutes a form of comment.

3.4.4 Multi-Sets

Algebraic nets use the notion of multi-set so as to have indistinguishable copies of indepen-
dent values. Thus, in order to express terms over multi-sets, we define now the multi-set
extension of a signature. Formally a multi-set over a set E is a mapping from E to . The set
of all multi-sets over a set E is defined by the set of all functions [E] = { f | f : E → }
equipped with the following operations:

We note ∅[E] the element of [E] such that ∅[E](e)=0 for all e ∈ E.

The multi-set extension of a given Adt signature consists of the signature, enriched for each
sort, with the multi-set sort, and the multi-set operations ∅ (empty set), [_] (coercion to the
single-element set) and + (set union).

Definition 10: Multi-Set Extension of a Signature

Let Σ = < S, F > be a signature. The multi-set extension of Σ is

. ◊

3.5 CO-OPN Objects and Synchronizations

The main problem one has to face when modelling systems by the means of Petri nets is
their lack of scalability: They are unusable when facing consequential projects. This is why
CO-OPN includes the notion of object. As seen in section 3.3, an object is an algebraic Petri

IN
IN

e[] E[]
e'()

1

0

=
if e e'=

otherwise
for all e e', E;∈

f E[] g+() e() f e() g e()+= for all f g, E[]∈ and for all e E.∈

Σ[] S s[]{ }
s S∈

∪∪ F

∅s : s[]→ ,

_[]s : s s[],→
+s : s[] s[], s[]→

s S∈

∪∪,〈 〉=
53

3. The CO-OPN Specification Language
net exporting transitions with parameters (called methods) to the outside world. Objects
may thus synchronize and communicate.

Objects encapsulate their internal behaviour by hiding the corresponding declarations inside
the body section. As suggested by the example of figure 21, the hidden entities are:

• the places and their initial markings
• the transitions (sometimes called internal transitions by contrast with methods)
• the axioms describing the behaviour
• the variables of the axioms

We can now proceed to the formal definitions for the description of CO-OPN objects.

3.5.1 Behavioral Axioms

Before defining what a behavioral axiom is, let us precise that our formalism provides two
different categories of events: The invisible and the observable events, both of which can
involve an optional synchronization expression. The invisible events describe the sponta-
neous reactions of an object to some stimuli. They correspond to the internal transitions
which are denoted by τ and not by a specific name as in the concrete CO-OPN language.
As for the observable events, they correspond to the methods which are accessible from the
outside. A synchronization expression offers to an object the means of choosing how he
wishes to synchronize with other partners (or himself). Three synchronization operators are
provided: ‘&’ for simultaneity, ‘..’ for sequence, and ‘+’ for alternative. In order to desig-
nate a particular method m of a given object o, the usual dot notation has been adopted(3).

The set of all events over a set of parameter values As, a set of methods M, and a set of
object identifiers O is written EA,M,O. Because this set is used for various purposes, we give
here a generic definition on A.

Definition 11: Generic Set of all Events

Let S be a set of sorts and S* the sequences of sorts in S. Let us consider As a set of terms
of sorts s ∈ S, O a set of object identifiers and Mo,w a set of methods indexed by their
defining object o ∈ O and arity w in S*. Atomic events Event of EA,M,O are built from this
syntax:

3. This notation does not correspond to the concrete syntax of CO-OPN v1.5, which uses instead the keyword
IN as follows: m IN o (arguments of m).
54

CO-OPN Objects and Synchronizations
Event → Invisible | Observable
Internal → o.τ
Invisible → Internal | Internal WITH Synchronization
Invocation → o.m (a1,...,an)
Observable → Invocation | Invocation WITH Synchronization
Synchronization → Invocation | Synchronization & Synchronization |

Synchronization .. Synchronization |
Synchronization + Synchronization

where si ∈ S (1 ≤ i ≤ n), a1,...,an ∈ , m ∈ , and o ∈ O. ◊

For example, the observable event “o.m(a1,a2) WITH o1.m1(a1) & o2.m2(a2)” represents the
simultaneous synchronization of the method m of an object o with both the methods m1 and
m2 of two objects o1 and o2.

Synchronization expressions state relations between modules: Events should be considered
as predicates to be proved or refutated with respect to the current state of the object system
by a hidden search mechanism, the resulting behavior being the activation of the satisfying
transitions and methods, as in more conventional schemes. In [Buchs&Guelfi 91] terms
built from the non-terminal symbol Synchronization were of sort Rendez-Vous, which may
give another insight into their intended signification. This also suggests that method invoca-
tions are synchronous: The caller(4) is blocked until the receipt of the reply, success or
failure. These remarks will be confirmed by the inference rules given later in this chapter.

It is interesting to see that, as an extension of simple transitions of classical Petri nets, CO-
OPN events are also considered as atomic, i.e. indivisible, actions. This is even true for
events with arbitrarily complex synchronization expressions built from the given syntax.

Now we give the definition of the behavioral axioms which are used to describe the proper-
ties of observable and invisible events (respectively, methods and internal transitions).

4. We do not specify formally what characterizes a caller: Intuitively, we can consider that it consists of a
thread of control in the Object which emits the invocation (simultaneity may induce intra-object concurrency).

As1
... Asn

×× Mo s1...sn,
55

3. The CO-OPN Specification Language
Definition 12: Behavioral Axiom

Let Σ = < S,OP > be a complete Adt signature. For a given S*-sorted set of methods M, a
set of Object identifiers O, an S-sorted set of places P, and an S-sorted set of variables X.
A behavioral axiom is an expression

Cond ⇒ Event : Pre → Post ;

defined as follows:

- Event ∈ ;
- Cond is a set noted e1 ∧ ... ∧ en where all ei (1 ≤ i ≤ n) are equations over Σ

and X;
- Pre = (Prep)p ∈ P is a P-indexed family of terms over [Σ] and X s.t.

(∀ s ∈ S) (∀ p ∈ Ps) (Prep ∈ (T[Σ],X)[s]);
- Post = (Postp)p ∈ P is a P-indexed family of terms over [Σ] and X s.t.

(∀ s ∈ S) (∀ p ∈ Ps) (Postp ∈ (T[Σ],X)[s]).

The set of terms Pre and Post are called respectively the precondition and the postcondi-
tion of the event. The expression Cond is the global condition(5) over the event. ◊

As with axioms of Adt modules, the concrete syntax of CO-OPN also allows giving names
to behavioral axioms:

Name :: Cond ⇒ Event : Pre → Post ;

The Name ∈ N of a behavioural axiom does not have any semantic meaning: It is optional
and only serves as a kind of comment. It is however required that all axiom names be
distinct within their module, which also determine their lexical scope.

As for operations of AADTs, events of an object may be defined by several axioms, corre-
sponding to different, not necessarily mutually exclusive, situations. This suggests that the
name of a transition τ or a method m actually corresponds to a familiy of events, and not to
a simple event, when compared with classical algebraic Petri nets. For instance, when an
object o1 makes an invocation to method m of object o2, it does not “know” which axiom
will actually be selected in o2 to enable m. On the other hand, internal transitions are never
explicitly called, so when several axioms define a transition of name τ, it is merely meant as
an abstraction mechanism for grouping together a set of logically related elementary transi-
tions.

5. This terminology is non-standard, but we prefer to reserve the word condition for a generic usage referring
to both the precondition and the global condition. We justify the qualifier global by the fact that Cond may
express conditions over all variables of an axiom whether they come from Event or Pre.

E TΣ X,() M O, ,
56

CO-OPN Objects and Synchronizations
3.5.2 Object Module

The purpose of an Object module is to describe an encapsulated algebraic net. It consists of
an interface, the state of the object (its set of places), some variables as well as a set of
behavioral axioms which describe the properties of the methods and of the internal transi-
tions.

Definition 13: Object Module

Let Σ be a set of Adt signatures, Ω be a set of Object interfaces. An Object module is a 4-
tuple in which

- Ω = < {o}, M > is an Object interface;
- P = (Ps)s ∈ S is a finite S-sorted set of place names of P;
- X = (Xs)s ∈ S is a S-sorted variable set of X;
- Ψ is a set of behavioral axioms over ΣΣ,Ω , M, P, {o}, and X.

◊

3.5.3 N-tuples as Tokens and Net Inscriptions

It is often convenient to structure the tokens and conditional terms on the arcs as cross-prod-
ucts of existing sorts without having to define explicitely new AADTs for this purpose. This
extension is straightforward and does not constitute any problem on the formal side
[Reisig 91]. In the collaborative diary example, the object Network has a place Channel
which represents the communication medium: The tokens it contains is a cross-product of
sort message - the useful data - and sort id - the emitter and addressee identities - built
without having to marshal the information inside specific packet types. Figure 19 shows
how this structuring facility is written in CO-OPN.

Figure 19. CO-OPN Object as Abstraction of the Network

OM
Σ Ω, Ω P X Ψ, , ,〈 〉=

OBJECT Network;
INTERFACE
USE Message, ID;
METHODS
Put _ _ _ : message id id;
Get _ _ _ : message id id;

BODY
PLACES
Channel _ _ _ : message id id;

AXIOMS
Put msg iddest idorigin : -> Channel msg iddest idorigin;
Get msg iddest idorigin : Channel msg iddest idorigin ->;

WHERE
msg : message;
iddest, idorigin : id;

END Network;
57

3. The CO-OPN Specification Language
3.5.4 CO-OPN Specification

At last, a CO-OPN specification is a collection of Adt and Object modules.

Definition 14: CO-OPN Specification

Let Σ be a set of Adt signatures, Ω be a set of Object interfaces. A specification consists
of a set of Adt and Object modules:

SpecΣ,Ω = .

We denote a specification SpecΣ,Ω by Spec when Σ and Ω are, respectively, included in
the global signature and in the global interface of the specification. In this case Spec is
said complete. ◊

From a specification Spec two dependency graphs can be constructed. The first one consists
of the dependencies within the algebraic part of the specification, i.e. between the various
Adt signatures. The second dependency graph corresponds to the clientship relations
between the Object modules. Both of these graphs consist of the specification Spec and of a
binary relation over Spec denoted AD for the algebraic dependency graph, and OD for the
Object clientship dependency graph. The relation AD is constructed as follows: For any pair
of modules Md,Md' of Spec, < Md,Md' > is in OD iff the Adt module or the Adt signature
induced by Md uses something defined in the Adt signature of Md’ or in the Adt signature
induced by Md'. As for the relation OD, for any Object modules Md,Md', then < Md,Md' >
is in OD iff there is a synchronization expression of a behavioral axiom of Md which
involves a method of Md'.

Thus, a well-formed specification is a specification with two constraints on the dependen-
cies between the modules composing the specification. These hierarchical constraints are
necessary in the theory of algebraic specifications and in the Object module dimension of
our formalism as it will be shown in the next section.

Definition 15: Well-formed Specification

 A complete specification Spec is well-formed iff

i) the algebraic dependency graph < Spec,AD > has no cycle;
ii) the object clientship dependency graph < Spec,OD > has no cycle.

◊

AM
Σ Ω,

i

1 i n≤ ≤()

OM
Σ Ω,

j

1 j m≤ ≤()

∪

58

CO-OPN Semantics
3.6 CO-OPN Semantics

This section presents the semantic aspects of the CO-OPN formalism which are mainly
based on the notions of algebraic specifications and transition systems. First we briefly
recall some basic definitions in relation with the semantics of algebraic specifications and
their multi-set extension (we refer to [Ehrig&Mahr 85] for more detailed descriptions).
Afterward we present all the inference rules which construct the semantics of a CO-OPN
specification in terms of transition systems. For this description we base ourselves on the
original CO-OPN paper [Buchs&Guelfi 91] and also partly on [Biberstein 97]. We
completed this work with numerous examples and comments in order to orient the
discourse in the direction of the algorithmic approach of chapter 6.

3.6.1 Algebras and Multi-set Extension

Let Spec be a well-formed CO-OPN specification, and SpecA = < Σ,X,Φ > be its associated
algebraic specification in which Σ = < S,F >. A Σ-algebra A consists of a S-sorted set A =
(As)s∈S and a (S∗×S)-sorted family of total functions FA = .

An assignment is an S-sorted function σ = (σs: Xs → As)s ∈ S. An interpretation of terms of
TΣ,X in A is an S-sorted function such that:

i) if x ∈ Xs;

ii) if f ∈ Fε,s;

iii) .

When it is necessary to specify the Σ-algebra, we write .

A Σ-algebra A satisfies an equation < t, t' > for an assignment σ : X → A iff
, and we note this A,σ < t, t' >. We also have A,σ ((∧1 ≤ i ≤ n φi) ⇒

φ') iff (∀i) A,σ φi implies A,σ φ'. A positive conditional equation φ is valid in a Σ-
algebra A iff A,σ φ for any assignment σ, and we note this A φ. An algebraic specifi-
cation SpecA is valid in a Σ-algebra A iff all the conditional positive equations of SpecA are
valid in A. A model of SpecA is a Σ-algebra in which SpecA is valid. The set of models of
SpecA is a sub-class of Alg(Σ), which is noted Mod(SpecA).

In order to perform the semantic multi-set extension of a Σ-algebra A we directly provide
the semantics of multi-sets. From section 3.4.4 the semantic extension of a Σ-algebra A is

fAs
1... sn ,s

f:s1...sn ,s s→ F∈

[[_]]σ [[_]]σs : TΣ X,()s As→

s S∈
=

[[x]]σs
def
= σs x()

[[f]]σs
def
= fAs

[[f]]σs t1 ..., tn(,)
def= fAs [[t1]]σs1

..., [[tn]]σ
sn

(,) if f Fs1...sn s,∈

[[_]]σA

[[t]]σ [[t']]σ= |= |=
|= |=
|= |=

A[] A As[]
s S∈
∪
 ∪ F

A ∅
As[]

_[]
As[]

+
As[]

, ,
s S∈
∪

∪,〈 〉 .=
59

3. The CO-OPN Specification Language
The multi-set syntactic extension of an algebraic specification SpecA = < Σ,X,Φ > is noted
[SpecA] = < [Σ],X,Φ >. We restrict the set of models of [SpecA] to Mod([SpecA]) {[A] |
A ∈ Mod(SpecA)}.

3.6.2 Object States

The state of an object is based on the notion of marking, i.e. a mapping which returns a
multi-set of algebraic values for each place of the object. Some authors chose to consider
each place as equivalent to a variable at the programming language level [Guelfi 94]. We
prefer however to view each individual token as a variable, and the place as a concurrency
control mechanism for accessing its variables. Although subtle in practice, we think that
this distinction is more consistent with the facility of algebraic nets for structuring the
tokens, and with the synchronization rules of CO-OPN (to be presented later in this
chapter), which imply a notion of mutual exclusion at the token level between concurrent
method invocations.

For a given CO-OPN specification Spec and its set of objects O, we define a marking m as
follows.

Definition 16: Object Marking

Let be a set of sorts S and an S-sorted set of places P. A marking m is defined as m : P →
[A] such that p ∈ Ps implies m(p) ∈ A[s]. We denote by MarkSpec,A the set of all markings
and by InitMarkSpec,A the initial marking. ◊

Definition 17: Transition System

Let Spec be a CO-OPN specification and A be a model of SpecA. A transition system is
defined as

TSSpec,A ⊆ MarkSpec,A × EA,M(Spec),O × MarkSpec,A

We write m m' the step e from a source state m to a target state m', where m,m' ∈
MarkSpec,A and e ∈ EA,M(Spec),O. ◊

Definition 18: Marking Domain

Let Spec be a CO-OPN specification and A be a model of SpecA. The marking domain of
a marking m ∈ MarkSpec,A is given by

Dom(m) = { p| m(p) is defined, p ∈ P } ◊

Remark that if Dom(m) = ∅ then we denote m by ⊥.

def
=

e
 →
60

CO-OPN Semantics
Let us introduce now two basic operators on markings: The first one, , is a predi-
cate which determines if two markings m1 and m2 are equal on their common places, and
the second one, , considers two markings and returns a marking with the values of
the marking m1 plus the values of the places of m2 which are not present in m1 (the arrow
symbolizes the assymmetry of the operation: m1 partly “overwrites” m2).

Definition 19: Common Markings, Marking Fusion

Let Spec be a CO-OPN specification and A be a model of SpecA. For two markings
m1,m2 ∈ MarkSpec,A :

 ⇔ m1(p) = m2(p) ∀ p ∈ Dom(m1) ∩ Dom(m2)

 ⇔

∀ p ∈ Dom(m1) ∪ Dom(m2),

◊

Theorem 1: Marking Fusion is Associative

Let Spec be a CO-OPN specification and A be a model of SpecA. We have, ∀ m1,m2,m3
∈ MarkSpec,A :

Proof: We simply calculate successively both sides of the equation.
∀ p ∈ Dom(m1) ∪ Dom(m2) ∪ Dom(m3)

 =

 =

The equation holds because of the associativity of the set difference (operator ‘\’). ◊

m1 m2
∩

m1 m2∪→

m1 m2
∩

m1 m2∪→ m3=

m3 p()
m1 p() if p Dom m1()∈

m2 p() if p Dom m2()∈ \Dom m1()

undefined otherwise

=

m1 m2∪→
 m3∪→ m1 m2 m3∪→

 ∪→=

m1 m2∪→
 m3∪→

m1 p() if p Dom m1()∈

m2 p() if p Dom m2()∈ \Dom m1()

m3 p() if p Dom m3()∈ \ Dom m2()\Dom m1()()

undefined otherwise

m1 m2 m3∪→
 ∪→

m1 p() if p Dom m1()∈

m2 p() if p Dom m2()∈ \Dom m1()

m3 p() if p Dom m3()\Dom m2()()\Dom m1()∈

undefined otherwise

61

3. The CO-OPN Specification Language
3.6.3 Inference Rules

In order to construct the semantics, defined mainly by two concurrent transition systems, of
a CO-OPN specification, we provide a set of inference rules. These rules are expressed as
structured operational semantics [Plotkin 77], i.e. they have the form

where t,t1,t2,...,tn ∈ TSSpec,A. The steps t1,t2,...,tn above the line are called the premises and
the step t below the line is called the conclusion. The meaning of such a rule is that the step
in the conclusion may be done if all steps in the premises can take place.

The first transition system → is used to compute the behavior in unstable object states, and
the second ∗→ to describe only the events observable after stabilization. This stabilization
process calculates the maximal action of the internal transitions. The inference rules,
grouped into three categories, realize the following tasks:

• the rules OBJECT-SEM and MONOTONICITY build, for a given object, its partial transition
system according to its methods, places, and behavioral axioms,

• BEH-SEQ, BEH-SIM and BEH-ALT compute all deductible sequential, concurrent and alter-
native behaviours, while SYNC solves all the synchronizations between the transition sys-
tems,

• STAB “eliminates” all invisible or spontaneous events which correspond to internal transi-
tions.

3.6.4 Partial Semantics of an Object

We develop in this section the partial semantics of an object specification, built over an
algebra for the algebraic part. This semantics introduce the potential transitions, noted →,
which can be produced by the axioms without considering the synchronization and stabili-
zation process.

Definition 20: Partial Semantics of an Object

Let Spec be a CO-OPN specification, A ∈ Mod(SpecA) a model and the Object module
OM = < Ω, P, X, Ψ > of Spec where Ω o = < {o}, M >. The semantics PSemA(OM) is the
transition system < MarkSpec,A × EA,M(Spec),O × MarkSpec,A >, noted →, and obtained by
the rules OBJECT-SEM and MONOTONICITY.
∀ m,m',m'' ∈ MarkSpec,A, e ∈ EA,M(Spec),O , and assignment σ

 t1 t2 … tn , , ,
t

62

CO-OPN Semantics
OBJECT-SEM

MONOTONICITY

◊

If we replace the composite event Event by a simple transition t, then these rules correspond
to the semantics of classical algebraic Petri nets [Reisig 91]. In a more procedural approach,
we can formulate OBJECT-SEM as follows [Buchs&Guelfi 91](6).

1. An event Event defined by the behavioural axiom Cond ⇒ Event : Pre → Post is
firable (or enabled) if:

- All the equations of Cond are satisfied in A: The global conditions are ful-
filled for the assignment σ.

- ∀ p all the terms of Prep are matched(7) by terms of place p. This means that
the current marking satisfies the preconditions of Event both quantitatively,
i.e. there are enough tokens, and qualitatively, because the values of the cho-
sen tokens conform to the algebraic predicates of the precondition, or, in
other words, under the assignment σ each term of Prep is equal to some token
of place p.

- The expression Event is satisfied for the assignment σ and its synchronization
part is firable. The actual firing of the synchronization part is done only at
step 3 below. This decomposition is justified by the possibility of performing
recursive method calls as will be described in chapter 6.

2. Before firing Event do:
- Remove the terms of Pre from the current marking.

3. When firing Event do:
- Fire the synchronization part of Event according to the rules given in 3.6.5.

4. After firing Event do:

6. In [Buchs&Guelfi 91] this rule was called EVAL, and was augmented in order to select the object to activate
in the specification hierarchy, choice which is now made in the application Sem (Spec) defined below. The
ordering of the actions has also been slightly adapted in order to stay coherent with the execution rules to be
given later.

7. For the moment we will say that two terms match if they are strictly equal, or can be made equal by giving
suitable values to their variables. A formal definition will be given in section 4.2.

Cond Event⇒ : Pre Post→() Ψ∈ , σ∃ : X A→ A σ,〈 〉|= Cond,

[[Pre]]σA[]
[[Event]]σEA M O, ,

--------------------------------------- [[Post]]σA[]>

em m'→
em m''+ m' m''+→

--

A

63

3. The CO-OPN Specification Language
- Add the terms of Post to the current marking.

Notice that it is not specified how a candidate axiom is selected: Among all enabled axioms,
any one may be fired at random, provided that the choice respects the additional semantics
of CO-OPN (definition 23 below). Likewise, the tokens to be removed from the current
marking (step 2 above) may be picked at will as long as they satisfy the conditions of the
axiom. This kind of behaviour is said non-deterministic, because the evolution of the object
depends on an arbitrary choice instead of being determined entirely by its current state.

In an algorithmic approach, a more general difficulty, which includes the problem of the
choice of input tokens, resides in the calculation of all possible assignments for rule
OBJECT-SEM. The premiss of the rule says: “if there exist an axiom and an assignment such
that the global condition is satisfied”. In the conclusion of the rule we note that the chosen
assignment also intervenes in the actual firing by establishing the interpretation of the
precondition, event and postcondition parts. The global condition does however not deter-
mine alone the values of all the variables in an axiom. Therefore for the moment we will
have to admit that there is some magic which assigns correct values to the remaining vari-
ables: This is the purpose of the resolution mechanism. We will see later that in procedural
implementations the firing of a rule must follow a prearranged course in order to settle effi-
ciently the value of each variable.

Example 1. A Simple Algebraic Petri Net: Dijkstra’s Philosophers

This example, taken from [Reisig 91], is Dijkstra’s famous dining philosophers problem
[Dijkstra 71], expressed as a classical algebraic Petri net, i.e. in a non-modular fashion. We
give successively its graphical (figure 20) and corresponding textual (figure 21) specifica-
tion in the syntax of CO-OPN.

Figure 20. Algebraic Net Formulation of the Dining Philosophers Problem

Thinking _

Eating _

FreeForks _

TakeForksReleaseForks f1 f2 f3

p2 p2 p3 [p]

[p][p]

[p]

[LeftFork (p),
RightFork (p)]

[LeftFork (p),
RightFork (p)]
64

CO-OPN Semantics
Figure 21. CO-OPN Source for the Representation of Figure 20

From the marking of figure 20, we will make the net evolve by firing one of its transitions.
We can immediately see that transition ReleaseForks is not firable since its input place,
Eating, is empty. We will then attempt to fire transition TakeForks by performing the
following steps:

1. Try to match the terms of the preconditions for TakeForks:
- For place Thinking the term is p, and we can match it with any token of the

place: We choose p1 at random.
- For place FreeForks the terms are LeftFork(p) and RightFork(p). Given

the value chosen for p, these expressions match respectively the tokens f1
and f2.

2. The transition is firable. We must now consume the tokens satisfying the precondi-
tion and produce the postconditions.

- Remove [p1] from Thinking and [f1, f2] from FreeForks.
- Add [p1] to the place Eating.

This firing corresponds to the transition system

ADT PhilosType;
INTERFACE
SORTS philos;
GENERATORS p1,p2,p3 :-> philos;

BODY
(: No axioms :)

END PhilosType;

ADT ForksType;
INTERFACE
USE PhilosType;
SORTS fork;
GENERATORS f1,f2,f3 :-> fork;
OPERATIONS
LeftFork _,
RightFork _ : philos -> fork;

BODY
AXIOMS
LeftFork(p1) = f1; RightFork(p1) = f2;
LeftFork(p2) = f2; RightFork(p2) = f3;
LeftFork(p3) = f3; RightFork(p3) = f1;

END ForksType;

OBJECT Philosophers;
INTERFACE
BODY
USE PhilosType, ForksType;
TRANSITIONS TakeForks, ReleaseForks;
PLACES
Thinking _, Eating _ : philos;
FreeForks _ : fork;

INITIALS
Thinking p1; Thinking p2; Thinking p3;
FreeForks f1; FreeForks f2; FreeForks f3;

AXIOMS
TakeForks : Thinking (p),

FreeForks (LeftFork(p)),
FreeForks (RightFork(p))

-> Eating (p);
ReleaseForks : Eating (p)

-> Thinking (p),
FreeForks (LeftFork(p)),
FreeForks (RightFork(p));

WHERE
p : philos;

END Philosophers;

Thinking([p1,p2,p3]) Thinking([p2,p3])
FreeForks([f1,f2,f3])

Eating(∅)
FreeForks([f3])

Eating([p1])

TakeForks
65

3. The CO-OPN Specification Language
The current situation is now depicted in figure 22. Notice that for the evaluation of the
preconditions, we have deliberately adopted an ordering of actions which makes the calcu-
lation of variable assignments easier. Had we decided to evaluate first the preconditions
associated to place FreeForks, then it would have been necessary to select randomly a fork
f, and then to find a solution to the equation p=LeftFork-1(f) in order to ensure that the
value of p is the same for all preconditions. It is however not possible to compute the
inverse of the operation LeftFork in the frame of rewrite systems, as will be exposed in
chapter 4.

Figure 22. The System of Dining Philosophers After p1 Having Taken his Forks

3.6.5 Semantics of a CO-OPN Specification

The idea behind the construction of the semantics of a set of Object modules is to consider
each partial semantics and to solve the synchronizations requested by the events as well as
the stabilization process. This process cannot be performed in random order. This is due to
the recursive view of the stabilization process which implies that only already stable
modules can be considered when methods are fired. As long as internal transitions can call
methods, stabilization can be initiated only on Objects which are themselves built over
stable external Object states.

In order to build the semantics we introduce for a given partial order induced by the depen-
dency graph ODSpec a total order ⊆ OD × OD that will be used to induce the semantics.
Given OM0 the lowest module of the hierarchy and the fact that OMi OMi+1 (0 ≤ i < n),
we will introduce an all module OMi (0 ≤ i ≤ n) semantics from the bottom to the top.

Definition 21: Closure Application

Given Spec a CO-OPN specification and A ∈ Mod(SpecA) an algebraic model, Closure is
the application on transition systems → and ∗→ induced by the use of the rules BEH-

Thinking _

Eating _

FreeForks _

TakeForksReleaseForks f3

p2 p3 [p]

[p][p]

[p]

[LeftFork (p),
RightFork (p)]

[LeftFork (p),
RightFork (p)]

p1
66

CO-OPN Semantics
SEQ, BEH-SIM, BEH-ALT and SYNC.
∀ m,m',m'',m1,m'1,m2,m'2 ∈ MarkSpec,A, τ, e1,e2 ∈ EA,M(Spec), O

BEH-SEQ

BEH-SIM

BEH-ALT

BEH-ALT

SYNC

◊

These rules, which form the observable part of a synchronization, will be illustrated and
transformed into more procedural semantics in chapter 6. To avoid any confusion, it should
be emphasized that they determine rather the behaviour of the called objects than the one of
the caller (the emitter of the synchronization).

Definition 22: Stabilization Application

Given Spec a CO-OPN specification and A ∈ Mod(SpecA) a model, PreStab is the appli-
cation induced by rules STAB on transition systems → and ∗→.

STAB

STAB

m'1 m2
∩ m1

e1
* m'1→ m2

e2
m'2→, ,

m1 m2∪→
e1..e2

----------- m'2 m'1∪→>

--

m1

e1
m'1→ m2

e2
m'2→,

m1 m2+
e1&e2

------------- m'1 m'2+>

m
e1

m'→

m
e1 + e2

--------------- m '>

m
e2

m''→

m
e1 + e2

--------------- m ''>

m1
e1 e2WITH

----------------------- m'1> m2

e2
* m'2→,

m1 m2+
e1

m'2 m'1+→

m'1 m2
∩ m1

e
* m'1→ m2

τ
m'2→, ,

m1 m2∪→ e
* m'2 m'1∪→→

--

em m'→

m
e

* m'→

67

3. The CO-OPN Specification Language
The application Stab on transition systems → and ∗→ build a transition system ∗→ by
firing all possible transitions until a stable state is reached.

Stab(→ ∪ ∗→) =
{m ∗ m' | m ∗ m' ∈ PreStab(→ ∪ ∗→) and m' m'' ∈ PreStab(→ ∪ ∗→)}

◊

The purpose of the second STAB rule is simply to perform the coercion from → to ∗→
which is needed as first step of every application of PreStab.

Notice that the notion of Object is completely absent from the definition of Stab and
PreStab, which suggests that they do not have modular semantics. This will be confirmed
later.

Theorem 2: Stab and Closure are Total Operations

Given a specification Spec with finite stabilization (i.e. there is no infinite succession of
internal transitions) and transition systems → and ∗→, Stab and Closure are unique and
total operations.

Proof: Obvious, due to the structured operational semantics monotonic form of the rules
and the finite stabilization. ◊

Since objects are required to be finitely stabilizable, it means that applications which need
to model infinite loops may not be directly specified as such. Another caveat is about the
presence - intentional or not - of non-determinism within internal transitions, which may
induce desastrous performance in the search for stable states during system simulation or
actual run-time.

Definition 23: Semantics of a CO-OPN Specification

Given a specification Spec which includes a set of Objects OMi, (0 ≤ i ≤ m) and an
algebra A ∈ Mod(SpecA). The semantics Sem (Spec) with (0 ≤ k ≤ m) is defined as:

Sem (∪(0 ≤ i ≤ k)OMi) =

lim
n→∞

(Stab Closure)n(Sem (∪(0 ≤ i’ ≤ k-1)OMi’) ∪ PSemA(OMk))

Sem (∅) = ∅ ◊

From now on we will note SemA(Spec) instead of Sem (Spec).

e→ e→ /∃ τ→

A

A

A

A

A

68

CO-OPN Semantics
Let us precise that the limit of n tending towards infinity is needed to cover the special case
of recursive method calls: All other situations, where a synchronization goes from an object
Oi to an object Oj (where i > j), are taken care of by the recursive call to Sem.

The semantics expressed by Sem is that the behaviour of a set of objects is calculated by
starting from the lowest object in the hierarchy and repeatedly adding a new object to the
system. We may thus build the graph of all the possible behaviours of a specification. An
example is given below.

The mutually recursive nature of the synchronization and stabilization process appears
clearly in this definition. Notice also the following points:

• This formulation does not show the potential parallelism of the system, whether it origi-
nates from independent activities or from events specified as simultaneous.

• The stabilization order is indifferent, provided that all possible events are fired. Once Clo-
sure has been applied to the k lowest objects of the hierarchy, they must be maximally sta-
bilized. The application Stab does however not consider a set of objects as such: They are
instead simply viewed as a big transition system. In other words, Stab has a global view
which allows firing every transition at the very instant it becomes enabled. This infinitely
fast and ubiquitous reaction ability is of course impossible to realize in a loosely coupled
environment. In chapter 6 we will show how this problem is tackled in wide-area net-
works, where clever optimizations are needed to avoid exhaustive polling techniques.

• Sem lets us reason on subsets of the hierarchy: While working on the lower parts of an
object hierarchy, we may safely ignore the expectations of objects which are higher up
according to the total order . We will also see, in the next example, that this strict obedi-
ence to the total order may produce rather counter-intuitive behaviours.

Example 2. About The Influence of the Total Order

Let be the following system, where we use only classical “black” tokens instead of alge-
braic values to simplify the demonstration.

Figure 23. A Problematic Case for the Total Order

OBJECT Ob;
INTERFACE
METHODS b,c;

BODY
USE BlackTokens;
PLACES
p _ : blacktoken;

AXIOMS
c :-> p token;
b : p token ->;

END Ob;

OBJECT Ot;
INTERFACE
USE Ob;

BODY
TRANSITIONS t;
AXIOMS
t WITH b;

END Ot;

OBJECT Oa;
INTERFACE
USE Ob;
METHODS a;

BODY
AXIOMS
a WITH c..b;

END Oa;
69

3. The CO-OPN Specification Language
We may number these objects in two ways, both compatible with the object graph ODSpec.
The first possibility is to put Ot above Oa, i.e. the total order gives Ob Oa Ot. This
results in the following incremental construction of the (infinite) state graph, where the
numbers indicate the quantity of tokens in place p of object Ob:

Figure 24. State Graph Construction for SemA((Ob ∪ Oa) ∪ Ot)

The resulting shape for the last state graph of figure 24 is due to the fact that transition t
immediately calls method b as soon as it becomes firable. Therefore the system can never
offer the method b as a service to the outside world once object Ot has been incorporated.

The other way of numbering our object modules is Ob Ot Oa, which gives the state
graphs of figure 25. We can see that, as before, the incorporation of object Ot annihilates the
effects of a call to method c and makes method b unavailable. What more is, adding object
Oa to the system is useless, since the prevalence of transition t will always break the atom-
icity of the sequence c..b in method a.

As a consequence, the establishment of a total order does have some influence on the
semantics of a CO-OPN specification: The linearization of the object dependency graph
ODSpec constitutes a loss of information(8) and cannot be performed by a simple static
observation of the dependencies without encurring the risk of interfering with the devel-
oper’s intentions. This is still a weak point of the semantics of CO-OPN which requires

8. Interestingly the same kind of problem occurs in the theory of concurrent systems: Keeping a partial order-
ing of events is semantically richer because it provides a precise description of the dependencies within the
real system.

SemA(Ob): 0 1 2 3

SemA((Ob ∪ Oa) ∪ Ot):

SemA(Ob ∪ Oa):

c c cc

b bbb

0 1 2 3

c c cc

b bbb
a a a a

a

c0
70

CO-OPN Semantics
further investigations to be satisfactory, and could result in a hierarchizing with several
levels of indexing in order to support different granularities of object clusterings. This
approach would still maintain a total order while allowing the developer to indicate implic-
itly which one of object Oa or Ot is “closer” to Ob.

Figure 25. State Graph Construction for SemA((Ob ∪ Ot) ∪ Oa)

For the reasons exposed above we will assume in this thesis that the total order is computed
and communicated to the implementation by a mechanism which is external and orthogonal
to the specification compiler. Our algorithms must then simply conform to the given object
numbering.

Theorem 3: Properties of the Synchronization Operators

Let Spec be a well-formed specification which includes a set of Objects O and an algebra
A ∈ Mod(SpecA), and events e1, e2, e3 ∈ EA,M(Spec),O. The following properties hold for
the synchronization operators of CO-OPN:

i) the sequence operator “..” is associative:
(e1..e2)..e3 = e1..(e2..e3)

ii) the simultaneity operator “&” is commutative and associative:
e1&e2 = e2&e1 and (e1&e2)&e3 = e1&(e2&e3)

iii)the alternative operator “+” is commutative and associative:
e1+e2 = e2+e1 and (e1+e2)+e3 = e1+(e2+e3)

Proof: Let be the markings m1,m2,m3,mτ1,mτ2,m'1,m'2,m'3,m'τ1,m'τ2 ∈ MarkSpec,A :

i) In order to prove the associativity of the sequence operator, we have to define
events corresponding to the intermediate stabilizations: Let be τ1 and τ2 the stabili-
zation (symbolized by a single step) after respective events e1 and e2. Their source
and target markings are respectively mτ1,mτ2 and m'τ1,m'τ2. Let us first calculate
(e1..e2)..e3.

SemA(Ob): 0 1 2 3

SemA((Ob ∪ Ot) ∪ Oa):

SemA(Ob ∪ Ot):

c c cc

b bbb

c0

c0
71

3. The CO-OPN Specification Language
- By successive applications of rules MONOTONICITY, STAB and BEH-SEQ, we
have:

- Calculating e1..(e2..e3) following the same process, we obtain:

The source and target markings of both results are equal, because the marking
fusion operator is associative (by theorem 1).

ii) Both properties are obvious, due to the symmetric nature of rule BEH-SIM and the
fact that the set union operator also is commutative and associative.

iii)Operator ‘+’ is commutative by definition (rules BEH-ALT). Associativity is
proven by showing that all operand groupings lead to the same set of allowed tar-
get markings: Let Me

n = { me
1, me

2, ..., me
n } be the set of all markings resulting

from the choice of event e in an expression with the alternative operator. We need
this set in order to take into account all other non-deterministic choices made
within event e. We define , the respective target marking sets of
e1, e2 and e3.

- When evaluating (e1+e2)+e3 according to the rules BEH-ALT, the choices
made in the first and then in the second alternative operator lead to four possi-
ble solutions among which two are identical: .
Therefore is the expression of the set of all allowed
solutions.

- If we evaluate e1+(e2+e3), the choices made in the second and then in the first
alternative operator also lead to four possible solutions among which two are
identical: . Here again, the same expression
denotes the set of all allowed solutions: .

◊

It must be noted that although the sequence and simultaneity operators may be evaluated in
any order by virtue of their associativity, it does not change their temporal interpretation.
The property of associativity is only applicable to a sequence with the conjoint exploitation

m1 mτ1∪→

 m2∪→

e1..e2

----------------- m'2 m'τ1 m'1∪→

 ∪→>

m1 mτ1∪→
 m2∪→
 mτ2∪→
 m3∪→

e1..e2()..e3

---------------------------- m'3 m'τ2 m'2 m'τ1 m'1∪→

 ∪→
 ∪→

 ∪→>

m2 mτ2∪→
 m3∪→

e2..e3

----------------- m'3 m'τ2 m'2∪→

 ∪→>

m1 mτ1∪→

 m2 mτ2∪→

 m3∪→

 ∪→

e1.. e2..e3()

---------------------------- m'3 m'τ2 m'2∪→

 ∪→

 m'τ1 m'1∪→

 ∪→>

Mn1
e1 M n2

e2 andM n3
e3,

Mn1
e1 Mn3

e3 ,Mn2
e2 and M n3

e3,
Mn1

e1 M n2
e2 Mn3

e3∪ ∪

Mn1
e1 M n1

e1 ,Mn2
e2 and M n3

e3,
Mn1

e1 M n2
e2 Mn3

e3∪ ∪
72

CO-OPN Semantics
of rule MONOTONICITY, which means that we place ourselves in a deductive frame: It allows
a posteriori unification of out-of-order events, i.e. events which happen in an order different
from the specification. Likewise, non-concurrent evaluation of events specified as simulta-
neous does not strictly speaking respect the semantics; the property of associativity simply
gives a better understanding of the ressource usage during a synchronization.

Example 3. Derivation Tree for Recursive Method Calls

We give a derivation tree showing the necessity of the successive application of Stab and
Closure for the local recursive method calls. Given the following - somewhat artificial -
specification:

Figure 26. Object with Recursive Method Calls

We can calculate from the previous inference rules the behavior of a(succ 0)(9) by
performing successive Stab and Closure (rules BEH-SEQ and SYNC) applications on the
initial behavior, itself computed by the rule OBJECT-SEM, whereas the rule MONOTONICITY

introduces additional contextual state when necessary.

9. The evaluation of succ(0) is 1 and succ(1) is 2 in our algebra of natural numbers.

OBJECT Recursive;
INTERFACE
USE Naturals;
METHODS
a _ : natural;
b;

BODY
PLACES
p _ : natural;

AXIOMS
b : p(n) -> p(succ(n));
a(0) : ->;
a(succ(n)) WITH a(n)..b : ->;

WHERE
n : natural;

END Recursive;
73

3. The CO-OPN Specification Language
Figure 27. Derivation Tree for a Sequence with Recursive Method Calls

From the derivation tree of figure 27 we can for instance deduce the initial and final object
states (contents of place p) needed for the call a(succ 0) to succeed: Place p must initially
contain the value 1 and finally the value 2.

Example 4. Object with Stabilization involving Internal Transitions

In example 3, there were no internal transitions, which simplified the stabilization process.
Now we present a Divider object (inspired from [Flumet 95]) that needs a stabilization
step between method calls in order to perform the actual division (Figure 28).

Figure 28. Divider Object with Internal Transitions

OBJECT-SEM p ∅() a(1) a(0)..bWITH

--------------------------------------- p ∅()>

OBJECT- SEM p ∅() a(0)

----------- p ∅()>

MONOTONICITY p ∅() p 1()+ a(0) ----------- p ∅() p 1()+>
--

STAB p 1() ∗ a(0) ----------- p 1()>
--

OBJECT- SEM p 1() b ------ p 2()>

BEH- SEQ p 1() a(0)..b ---------------- p 2()>

STAB p 1() ∗ a(0)..b ---------------- p 2()>

--

SYNC p 1() a(1) ----------- p 2()>

STAB p 1() ∗ a(1) ----------- p 2()>

--

OBJECT Divider;
INTERFACE
USE
Naturals;

METHODS
PutOpds _ _ : natural natural; ;; Input of division operands
RtnRes _ : natural; ;; Output of division result

BODY
TRANSITIONS
Division;

PLACES
Opds _ _ : natural; ;; Contains the couple < dividend,divisor >
Res _ : natural; ;; For the future result

AXIOMS
;; Object discards divisions by zero:
(y=0)=false => PutOpds(x,y): -> Opds x,y;
;; Perform the actual division (operation provided by module Naturals):
Division: Opds x,y -> Res x/y;
;; Object forgets the result after the client has fetched it:
RtnRes(x): Res x -> ;

WHERE
x,y : natural;

END Divider;
74

CO-OPN Semantics
The Divider object of figure 28 is sequential in the sense that it can only handle one divi-
sion at a time, otherwise the answer gets lost. It may be compared with a hardware realiza-
tion, where the result of each operation must be saved before it is overwritten by subsequent
computing: Trying to read the result register later will usually lead to unpredictable behav-
iour.

Consequently, our Divider object requires the caller to perform the synchronization
PutOpds(x,y)..RtnRes(r) in order to get the result r which really corresponds to the
given operands x and y. The derivation tree in figure 29 illustrates such a case, with x=6, y=3
and r=2 (the application of rule BEH-SYNC is not shown as we are only interested in the
behaviour of the Divider object and not of the client object).

The reason why the sequence guarantees the conformity of the result with the operands is
that sequential synchronizations, as any event in CO-OPN, are atomic. In other words, if the
synchronization succeeds, it means that the atomicity, among other properties, has been
preserved.

Figure 29. Derivation Tree for a Sequential Synchronization with Divider Object

The symbolic marking m of figure 29 stands for any arbitrary initial state. We notice that m
is intact at the end of the sequence.

3.6.6 Semantic Discussion About the Diary Example

Since we have introduced operators dealing with the concurrent behavior of objects (oper-
ator ‘&’), the transition systems can express evolution steps of concurrent events, i.e.

where m, m' denote two markings and e1 & e2 & ... & en ≡ [e1, e2, ..., en] is the multi-set of the
(elementary) events ei (i = 1,...,n).

OBJECT- SEM m PutOpds(6,3)

------------------------------ Opds 6 3,〈 〉() m+>

OBJECT- SEM Opds 6 3,〈 〉() m+ Division

-------------------- Res 2() m+>

STAB m ∗ PutOpds(6,3) ------------------------------ Res 2() m+>

STAB m ∗ PutOpds(6,3) ------------------------------ Res 2() m+>

OBJECT- SEM Res 2() m RtnRes(2)

------------------------+ m>

--

BEH- SEQ m PutOpds(6,3)..RtnRes(2) --- m>

STAB m ∗ PutOpds(6,3)..RtnRes(2) --- m>
--

--

m
e1&e2&…&en

 ------------------------------ m'>
75

3. The CO-OPN Specification Language
In the cooperative diary example we have not yet presented the ADR Object which manages
the low-level accesses to the actual data structures of the diary (see figure 30).

Figure 30. Specification of Object ADR

When serving method Confirm, Object DAL (Figure 17 on page 47) may want to perform
the sequential synchronization stated by axiom CnfAddEv with ADR:

Confirm(AddEvent(e)) WITH AddEvent(e)..Consult(l)

Thus, we have, for instance, the following behaviors for the isolated objects after applica-
tion of rules OBJECT-SEM and BEH-SEQ in the partial semantics:

ADR:

where m2 = diary(le), m'2 = m''2 = diary(le') and le'=(e+le).

DAL:

where m'1 = m1+confirmed(le').

If we compose these transition systems using rule SYNC and STAB we obtain:

DAL+ADR:

OBJECT ADR;
INTERFACE
USE Booleans, ListEvent, Event;
METHODS
Consult _ : listevent; ;; Give a copy of the diary
AddEvent _ : event; ;; Add an entry
Update _ _ : event, event; ;; Replacement of an entry
Cancel _ : event; ;; Erase an entry

BODY
PLACES
diary: listevent; ;; Container for data structure

INITIAL
diary []; ;; Initialize with empty list

AXIOMS
Consult(le) : diary le -> diary le;
AddEvent(e) : diary le -> diary(e + le);
;; The call fails if e1 is not found
(e1 isin le) = true =>

Update(e1, e2): diary le -> diary(e2 + (le - e1));
;; The call fails if event e is not found
(e isin le) = true =>

Cancel e : diary le -> diary(le - e);
WHERE
e, e1, e2 : event;
le : listevent;

END ADR;

m2
AddEvent(e)

----------------------------- m'2

Consult(le')

--------------------------- m''2> >

m1
Confirm(AddEvent(e)) AddEvent(e)..Consult(le')WITH

-- m'1>

m1 m+
2

Confirm(AddEvent(e))

--- m'1 m''2+>
76

CO-OPN Semantics
where m'1 = m1+confirmed(le'), m2 = diary(le), m''2 = diary(le') and le'=(e+le).

Now, if we had two concurrent invocations of method Confirm(AddEvent(e)), then we
would use rule BEH-SIM and end up with the following transition system:

where terms indexed by a and b belong respectively to the first and second arguments of the
simultaneity operator. The relations m1a+m1b = m1 and m2a+m2b = m2 = diary(le) are
deduced from rule BEH-SIM, meaning that the source markings m1a and m1b are obtained by
splitting the global marking m1 of DAL, and likewise m2a and m2b is obtained from splitting
m2 of ADR. The problem is that the marking m2 cannot be decomposed since it contains a
single token, the diary le. In other words, the concurrent invocations cannot take place
because of the object ADR: Only one of them would succeed.

As a rule of thumb, places with non-empty initial markings will usually be dedicated to
controlling only the tokens they initialize, and will therefore reduce the potential concur-
rency of the related methods and transitions. The tokens can be considered as variables
protected by a mutual exclusion mechanism. On the other hand, objects like DAL,
Network and Divider accept an unlimited amount of concurrent invocations because
they are not devoted to the management of a bounded number of tokens.

This concurrent behaviour is a coherent extension of classical Petri nets to the synchroniza-
tion facility of CO-OPN.

Another lesson learned from this example is that concurrency propagates down the object
hierarchy: The simultaneous invocations to method Confirm of object DAL result in two
sequential synchronizations AddEvent(e)..Consult(l) being evaluated simultaneously
by object ADR. It is as if the object had directly received the synchronization

(AddEvent(ea)..Consult(la)) & (AddEvent(eb)..Consult(lb))

This property is deduced from the resulting markings, and will be discussed further in
section 3.8.

3.6.7 Anti-Inheritance of Instability

The semantics Sem of a CO-OPN specification corresponds roughly to a classical synchro-
nous method invocation scheme, where the object receives an invocation, tests whether its
current state allows treating it, then reacts by doing some internal computing and possibly
performing other, so-called nested, method calls. It finally returns the result to the caller.
This fundamental behaviour may be enriched with synchronization operators, as seen in the
previous examples.

m1a m+
2a

() m1b m+
2b

()+

Confirm(AddEvent(ea))
& Confirm(AddEvent(eb))

--- m'1a m''2a+() m'1b m''2b+()+>
77

3. The CO-OPN Specification Language
There are however situations where it is not sufficient to bear this basic scheme in mind,
because of the role of the total order in object hierarchies. Let us recall the details of the
semantics Sem: It strictly follows the numbering of the hierarchy when deciding what set of
objects to stabilize. In other words, after an object Ok has accepted an invocation and
performed the first step of the corresponding action (PSemA(Ok)), all sub-objects Oi (0 ≤ i ≤
k-1) will take part in the stabilization, diregarding whether or not they were actually
involved in answering a method call initiated in PSemA(Ok). Consequently, objects may be
activated because of state changes due to unrelated or indirectly related events. The
following synthetic example illustrates the latter case:

Figure 31. Stability of an Object in Relation with an Enclosing Event

The invocation of m2 may for instance produce this progression of events (here we only
illustrate the phases of Sem which produce interesting method calls or replies):
78

CO-OPN Semantics
Figure 32. Evaluation of Invocation m2 (without stabilization messages)

As shown in figure 32, it may happen that invocation m0a only succeeds after object O0 has
been altered by an intermediate method call m0b. This behaviour is fairly unusual, since we
would rather expect the call m0a to be considered as belonging to the enclosing call m1
inside which O1 first tried to fire it.

A situation where the peculiar stabilization semantics of CO-OPN is frequently exploited is
when two objects need to call each other’s methods (not imperatively in recursive fashion).
It is then necessary to introduce a third object in the specification which is higher in the
dependency graph OD than the two objects it connects(10). This auxiliary object will then
usually provide no methods, but instead only have transitions which synchronize with the
methods of two sub-objects. It then becomes unstable as soon as both of its sub-objects have
firable methods. In the collaborative diary example (figure 15), objects Network and DAL
are connected by object DSA, the role of which is similar to a deamon, in the sense that it is
invisible, but automatically wakes up and alerts DAL when something is available on the
Network. At the same time, it allows DAL to send data to the Network.

To conclude, we may say that the notion of instability is not modular: When an object is
unstable, we should consider that all objects above it instantly become themselves unstable,
hence the term of anti-inheritance. This non-modularity was more evident in [Guelfi 94],
where, in order to calculate the behaviour of a set of objects, it was indispensable to
collapse the hierarchy into a single equivalent object.

10. We speak here exclusively of CO-OPN v1.5 or earlier, since CO-OPN/2 resolves this limitation by intro-
ducing the notion of object reference.

O2

O1

O0

m2

m1

PSem(O0)=∅

fa
il
ur
e(
m 0
a
)su

cc
es
s(
m 1
)

m0a

m0b

s
u
c
c
e
s
s
(
m 0
b
)

su
cc
es
s(
m 0
a
)

m0a

PSem(O0) PSem(O0)

Stab(O0 ∪ O1)

Stab(O0 ∪ O1∪ O2)PSem(O2)
79

3. The CO-OPN Specification Language
3.6.8 Compositional Properties of CO-OPN Semantics

In this section we will show that it is possible to identify certain structural patterns in the
derivation trees which one builds to prove the correctness of a behaviour with respect to the
inference rules of CO-OPN. This will serve later for elaborating an algorithmic approach to
object execution.

Notice that we do not yet grapple with the problem of finding correct variable assignments,
which is implicit in the SOS scheme. Our intention is solely to provide a straight translation
of the inference rules into a representation which reveals the compositional properties of the
synchronization and stabilization process. This will ease the transition from the currently
deductive frame, where the proofs are performed bottom-up, i.e. from the inference rules to
the goal to prove(11), to a resolutive method, where the proof trees are built in a top-down
manner, i.e. the goal is solved by applying inference rules backwards until it is reduced to
the empty goal, or, in other words, until its validity has been demonstrated. The motivation
for this conversion is that in the deductive approach the derivations must be guided more or
less intuitively in the direction of the goal to verify, otherwise we end up with a completely
intractable search space. Hence it is not appropriate for automatic execution (see e.g.
[Padawitz 88]). In the case of CO-OPN, the progress is dictated by the application of Sem,
which tells that Closure must be applied before Stab on a given set of objects. But within
Closure, for instance, it is not stipulated exactly which inference rule to choose.

As said before, the operational definition of a search mechanism for selecting suitable
axioms and assignments is postponed until chapter 6, where it will be embedded within the
synchronization and stabilization algorithms. In fact, we can consider that the resolution of
the former problem is nested within the resolution of the latter.

Recall the object with recursive methods of example 3. Its derivation tree for a sequential
synchronization was given in Figure 27 on page 74. If we compare this with the derivation
tree of the following sample object (Figure 29 on page 75) we notice that the steps required
for proving the applicability of rule BEH-SEQ exhibit a similar structure, even though the
examples present several differences: The former makes recursive calls, exploits monoto-
nicity and initiates a synchronization, while the latter is passive, but needs internal stabiliza-
tion for completing the incoming synchronization. This is the proof pattern for rule BEH-
SEQ:

11. In a derivation tree, the bottom is in fact constituted by the leaves of the tree, and the top is the root.
Therefore the visual impression, which reflects the progress order, may at first seem misleading.
80

CO-OPN Semantics
Figure 33. Generic Derivation Tree for rule BEH-SEQ

Proceeding likewise for the other forms of synchronizations, we obtain the figures 34, 35
and 36 hereunder.

Figure 34. Generic Derivation Tree for rule BEH-SIM

Figure 35. Generic Derivation Tree for rule BEH-ALT

The second BEH-ALT rule is trivially constructed the same way as in figure 35. The SYNC

rule is slightly more complex. Notice that proof #1 of figure 36 corresponds to demon-
strating that the local state of the caller allows the synchronization to proceed.

m1

e1
m'1→

STAB m''1
e1

* m'''1→

m2

e2
m'2→

BEH- SEQ m1 m2∪→
 e1..e2

--------------- m'2 m'''1∪→>

Proof #1

Proof #2 Proof #3

m'''1 m2
∩

m'1 m''1
∩

m1

e1
m'1→

e2
m' 2→m2

BEH- SIM m1 m2+
 e1&e2

---------------- m'1 m'2+>

Proof #1 Proof #2

m
e1

m'→

BEH- ALT m
 e1+e2

---------------- m'>

Proof
81

3. The CO-OPN Specification Language
Figure 36. Generic Derivation Tree for rule SYNC

What we have now is a kind of plug-and-play scheme, where the synchronization proofs
can be connected directly according to the axioms of the specification. We also notice that
this higher abstractness allows the stabilization to be entirely enclosed within the synchroni-
zation mechanism.

3.6.9 Summary of the Structured Operational Semantics of CO-OPN

For a well formed specification with finite stabilization and a model A of its algebraic part
we have given its semantics in terms of transition systems. We have noted that this seman-
tics is well defined, we can add the fact that this semantics is hierarchical(12) for the Object
part (for the algebraic part we do not detail the necessary modular constraints; they can be
found in [Breu 91]). Furthermore, we will see in the section about refinement that the
modularity of the semantics leads to separate refinement of Object modules, which consti-
tutes the formal validation of our implementation scheme and incremental prototyping tech-
nique applied to CO-OPN.

3.7 Refinement

An important notion which takes part in the software development process from the formal
specification up to the actual implementation is the stepwise refinement. Intuitively, a
refinement is the substitution of a part of a specification by an another part which is, in
general, more concrete, i.e. it has more operational information. Obviously, we expect that
such a substitution preserve the semantics of the original specification with respect to the
meaning of the term “semantics preservation” we have adopted. Indeed, various levels of

12. In the sense that we can build composite events from more elementary events (We are not saying that the
behaviour of an Object Module can be calculated without considering its environment, which would corre-
spond to the usual interpretation of the word modular, and which is false for CO-OPN).

m1

e1 e2WITH

----------------------- m'1>

m2

e2
m'2→

m''2
e2

* m'''2→

SYNC m1 m2+
e1

m'1 m'''2+→

Proof #3

Proof #2

Proof #1

STAB

m'2 m''2
∩
82

Refinement
semantics preservation may be given. For example, one might be too restrictive and require
that both semantics have to be isomorphic. On the other hand, someone else could have a
weaker point of view and choose bisimulation or observational equivalence. In other words,
saying that one part of a specification is a refinement of another means that it is possible to
compare the semantics of these two parts and deduce the semantic preservation.

More formally, but still in an abstract way, we could define as follows what a “good” refine-
ment is. Let Spec be a specification and O, O' be two sets of objects such that O ⊆ Spec. O'
is a refinement of O (preserving the signature and interfaces), written O' O, if there exists
a relation such that (‘\’ being the set difference):

Sem(O') Sem(O) ⇒ Sem((Spec \ O) ∪ O') Sem(Spec)

This definition describes a class of refinements because the semantic comparison criterion
is free. This freedom allows one to select the criterion according to ones needs. Thus, one
could choose bisimulation, observational equivalence or trace equivalence, for example.

Strong Concurrent Bisimulation

Here we give the definition of strong concurrent bisimulation and we put the previous defi-
nition in a concrete form. In other words, we are going to establish that bisimulation stands
for our previous refinement definition by the means of theorem 4.

Definition 24: Strong Concurrent Bisimulation

Given a model A and two concurrent transition systems TSA,1 and TSA,2. A bisimulation
between TSA,1 and TSA,2 is the greatest relation R ⊆ Mark(TSA,1) × Mark(TSA,2) such
that ∀ e of the form t1 & t2 & ... & tn with the (elementary) events ti (i =1,...,n):

- if m1 R m2 and m1 ∗→e m'1 ∈ TSA,1 then there is m2 ∗→e m'2 ∈ TSA,2 such
that m'1 R m'2.

- if m2 R m1 and m2 ∗→e m'2 ∈ TSA,2 then there is m1 ∗→e m'1 ∈ TSA,1 such
that m'2 R m'1.

We say that TSA,1 and TSA,2 are bisimilar if there exists a non empty relation R between
TSA,1 and TSA,2, and we denote this by TSA,1 ↔ c TSA,2. ◊

For a given model A, the notation TSA(O) denotes the concurrent system associated to the
semantics of the set of objects O. Note that in the following theorem we consider a unique
algebraic specification and transition system built up from the same algebraic model.

Sem

Sem Sem
83

3. The CO-OPN Specification Language
Theorem 4.
Let Spec be a well formed CO-OPN specification and O and O' be two well-formed sets
of objects such that O ⊆ Spec and O' ⊆ Spec.

TSA(O')O ↔ c TSA(O) ⇒ TSA((Spec \ O) ∪ O') Spec ↔ c TSA(Spec).

The notation TSA(O')O means that the concurrent transition system associated to the
semantics of O' is limited to the elements of O.

Proof: An obvious extension of the proof of theorem “replacement of objects” presented
in [Buchs&Guelfi 91]. ◊

The previous results are useful for establishing the validity of our automatic implementation
process, since it must provide compatibility with respect to ↔ c .

3.8 A Characterization of CO-OPN Events

In this section we will build upon the remarks made in the examples of the previous section
in order to characterize CO-OPN object activity in terms of notions such as concurrency,
atomicity and strong synchrony. This discussion will help us understanding CO-OPN better
and developing efficiently executable semantics.

As a preliminary remark, let us recall that the states of CO-OPN objects should be consid-
ered as almost private: While the data is completely encapsulated, the notion of instability is
automatically and instantly anti-inherited, i.e. inherited upwards, in the object hierarchy. In
this report we will however do our best to express the semantics in a modular way, keeping
in mind that the objective is to produce distributed implementations of CO-OPN specifica-
tions. To simplify, we consider for the moment that each object module executes on a
different node and can only communicate with other objects by means of method calls.

3.8.1 Method Calls Viewed as Rendez-Vous

As already mentioned, the method call mechanism of CO-OPN is synchronous, in the sense
that the caller is blocked until reception of a reply. Moreover, the callee decides, by means
of the global conditions and preconditions associated to the called method, whether it is
ready to accept the request. Therefore we may consider the method call as a rendez-vous,
where the global conditions and preconditions correspond to the notion of guards of other
formalisms (e.g. CSP [Hoare 78]) and languages (e.g. Ada [Ada 83]).
84

A Characterization of CO-OPN Events
As opposed to other known systems, CO-OPN not only allows data to be exchanged in both
directions through the parameters of the called method, but also provides operators which
state in a very high-level fashion how an object is to synchronize with several other objects
within the same rendez-vous.

3.8.2 About Instantaneity and Strong Synchrony

According to [Buchs&Guelfi 91], CO-OPN might be assimilated to the class of strong
synchronous languages, like Esterel [Berry&Gonthier 88] and Statecharts [Harel 87]. This
means that every operation, or change of state, be it internal or external, is viewed as being
instantaneous: There is a global discrete time scale. As a consequence, nothing happens
between two consecutive instants. Everything must happen as if the processors running the
program were infinitely fast(13). This is the synchrony hypothesis. But the analogy stops
here, because the finalities of the respective formalisms are quite different.

In the case of languages like Esterel, the property of instantaneity was designed as a means
of mastering and reasoning about reactive real-time systems. Reactive systems are
computer systems which react continuously to their environment, at a speed determined by
the latter [Harel&Pnueli 85]. This class of systems contrasts, on one hand with transforma-
tional systems (i.e. programs, the inputs of which are available at the beginning of their
execution, and which deliver their output when terminating), and on the other hand with
interactive systems (which react continuously to their environment, but at their own speed,
for instance like classical operating systems). In order to guarantee a predictable response
rate, synchronous languages have deliberately restricted themselves to programs that can be
compiled into finite deterministic automatons [Caspi&Girault 95]. This is clearly not the
case of CO-OPN.

In CO-OPN, internal transitions being instantaneous is due to the particular interpretation of
the Petri nets as a synchronous Petri nets model. Moreover, concerning the synchronization
scheme of CO-OPN, the objective is to have a convenient way of hiding away the behaviour
of external components. This results in a manifest enforcement of the hierarchical relation-
ship between object modules and constitutes a powerful abstraction mechanism which is
supported by a solid formal basis [Guelfi 94]. Therefore the notion of instantaneity in CO-
OPN is to be considered more as a modelling facility than as constraint on the implementa-
tion.

The point of view that all events are instantaneous may be taken as a transposition of atom-
icity into the temporal dimension. Informally, we could add that two events which are both
instantaneous and truly concurrent will appear as being simultaneous, since they will start

13. This is why infinite loops do not fit well within the model of CO-OPN, hence the hypothesis that all stabi-
lizations eventually terminate.
85

3. The CO-OPN Specification Language
and end pairwise at the same moment. This justifies the appellation of simultaneity operator
for the concurrent composition primitive of CO-OPN.

3.8.3 Ordering of Events in CO-OPN

Let us recall the signification of rule BEH-SEQ: In a sequential synchronization e1..e2 , the
state resulting from e1 is the same as the source state for e2 (for what concerns the common
places). In other words, no other event e3 can happen during the sequence and modify this
intermediate state. The sequence e1..e2 forms an indivisible event enclosing both the
observable (e1 and e2) and invisible (the respective stabilizations) events. This behaviour
may be explained by the way CO-OPN considers time: Due to the requirement of instanta-
neity, each event will happen either strictly before, or after, or yet simultaneously with any
other event.

Process algebras (e.g. CCS [Milner 80], CSP [Hoare 78]) reduce the behaviour of concur-
rent systems to a set of arbitrary sequences by justifying that a sequential observer cannot
distinguish the concurrent occurrences of two actions from their occurrence as interleav-
ings. On the other hand, Petri nets permit a partial ordering of events because they preserve
the causality relationships inside the system. In other words, net semantics allows indepen-
dent actions to really take place at the same time, not excluding each other, hence the term
of true concurrency.

In truly concurrent systems independent activities are allowed to partly overlap. Strong
concurrency(14) is a restriction which says that concurrent activities start exactly at the same
moment. Relaxing this constraint results in weak concurrency. Finally, if we add the
requirement of simultaneity, as in CO-OPN, then concurrent events will also have to end
precisely at the same time (because their treatment takes no time). The following figure
illustrates these distinctions by means of local activities within two objects O0 and O1. In
[Fromentin&Raynal 94] different forms of concurrency are expressed instead by relation-
ships between local states, in order to generalize the assumption of instantaneity of events.
Figure 37 can also be interpreted that way.

14. The notion of strong concurrency appears in the field of Petri nets for the first time in [Reisig 86]. It is
defined as an invariant (observer independent) property of concurrent state/transition sequences which
appears when two sub-parts of a net show special forms of dependency. The general concurrency relationship
is thus the union of strong concurrency and the classical form of concurrency, which is based on indepen-
dency.
86

A Characterization of CO-OPN Events
Figure 37. Different Forms of Concurrency

As seen in sub-section 3.6.6, concurrency in CO-OPN is propagated down the hierarchy,
possibly resulting in concurrent threads of execution within shared objects(15), provided
that the required number and values of input tokens are present. An interesting property,
deduced from rule BEH-SIM, and intuitively enforced by the instantaneity of events, is that
these threads can not interact. It is as if every simultaneously shared object was split into
independent sub-objects, ignoring each other, among which the initially available tokens
were distributed. The sub-objects merge together when they have all served their respective
method calls. At last the result of this fusion is stabilized.

The Divider object (Figure 28 on page 74) is an example which exploits the atomicity
and instantaneity of rule BEH-SEQ, since it requires its clients to call the methods PutOpds
and RtnRes in strict sequence in order to avoid unpredictable behaviours.

The semantics of strong concurrency eliminates all forms of interleaving-based indeter-
minism. It unambiguously determines the interpretation of multiple synchronization
requests reaching a shared object, both when they are parts of the same root event and when
they are independent, i.e. of different origins. We will see in chapter 6 that they may lead to
different implementation strategies.

3.8.4 Kinds of Non-Determinism in CO-OPN

We can distinguish within the CO-OPN formalism several kinds of non-determinism,
resulting from sources of different nature. We can mention:

15. A shared object is an object which receives multiple method invocations. We say that it is shared sequen-
tially if two of those invocations are synchronized by the sequential operator, and likewise for simultaneous
and alternative sharing.

O1
O0

O1
O0

O1
O0

O1
O0

Interleaving:

True concurrency:

Strong concurrency:

Simultaneity:
87

3. The CO-OPN Specification Language
1. Non-determinism resulting from the choice of input tokens in transitions and
method calls. As told in section 3.6.4, this selection is performed randomly, in con-
formity with the semantics of Petri nets. When dealing with classical ‘black’
tokens, there is no such thing as a bad choice, since all tokens are equivalent, on
the opposite of coloured and algebraic Petri nets. Talking about the operational
mechanism needed for CO-OPN, a wrong decision can be corrected very easily in
the case of simple events, but if there is a synchronization, then copies of the token
values may have been passed on to other objects, and consequently there will be
more work to undo in order to correct the situation. This is a form of don’t know
non-determinism, also called search non-determinism, since it requires the ability
to backtrack, i.e. to step back to the choice point, in order to try another token com-
bination.

The three next kinds of non-determinism are all related to the choice of the next axiom to
evaluate, but clearly correspond to different semantic problems:

2. Non-determinism resulting from the declarative form of the language, as in Prolog.
Since there is no if-then-else construct, each alternative is described by a different
axiom. The execution mechanism will then have to try all alternatives until it finds
one which evaluates to ‘true’. Furthermore, since these alternatives are not neces-
sarily mutually exclusive, there must be an arbitrary choice between the valid ones.
This is also a form of don’t know non-determinism.

3. Non-determinism from the unspecified ordering of steps in the stabilization pro-
cess. This is the same kind of non-determinism as in classical Petri nets and ema-
nates from structural conflicts and concurrency of independent events. This is
sometimes called indeterminism.

4. Non-determinism induced by the presence of inter-object concurrency. This is why
objects must be ready to receive any method invocation at any moment and there-
fore specify completely, by means of a guard mechanism, its willingness to accept
a synchronization request. This is also a form of indeterminism.

The second and fourth forms of non-determinism are hard to discriminate, since the syntax
of CO-OPN does not promote any notion of guard. The global conditions and preconditions
of an axiom describe collectively and undistinguishably the guard, which allows to select a
rendez-vous, as well as the conditions local to the chosen rendez-vous.

The concept of guard was initially introduced in [Dijkstra 75] for parallel algorithmic
languages. The family of so-called commited-choice languages (e.g. Parlog [Clark 84],
Concurrent Prolog [Shapiro 83], Guarded Horn Clauses [Ueda 85]) adopted this mecha-
nism as a means of reducing the implementation cost of parallel Prolog programs. This was
realized by eliminating don’t know non-determinism in favour of don’t care non-deter-
minism: Once a computation branch has been chosen, it is no longer possible to return to the
88

Epilogue
choice point to explorate other paths. Concretely this is accomplished by incorporating the
commit operator, the role of which is to separate the guard from the body of the clause and
to tell where the speculative parallel evaluation of a goal can end and the trusted sequential
execution begin. More importantly, these languages sacrifice the simplicity and complete-
ness of sequential Prolog by abandoning the support of backtracking.

Some versions of distributed Prolog, e.g. CS-Prolog [Ferrenczi&Futo 92], present both
kinds of non-determinism, but with a syntax which allows the separation of the guard from
the clause body, and with the restriction that the parameters of the goal must be beforehand
instantiated by the caller in order to ensure independency between concurrent processes.

We may thus say that CO-OPN is ‘more declarative’ than these parallel and distributed
Prolog dialects(16), which seems rather reasonable for a specification language since its
objective is to state only what must be done, and not how to do it. This concern is expressed
by the famous equation program = logic + control.

3.9 Epilogue

We have now achieved the presentation of the aspects of CO-OPN which are relevant to the
prototyping process. These aspects are essentially of semantic nature, as our desire is on the
one hand to detail the knowledge which is necessary for applying incremental prototyping
to CO-OPN specifications (chapter 5 and 7), and on the other hand to prepare for the transi-
tion to the algorithmic description of the distributed run-time support (chapter 6). The
chapter 4, which follows, describes the operational semantics that we have adopted for
prototyping algebraic abstract data types.

16. We have deliberately chosen to talk only about Prolog dialects with explicit concurrency. Other forms
exist, which focus on exploiting the parallelism which is intrinsic to the declarative nature of the language: Or-
parallelism, and-parallelism and stream-parallelism. These aspects, although very useful, are not taken into
account here since our objective is not to provide efficient implementations to programs which are primarily
sequential, but rather to study how search non-determinism is integrated into inherently concurrent systems.
89

3. The CO-OPN Specification Language
90

Chapter 4

Operational Semantics of AADTs

The purpose of this chapter is to show how algebraic abstract data types (AADTs) are inter-
preted in the frame of our prototyping scheme. To this end, we give the operational seman-
tics, the compilation algorithm, and the (intermediate) target language semantics. Most of
this work results from slight modifications of the paper [Schnoebelen 88], changes which
are necessary to take into account the requirements of mixed prototyping. These are essen-
tially dictated by the desire to make the generated code more readable, as well as to exploit
extensively the dynamic binding capabilities of the object-oriented paradigm.

The contents of this chapter are beneficial for understanding the compilation of Adt
modules taken alone, but also for the use of AADTs which is made in algebraic Petri nets.
In particular, the filtering algorithm which is employed for implementing the operations of
an AADT can be reused, with minor adaptations, to realize the pattern-matching needed for
selecting appropriate tokens in the places of an algebraic Petri net.

The actual code generation in a target object-oriented programming language is described in
the next chapter, along with the possibilities for prototyping AADTs.

4.1 Introductory Example

Before studying the compilation algorithm, it may be interesting to see the kind of code it
produces. In the interest of clarity, we will show the final result in Ada95, instead of the
abstract representation used by the algorithm.

For instance, let be a simple Adt module Stack of natural numbers, like in figure 38:
91

4. Operational Semantics of AADTs
Figure 38. Specification of a Stack of natural numbers

Given the specification of figure 38, the code generated for operation top will look like the
function in figure 39 below. We precise that mixed prototyping, when applied to AADTs,
requires the generator inverse functions to be defined, either automatically or manually,
according to which internal representation is chosen (see next chapter). In the Stack case,
the inverse of the generator push_on is named push_on_Inv and returns a structure
containing the original arguments of the call which created the given stack element. For
instance, if the stack is instantiated by a call to push_on(x,s), then push_on_Inv returns
the couple < x, s > of type push_on_Arg inside which the elements are accessed through the
respective names Nat1 and Stack1.

Figure 39. Ada95 Code Generated for Operation top

The given compilation algorithm produces the code corresponding to the lines 4 to 12 of
figure 39. The rest is mere packaging, and is the role of the target language-dependent code
generator. Let us now proceed with the formal definitions.

ADT Stack;
INTERFACE
USE Naturals;
SORT stack;
GENERATORS
empty : -> stack;
push _ on _ : natural stack -> stack;

OPERATIONS
top : stack -> nat;
pop : stack -> stack;

BODY
AXIOMS
top(push x on s) = x;
pop(push x on s) = s;

WHERE
x : natural;
s : stack;

END Stack;

1 function top (P: in Abstract_Stack) return Natural is
2 begin
3 -- axiom: top(push x on s) = x
4 if Generator(Stack(P))=push_on then
5 declare
6 inverse: push_on_Arg := push_on_Inv(Stack(P));
7 begin
8 return inverse.Nat1.all;
9 end;
10 else -- Error: P = empty
11 raise constraint_error;
12 end if;
13 end top;
92

Rewrite Systems
4.2 Rewrite Systems

In this section we will briefly remind the notion of rewrite system. For deeper explanations,
we refer to [Dershowitz&Jouannaud 90]. We also recall that AADTs [Ehrig&Mahr 85]
were already defined in section 3.4.1.

Most tools aimed at evaluation of AADTs are in fact theorem provers which can be realized,
in the case of positive conditional axioms, using a Prolog interpreter. This is necessary
because the expressive power of equational specifications is so high that it requires a very
compute-intensive algorithm [Knuth&Bendix 70] to implement them directly.

Instead we will consider the specifications as conditional term rewriting systems, which
means that the equations are oriented. This approach is most appropriate in the context of
prototyping since it allows more efficient executions, provided that we restrict the speci-
fier’s freedom as shown below (definition 28, in addition to the prohibition of equations
between constructors).

Within the field of term rewriting systems, there exist two execution strategies. The first one
consists in an interpreted mode, i.e. the rewrite process is performed literally by manipu-
lating syntactical substitutions “as by hand”. The other form of execution resides in evalu-
ating the specified functions simply by calling a corresponding function formerly generated
in a compiled programming language [Kaplan 87]. It is the latter solution which is exploited
in the frame of mixed prototyping, since it provides executions which are several orders of
magnitude faster, and also because this approach directly furnishes the required initial
abstract implementation.

Definition 25: Positions in a Term

Let Σ = < S, F > be a complete signature and X be an S-sorted variable set. Each term t ∈
TΣ,X is viewed as a tree of symbols in Σ and X. A position in a term t is a sequence of
natural numbers, and the set of positions of t is written Pos(t) and is defined inductively
by:

- ε is the root position of the term t;
- if p is a position of the term t and t has n subterms, then p.i, i ∈ [1..n], denotes

the position of the ith subterm.

The symbol occurring at position p in t is written t[p]. The subterm occurring at position
p in t is written t|p. ◊

For example, if t = f(g(x,a),h(x)), we have Pos(t)={ε, 1, 1.1, 1.2, 2, 2.1}, and the expression
t[2] denotes the symbol h, while t|2 is the term h(x).
93

4. Operational Semantics of AADTs
Definition 26: Ordering of Positions

We define « as the smallest transitive relation such that ∀ p ∈ IN *, ∀ i ∈ IN, p « p.i. This
notion also exists for tuples of terms: p ∈ Pos(ti) iff i.p ∈ Pos(<t1,..., tn>). ◊

Definition 27: Substitution

Let Σ = < S, F > be a complete signature and X be an S-sorted variable set. A substitution
is an application σ : X → TΣ,X. The domain of σ is the set of variables that are actually
modified by σ: Dom(σ) = { x ∈ X | σx ≠ x }. The substitution of x ∈ X by t ∈ TΣ,X is
noted t/x. ◊

Definition 28: Conditional Rewrite Rules

An n-ary operation op ∈ OP is defined by a list of n-ary conditional rewrite rules
π => λ→ρ, where:

1. λ is a (n-ary) linear tuple of TC,Xn ;
2. π,ρ ∈ TF,X;
3. π has the predefined sort meta-boolean;
4. Vars(ρ) ∪ Vars(π) ⊆ Vars(λ).

π is called the condition, which by default is equal to “true”, and may be composed of
conjunctions of sub-conditions which are in turn equalities of terms. We use the name
“meta-boolean” because it is predefined and not to be confused with potential user-
defined boolean sorts.

Evaluating a term of TF means rewriting it into a term of TC. If this operation is possible
through a finite sequence of applications of rewrite rules, then the rewrite system is said
finitely terminating. If applying different sequences of rewrite rules to the same term
always give the same resulting term, then the system is confluent. If a rewrite system is
finitely terminating and confluent, which we will assume from now on, then we can
prove that every term admits a unique normal form, i.e. a term on which no more rewrite
rules can be applied.

A term t1 is said to match a term t0 if there exists a substitution σ such that t1 = σt0, and
this is written t0 t1. We write σg the set of all grounding substitutions, i.e. substitutions
from TF,X into TF. Given a term t ∈ TF,X we write G(t) the set of its ground instances, that
is {σt | σ ∈ σg }. ◊
94

Semantics of the Source Language
4.3 Semantics of the Source Language

We assume that the rewrite systems to compile are confluent and finitely terminating. Given
the above definition of functions, the left-hand side of their equations are required to be
linear (rule 1). This is a restriction due to the chosen compilation algorithm
[Schnoebelen 88]. Several occurrences of the same variable must be manually transformed
into an additional condition stating equality of the corresponding arguments. Thus,

c1 & ... & cn => f(x,x,y,z) = v(x,y,z);

is the same as:

c1 & ... & cn & (x = x’) => f(x,x’,y,z) = v(x,y,z);

This restriction, although a bit annoying, does not reduce the expressivity of the accepted
source language. It may however require the definition of additional operations for
observing the data types, in order to compensate for the prohibition of pattern-matching.
For instance, the operation remove_duplicates scans a list built by calls to the generator
[_|_] (where the first argument is the head and the second is the tail of the list) and
removes one element of each pair of consecutive duplicates. One of the axioms could be
written like this:

remove_duplicates([x | [x | tail]]) = [x | remove_duplicates(tail)];

The implicit condition stated by using twice the variable x in the left-hand side must be
made explicit by a call to the equality operator:

x=y => remove_duplicates([x | [y | tail]]) = [x | remove_duplicates(tail)];

The evaluation is performed according to the very classical strict and innermost strategy,
which corresponds to the call-by-value parameter passing mechanism of most modern
imperative programming languages.

It is not specified whether the terms are evaluated from the left or from the right, since it
does not alter the final result in confluent rewrite systems(1).

We give below the semantics of the source language. Rules(op) = (πi => λi → ρi)i=1...m
designates the list of rewrite rules defining the operation op.

1. The actual computation order is determined by the target language rules or compilers.
95

4. Operational Semantics of AADTs
Definition 29: Application ‘Rewr’

For all c ∈ C, f ∈ F, and op ∈ OP, Rewr: TF → TC ∪ {error} is defined by:

Figure 40. Semantics of Rewr

◊

Definition 30: Application ‘Apply’

For all op ∈ OP and σ ∈ σg, Apply[R]: T n
C → TC ∪ {error} is defined as:

Figure 41. Semantics of Apply

◊

Rewr[ti] = error
Rewr[f(t1,...,tn)] = error

(S1)

∀ i = 1...n, Rewr[ti] ≠ error

Rewr[c(t1,...,tn)] = c(Rewr[t1],...,Rewr[tn])
(S2)

∀ i = 1...n, Rewr[ti] ≠ error

Rewr[op(t1,...,tn)] = Apply[Rules(op)] op(Rewr[t1],...,Rewr[tn])
(S3)

λ1 op(t1,...,tn)/

Apply[Ø] op(t1,...,tn) = error(S4)

Apply[(λi → ρi)i=1...m] op(t1,...,tn) = Apply[(λi → ρi)i=2...m] op(t1,...,tn)
(S5)

Apply[(πi => λi → ρi)i=1...m] op(t1,...,tn) = Rewr[σρ1]
(S6)

σλ1 = op(t1,...,tn) Rewr[σπ1] = true

Apply[(πi => λi → ρi)i=1...m]op(t1,...,tn) = Apply[(πi => λi → ρi)i=2...m]op(t1,...,tn)
(S7)

σλ1 = op(t1,...,tn) Rewr[σπ1] = false

Apply[(πi => λi → ρi)i=1...m] op(t1,...,tn) = error(S8)
σλ1 = op(t1,...,tn) Rewr[σπ1] = error
96

Semantics of the Target Language
Observe that the definitions of Rewr and Apply are mutually recursive.

When evaluating a term, it may happen, if the rewrite system does not respect sufficient-
completeness, that none of the equations cover the particular case, leading to the rule S4.
The result is then an error, or in terms of implementation, an exception is raised.

From rule S5, we deduce that when several rules of the specficition may apply, the first one
- in the source text - is always selected. This enforces the procedural side of specification. If
this effect is not desired, the user must take care that none of the equations overlap, or have
the compiler issue appropriate warnings.

A final issue concerning the source language is that we do not allow equations between
generators. There are two reasons for this. First, rewrite systems with such equations need
to undergo some transformations to be compilable, and in mixed prototyping we do not
want to alter the structure of the source specifications: This decision was taken to help the
developer stay familiar with his model, the structure - i.e. the operation names - being the
sole hook he has to orient himself inside the generated code. Second, as shown in
[Choppy et al 89], contructors with equations need very special inverses, programmed as
iterators, which breaks the orthogonality of the development methodology. This problem is
related to the difficulty of cleanly implementing search non-determinism in procedural
languages. This subject will be deepened in chapter 6, in the frame of CO-OPN objects, for
which we unfortunately cannot avoid supporting this kind of non-determinism.

4.4 Semantics of the Target Language

In this section we describe the semantics expected from the target language TL. It must be
noted that this target language is only the result of the compilation algorithm. As thus, it
used exclusively as an internal representation before the actual code generation in a target
programming language. Interestingly, by recurring to this abstract intermediate representa-
tion, the compilation algorithm does not have to take into account the specificities of the
final implementation language: For instance, there is nothing at this stage which shows that
we aim object-oriented programming languages.

Concerning the correctness of mixed prototyping with respect to the semantics of the source
specifications, we refer to [Choppy&Kaplan 90]. Although our implementations make
heavy use of dynamic binding, we will not bother to define this property formally, because
the selection of the pertinent functions for a given implementation is entirely determined at
program startup and does not change during the whole execution. Hence we reduce the
correctness proof to the case where function calls are resolved statically.
97

4. Operational Semantics of AADTs
In order to adapt the code generation to OOMP we slightly change the syntax of the testors
by making them as implementation-independent as possible through the utilization of poly-
morphism. The purpose of a testor is to support pattern-matching: It verifies the tag of a
value, i.e. finds out which generator it was created by. In the field of mixed prototyping we
want to perform this test while staying free from implementation details, since this tag
information will usually not be directly available in concrete classes. This is achieved by
having the derived classes define a function, call it “Generator”, which returns an enumer-
ated type corresponding to the different generators of the given AADT. The correct version
of the function is executed through dynamic binding. Take for instance the following
axioms for calculating the number of elements in a stack:

card(empty)=0;
card(push x on s)=1+card(s);

In a classical implementation of AADTs, the code generated for the first axiom would be:

if object.tag=empty then return 0;

This of course obliges all internal representations to have an attribute called ‘tag’. The
symbol empty is of an enumerated type. The abstract code given in [Choppy&Kaplan 90]
for mixed prototyping is:

if object=empty then return 0;

Here the symbol empty denotes a constant object. It is the developer’s burden to export such
an object from the concrete code and to verify that the equality operator corresponds to the
semantics of his own data type definition. A safer solution is where there is for each gener-
ator one testor function initially declared as abstract. The developer is then obliged to
provide a definition for each:

if empty_tag(object) then return 0;

Finally, our definitive proposal is the following, where we limit to one the number of testor
functions to be redefined. Here again empty belongs to an enumerated type:

if Generator(object)=empty then return 0;

The portable testor function has in fact the same role as the generator inverse w.r.t. selector
functions in the jargon of AADTs.

Definition 31: Target Language TL
The target language TL has respectively Expressions E, Meta-Boolean expressions B
and Terms Te:

TL = { E, B, Te }, where
E ::= Te | if B then E1 else E2 | no_match
98

Semantics of the Target Language
B ::= Generator (Te) = c | Te1 = Te2
Te ::= x | c-1(Te) | op(Te1,...,Ten)

Symbol x denotes any variable, c any constructor, op any n-ary function and p any posi-
tion. Generator is a testor function which calculates the normal form of its argument and
returns the most external symbol (at position ε) of the resulting term. The generator
inverse is written c-1 and returns a tuple - the list of arguments of the given generator -
whose member selection is noted “|”. ◊

The semantics is given by figures 42 and 43: This is in fact the output of the compilation
algorithm given in section 4.5. Evalγ evaluates an expression E in an environment γ where γ
is a grounding substitution that assigns values to the variables of X. The empty list is noted
ε.

Definition 32: Application Evalγ for Domain TLE

For all x ∈ X, f ∈ F, c ∈ C, p ∈ IN *, Te, B, E1, E2 ∈ TL and γ ∈ σg,
Evalγ: TLE → TF ∪ {error} is defined by

(T1) Evalγ no_match = error

(T2) Evalγ x = γ (x)

(T3)
(Evalγ Te) [ε] = c

Evalγ c
-1(Te) = c-1(Evalγ Te)

(T4)
Evalγ Tei = error

Evalγ f(Te1,...,Ten) = error
99

4. Operational Semantics of AADTs
Figure 42. Semantics of Eval for Domain TLE

◊

Definition 33: Application Evalγ for Domain TLB

For all x ∈ X, f ∈ F, c ∈ C, p ∈ IN *, Te, B, E1, E2 ∈ TL and γ ∈ σg,
Evalγ: TLB → {true,false} ∪ {error}

Figure 43. Semantics of Eval for Domain TLB

◊

The evaluation strategy of c-1 and Generator is call by value (rules T3 and T9), whereas
the if-then-else instruction has its usual non-strict semantics (rules T6 and T7). The
generator inverse is not defined for zeroadic constructors, since we will never want to
decompose an atomic value.

(T6)
Evalγ B = true

Evalγ if B then E1 else E2 = Evalγ E1

(T7)
Evalγ B = false

Evalγ if B then E1 else E2 = Evalγ E2

(T8) ∀ p=1...n, Evalγ c(t1,...,tn) = Te

Evalγ (c
-1(Te))|p = tp

∀ i=1...n, Evalγ Tei ≠ error

Evalγ f(Te1,...,Ten) = Rewr [f (Evalγ Te1,...,Evalγ Ten)]
(T5)

(T11)
(Evalγ Te) [ε] = c

Evalγ (Generator (Te) = c) = true

(T12)
(Evalγ Te) [ε] ≠ c

Evalγ (Generator (Te) = c) = false

(T10) Evalγ (Generator (Te) = c) = (Generator (Evalγ Te) = c)

Evalγ Te = error

Evalγ (Generator (Te) = c) = error
(T9)
100

Semantics of the Target Language
The compilation algorithm generates if-then-else tree structures, with no_match in the
leaves corresponding to cases left undefined by the source axioms.

4.4.1 Object-oriented features of the target language

Our purpose is to be as general as possible in the choice of the target language. We want to
use a minimal set of mechanisms in order to be largely language-independent and to make
the prototyping process as intuitive as possible.

What we need is an object-oriented language with the following characteristics (See for
instance [Wegner 87] for an explanation of object-oriented terminology):

• Abstract classes and deferred methods.
• Single inheritance, although multiple inheritance is no impediment.
• Inclusion polymorphism and dynamic binding.
• Polymorphic variables and heterogeneous data structures.
• Access to supermethod, for code reuse in general and for our validation by assertion

mechanism.
• Encapsulation.
• Strong and static typing.
• Class attributes, by opposition to class members, are necessary to implement the protocol

object mechanism. This is sometimes available through metaclasses in pure object-ori-
ented languages.

• Restricting the visibility of some features to descendant classes only. This is useful for the
realization of various kinds of auxiliary functions, be it at the specification level - hidden
operations, declared in the body part of a CO-OPN module - or at the implementation
level, for instance when dealing with memory-management.

• Non-primitive operations, i.e. non-redefinable functions, are necessary in cases where the
generated code is deemed too sensitive to be redefined by the user. This might concern
e.g. complex filtering algorithms for AADTs, or acute synchronization sequences in con-
current contexts. Note that programming languages do generally not prevent people from
redeclaring functions, but these redeclarations will never be taken into account in OOMP
since they are not visible from the abstract class.

• Overloading, in the sense of ad-hoc polymorphism, is needed since algebraic specification
languages also offer this facility. Object-oriented languages usually include this possibil-
ity, although Eiffel constitutes here a notable exception.

• Genericity is useful for direct implementation of generic modules of the specification lan-
guage.

• Exception handling capacity is profitable to cleanly handle situations where sufficient-
completeness is not respected.
101

4. Operational Semantics of AADTs
Except as noted, all of these features are available in main-stream object-oriented languages
like Eiffel, C++ and Ada95.

4.5 The Compilation Algorithm

The compilation process consists mainly of a translation of pattern-matching into a proce-
dural form. For this, we propose Schnoebelen’s algorithm [Schnoebelen 88] adapted to
OOMP. This choice is guided by the completeness of the algorithm: It is correct given the
assumption that the rewrite system satisfies termination and confluence, and it is capable of
compiling conditional axioms, as well as some other interesting extensions which we do not
exploit here but might be useful in the future (subtyping and equations between construc-
tors).

To tailor the compilation algorithm to OOMP, we just need modifying the code generation.
We consider here only the case where the abstract code is evaluated in exactly the same
environment as the concrete one, since they both implement the rewrite rules with identical
semantics. We do not take into account the general case sketched in [Choppy&Kaplan 90],
where it would be possible to have a general Horn-clause interpretor calling the compiled
functions: The result of this is a powerful - but heavier - system capable of evaluating
expressions involving unification instead of only simple filtering(2).

The function Compile_For compiles an n-ary operation op from its list R of defining rules,
and from a non-empty set T of n-tuples of ground terms of T n

C , which constitutes a descrip-
tion of its domain (or input arguments).

2. Informally, unification allows a two-way variable instantiation. For instance, if successful, the result of uni-
fying two couples <x,t1> and <t2,w> is that x is bound to the term t2 and w is bound to t1. Filtering,
on the other hand, does not allow the second couple to contain unbound variables, thus w would have to be a
constant or an already instantiated variable in the frame of filtering.
102

The Compilation Algorithm
Definition 34: Compile For

For all x ∈ X, c ∈ C, k, p ∈ IN*, B, E1, E2 ∈ TL,
Compile R For: T n

C → TL is defined by:

Figure 44. Rules for Compile For

The choose function of rule C4 is a function which chooses a minimal position inside any
finite subset of IN*. This function must be regular, which means that if P’ ⊆ P ∧ (choose(P)
= p ∈ P’) ⇒ choose(P’) = p. The choose function can e.g. simply take the leftmost-outer-
most position, although better heuristics exist [Schnoebelen 88].

The function NMPt0 (T), the non-matching positions of the set T w.r.t t0 , is defined as
NVP(t0) - MPt0

(T). NVP(t0) is the non-variable positions of t0, i.e. the set of symbols not
representing variables, whereas MPt0

(t), the matching positions of a ground term t w.r.t t0, is
defined inductively by

∀ t0 ∈ TF,X, ∀ t ∈ TF :
- ε ∈ MPt0 (t) iff t[ε] = t0[ε]
- p.i ∈ MPt0 (t) (with i ∈ IN) iff p ∈MPt0 (t) and t[p.i] = t0[p.i]

Finally, for T ⊆ TF, MPt0 (T) is defined as ∩t∈T MPt0 (t).

(C1) Compile Ø For T = no_match

(C2) if T ⊆ G(λ1):
Compile (πi => λi → ρi)i=1...m For T = if B then E1 else E2

B = CompileRHλ1 (π1)
E1 = CompileRHλ1 (ρ1)
E2 = Compile (πi => λi → ρi)i=2...m For T

where

(C3) if T ∩ G(λ1) = Ø:
Compile (πi => λi → ρi)i=1...m For T =

Compile (πi => λi → ρi)i=2...m For T

(C4) if T ⊆ G(λ1) and T ∩ G(λ1) ≠ Ø:
Compile (πi => λi → ρi)i=1...m For T = if B then E1 else E2
/

B = Generator ((c-1(xk))|p) = c

E1 = Compile (πi => λi → ρi)i=1...m For T’
E2 = Compile (πi => λi → ρi)i=2...m For (T - T’)

where

k.p = choose (NMPλ1 (T))
c = λ1[k.p]
T’ = { t ∈ T | t[k.p] = c }
103

4. Operational Semantics of AADTs
CompileRH is an auxiliary function which compiles the condition and the right-hand side of
the current axiom into respectively the B and E1 parts of rule C2.

Definition 35: CompileRH

For all x ∈ X, c ∈ C, f ∈ F, k, p ∈ IN*, B, E1, E2 ∈ TL,
CompileRHλ : TF,X → TL is defined by:

Figure 45. Rules for CompileRH

This concludes our presentation of the compilation algorithm. For its proof of correctness,
termination and monotonicity, we refer directly to [Schnoebelen 88].

4.6 Low-Level Optimizations

As mentioned in the introductory description of OOMP (chapter 2), many usual optimiza-
tion techniques, taken, in the case of AADTs, from the field of functional languages, may be
applied in the generated abstract and symbolic classes:

• Common subexpression recognition consists in storing intermediate results in auxiliary
variables in order to avoid multiple evaluations of the same expressions. This is a very
important optimization, which is not performed by the given compilation algorithm, but
the source paper states that it is not difficult to implement, since the concerned expres-
sions are always internally structured as trees. It is also interesting to know that the com-
piler of the target programming language may do some of the work.

• “Remembering” the result of constant operations. By constant operations, we mean those
without parameters. Since side-effects are not allowed in this context, functions must
always return the same result. This idea is also applicable to the case of constant genera-
tors to implement structural sharing(3): In this case it is not the value, but the reference to
the dynamic instance that will be retained.

3. Structural sharing denotes a memory management technique which avoids repetitive allocation and copy-
ing of dynamic data structures by reusing instead the pointers to the interesting structures. This technique is
usually combined with reference counters in order to eventually recover the space occupied by entities which
are no longer referenced by anyone.

(C5) if t is some λ|k.p:
CompileRHλ (t) = (c-1(xk))|p

(C6) if f (t1,...,tn) ≠ λ|p ∀ p ∈ P(λ):
CompileRHλ f(t1,...,tn) = f(CompileRHλt1,...,CompileRHλtn)
104

Restrictions in Modular Specifications
• Elimination of tail-recursion in defined operations is possible and safe in the object-ori-
ented paradigm because all the data structures are homogeneous (in fact they are declared
heterogeneous, but at run-time they always will contain objects of the same class). This
means that once a function has been selected through dynamic binding, it is not necessary
to redispatch for performing recursive calls.

• Another application of the previous observation is that all recursive calls, not only the tail-
recursive ones, can be transformed into static function calls (by opposition to dynamic
binding), provided that the target language allows such distinctions. Mutual recursion
(two functions calling each other) cannot profit from this optimization because it would
lead to a strong coupling between these functions, hence disallowing redefining them sep-
arately.

• As mentioned in [Garavel 89], the compiler can recognize certain patterns in the defini-
tion of sorts, based on the profile of their generators. For instance, a sort having only con-
stant generators can be translated into an enumerated type of the target language.
Similarly, sorts with exactly one constant and one recursive generator can be directly
mapped onto the predefined natural numbers of the target language. This optimization
will lead to more compact representations of data types which otherwise would be imple-
mented as linked data structures. It is important to notice that this technique does not
allow recognizing specified functions in order to map them onto predefined operations of
the target language: This is undecidable and is one of the motivations for the compiler to
support mixed prototyping.

When applying the mentioned optimizations, there remains the condition that the internal
representation be packaged inside an appropriate structure to stay compatible with the
object paradigm.

4.7 Restrictions in Modular Specifications

The compilation algorithm at this point accepts all syntactically correct constructions of
unstructured multi-sorted AADTs, except rewrite rules which perform pattern-matching on
non-generator symbols, which are not left-linear or have equations between constructors.

Additional conditions must however be introduced, in relation with the notion of modu-
larity. If we exclude the employment of generic modules and renamings, these restrictions
may be classified in two groups as follows. For the syntactic and static semantic tests
related to the use of genericity and renaming, we refer to [Flumet 95] and [Roques 94].
105

4. Operational Semantics of AADTs
Well-Structured Algebraic Specifications

It may happen that an initially correct specification becomes inconsistent when enriched -
i.e. imported - by a new module. To avoid this, we need to enforce some rules which guar-
antee the notion of well-structured algebraic specification [Bidoit 89].

Definition 36: Well-Structured Algebraic Specification

An algebraic specification Spec is well-structured iff it verifies the three following
conditions:

1. Any module of Spec is the root module of a single sub-specification of Spec;
2. Any pair of distinct modules of Spec have disjoint signatures;
3. The generators are defined in the same module as the name of the sort they gener-

ate.

◊

The first condition is equivalent to the requirement that the dependency graphs of a well-
formed CO-OPN specifications shall not contain any cycle (definition 15 of chapter 3). The
second condition means that sort names and operations (identified by a name and a profile)
shall be unique within the specification. The last condition states that one cannot add a
generator to a sort outside of the module which defines the sort, and this includes the case
where the new generator would be declared in the private part - the Body - of a CO-OPN
module.

Correct Operation Definition

In the frame of rewrite systems, a defined operation op ∈ OP is defined by a set of condi-
tional rewrite rules Rules(op) = (πi => λi → ρi)i=1...m , where λi are terms compatible with
the profile of op (definition 28). In other words, each rewrite rule contributes to the defini-
tion of exactly one operation op. Moreover every operation must be declared in the interface
before it is defined. Therefore, according to rule number 2 hereabove, the set of rewrite
rules defining op cannot be scattered across several modules. In terms of CO-OPN syntax it
gives the following definition:

Definition 37: Correct Operation Definition

An operation is correctly defined iff:

1. An operation is declared and defined in exactly one Adt module;
2. Each axiom of an Adt module corresponds to an operation declared in the interface

of the same module;
106

Compilation of Algebraic Terms in Petri Nets
3. To each operation declared in the interface of an Adt module corresponds at least
one axiom of the same module.

◊

This definition is necessary in order to generate correct operation implementations. Rule 1
implies that an operation may be implemented exclusively on the basis of local information:
It would be embarrassing to discover later additional axioms for an already implemented
function. Rule 2 is obvious: There must not be any unused axioms in an implementation.
The role of the last rule is to ensure that the generated functions are compilable: At the
programming language level there must be a return statement somewhere which gives a
result to the caller, and this result necessarily originates from the evaluation of an axiom.

4.8 Compilation of Algebraic Terms in Petri Nets

For translating the set of axioms defining an operation into a function of the target program-
ming language, we follow the rules of Schnoebelen’s algorithm [Schnoebelen 88]. The
same algorithm can be exploited for compiling behavioural axioms during the implementa-
tion of algebraic Petri nets: According to the data flow established by analysis of the mode
declarations(4) and the variable usage, each variable occurrence of the axiom will be consid-
ered as being either read from or written to. Therefore, the term each variable occurrence
belongs to will be placed accordingly either in the left-hand or in the right-hand side of a
fictive conditional rewrite rule. The compilation of this auxiliary rewrite rule produces the
code which is necessary to access the variables correctly in presence of pattern-matching.
Notice that in the case of CO-OPN, additional code must be generated for the control of the
synchronization part of a behavioural axiom; more details are given in chapter 6. The idea
of using rewrite rules to model the data flow in a Petri net was already exploited in
[Choppy&Johnen 85]. They however applied it to simpler formalisms than algebraic Petri
nets, and their objective was the simulation and not the compilation of Petri nets.

If we examine the body of the generated function top of figure 39, we notice that it is not
specific to the defined operation it implements: It corresponds to a fictive axiom
match(push x on s)=x the effect of which is to match a parameter P with the term push x
on s and to return the value of the sub-term denoted by x. If for instance P has the value
push zero on empty, then the above code will associate x with zero. The following piece
of code implements exactly that behaviour:

4. To be compilable, the methods of a CO-OPN object are required to declare the mode IN or OUT of their
parameters. The motivation for this choice is given in chapter 6.
107

4. Operational Semantics of AADTs
Figure 46. Matching Function for the Constructor “push_on”

Compared to the previous code extract (figure 39), the profile now includes two copy-out
parameters which return the components of the input parameter and a third which lets the
caller decide what to do if the matching fails.

This mechanism may be exploited in many situations, for instance when an iterator must
scan the contents of a place in an algebraic Petri net in order to find a token which has the
required structure. For instance, if we have a place P which contains one or several stacks,
then the precondition P(push x on s) may be specified for a transition, meaning that the
precondition is satisfied if the place has a stack which is not empty.

The flexibility of this implementation scheme has a cost: Most of the time, the caller is not
interested in all the parameters returned, hence an overhead for the unproductive computa-
tions. An alternative would be to generate a variant procedure for every specific pattern-
matching needed, at the expense of losing generality. Another problem on a more pragmatic
level, is to generate legible names for all these procedures.

In order to produce such pattern-matching procedures, the main modification from the orig-
inal compilation algorithm is to generate assignments ‘Success := false’ instead of
raising exceptions in the cases where the pattern-matching fails. Formally, this would imply
a change in the treatment of the value no_match of the target language TL, which we will
not detail here.

1 procedure push_on_Match
2 (P: in Abstract_Stack;
3 Nat1: out Nat;
4 Stack1: out Stack;
5 Success: out boolean) is
6 begin
7 -- axiom: match (push x on s) = x
8 if Generator(Stack(P))=push_on then
9 declare
10 inverse : push_on_Arg := push_on_Inv(Stack(P));
11 begin
12 Nat1 := inverse.Nat1.all;
13 Stack1 := inverse.Stack1.all;
14 Success := true;
15 end;
16 else -- Error: P = empty
17 Success := false;
18 end if;
19 end push_on_Match;
108

Epilogue
4.9 Epilogue

In this chapter we have given the operational semantics of AADTs viewed as term rewriting
systems, as well as the compilation algorithm needed for generating the initial abstract
implementation required for the mixed prototyping process. Our contribution within this
work is minor:

• First, we had to adapt an existing compilation algorithm to the frame of OOMP.
• Then, we showed briefly how to reuse this modified algorithm in the field of algebraic

Petri nets.

The structure of the code which is actually generated on the basis of the compiler’s target
language TL will be detailed in the next chapter, since until now we have kept the discussion
on a rather abstract level, without going into the practical problems of mapping whole spec-
ification modules into a particular programming language.
109

4. Operational Semantics of AADTs
110

Chapter 5

Prototyping of AADTs

5.1 Introduction

The concept of mixed prototyping [Choppy 87] emerged in the context of algebraic abstract
data types (AADTs) [Ehrig&Mahr 85]. The purpose of this chapter is to show how mixed
prototyping with object-orientation (OOMP) applies to this formalism.

AADTs are used in a number of specification languages, such as PLUSS [Gaudel 85], ACT-
ONE [Ehrig&Mahr 85] and the data part of LOTOS [ISO 88]. Many tools have been built
to support this formalism: [Mañas&de Miguel 88], [Choppy 88], [Garavel&Turlier 93] and
[Broy et al 93] are some examples. One of the reasons for this success is probably that the
usage of algebraic specifications becomes relatively intuitive when interpreted as rewrite
systems. They are then very close in spirit to certain functional or object-oriented program-
ming languages. Another advantage is that when they are viewed as term rewriting systems,
algebraic specifications may give way to very efficient automatic implementations in proce-
dural or functional languages. In classical approaches, where the generated code is not
intended to be read or modified, all kinds of optimizations may be applied without problem.
However, in the frame of OOMP, legibility becomes important, not because the generated
abstract classes are modifiable, but because their structure must be understandable and
provide safe programming constructs at the developer’s disposal for hand-writing new
implementations.

5.2 General Mapping Rules

Our purpose is to provide for each construction of the source specifications an equivalent
entity in the target language, the specific languages being respectively CO-OPN
[Buchs&Guelfi 91] and Ada95. From now on, and unless noted otherwise, the name Ada
will refer to the object-oriented version of the language [Ada 95].
111

5. Prototyping of AADTs
The choice of the target language is determinant, in particular for what concerns the struc-
turing primitives and philosophy. For instance, at the level of modules, in a purely object-
oriented language like Smalltalk [Goldberg 84], there is no other structuring primitive than
the class construct. On the other hand, in Ada, there are two separate constructs, the
package and the tagged record. Another example is the relative independence, in Smalltalk,
between compilation units and classes, whereas in Ada, there is no possibility of adding
primitive operations to a class outside of its defining package(1).

In the case of Ada, the general results look like this:

• Each specification module is translated into a compilation unit, with one child unit per
symbolic and user-defined concrete implementation. Child units have access to the private
declarations of their parent unit. This is the way Ada arranges for the protected visibility
of C++ [Stroustrup 91].

• Mapping (compared to the general class pattern of Figure 6 on page 19):
1. Each specified sort is mapped into an abstract tagged type (the class construct of

Ada) which is derived from the root class ADT_Root.
2. The constructors implement the generators of the sort, the accessors are the set

of generator inverses as well as the testor function called Generator, and the
operations are of course the defined operations of the specification.

3. For each sort is generated a standard set of “predefined” functions, such as an
equality operator(2)(3) and a primitive for writing a value to standard output.

• All the functions of the constructor and accessor groups are initially declared as
abstract. The reason is that they are tightly connected to the internal representation of the
class. They are the means by which the defined operations can be expressed, in the
abstract class, in an implementation-independent way.

• A generic specification module must be directly represented as a generic Ada package.
• Renaming of sorts, generators and operations is more difficult to render, because the

renaming clause is not as general as in CO-OPN: It is not just a textual trick in Ada, but
has several semantic side-effects or restrictions which we will expose in the next section.

1. The constraints are even stronger than that: They are globally referred to as the freezing rules.

2. To use syntactic equality means that only initial models may be implemented. This corresponds to the stan-
dard usage in prototyping tools and is consistent with the fact that equations between constructors are not
allowed (see e.g. [Garavel&Turlier 93]).

3. In the case of Ada, this operator must be redefined at each level of the inheritance hierarchy, because it does
not follow the usual inheritance scheme: The Ada compiler will automatically insert low-level equality tests
for any new fields of a class derivation, unless the programmer provides his own redefinition.
112

An Example in Ada95
5.3 An Example in Ada95

In this section we present the details of the implementation scheme, as we designed it for
Ada95. To begin with, we illustrate our words with a small example. Then, in the following
sub-sections, we show how to treat the less canonical examples.

Note that in Ada95, functions returning an abstract type must themselves be abstract, which
means that they can have no default implementation. To circumvent this, the return types
are declared class-wide, i.e. of the polymorphic type enclosing all the descendants of the
class:

type Abstract_Natural is abstract new Root_ADT with private;
function “+” (X,Y: in Abstract_Natural) return Abstract_Natural’Class;

To enhance legibility, the class-wide type is renamed into the name of the sort it implements
(renaming of types in Ada may be performed by subtype declarations):

subtype Natural is Abstract_Natural’Class;
function “+” (X,Y: in Abstract_Natural) return Natural;

Another remark is that in the following examples, all algebraic abstract values are passed by
value, even the result of constructors, which do dynamic memory allocation. This gives
more homogeneous function profiles, and is closer to the spirit of AADTs and Ada than
using pointers.

5.3.1 The Abstract Class

Suppose now we have specified and wanted to implement an Adt module of natural
numbers. The compiler would then directly generate an abstract class Abstract_Natural
and a derived class Symbolic_Natural.

The Abstract Class Interface

Given the following partial specification,

ADT Naturals;
INTERFACE

USE Boolean;
SORTS natural;
GENERATORS

zero : -> natural;
succ : natural -> natural;

Figure 47. Partial Specification of Naturals

Then the following Ada package specification will be generated (first lines):
113

5. Prototyping of AADTs
with Root_ADT_Pkg; use Root_ADT_Pkg;
with ADT_Booleans; use ADT_Booleans;

package ADT_Naturals is

 type Abstract_Natural is abstract new Root_ADT with private;
 subtype Natural is Abstract_Natural'Class;
 type Natural_Ref is access all Natural;

-- Public class methods:

--/ Initialization routine for the selection of a concrete implementation:
 procedure Set_Natural_Prototype is abstract;

--/ Show the prototype object:
 function Natural_Prototype return Natural;

Figure 48. Type Declarations and Class Methods for Naturals

The abstract class is where the information about the active derived class is stored and can
be retrieved. OOMP does not only implement AADTs in terms of class hierarchies, but also
provides mechanisms allowing more flexibility during the prototyping process, while
keeping the advantages of strong and static typing. By using the abstract class as interface,
and by resorting to polymorphism, we eliminate the need to modify or recompile client
classes. We must however provide a means of designating the derived class to use as imple-
mentation, without mentioning its name in the client’s code. That’s the purpose of the proto-
type object.

The prototype object is typically used when it comes to creating constants, i.e. when
constructing values from parameterless generators, such as zero for Naturals and empty
for Stacks. The general rule is that the prototype object serves as a controlling argument
for functions that otherwise could not be a primitive of the given class because it has no
parameter of that type. For instance, the constructor function zero, specified as above,
produces the following declaration:

function zero (Prototype: in Abstract_Natural)
return Natural is abstract;

Figure 49. Declaration of Constructor Function zero

The argument Prototype is needed in order to tell the target compiler that this function is a
primitive of Abstract_Natural. In other words, it can be redefined in derived classes, and
the code that will be really executed is selected at run-time by inspection of the actual argu-
ment. A call to zero would look like this:

zero (Stack_Prototype); -- Ada95

or this:
Stack_Prototype->zero(); // C++
114

An Example in Ada95
Figure 50. Invoking Constructor zero in Ada95 and C++

This may seem a bit awkward, but in reality this call can, in non-purely object-oriented
languages, be wrapped inside a homonymous class-wide (i.e. non-primitive) function which
hides the mechanism away from the clients (Figure 51). There is of course the cost of one
supplemental function call to achieve this transparency, unless the target compiler is able to
do inlining of subprograms.

function zero return Natural is
begin

return zero (Stack_Prototype);
end zero;

Figure 51. Definition of Wrapper for Constructor Function zero

The rest of the package specification goes as this:

--/ Create a succ:
function succ (Param: in Abstract_Natural) return Natural is abstract;

--/ Exceptions potentially raised by inverse of constructor ’succ’:
succ_inv_error: exception;

--/ Inverse of succ:
function succ_Inv (Self: in Abstract_Natural) return Natural is abstract;

Figure 52. Declaration of Generator and Generator Inverse for Succ

As explained in the previous chapter, generator inverses are needed essentially for
supporting pattern-matching. They are in fact accessor functions, and their use is tightly
bound to another standard accessor, the overloaded Generator function:

--/ Generators of type Natural:
type Natural_Generator is (zero, succ);

--/ Tell which generator created me:
function Generator (Self: in Abstract_Natural) return Natural_Generator is abstract;

Figure 53. Declaration of Generator and its Associated Enumerated Type

Then come the predefined operations on the sort Natural: Some gymnastics is needed to use
the “=” operator in Ada, but we think it is worth the trouble.

--/ Synt_Eq implements the test for syntactic equality
--/ Ada "=" operator must be redefined to Synt_Eq at each class derivation

function Synt_Eq (Left,Right: in Abstract_Natural) return Standard.Boolean;
115

5. Prototyping of AADTs
function "=" (Left,Right: in Abstract_Natural) return Standard.Boolean;

--/ Print a natural on standard output:
procedure Put (Self: in Abstract_Natural);

Figure 54. Some Predefined Operations

All the standard declarations are made; given the following set of specified operations:

OPERATIONS
_ + _ : natural natural -> natural;
_ - _ : natural natural -> natural;
_ = _ : natural natural -> boolean;
_ < _ : natural natural -> boolean;

Figure 55. The Defined Operations of the Specification

The profiles are generated like this (figure 56). Note that the equality operator above over-
loads the predefined syntactic equality, the codomain of which is “meta-boolean” and not
the user-defined “boolean”, as explained in the previous chapter.

-- Specified operations:

function "+" (P1,P2: in Abstract_Natural) return Natural;
function "-" (P1,P2: in Abstract_Natural) return Natural;
function "=" (P1,P2: in Abstract_Natural) return ADT_Booleans.Boolean;
function "<" (P1,P2: in Abstract_Natural) return ADT_Booleans.Boolean;

Figure 56. Declaration of the Specified Operations

Finally, the rest of the Ada package specification is the private part:

private

--/ Initialize the class hierarchy:
procedure Set_Hierarchy_Prototype (With_Prototype: in Natural_Ref);

--/ Complete view of the type:
type Abstract_Natural is abstract new root_ADT with null record;

end ADT_Naturals;

Figure 57. Private Declarations of the Abstract Class

The Abstract Class Body

For the body of the abstract class, we just give the implementation automatically generated
for one of the specified operations, the addition. In the classical algebraic way of specifying
116

An Example in Ada95
natural numbers, each value is expressed by a list having as length the number it represents.
For instance, the term succ(succ(succ(zero))) is interpreted as the value 3.

The specification of addition is defined by axioms deduced from the property of associa-
tivity, which, from an operational point of view, describes a recursive process where one of
the arguments is progressively reduced to zero, while the resulting value is simultaneously
incremented by one:

add-zero: zero + y = y;
add-succ: (succ x) + y = x + (succ y);

Figure 58. Specification of Addition on Naturals

In the abstract class, this is translated into the following (Succ_Inverse(X) being concep-
tually the same as taking the predecessor of X):

function “+” (X,Y: in Abstract_Natural) return Natural is
begin

-- axiom add-zero:
if Generator(X)=zero then

return Y;
else
-- axiom add-succ:

return Succ_Inverse(X) + Succ(Y);
end if;

end “+”;

Figure 59. Abstract Ada95 Implementation of Addition

This definition is as promised independent of the actual representation given to natural
numbers: It works, provided that the derived classes implement the functions “Generator”,
“Succ” and “Succ_Inverse”(4).

5.3.2 The Symbolic Class

The abstract class provides an implementation of the axioms, but has no internal representa-
tion to put it to work. This is the role of the symbolic class. The internal representation is
very standard: We use a variant record, with one alternative for each declared generator.

package ADT_Natural.Symbolic is

type Symbolic_Natural is new Abstract_Natural with private;
type Symbolic_Natural_Ref is access all Symbolic_Natural'Class;

--/ Call this in order to use this class as implementation:
procedure Set_Natural_Prototype;

--/ Inherited abstract functions are now implemented:
function zero (Prototype: in Symbolic_Natural) return Natural;
function succ (Param: in Symbolic_Natural) return Natural;

4. A constructor function “zero” is also needed but it does not show in the given example.
117

5. Prototyping of AADTs
function succ_Inv (Self: in Symbolic_Natural) return Natural;
function Generator (Self: in Symbolic_Natural) return Natural_Generator;
function "="(Left,Right: in Symbolic_Natural) return Standard.Boolean;

private

type Symbolic_Natural_Variants (Tag: Natural_Generator := zero) is record
case Tag is

when zero => null;
when succ => succ: Natural_Ref := null;

end case;
end record;

type Symbolic_Natural is new Abstract_Natural with record
variants : Symbolic_Natural_Variants;

end record;

end ADT_Natural.Symbolic;

Figure 60. Package Specification of the Symbolic Natural Class

The body of the symbolic class is trivial. Let us skip directly to a demonstration of what is
possible to do with mixed prototyping.

An Optimized Symbolic Class

Figure 59 shows the direct translation of the recursive axiom add-succ; this is a rather
expensive way of implementing things, especially when we observe that the result is
nothing more than the concatenation of the lists representing the numbers X and Y. We
could thus have a redefinition of addition exploiting this characteristic:

function “+” (X,Y: in Symbolic_Optimized_Natural) return Natural is
Res: Symbolic_Optimized_Natural := Y;
Cursor: Symbolic_Optimized_Natural := X;

begin
while Generator(Cursor)/=zero loop

Res := Symbolic_Optimized_Natural(succ(Res));
Cursor := Symbolic_Optimized_Natural(Succ_Inverse(Cursor));

end loop;
return Res;

end “+”;

Figure 61. Pseudo-code for an Optimized Symbolic Implementation of Addition

Figure 61 shows a non-recursive version of symbolic addition. The previous definition was
tail-recursive, so the compiler could actually have optimized away that flaw. The internal
representation of the new class is exactly the same as its ancestor’s:

type Symbolic_Optimized_Natural is new Symbolic_Natural with null record;

Note that we might exploit in this redefinition the knowledge of the internal representation
of Symbolic_Natural in order to avoid the calls to Generator and Succ_Inverse. That
118

An Example in Ada95
would however “freeze” the internal structure of this branch of the class, disallowing any
ulterior derivations. Figure 62 illustrates the new situation:

Figure 62. Specializing the Symbolic Class

Observe that we don’t modify the text of the original symbolic class, because it is generated
automatically, and is as thus subject to accidental replacement by subsequent compilations.
We create instead a sub-class having the same internal representation as the symbolic class.

5.3.3 The Concrete Class

Another, more interesting alternative to speed up the computations, is to choose an internal
representation which takes advantage of the computer’s hard-wired treatment of natural
numbers (using Ada’s predefined type natural). We would then create a concrete class
where the definition of addition would look like this:

type Concrete_Natural is new Abstract_Natural with record
Value: natural;

end record;

function “+” (X,Y: in Concrete_Natural) return Natural is
begin

return Concrete_Natural’(Abstract_Natural with
Value => X.Value + Y.Value);

end “+”;

Figure 63. A Concrete Implementation of Addition

Figure 64 below depicts the changes. Note that nothing prevents us from keeping the sibling
classes, e.g. in order to step back to trusted implementations.

Abstract Natural

Symbolic Natural

Symbolic Natural
Optimized
119

5. Prototyping of AADTs
Figure 64. Incorporation of a Concrete Class

The interesting thing here is that the concrete class just has to provide a new internal repre-
sentation, and define the associated low-level functions, i.e. the constructors and accessors.
The functions corresponding to specified operations are stored in the abstract class and
coded in an implementation-independent way such that they are not required to be replaced
at once. This means that new internal representations can be tested before adapting the
derived operations. Then, for instance, addition can be redefined using the corresponding
machine-level instruction, while subtraction would be left until later, if not valued as critical
for the prototype.

5.3.4 Implementation of a Concrete Class

As mentioned before, there is a minimal amount of work to do before a concrete class can
be used. Let us review the implementation scheme in detail:

1. Provide an internal representation, i.e. instance variables such as the field Value in
figure 63.

2. Implement the constructor functions, zero and succ in the case of Natural. The
private fields (if any) of the ancestor Abstract_Natural are initialized with
default values in the aggregate shown below.

function Zero (Prototype: in Concrete_Natural) return Natural is
begin

return Concrete_Natural’(Abstract_Natural with Value => 0);
end Zero;

function Succ (Param: in Concrete_Natural) return Natural is
begin

return Concrete_Natural’(Abstract_Natural with (Param.Value + 1));
end Succ;

Figure 65. Concrete Implementation of Constructor succ

Abstract Natural

Concrete NaturalSymbolic Natural

Optimized
Symbolic Natural
120

An Example in Ada95
3. For each non-constant generator, code the corresponding inverse. Zero is for
instance such a constant generator: It has no sense to compute its inverse.

function Succ_Inv (Self: in Concrete_Natural) return Natural is
begin

if Self.Value <= 0 then raise Succ_Inv_Error; end if;
return Concrete_Natural’(Abstract_Natural with (Self.Value - 1));

end Succ_Inv;

Figure 66. Concrete Implementation of succ-inverse

4. Give the Generator function an implementation conforming to its intended sense,
for instance:

function Generator (Self: in Concrete_Natural) return Natural_Generator is
begin

if Self.Value = 0 then
return zero;

else
return succ;

end if;
end Generator;

Figure 67. Concrete Version of the Function Generator

5. Finally, each derived class must have a class method for the communication of the
prototype object to the abstract class.

procedure Set_Concrete_Natural_Prototype is
begin

ADT_Naturals.Set_Hierarchy_Prototype(Natural_Ref'(new Concrete_Natural));
end Set_Concrete_Natural_Prototype;

Figure 68. Providing a Prototype Object for Concrete_Natural

When the developer decides to use the concrete class as implementation, the configuration
routine will simply call the associated Set_Concrete_Natural_Prototype procedure. The
naming scheme Set_SubClassName_Prototype is important, otherwise the prototyping
tool will not know how to initialize the class hierarchy(5).

5. Other approaches usually rely on the presence of a default constructor for the creation of prototype objects.
We think our solution is cleaner: It supports the notion of opaque types, i.e. types which can be instantiated
only with one of the explicitly provided constructors.
121

5. Prototyping of AADTs
5.4 Special Cases of Mapping

In the previous sections, we examined how modules are implemented in the general case.
Now we must find out how to treat problematic variants as well as advanced structuring
primitives. Some situations may require awkward mappings: They correspond to modular
decompositions of the system that are not compatible with object-oriented approaches.

In object-oriented languages, each primitive operation must be attached to a class. When
this is not possible, we generally have several more or less artificial options. The most
drastic one is to have the prototyping tool refuse the specifications that are not directly
compliant with the philosophy of the target language.

It is however recognized that algebraic specification of AADTs lead to thinking in terms of
specific data types and the operations they are to support, as we do in the object-oriented
paradigm [Sommerville 92]. The specification process should therefore most of the time
result in problem decompositions compatible with object-oriented implementations.

In chapter 2, we said that it could be beneficial to use an object-oriented design method in
order to obtain interfaces which are compatible with the object paradigm. This remark
applies especially to the two first cases described below.

5.4.1 Derived Operations Not Having the Sort of Interest in Their Profile

For the incremental redefinition of abstract functions by concrete ones to function properly,
we rely upon the assumption that the sort of interest always will appear in the domain of the
defined operations. This may not always be the case, as showed in the following example,
where we want to define a hashing function for the specification of a hash table:

ADT HashTables;
INTERFACE

USE Arrays,Naturals,Strings;
SORTS hashtable;
GENERATORS

...
OPERATIONS

hash : string -> natural;

Figure 69. Partial Signature of a Hash Table Specification

To transpose this operation into Ada95, we will have to choose between defining it as a
class-wide function, in which case it cannot be overridden, and implementing it with an
additional dummy parameter to make it a primitive of the class Abstract_HashTable. The
latter solution was already described for the mapping of generators, in sub-section 5.3.1.
122

Special Cases of Mapping
5.4.2 Modules Without Sort Definitions

Algebraic specifications allow enrichment of existing modules by simply adding new oper-
ations, but no sorts. For example, one could enrich the specification of Naturals with a
definition of the factorial:

ADT Nat-Fact;
INTERFACE

USE Naturals;
OPERATIONS

fact : natural -> natural;

Figure 70. Signature of Nat-Fact

There could be two ways to map this into Ada95:

• The first is to derive a class from the existing implementation of sort natural: This would
be a class with only one additional primitive, namely fact, and having the same internal
representation. This solution is not acceptable, since if several modules behave the same
way, then there is no global criterion for deciding which concrete class should be used to
implement the sort natural.

• The second solution is to define a package exporting a class-wide (global) function. This
is very straightforward, but has the drawback that the function cannot be overridden.

5.4.3 Modules Defining Several Sorts

A good example of specification module with two interdependent sorts is the n-ary tree
where both the leaves and the nodes have a name: It can serve for the specification of a
Unix filesystem as in [Bidoit 89]. The module contains the sort Tree and the sort Forest.

ADT Tree-of-Info;
INTERFACE

USE Info, Name-Set;
SORTS tree, forest;
GENERATORS

< _ . _ > : name forest -> tree;
empty : -> forest;
_ plus _ : forest info -> forest;
_ plus _ : forest tree -> forest;

OPERATIONS
name of : tree -> name;
contents of : tree -> forest;
name set of : forest -> name-set;
name set of : tree -> name-set;
son of _ named _ : tree name -> tree;
son of _ named _ : tree name -> info;
_ less the object named _ :

forest name -> forest;

Figure 71. Signature of Tree-of-Info
123

5. Prototyping of AADTs
To represent this in Ada95, we will need one package with two mutually recursive tagged
types. This is not a problem since the full type definition will take place only in the private
part of the package: We do not need any kind of forward declaration.

After that, we will have to decide how to assign the generators and operations to the two
classes. The rules are very simple:

• Constructors are naturally attributed to the sort of their codomain, i.e. to the class of val-
ues it generates. This means that “< _ . _ >” is a primitive of the tagged type tree, and
the other generators belong to the type forest.

• The way defined operations are assigned to a class depends on the input arguments. This
allows a straightforward mapping of observer operations, like contents shown above,
which naturally belongs to the type tree. In the example of figure 71, this simple rule
allows us to handle all the specified operations. If an operation has several possible candi-
dates in its domain, then an arbitrary choice must be made.

5.4.4 Generic Modules

Does OOMP allow a homogeneous mechanism for the implementation of generic modules?
In other words, can we implement generic modules of the source language as equivalent
generic modules of the target language, and still keep the benefits of mixed prototyping?
The answer greatly depends on how generic modules are instantiated in the source specifi-
cation language. If instantiations can occur anywhere in the source text (call them inline
instantiations), then it becomes harder to hide the inner workings for the support of mixed
prototyping, such as the initialization of the prototype object.

In current versions of CO-OPN, inline instantiations are not allowed: A generic module
may only be instantiated in a separate ad-hoc module which can, in turn, be shared by client
modules. This ensures that the instantiation will be made at program startup, and the initial-
ization of the prototype object can be performed as usual by the configuration routine.

5.4.5 Generic Parameter Modules

The notion of generic parameter module is often harder to reproduce in a programming
language. Its purpose is to express that the actual parameter of a generic module should
support a given set of primitive operations. One can even specify that these operations
should respect certain axioms (see the theorem of figure 72), but this is beyond our objec-
tive: We have not examined if it is possible to automatically verify that the actual argument
really honours the axioms of the parameter module. It may be feasible with a method
similar to the dynamic testing described in section 5.7.

PARAMETER ADT OrderedElem;
INTERFACE

USE Boolean;
124

Special Cases of Mapping
SORT elem;
OPERATIONS

_ < _ : elem elem -> boolean;
_ = _ : elem elem -> boolean;

BODY
THEOREMS

(: Anti-symmetry :)
(x < y) = true & (y < x) = true =>

(x = y) = true;

Figure 72. Partial Definition of a Parameter Module

The challenge is to represent a parameter module by a construct of the target language. In
Eiffel, we use the notion of constrained genericity in the header of the generic class: We
express the fact that the actual parameter must be a descendant of the given class. This is the
way we do it in Ada95 too.

In general, in languages with multiple inheritance, this is not an issue since any class can be
derived from the combination of the intended actual parameter and from a class which
supports the minimal set of operations needed for the generic entity. This kind of combina-
tion is called mixin inheritance and may be simulated in Ada95 by use of an auxiliary
generic instatiation.

Remark that in C++ the semantic checks are made only at the time of generic instantiation:
There are no constraints explicitly defined for the generic formal parameter, and a generic
class cannot be directly compiled anyway. Therefore there will be no mapping of parameter
modules in this language.

In the case of Ada95, it must be noted that there is a bias between the kind of parameter of
the specfication, which is a module, and that of the target language, which is a tagged
record. Ada95 also allows the definition of formal packages. This however requires addi-
tional formal functions and the language rules state that a primitive operation is no longer
considered as primitive when seen through a formal function.

5.4.6 Renaming and Morphisms

Renaming and morphisms are used when instantiating generic modules. In the following
example, the generic module List has a formal parameter module OrderedElem and is
instantiated with the actual parameter Naturals:

ADT Nat-List AS List(Naturals);
MORPHISM

natural -> elem;
_ < _ IN OrderedElem -> _ < _ IN Naturals;
_ = _ IN OrderedElem -> _ = _ IN Naturals;

RENAME
list -> nat-list;

END Nat-List;

Figure 73. Specification of a Generic Module Instantiation
125

5. Prototyping of AADTs
A morphism allows to express the exact correspondance between the entities used in the
formal and the actual parameter modules. When using the mechanism of constrained
genericity, the morphisms are entirely determined by the names and profiles of the primitive
operations of the class: It is not possible to express the mapping explicitly. Again, this is due
to the transposition of genericity into the object-oriented paradigm: The formal parameter is
not a module but a class.

Renaming a type or a class in Ada is only possible through a subtype definition. Renaming
a primitive operation gives a new equivalent function, but considered as non-primitive: To
conserve the mechanism of dynamic binding, we must instead define a class-wide function
which serves as a wrapper for the call to the original operation. Thus, given the following
declaration:

_ < _ : natural natural -> boolean;

which gives this in Ada95:

function “<“(x,y: Abstract_Natural) return Boolean;

Then the following renaming in CO-OPN:

RENAME
_ < _ -> _ inf _;

can be translated into Ada95 like this:

 function inf (x,y: Abstract_Natural’Class) return Boolean is
begin

return x<y; -- Dispatching call
end;

Figure 74. Mapping into Ada95 of the Renaming of a Defined Operation

This ends our presentation of the mapping schemes needed for translating the integrality of
CO-OPN into Ada95. We have noticed that all kinds of structures may be implemented, but
sometimes at the price of awkward constructs in the target language. This is mainly because
the source language is not object-oriented whereas the target language is. Ada95 is a very
rich language in the sense that it offers numerous constructs for structuring and composing
modules, which means that probably no other programming language would be capable of
such a performance. The advantages of Ada95 are its strong and static typing, its extensive
support for overloading and genericity. Its block-structured syntax is also useful for
managing the visibility of automatically generated identifiers. Finally, the fact that the
concurrent and distributed aspects of the language have been standardized is an asset.
Among the most obvious rivals, Smalltalk, Eiffel and C++, no one offers all of these charac-
teristics. The more recent Java language [Niemeyer&Peck 96] could however consitute a
serious candidate.
126

About the Reliance Upon Generator Inverses
5.5 About the Reliance Upon Generator Inverses

In the field of algebraic specifications, the flexibility of mixed prototyping rests on the
systematic definition and application of generator inverses. It may sometimes be compli-
cated to find appropriate semantics for them, as shown in [Choppy et al 89], where a
complete algorithm is presented to help with their design. This is especially true in presence
of equations between constructors (See chapter 4).

It is not strictly necessary to sort out generators from other operations: They could be auto-
matically identified, and the specification transformed in order to remove all equations
between them [Comon 89]. Schnoebelen’s compilation algorithm [Schnoebelen 88] is also
capable of doing this. However, the need for generator inverses enforces the so-called
constructor discipline [Guttag&Horning 78] during the specification, because generators
must be considered as distinct from other operations in order to easily build the inverses.
This gives place to a very imperative approach to specification, where constructors mainly
serve as a means of selecting cases through pattern-matching, like in some functional
programming languages, e.g. ML [Harper 86].

One could state that to distinguish generators from defined operations it is necessary to take
premature decisions about the “representation” of the AADT. This is not really true,
because the distinction is required only right before the compilation: Higher-level simula-
tion tools do not need this information. This fact is emphasized in the algebraic specifica-
tion language PLUSS [Bidoit 89], which offers three explicit completion states according to
the level of achievement of the specifications: sketches, the most abstract category, drafts,
where constructors are identified, and specs, for the final stage, where all the properties of
the software have been expressed.

Mixed prototyping can live without generator inverses, but the alternatives are more
constraining. Implementation granularity can be exploited: If the derived operations which
need pattern-matching are implemented at the same time as the generators, then inverses are
not needed [Choppy et al 89]. Another way is to impose a bottom-up approach to module
implementation, and require the specification of an extensive set of observer and selector
operations to compensate for the abolition of filtering [Roques 94].

Our purpose is however to take advantage of polymorphism in order to allow a finer imple-
mentation granularity, at the level of functions: Resorting to the systematic use of generator
inverses is the most general technique.
127

5. Prototyping of AADTs
5.6 Other Uses of Object-Orientation

OOMP resorts to inheritance and polymorphism as a means of switching between differing
implementations of a same AADT. One can wonder if the object paradigm could also serve
other useful purposes, and if maybe the mechanism described in this thesis excludes other
possibly more meaningful applications of object-orientation. We will try to provide some
answers in the next sub-sections.

5.6.1 Redefinition of Input-Output Operations

The prototyping tool provides a set of predefined operations in the implementation of
AADTs, e.g. the equality operator and input-output primitives. The developer may tailor
them if he deems this profitable.

Customizing Textual I/O

An abstract data value is printed out by default as the textual representation of the genera-
tors it is made of. The dual input operation can be implemented by a little parser capable of
reading and analysing the output from the printing routine. Figure 75 shows an example
where the class Concrete_Natural uses the default behaviour of I/O routines as defined in
the abstract class.

Figure 75. Default Textual I/O Routines used by Concrete_Natural

If these routines are redefined, it will usually be to produce more compact output, i.e. to
write “1” instead of “succ(zero)”.

Customizing Marshalling Operations

Following the same principle as above, the user can customize the automatically generated
marshalling operations (also sometimes called flattening), which allow communication of
AADTs between two nodes in a distributed environment. One remarkable thing is that the

Internal
representation

External
(textual)

representation

Output

Input

“succ(zero)”1
128

Other Uses of Object-Orientation
automatically generated routines can exchange heterogeneous data: By decomposing and
transmitting values according to the structure of their generators(6), we define a communi-
cation protocol valid for any implementation of a given AADT(7). By heterogeneous, we
mean data from computers with differing architectures and AADTs implemented by distinct
sub-classes. This capacity to overcome heterogeneity is quite natural in systems which treat
data symbolically, and is explicitely mentioned as such in e.g. [Hulaas 95] or
[Bergstra&Klint 96]. We could say that this technique constitutes a particular case of heter-
ogeneous hierarchical algebraic nets, as formalized by Guelfi in [Guelfi 94]. The speci-
ficity of our point of view is that there is only one communication sort, the stream of
generators, which is predefined and has the same implementation on all the nodes.

These routines may of course be redefined to better fit to the compactness of some concrete
representation, but at the expense of no longer mastering heterogeneity. Also, to stay
coherent, input and output routines must always be redefined pairwise, otherwise the
communication protocol will be broken.

5.6.2 Subtyping

In algebraic specifications, subtypes are supported by the theory of order-sorted algebras
[Goguen, Jouannaud&Meseguer 84]. Here, a subtype introduces restrictions w.r.t. its parent
type, i.e. its carrier set is a subset of the one the parent is built on. This is useful for instance
for cleanly expressing partial functions [Goguen&Meseguer 87]. This definition is however
contrary to the usual notion of subtype in object-oriented languages, where a derived class
also is considered a subtype of its parent class. Current main-stream languages offer only
extension inheritance, which means that one can only add, and not retract, operations or
components to the parent class. Certain programming languages, such as Ada, offer some
support for subtyping in the algebraic sense, however by a mechanism that is parallel to the
one of inheritance. Therefore the restrictive form for subtyping can only be simulated
instead of directly represented - and enforced - in traditional object-oriented programming
languages. A way to achieve this is to apply a flattening transformation as described for
LOTOS in [ISO 88].

5.6.3 Coercion

Coercion is a means of reusing “code”, i.e. axioms, in algebraic specifications. An AADT
can thus import the properties of another type and merge them with the ones it defines for
itself, without there being any subtype relationship. Implicit type conversions are often
supplied by the language. Assuming that the semantics of the imported operations are not

6. Remember that rewrite systems always lead to values in ground normal form. This is why we only need the
generator symbols. The approach remains however valid in the general case where values can contain vari-
ables and operation symbols.

7. This can be compared to the idea behind the ASN-1 communication protocol.
129

5. Prototyping of AADTs
violated by additional axioms(8), coercion can theoretically be implemented by code
sharing. From an object-oriented point of view, this is feasible by the means of class deriva-
tion. But, considering that we should introduce no new hierarchical relationship in the
implementation, coercion is only workable through the classical notion of type composi-
tion, or, in the worst case, by duplication of the original AADT.

5.7 Automatic Verification of Concrete Code

In chapter 2, we gave an overview of the techniques enabled by the OOMP class pattern
which allow verifying that the concrete code respects the semantics of the specifications. In
this section we will thus show how these techniques may be applied to the particular case of
algebraic specifications.

Given the following pre-existing implementations of addition:

--/ Previous definitions:
function “+“ (X,Y: in Abstract_Natural) return Natural;
function “+“ (X,Y: in Concrete_Natural) return Natural;

The prototyping tool can then generate this function on demand:

--/ Testing version:
function “+“ (X,Y: in Tested_Natural) return Natural is

Result, Benchmark: Concrete_Natural;
begin

--/ Call to supermethod:
Result := Concrete_Natural(X) + Concrete_Natural(Y);
--/ Call to abstract definition:
Benchmark := Abstract_Natural(X) + Abstract_Natural(Y);

--/ Check if results are equal:
if Abstract_Natural(Result) /= Abstract_Natural(Benchmark) then

raise Concrete_Implementation_Error;
end if;
return Result;

end “+“;

Figure 76. Pseudo-code for Testing the Concrete “+“ Operator

This scheme is independent of the internal representation, but necessitates a common
object-oriented feature, access to the supermethods, i.e. calls to the overridden functions.
This can be expressed either by renaming, as in Eiffel, or by a specific syntactic facility, as
“::” in C++, or finally by some conversion mechanism such as the view conversions of
Ada95.

8. Proving the conformance of new axioms is unfortunately undecidable.
130

Automatic Verification of Concrete Code
The testing function is implemented as follows. We start by calling the concrete function, in
case the execution should raise some exception: Thus the function will have the same
observable behaviour as the one it replaces. Then we call the abstract version, using the
concrete internal representation to get the correct value to compare with. After that, we have
to perform the comparison using the abstract version of the “=” operator. We cannot use the
user-defined equality operator, since it is not guaranteed correct.

The method has the advantage of not necessitating editing or recompiling existing code:
When the developer wants to test his implementation, he notifies the prototyping tool,
which in turn synthesizes an adequate sub-class.

This technique is nevertheless rather inefficient in its current realization since most opera-
tions of the abstract class are defined recursively, and the compiler may not always manage
to derecursify the algorithms. Each recursive call will dispatch back to the testing function,
before being properly redirected. This side-effect actually provides a more thorough testing
mechanism, since all intermediate values are also controlled.

Other possibilities for testing the concrete code are:

• To use theorems(9) in CO-OPN specifications to express some properties of the opera-
tions that should only be exploited in the testing functions. This could lead to a more eco-
nomic execution of run-time tests. If for instance an axiom expresses the commutativity of
addition, it could lead to infinite recursion when implemented by a naive compiler. But
declaring this property as a theorem could serve for testing. The following specification:

AXIOMS
add-zero: zero + y = y;
add-succ: (succ x) + y = x + (succ y);

THEOREMS
add-comm: x + y = y + x;

Would produce something like this:

function “+“ (X,Y: in Tested_Natural) return Natural is
Result, Theorem_Result: Concrete_Natural;

begin
--/ Perform intended operation:
Result := Concrete_Natural(X) + Concrete_Natural(Y);
--/ Check theorems:
Theorem_Result := Concrete_Natural(Y) + Concrete_Natural(X);
--/ Check if results are equal:
if Abstract_Natural(Result) /= Abstract_Natural(Theorem_Result)then

raise Theorem_Violation_Error;
end if;
return Result;

end “+“;

• Have the user write his own pre- and postconditions, which would then only be exploited

9. In CO-OPN, theorems are formulas similar to axioms except that they express properties that are not
intended to be interpreted.
131

5. Prototyping of AADTs
in the testing class. To make this process systematic, the abstract class would have to
define, for each operation, two initially empty boolean functions for expressing pre- and
postconditions. The concrete class could afterwards redefine them as necessary. Note that
the Eiffel language provides built-in constructs for invariant assertions and pre- and post-
conditions.

5.8 Related Work in Compilation of AADTs

Several authors have already explored the process of compiling AADTs expressed by the
means of algebraic specifications (see for instance [Kaplan 87] and [Schnoebelen 88]) and
the algorithms are generally independent of the target implementation language. In actual
tools however, the choice of a programming language is always dictated by some specific
objective, and therefore they offer no continuity in the development process:

• When the purpose is to ensure a smooth transition from the specification formalism to the
implementation language, functional languages offer the best alternative. For algebraic
specifications to be executed efficiently, they must be refined, which means that opera-
tional information must be added. They tend by this process to become more functional
than axiomatic in their nature. Therefore there is no paradigmatic leap between the source
and the target language and it follows that the transition is easier to manage for humans.
Another advantage is that the translation process is really straightforward, both environ-
ments offering the same level of abstraction. Functional languages also usually ensure
safer semantics than other languages, and give better promises that the correctness of the
formal specifications will not be violated by the implementation. This is the way followed
by the KorSo project with the specification language Spectrum [Broy et al 93] that is to be
translated into languages such as ML [Harper 86] and Haskell [Hudak,
Peyton Jones&Wadler 92]. The disadvantage of this method is that the developer who
wants to perform modifications has to cope with machine-generated code. Besides that,
functional languages still aren’t as well-accepted as supposedly more efficient procedural
languages.

• Another obvious ambition can be to directly produce very efficient object code. The cho-
sen target language is usually a procedural one like C, which also offers good portability.
In this case the generated code is less legible, since cluttered by low-level details like
compilation of pattern-matching and memory-management. The source and the target lan-
guage do not provide comparable levels of abstractness, which implies that the code can-
not readily be modified by humans who want to employ more clever algorithms or
representations. The solution proposed in tools that compile the abstract data types of
LOTOS, like Lola [Mañas&de Miguel 88] or Ceasar [Garavel&Turlier 93], is to incorpo-
rate compiler directives inside the specification modules in the form of comments, e.g.
132

Epilogue
“extern” or “implemented by”. This presents the inconvenience that the two environ-
ments (of automatically-generated and hand-written code) cannot cooperate in a way
independent of the internal representation of a data type. For instance, a function gener-
ated by the tool cannot work on an externally defined representation of the same data type.
A final remark can be made about the type-safety of this kind of languages: they often do
not support the notions of abstract data type and code reuse. In order to overcome this
problem, current tools resort to generic pointers, and thus lose the benefits of static type-
checking.

• Another trend, represented by the Larch project [Guttag, Horning&Wing 85], does not
aim at synthesizing implementations of AADTs, but relies upon formal descriptions to
check that hand-written code does not violate the specifications.

We are aware of no other approach of which the objective is to automatically generate
AADT implementations in object-oriented programming languages.

5.9 Epilogue

In this chapter we demonstrated the applicability of OOMP to algebraic abstract data types.
This was already done in [Choppy 87] in the original work on mixed prototyping. The
frame of AADTs provides particularly interesting opportunities for exercizing mixed proto-
typing, because of the fundamentally recursive nature of its definitions. This characteristic
has consequences on the implementation of the operations and on the data types too since
the latter are defined by generators, which themselves are nothing else but operations which
are not rewritten (or only into themselves in the case of equations between generators).

• The recursive type definitions always result in linked data structures when implemented
automatically, and should often be replaced by more memory-efficient representations by
the developer. This is especially true in the case of formalisms like algebraic specifica-
tions where state change is not allowed, and thus all defined operations induce a lot of
copying. Another beneficial application field for mixed prototyping is when data struc-
tures are accessed randomly, i.e. not only sequentially. Giving them as representation a
compact block of memory and redefining the indexing operator will then greatly speed up
the computations. This concerns all kinds of vectors and tables, and also to some extent
stacks and queues.

• The recursive operation definitions also systematically receive recursive implementations,
which during the prototyping process may be converted into iterative routines in order to
exploit the new representations of data structures and in general to be closer to procedural
idioms. It is however true that the specification compiler should itself eliminate at least
tail recursion.
133

5. Prototyping of AADTs
The major constructs of the CO-OPN specification language have found equivalent
constructs in a main-stream object-oriented programming language, namely Ada95. The
principles remain however valid for any class-based language. We have tried to make the
application of OOMP as intuitive as possible, by developing a direct mapping of the entities
of the formal specifications to objects and operations of the target programming language. It
must be noticed that some structuring primitives are difficult to translate elegantly and may
even be impossible to implement or simulate in other languages than Ada95.

Finally, verification of the concrete implementations of AADTs is made astonishingly easy
when mixed prototyping exploits the object paradigm. This may be explained by the purely
applicative nature of algebraic specifications, which implies that there is no change of state,
neither any possible side-effects. This remark will be confirmed in the next chapters, where
the notion of state as well as concurrency will make the implementation and testing less
immediate.
134

Chapter 6

Operational Semantics of CO-OPN

Objects

6.1 Introduction

We showed in chapter 4 the operational semantics enforced for algebraic abstract data types
(AADTs) in the frame of our mixed prototyping with object-orientation (OOMP) scheme. In
this chapter our purpose is to do the same for the Object part of CO-OPN
[Buchs&Guelfi 91]. In this language, the Object is the module construct which expresses
the dynamic and concurrent properties of a system. To this end, CO-OPN extends algebraic
Petri nets [Reisig 91] with a new notation and semantics for encapsulating and synchro-
nizing sub-nets. A thorough presentation of the CO-OPN language was made in chapter 3:
It is here that this information will be made profitable. Another semantics was briefly
presented in [Buchs, Flumet&Racloz 93] in terms of centralized and sequential Prolog
executions which allowed simulating models, whereas in this thesis the objective is to elab-
orate a modular interpretation of the semantics given in chapter 3. This is necessary for
implementing CO-OPN specifications on distributed systems, and the obstacles are
multiple. For instance, the semantics of CO-OPN relates an ideal world where all events are
instantaneous and successul. The real execution environment is not so nice: Solutions must
be searched for and unpredictable errors and delays may happen. Another constraint we
assigned ourselves was to make the generated implementations prototypable according to
the principles of OOMP. Therefore the code should reflect the structure of the specifications
and provide a safe and comfortable framework for the developer who wants to ameliorate
the implementation provided to him by the prototyping tool.

Our primary goal, when distributing the execution of a prototype, is not efficiency: We are
not parallelizing sequential or centralized programs as a means of achieving speed-up. The
purpose is rather to support a development methodology for systems which are by nature
distributed, such as cooperative editors or automatic teller machines. This distinction prob-
ably constitutes the most salient difference between simulation and implementation.
135

6. Operational Semantics of CO-OPN Objects
We must also emphasize that these results are the product of an exploratory process which
was to determine the feasibiliy of a distributed execution of CO-OPN prototypes. We do not
guarantee that there is no redundancy in the techniques employed, and we do not claim that
the algorithms are optimal or that they will provide very efficient executions. The approach
has been essentially directed by the desire to answer for a maximal subset of the semantics
of CO-OPN. We strived to reuse as much as possible techniques from diverse sub-domains
of distributed systems: For instance by exploiting the concept of nested transaction, it
became possible to benefit from existing results in fault-tolerance.

The operational semantics presented here are therefore not optimized nor formalized: We
preferred to center the discourse on the requirements for implementing distributed proto-
types and the design choices they induce in the architecture of the generated code. We think
that formalizing and completely proving all the algorithms would require much more time
and space than what could be allotted here. Finally, we are convinced that the complexity of
the semantics of CO-OPN may be taken as an argument in favour of our didactic and some-
what verbose approach to the presentation of the algorithms.

The objective of this chapter is to incrementally show what characteristics of the CO-OPN
language require new implementation schemes in order to enable distributed modular
executions. To begin with, in section 6.2, we present the general implementation model.
Then we will proceed by refining gradually the vision of the notion of event (section 6.3).
First it will be seen from the outermost point of view, where it either fails or succeeds
entirely. Then, by a first step towards the inner workings, we will establish how the run-time
support of the distributed prototypes proceeds in order to simulate the hierarchical influence
of the synchronization operators. Then we expose the distributed resolution layer (section
6.4), and finally the characteristics of the generated code (section 6.5). We conclude with
some comparisons with other approaches (section 6.6) and a synthesis of the chapter
(section 6.7).

6.2 General Implementation Model

The target systems for our prototyping methodology may be identified as the broad class of
client-server systems (see e.g. [Mullender 93]). This category is made of distributed
processes which communicate only by message-passing, i.e. they do not share a common
memory. From a higher level point of view they can be considered as communicating by
remote procedure calls (RPC) [Birell&Nelson 84]; in this context, the caller is denominated
the client and the callee is the server. While serving a call, the server may have to request
services from other processes and itself temporarily take the role of a client.
136

General Implementation Model
In distributed object-based systems, the processes may be simply called objects. This
rejoins quite well the terminology of CO-OPN and our conception of a CO-OPN Object as
being a single, possibly multi-threaded, process(1). The implementation of a CO-OPN spec-
ification is a system of distributed processes fully connected through a set of communica-
tion channels.

The execution environment is supposed asynchronous. This means that no hypothesis is
made about the relative execution speeds of the different processes and that the communica-
tion delays are finite but unpredictable. The communication channels are reliable: Messages
are not lost, duplicated or corrupted, and between any pair of processes the messages are
delivered in the order they were sent. If this cannot be guaranteed by the hardware, then an
underlying software layer may fulfill these requirements (see e.g. [ISO 84]).

A specificity of distributed systems is that processes may crash. To answer for this property,
we exploit the concept of nested transaction [Moss 81] which ensures that the effects of a
process failure do not spread across the whole system. We think that resilience to failures is
a must for prototypes which aspire to be used as end-user products, by opposition to simula-
tors or throw-away prototypes for which the only requirement is fidelity to the specifica-
tions. By the way, it should be emphasized that an implementation is not supposed to
correct the errors due to its specification. In particular, a deadlock originating from the spec-
ification will be inevitably reproduced by the prototype.

Another fundamental characteristic of distributed systems is that no observer has access to
the global state of the system. This is due to the fact that there is no shared memory and that
there is no single clock which might give to the processes a common time reference for
detecting causality relations and for synchronizing. To cope with this deficiency, messages
will be relied upon for all data transfer as well as for supporting the algorithms which main-
tain as much as possible a coherent vision of time [Lamport 78]. An important constraint is
then to avoid overloading the communication channels by finding a good balance between
the accuracy and the quantity of information conveyed by the messages.

6.2.1 A Simple Example

Let us show a very simple example of distributed execution in order to demonstrate the
kinds of messages exchanged. In the following figure, Object O2 is stabilizing. An internal
transition t of Object O2 wants to synchronize with method m1 of Object O1. This method in
turn wants to synchronize with method m0 of Object O0. The call to m0 succeeds, the call to
m1 also terminates successfully, and finally the transition t succeeds, therefore the whole

1. In practice, this may lead to granularity problems, since CO-OPN Objects are usually rather small. Current
work in the CO-OPN/SANDS group aims at providing original means of configuring and coordinating groups
of Objects [Buffo&Buchs 96].
137

6. Operational Semantics of CO-OPN Objects
synchronization succeeds. All Objects can then stabilize, starting with O0, and finally O1.
When O1 is stable, O2 can continue the stabilization it was already pursuing.

Figure 77. A simple Example

In terms of messages, this execution produces the following:

Figure 78. Messages Exchanged for the Execution of the Simple Example

We can notice in particular that every message refers to a specific method call m0 or m1 (this
is a temporary way of denoting the dependency between messages which will be adjusted
later in the chapter). Another information given by this figure is that the emitter of the
synchronization, O2, also controls the subsequent stabilization; this is performed from the
lowest Object and upwards.

6.2.2 Structure of the Generated Prototypes

In the generated prototypes, each CO-OPN Object consists of five layers (Figure 79):

• A message-passing service. This would preferrably be an asynchronous RPC mechanism
[Walker, Floyd&Neves 90], even though the communication model of CO-OPN is syn-

O0

O1

m0

m1

O2
t

O2

O1

O0

m1

su
cc
e
ss
(
m 0
)

m0

st
a
bi
li
z
e(
m
0)

st
a
bi
l
iz
ed
(
m 0
)

s
ta
b
il
i
ze
d(
m 1
)s

ta
bi
l
iz
e
(m

1)s
uc
c
es
s
(m
1
)

138

chronous. Asynchrony is necessary for performing method calls in parallel, as required for
the implementation of the simultaneity operator of CO-OPN. The advantage of an RPC
layer compared to a simple message-passing service is that the remote procedure calls are
seen as normal, local procedure calls. It transparently marshals the arguments and per-
forms the adequate dispatching inside the target process in order to select the right proce-
dure to execute. If additionnally this may be performed directly by the target compiler, as
for Ada95 [Ada 95], then it relieves the prototyping tool from a significant burden.

• The low-level concurrency control layer: It must guarantee that each method call behaves
as an atomic (transaction-oriented) action and takes into account the nature of the syn-
chronizations requested (i.e. simultaneity, sequence or alternative).

• The resolution layer, which manages a Prolog-like search for a local state which allows
serving incoming synchronization requests. This local state must also be compatible with
the global state of the system, which implies that distributed backtracking may occur.

• The model structural description, which is the result of an automatic transcription of the
structure of the specifications into the target programming language. This layer records
for instance the dependencies between places and transitions. It also serves as an interface
which renames and overloads many lower-level primitives for the application layer.

• The application layer, where the modelled CO-OPN Object is described by translation of
the source behavioural axioms into an object-oriented representation. Since the evaluation
of the guards is performed here, it means that this layer also contributes to concurrency
control.

Figure 79. General Prototype Architecture

Our prototyping scheme is to be exploited only on the application layer, which we also call
the action class in [Buchs&Hulaas 95], since the developer should not have to bother with
the lower-level layers, which are very specific to the semantics of CO-OPN. The code
generator could, in future work, propose a set of standard implementations for the lower
levels, among which the user would choose the most adequate according to his global
knowledge of the model: Intrinsic parallelism, presence of shared objects, or need for non-

model structure
resolution

concurrency control

asynchronous RPC

reliable communications

CO-OPN Object

application Automatically
generated
Standard

CO-OPN Control
Target Compiler

Services & Libraries

6. Operational Semantics of CO-OPN Objects
determinism are some of the factors that might be combined. The lower levels are collec-
tively referred to as the control class (see figure 80):

Figure 80. CO-OPN Object Implementation Model

There is thus a clear distinction between control and action. As depicted on figure 80, the
control part sees only the interface of the action class, which must therefore be considered
as a black box. In other words, the control is orthogonal to the functionality, something
which is vital for mastering the cumulated complexities of concurrency control and resolu-
tion mechanism. This is also what determines the freedom and the limits of the prototyping
process.

It is of course compulsory for the prototyping tool to warn the user when a specification is
not compilable. All criteria must be based on a static analysis techniques: It would be inco-
herent for a running implementation to suddenly halt because it encounters an unsupported
situation. At the same time, it is desirable to have a prototyping tool which compiles a
maximal subset of the source language. Our approach is to accept nearly the complete
language as input and to design the implementation so that the most frequent situations are
handled the most efficiently. For instance, the execution should involve virtually no over-
head in the circumstances where non-determinism is not needed.

In conclusion, we designed the control part of the CO-OPN prototypes to be modular and
completely distributed. The motivation is on the one hand, that CO-OPN Objects are natu-
rally distributed since their local states are encapsulated(2) and they communicate only by

Abstract

Object Implementations

Implements

Abstract Control

Client of (implementation-level)

Interface of

Standard Control

Object

Implementations

Interface of
140

General Implementation Model
method calls, and on the other hand, because we want to promote pairwise reuse of specifi-
cation and implementation modules.

6.2.3 Environment of a Distributed Prototype

The notions of environment or frontier of a specification do not exist in the CO-OPN
formalism. This is how we designed the connection between both worlds in the implemen-
tation:

Figure 81. A CO-OPN Specification and its Environment

In the above figure, the frontier of the system is called the system interface. All the roots of
the directed acyclic graph formed by the static Object dependencies have an asynchronous
interface which makes the system available to the asynchronous outside world and which
converts all events into CO-OPN transactions (to be defined later).

The Synchronous/Asynchronous Interface

The CO-OPN world views time as a succession of discrete instants. One of the roles of the
asynchronous interface could therefore be to discretize the continuous time scale, but this is
not really useful since the execution of our prototypes is not driven by any notion of clock
or time limit, compared to reactive systems [André et al 96] [Boniol&Adelanto 93]: The
synchrony of CO-OPN is not an implementation constraint, but rather just a way of elimi-

2. Apart from the notion of stability, as seen in chapter 3.

O5

O2

O0

O6

O4

O1

System interface

External event External event

CO-OPN
implementation

Asynchronous

Interface
Asynchronous

Interface
Asynchronous

O6
O5

environment
141

6. Operational Semantics of CO-OPN Objects
nating interleaving-based non-determinism. The interfaces can therefore simply serialize
the external events which are transmitted to them.

An interesting extension could however be to allow clients of the asynchronous world to
benefit from the advantages of strong synchrony for the execution of certain events. This
would require the distributed system interfaces to coordinate in order to make these events
appear as simultaneous to the CO-OPN implementation, as in [Caspi&Girault 95].

In our prototypes, the main role of the interface is to signal to the asynchronous clients, by
the means of a call-back mechanism, when a method becomes firable. This is needed in
order to override the purely hierarchical organization of the specifications: We do not want
the client to continuously poll the exported methods. In comparison, within the CO-OPN
implementation, the strictness of the hierarchy is relaxed by the principle of stabilization
which propagates events downards as well as upwards.

A final purpose for the interface could be to embed CO-OPN synchronizations within an
external transaction. Even at the lowest level of interaction, this raises some practical prob-
lems such as the compatibility between the different formats of transaction identifiers. We
have not had the time to deepen this aspect of the prototypes.

Resemblance of CO-OPN Implementations and Simulators

One characteristic, which should be emphasized already now for the sake of clarity, is that
within the distributed prototype, all actions must be considered as temporary. This is due to
the non-determinism, which implies that no decision may be considered as definitive until
the top-level event, i.e. the one which was transmitted to the prototype through the inter-
face, is successful. This has several consequences on the prototype:

• There is no connection with the real “physical” time: Any decision can be retracted, which
means that time can sometimes be seen as going backwards. This is similar to the notion
of virtual time in optimistic discrete event simulators (see [Ferscha 96] for an introduc-
tion). The term optimistic denotes the fact that the treatment of events is started before it is
certain that they should really happen, hence the presence of a rollback mechanism for
correcting the situation when necessary.

• There is no input or output to a terminal or other physical device before the top-level
event is successful because such operations are usually irreversible. We need ad-hoc
mechanisms which tell Objects when it is safe to perform actions which cannot be
undone.

• All intermediate states during the treatment of an event are accumulated in memory until
the complete success or failure of the top-level event. This can sometimes give raise to
storage problems.
142

The Concurrency Control Layer
The main computation within the prototype is performed in a closed world, without interac-
tion with its physical environment. This actually makes the implementation very close to a
simulator. The difference lies essentially in their respective purposes. A distributed simu-
lator is usually designed for raw speed: There is no concern for maintenance or extensibility
of the software. Moreover, a simulator will often eagerly search for all possible behaviours,
whereas an implementation, at least in CO-OPN, has a passive attitude and is idle between
two inputs.

6.3 The Concurrency Control Layer

6.3.1 Representing Synchronizations as State Diagrams

In order to show the control structures needed for managing synchronizations, we will base
ourselves on the modular proof diagrams developed in section 3.6.8. These control struc-
tures correspond to the activity of the emitter of a synchronization: The receiver Objects
have a more passive but at the same time more flexible behaviour since they never know
whether they will take part in the rest of a given synchronization. That is why these
diagrams would be too rigid for modelling the control of the receiver Objects. Instead they
have the same set of states (modeled by ovals), but the given transitions are not taken into
account.

6.3.1.1 The Basic Synchronization

Let us start by the basic synchronization, i.e. synchronizations without any sequence, simul-
taneity or alternative:

Figure 82. State Diagram for the Basic Synchronization

Ready

Start

Running

Finished

Success

Killed
Kill /

Failure

Reset

Failed

Exception

Backtrack

Restart
143

6. Operational Semantics of CO-OPN Objects
After the state Finished there are some additional states not shown here which are related to
the establishment of a distributed coherent state (see subsection 6.3.2.5)(3). A common
property among all state diagrams to be presented in this section is the fact that at any
moment a Kill or an unhandled Exception in the action part may lead to the unrecoverable
state Killed, and that a Reset may lead back to state Ready from anywhere but from state
Killed. A Restart is equivalent to a Reset directly followed by Start. Finally, notice that
the thick circle of figure 82 is the interchangeable part among the different synchronizations
as we will see below. These diagrams are used to indicate the state of progress of each
synchronization and are referred to from the internal structure shown in appendix A.4 on
page 234.

A complete list of supported messages is given in appendix B on page 237.

To Backtrack means to jump back and reevaluate the method or stabilization corresponding
to the circle pointed at by the double headed arrow. This implies that the associated method
call or stabilization is non-deterministic, i.e. that it can furnish several answers or Object
states (i.e. markings) for the same source state. When an operation is non-deterministic in
this sense, we say that it constitutes a choice point: It encloses an iterator which enables it to
compute a new answer each time execution returns to it by backtracking. If, by back-
tracking, control jumps backwards beyond a choice point, then this choice point is reset to
its initial state, so that the next time it will again deliver its first answer as if it were the first
time execution passed through it. If a choice point has given all its solutions, it fails and
execution returns to the immediately preceding choice point, still by the means of the back-
tracking mechanism. We will generally use the term to retry to denote the action of reevalu-
ating a non-deterministic operation for obtaining new answers.

Backtracking is performed each time a method call returns the status Failure. If there are
no more methods or stabilizations to reevaluate, then the current part of the synchronization
ends in the state Failed, and control returns to the previous choice point, which is the
enclosing synchronization. If the latter has its origin in another Object, then we will use the
term distributed backtracking in contrast with normal backtracking which happens when
there still exist choice points to exploit in the current Object. If there are no more enclosing
synchronizations at all, it means that the top-level event cannot be fired in the given state of
the system, and thus the whole computation can be abandoned.

6.3.1.2 The Sequential Synchronization

The diagram presented in figure 83 corresponds to a serial evaluation of sequential synchro-
nizations. It would be conceivable to do this in parallel, but we think that it would lead to
too many conflicts, and thus backtracks. In the future it could be interesting to identify suffi-

3. Adding these special states would make our basic state diagram identical to the one given for nested trans-
actions in [Moss 81], except for the possibility of reset, restart and backtrack which is specific to our design.
144

The Concurrency Control Layer
ciently loose Object interconnection topologies where parallel evaluation of sequences
would lead to good performance.

Figure 83. State Diagram for the Sequential Synchronization

We mentioned in chapter 3 that in CO-OPN a stabilization is always successful. It could
then seem strange, as in figure 83, that it is possible to backtrack from a stabilization. This
does in fact not mean that a stabilization may fail per se, but rather that, during a reevalua-
tion, it may be unable to produce another stable state. In other words, all its choice points
have been exhausted.

6.3.1.3 The Simultaneous Synchronization

The diagram presented here allows parallel evaluation of simultaneous synchronizations.

Ready

Start

Running left-hand

Finished

Killed

Restart

Success in left-hand

Stabilizing left-hand

Start right-hand

Running right-hand

Success in right-hand

Failed

Kill /
Exception

Failure /

Backtrack

Failure /
Backtrack

Backtrack

Backtrack

Reset
145

6. Operational Semantics of CO-OPN Objects
Figure 84. State Diagram for the Simultaneous Synchronization

The relative priorities of the different branches of a simultaneity are established in accor-
dance with the total order in the Object dependency graph: This will be explained in section
6.4. The thick rectangle of figure 84 has two input arrows: This indicates that both of the
two corresponding conditions are to be fulfilled for the transition to take place, as in Petri
nets. More concretely, if the lower priority sub-synchronization returns Failure, it is
restarted only when and if the higher priority branch has finished successfully. Another
information given by this figure is that the lower priority branch is restarted (because of the
single headed arrow) each time the higher priority part is retried by local decision, and the
same effect may be obtained for solving conflicts in remote Objects by sending the message
RestartLower.

6.3.1.4 The Alternative Synchronization

The diagram presented here allows parallel evaluation of alternative synchronizations.
although it will have to be performed sequentially when an Object is shared by several
branches of the alternative.

Ready

Start

Finished

Killed

Reset

Running lower

Success in lower

Failed
Kill /

Exception
Failure /

Backtrack

priority branch

priority branch

Finished lower
priority branch

Running higher

Success in higher

priority branch

priority branch

Finished higher
priority branch

Backtrack

Finished all
sub-synchronizations

BacktrackBacktrack

Failure in

RestartLower

Restart

lower priority
146

The Concurrency Control Layer
Figure 85. State Diagram for the Alternative Synchronization

The relative priorities of the different branches of an alternative are established according to
their textual order in the specification, but the developer may change this by prototyping at
the programming language level. The purpose of the priorities is for Objects shared by
several alternatives to decide which one to favor. The lower priority one is Suspended, and
the emitter of the alternative receives a corresponding message so that it may Restart this
branch if the higher priority alternative fails. Since the suspension is performed at the level
of the shared Object, a Restart message may be sent directly to that Object instead of
restarting the whole branch from scratch.

Finally only one branch of the succeeded alternatives will be kept, and is then roughly to be
considered as a basic synchronization, as in figure 82.

6.3.2 Events viewed as Nested Transactions

The notion of nested transaction, which we will introduce in this section, has several utiliza-
tions in the CO-OPN implementation. It serves as a concurrency control mechanism, as a
vector for the transmission of global knowledge about the synchronizations, and as a guar-
antee for fault-tolerance.

6.3.2.1 Failure Atomicity of the CO-OPN Model

As explained in chapter 3, all events in the CO-OPN formalism are atomic, i.e. they have an
all-or-nothing behaviour. This was already true for classical Petri nets, and has been
extended to include the notion of synchronization within CO-OPN. Another reason for

Ready

Parallel

Killed

Reset

Running lower priority

Success in lower priority

Failed

Kill /
Exception

Failure /
Backtrack

alternative

alternative

Finished lower priority
alternative

Backtrack

Running higher priority

Success in higher priority

alternative

alternative

Finished higher priority
alternative

Backtrack

Suspended

Failed

Restart Failure /
Backtrack

Restart start

To be restarted
147

6. Operational Semantics of CO-OPN Objects
seeing events as atomic is that they are described by predicates, i.e. they state some relation
between their parameters and local variables. If it cannot be arranged for this relation to
hold, then the system is left untouched, as if nothing had happened. Method calls in CO-
OPN may be nested, and each nesting level has this same property. If the evaluation of a
method call fails at some sub-level it does not mean that the whole event must be aborted:
In case of don’t know non-determinism the execution will try another alternative. It is only
if the top-level predicate fails that the corresponding event is considered as impossible. This
vision of atomicity induces that events may quite naturally be mapped into the notion of
nested transactions [Moss 81] on the operational level.

By extension, we can even state that atomicity is inherent to the logic paradigm. Therefore,
predicates may transparently support fault-tolerant executions: The developer does not have
to provide explicit information for the underlying system to identify the range of an atomic
action, and to handle appropriately cases of failure. This idea was first introduced in
[Guerraoui et al 92] in the field of object-based distributed systems. In previous approaches,
explicit information was required at the programming language level (e.g. the Argus
language [Liskov&Scheifler 83] or the Arjuna class library [Dixon et al 89]). In the logic
paradigm all-or-nothing atomicity is part of the computation model.

6.3.2.2 Concurrency Atomicity of CO-OPN Implementations

The notion of strong concurrency in CO-OPN implies that all events which are not sequen-
tial must be considered as happening exactly at the same moment on a discrete time scale
(see chapter 3). There are two sources of concurrency, the first one being the concurrency
specified by the use of the simultaneity operator, and the second one being the concurrency
due to independent events. As we will see all along this chapter, strong concurrency is
unnatural in asynchronous systems and must therefore be enforced artificially by the run-
time control of each Object. This induces a cost that we would rather avoid when possible.

We must obviously respect the form of strong concurrency originating from the use of a
simultaneity operator. We may however try to circumvent the concurrency of independent
events by acting as if they were fired at different moments: Since they have no causal rela-
tionship, we may as well place them on two adjacent “ticks” of the time scale. This flexi-
bility is not expressed directly by the semantics of CO-OPN, but there is room for it in the
fact that the language does not specify what the environment and frontier of a specification
consist of and where the events originate from.

Let us define the notion of independence; for this definition we will before need to establish
that a participant in an event is an Object, of which a method or transition has been fired
during the event. The top-level or root participant in an event e is the Object which has the
highest number (according to the total order) among all the participants in e.
148

The Concurrency Control Layer
Definition 38: Independence of Events

Given Spec a CO-OPN specification constituted of a set of Objects O, A ∈ Mod(SpecA)
an algebraic model, and two events e1,e2 ∈ EA,M(Spec),O, then the events e1 and e2 are
independent if their respective top-level participant Object are distinct. ◊

Now that we have decided to fire all independent events at their own instant, it would be
preferrable not to be too restrictive about this serial order in order to benefit from the paral-
lelism which can be exploited as long as the respective sets of participants are disjoint. In
order to guarantee that the concurrent treatment of two independent events does not lead to
inconsistencies in the Objects’ states, and in particular that intermediate states are not
disclosed, they must be serialized at the level of the common participant Objects. This is
called isolation or concurrency atomicity and is another feature of atomic transactions.

Figure 86. A CO-OPN Implementation with Isolation of Transaction Trees

In the situation depicted here, Objects O5 and O6 are waiting for the results of their current
event, the treatment of which is protected by an “envelope” which prevents for instance O1
from being spuriously accessed by O4.

6.3.2.3 Origin and Characteristics of Nested Transactions

Transactions have become a basic principle for preserving coherence in distributed data-
bases in presence of concurrency and failures [Bernstein, Hadzilacos&Goodman 87].
Initially, transactions had a monolithic structure, forming single blocks of sequential opera-

O5

O2

O0

O6

O4

O1

System interface

External event External event

CO-OPN
implementation

Asynchronous

Interface
Asynchronous

Interface
Asynchronous

O6
O5

environment
149

6. Operational Semantics of CO-OPN Objects
tions. Nested transactions are an extension of classical “flat” transactions which provide
better support for parallelism and fault-tolerance. This communication model has progres-
sively been integrated into concurrent object-oriented programming languages (for an over-
view we refer to [Guerraoui 95]) and into general-purpose libraries for distributed
environments, such as CORBA [OMG 95]. Roughly, fault-tolerance is guaranteed by the
fact that each transaction brings the system from one coherent state to another. These
special states are saved to stable storage, and consitute a safe base to return to whenever a
node crashes(4). Even in normal conditions it may happen that a transaction fails for
instance because the request (or event) it conveys does not obtain the needed resources. To
take this into account, each object has a rollback mechanism which allows it to undo the
effects of the uncompleted transaction(5). A transaction which terminates successfully is
said to be committed, otherwise it is aborted, whatever the reason.

The relationships between nested transactions are tree-oriented. Therefore we will use a
related terminology. Transactions having no subtransactions are called leaf transactions.
Transactions having subtransactions are called parents and their subtransactions are their
children. Similarly, we will use the terms ancestors and descendants, also as reflexive rela-
tions. Superiors and inferiors are respectively the non-reflexive versions of ancestors and
descendants. The top-level transaction is a transaction which enters the system at a top-level
Object. We will also use the terms ancestors, descendants, inferiors and superiors for
(dynamic) Object relations. For instance, in the situation depicted by figure 86, O1 is an
inferior of O5 but not (yet) of O4 or O6.

Transactions have been defined as sequences of object requests which satisfy a set of
“ACID” properties [Harder&Reuter 83]: (A) all-or-nothing, (C) consistency, (I) isolation
and (D) durability. It is the duty of the underlying run-time support to ensure the A, I and D
properties, while the application programmer ensures the C property (as far as he can, i.e.
wouthout having to cope with failures or concurrency). This is the coherency contract
between the programmer and the transaction management software in classical database
systems. It was showed to be inappropriate for nested transaction systems in
[Guerraoui 93], and another version was proposed, the contract defined in terms of “N-
ACID” properties. We propose to slightly adapt this latter contract to the case of CO-OPN:
The “C-ACID” properties are different in the sense that the concurrency which appears
between dependent subtransactions is part of the specification, and not an optimization of a
sequential execution. The CO-OPN-atomicity of CO-OPN transactions are described by the
following:

4. We do not discuss here the low-level mechanisms by which failures are detected and recovered from. Rele-
vant information can be found e.g. in [Chandra&Toueg 96] and [Verhofstad 78].

5. For an operation to be “undoable” it must not interact with the physical world. For instance, it is usually not
possible to undo output to a terminal. Operations which are irreversible must be delayed until it is certain that
the current event succeeds globally. Interestingly, CO-OPN does not provide any I/O primitives.
150

The Concurrency Control Layer
• (C-A) CO-OPN all-or-nothing: Either a transaction is committed and has its desired
effects, or it is aborted and has no effect.

• (C-I) CO-OPN-isolation: The intermediate states of the objects manipulated by a transac-
tion are neither visible to concurrent siblings nor to independent transactions.

• (C-D) CO-OPN-durability: The effects of a committed top-level transaction and those of
its committed descendants are not undone by a failure.

If CO-OPN-atomicity is guaranteed for all transactions, then each execution will appear to
happen as if each transaction tree executes alone in the system, starting from a state
produced by a sequence of committed transaction trees. Then the replies and final state of
each transaction tree will depend on the computation inside the tree, which is the respons-
ability of the developer since it is precisely the behaviour specified by the CO-OPN sources.

• (C-C) CO-OPN-consistency: When it executes from coherent initial states, a transaction
tree produces coherent replies and coherent final states.

When the developer exercises the freedom given to him by incremental prototyping, he
must remain faithful to CO-OPN-consistency, the other properties being guaranteed by the
control layers of the prototypes (Figure 79).

We have not yet seen by which mechanism isolation between transaction trees is ensured:
That is the role of the locking protocol.

6.3.2.4 The Locking Protocol

Classical transaction systems have been the subject of enormous research in order to
increase the performance by interleaving compatible transactions in shared objects. This has
resulted in several definitions of the notion of serializability (see e.g. [Weihl 89]), the role
of which is to provide a criterion for deciding when two transactions can be interleaved
instead of executed in sequence. For instance, two requests may be candidates if the
elementary operations they are made of, such as read and write, are commutative.

In CO-OPN, the elementary operations which make up methods (and thus the transactions)
are token insertion and withdrawal from places. By static analysis of the behavioural
axioms, it would be possible to determine, for each Object, sets of methods which may be
interleaved instead of executed in strict sequence. We decided not to explore these possibil-
ities because we have the feeling that the stabilization process which is activated in the
middle of each sequential synchronization (see chapter 3) would systematically invalidate
these interleaved executions.

The standard two-phase locking protocol (2PL) [Eswaran et al 76] is designed in the
following way: There are two distinct phases, the first being when execution proceeds
151

6. Operational Semantics of CO-OPN Objects
downwards and extends the transaction tree by including (i.e. by locking) more and more
objects, and the second phase is the upwards movement, where locks are progressively
released (but the corresponding objects are not really freed until the global commitment
which we will describe below). In order to guarantee serializability it states that once an
object has released its locks, it cannot aquire new ones. For implementing CO-OPN this
semantics would be too restrictive and anyway we do not exploit the notion of serializ-
ability: This means that the latter requirement does not need to hold, resulting in a single-
phase locking protocol.

Another simplification, compared to classical database systems, may be introduced because
CO-OPN is based on Petri nets, where events can only modify Objects, i.e. they do not
provide any means of reading token values without before withdrawing them from their
place. All Object accesses are therefore done in mutual exclusion, and we will not have to
provide shared locks for read-only operations.

Definition 39: CO-OPN Transaction

A transaction in a distributed CO-OPN implementation is a mechanism which encapsu-
lates each event in order to guarantee that concurrency and failures will not interfere with
a correct execution. To each component of an event corresponds a subtransaction of the
top-level transaction. Each transaction has a system-wide unique identity, the Xid. ◊

It should be emphasized that the term components of an event is here taken in the syntactical
sense of page 54, which means that every branch of a synchronization tree is a subtransac-
tion with its own identity. On the following figure, transaction T55 is an example of
subtransaction which represents an intermediate branch of the synchronization tree. TI55
and TI66 are top-level transactions(6).

6. We use this symbolic naming convention: Each subtransaction name is made of the number of the creator
Object followed by the number of the target Object. Sometimes an index is used if several subtransactions
exist between a given pair of Objects. An initial ‘I’ means that the subtransaction actually started from the
interface of the given creator Object.
152

The Concurrency Control Layer
Figure 87. Transactions and Subtransactions in a CO-OPN Implementation

An Object creates a subtransaction for every event it is involved in. To each subtransaction
is associated a copy of the Object’s state, which is the state to restore if the subtransaction
aborts. If the subtransaction encapsulates a method call, then we call target Object of the
subtransaction the Object who will execute the method call.

In our approach, each transaction identifier is synonymous with a lock identifier: The target
Object identifies the lock by the Xid of its owner. This means that each transaction locks at
most one Object. We say that a transaction holds a lock when the target Object is effectively
locked by this transaction.

Definition 40: CO-OPN Locking Rules
i) A transaction may hold a lock on an Object if the Object is free or if the other lock

holders on the same Object have a common ancestor with the requesting transac-
tion; otherwise the requesting transaction is blocked until one of the two mentioned
conditions is fulfilled.

ii) When a transaction commits, its parent (if any) inherits a copy of its lock as well as
the ones it inherited from its own committed inferiors.

iii)When a transaction aborts, its lock is discarded, as well as the locks it inherited
from inferiors. Its superiors (if any) still keep their locks.

◊

O5

O2

O0

O6

O4

O1

System interface

T55T52

T20
T50 T51

T64

T41

External event External event

CO-OPN
implementation

Asynchronous

Interface
Asynchronous

Interface
Asynchronous

O6
O5 TI66TI55

environment
153

6. Operational Semantics of CO-OPN Objects
The point in making the parent inherit the lock, i.e. the Xid, of a committed transaction is to
transmit to the top-level transaction the list of all committed subtransactions. This list is
needed for the atomic commitment protocol which will be briefly described later.

The Xids are system-wide identifiers created independently by each Object. One way to
realize this is to use the identity of the creator and to add some locally unique number to it.
The identity of the creator Object may for instance be the number assigned to it in relation
with the total order (7). It is also convenient to include the identity of the target Object, in
order to know directly from the structure of a Xid the list of participants in a transaction.

The following describes how the Xid of the top-level transaction is built: The subtransac-
tions create their own Xids by piggybacking, i.e. by concatenating, a local subtransaction Id
to the Xid of their parent [Moss 81]. The term lock history is sometimes used to refer to the
accumulated Xids of all superiors.

Figure 88. Structure of a Subtransaction Id

In the previous example (figure 87), subtransactions T21 and T53 have the follwing Xids:

Figure 89. Structure of Two Subtransaction Xids

It is then easy to see that the whole transaction tree may be reconstituted locally by any
Object which has a copy of all the Xids of the leaf subtransactions. In particular, it is
possible to determine if some Objects are shared between several branches of the tree. This
property is used by each Object in order to find out if an incoming transaction is indepen-

7. If no such number or identity is available, then the address of the Object must be directly used: In a Unix/
Internet network, this would be the IP address of the node, the Pid (process id) and possibly a Tid (thread or
task id).

Locally Unique Id Creating Object Target Object

Subtransaction Id

Globally Unique Id

Xid T50 Xid T52 Id T53

Xid T50 Xid T51 Id T21

Xid T53

Xid T21
154

The Concurrency Control Layer
dent from any current lock holder, in which case it will be blocked until the current transac-
tion tree terminates.

6.3.2.5 The Two Phase Commit Protocol

Once the useful computation of a transaction has been performed, the Objects involved
must decide if they can consider their current state as coherent and save it to non-volatile
memory. After this is done, the Objects may release all the locks which have accumulated
on them during the transaction, and start to serve pending requests from independent trans-
action trees. This is the role of the atomic commitment protocol.

More precisely, the utility of the atomic commitment protocol is to ensure the above-
mentioned all-or-nothing property, also called failure atomicity. This is realized by leading
all participants to agree on whether the transaction is to be committed or aborted. By
running this protocol atomically, it is possible to notice node crashes at any point of its
execution and avoid that incoherent states are installed by the participants.

These are the properties that must be fulfilled by the atomic commitment protocol
[Babaoglu&Toueg 93]:

• AC1: All participants that decide reach the same decision
• AC2: If any participant decides commit, then all participants must have voted yes
• AC3: If all participants vote yes and no failures occur, then all participants decide commit
• AC4: Each participant decides at most once (i.e. a decision is irreversible)

The de facto standard is the two phase commit protocol (2PC) [Gray 78]. In this protocol
there is a single privileged Object, the coordinator (usually the top-level Object, or its inter-
face to the asynchronous world in the case of CO-OPN), which controls the execution:

1. The coordinator sends the message RequestVote to all participants. Each partici-
pant decides locally if he wishes to commit or abort the transaction:

- If a participant decides to commit, he replies yes and saves the new state to
permanent memory; both the old and the new states are now safe. Then he
waits for the decision of the coordinator.

- Otherwise he replies no, and aborts the transaction by undoing its effects.
2. The coordinator collects the replies (yes or no) from the participants. If all partici-

pants have answered yes, then he decides to commit. If a single no is recorded or if
a failure is detected then he decides to abort.

3. The coordinator notifies its decision to all participants which have not replied no.
According to the decision, each participant either deletes the old state in permanent
memory and definitively adopts the new state, or it deletes the new state in perma-
nent memory and keeps the old state as current state.
155

6. Operational Semantics of CO-OPN Objects
The weakness of this protocol is that it is both centralized and blocking, which may be
desastrous if the coordinator crashes during the execution of the protocol. Some other solu-
tions have been proposed [Skeen 81],[Guerraoui&Schiper 95], but it is not our purpose to
develop further this discussion, as the choice of an atomic commitment protocol is indepen-
dent from the locking protocol used and does not involve any particular design choices in
the generated prototypes.

In appendix E, Figure 123 on page 270, an example of 2PC execution is demonstrated in the
frame of the collaborative diary example.

6.3.2.6 Deadlock Avoidance

We have seen that the isolation property is guaranteed by locking Objects and blocking
independent transactions. This may however lead to deadlocks if there is no global criterion
for deciding which transactions are to have highest priority.

Figure 90. Deadlock Involving Transactions Rooted at O4 and O3

CO-OPN models being purely hierarchical, the opportunities for deadlocks are rather
limited compared to systems where general graph dependencies may exist. An example of
deadlock is however given in Figure 90, where subtransaction T21, which is bound to T20
by the sequence operator, is waiting for Object O1 to terminate T10, while T10 is waiting for
O0 to be freed by T20. Deadlocks may be handled essentially in three ways:

O4

O0

O3

O2

O1

System interface

T21

T20

T31

T10

External event External event

CO-OPN
implementation

Asynchronous

T42

Interface
Asynchronous

Interface
Asynchronous

O3
O4 TI33TI44

environment
156

The Concurrency Control Layer
• They may be prevented by holding back transactions until it is certain that the statically
predicted set of needed Objects is really available. This would eliminate nearly all possi-
bility for concurrency in our implementations, since transactions tend to spread all over
the network as a consequence of the stabilization process.

• They may be avoided by temporarily aborting all transactions which might represent a
danger.

• The third solution is to detect deadlocks when they are already formed, and breaking them
by aborting as few transactions as possible. This requires exchanging information with
other nodes once a deadlock is suspected in order to acquire a more global view of the sit-
uation.

We have chosen the deadlock avoidance strategy, in particular the Wound-Wait method
[Rosenkrantz et al 78], because it is simple to implement and fits well with the rest of the
design. The principle is to assign a global priority criterion to each transaction: This crite-
rion is to compare the respective ages of the top-level transactions. The age is based on
timestamping [Lamport 78], but in order to ensure a total order, another global relationship,
e.g. the priority of the top-level Object, must be used in order to decide between equally
timestamped transactions.

The Wound-Wait method states that older transactions must always have higher priority for
locking an Object. If a younger transaction already locks an Object, it must be aborted
(locally) and retried later. After a finite time this younger transaction will become compara-
tively old enough to be given maximal priority throughout the whole system.

Figure 91. The Wound-Wait Method

The call put_back(T1) says that all inferiors of T1 must be aborted, while T1 itself is
undone and put in a list of pending requests, coming from independent transactions, and
from which it must be explicitely extracted and reactivated when T2 has terminated.

6.3.3 Detection of Stability and Termination

The synchronous/asynchronous interfaces constitute privileged access points for querying
about the state of the distributed CO-OPN implementation, since all activity enters the
system through these points. Information such as stability and termination may be easily
obtained there.

IF timestamp(T2) < timestamp(T1) THEN
put_back(T1)

ELSE
halt(T1)

END IF

“wound”

“wait”
157

6. Operational Semantics of CO-OPN Objects
The notions of stability and termination are closely related in CO-OPN: Stability is a neces-
sary condition for the termination, be it of an individual event or of the whole system. The
communication model is blocking and the objects are passive, meaning that no activity can
appear spontaneously (unless the network is unreliable). In consequence, if any event is
currently being treated by the system then one of the entry points must be waiting for the
corresponding reply. The following definitions give a gradation in the levels of stability and
termination:

• An Object in the system is weakly stable unless it is currently involved in the treatement
of an event - possibly waiting for a reply - or it has pending events, the treatment of which
is imminent.

• An Object is strongly stable if it is weakly stable and its last successful operation was to
complete an atomic commitment protocol.

• A CO-OPN implementation is ready to terminate if all its entry points answer strongly
stable to an atomic query.

In practice we are only interested in the property of strong stability of an Object, since the
weak stability is a temporary and local condition.

6.3.4 The Synchrony Hypothesis in an Asynchronous Environment

6.3.4.1 The Optimisitic Approach to Simultaneity

The simultaneity operator of CO-OPN specifies the parallel composition of method calls. If
some parallel activities involve shared Objects, then it will be necessary to transmit explic-
itly the fact that these activities are bound by the constraint of strong concurrency. If this
information is missing, then the shared Objects will simply treat the incoming requests in
sequence because of the natural asynchrony of distributed systems, and thus violate the
semantics of the language.

Let us examine the situation of figure 92: Object O0 is shared by two requests corresponding
to the subtransactions T30 and T10. Seeing the given configuration of Objects, it is perfectly
plausible to have T30 arriving at O0 when T10 and even T40 are already finished. In order to
ensure the provable properties of the execution, it is then necessary to execute the request of
T30 as if it had happened exactly at the sime time as T10, and in any case before T40. Since
O0 must satisfy maximally all invocations, it must then somehow return another answer for
T10 and T40, so that all requests succeed from its own point of view.
158

The Concurrency Control Layer
Figure 92. Object Sharing in a Simultaneous Synchronization

There are therefore two problems to answer:

1. How can we tell Object O0 which invocations are simultaneous, which are sequen-
tial, and which are alternatives ? Because of the highly non-deterministic nature of
CO-OPN, not even the top-level Object O4 may know in advance the dynamic con-
figuration of the invocation graph.

2. The shared Objects must be able to provide several answers to the same invoca-
tion: This is not a problem, if the messages are logged so that invocations may be
reexecuted. Before that, the Object must however be able to return to the state it
was supposed to have at the moment of the simultaneous invocations and undo all
the intermediate operations and side-effects. Another difficult problem is that the
caller (here O4) must be disposed to receive new answers for arbitrarily old invoca-
tions. That also requires the ability to rollback to the state it had when it was wait-
ing for the corresponding answer. This latter problem is treated within the more
general frame of distributed backtracking.

These two problems are discussed separately in the two next sub-sections (6.3.4.2 and
6.3.4.3).

6.3.4.2 The Notion of Synchronization Vector

We have already briefly mentioned Lamport’s algorithm for maintaining logical clocks in
distributed Objects [Lamport 78]. Its purpose is to provide a view of time which encom-
passes the causality between events in a distributed system, the most relevant events at that
level being usually the sending and reception of messages. For instance, the logical clock of
an Object O0 which receives a message must always be higher than the logical clock of the
Object O1 from which the message was sent. To ensure this property, each message m
contains a timestamp TS(m) which is the value of the sender’s logical clock. This timestamp

O3

O0
O1

T44
T43

T40 T41

O4

O2

T30T32

T10

+

Tx4
159

6. Operational Semantics of CO-OPN Objects
is used by the receiver to adjust its own logical clock: That way it is guaranteed that the
logical clocks reflect the causality between the sending and the reception of the message.
The following rules are employed, LC being the current logical clock and LC(ei) being the
logical clock associated to the event ei:

Figure 93. Update Rules for the Logical Clock

The next figure shows, based on the configuration of figure 92, the evolution of logical
clocks with plain Lamport update rules (we do not increment the logical clock of O4
between the sending of the simultaneous synchronization messages to O3 and to O0).

Figure 94. Logical Clocks and Simultaneity

We can see that Object O0 never receives messages with timestamps appropriate for indi-
cating the required synchronization: The request T40 is to happen after T10 but has a lower
timestamp than its intended predecessor. Lamport’s logical clocks have the property that if
an event e1 causally precedes event e2, and this may be noted e1 →c e2, then its associated
logical clock will be inferior (the relation →c is transitive):

Lamport’s Clock Condition: e1 →c e2 ⇒ LC(e1) < LC(e2)

This condition is unfortunately too weak, because, by looking at the logical clocks associ-
ated to two events, it is not possible to tell whether they are to happen simultaneously: The
timestamps reflect among other things the number of Objects which take part in the
synchronization, which is not relevant for our problem. The main problem is that this times-
tamping scheme establishes a total order between events.

LC(ei) :=
LC + 1
max(LC, TS(m)) + 1

if ei is an internal or send event
if ei = receive(m){

O4

O3

1

20

0

O0

0

2

4 50

O1

3

2

6

3

T
S=3

T
S=3

TS=2
160

The Concurrency Control Layer
Let us now try a timestamping scheme which is supposed to reflect the instantaneity of all
synchronizations, except for sequences.

Figure 95. Timestamping with Instantaneous Synchronizations

This figure is closer to our needs since identical timestamps may be used as indication for
simultaneity. This scheme works as long as there are no sequences nested within a simulta-
neity: Figure 95 is ambiguous about the interpretation to be given to the last method call
T40. It might be understood as the synchronization T30&(T10..T40), which is correct in this
situation. But it could as well have been the synchronization T30&T10&(T4x..T40) where
T4x is another transaction created by O4, but not passing through O0. In this latter case O0
would be to serve three simultaneous synchronizations instead of only two: This distinction
is crucial in CO-OPN. We also still don’t know at this point how to cleanly handle the
complex synchronization expression at O4. The issue is that we really need a way to reflect
the hierarchy of synchronizations.

Let us briefly examine the notion of vector clock (see [Schwartz&Mattern 92] for a survey)
which has the property of preserving partial order between events. It consists of a vector of
logical clocks maintained at each site and updated with the ones received as timestamps, in
a manner similar to Lamport’s simple clocks. Each entry of the vector consists of a logical
clock assigned to a specific Object. If we adapt vector clocks to take into account the fact
that synchronizations (apart from the tail of a sequence) are considered instantaneous, and if
we add entries for representing the operators of compound synchronizations, we obtain the
follwing figure:

O4

O3

1

10

0

O0

0

1

1 10

O1

1

2

2

1

T
S=1

T
S=1

TS=2
161

6. Operational Semantics of CO-OPN Objects
Figure 96. Vector Clocks and Simultaneity

This time, O0 can see, by examining the entry corresponding to Object O4 in its vector clock
(the numbers in bold face), that a simultaneity is requested. By comparison of vectors, it is
also possible to determine where the sequential synchronizations are to occur. This solution
is of course very static since it bounds the complexity of the synchronization expressions.
We will therefore from now on collect only the information which is strictly necessary, by
piggybacking it in parallel with the subtransaction Xids which are created for each level of
synchronization. By using additionally the lock histories of the Xids, we can now distin-
guish between simple (basic) and simultaneous synchronizations: The latter correspond to
the entries which have identical Xids, such as all the entries with the Xid Tx4 below.

Figure 97. Combination of Xids and Clock Vectors (without Stabilization)

Our problem of determining the simultaneity requirement is related the issue of guaran-
teeing causal broadcasts [Birman, Schiper&Stephenson 91], for which vector clocks are

O3

[1,0,0,0,0]

O0

O1

[1,1,0,0,0]

[1,1,0,1,0]

[1,2,0,0,0]

[1,0,1,0,0]

[1,2,0,0,2][1,0,1,0,1] [1,1,0,1,1]

O4

O4

O3

O0

O1

Tx4 1

T44 1
Tx4 1

T43 1
Tx4 1

T44 1
T41 2

Tx4 1

T43 1
T30 1

Tx4 1
T44 1
T40 2

Tx4 1
T44 1
T41 1
T10 1

Tx4 1
162

The Concurrency Control Layer
also used. A typical example where causal broadcast would be useful is on Usenet in the
News facility: When somebody broadcasts a question to the net, it often happens that other
users read an answer to that question before seeing the question itself. With causal broad-
casts, this problem would disappear since the answer would be hidden to each user until the
reception of the corresponding question(8). In our case, the highly non-deterministic nature
of CO-OPN implies that any communication may be aborted as a result of backtracking and
therefore there is no use for an Object to wait for a moment where it would be sure that it
has received all the branches of a simultaneity operator: No synchronization is definitive. In
compensation, the ability to undo all operations allows the Object to return at any moment
to the point where all simultaneous invocations were supposed to take place.

Unfortunately the information provided by the vector clocks is still not sufficient, because
we need to distinguish simultaneity from alternatives: In both cases the logical clock associ-
ated to the sending event must be the same, even if alternatives are evaluated serially.
Therefore we will introduce some symbolic information which, for each message sent, tells
exactly the kind of synchronization expected: sim, seq, alt, basic or stab(9). This data
can be transferred in the form of a small enumerated type.

For the basic value, the logical clock is no longer necessary. For the sim synchronization,
we have to add a numeral value which tells the priority to be given to the different branches
of the simultaneity: We will explain later how this priority is fixed and exploited. For the
alt synchronization there is also a numeral value which assigns a kind of priority: This is
only a hint which conveys a preference given to the different branches by the emitter of the
synchronization. This preference is needed by Objects receiving several of these alterna-
tives in parallel because it is not possible in the general case for a single Object to evaluate
more than one alternative at a time: It must therefore serialize the requests in the order given
by the assigned preferences.

Within seq and stab synchronizations we are only concerned about the relative time differ-
ences between the various sub-branches of the synchronization: Therefore we will instead
consider the timestamps as a way of numbering the subtransaction branches. This
numbering is not strictly useful in the cases where sequences are performed serially, since
the physical time then clearly tells which invocation comes before the other. We will
however for the moment keep the numbering for the sake of clarity(10).

8. In technically correct terms, we would say that the message with the answer has been received, but is not
delivered before the message conveying the associated question.

9. Stab is not a kind of synchronization available at the specification language level, but it is needed in the
implementation.

10. The numbering might also be used as timestamp indicating the intended order of events in cases where
sequential synchronizations are parallelized (optimization not considered in this report because of the high
probability of conflicts this strategy generates).
163

6. Operational Semantics of CO-OPN Objects
The numeral values associated to seq, sim and alt may be restrained to an arbitrarily small
range since they number the branches of a synchronization at the specification level: The
compiler may for instance disallow specifications with more than 256 operands for any
simultaneity operator. By implementing these numbers as single bytes, we achieve some
space saving, both in memory and particularly in the messages. The stab value, on the
other hand, will need more space for its associated numeral value, since the number of
stabilization steps, although finite by hypothesis, is determined purely dynamically.

Definition 41: Synchronization Vector

The synchronization vector of a transaction t is the stack of synchronization operators
(sim, seq, alt, basic) and stabilization requests (stab), with their associated numeral
values, needed for any Object participating in t to calculate the context of the method
calls encapsulated by t. Synchronization vectors are only propagated downwards, i.e. in
the sense of the directed acyclic Object dependency graph. At any moment the synchro-
nization vector has the same length as the Xid it is associated to and there is a one to one
correspondence between their entries.

◊

Figure 98. Xids and Synchronization Vectors (without Stabilization)

The difference between vector clocks and synchronization vectors is that vector clocks
usually have a static size equal to the number of objects of the system (or a fixed subset of
it)(11), whereas synchronization vectors grow dynamically and their size is bounded by a
factor of the largest possible synchronization in the static Object dependency graph.

O3

O0

O1

O4

O2

T44 sim 0

T44 sim 0
T41 seq 0

T44 sim 0
T40 seq 1

T44 sim 0
T41 seq 0
T10 basic

T43 sim 1

T43 sim 1
T30 alt 0

T43 sim 1
T32 alt 1

+

Tx4 basic

Tx4 basic

Tx4 basic

Tx4 basic
Tx4 basic

Tx4 basic
Tx4 basic

Tx4 basic
164

The Concurrency Control Layer
The following figure shows that the shared Object O0 always receives the same synchroni-
zation information, whatever the delays or local computations times at the superiors. The
parts in bold face are in each case common to at least two invocations: Object O0 proceeds
by comparison of Xids and synchronization vectors for determining exactly how it is
supposed to behave.

Figure 99. Synchronization Vectors and Simultaneity (Without Stabilization)

We have now all the data necessary for shared Objects to reconstitute internally the
synchronization tree above themselves(12). We will see below how this information is
exploited.

6.3.4.3 How to Compute the Context of an Invocation

We have seen that shared Objects must be able to provide several answers to the same invo-
cation: This is not a problem, since all the messages are logged so that invocations may be
reexecuted. But before that, the Object must however be able to return to the state it was
supposed to have at the moment of the simultaneous invocations and undo all the interme-
diate operations. We already know that Objects must save their state at the beginning of
each subtransaction, i.e. at least before each method call, be it received or emitted. Figure
120 on page 234, which corresponds to Object O0 in the situation of figure 98 where T10 is
terminated, T40 running, and T30 not yet arrived, gives an idea of what the internal data
structures could look like.

11. Some optimizations are possible to reduce the size of the messages, at the price of additional storage or
computing [Schwartz&Mattern 92].

12. We use the term tree intentionally even in the cases with Object sharing, because the shared Objects are to
be considered as being split, as implied by the semantics of rule BEH-SIM. If an Object is shared within a
sequence or a stabilization, then it is only the superposition of the trees corresponding to different moments of
the execution which will make the synchronization tree look like a graph.

O4

O3

O0

O1

Tx4 basic

T44 sim 0
Tx4 basic

T43 sim 1
Tx4 basic

T44 sim 0
T41 seq 0

Tx4 basic

T43 sim 1
T30 alt 0

Tx4 basic
T44 sim 0
T40 seq 1

Tx4 basicT44 sim 0
T41 seq 0
T10 basic

Tx4 basic
165

6. Operational Semantics of CO-OPN Objects
How to Calculate the Context of a Simultaneous Synchronization

Let us demonstrate how an Object determines the context of an invocation, i.e. the state it is
supposed to restore whenever a simultaneous invocation arrives out of order. The state is
expressed in terms of markings, since the basic model is the Petri net. The inference rules
indicate precisely how the marking evolves as synchronizations proceed. Let us define
some simple functions for determining the marking at any given moment, by assuming that
each completed event makes available the set of consumed and produced tokens. Rule
MONOTONICITY allows us to place the firing of an event e within any context m0. We may
thus recalculate from any initial state m0 the state m1 resulting from the firing of e by
knowing its multi-set pree of consumed tokens and its multi-set poste of produced tokens:

MONOTONICITY: pree →e poste ⇒ m0 + pree →e m0 + poste

The latter expression is equivalent to m0 →e m0 - pree + poste, hence the resulting state we
are looking for is m1 = m0 - pree + poste. This result is well known in the field of Petri nets
[Reisig 85]. If event e is a compound expression with a synchronization as in CO-OPN,
then it is useful to be able to calculate the state StateAt(e) at the beginning of e: This is
simply StateAt(e) = m0 - pree since the tokens of the precondition of e have already been
consumed, whereas the tokens of the postcondition of e have not yet been produced.

Let us apply this relation to the case where e = e1&e2 by combining rule MONOTONICITY

with BEH-SIM. If event e2 occurs after e1 (due to the asynchrony of the implementation), it
is possible to calculate the state in which e2 should really start evaluating its precondition:

StateAt(e1&e2) + pree2
 = (m0 - (pree1

 + pree2
)) + pree2

 = m0 - pree1

This confirms that both e1 and e2 fetch their resources at the same time from a common
initial state m0. From an operational point of view we can consider that two simultaneous
transition systems TS1 and TS2 must be evaluated in the following order: pre(TS1), pre(TS2),
event(TS1), event(TS2), post(TS1) and finally post(TS2). Each of the couples op(TS1) and
op(TS2) with op ∈ {pre,event,post} are commutative since the simultaneity operator is itself
commutative. Concerning the sequence operator, transition systems TS1..TS2 must trivially
be evaluated in the following order: pre(TS1), event(TS1), post(TS1), pre(TS2), event(TS2)
and finally post(TS2). The same order is valid for the evaluation of two consecutive transi-
tion systems during a stabilization.

In the previous we assumed that all pree and poste were readily available. In fact we will
need two functions for calculating each of these multi-sets:

Consumed _ _ : marking, sync -> marking;
Produced _ _ : marking, sync -> marking;
166

The Concurrency Control Layer
These functions take as input an initial state and return the set of tokens consumed, respec-
tively produced, by the given synchronization. When e is a simple method call or transition
we can obtain by a low-level mechanism the multi-sets of consumed and produced
tokens(13). We call the respective functions Pre and Post.

Returning to our example of figure 98, let us suppose that the invocation encapsulated in
T30 arrives at Object O0. The request corresponding to T40 is then abandoned, because it is
to happen after T30, and if its execution is finished and the reply already sent to O4, it will
need to be restarted by sending to Object O4 the message RestartDependent(T41) (14). The
tokens originally taken by T40 are now available for T30, which will be executed within the
Object state defined by ObjBefore(T43) - Consumed(T10), using the terminology of
appendix A.4.

6.3.5 The Global Stabilization Process

In this section we are interested in the way a set of Objects coordinates in order to ensure
that a maximal degree of stability has been achieved. The stabilization steps which are
performed internally to each Object will be treated later in the report. For the moment we
will only investigate the exchange of information which is necessary for a top-level Object
to guarantee that the current event has produced all the effects it was supposed to before the
atomic commitment protocol can start.

6.3.5.1 Identifying Stabilization Requests

According to the inference rules of CO-OPN, there are two moments where a set of Objects
must be stabilized: after each synchronization (rule BEH-SYNC) and in the middle of each
sequence (rule BEH-SEQ). We have seen in the previous sections how subtransactions are
identified by Xids and how this information is completed with synchronization vectors:
This allows Objects to precisely situate incoming requests in their respective contexts. For
the stabilization we will need additional communications to take place. The new kinds of
messages are the command stabilize and the reply stabilized. The stabilization itself
always succeeds if it terminates. The role of the reply is simply to tell when the stabilization
is over, because a synchronization is not considered as successful before its subsequent
stabilization is finished. We could have chosen to let Objects start their stabilization auto-
matically after each method call, without having to wait for the command stabilize. We
preferred however to control explicitely the stabilization process so that it is easier to undo
small parts of it when necessary. Another reason is that we need a way to tell an Object

13. This information is collected at the end of each method and transition execution by traversing the associ-
ated stack of undoable operations. This stack is needed for supporting the backtracking underlying the resolu-
tion process. The Consumed and Produced tokens are stored in the internal structure as shown in figure 120
on page 234.

14. See appendix B, page 237, for an explanation for this message.
167

6. Operational Semantics of CO-OPN Objects
shared by simultaneous invocations when it is allowed to merge again and to stabilize the
reconstituted Object: This may take place when the shared Object receives its first stabilize
request with a synchronization vector where the corresponding sim information has disap-
peared (compare step 9 with all other requests received by Object O0 in figure 100 below).
Still another reason to separate the method call from its stabilization is that its reply may be
immediately checked by the caller: Stabilization is then requested only if the reply conforms
with the local conditions at the caller, otherwise a retry message will be emitted, and no
stabilization will have to be undone.

Each stabilize command is encapsulated in a subtransaction identified by a Xid. This
allows the stabilization to be committed or aborted, like any other request. The reply
stabilized indicates the stabilize command it is associated to by returning this Xid.

It is primordial to transmit a complete view of the current synchronization for the stabiliza-
tion to be correctly processed. The follwing figure illustrates well that point.

Figure 100. Structure of a Synchronization with Some Stabilization Requests

Figure 100 displays a possible ordering of steps for the given synchronization: Only
successful invocations are visible here, and, in order not to overload the picture, the corre-
sponding replies are not visible, and neither are the stabilization steps between (8) and (9).
This synchronization is nested inside the stabilization of Object O3, and this fact is directly

O1

O0

O3

O2

T32

Tx3

T112

Tx3

T31

m1 with m0a..m0a

t3 with m2&m1

m0bm0a

m1

m2 with m0b

2

1

m2

4

5

3

7

T331
T332

T113
T101

Tx3
T331
T332

T111

sim 0
stab 0
stab j
stab i

stab i

stab i
stab j
stab 0
sim 1

Tx3

T31

T331
T332

sim 0
stab 0
stab j
stab i

stab 0
seq 0
stab 0
basic

T112
T102

T111

Tx3

T31

T331
T332

sim 0
stab 0
stab j
stab i

stab 0
seq 0
stab 1

T103

T111

Tx3

T31

T331
T332

sim 0
stab 0
stab j
stab i

stab 0
seq 1

8

T32

Tx3
T331
T332

stab i
stab j
stab 0
sim 1

T22 stab 0
T201 basic

6T32

Tx3
T331
T332

stab i
stab j
stab 0
sim 1

T202 stab 1

9
Tx3
T331
T30

stab i
stab j
stab 1
168

The Concurrency Control Layer
discernible in the different Xids and synchronization vectors. The numbers i and j accompa-
nying the stab entries of Tx3 and T331 indicate that Object O3 is the ith Object to be stabi-
lized at this stage and that the synchronization we see here is the jth stabilization step of
Object O3, i.e. the jth transition it executes. In general, a stab 0 is a place holder for a stabi-
lization which has not yet begun.

Recall that in CO-OPN, when an Object O0 receives two simultaneous invocations (T101
and T201) it will appear as being split into two independent sub-Objects: This is symbolized
by the crack in O0. In step number 7, which is in the middle of a sequence, itself in the
middle of a simultaneity, a stabilization is requested: The structure containing the associated
Xid and synchronization vector tells Object O0 that the stabilization is to be performed on
its left sub-Object, i.e. the part which served the first call to method m0a (step 4). The dashed
arrows correspond to stabilize messages; to be really accurate we could have made them
point to methods called stabilize.

6.3.5.2 Organization and Optimization of The Stabilization Process

As we have seen in chapter 3, the notion of stability is not easy to capture since it may entail
new synchronizations which themselves will need their own stabilization. The language
designers’ basic idea was to produce a maximal reaction to any external event. From the
implementation point of view, an Object is stable when it has ensured that no more of its
internal transitions are firable. This condition may depend on the state of other Objects
when a transition wants to synchronize with an external a method: If the local state of the
stabilizing Object allows this synchronization to take place, but not the state of the other
Objects, then the synchronization is postponed and the stabilizing Object is considered as
stable until the state of the other Objects makes the synchronization possible. This is the
anti-inheritance of instability that we presented in section 3.6.7.

In the semantics of CO-OPN, the computation of all the possible behaviours is achieved by
starting from the lowest Object in the hierarchy and gradually incorporating new Objects
from above. At each stage a state graph is constructed, as in example 2 on page 69. This
allows us to determine, if several Objects become simultaneously unstable, that the lowest
among them has the highest priority in the case where they compete for a limited set of
resources. The semantics does however not tell how these Objects instantly learn that there
is a possibility for them to make one further step of stabilization.

The following example (figure 101) is similar to the one in section 3.6.7 on page 77. Let us
suppose that Object O2, which was stabilized in the middle of the sequence rooted at O4,
suddenly becomes unstable again, because the state of O0 has changed after the invocation
of m0b, making its method m0a firable. Object O2 may thus fire its internal transition t2 and
become stable again. The problem, from an operational point of view, is to determine how
O2 may learn that method m0a has become firable.
169

6. Operational Semantics of CO-OPN Objects
Figure 101. Example where Stabilization of O2 is Reactivated after the Call from O4 to O0

There are three possibilities:

1. Object O2 continuously keeps calling method m0a until a positive answer is
received. This solution has the usual drawbacks of busy waiting, the cost of which
is amplified in a distributed environment.

2. Object O0 remembers that O2 failed a stabilization step on method m0a and sends
him a message to tell that method m0a has become firable. The problem here is that
it breaks the general hierarchical design by making an Object (O0) reponsable for
Objects (O2) which are above itself in the hierarchy. Object O0 may well over-
look(15) firable events in O3 or O1 because it does not have a complete view of the
situation above itself.

3. Object O4 sends a message to every Object below itself, following the total order
, telling them to stabilize again, even if their own state has not changed. In this

technique, the resources are exploited in a more rational way than in proposition 1,
the hierarchy is respected and completeness is ensured, by opposition to proposi-
tion 2. The inconvenience is that by following blindly the total order, even com-
pletely unrelated Objects (here O1) are contacted, thus slowing down the whole
process, since these other Objects may well be engaged in independent transac-
tions.

We propose a combination of the latter two solutions. The goal is to respect the hierarchy, to
fire exhaustively the firable events, and to try to restrict the stabilization process to a set of

15. The firing of an internal transition is said to be overlooked if the Object it belongs to accepts a method call
before the transition is fired. This violates the semantics of CO-OPN because the Object would then be unsta-
ble when serving the method call.

O2

O0

O3

O4

m4

m4 with m2...m0b

m0a m0b

m2
t3 with m0b

O1
t2 with m0a

m1
170

The Concurrency Control Layer
relevant Objects. Only the Objects the state of which has changed (O0), and the Objects
which depend directly on the latter for their stabilization (O2 and O3) will be considered.

• The Objects the state of which has changed are simply the Objects which have success-
fully replied to a subtransaction. The list of Xids referring to these Objects is automati-
cally transmitted along with the commitments (see Locking Rule #ii on page 153).

• The list of Objects which depend directly on the previous group for their stabilization may
be consituted simply by a static knowledge of the configuration of the hierarchy. We sup-
pose that everyone has a copy of a table StabClients which gives the list of Objects
depending on a given other Object for their stabilization: StabClients(O0) would return the
names O2 and O3. Another dynamic and more accurate solution would be to exploit the
idea of proposition number 2 above, i.e. to transmit as additional argument of a committed
subtransaction the entire list of Objects which have failed a stabilization step on the modi-
fied Objects and which will have to be reactivated by O4 to check whether the failed syn-
chronization can succeed now. In our example, the reply of method m0b would return the
names O2 and O3 as additional information. Unfortunately, in order to be more accurate
than in the static solution, it is necessary for the couples O2-O0 and O3-O0 to continually
tell each other whether their local states still allow the synchronization to take place. If
this is not done, then the subtransaction reply messages would just return a full copy of the
relations which we proposed to store in the static tables. Therefore we choose the table
solution.

The following figure describes how the entire synchronization and stabilization take place.
We can see that Object O1 is effectively excluded, although its position number would logi-
cally make it participate in the stabilization, since comprised between O0 and O2 which
themselves take part in the process.

Figure 102. Synchronization and Stabilization for figure 101 (1st part)

O3

O2

O0

m
2

s
u
c
c
e
s
s

m
0
a

s
t
a
b
i
l
i
z
e

s
t
a
b
i
l
i
z
e
d

s
t
a
b
i
l
i
z
e
ds

t
a
b
i
l
i
z
e

O4

s
u
c
c
e
s
s

f
a
i
l
u
r
e

m
0
b

171

6. Operational Semantics of CO-OPN Objects
Figure 103. Synchronization and Stabilization for figure 101 (2nd part)

In the examples described until now, all objects were connected rather tightly, by direct
client-furnisher relationships. We have yet to verify that our method also works in the cases
where Object hierarchies are loosely connected, like for instance in the following figure,
where the activity advances in three phases from O5 to O4. The dashed lines represent
stabilize commands.

Figure 104. Stabilization by Extending Spheres

The hierarchical stabilization algorithm (function StabilizeLowerObjects), given in
appendix A.3, maintains a set ToStabilize of Objects remaining to be stabilized. At each iter-
ation, the set ToStabilize is augmented with the set of Objects which are StabClients of the
Objects modified during the previous iteration. This is how the set of “interesting” Objects
is extended until there are no more new StabClients to take into account. This set may
finally include all the Objects of the specification in the worst case. At the same time, the
current Object, called LowestObject, is always the lowest Object extractable from the set

m
0
a

s
t
a
b
i
l
i
z
e

s
t
a
b
i
l
i
z
e
d

s
u
c
c
e
s
s

O3

O2

O0

O4

s
t
a
b
i
l
i
z
e

s
t
a
b
i
l
i
z
e
d

s
t
a
b
i
l
i
z
e

s
t
a
b
i
l
i
z
e
d

m
0
b

s
u
c
c
e
s
s

s
t
a
b
i
l
i
z
e

s
t
a
b
i
l
i
z
e
d

O0

O3

O5m5

m5 with m0a

m0a m0b

t3 with m0b&m1a

O1

m1a

O4

m4

t4 with m1b

m1b

1

5 6

9

4

2

10
3

7 8
11

12
172

The Concurrency Control Layer
ToStabilize: This guarantees that among all the Objects having firable internal transitions, it
is always the lowest in the set which is chosen, and thus it is ensured that no event is being
overlooked by the algorithm. The LowestObject may be removed from the set ToStabilize if
it still is the lowest Object of the set at the end of the iteration. If all partial stabilizations
terminate, then the set ToStabilize will grow down to the empty set after a finite time.

If the prototyping tool had the freedom to establish itself the total order among Objects, then
it would be judicious to assign the highest numbers to Objects like O3 above, which offer no
methods and only serve as auxiliary connectors between Object hierarchies. The conse-
quence would be to confine the transaction as long as possible to the local set of Objects
which are tightly connected. By preventing transactions from spreading too fast, locking of
new Objects is delayed, with the benefit that some concurrency may be preserved in the
system. Our algorithm works even without this optimization and is at least clever enough
not to follow blindly the total order, which would inevitably lead to locking every object of
the system for each transaction.

The example of appendix E starting on page 267 shows a complete stabilization in the case
of the collaborative diary application. It also elicits an unexpected consequence of the total
order, which is that the Object at the interface of the system (GIL2) cannot perform in an
atomic sequence the operations of adding a meeting to the diary and of checking whether it
creates a conflict. This is because the detection of the conflict requires the data to transit
through Objects DSA2 and DSA1, which are higher in the hierarchy than GIL2 and which
therefore will not be stabilized before the end of the atomic sequence. Consequently, the
operation of checking for possible conflicts will have to be performed later, when the whole
system has been stabilized(16). In other words, it is not a perfect solution either to put the
auxiliary connector Objects at the highest ranks in the system, as recommended in the
previous paragraph.

6.3.5.3 Finalizing the Synchronization and Stabilization

In the previous subsections was described the general case where a stabilization happens
during the evaluation of an event. We still have to show how the top-level Object terminates
the treatment of an event.

The top-level Object is always activated by an external event transmitted by the corre-
sponding synchronous/asynchronous interface. The property which distinguishes a top-
level Object from other Objects is that they must adequately finalize each event. This results
in two additional duties, which are to stabilize all the Objects which may be indirectly
modified by the current event and to coordinate the atomic commitment protocol. We are
interested in solving the first issue, the second consisting simply in executing the standard

16. Here we see the benefit of the call-back facility at the system interface, which serves as a substitute for the
stabilization mechanism which is employed within the CO-OPN implementation.
173

6. Operational Semantics of CO-OPN Objects
two phase commitment protocol on the set of Objects which have taken part in the transac-
tion.

The top-level Object of a transaction is not necessarily the highest Object in the specifica-
tion regarding the total order. In other words, because of the anti-inheritance of instability,
the effects of a given event may spread upwards and above the top-level Object which the
event is rooted at. This means that the top-level Object will have to send stabilize
messages to Objects which are higher in the hierarchy. For this we introduce a meta-mecha-
nism, which is not part of the normal execution, and which consists in a cooperation
between the different synchronous/asynchronous interfaces. This time it is not too embar-
rassing to invert the client-furnisher relation, because it happens outside of the regular
execution scheme. We will always start transaction Xids and synchronization vectors with a
special-purpose root so that Objects may know which event the stabilization requests are
associated to. If this is not done, the Objects which are already locked will not recognize the
commonality and thus consider it as an independent activity which must be set to wait.

An example of execution is given in appendix E. Notice how important the stabilize
messages are for the event to be propagated as far as possible.

6.3.6 Distributed Prototype Startup

At startup, there are two tasks to fulfill. The first is to ensure that all Objects have a unique
number which respects the dependency graph. The second is to coordinate the stabilization
needed by Objects which have unstable initial states.

6.3.6.1 Establishment of a Total Order

The assignment of unique numbers which respect the dependency graph can be done either
at compile time, or at link time, or at program startup. The last solution requires the election
of a coordinator which explores the prototype in order to discover its topology and which
establishes the numbering and transmits the assignments to all Objects by the means of
special-purpose messages. We choose for the moment a more static solution, which is to
generate at link time some definitions, which are part of the model structural description
layer of each Object (see figure 79 on page 139). These definitions establish two tables: The
first table gives the correspondence between the name and the assigned number of every
Object, and the other table implements the StabClient relationship, i.e. for each Object o it
gives the list of Objects which have an internal transition synchronizing with a method of o.

6.3.6.2 Stabilization at Startup

Objects will often receive initial markings which make themselves or a StabClient of
theirs unstable at startup. In order to coordinate the needed stabilization, the highest Object
174

The Resolution Layer
in the system will enter its StabilizeLowerObjects function (see appendix A.3) with the
list of all Objects as ToStabilize parameter. Then it will have to apply Stabilize on itself
and to coordinate an atomic commitment protocol before the system is ready to receive
input.

6.4 The Resolution Layer

6.4.1 Solving CO-OPN Events by Resolution

Our objective is to find the most efficient way of executing a prototype according to the
inference rules which define the dynamic behaviour in CO-OPN. For this we need a resolu-
tion mechanism. Resolution works by applying the inference rules backwards until the inital
goal, i.e. the event, is reduced to the empty goal, thus proving that the system is able to
handle the given event [Padawitz 88]. Similarly, if we refer to a normal Prolog execution
[Colmerauer 83], we see that the body of a clause is progressively and entirely reduced,
working in the textual order, before it can be concluded that the clause is successful.

Compared to the previous, deductive approach of chapter 3, our purpose is now to take the
source state of the system for granted, since, in an implementation, resources cannot simply
appear when needed. This means that rule MONOTONICITY will no longer be employed. We
will proceed likewise for ordering the operations in a temporally correct order: For instance,
it is clear that the preconditions of an axiom should be evaluated before solving the associ-
ated synchronization or producing the postconditions. Although not needed from the point
of view of pure logic, this is required for the system to have a “natural” behaviour, and for
the variable assignments within transitions and methods to be performed correctly w.r.t. the
expected data flow, since all parameters now have strong modes.

6.4.2 Parallel and Distributed Prolog Variants

We have already many times referred to the Prolog language for describing the notion of
search non-determinism and how it is implemented. In this work we also want to exploit
existing results in the fields of parallel and distributed implementations of this language,
because there are some analogies with the distributed part of CO-OPN. There are two fami-
lies of Prolog implementations which we are interested in, namely the process-based Prolog
extensions and the and-parallel implementations of sequential Prolog.

6.4.2.1 Process-Based Prolog Extensions

In the class of process-based Prolog dialects [De Bosschere 94] the parallelism is managed
explicitely at the programming language level, by addition of primitives for dynamically
175

6. Operational Semantics of CO-OPN Objects
creating processes and for communicating and synchronizing. These dialects lend them-
selves well to distributed implementations since they disallow state sharing. The most rele-
vant works for us are Delta-Prolog [Pereira et al 86] and CS-Prolog [Ferrenczi&Futo 92]
since they support distributed backtracking. They are however too restricted for CO-OPN,
because they do not have the notion of simultaneity, i.e. all requests are serialized, and
therefore they are not faced with the same problems as we have with shared objects.

In [Eliëns 92] a description is made of a Prolog dialect which systematically avoids distrib-
uted backtracking by memorizing all results from remote predicate evaluations. This
requires huge amounts of memory, and would not work in the case of CO-OPN, since we
have to take into account the possibility that previously acquired resources may be
requested by Objects with higher priority, and vice versa, i.e. resources which were initially
not available may be freed by aborted requests.

6.4.2.2 And-Parallel Implementations of Prolog

The other related class of Prolog implementations is based on and-parallelism and aims at
transparently parallelizing sequential programs in order to achieve better performance. In
and-parallelism the sub-goals constituting a given program clause are evaluated in parallel,
although they are clearly sequential in the usual interpretation of Prolog. And-parallelism is
interesting for us because of its analogy with the simultaneity operator of CO-OPN: In both
cases all parallel branches must succeed, as indicated by the and appellation. In and-paral-
lelism, the processes are workers which are continuously fed with new sub-goals and envi-
ronments in which the sub-goals are to be evaluated. Although most and-parallel
implementations of Prolog are designed for multi-processor machines with shared memory,
the strategies developed for coping with variable assignment collisions may be reused for
resolving resource distribution conflicts within shared Objects in distributed CO-OPN
implementations as will be explained below.

The most important problem to resolve in and-parallel Prolog is the detection and correct
management of shared variables [Hermenegildo&Rossi 93], i.e. variables which are taken
as arguments by several sub-goals evaluated in parallel. If such a variable is unbound, i.e.
unassigned, at the beginning of an and-parallel execution, then only one sub-goal, the
producer, must be allowed to assign a value to it, and all other participants, the consumers,
must conform to the decision of the producer since variables may only be assigned once in
Prolog. Consider the following example, where p is a predicate defined by the clause

p(X,Y) :- a(X), b(Y).

Meaning that p is satisfied for any assignment of variables X and Y which also satisfy the
sub-goals a(X) and b(Y). For a call like p(1,2), the sub-goals a(X) and b(Y) can safely be
executed in parallel since they are independent. The problematic case is the call p(S,S)
which results in the evaluation of a(S) and b(S) by replacement of the formal parameters by
176

The Resolution Layer
the shared variable S: If S is already bound to some value, then both a and b are consumers
w.r.t. S and may be executed in parallel, but if S is unbound, then one of a and b must
become the producer while the other is necessarily a consumer, and this introduces a depen-
dency between the sub-goals. To guarantee a correct parallelization, three methods have
been proposed in the literature:

• To complete a thorough compile-time analysis of the source text in order to detect all situ-
ations in which it is safer to execute goals sequentially because it cannot be determined
statically whether two given goals will always be independent or not
[Chang, Despain&DeGroot 85]. This approach is very pessimistic and leads to poor per-
formance when compared to the following propositions.

• To generate some simple tests to be verified at run-time and which partially replace the
previously mentioned static analysis technique. Two goals are then serialized when the
dynamic tests show that they are dependent. This method is called Restricted And-Paral-
lelism and allows a broader class of programs to be parallelized [Hermenegildo 86].

• The last solution, which allows the greatest amount of parallelism, is to perform all verifi-
cations and process scheduling at run-time [Kumar&Lin 86], [Tebra 87], [Drakos 90]:
Consumer processes are restarted if it turns out that they have read or generated a value
which is overwritten by a producer process. All dependencies are managed dynamically,
which may however lead to excessive overhead when exploiting very fine-grained infor-
mation within advanced intelligent backtracking schemes [Drakos 90].

We are especially interested in [Tebra 87] and [Drakos 90] because they present a so-called
optimistic or unrestricted and-parallelism which is designed to work as well on distributed
memory machines(17), and are therefore very close in spirit to our approach for imple-
menting the simultaneity of CO-OPN. The secret of their approach is to remember for each
variable the list of processes which have accessed them in order to decide dynamically
which one is to be considered as a producer w.r.t. the other processes. This mechanism is
easy to retranscribe in CO-OPN because of the natural encapsulation of Objects.

Although there is no producer or consumer as such in a simultaneous synchronization, since
the participants in a simultaneity are necessarily independent according to the rules of CO-
OPN, we will need to institute a hierarchy among requests in order to ensure that all solu-
tions, i.e. token combinations, are explored exhaustively. If this hierarchy is not enforced,
then conflicts may well never terminate, since each request will systematically undo the
work of its rivals in order to achieve the best results for itself. This is the subject of the next
sub-sections.

17. Tebra describes a scheme where all assignments of shared variables are announced to the other processes
by message-passing. Drakos uses a hybrid architecture where the variables are located in shared memory, but
processes synchronize by message-passing.
177

6. Operational Semantics of CO-OPN Objects
6.4.3 Assignment of Object and Request Priorities

In parallel Prolog, in order to establish the producer-consumer relationship, priorities must
be assigned to the different processes: The producer is the one which receives higher
priority w.r.t. the consumers of a given variable. If the objective is to generate solutions
exactly in the same order as in sequential implementations(18), then the producer will be the
leftmost predicate in the source text. Therefore process priorities will simply be assigned
according to the textual order by decreasing importance.

In CO-OPN, priorities are to be assigned to the different branches of simultaneous requests.
We have seen in chapter 3 that the semantics of an Object is built incrementally by taking
into account more and more client Objects by following strictly the increasing order of the
static dependency graph. If only one token is available for two competing simultaneous
invocations, then it must be given to the call coming from the lowest, i.e. the nearest,
Object. The priority of a request is therefore determined by the number of the calling
Object, and this information is available in the Xid of the enclosing transaction. This rejoins
the Prolog point of view that processes are discriminated by their relative priorities.

We still have to find out how to decide about the respective priorities of several requests
coming from the same Object. There are two situations to investigate, the first being when
the caller is itself shared by a simultaneity coming from above, as in case (a) below, and the
second being when branches of a simultaneity involve the same participants and must be
discriminated arbitrarily, as in case (b) of figure 105.

18. This is a frequent requirement since sequential Prolog programs will often not terminate when evaluated
in another order than the usual textual order or when parallelized naively, i.e. without testing that the states of
the shared variables effectively allow independent concurrent execution [DeGroot 84].
178

The Resolution Layer
Figure 105. Problematic Priority Assignments in Simultaneous Synchronizations

In the case (a) Object O0 cannot decide which one of T101 or T102 is to be given the highest
priority if it does not additionally take into account the respective superiors T21 and T31.
The priorities of the superiors will therefore be explored upwards by examining the Xids
until the first difference is found: In the given situation, T101 and T102 receive respectively
the priorities of T21 and T31, i.e. 0 and 1. This has the twofold advantage that it is confor-
mant with the semantics of CO-OPN and that the total order is the same for all Objects, in
particular for both O0 and O1, which reduces the need for coordination between participants.

In the case (b) an arbitrary priority must be enforced, since both requests have the same
importance according to the semantics of CO-OPN. We let the emitter of the simultaneity
decide, for instance by following the textual order of the specifications, and transmit this
information by the means of the synchronization vector, as shown in section 6.3.4. It should
be noted that we prefer not to use the serial number of the subtransaction Xids, i.e. 1 for
T101 and 2 for T102, since these numbers change each time a request is aborted and
restarted.

6.4.3.1 The Problem of Deep Backtracking

We have just seen the role of the priorities for shared Objects. It is however important that
both the emitter of a simultaneous synchronization and the shared Object(s) have the same
view of request priorities, because of the possibility of deep backtracking (also sometimes
called outside backtracking): When the simultaneity is terminated, the flow of control may

O2

O1

T43T42

T21 T31

O4

Tx4

O3

m4

T102T101

m3m2

m1a m1b

m0a m0b

m4 with m2&m3

m2 with m1a m3 with m1b

m1a with m0a m1b with m0b

O0

(a) Multiple Object Sharing

#? #?

#0 #1 T102T101

O1

Tx1

m1

m0a m0b

m1 with m0a&m0b

O0
#? #?

(b) Identical Participants
179

6. Operational Semantics of CO-OPN Objects
proceed forward and a failure may appear in subsequent computation. It is then necessary to
(deeply) backtrack into the previously succeeded simultaneity and ask for a new answer.

Figure 106. Example of Deep Backtracking from a Sequence back into a Simultaneity

In figure 106, we suppose that the synchronization of O4 with O3 fails because one of the
parameters X or Y of m3 has a bad value. Object O4 must then send a retry message to O1 or
O2, which will be forwarded to O0, in the hope that this will assign new values to the param-
eters which are acceptable for O3. In order to ensure an exhaustive search for all solutions,
O4 must ask for retrying the request which has the lowest priority w.r.t. the shared Object
O0. Therefore O4 must know how the priorities are assigned by O0 (and by any other shared
Object involved in the given simultaneity). We could imagine a scheme where all partici-
pants transmit along with the successful replies their own vision of the priorities, so that the
emitter may take this into account when sending retry commands. This information would
however be too local, since the same branch of a simultaneity may have the highest priority
at one Object and have the lowest priority for another, as in the next figure:

O1

O0

T42T41

T10 T20

O4

Tx4

O2

m4

m2m1

m0a m0b

m4 with (m1(x) & m2(y)) .. m3(x,y)

m1 with m0a m2 with m0b

#1 #2

#1 #2

O3

m3

T43
180

The Resolution Layer
Figure 107. Incompatibility of Request Priorities in Shared Objects

Here we see that the branch T65-T53-T31-T10 has the highest priority for Object O3, while it
has the lowest priority for Object O0, and vice versa for the branch T64-T43-T32-T20. It is
therefore not possible for O6 to establish a globally coherent hierarchy among the branches
of the simultaneity it emits.

The solution, since we do not want to exclude multiple Object sharing, is to require that
none of the branches of a simultaneity produce such priority inversions. To this end, it is
necessary to perform at compile time an exhaustive analysis of all synchronization combi-
nations to verify that emitters and receivers always have a compatible view of invocation
priorities. If this condition is not fulfilled, it is up to the developer to renumber the Object
hierarchy (in the above example it suffices to permute the numbers of O4 and O5) or reorga-
nize some groups of Objects by merging or splitting them. One frequent situation is the
following:

O5

O3

T64T65

T53 T43

O6

Tx6

O4

m6

m4m5

m3a m3b

m6 with m4&m5

m5 with m3a m4 with m3b

m3a with m1 m3b with m2

#1 #0

O1

O0

T32T31

T10 T20

O2

m2m1

m0a m0b

m1 with m0a m2 with m0b

#0 #1
181

6. Operational Semantics of CO-OPN Objects
Figure 108. A Disallowed Object Topology and a Possible Remedy

The situation (a) of figure 108 is not allowed, because O2 will assign the highest priority to
T20, since the target Object O0 is lower in the hierarchy than the target for branch T21,
which is O1. From the point of view of O0, this priority assignment is unfortunately wrong,
and therefore we propose instead the topology (b), where the original Object O2 is split into
O2 and O3. Another possibility would have been to merge O1 with O0 or O2, but in the
normal refinement process, as more and more details are added to the specification, Objects
tend to grow in size and it may therefore often be more attractive to split than to merge.

6.4.3.2 The Search within Sequences and Stabilizations

All remarks done so far about the distributed resolution mechanisms concerned the simulta-
neous synchronization operator of CO-OPN. Sequences and stabilizations are straightfor-
ward to implement in comparison with the simultaneity because it is possible to implement
classical sequential backtracking schemes at all levels without establishing artificial priori-
ties: The chronological ordering defines a natural hierarchy among requests. It is however
very difficult to optimize the related distributed backtracking mechanism:

• The cumulated effects of non-deterministic choices made during the search may lead to
highly unstable behaviours. The consequence is that the progress in the direction of a
solution will often be very irregular, something which makes optimizations difficult. In
[Drakos 90] was defined an intelligent backtracking mechanism which could be useful for
implementing sequences and stabilizations in CO-OPN, since it allows a form of distrib-
uted dependency directed backtracking [Stallman&Sussman 77], i.e. backtracking beyond
several choice points, which are not reset, in order to directly retry the choice point which
has been identified as responsible for the current failure in the search process. The pur-

O1

O0

T21

T10

T20

O2

m1

m0a m0b

m1 with m0a

m2 with m1&m0b

#0
#1 (for O0)

m2

#0 (for O2)
#1

O1

O0

T32T31

T10 T20

O2

m2m1

m0a m0b

m1 with m0a m2 with m0b

#0 #1

O3
m2 with m1&m0b

m3

#1#0

(a) An Incoherent Situation (b) A Possible Solution
182

The Resolution Layer
pose in not resetting the intermediate choice points is to avoid undoing computations
which are believed to contribute to the currently elaborated solution. These choice points
must however be somehow remembered and eventually reset in order to guarantee the
completeness of the search. Drakos himself admits that the quantity of dependency infor-
mation to manage is so high, and that the interaction protocols are so complex, that his
clever algorithm is outperformed by the more sequential ones.

• A mechanism which is simpler than dependency directed backtracking is the one called
backjumping [Gaschnig 79], the principle of which is also to identify and directly back-
track to the choice point responsible for the current failure, but this time the intermediate
choice points are reset. This optimization is very common and unexpensive to implement,
the problem being solely not to backjump too far and miss potential solutions. This tech-
nique may be applied locally to the Object application layer as a step of the incremental
prototyping process, as we will show in the next chapter: The developer may thus greatly
ameliorate the efficiency in the search for the combination of input tokens which allow
firing the current event. Unfortunately the synchronizations may not be optimized that
way since there is not enough global information available at the user-level or even at
lower layers to ensure that solutions will not be missed by backjumping.

6.4.4 Levels of Parallelism Allowed by the Resolution Layer

To end the presentation of the resolution layer, let us discuss the different levels of inter-
Object parallelism which could be practiced in simultaneous synchronizations. In
increasing levels, we can mention the following:

1. Completely sequential: The branches of the simultaneity are emitted one by one,
each one being activated as soon as the reply for the preceding has been received.

2. Emit all branches in parallel except those which might induce Object sharing. This
is similar to the and-parallel strategy of [Chang, Despain&DeGroot 85] where
static analysis is used to detect all situations in which it is safer to execute goals
sequentially.

3. All branches are emitted in parallel and are serialized by shared Objects. If a
request with high priority is received or retried in a shared Object later than a
request with low priority, then the latter must be restarted (by sending an adequate
RestartLower message to the emitter of the simultaneity, see appendix B) in order
to conform to the result of the former. A low priority request may need to back-
track because of a conflict with higher priority requests within a shared Object: To
prevent solutions from being missed, it must wait for the right to backtrack, which
is a special message circulating along the branches of a synchronization and which
guarantees that all requests with higher priority have attained a dependable solu-
tion. In fact the right to backtrack is allotted to a synchronization branch when its
sibling with immediately higher priority has terminated. This is the optimistic and-
parallel approach of [Tebra 87].
183

6. Operational Semantics of CO-OPN Objects
4. Use the same strategy as before, but instead of resorting to a right to backtrack,
requests with low priority are systematically restarted by shared Objects when a
request with higher priority backtracks, resulting a generalized usage of the mes-
sage RestartLower. This is simpler to implement, generates more parallel activity
and should lead to slightly better global performance in programs with little or no
non-determinacy, which is one of the main purposes of the incremental prototyping
process.

5. Using the same resolution mechanism as above, we weaken the notion of conflict.
Until now we had a strict ordering of tokens established at the beginning of a
simultaneity, in order to guarantee the completeness of the search. The highest pri-
ority request had to first try the tokens with lowest indices and so on. Instead of
this, we can allow the ordering to be dynamically redefined each time a higher pri-
ority requests arrives: The advantage of this scheme is that lower priority requests
are not obligatorily restarted. The price to pay for this optimization is a heavier
iteration mechanism: It may be necessary at each choice point to remember the
complete set of tokens (or their addresses in memory) which have already been
tried. If there are few tokens in each place, then the cost will be negligible or even
inferior to more classical iteration schemes. If on the other hand the places contain
many tokens then the resulting non-determinacy will also be higher, leading any-
way to poorer performance because of backtracking. The remedy is to avoid con-
sidering places as a general-purpose repository and instead to define the tokens as
structured data types for storing the elementar values. That would be a highly rec-
ommended refinement step for the specifications. This is why we adopted this
solution for the implementation of CO-OPN.

6. Instead of systematically restarting lower priority requests upon conflicts in shared
Objects, it is possible to directly send new replies. For this to work properly, the
caller must still have an internal state which enables him to accept these new
replies and return to the point where he was initially waiting for such a reply. This
implies for instance that these requests have not been aborted in between.

This ends our presentation of the control layers of CO-OPN Objects. The next section
covers the issues in generating prototypable application layers.

6.5 The Generated Code

6.5.1 Overview of the Model Structural Description Layer

The model structural description layer is essentially an auxiliary layer which serves as a
binding between the application layer and the run-time support of CO-OPN prototypes. It
contains:
184

The Generated Code
• The intra-Object structure: In the form of data structures or functions, a mapping between
the places and the transitions in order to help the control layer accelerating the search for
the next firable event. This is a classical optimization used even in the field of compilation
of Petri nets [Colom, Silva&Villaroel 86], [Taubner 87].

• The inter-Object structure: The structural description layer is a practical place for defining
frequently changing tables relative to the topology of the system, as mentioned in sub-sec-
tion 6.3.6.1. These are data which are orthogonal to the intra-Object functionality and
should therefore not be declared at the application level.

• The auxiliary definitions necessary to have convenient interfaces to send and receive
primitives at the application level: This is necessary since we want to hide all the lower-
level arguments needed by the underlying control layers. We also need type definitions
and functions for saving in the internal control structure (see appendix A.4) the specified
parameters for sent and received method calls.

Let us now proceed to the description of the application layer.

6.5.2 The Application Layer

6.5.2.1 General Objectives

The main objective in the design of the application layer is to support our incremental
prototyping methodology. This means that we focus more on software engineering princi-
ples such as safety, modularity and legibility of the source code than on the resulting execu-
tion efficiency, although this latter issue has not been neglected either. To this end, it has
been decided that the application layer should be orthogonal to the resolution, concurrency
control and fault-tolerance mechanisms. For the latter two points this seems to be well
accepted principles. It was however a challenge to design a resolution procedure which
allowed executing application code written in an imperative language. A final concern is
that we want to promote the independency of the methodology from the target language and
tried therefore to limit the use of language-specific constructs.

6.5.2.2 Mixing Procedural and Logic Styles

Since the programming language targeted by OOMP is of the imperative kind, it means that
CO-OPN constructs belonging to the logic paradigm will need some adaptation to be imple-
mented. This concerns the use of logic variables and of non-determinism.

Elimination of Logic Variables

Logic variables differ from variables in procedural languages by two main characteristics.
The first is that they may be assigned only once; before the assignment they are said to be
free, and afterwards they are said bound and may then only be read from. The second is that
185

6. Operational Semantics of CO-OPN Objects
when they are used as parameter to a predicate, it is generally not possible to determine by
looking at the source program whether they will read or written by this predicate.

We have decided not to support logic variables in the generated prototypes because it is
more efficient and more readable to replace them by normal variables instead of simulating
their behaviour. This has two consequences: First, the single-assignment rule will not be
enforced by the target language compiler, which may eventually lead to erroneous execu-
tions. Second, the profiles of CO-OPN methods will have to be precised by mode declara-
tions, an operation which then becomes a part of the normal refinement process of the
specifications. This is necessary because there exists no satisfying mode inference algorithm
capable of determining unambiguously the modes of parameters simply by static analysis of
the source text [Somogyi, Henderson&Conway 96]. The nature of our mode annotations is
described in section 2.11.2.

Supporting Search Non-Determinism

The general way of supporting search non-determinism is by backtracking, a mechanism
which is uneasy to reproduce in procedural languages. The problem is that it is not possible
to implement directly the stack needed for remembering the choice points on the system
stack of procedural languages [Aït-Kaci 91]: Whereas the stack of a procedural language
shrinks when exiting from a function call, the stack of a logic language must keep the infor-
mation relative to successful evaluations of non-deterministic predicates.

There are mainly two solutions for supporting the non-determinsitic features of CO-OPN:

• Either to make explicit the search procedure at the application layer. This means that the
generated code will be full of loops and manipulation of iterators. This strategy may lead
to very good performance, but is contrary to our general principles of software engineer-
ing mentioned above.

• Make non-deterministic primitives available to the user and hide the resolution mecha-
nism. This induces a certain cost at run-time, but gives raise to much cleaner code at the
application-level.

For the following axiom, belonging to an Object Divider and where x and y are variables of
type Natural:

(y=0)=false => Divide : Dividend(x), Divisor(y) -> Division(x/y);

this is how we want the code to look like in Ada95:
186

The Generated Code
1 procedure Divide (O: access Abstract_Divider; Result: in out Status) is
2 x : Natural := Natural_Prototype;
3 y : Natural := Natural_Prototype;
4 begin
5 Get(O.Dividend, x);
6 Get(O.Divisor, y);
7 if (y=0)/=false then return; end if;
8 Put(O.Division, x/y);
9 Result := Success;
10 end Divide;

Figure 109. Code Generated for Transition Divide

Let us comment this code. First, the transition is implemented as a procedure which returns
a parameter Result, the role of which is to tell whether the execution failed or succeeded.
By default it fails: This makes the code more succinct, as e.g. in line 7. The parameter O is a
reference to the Object instance the transition belongs to: This gives us access to the places,
which are private variables of the class Abstract_Divider defining our Object. Lines 2
and 3 declare the local variables. In Ada95, polymorphic variables must be initialized as
soon as they are declared, hence the assignment to the value Natural_Prototype. Lines 5
and 6 retrieve the needed tokens from the input places of the transition. The Get procedure
is non-deterministic, which means that if it fails then the caller must backtrack. Backtrack at
the application-level is performed by exiting from the procedure. The underlying resolution
mechanism will then prepare the environment in such a manner that when the procedure is
called again, then the previous choice point will deliver its next solution. This is supported
transparently in our implementation. Line 7 performs the test of the global condition. If it
fails, then we must backtrack, and this is indicated to the resolution procedure by simply
returning with Status assigned to its default value Failure. Line 8 executes the postcondi-
tion. The Put procedure is deterministic: It does not define a hidden choice point. Finally, at
line 9, the execution is marked as successful.

There are two other kinds of non-deterministic operations to support: The random choice of
one axiom among several, and the synchronization with other methods. For the first, we
simply furnish a non-deterministic procedure called ChooseAxiom similar to the Get. For
the second, we make available an asynchronous Send and a synchronous Call primitive.

Now, what does it take to support this transparent resolution mechanism? We need two
things:

• The first is a way of transferring the control directly from a failed non-deterministic prim-
itive into the resolution control layer, by short-circuiting the application-layer. This is
done by resorting to exceptions, and although this may be a bit heavy, it achieves perfectly
the desired transparency. Something similar could be achieved with the setjmp and
longjmp functions available on most Unix platforms: Their effect is also to transfer the
control transparently from a nested function call to a caller situated several levels down in
the invocation hierarchy. Unfortunately, the setjmp/longjmp functions do not restore cor-
187

6. Operational Semantics of CO-OPN Objects
rectly the whole Ada environment: Exception handlers and other language-specific data
are not taken into account by the setjmp/longjmp functions. On the other hand, the
exception mechanism is predefined in Ada, and this means that all the information is pre-
served. We define an exception called Backtrack for this usage.

• The other mechanism is a hidden stack for storing the choice points and undoing side-
effects upon backtracking. This stack is defined as an object-oriented class pattern: Each
element of the stack is an object of the Undoable class or one of its heirs, i.e. an object
which implements the procedure Undo. A similar construct can be found in
[Gamma et al 95]. The Undo procedure takes no argument, it simply supposes that all the
information needed for undoing an operation is already available inside the object. This
allows the backtracking mechanism to undo any kind of operation stored on the stack,
without having to know what the operation consists of. The Undoable objects are instanti-
ated during the normal execution of all non-deterministic primitives, as well as those
which produce side-effects, like the Put procedure seen above.

The backtracking mechanism works as follows:

1. If a procedure implementing a transition or a method exits due to the exception
Backtrack, or terminates normally with its argument Result set to Failure, then
the backtracking mechanism is started.

2. The last choice point, i.e. the top of the stack, or sometimes the one immediately
below, is then marked as To_Retry.

3. A global boolean variable Replay_Mode is set to true.
4. A global pointer Stack_Cursor is reset to the bottom of the stack.
5. The application-level procedure is called again. Each primitive it calls which is

non-deterministic or has side effects will inspect the variable Replay_Mode and
find that it is set to true, meaning that a special behaviour is expected: Instead of
initiating the search for a solution by pushing a new choice point on the stack, they
must reuse the choice point they created during the normal execution before the
backtrack. This choice point is given to them by the pointer Stack_Cursor. If this
choice point is not marked by the flag To_Retry, they must simply simulate nor-
mal execution by returning the same result as the last time. This result was previ-
ously stored in the choice point. If on the other hand the flag To_Retry is set, then
it means that the next solution must be searched for on the basis of the information
in the choice point.

6. The pointer Stack_Cursor is advanced to the next choice point before the next
primitive is called by the application layer.

7. When Stack_Cursor has reached the top of the stack, the variable Replay_Mode is
reset to false, and normal forward execution starts again.

The point is of course to make as efficient as possible all operations executed when
Replay_Mode is true, for instance by caching the previous results inside the choice point.
188

The Generated Code
That way it is possible to reduce the cost of reexecuting a transition or method from the start
at each backtrack.

6.5.2.3 Taking Concurrency into Account

Each transition and method of the specification is implemented as a procedure of the target
programming language. In [Buchs&Hulaas 96] we presented another strategy where we
used three smaller procedures, corresponding respectively to the precondition, synchroniza-
tion, and postcondition of axioms(19). This had the disadvantage that it was difficult to share
information, e.g. the variables of the axioms, between these three parts.

Execution at the application layer is seen as sequential. It is for instance not possible at that
level to know if the Object is shared by several branches of a simultaneous synchronization,
since all invocations are serialized. When the Object is in the position of emitting a simulta-
neity, then no tasks are used at the application layer to manage the parallel calls: It resorts to
asynchronous message sending with Send and Receive primitives(20). For instance, the
axiom T WITH (M1(x)..M2(y)) & M3 : P1(x) -> P2(y) where method M1 takes an
input parameter and M2 an output parameter, is implemented as follows:

1 procedure T (O: access Abstract_Object; Result: in out Status) is
2 x : Natural := Natural_Prototype;
3 y : Natural := Natural_Prototype;
4 M1 : M1_Xid;
5 M2 : M2_Xid;
6 M3 : M3_Xid;
7 CurrEvent : MessageId;
8 begin
9 DeclareSync(Sim(Seq(M1,M2),M3)); -- Initialize synchronization
10 Get(O.P1, x);
11 Send(M1, x); -- Start thread of M1
12 Send(M3); -- Start thread of M3
13 loop
14 CurrEvent := NextEvent; -- Wait for next event
15 if CurrEvent >= Reply(M1) then -- Is it in the thread of M1 ?
16 if CurrEvent = Success(M1) then -- Is it the reply from M1 ?
17 Receive(M1); -- Get reply from M1
18 Send(M2); -- Start M2
19 else -- It must be the reply from M2
20 Receive(M2,y); -- Get reply from M2
21 end if;
22 else -- It must be the reply from M3
23 Receive(M3); -- Get reply from M3
24 end if;
25 if Done(M2) and Done(M3) then exit; end if;
26 end loop;
27 Put(O.P2, y);
28 Result := Success;
29 end T;

Figure 110. Code Generated for a Transition with Synchronization

19. The global conditions part is decomposed and distributed among the precondition and synchronization
parts in order to check the conditions as soon as the needed variables are assigned.

20. A synchronous call primitive may also be furnished to cover the simple cases without simultaneity.
189

6. Operational Semantics of CO-OPN Objects
Let us comment this code. Lines 4 to 6 declare variables which serve as identifiers for the
different branches of a synchronization. They are useful in many places, as shown below.
The type MessageId of line 7 is predefined and constitutes the key in the control of
incoming messages. Line 9 transmits to the control layers the structure of the future
synchronizations. This allows preparing the synchronization vectors because the control
layer cannot guess the nature of the emitted synchronizations simply by observing the
ordering of Send and Receive primitives. The DeclareSync call also initializes the given
identifiers. Lines 11 and 12 start the synchronization by sending the first requests of all
branches of the simultaneity at the outermost level. The loop starting at line 13 is necessary
since there is a simultaneity to manage. Line 14 waits for the next Receive event to deliver,
and the role of the if-then-else structures of the following lines is to select the adequate
action in correspondence with the received event. The operator “>=” returns true if the left-
hand argument follows causally the right-hand argument because of a sequential synchroni-
zation operator expressed in the DeclareSync of line 8. Line 25 tests the condition for
exiting from the loop.

There are several limitations relative to the usage of variables. At the specification level, it
is not allowed for two threads of a simultaneity to assign the same variable, since the
branches of a simultaneity are supposed to be independent and all variables to be assigned
only once. It is not allowed either for one thread to assign a variable which is then read by
another. This would induce a kind of stream-parallelism which we have chosen not to
support. Other restrictions are listed in appendix C.1 on page 239.

6.6 Related Work

6.6.1 Fault-Tolerance in Executable Specifications and Logic
Programming

Most approaches do throw-away prototyping, or limit themselves to sequential and central-
ized systems. There are therefore very few references to fault-tolerance in automatic imple-
mentations of formal specifications.

The RAPIDE formalism is used in [Kenney 96] for specifying and generating implementa-
tions for transaction processing in distributed database systems. In this context it seems
obvious to reuse the two phase locking and commitment protocols, as Kenney does.

The European IPTES Project [IPTES 94] describes the incremental prototyping of distrib-
uted real-time systems, and even introduces the appellation distributed prototyping for this
activity, but does not address the problem of fault-tolerance.
190

Related Work
We know of no fault-tolerant implementations for the Prolog language, although this is a
rather natural extension if we consider logic programming as belonging to the more general
relational paradigm, like classical database systems. In Delta-Prolog [Pereira et al 86] the
notion of transaction is used in order to atomically reconfigure distributed computation
trees. This allows optimizing the backtracking mechanism by lowering as much as possible
the priority of the faulty process, and thus limiting the negative effects of a conflict. The
objective is however not fault-tolerance, but mere atomicity.

6.6.2 Distributing Strong Synchronous Systems

All current implementations of strong synchronous systems rely on a notion of clock which
synchronizes the execution of sets of processes. Processes may be distributed along a single
bus or even in more general local area networks under the condition that the real-time
constraints are still guaranteed. An exception is [Caspi&Girault 95] who present a Unix/
Internet implementation which relaxes the time constraint, as we do. Their approach is to
make the processes synchronize by message passing and to let them execute with a maximal
time lag of one period.

CO-OPN is not designed for the description of reactive systems because of its non-deter-
ministic semantics. That is why we can afford to consider instantaneity simply as a concep-
tual view instead of a real temporal constraint.

6.6.3 Compilation of Petri Nets and Algebraic Petri Nets

There are relatively few research groups working with algebraic Petri nets [Reisig 91],
although their expressivity is very attractive for modelling complex systems. This is prob-
ably due to the quasi-impossibility of analyzing and statically proving properties such as
liveness: The only general method for verifying the behaviour of an algebraic Petri net is by
simulation [Buchs 89]. The approach presented in this thesis is to our knowledge the first
attempt at compiling algebraic Petri nets.

Coloured Petri nets [Jensen 81] and high-level Petri nets [Jensen&Rozenberg 91] are close
to algebraic Petri nets, in the sense that they also allow symbolic markings as preconditions,
i.e. the terms of the preconditions may contain variables which are instantiated by pattern-
matching with the actual candidate tokens. The approach taken in [Ilié&Rojas 93] for a
subclass of coloured Petri nets called well-formed nets is to consider the choice of input
tokens as a succession of selections and intersections of groups of tuples, a method inspired
from database systems. This method is certainly more efficient than ours when it comes to
managing places with many tokens and complex dependencies between the preconditions.
The preconditions in well-formed nets may consist in combinations of four predefined oper-
ations which have the property of having easily computable inverses. Their algorithm does
however not allow the orthogonal expression of the preconditions w.r.t. to the search mech-
191

6. Operational Semantics of CO-OPN Objects
anism, as we do, since their code is not intended to be read or modified. Another interesting
contribution, applied to high-level nets, is [Bañares, Muro-Medrano&Villaroel 93] which
uses techniques taken from artificial intelligence with the objective of maintaining up-to-
date sets of tokens matching the given preconditions. The result is that the computation is
not restarted from scratch each time the firing of a transition is attempted, since the previ-
ously found candidates are remembered between each firing. This approach is also more
efficient than ours, but it is rather interpreted by nature, since the inference mechanism
needs to manipulate the preconditions as first-class objects. Again, the purpose is not to
provide implementations close to the imperative paradigm as we do.

For an overview of other approaches to implementation and simulation of Petri nets, we
refer to the survey in [Taubner 87] and the more recent [Kordon 92]. The reference
[Colom, Silva&Villaroel 86] appears to be the first serious attempt at implementing Petri
nets in high-level programming languages.

In concurrent and distributed implementations of Petri nets, most approaches attempt to
achieve better performance by automatically splitting the nets into smaller parts and
adequately placing these sub-nets on the available processors [Taubner 87],
[Chiola&Ferscha 93], [Bréant&Pradat-Peyre 94]. In the most extreme cases, each transition
is executed by one dedicated task. In our sense this approach is more related to simulation
than to real application implementation. Rather, as in [Kordon 92], we take the Petri net
model as a behavioural and architectural specification of the software to implement. We
think that it is necessary to keep the structure of the model in the generated code, if we want
the developer to recognize the entities of the specification and to be able to exploit the bene-
fits of our incremental prototyping process. Moreover, modular Petri net formalisms, such
as CO-OPN, facilitate the description of complex systems as small, loosely coupled,
modules, whereas classical Petri nets are unstructured.

[Gustavson&Törn 94] and [Holvoet&Verbaeten 95] exploit the object paradigm in order to
generate high-level implementations: They define for instance both transitions and places as
classes of the target language. Their objective is however not prototyping at the level of the
generated code.

6.7 Epilogue

Contributions

Let us establish a summary of the contributions of this chapter:

• We have defined a framework for the incremental prototyping of automatically generated
192

Epilogue
distributed prototypes based on formal specifications. Mixed prototyping in its original
form was never applied to other formalisms than algebraic abstract data types. This con-
stitutes therefore a completely new experience, and that is why there is no related work on
this topic.

• We have introduced a notion of support for transparent fault-tolerance in the field of auto-
matic implementations of formal specifications and in logic (Prolog) programming.

• We have demonstrated a way of generalizing distributed implementations of strong syn-
chronous systems by relaxing the time constraint and concentrating only on transmitting
and simulating the notion of simultaneity.

• We have shown a way of compiling algebraic Petri nets, as CO-OPN is a super-set of this
formalism.

Finally, designing a distributed implementation for CO-OPN constitutes in itself an
achievement !

Conclusion and Future Work

The purpose of this chapter was to show that our prototyping technique may be reasonably
applied to specification languages which are designed for expressing non-deterministic,
dynamic and concurrent behaviours. The particular case of CO-OPN Objects was chosen,
and this has several implications: CO-OPN is a very rich formalism, and it was therefore
necessary to provide answers for combining all the three kinds of above-mentioned behav-
iours. This has been achieved with only minor restrictions to the source language.

An important question to clarify is whether OOMP really gives the opportunity for
improving significantly the performance of the generated prototypes. There are two levels
to take into account:

• The local performance of each Object may be greatly ameliorated by removing non-deter-
minism and by prototyping the algebraic data types part.

• The performance then depends essentially on the quantity of distributed backtracking
needed at run-time, which in turn depends on the nature of the application, i.e. whether it
is search oriented and whether there are many shared Objects, which necessarily entails
conflicts. Unfortunately this is the part of the prototypes that we have chosen, at least tem-
porarily, not to let the developer infringe on.

Much work has been done in order to develop an economic stabilization procedure. More
could be done in order to ameliorate the distributed resolution layer. We have chosen to
minimize compile-time analysis of the specifications, since our primary goal was to create
the most general control algorithms. Now that this has been achieved, it might be interesting
to analyze statically different intra-Object and inter-Object dependencies in order to opti-
mize our basic algorithms. It must also be noted that CO-OPN is a research language and, as
193

6. Operational Semantics of CO-OPN Objects
thus, subject to evolution. This is already perceptible in CO-OPN/2, where the concept of
Object reference may greatly alleviate the distributed stabilization procedure.
194

Chapter 7

Prototyping the Object Application Layer

7.1 Introduction

In this chapter we will concentrate on the possibilities given to the programmer for
completing or optimizing prototypes generated from CO-OPN Object specifications.
General problems related to the choice of the target programming language or to the imple-
mentation of generic specification modules have already been treated in chapter 5, and will
not be recalled here.

7.2 General Mapping Rules

The Objects of the source specifications are mapped as follows into the programming
language Ada95:

• The Object construct of CO-OPN constitutes in itself a module and is therefore imple-
mented in a separate compilation unit for the definition of the abstract class and has one
child unit for each symbolic and concrete class.

• Mapping (compared to the general class pattern of figure 6 on page 19):
1. There are two constructors, called Create and Copy, which are not visible at the

specification level since Objects may not be instantiated dynamically in our ver-
sion of CO-OPN.

2. There are no accessors since Objects are encapsulated entities in CO-OPN. The
names of the places are not publicly visible: The associated Put and Get primitives
might be considered as private accessors since places are viewed as abstract data
types by the Object itself.
195

7. Prototyping the Object Application Layer
3. The operations are the specified methods and transitions and each one is imple-
mented by a procedure playing the role of a predicate. There is always an automat-
ically generated function called Initialize which sets the Object to the specified
initial marking.

7.3 Range of Action in the Prototyping of Objects

We give below some possibilities for prototyping CO-OPN Objects, and review them in
more detail in the following sub-sections. The developer may for instance:

• Modify the data structures, i.e. change the internal representation of places.
• Optimize the search for solutions by eliminating non-determinism or detecting earlier the

conditions which will lead an event to fail.
• Change the sequence in which synchronizations are emitted in order to increase or to

reduce concurrency.
• Implement some optimizations which are (momentarily) not performed by the specifica-

tion compiler, such as the recognition of common subexpressions.

7.3.1 Changing the Implementation of Places

Places are by default implemented as unbounded multi-sets. This is the most general solu-
tion, but this flexibility is costly and rarely needed. The developer may in many situations
know that a given place will never contain more than a certain number of tokens, and thus
use a fixed size array instead.

We would therefore like to allow the developer to change the internal representation of
places. He may perform this by providing a new concrete sub-class derived from a
predefined abstract class called Abstract_Place. This class hierarchy defines data struc-
tures which may contain any type of token. In order to prevent type errors at the application
layer, e.g. by inserting a token of type natural in a place supposed to hold only boolean
values, there exists a predefined generic package called Typed_Places_G. This package
defines (by a hidden type composition) a strongly typed interface for the places actually
implemented by sub-classes of Abstract_Place. It is thus only allowed to Put and Get
correctly typed tokens.

When defining new implementations for places, it is important to take into account the kind
of concurrency allowed by the control layers. If intra-object concurrency is permitted then it
is necessary to protect the places and tokens by programming exclusive access mechanisms.
There is currently no intra-object concurrency in CO-OPN prototypes since simultaneous
196

Range of Action in the Prototyping of Objects
requests are serialized and stabilizations are sequential. The places are therefore easier to
implement.

7.3.2 Guiding the Search

Two interesting opportunities for optimizing the search which is inherent to the execution of
CO-OPN transitions and methods are:

• To schedule differently the various tests and Get predicates in order to limit the search
space and to determine as early as possible whether the search will fail or not. Some crite-
ria, that the specification compiler would be unable to apply, are to work in priority on
places which are known to contain few tokens or to delay the evaluation of conditions
which are weakly constraining or expensive to compute. This kind of optimization is
known as variable-value ordering heuristics in the field of constraint satisfaction
[Dechter&Meiri 89].

• To use more deterministic predicates in order to limit the amount of backtracking and
choice point instantiations. We have experimented with Get predicates which iterate on
the contents of places and perform themselves the needed tests on the token values so that
the result is known to already satisfy most of the caller’s conditions. In order to favour
encapsulation and code reuse, these Get predicates should be defined as generic iterators
which are called or instantiated with as argument the function which implements the pat-
tern-matching and testing operations. In the same spirit, we show below that is possible to
remove the non-deterministic choice of axiom to execute and to replace it by procedural
control structures. These optimizations may probably partly be implemented by the speci-
fication compiler itself.

7.3.3 Modifying the Synchronizations

It is possible to change the order in which synchronizations are emitted in order to increase
or to reduce concurrency as long as the semantics of the specification is respected. For
instance, alternatives are by default executed serially until a successful reply is received.
The developer could decide to parallelize the sending of alternatives and abort all remaining
branches once the first successful reply is received. He may also change the ordering of the
alternatives in order to try first the ones he suspects of having the highest probability of
success.
197

7. Prototyping the Object Application Layer
7.4 An Example of Prototyping

7.4.1 The Abstract Class for Object DAL

We give here the Ada95 interface of the automatically generated abstract class for Object
DAL. The interesting parts of the abstract class body will be explained in the next sub-
section. The complete specification of Object DAL may be found in appendix D on
page 257.

with Root_Object_Pkg; use Root_Object_Pkg;
with Typed_Places_G;

with ADT_ListEvent; use ADT_ListEvent;
with ADT_Event; use ADT_Event;
with ADT_Action; use ADT_Action;

package Object_DAL is

type Abstract_DAL is abstract new Root_Object with private;
subtype DAL is Abstract_DAL’Class;
type DAL_ref is access all DAL;

--/ Public class methods:

--/ Initialization routine for the selection of a concrete implementation:
procedure Set_DAL_Prototype is abstract;
--/ Show the prototype object:
function DAL_Prototype return DAL;

Figure 111. Public Type Declarations and Class Methods for DAL

This first part is quite similar to the abstract class of an Adt module. The predefined
Root_Object is an abstract class which ensures that all Objects belong to the same root
type. The following is different since there is no notion of Object instantiation at the specifi-
cation-level in our version of CO-OPN.

--/ Functions for constructing, copying and initializing:

--/ Virtual constructor and low-level initialization:
function Create (Prototype: in Abstract_DAL) return DAL_ref is abstract;
function Create return DAL_ref;

--/ Copying function:
function Copy (O: in Abstract_DAL) return DAL_ref is abstract;

--/ High-level initialization (e.g. initial marking):
procedure Initialize (O: access Abstract_DAL);

Figure 112. Functions for Constructing, Copying and Initializing DAL

The Create and Copy functions are abstract here since they depend on the internal represen-
tations of the concrete classes. The Create function is to instantiate the subcomponents of
the Object: The internal representation of the different places is chosen here by initializing
198

An Example of Prototyping
them with the adequate prototype objects. The above declared Initialize procedure
receives an empty body in the case of Object DAL because there is no specified initial
marking.

The following is the list of specified methods of DAL. These are the main parts upon which
incremental prototyping is applied. Notice that the profiles are identical to the specification,
with the addition of parameter O on the left and parameter Result on the right.

--/ Specified methods and transitions:
procedure Act (O: access Abstract_DAL; a: in Action; Result: in out status);
procedure DisplayModif (O: access Abstract_DAL; l: in ListEvent; Result: in out status);
procedure DisplayConflict (O: access Abstract_DAL; a: in Action; Result: in out status);
procedure Transmit (O: access Abstract_DAL; a: in Action; Result: in out status);
procedure Confirm (O: access Abstract_DAL; a: in Action; Result: in out status);
procedure Conflict (O: access Abstract_DAL; a: in Action; Result: in out status);

Figure 113. Specified Methods of DAL

The private definitions concern the management of the prototype object and the instantia-
tion of strongly typed places (to prevent the developer from inadvertently inserting wrongly
typed tokens in a place). The complete definition of Abstract_DAL contains the places of
the Object.

private
--/ Initialize the class hierarchy:
procedure Set_Hierarchy_Prototype (With_Prototype: in DAL_ref);

--/ Definitions for strongly typed places:
package ListEvent_Places is new Typed_Places_G(ListEvent); use ListEvent_Places;
subtype ListEvent_Place is ListEvent_Places.Typed_Place;
package Action_Places is new Typed_Places_G(Action); use Action_Places;
subtype Action_Place is Action_Places.Typed_Place;

--/ Complete view of the type:
type Abstract_DAL is abstract new Root_Object with record

confirmed: ListEvent_Place;
conflicts: Action_Place;
wait_transmit: Action_Place;

end record;

end Object_DAL;

Figure 114. Private Definitions of Abstract_DAL

7.4.2 Prototyping of Method Act in Object DAL

Method Act is specified as follows (appendix D on page 257 gives a complete context):
199

7. Prototyping the Object Application Layer
ActOk :: Consistent(a,l)=true => Act a WITH Consult(l) : -> wait-transmit a;
ActNotOk :: Consistent(a,l)=false => Act a WITH Consult(l) : -> conflicts a;

The developer provides the following mode declarations for methods Act and Consult:

Act _ : action -> IN;
Consult _ : listevent -> OUT;

This is the automatically generated implementation of Act. Notice that it is totally non-
deterministic (all predefined predicates are listed in appendix C.2 on page 244):

with Axiom_Enumeration_G;

with ADR_Client; use ADR_Client;
package body Object_DAL is

type Act_Axiom_Name is (ActOk,ActNotOk);
package Act_Axiom_Enumeration is new Axiom_Enumeration_G(Act_Axiom_Name);
use Act_Axiom_Enumeration;

procedure Act (O: access Abstract_DAL; a: in Action; Result: in out status) is
l: ListEvent := ListEvent_Prototype; -- Local variable from specification
Consult: Consult_Xid; -- Transaction identifier for method call
ChosenAxiom: Act_Axiom_Name; -- For non-deterministic choice of axiom

begin
DeclareSync(Consult); -- Tell the kind of synchronization needed
ChooseAxiom((ActOk,ActNotOk),ChosenAxiom); -- Arbitrary choice of axiom
case ChosenAxiom is
when ActOk =>

call(ADR,Consult,l); -- Call method Consult of object ADR
if Consistent(a,l)/=true then return; end if; -- Verify global condition of axiom ActOk
put(O.wait_transmit,a); -- Produce token of postcondition

when ActNotOk =>
call(ADR,Consult,l); -- Call method Consult of object ADR
if Consistent(a,l)/=false then return; end if; -- Verify global condition of axiom ActNotOk
put(O.conflicts,a); -- Produce token of postcondition

end case;
-- At last we know the call is successful (by

Result := success; -- default a method call fails)
end Act;

Figure 115. Automatically Generated Code for Method Act

The following hand-written version eliminates the non-deterministic choice of axiom to
execute by exploiting the fact that the global condition discriminates between the two
respective situations:

procedure Act (O: access Concrete_DAL; a: in Action; Result: in out status) is
l: ListEvent := ListEvent_Prototype; -- Local variable from specification
Consult: Consult_Xid; -- Transaction identifier for method call

begin
DeclareSync(Consult); -- Tell the kind of synchronization needed
call(ADR,Consult,l); -- Call method Consult of object ADR
if Consistent(a,l)=true then -- The global condition determines the axiom

put(O.wait_transmit,a); -- Produce token of ActOk postcondition
else

put(O.conflicts,a); -- Produce token of ActNotOk postcondition
end if;

-- At last we know the call is successful
Result := success; -- (by default it is considered as failed)

end Act;

Figure 116. Concrete Implementation of Method Act
200

An Example of Prototyping
7.4.3 Possible Extensions

The weakness of the current scheme is that the developer may know a lot about the local
dependencies which determine the flow of control, and he has no way of telling the resolu-
tion layer about them. We would therefore like to give a means for him to optionally
transmit such information without cluttering too much the code. Most importantly, the opti-
mizations must be compatible with the lower-level control mechanism. This means in
particular that there must be no backward branching in the code: That would short-circuit
the predefined backtracking mechanism, because the user-level execution would be
completely desynchronized with respect to the internal stack which contains all the infor-
mation about the current state of the search.

Let us take the following axiom, where places P1 and P3 both never contain more than 1
token:

(x=y)=false && (x=z)=false && (y=z)=false => t: P1(x),P2(y),P3(z) ->;

This is the corresponding translation produced by the prototyping tool:

get(O.P1,x);
get(O.P2,y);
if (x=y)/=false then return; end if; -- Backtrack to choice of y
get(O.P3,z);
if (x=z)/=false then return; end if; -- Backtrack to choice of z
if (y=z)/=false then return; end if; -- Backtrack to choice of z

If the condition (x=z)/=false is true then we should try to inform that the whole transition
is deemed to fail, and if (y=z)/=false is true then we should select another value for y and
not for z. We see essentially two ways of achieving this: introducing either the notion of
nogoods or the possibility of labelling the choice points.

Optimizing with Nogoods

Let us try to introduce the notion of nogood at the user level. Nogoods have been used in
various fields of artificial intelligence [Stallman&Sussman 77] [Dechter 90] and are combi-
nations of values which must not be reproduced during the search because they violate
some given constraints. The dependency relations between the different values may
however be very complicated and not allow a simple way of expressing them. For instance,
it is necessary to use the place names to tell when the current combination of tokens is bad,
because a token value alone does not determine which place it came from.

get(O.P1,x);
get(O.P2,y);
if (x=y)/=false then nogood(O.P1,O.P2); return; end if; -- Useful iff we backtrack to x
get(O.P3,z);
if (x=z)/=false then nogood(O.P1,O.P3); return; end if; -- Backtrack to choice of x
if (y=z)/=false then nogood(O.P2,O.P3); return; end if; -- Backtrack to choice of y
201

7. Prototyping the Object Application Layer
This works quite well, as long as no more than one token is needed from the same place.
Another advantage is that they may be reused in forward mode: If the get(O.P2,y) eventu-
ally fails, then execution will retry the get(O.P1,x). Let us take the variant where it
succeeds because there are several identical tokens left in P1. When the get(O.P2,y) is
reexecuted in forward mode, the search mechanism will exploit the previous nogoods and
choose a token in P2 which respects all the constraints recorded. In other words, the same
errors are not repeated. This is referred to as learning while searching [Dechter 90] in the
artificial intelligence community. The nogoods may however necessitate tremendous
amounts of memory, since they represent all the intermediate failures in a search. Although
some techniques exist to bound the size of the nogood sets, we will rather consider the next
proposition, because it is more general.

Labelling Choice Points

Whereas the nogoods help selecting the choice point to return to, we could directly ask the
programmer to label each choice point in order to work with immediate information. This
would necessitate a new set of get primitives having an optional parameter which commu-
nicates the label of the current choice point to the resolution layer. In case of failure it would
then be possible tell exactly where to backtrack to. The label could consist of a set of natural
numbers or a locally defined enumerated type, which, in very strongly typed languages like
Ada, would require a conversion to the type natural. Two predefined labels are needed:
One for each of the cases where the target choice point is respectively unknown (by default
control returns to the previous choice point) and when it is the caller (when the failure is
known to be definitive).

procedure t (O: access Concrete_O; Return_to: in out Choice_Point; Result: in out Status) is
type Transition_t_CP is (Choose_x,Choose_y,Choose_z);
function CP is new Unchecked_Conversion(Transition_t_CP,Choice_Point);
x,y,z : Natural := Natural_Prototype;

begin
get(Choose_x,O.P1,x);
get(Choose_y,O.P2,y);
if (x=y)/=false then return; end if; -- Backtrack to Choose_y
get(Choose_z,O.P3,z);
if (x=z)/=false then Return_to := Caller; return; end if; -- Definitive failure
if (y=z)/=false then Return_to := CP(Choose_y); return; end if; -- Backtrack to Choose_y
Result := Success;

end t;

Figure 117. Example with Labelling of Choice Points

This last proposition greatly ameliorates the run-time performance at a negligible cost while
still remaining facultative. If we wanted to push the principle even further, it would be
necessary to undo some of the mechanisms which were originally designed to hide the
search, for instance the exceptions which are raised when there are no more untried tokens
202

Automatic Verification of Concrete Classes
in a place. Let us suppose, still in the same example, that we wanted to detect when place P2
is empty (in order to announce a definitive failure instead of backtracking to the choice of
x):

get(Choose_x,O.P1,x);
get(Choose_y,O.P2,y,not_found);
if not_found then Return_to := Caller; return; end if; -- Definitive failure
if (x=y)/=false then return; end if; -- Backtrack to last point: Choose_y

Until now we have only presented the problems relative to the preconditions. Let us briefly
have a look at the possibilities for ameliorating the synchronization part. Here it should be
possible to introduce some knowledge about the deterministic nature of the methods being
called. The problem is that the programmer has only a local view of the situation as
explained in 6.4.3.2. The underlying backtracking mechanism might be disturbed by the
additional indications of the programmer and thus the completeness of the search would not
be guaranteed anymore. Therefore it would require taking into account the static Object
dependencies in order to determine the configurations where the programmer’s indications
may be safely followed. We have chosen not to support this kind of optimizations for the
moment.

7.5 Automatic Verification of Concrete Classes

We showed in section 5.7 how to generate sub-classes of a given implementation of an alge-
braic abstract data type. This is useful for transparently testing at run-time whether the
hand-written code conforms to the semantics of the specification. We give here some ideas
about how a similar mechanism could be obtained in CO-OPN Objects. It should be noted
that we do not address the problem of detecting global properties in distributed systems (we
refer to [Garg 96] for a recent survey of that domain) since our objective is only to establish
the correctness of the computation on a per Object basis. It is out of the scope of our execut-
able assertion scheme to find errors in the coordination between concurrent Objects: Such
problems are rather due to mistakes present in the specifications and should therefore be
noticeable already when executing the abstract code. Let us also emphasize that even if the
tests do not find any errors, it does not mean that the code is proved to be correct. There
may still be errors which are not revealed by the particular execution of the prototype.

Even if we restrict ourselves to the information which is local to each Object, there are two
major problems to answer:

• First, the search non-determinism implies that it is not possible to compare behaviours on
the basis of a single execution of the abstract code: If the concrete code fires successfully
a given event, the abstract code may well require several tentatives to deliver the same
answer. The challenge is to perform in a cost-effective manner the simulation of the con-
203

7. Prototyping the Object Application Layer
crete code by the abstract code(1). It seems that the only general method is to abort the
subtransaction enclosing the execution of the concrete code (but the results must be
remembered) and then to execute repeatedly the abstract code until the same result is
obtained. In [Hulaas 96] we proposed to represent methods and transitions by three proce-
dures implementing respectively the precondition, synchronization and postcondition:
This could allow the separate verification of sub-parts of the execution, a technique which
would be less expensive.

• The second major problem is caused by the encapsulation: How can we compare the
resulting Object states? Implementations of CO-OPN Objects do not logically provide any
equality operator, because the source language does not need such comparisons. In our
prototypes, we can fortunately circumvent this by directly comparing the sets of con-
sumed and produced tokens, information which is available in the execution log, as
explained in 6.5.2.2. This represents an important speed-up in the verification process.

This subject requires further research in order to establish partial verification techniques
which are less expensive but at the same time provide significant comparison criteria. For
instance it should be possible to check that only the specified preconditions are satisfied in
the concrete code.

7.6 Epilogue

In this chapter we demonstrated some of the possibilities offered for prototyping CO-OPN
Object implementations while still remaining faithful to the specifications. This part
consitutes one of the most interesting contributions of this thesis, particularly the possibility
of optimizing the search by removing non-deterministic behaviours in favour of more intel-
ligent predicates or procedural control structures. Further work is to make the specification
compiler generate such optimized code patterns while still ensuring legibility and safety.

We have also noticed that it is very difficult to test non-deterministic code without engaging
into very expensive computations. Future research will concentrate on reducing this cost.
The efficiency of the verification techniques are also very dependent on the openness of the
generated code.

1. To test the bisimilarity (see section 3.7) it is necessary to show additionally that the concrete code can sim-
ulate the abstract code. Only this would guarantee that both versions result in the same set of target states.
204

Chapter 8

Conclusion

The original contributions of this thesis are placed on two levels. On the one hand, we
propose a new methodology for the development of formally specified software, in partic-
ular for distributed systems. On the other hand, we bring some technical results relative to
the algorithmics needed for putting distributed prototypes to work, and this ranges from
compilation techniques for modular algebraic Petri nets to cooperative symbolic problem
solving as well as automatic generation of programs with some support for fault-tolerance.

As a consequence, we may characterize our work as being rather exploratory, considering
the limited amount of time that could be devoted to each specific subject. Software engi-
neering is by nature a multi-disciplinary activity, which may explain that the contributions
of this thesis result from a research that was conducted more “in breadth” than “in depth”.
We think however that science must not only advance by specialization and deepening of
individual domains, but also from time to time progress by cross-fertilization of different
branches of research. We hope that our work will be considered as belonging to the latter
kind of contribution.

8.1 Overview of Results

The objective of this thesis was to contribute to reducing the development cost of computer
programs. To this end, we proposed a new prototyping methodology, mixed prototyping
with object-orientation, the claimed advantage of which is to provide a smooth and safe
transition from an implementation-near formal specification to a complete, efficient and
maintainable realization in a main-stream object-oriented programming language.

Our approach is inspired from an existing methodology called mixed prototyping, from
which it inherits all the benefits, both in terms of programmatic advantages, such as effi-
ciency and correctness of the resulting software, and in terms of methodological progress,
205

8. Conclusion
such as higher flexibility in the development process and increased independence of soft-
ware components, properties which enable the practice of concurrent engineering.

Our proposal is to adapt mixed prototyping to the object paradigm, of which we exploit the
flexibility and inherent capability of modeling abstract entities, in order to make the proto-
typing process more intuitive and to increase the guarantee of correctness of the resulting
implementation. This is how we justify our argument: The incremental prototyping process
starts from a description of the software with the well-defined semantics of a formal specifi-
cation language. The specification is then automatically translated into an initial implemen-
tation by the means of a certified correct specification compiler. The generated code may be
ameliorated and completed manually by smaller increments than was possible before.
During this phase, the abstract code is considered as a read-only: It is never modified and
may in our approach be continuously taken as a reference implementation. This means that
code reuse is promoted, and as well that the abstract code may be exploited for verifying
that the hand-written code does not violate the semantics of the specification.

At the end of chapter 2 we established a set of objectives to be fulfilled by our prototyping
methodology when applied to specific formalisms such as CO-OPN:

• It should be intuitive: This objective is perfectly attained, both in the algebraic data type
part and the modular Petri net part of CO-OPN. The implementation remains faithful to
the spirit of the formalism by mapping operations, transitions and methods into functions
and procedures of the target programming language, and places and data structures into
type definitions and variables. Moreover, the modular structure of the specification is pre-
served, and it is even possible to a certain extent to map specified generic modules into
generic modules of the target language.

• It must lead to correct implementations: The compilation is based for the algebraic speci-
fications on an existing algorithm which is proved correct. This is partly reused in the
Object part of CO-OPN. Concerning the dynamic behaviour of CO-OPN, we do not pro-
vide a formal proof, but we strived to use as much as possible simple and intuitive algo-
rithms, for which it is easier to convince oneself that they are correct.

• The generated code should be efficient. For AADTs, this is certainly true, although many
additional optimizations can be exploited, as we show in chapter 4. For CO-OPN Objects,
it is harder to emit any opinion, first because we lack elements of comparison, and, sec-
ond, because we have not had the time to experiment with distributed prototypes. Any-
way, it is in this part that the penalty for supporting the prototyping scheme is the highest.
If we wanted to compare the performance with any other system, it would have to be with
distributed process-based Prolog dialects, and even though they do not scale up with the
complexity of CO-OPN, they do not have the reputation of being particularly efficient.

• The run-time support should be robust since we are not doing throw-away prototyping.
For the distributed part we may say that this objective has been answered for by our
implementation of synchronizations as nested transactions. For the distributed resolution
206

Limitations of our Approach
mechanism, we have already mentioned that we tried to use algorithms that are simple and
thus less vulnerable than more optimized ones. We must admit that we are a bit worried
about the memory consumption of the prototypes, since copies of object states are accu-
mulated during synchronizations as a consequence of non-determinism and may not be
released before the stabilization of the top-level event.

Seen from a larger perspective, we think that our work can considerably improve the quality
of software implementations, and may thus contribute to a more widespread application of
formal methods in the development process.

8.2 Limitations of our Approach

The weakness of OOMP resides, in our eyes, in three factors:

• Its inherent dependence upon the chosen target language. The range of possibilities
offered by the prototyping process is bound to:

1. The expressive power of the programming language. We have mentioned the prob-
lem of inheritance anomaly which hinders code reuse in concurrent applications.

2. The structuring facilities of the target language. Ada95 seems for the moment to be
the best candidate from that point of view.

3. The efficiency of the target language. For improving the execution of non-deter-
ministic code, it might be worthwhile to choose multi-paradigm languages, i.e. lan-
guages which integrate the logic paradigm with object-orientation and functional
or procedural styles.

• The quality of the design patterns used for implementing a given source formalism. This
defines the extent to which the developer may apply the incremental prototyping princi-
ples. AADTs are perfect from that point of view, since they may be modified in their inte-
grality. The case of CO-OPN Objects is not so easy, since they are tightly coupled with a
heavy run-time layer, which we have considered as non-prototypable. This decision was
taken essentially because of the complexity of the algorithms, but it is possible that we
were too cautious here. Another important factor is the level of support put to work just
for enabling the prototyping process. We designed the resolution layer to be orthogonal to
the application layer in order to support prototyping at the application-level. This induces
a certain cost, but we think that this cost may be practically neglected in programs which
do not need backtracking.

• Interfacing with existing software: The usage and initialization of prototype objects
designed for limiting the impact of change during the OOMP process may make the
207

8. Conclusion
resulting software a bit complicated to interface with. When a prototype is considered as
achieved it is however possible to remove this mechanism by editing the source files. The
collaboration of AADT implementations with external software should then be straight-
forward. Distributed CO-OPN Objects may be much more difficult to interface with
because of the concurrency control and the protocol for the distributed resolution. There
are many problems of heterogeneity which must be solved before this can work and which
are not especially related to OOMP, as for instance the nature of the communication, i.e. if
it is performed by RPC or lower-level message-passing.

8.3 Perspectives and Open Problems

We did not have the time to complete the implementation of the specification compiler, the
main problem being the algorithm for compiling pattern-matching. We had therefore to
“simulate the code generation”: Some abstract and symbolic classes have been coded by
hand in order to experiment with the OOMP concept.

The incremental prototyping process has thus been successfully applied to algebraic
abstract data types and to centralized algebraic Petri nets, which means for instance that the
local part of the resolution layer works perfectly. However we did not have the time to play
with complete distributed prototypes: The concurrency control mechanism has been vali-
dated on a network of Unix workstations, but not the distributed resolution layer.

The first thing to do would therefore be to achieve the implementation of the compiler and
the distributed run-time support in order to evaluate the real performance of the distributed
prototypes. Since we have systematically chosen to optimize execution for programs with
little search non-determinism, it would be interesting to see to which extent the prototypes
can rivalize with entirely hand-coded applications.

Since we have decided to support a maximal subset of the semantics of CO-OPN, a useful
exercice would be determine whether it could lead to important improvements to suppress
some of the language’s constructs or properties. The most obvious constraints would be to
eliminate synchronizations from internal transitions in order to simplify the stabilization
process, and to let the developer reduce the need for backtracking by providing determinism
annotations. Finally, it would be necessary to evaluate the impact on the modelling power
these changes would have.

Of course, another interesting challenge would be to apply OOMP to new specification
formalisms.
208

Bibliographic References

[Ada 83]
Reference Manual for the Ada Programming Language. ANSI/MIL-Std-1815a, 1983

[Ada 95]
Ada Reference Manual, Language and Standard Libraries, ISO/IEC 8652:1995

[Aït-Kaci 91]
H. Aït-Kaci, Warren’s Abstract Machine, A Tutorial Reconstruction, The MIT Press, 1991

[André et al 96]
C. André, F. Boulanger, M.-A. Péraldi, J.-P. Rigault, G. Vidal-Naquet, Objets et Programmation
Synchrone, Congrès AFCET “Modélisation des Systèmes Réactifs”, Brest, France, pp. 55-62,
March 1996

[Andrews 79]
D.M. Andrews, Using Executable Assertions for Testing and Fault Tolerance, FTCS 9, Madison,
pp 102-105, 1979

[Asur&Hufnagel 93]
S. Asur and S. Hufnagel, Taxonomy of Rapid-Prototyping Methods and Tools, 4th International
Workshop on Rapid System Prototyping, Research Triangle Park Institute, North Carolina, USA,
June 1993

[Babaoglu&Toueg 93]
Ö. Babaoglu, S. Toueg, Non-Blocking Atomic Commitment, In “Distributed Systems” (2nd edi-
tion), S. Mullender (Ed.), ACM Press, New York, Addison-Wesley, 1993

[Bañares, Muro-Medrano&Villaroel 93]
J.A. Bañares, P.R. Muro-Medrano, J.L. Villaroel, Taking Advantages of Temporal Redundancy in
High Level Petri Nets Implementation, Proceedings of Application and Theory of Petri Nets ‘93,
Chicago, LNCS 691, pp. 32-48, 1993

[Barbey, Buchs&Péraire 97]
S. Barbey, D. Buchs, C. Péraire, A Theory of Specification-Based Testing for Object-Oriented
Software, EDCC2, Taormina, Italy, To appear in LNCS, 1997

[Bergstra&Klint 96]
J.A. Bergstra, P. Klint, The ToolBus Coordination Architecture, In Procs. Coordination Lan-
guages and Models, Cesena, Italy, P. Ciancarini & C. Hankin (Eds.), LNCS Vol 1061, Springer,
Berlin, 1996
209

Bibliographic References
[Bernstein, Hadzilacos&Goodman 87]
A.J. Bernstein, V. Hadzilacos, N. Goodman, Concurrency Control and Recovery in Distributed
Database Systems, Addison Wesley, 1987

[Berry&Gonthier 88]
G. Berry and G. Gonthier, The Esterel Synchronous Programming Language: Design, Semantics,
Implementation, Technical Report 842, INRIA, May 1988

[Biberstein&Buchs 95]
O. Biberstein, D. Buchs, Concurrency and Object-Orientation with Structured Algebraic Nets, G.
Bernot & M. Aiguier editors, Working papers of the International Workshop on Information Sys-
tems - Correctness and Reusability - IS-CORE’95, Research Report, Université d’Evry, France,
September 1995

[Biberstein 97]
O. Biberstein, CO-OPN/2: An Object-Oriented Formalism for the Specification of Concurrent
Systems, PhD thesis, University of Geneva, July 1997.

[Bidoit 89]
M. Bidoit, Pluss, un langage pour le développement de spécifications algébriques modulaires,
PhD thesis, Université Paris-Sud, France, 1989

[Birell&Nelson 84]
A. Birell, B. Nelson, Implementing Remote Procedure Call, ACM Transactions on Computer
Systems, Feb 1984

[Birman, Schiper&Stephenson 91]
K. Birman, A. Schiper, P.Stephenson, Lightweight Causal and Atomic Group Multicast, ACM
Transactions on Computer Systems, 9(3), pp. 272-314, 1991

[Boehm 88]
B. Boehm, A Spiral Model of Software Development and Enhancement, IEEE Computer,
21(5):61-72, 1988

[Boniol&Adelanto 93]
F. Boniol, M. Adelantado, Programming Distributed Reactive Systems: a Strong and Weak Syn-
chronous Coupling, 7th International Workshop on Distributed Algorithms WDAG’93, LNCS
725, Sept. 1993, pp 294-308

[De Bosschere 94]
K. De Bosschere, Process-based Parallel Logic Programming: A Survey of the Basic Issues,
11th ICLP: Post-Conference Workshop W1 on Process-Based Parallel Logic Programming, Sta.
Margherita, Italy, June 1994

[Bréant&Pradat-Peyre 94]
F. Bréant, J.F. Pradat-Peyre, An Improved Massively Parallel Implementation of Coloured Petri
Nets Specifications, IFIP WG10.3 Working Conference on Programming Environments for Mas-
sively Parallel Distributed Systems, Ascona, Switzerland, 1994

[Breu 91]
R. Breu, Algebraic Specification Techniques in Object-Oriented Programming Environments,
LNCS vol 562, Springer Verlag, 1991
210

Bibliographic References
[Broy et al 93]
M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hussmann, D. Nazareth, F. Regensburger, O. Slo-
tosch, K. Stølen, The Requirement and Design Specification Language SPECTRUM. An Infor-
mal Introduction. Version 1.0, Technical Report TUM-I9311-2, Technische Universität
München. Institut für Informatik, May 1993

[Buchs 89]
D. Buchs, Ateliers de génie logiciel et spécification de logiciel, PhD thesis, No. 2361, University
of Geneva, 1989

[Buchs&Guelfi 91]
D. Buchs, N. Guelfi, CO-OPN: A Concurrent Object Oriented Petri Net Approach for System
Specification, 12th International Conference on theory and application of Petri Nets, Aarhus, pp.
432-454, 1991

[Buchs, Flumet&Racloz 93]
D. Buchs, J. Flumet, P. Racloz, SANDS Structured Algebraic Net Development System, Research
report no 71, CUI 1993, also in 14th Int. Conf. Th. Petri Nets, Tool Presentation, Chicago, 1993

[Buchs et al 95]
D. Buchs, J. Hulaas, P. Racloz, M. Buffo, J. Flumet, E. Urland, SANDS Structured Algebraic Net
Development System for CO-OPN, 16th International Conference on Application and Theory of
Petri Nets, Torino, Italy, 1995, pp. 45-53. Extended version available as technical report: D.
Buchs, O. Biberstein, M. Buffo, C. Buffard, J. Flumet, J. Hulaas, G. Di Marzo, P. Racloz,
SANDS1.5/CO-OPN1.5: An Overview of the Language and its Supporting Tools, Technical Report
#95/133, DI-EPFL, 1995

[Buchs&Hulaas 95]
D. Buchs, J. Hulaas, Incremental Object-Oriented Implementation of Concurrent Systems Based
on Prototyping of Formal Specifications, SIPAR workshop, Biel, Switzerland, pp. 141-145, Oct.
1995

[Buchs 96]
D. Buchs, Méthodes formelles pour le développement et la vérification de logiciels, 9èmes
journées internationales, le génie logiciel et ses applications, In Revue Génie Logiciel, 18-21
Nov. 1996

[Buchs et al 96]
D. Buchs, P. Racloz, M. Buffo, J. Flumet and E. Urland, Deriving Parallel Programs Using
SANDS Tools, Transputer Communication Journal, vol. 3, no. 1, 1996, pp. 23-32

[Buchs&Hulaas 96]
D. Buchs, J. Hulaas, Evolutive Prototyping of Heterogeneous Distributed Systems Using Hierar-
chical Algebraic Petri Nets, Procs. IEEE International Conference on Systems, Man and Cyber-
netics SMC’96, Beijing, China, Oct. 14-17 1996, pp. 3021-3026. Also available as: European
Esprit Long Term Research Project 20072 “Design for Validation” (DeVa) technical report #09,
1996

[Buck et al 94]
J. Buck, S. Ha, E.A. Lee, D.G. Messerschmitt, PTOLEMY: a Framework for Simulating and Pro-
totyping Heterogeneous Systems, International Journal of Computer Simulation, April 1994
211

Bibliographic References
[Buffo&Buchs 96]
M. Buffo, D. Buchs, Contextual Coordination between Objects, X SBES Brazilian Symposium
on Software Engineering, JC. Maldonado&PC. Masiero (Eds.), Brazil, pp. 341-356, Oct. 1996

[Caspi&Girault 95]
P. Caspi, A. Girault, Execution of Distributed Reactive Systems, In Proceedings Europar’95,
Stockholm, Sweden, LNCS Vol. 966, pp. 15-26, August 1995

[CCITT 88]
CCITT, Z.100, CCITT Specification and Description Language, 1988

[Chandra&Toueg 96]
T. Chandra, S. Toueg, Unreliable Failure Detectors for Reliable Distributed Systems, Journal of
the ACM, Vol. 34, No 1, March 1996. A preliminary version appeared in ACM International
Symposium on Principles of Distributed Computing (PODC’92), Aug. 1992

[Chang, Despain&DeGroot 85]
J.-H. Chang, A.M. Despain, D. DeGroot, AND-Paralellism of Logic Programs Based on Static
Data Dependency Analysis, pp. 218-225 in Digest of Papers of COMPCON Spring ‘85, 1985

[Cherki&Choppy 96]
S. Cherki, C. Choppy, Une méthode de rétroingénierie utilisant les spécifications algébriques,
Actes des Journées du GDR Programmation, Orléans, November 1996

[Chiola et al 91]
G. Chiola, C. Dutheillet, G. Francheschinis, S. Haddad, On Well-Formed Coloured Nets and
their Symbolic Reachability Graph, LNCS : High-Level Nets, Theory and Application. K.
Jensen, G. Rozenberg (Eds.), Springer, 1991

[Chiola&Ferscha 93]
G. Chiola, A. Ferscha, Distributed Simulation of Petri Nets, IEEE Parallel and Distributed Tech-
nology, Systems and Applications, Vol. I, No. 3, pp. 33-50, IEEE Computer Society Press,
August 1993

[Choppy&Johnen 85]
C. Choppy, C. Johnen, PETRIREVE: Petri Net Transformations and Proofs with Rewriting Sys-
tems, In Procs. Sixth European Workshop on Applications and Theory of Petri Nets, 1985.

[Choppy 87]
C. Choppy, Formal Specifications, Prototyping and Integration Tests, Proc. of the 1st European
Software Engineering Conference, 1987

[Choppy 88]
C. Choppy, ASSPEGIQUE user’s manual, Technical Report No 452, LRI, Université Paris XI
Orsay, 1988

[Choppy&Kaplan 90]
C. Choppy, S.Kaplan, Mixing Abstract and Concrete Modules: Specification, Development and
Prototyping, Proc. 12th Int. Conf. on Software Engineering, Nice, 1990
212

Bibliographic References
[Choppy et al 89]
C. Choppy, S. Kaplan, V. Meissonnier, Mixing executable specifications and code evaluation:
An approach for prototyping and integration testing, Proc. International Congress on New Tech-
nologies for Software and Supercomputers Development, Caracas, November 1989

[Clark 84]
K. Clark, S. Gregory, Parlog: Parallel Programming in Logic, Technical Report DOC 84/4,
Imperial College, London, April 1984

[Coleman et al 94]
D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, P. Jeremaes, Object-Ori-
ented Development: The Fusion Method, Prentice-Hall, NJ, 1994

[Colmerauer 83]
A. Colmerauer, H. Kanoui, M. van Caneghem, Prolog, Theoretical Basis and Current Develop-
ments, Technique et Science informatiques, Vol.2, No 4, pp. 271-311, July-August 1983

[Colom, Silva&Villaroel 86]
J.M. Colom, M. Silva, J.L. Villaroel, On Software Implementation of Petri nets and colored Petri
nets using High-Level Concurrent Languages, 7th Workshop on Application and Theory of Petri
Nets, pp. 207-241, Oxford, 1986

[Comon 89]
H. Comon, Inductive Proofs by Specifications Transformation. In N. Dershowitz, editor, Procs of
the 3rd Intl Conf on Rewriting Techniques and Applications, vol 355 of LNCS, pp 76-91,
Springer Verlag, Berlin, 1989

[Coplien 92]
J.O. Coplien, Advanced C++ programming styles and idioms, Addison-Wesley, 1992

[Dechter&Meiri 89]
R. Dechter, I. Meiri, Experimental Evaluation of Preprocessing Techniques in Constraint Satis-
faction Problems, Proc. of IJCAI-89, pp. 271-277, Detroit, MI, 1989

[Dechter 90]
R. Dechter, Enhancement Schemes for Constraint Processing: Backjumping, Learning and Cut-
set Decomposition, Artificial Intelligence, 41(3):273-312, 1990

[DeGroot 84]
D. DeGroot, Restricted AND-Parallelism, In International Conference on Fifth Generation Com-
puter Systems, pp. 471-478, Tokyo, November 1984

[Dershowitz&Jouannaud 90]
N. Dershowitz, J.-P. Jouannaud, Rewriting systems, Handbook of Theoretical Computer Science,
Van Leuwen editor, North Holland, 1990

[Drakos 90]
N. Drakos, Sequential and Parallel Execution of Logic Programs with Dependency Directed
Backtracking, PhD thesis, Univeristy of Leeds, July 1990
213

Bibliographic References
[Dijkstra 71]
E.W. Dijkstra, Hierarchical Ordering of Sequential Processes, Acta Informatica 1, 1971, pp.
115-138

[Dijkstra 75]
E.W. Dijkstra, Guarded Commands, Nondeterminacy, and Formal Derivation of Programs,
Communications of the ACM 18(8), pp. 453-457, August 1975

[Dixon et al 89]
G.N. Dixon, G.D. Parrington, S.K. Shrivastava, S.M. Wheater, The Treatment of Persistent
Objects in Arjuna, Proc. European Conf. on Object-Oriented Programming ECOOP’89, July
1989

[Dürr&Plat 95]
E.H. Dürr, N. Plat (editor), VDM++ Language Reference Manual, Afrodite (ESPRIT-III project
number 6500) document id. AFRO/CG/ED/LRM/V11, Cap Volmac, August 1995

[Ehrig&Mahr 85]
H. Ehrig and B. Mahr , Fundamentals of algebraic specification 1: equations and initial seman-
tics, EATCS Monographs, Springler Verlag, 1985

[Eliëns 92]
A. Eliëns, DLP - A Language for Distributed Logic Programming, Wiley, 1992

[Elmstrøm 93]
R. Elmstrøm, IPTES Toolset, FME’93: Industrial Strength Formal Methods, Springer, Odense,
1993

[Eswaran et al 76]
K.P. Eswaran, J.N. Gray, R.A. Lorie, I.L. Traiger, The Notion of Consistency and Predicate
Locks in a Database System, Comm. of the ACM, Vol.19, No. 11, pp. 624-633, 1976

[Ferrenczi&Futo 92]
Sz. Ferrenczi and I. Futo, CS-Prolog: a Communicating Sequential Prolog, in P. Kacsuk and M.
Wise editors, “Implementations of Distributed Prolog”, pp 357-378, John Wiley & Sons, Chich-
ester, 1992

[Ferscha 96]
A. Ferscha, Parallel and Distributed Simulation of Discrete Event Systems, In “Parallel & Dis-
tributed Computing Handbook”, A.Y.H. Zomaya (Ed.), McGraw-Hill, 1996

[Flumet 95]
J. Flumet, Un environnement de développement de spécifications pour systèmes concurrents.
PhD thesis No 2761, University of Geneva, 1995

[Fröhlich&Larsen 96]
B. Fröhlich, P.G. Larsen, Combining VDM-SL Specifications with C++ Code, Formal Methods
Europe ‘96, Oxford, March 1996

[Frølund 92]
S. Frølund, Inheritance of Synchronization Constraints in Concurrent Object-Oriented Program-
ming Languages, ECOOP’92 Conference Proceedings, O. Lehrmann Madsen (Ed.), July 1992
214

Bibliographic References
[Fromentin&Raynal 94]
E. Fromentin, M. Raynal, Local States in Distributed Computations: A Few Relations and For-
mulas, Operating Systems Review, Vol. 28, No 3, pp 4-15, 1994

[Gabriel 89]
Gabriel, Draft Report on Requirements for a Common Prototyping System, ACM Sigplan
Notices, 24(3):32-41, 1989

[Gamma et al 95]
E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, Reading, Ma, 1995

[Garavel 89]
H. Garavel, Compilation of LOTOS Abstract Data Types, Proceedings of 2nd FORTE, Vancou-
ver, Canada, 1989

[Garavel&Turlier 93]
H. Garavel, Ph. Turlier, CAESAR.ADT: un compilateur pour les types abstraits algébriques du
langage LOTOS, Actes du Colloque Francophone pour l’ingénérie des protocoles, CFIP ‘93,
Montréal, Canada, 1993

[Garg 96]
V.K. Garg, Observation of Global Properties in Distributed Systems, IEEE International Confer-
ence on Software and Knowledge Engineering, Lake Tahoe, Nevada, pp. 418-425, June 1996

[Gaschnig 79]
J. Gaschnig, Performance Measurement and Analysis of Certain Search Algorithms, Technical
Report CMU-CS-79-124, Carnegie Mellon University, 1979

[Gaudel 85]
M.-C. Gaudel, Towards structured algebraic specifications, Proc. ESPRIT Technical Week,
Bruxelles, Springer Verlag, 1985

[Gaudel et al 96]
M.C. Gaudel, B. Marre, F. Schlienger, G. Bernot, Précis de génie logiciel, Masson, Paris, 1996

[Goguen, Jouannaud&Meseguer 84]
J. Goguen, J.-P. Jouannaud, J. Meseguer, Operational Semantics for Order-Sorted Algebra,
Research Report 84-R-101, CRIN, 1984

[Goguen&Meseguer 87]
J. Goguen, J. Meseguer, Order-sorted Algebra Solves the Constructor-Selector, Multiple Repre-
sentation and Coercion Problems, in IEEE Symp. on Logic in Computer Science, Ithaca-NY,
1987

[Goldberg 84]
A. Goldberg, Smalltalk-80: The Interactive Programming Environment, Addison-Wesley, 1984

[Gravell&Henderson 96]
A. Gravell, P. Henderson, Executing Formal Specifications need not be Harmful, Software Engi-
neering Journal, Vol 11, number 2, March 1996
215

Bibliographic References
[Gray 78]
J. Gray, Notes on Database Operating Systems, In “Operating Systems: An Advanced Course”,
LNCS Vol 60, Springer Verlag, 1978

[Guelfi 94]
N. Guelfi, Les réseaux algébriques hiérarchiques: un formalisme de spécifications structurées
pour le développement de systèmes concurrents, Thèse de doctorat, No d’ordre 3313, Université
ParisXI Orsay, 1994

[Guerraoui et al 92]
R. Guerraoui, R. Capobianchi, A. Lanusse, P. Roux, Nesting Actions through Asynchronous
Message Passing: The ACS Protocol, Proc. European Conference on Object-Oriented Program-
ming, Springer Verlag, Utrecht, 1992

[Guerraoui 93]
R. Guerraoui, Nested Transactions: Reviewing the Coherence Contract, Journal of Computer
and Information Science, No. 3, North Holland, 1993

[Guerraoui 95]
R. Guerraoui, Les langages concurrents à objets, Techniques et Sciences Informatiques, Vol. 14,
No. 8, 1995

[Guerraoui&Schiper 95]
R. Guerraoui, A. Schiper, The Decentralized Non-Blocking Atomic Commitment Protocol, Proc.
IEEE Intl. Symposium on Parallel and Distributed System Processing (SPDP-7), San Antonio,
Texas, Oct. 1995

[Gustavson&Törn 94]
Å. Gustavson and A. Törn, XSimNet, a Tool in C++ for Executing Simulation Nets, In Procs. of
European Simulation Multiconference ESM’94, Barcelona, Spain, June 1-3, pp. 146-150, 1994

[Guttag&Horning 78]
J.V. Guttag, J.J. Horning, The Algebraic Specification of Abstract Data Types, Acta Informatica,
10:27-52, 1978

[Guttag, Horning&Wing 85]
J. Guttag, J.J. Horning, J.M. Wing, The Larch family of specification languages, IEEE Software,
vol. 2, no. 5, pp. 24-36, 1985

[Hallmann 91]
M. Hallmann, A Process Model for Prototyping, Software Engineering and its Applications, Tou-
louse, 9-13 December 1991

[Hansson et al 90]
H. Hansson, B. Jonsson, F. Orava, B. Pehrson, Specification for Validation, Formal Description
Technique, II, Elsevier, North Holland, pp. 227-245, 1990

[Harder&Reuter 83]
T. Harder, A. Reuter, Principles of Transaction-Oriented Database Recovery, ACM Computing
Surveys, Vol. 15, No. 4, 1983
216

Bibliographic References
[Harel&Pnueli 85]
D. Harel, A. Pnueli, On the Development of Reactive Systems, In “Logic and Models of Concur-
rent Systems, NATO Advanced Study Institute on Logics and Models for Verification and Spec-
ification of Concurrent Systems”, Springer Verlag, 1985

[Harel 87]
D. Harel, Statecharts: A Visual Formalism for Complex Systems, Science of Computer Program-
ming, 8(3):231-275, 1987

[Harel 90]
D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-Trauring, M.
Trakhtenbrot, STATEMATE: A Working Environment for the Development of Complex Reactive
Systems, IEEE Transactions on Software Engineering, 16(4):403-414, April 1990

[Harper 86]
R. Harper, Introduction to Standard ML. Technical Report ECS-LFCS-86-14, University of
Edinburgh, Dept. of Computer Science, November 1986

[Hartmanis 94]
J. Hartmanis, Turing Award Lecture: On Computational Complexity and the Nature of Computer
Science, Communications of the ACM, Vol. 37, No 10, October 1994

[Henderson, Somogyi&Conway 96]
F. Henderson, Z. Somogyi, T. Conway, Determinism Analyis in the Mercury Compiler, In Pro-
ceedings Australian Computer Science Conference, Melbourne, Australia, pp 337-346, 1996

[Hennicker&Schmitz 96]
R. Hennicker, C. Schmitz, Object-Oriented Implementation of Abstract Data Type Specifica-
tions, 5th Intl. Conference on Algebraic Methodology and Software Technology AMAST’96,
Wirsing&Nivat (Eds.), Munich, Germany, July 1996

[Hermenegildo 86]
M.V. Hermenegildo, An Abstract Machine Based Execution Model for Computer Architecture
Design and Efficient Implementation of Logic Programs in Parallel, PhD thesis, The University
of Texas at Austin, 1986

[Hermenegildo&Rossi 93]
M.V. Hermenegildo, F. Rossi, Strict and Non-Strict Independent And-Parallelism in Logic Pro-
grams: Correctness, Efficiency, and Compile-Time Conditions, Journal of Logic Programming,
12:1-199, pp 1-44, Elsevier, 1993

[Hoare 72]
C.A.R. Hoare, Proof of correctness of data representations, Acta Informatica 1, pp 271-281,
1972

[Hoare 78]
C.A.R. Hoare, Communicating Sequential Processes, Communications of the ACM, 21(8), pp.
666-677, August 1978
217

Bibliographic References
[Holvoet&Verbaeten 95]
T. Holvoet, P. Verbaeten, PN-TOX: a Paradigm and Development Environment for Object Con-
currency Specifications. In Procs. Workshop on Object-Oriented Programming and Models of
Concurrency, ICATPN’95, Torino, Italy, 1995

[Hsiang&Srivas 85]
J. Hsiang, M.K. Srivas, A PROLOG Environment Developing and Reasoning about Data Types,
TAPSOFT, March 1985, pp 276-293, Berlin, 1985

[Hudak, Peyton Jones&Wadler 92]
P. Hudak, S. Peyton Jones, P. Wadler, eds. Report on the Programming Language Haskell, A
Non-strict Purely Functional Language (Version 1.2), ACM SIGPLAN Notices, May 1992

[Hulaas 95]
J. Hulaas, Introduction to Object-Oriented Mixed Prototyping with Algebraic Specifications,
Technical Report #95/155, DI-EPFL, October 1995.

[Hulaas 96]
J. Hulaas, An Evolutive Distributed Petri Nets Simulator, 10th European Simulation Multiconfer-
ence ESM’96, Budapest, Hungary, 2-6 June 1996, pp. 348-352.

[Ichisugi, Matsuoka&Yonezawa 92]
Y. Ichisugi, S. Matsuoka, A. Yonezawa, Rbc1: A Reflective Object-Oriented Concurrent Lan-
guage without a Run-Time Kernel, In Proc. Intl. Workshop on New Models for Software Archi-
tecture and Protocols’92; Reflection and Meta-Level Architecture, pp. 24-35, 1992

[Ilié&Rojas 93]
J.M. Ilié, O. Rojas, On Well-Formed Nets and Optimizations in Enabling Tests, in “Application
and Tehory of Petri Nets ‘93”, 14th International Conference, Chicago, LNCS Vol 691, M.A.
Marsan (Ed.), June 1993

[INMOS 88]
INMOS, OCCAM 2 Reference Manual, Prentice-Hall, 1988

[IPTES 94]
The IPTES Consortium, Overview of IPTES Results, R. Elmstrøm (Ed.), Technical Report
IPTES-IFAD-263-V2.0 of European ESPRIT “Incremental Prototyping Technology for Embed-
ded Real-Time Systems” (IPTES) Project EP5570, January 1994

[ISO 84]
ISO IS 7498, Information Processing Systems, Open Systems Interconnection, Basic Reference
Model, 1984

[ISO 88]
ISO IS 8807, Information Processing Systems, Open Systems Interconnection, LOTOS, A For-
mal Description Technique Based on the Temporal Ordering of Observational Behaviour, July
1988

[Jensen 81]
K. Jensen, Coloured Petri Nets and the Invariant Method, T.S.C. 14, pp. 317-336, 1981
218

Bibliographic References
[Jensen&Rozenberg 91]
K. Jensen and G. Rozenberg (Eds.), High-Level Petri Nets, Springer Verlag, 1991.

[Jones 90]
C.B. Jones, Systematic Software Development Using VDM (second edition), Englewood Cliffs,
NJ, Prentice-Hall, 1990

[Kaplan 87]
S. Kaplan, A Compiler for Conditional Term Rewriting Systems, In Proceedings of Rewriting
Techniques and Applications ‘87, Bordeaux, LNCS Vol 156, Springer, Berlin, 1987

[Karsenty 96]
A. Karsenty, GroupDesign: un collecticiel synchrone pour l’édition partagée de documents, PhD
Thesis, University of Paris XI Orsay, France, 1996

[Kemmerer 90]
R.A. Kemmerer, Integrating Formal Methods into the Development Process, IEEE Software,
Vol. 7, no 5 (Sept):37-50, 1990

[Kenney 96]
J.J. Kenney, Executable Formal Models of Distributed Transaction Systems Based on Event Pro-
cessing, PhD Thesis, Stanford University, June 1996

[Kiczales 96]
G. Kiczales, Beyond the Black Box: Open Implementation, IEEE Software, Vol. 13, no. 1 (Jan.):
8-11, 1996

[Kaplan 87]
S. Kaplan, A Compiler for conditional term rewriting systems, Proc. Rewriting Techniques and
Applications 87, Bordeaux, Lecture Notes Computer Science 256, Springer, Berlin, 1987

[Kernighan&Ritchie 78]
B.W. Kerighan, D.M. Ritchie, The C Programming Language, Prentice-Hall, 1978

[Knuth&Bendix 70]
D.E. Knuth, P. Bendix, Simple Word Problem in Universal Algebras. In J. Leech, editor, Compu-
tational Problems in Abstract Algebra, pp. 263-297, Pergamon Press, Oxford, 1970.

[Kordon 92]
F. Kordon, Prototypage de systèmes parallèles à partir de réseaux de Petri colorés, application
au langage Ada dans un environnement centralisé ou réparti, PhD Thesis, Université Pierre et
Marie Curie (Paris VI), Rapport No 92/34, Institut Blaise Pascal, Laboratoire MASI, 1992

[Kordon 94]
F. Kordon, Formal Techniques Based on Nets, Object Orientation and Reusability for Rapid Pro-
totyping of Complex Systems, In Procs IFIP-WG 10.3 Working Conference on Programming
Environments for Massively Parallel Distributed Systems, Ascona, Switzerland, April 1994

[Kordon 95]
F. Kordon, H-COSTAM: a Hierarchical Communicating State-machine Model for Generic Pro-
totyping, Procs. 6th Intl. Workshop on Rapid System Prototyping, Triangle Park Institute, N.
Kanopoulos (Ed.), IEEE Computer Society Press, pp 131-138, June 1995
219

Bibliographic References
[Krief 92]
Ph. Krief, Utilisation des langages objets pour le prototypage, Masson, Paris, 1992

[Kumar&Lin 86]
V. Kumar, Y.-J. Lin, An Intelligent Backtracking Algorithm for Parallel Execution of Logic Pro-
grams, In Procs. 3rd Int. Conf. on Logic Proramming, E. Shapiro (Ed.), Springer Verlag, Lon-
don, pp. 55-68, 1986

[Lamport 78]
L. Lamport, Time, Clocks, and the Ordering of Events in a Distributed System, Communications
of the ACM, Vol. 21, No. 7, pp. 558-565, July 1978

[Lin 93]
H. Lin, Procedural Implementation of Algebraic Specification, ACM TOPLAS, Vol 15 Number
5, 1993

[Liskov&Scheifler 83]
B. Liskov, R. Scheifler, Guardians and Actions: Linguistic Support for Robust, Distributed Pro-
grams, ACM TOPLAS, July 1983

[Luckham 87]
D.C. Luckham, F.W. von Henke, B. Krieg-Brückner, ANNA, A Language for Annotating Ada
Programs, LNCS vol 260, Springer, 1987

[Mahmood et al 84]
A. Mahmood, D.M. Andrews, E.J. McCluskey, Executable Assertions and Flight Software,
AIAA/IEEE 6th Digital Avionics Systems Conference, pp 346-351, 1984

[Mañas&de Miguel 88]
J.A. Mañas, T. de Miguel, From LOTOS to C, K.J. Turner, editor, Proceedings of the 1st Interna-
tional Conference on Formal Description Techniques FORTE’88 (Stirling, Scotland), pp. 79-84,
North-Holland, 1988

[Matsuoka&Yonezawa 93]
S. Matsuoka, A. Yonezawa, Analysis of Inheritance Anomaly in Object-Oriented Concurrent
Programming Languages, Research Directions in Concurrent Object-Oriented Programming, G.
Agha, P. Wegner, A. Yonezawa (Eds.), MIT Press, 1993

[van der Meulen 90]
E.A. van der Meulen, Fine-Grain Incremental Implementation of Algebraic Specifications, In
Proceedings of the 2nd Intl. Conference on Algebraic Methodology and Software Technology
AMAST’91, Springer, 1991

[Meyer 86]
B. Meyer, Genericity versus Inheritance, In Proceedings of the 1st OOPSLA, pp 391-405, Port-
land, Oregon, 1986

[Meyer 87]
B. Meyer, Eiffel: A Language and Environment for Software Engineering, Interactive Software
Engineering, Inc, 1987
220

Bibliographic References
[Meyer 88]
B. Meyer, Object-oriented Software Construction, Prentice-Hall International (UK) Ltd, Hemel
Hempstead, 1988

[Milner 80]
R. Milner, A Calculus of Communicating Systems, LNCS Vol 92, Springer Verlag, Berlin, 1980

[Moss 81]
J.E.B. Moss, Nested Actions: an Approach to Reliable Distributed Computing, PhD thesis, Tech-
nical Report MIT/LCS/TR-260, MIT Laboratory for Computer Science, 1981.

[Mullender 93]
S. Mullender, Interprocess Communication, In “Distributed Systems”, 2nd edition, S.Mullender
(Ed.), Addison-Wesley, New York, 1993

[Murphy et al 89]
S.C. Murphy, P. Gunningberg, J.P.J. Kelly, Implementing Protocols with Multiple Specifica-
tions: Experiences with Estelle, Lotos and SDL, 9th IFIP WG 6.1 International Symposium on
Protocol Specifications, Testing and Verification, Enschede, The Netherlands, June 1989

[Niemeyer&Peck 96]
P. Niemeyer, J. Peck, Exploring Java, O’Reilly and Associates inc., 1996.

[OMG 95]
Object Management Group, The Common Object Request Broker: Architecture and Specifica-
tion (Revision 2.0), Object Management Group, Framingham, Mass., 1995

[Padawitz 88]
P. Padawitz, Computing in Horn Clause Theories, EATCS Monographs on Theoretical Com-
puter Science, Vol 16, Springer Verlag, Berlin, 1988

[Pereira et al 86]
L.M. Pereira, L. Monteiro, J. Cunha, and J.N. Aparício, Delta-Prolog: A Distributed Backtrack-
ing Extension with Events, Proceedings of the Third International Conference on Logic Program-
ming, volume 255 Lecture Notes in Computer Science, Springer Verlag, London, July 1986

[Petri 62]
C.A. Petri, Kommunikation mit Automaten, Rhein, Westf. Inst. F. Instr. Math., Bonn, 1962

[Plat&Voss 95]
N. Plat, H. Voss, The VDM++ Toolbox User Manual, Technical Report, CAP Volmac & IFAD,
ESPRIT-III project number 6500 “Afrodite”, Doc Id: AFRO/CG/NP/VPPUM/V5.3, Sept 1995

[Plotkin 77]
G.D. Plotkin, LCF Considered as a Programming Language, Theoretical Computer Science,
5:223-255, 1977

[Pulli&Elmstrøm 93]
P. Pulli, R. Elmstrøm, IPTES: A Concurrent Engineering Approach for Real-Time Software
Development, Real-Time Systems Journal, Vol 5, No 2/3, Kluwer Academic Publishers, Nether-
lands, May 1993
221

Bibliographic References
[Rabéjac 95]
C. Rabéjac, Auto-surveillance logicielle pour applications critiques: méthodes et mécanismes,
PhD thesis, LAAS-CNRS, No 1095 (LAAS report No 95449), November 1995

[Reisig 85]
W. Reisig, Petri Nets. An Introduction. EATCS Monographs on Theoretical Computer Science,
Vol. 4, Springer Verlag, 1985

[Reisig 86]
W. Reisig, A Strong Part of Concurrency, Revised proceedings of the 7th European Workshop
on Application and Theory of Petri Nets, Oxford (UK), LNCS, June 1986

[Reisig 91]
W. Reisig, Petri Nets and Algebraic Specifications, Theoretical Computer Science 80, pp. 1-34,
1991

[Robinson 65]
J.A. Robinson, A Machine-Oriented Logic Based on the Resolution Principle, Journal of the
Association for Computing Machinery, 12(1):23-41, 1965

[Roques 94]
C. Roques, Modularité dans les spécifications algébriques: Théorie et applications, Thèse de
doctorat, No d’ordre 3308, Université Paris XI Orsay, 1994

[Rosenkrantz et al 78]
D.J. Rosenkrantz, R.E. Stearns, P.M. Lewis, System Level Concurrency Control in Distributed
Data Base, ACM TODS, 3(2), pp 178-198, June 1978

[Rumbaugh et al 91]
J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorenson, Object-Oriented Modeling and
Design, Prentice-Hall, Englewood Cliffs, NJ, 1991

[Rumbaugh 95]
J. Rumbaugh, OMT: The Functional Model, JOOP, March-April 1995

[Schnoebelen 88]
Ph. Schnoebelen, Refined Compilation of Pattern-Matching for Functional Languages, Science
of Computer Programming, 11:133-159, 1988

[Shapiro 83]
E.Y. Shapiro, A Subset of Concurrent Prolog and its Interpreter, Technical Report, Weizmann
Institute, Rehovot, February 1983

[Sheard 91]
T. Sheard, Automatic Generation and Use of Abstract Structure Operators, ACM TOPLAS, Vol
13, pp 531-557, 1991

[Schwartz&Mattern 92]
R. Schwartz, F. Mattern, Detecting Causal Relationships in Distributed Computations: In Search
of the Holy Grail, Dept. of Computer Science, University of Kaiserslautern, Technical Report
SFB124-15/92, Kaiserslautern, Germany, 1992, also available in “Distributed Computing”, Vol.
7, No. 3, pp. 149-174, 1994
222

Bibliographic References
[Simons, Kwang&Mei 94]
A.J.H. Simons, L.E. Kwang, N.Y. Mei, An Optimizing Delivery System for Object-Oriented Soft-
ware, in Object Oriented Systems, Vol I, pp 21-44, 1994

[Sinclair, Clynch&Stone 95]
D. Sinclair, G. Clynch, B. Stone, An Object-Oriented Methodology from Requirements to Valida-
tion, Procs. 2nd Intl. Conf. on Object-Oriented Information Systems, Springer, 1995

[Skeen 81]
D. Skeen, NonBlocking Commit Protocols, In Procs. ACM SIGMOD Intl. Conf. on Management
of Data, pp. 133-142, ACM Press, 1981

[Sommerville 92]
I. Sommerville, Software Engineering, 4th revision, Addison Wesley, 1992

[Somogyi 87]
Z. Somogyi, A System of Precise Modes for Logic Programs, Procs. 4th Int. Conf. on Logic Pro-
gramming, Melbourne, Australia, pp. 769-787, 1987

[Somogyi, Henderson&Conway 96]
Z. Somogyi, F. Henderson, T. Conway, The Execution Algorithm of Mercury, an Efficient Purely
Declarative Logic Programming Language, Journal of Logic Programming, Elsevier, 1996.

[Spivey 89]
J.M. Spivey, The Z Notation: A Reference Manual, Prentice-Hall, London, 1989

[Srivastava 92]
A. Srivastava, Unreachable Procedures in Object-Oriented Programming, in LOPLAS, Vol I, pp
355-364, 1992

[Stallman&Sussman 77]
R. Stallman, G.J. Sussman, Forward Reasoning and Dependency Directed Backtracking in a
System for Computer-Aided Circuit Analysis, Artificial Intelligence, Vol. 9, pp. 135-196, 1977

[Strohmeier 96]
A. Strohmeier, Cycle de vie du logiciel, In “Génie logiciel: principes, méthodes et techniques”,
A. Strohmeier and D. Buchs (Eds.), Presses polytechniques et universitaires romandes, Lau-
sanne, Switzerland, 1996

[Stroustrup 91]
B. Stroustrup, The C++ Programming Language, Second Edition, Addison Wesley, 1991

[Taubner 87]
D. Taubner, On the Implementation of Petri Nets, 8th European Workshop on Applications and
Theory of Petri Nets, Saragosa, Spain, LNCS Vol 340, Springer Verlag, pp. 418-439, June 1987

[Tebra 87]
H. Tebra, Optimistic And-Parallelism in Prolog, In Procs. Parallel Architectures and Languages
Europe PARLE’87, Eindhoven, The Netherlands, LNCS Vol. 259, June 1987

[Ueda 85]
K. Ueda, Guarded Horn Clauses, Technical Report TR-103, ICOT, June 1985
223

Bibliographic References
[Ungar&Smith Randall 87]
D. Ungar, B. Smith Randall, Self: The Power of Simplicity, SIGPLAN Notices 22,12, December
1987

[Verhofstad 78]
J.S.M. Verhofstad, Recovery Techniques for Database Systems, Computing Surveys, 10(2):167-
195. June 1978

[Vonk 92]
R. Vonk, Prototypage: l’utilisation efficace de la technologie CASE, Masson & Prentice-Hall,
Paris, 1992

[Walker, Floyd&Neves 90]
E. Walker, R. Floyd, P. Neves, Asynchronous Remote Operation Execution in Distributed Sys-
tems, Proc. IEEE 10th Int. Conf. on Distributed Computing Systems, May 1993

[Ward&Mellor 85]
P.T. Ward, S.J. Mellor, Structured Development for Real-Time Systems, volume 1-3, Yourdon
Press, New York, 1985

[Wegner 87]
P. Wegner, Dimensions of Object-Based Language Design, in OOPSLA ‘87 Conference Pro-
ceedings, pp. 168-182

[Weihl 89]
W. Weihl, Local Atomicity Properties: Modular Concurrency Control for Abstract Data Types,
ACM Transactions on Programming Languages and Systems, Vol. 11, No 2, 1989

[Zaremski&Wing 95]
A.M. Zaremski, J.M. Wing, Specification Matching of Software Components, Third ACM SIG-
SOFT Symposium on the Foundations of Software Engineering, Oct. 1995
224

Appendix A.
Major Control Algorithms for CO-OPN

In this appendix are listed the most important algorithms for the control of the synchroniza-
tions. We use a syntax close to the Ada programming language, with some syntactic sugar
and relaxed so as to allow copy-out parameters for functions and to let copy-in parameters
be modified locally.

Appendix A.1 Some Relations Between Method Calls

Let us define the kinds of relations which exist between method calls: Children, Depen-
dent, After and LowerPriority.

Figure 118. Example for the Terminology (with some Stabilize Requests for O0)

O3

O0

O1

O4

O2

T44

T41

T401

T101

T43

T301

T32 +

Tx4

m3

m4

m0a

m1

m0b

m2

m4 with m3&(m1..m0b)

m3 with m2+m0a

m1 with m0b

T402

T102

T302

T103
225

A. Major Control Algorithms for CO-OPN
We have the following relationships in figure 118 with respect to Object O0:

• Children(Xid) are the subtransactions of Xid, i.e. the synchronizations and stabilizations
which extend Xid downwards: Children(T44) = { T41, T101, T102, T103, T401}.

• After(Xid) are the transactions (of the events) which happen causally after Xid, due to a
sequential operator or a stabilization: After(T101) = { T102, T103, T401, T402 }.

• Dependent(Xid) are the transactions which are Children of Xid or come After Xid:
Dependent(T101) = Children(T101) + After(T101) = { T102, T103, T401, T402 }.

• First(List_of_Xids), where the Xids of List_of_Xids are connected by a sequence or
a stabilization, returns the Xid corresponding to the event which comes first temporally:
First(< T101,T401 >) = T101. If some Xids of List_of_Xids are also connected by a
simultaneity, then First returns the list of Xids which come first in the respective thread
of simultaneity: First(< T301,T302,T101,T102,T103,T401 >) = < T301, T101 >. We also
have the following relation: List_of_Xids = First(List_of_Xids) + Depen-

dent(First(List_of_Xids)).
• Independent(Xid) are the transactions which are connected to Xid by a simultaneity or

an alternative: Independent(T301) = { T101 } (relatively to O0).
• LowerPriority(Xid) are the transactions which are connected to Xid by a simultaneity or

an alternative, i.e. the independent transactions, and which will be managed after Xid
because of some priority. We have e.g. LowerPriority(T101) = { T301 } because T101
comes from Object O1 which is lower in the hierarchy than O3 (and has therefore higher
priority according to the semantics of CO-OPN).

Appendix A.2 Basic Synchronization Algorithms

There are three kinds of synchronization operators in CO-OPN: the sequence (“..”), the
simultaneity (“&”) and the alternative (“+”). For each operator there is one algorithm for
serving the corresponding request (ServeSerial, ServeSim, ServeAlt). The ServeSerial
algorithm is also used for serving the first call of a synchronization as well as successive
stabilization requests.

Function ServeSerial

ServeSerial simply evaluates the method and returns the status Success or Failure to the
caller.

1 FUNCTION ServeSerial (CurrentXid: IN Xid;
2 CurrentSync: IN SynchronizationVector;
3 InitialState: IN ObjectState;
4 ResultingState: OUT ObjectState;
5 SuccessfulXids: OUT Set_of_Xids)
226

A. Major Control Algorithms for CO-OPN
6 RETURN Status IS
7 BEGIN
8 IF EvalMethod(CurrentXid, CurrentSync,

InitialState, ResultingState,
SuccessfulXids)=Success THEN

9 RETURN Success;
10 ELSE

11 RETURN Failure;
12 END IF;
13 END ServeSerial;

Function ServeSim

ServeSim is called each time a new method call starts a simultaneous thread with some
existing calls. It first evaluates the call in the appropriate context, without aborting any
existing lower priority calls. This is possible since the different simultaneous threads are
totally independent, both within the current Object and within sub-Objects being synchro-
nized with, if any. If the evaluation succeeds, then all calls with lower priorities are aborted
whether or not they really are in conflict with the current call (this is called aggressive
cancellation in the field of computer simulation [Ferscha 96]). If the evaluation fails, then
the function simply returns Failure.

In case of success, because of the optimistic strategy adopted for the evaluation of simulta-
neity, it is necessary to warn directly the emitter of the simultaneous synchronization in
order to restart the calls with lower priority. If we naively send new answers to the lower
priority calls after reevaluating them, then we will miss the ones which we have forgotten
because they had initially failed, but which might succeed now, after the current call. We
may also be unable to efficiently catch up with succeeded calls which are terminated in
between and which are now under the control of the Object requesting the simultaneity.

It is important to notice that all simultaneous calls are completely serialized, the calls with
highest priority being executed first.

1 FUNCTION ServeSim (CurrentXid: IN Xid;
2 CurrentSync: IN SynchronizationVector;
3 StateBeforeSim: IN ObjectState;
4 ObjRequestingSim: IN ObjectId;
5 HigherPriority: IN List_of_Xids;
6 LowerPriority: IN List_of_Xids;
7 ResultingState: OUT ObjectState;
8 SuccessfulXids: OUT Set_of_Xids)
9 RETURN Status IS
10 BEGIN

11 IF EvalMethod(CurrentXid, CurrentSync,
StateBeforeSim - Consumed(HigherPriority), ResultingState,
SuccessfulXids)=Success THEN

12 send(ObjRequestingSim,RestartLower,CurrentXid);
13 abort(LowerPriority);
14 RETURN Success;
227

A. Major Control Algorithms for CO-OPN
15 ELSE

16 RETURN Failure;
17 END IF;
18 END ServeSim;

Comments on ServeSim
Line 11 tries to serve the new method call in the state the Object is supposed to have right
after serving all simultaneous requests with higher priority. If it is successful, then the
simultaneous requests with lower priority will have to be restarted, because the current one
will probably have taken some of their tokens (line 12 for the global reset, and line 13
performs an optimization by anticipating locally the abort which will result from the global
reset).

Function ServeAlt

ServeAlt is called at each arrival of a method call connected to an existing one by the means
of an alternative operator. Its effect is to suspend the call and warn the emitter of the
synchronization about it so that it is known that the call must be reactivated. This is because
it is not possible for a single Object to evaluate several alternatives at the same time in the
general case where there exist calls with lower priority than the alternatives: According to
which of the alternatives should then the calls with lower priority be aborted or restarted ?
In order to evaluate the alternatives in parallel instead of in sequence it would therefore be
necessary to duplicate the whole synchronization sorrounding the alternative.

1 FUNCTION ServeAlt (CurrentXid: IN Xid;
2 ObjRequestingAlt: IN ObjectId)
3 RETURN Status IS
4 BEGIN
5 send(ObjRequestingAlt,Suspended,CurrentXid);
6 END ServeAlt;

The call identified by CurrentXid is now blocked until Object ObjRequestingAlt sends a
Restart to the current Object with CurrentXid as argument.

Appendix A.3 The Stabilization Procedure

Introduction

The functions StabilizeLowerObjects and Stabilize are activated according to the
semantics of CO-OPN at the end of each successful synchronization (rule BEH-SYNC) and
in the middle of each sequence (rule BEH-SEQ).
228

A. Major Control Algorithms for CO-OPN
The function StabilizeLowerObjects is called by every Object “MySelf” which success-
fully terminates a synchronization. The function is responsible for sending stabilize
messages to all relevant Objects which are strictly lower than MySelf.

The function Stabilize is executed by each Object “MySelf” receiving the message
Stabilize. The Object then starts a loop for firing all internal transitions until it has
become stable. At each iteration it calls StabilizeLowerObjects in order to stabilize the
lower Objects which successfully took part in the synchronization from the current transi-
tion, as well as the associated StabClients which are lower than MySelf. If
List_of_Xids is the list of all transaction Xids which took part in the synchronization, then
the function DirectParticipants(List_of_Xids) returns the list of lower Objects which
took part in the first level of this synchronization.

Both functions use CurrentXid and CurrentSync as basis for building new subtransaction
Xids and synchronization vectors, and return the set AllSuccessfulXids containing the
new successful leaf transaction Xids they have created or inherited.

Figure 119. Mutual Dependency of Stabilize and StabilizeLowerObjects

The example of Figure 119 shows that Stabilize and StabilizeLowerObjects are mutu-
ally dependent for achieving correctly the work. We suppose here that O4 is not client of O3,
hence O3 is outside of the big triangle with O4 at the summit. Moreover Object O3 is not a
StabClient of any of the Objects within that triangle. That is why O3 is never accessed

51

2 3

1

2

5

3

O4 synchronizes with O2O4

O3
O2

O1

O0

The synchronization with O2 is successful,

O2 must StabilizeLowerObjects
after the synchronization.

O4 has either received an invocation from
the interface, or is already stabilizing.

As first step O2 sends a

4

4

stabilize request to O0.

As second step O2 sends a stabilize
request to O1 since it is a StabClient
of O0 which is lower than O2.
O2 is however not a client of O1, it just

When O2 terminates StabilizeLowerObjects
all lower Objects than itself are stable.

O1 has currently no firable transition.
happens to have a higher number.

O2 in turn successfully
synchronizes with O0

O4 sends a stabilize request to it.
229

A. Major Control Algorithms for CO-OPN
during the stabilization. This is the first advantage of our algorithm compared to an exhaus-
tive stabilization scheme following blindly the total order of the Object dependency graph.
The other advantage is that the Objects the state of which has been modified (such as O0 and
O1) receive the command stabilize only once instead of one each time a new level of the
synchronization they took part in terminates successfully (i.e. O0 and O1 are stabilized when
the synchronization terminates in O2, but not again for O4). The algorithm actually works by
layers, as shown in the above figure.

Function Stabilize

1 FUNCTION Stabilize (MySelf: IN ObjectId;
2 CurrentXid: IN Xid;
3 CurrentSync: IN SynchronizationVector;
4 InitialState: IN ObjectState;
5 ResultingState: OUT ObjectState)
6 RETURN Set_of_Xids IS
7 AllSuccessfulXids: Set_of_Xids := {};
8 InheritedXids: Set_of_Xids := {};
9 SubXid: Xid;
10 SubSync: SynchronizationVector;
11 Clock: natural := 1;
12 BEGIN
13 LOOP

14 SubXid := MakeLocalXidFrom(CurrentXid);
15 SubSync := MakeSyncFrom(CurrentSync,”stab”+Clock);
16 IF EvalAnyTransition(SubXid, SubSync,

InitialState, ResultingState,
SuccessfulXids)=failure THEN

17 delete(SubXid,SubSync);
18 RETURN FilterNonLeaf(AllSuccessfulXids);
19 END IF;
20 insert(AllSuccessfulXids,SuccessfulXids);
21 IF Card(Participants(SuccessfulXids)) > 1 THEN
22 InheritedXids := StabilizeLowerObjects(MySelf, SubXid, SubSync,

DirectParticipants(SuccessfulXids));
23 insert(AllSuccessfulXids,InheritedXids);
24 END IF;
25 Clock := Clock+1;
26 END LOOP;
27 END Stabilize;

Comments on Stabilize
Lines 14 and 15 create a new Xid and synchronization vector for a local subtransaction
which will encapsulate the next transition firing. This allows us to identify and abort, if
necessary, all external stabilizations entailed by the firing of the internal transition. Lines 16
to 19 try to fire one more transition: If it fails then it means that the Object is stable, there-
fore we delete the unused subtransaction and return to the caller. When returning we keep
only the leaf transaction Xids, since all intermediate Xids are contained within the latter,
allowing us to prevent messages from carrying redundant information. Line 20 inserts the
inherited subtransaction Xids into the set of successful Xids to be returned as result. Line 21
checks if there was a synchronization during the transition and if other Objects must be
230

A. Major Control Algorithms for CO-OPN
stabilized before going on. Lines 22 and 23 care for the stabilization of all Objects, lower
than MySelf and above or equal to the lowest of the DirectParticipants, which have
become unstable during the successful subtransaction. These additional stabilization
subtransactions are also remembered for the final result. Line 25 increments the local Clock
to indicate the progress: This could have been avoided by nesting all the future events
within subtransactions of the current transaction, but at the price of having to manipulate
and transfer rapidly growing Xid structures. By creating a sibling transaction at each step of
the stabilization, instead of a subtransaction (which would maybe better represent the
causality), we obtain Xids whose length is bounded by O(p), p being the maximal depth of a
synchronization in a connected Object dependency graph, instead of O(f), where f is the
total number of methods and transitions firable on the path p. The number f is by hypothesis
finite but may in practice be very high.

Function StabilizeLowerObjects

1 FUNCTION StabilizeLowerObjects (MySelf: IN ObjectId;
2 CurrentXid: IN Xid;
3 CurrentSync: IN SynchronizationVector;
4 ToStabilize: IN Set_of_ObjectId)
5 RETURN Set_of_Xids IS
6 AllSuccessfulXids: Set_of_Xids := {};
7 InheritedXids: Set_of_Xids := {};
8 LowestObject: ObjectId;
9 SubXid: Xid;
10 SubSync: SynchronizationVector;
11 Clock: natural := 1;
12 BEGIN
13 insert(ToStabilize,LowerThan(MySelf,StabClients(ToStabilize)));
14 WHILE ToStabilize /= {} LOOP
15 LowestObject := Lowest(ToStabilize);
16 SubXid := MakePartialXidFrom(CurrentXid);
17 SubSync := MakeSyncFrom(CurrentSync, <stab,Clock>);
18 send(LowestObject, SubXid, SubSync, stabilize);
19 wait(LowestObject, SubXid, stabilized, InheritedXids);
20 insert(AllSuccessfulXids,InheritedXids);
21 insert(ToStabilize,

DirectParticipants(InheritedXids) +
ObjectsBetween(MySelf,

Lowest(DirectParticipants(InheritedXids)),
StabClients(Participants(InheritedXids))));

22 IF LowestObject = Lowest(ToStabilize) THEN
23 remove(ToStabilize,LowestObject)
24 END IF;
25 Clock := Clock+1;
26 END LOOP;
27 RETURN FilterNonLeaf(AllSuccessfulXids);
28 END StabilizeLowerObjects;
231

A. Major Control Algorithms for CO-OPN
Comments on StabilizeLowerObjects
Line 13 adds to the set of Objects to stabilize all those which are StabClients of the
unstable ones and which are lower than MySelf in the hierarchy. Line 14 ensures that the
function does not return before there are no more Objects to stabilize. Line 15 selects as
Object to stabilize the one which is the lowest in the set of unstable Objects. Lines 16 and
17 create a new Xid and synchronization vector for the subtransaction which encapsulates
the stabilize request to be sent to the LowestObject. Lines 18 and 19 send stabilize to
the LowestObject and waits for the result, a set of Xids executed by Objects which are now
stable. Line 20 memorizes the set of inherited Xids for the future result. Line 21 adds to the
set of Objects to be stabilized the ones which are StabClients of the newly modified
Objects. By taking into account only those which are lower than MySelf, we can guarantee
that the result AllSuccessfulXids only contains Xids related to stable Objects. It is then
up to the caller to extend this result with the unstable Objects which are below itself. The
test in lines 22 to 24 looks if the portion of the hierarchy which is stable is growing up. This
portion is defined as being between the bottom and the Object which has just been stabi-
lized. Line 25 increments the local time to mark the progress. Finally, line 27 returns the set
of Xids corresponding to successful leaf transactions (i.e. we filter all Xids which are a sub-
part of a leaf transaction, since this information is redundant).

Proof of Completeness

We justify here the optimization of the stabilization algorithm by the restriction to “inter-
esting” Objects. According to rules MONOTONICITY and STAB, any transition system
m0 →e m1 can be rewritten as this:

m0 + m(P) ∗→e m1 + m(P)

where P is a maximal set of places which remain unchanged by e and its subsequent stabili-
zation. If an Object o has all its places in P, then it can be excluded from e and its subse-
quent stabilization.

We must now prove that our algorithm really includes all Objects which are to participate in
the stabilization.

Theorem 5: The Stabilization is Maximal

When Stabilize terminates for Object MySelf, it is guaranteed that:

1. MySelf and all lower Objects are stable.
2. No event has been overlooked during the stabilization.

Proof:
232

A. Major Control Algorithms for CO-OPN
The implemented system has no autonomous activity: Any activity originates from an
event coming from above through a method call. Each method call is enclosed in a
synchronization, and each synchronization initiator calls StabilizeLowerObjects and
applies Stabilize to itself before it terminates and in the middle of sequential synchro-
nizations. Therefore method calls are either directly called from the system interface, or
indirectly by synchronization from an internal transition. We will thus have to prove that:

1. Any firable transition belonging to an Object o or equal to MySelf is fired
before o accepts a new method call.

2. Any firable transition belonging to an Object o MySelf is fired before Stabili-
zeLowerObjects returns.

Sub-proof #1
Within a given transaction tree, there are two situations where an Object o which has
already served a method call mc1 may receive a new method call mc2. The first is when
the new method call mc2 is simultaneous or alternative w.r.t. the already terminated
method call mc1, in which case mc2 is to be executed in another context than mc1, and
therefore the context of mc1 does not need to be stabilized before mc2 is served. The
other situation is when mc2 is to be executed in the context resulting from mc1 because it
logically succeeds to mc1. There is a single Object, the originator of the synchronization
containing mc1, which might produce such a situation. But this Object is responsible for
calling StabilizeLowerObjects before it can continue with any other activity. More-
over, StabilizeLowerObjects systematically proceeds from the lowest Objects and
upwards. Therefore Object o will always receive the stabilize command before any
method call mc2.

Sub-proof #2
There are two ways for an Object o to become unstable. The first is by a trivial method
call, in which case the complete stabilization is performed right after. The second is
when o has an internal transition t which synchronizes with a method of another Object
o2 (o2 or equal to o, and o or equal to MySelf), the state of which has changed,
allowing t to be fired. In other words, o is a StabClient of o2 and has become unstable
by virtue of CO-OPN’s anti-inheritance of instability. Since the state of o2 has changed,
Object MySelf will also finally take care of Object o because o is a StabClient of o2, as
described by function StabilizeLowerObjects (line 21). ◊
233

A. Major Control Algorithms for CO-OPN
Appendix A.4 Internal Structure for Managing
Synchronizations

The following figure, which corresponds to Object O0 in the situation of figure 98 on
page 164, where T10 is terminated, T40 running, and T30 not yet arrived, gives an idea of
what the internal data structures could look like. The ovals represent copies of Objects in
different states.

Figure 120. Internal Structure for Managing the Synchronizations (without Stabilization)

Consecutive Object states can be seen as being stacked up, the top of the stack being
pointed to by the last invocation of the synchronization, and the bottom being indicated by
the global variable InitialState. Here is an explanation of the different structures:

1. The global variables InitialState and HeadOfSync point respectively to the first
Object state saved and the root of the current synchronization tree.

InitialState

HeadOfSync SEQ

ObjBefore

Xid

ChildList

Start
End

T10 basic

Invocation T44 sim 0
T41 seq 0

Tx4 basic

ObjBefore

Consumed
Produced

Log

Method Name
IN-Params

OUT-Params

ExecutionList

Status

Execution

Xid+Sync

Xid Start
End

SyncState

SyncState Finished

Running right-hand

ObjAfter

T44 sim 0
T40 seq 1

Tx4 basicInvocation

ObjBefore

Consumed
Produced
Method Name
IN-Params
ExecutionList

Xid Start
End

Xid+Sync

Log

OUT-Params
Status

Execution

SyncState Running

ObjAfter

EmittedSync EmittedSync
234

A. Major Control Algorithms for CO-OPN
2. The Seq structure corresponds to the data needed for managing sequential synchro-
nizations. Analog structures are instantiated for the other kinds of synchroniza-
tions.

- Xid points to the range of the Xid and synchronization vector which we are
concerned with. This helps comparing Xids efficiently in order to calculate
the context of incoming calls.

- SyncState indicates the state of the current sub-part of the synchronization,
i.e. whether it is running, finished, aborted etc.

- ObjBefore points to a copy of the local Object which corresponds to the state
it had before the given sub-part of the synchronization.

- ChildList is the list of child transactions of the sequence.

3. The Invocation structure contains the data needed for managing incoming method
calls.

- ObjBefore points to a copy of the local Object which corresponds to the state
it has after the given method call.

- Consumed refers to an array where each entry contains the tokens consumed
in a given place.

- Produced refers to an array where each entry contains the tokens produced in
a given place.

- MethodName indicates the application-level procedure to execute for the
given method call (with the dispatching needed for choosing between the
automatically generated or the hand-written versions).

- In-Params points to a structure where the input parameters of the incoming
method are saved.

- ExecutionList is the list of Execution structures corresponding to the differ-
ent firings of the given method.

For internal transitions there exists an analog structure, which does not have the
In-Params field.

4. The Execution structure contains the data corresponding to each single execution
of the method or transition it is connected to.

- OUT-Params points to a structure where the output parameters of the incom-
ing method are saved.

- Status indicates whether the execution succeeded or failed.
- The Log contains all the information for undoing operations and in particular

it serves as stack for the choice points created during the execution of the
method or transition.

- EmittedSync points to the data needed for managing outgoing synchroniza-
235

A. Major Control Algorithms for CO-OPN
tions. Its role is similar to the global variable HeadOfSync at the level of
method and transition executions.

When the event is an internal transition, the Execution structure does of course not
have the OUT-Params field.
236

Appendix B.
Messages Supported by the Control Layers

In this appendix we give the list of messages exchanged between the different Object levels.
We do not give all the arguments, only the ones which are necessary for their primary inten-
tion. For instance, the timestamp parameter is not shown.

1. The messages managed on behalf of the controlled action class:
- There is one implementation-level m(ObjectId,Xid,SynchronizationVec-
tor,InArgumentList) for each method m of the specification exported by
Object ObjectId. The caller must of course provide the input arguments
(InArgumentList) to the called method in addition to the Xid and the
sychronization vector of the subtransaction enclosing the call.

- Reply_m(ObjectId,Xid,OutArgumentList), the reply to Object ObjectId
of the specified method m which was called within transaction Xid. This is a
high-level view where each m has its own reply method in order to transmit
the success of a synchronization, as well as the resulting OUT parameters. In a
lower-level approach, there would be a unique remote procedure, called suc-
cess, with an untyped argument to be unpacked according to the profile of
the method m concerned.

- Stabilize(ObjectId,Xid,SynchronizationVector) tells (within sub-
transaction Xid) Object ObjectId to stabilize itself and to care for the stabili-
zation of all the Objects it requests services from. Object ObjectId replies
Stabilized(Xid) when terminated.

- Abort(ObjectId,Xid, Failure | Kill | Exception). The reason Failure
corresponds to the reply where a method failed because of a lack of resources
for instance. The Exception corresponds to any exception raised during the
remote execution of a request; ideally an additional string should give more
information to the caller. The Kill does not correspond to a reply: It is trans-
mitted from above and downwards, and corresponds to all the cases where a
search is abruptly terminated by a caller. If an Abort message is received for
a Xid which is already aborted, it is simply ignored.

2. Additional messages for the resolution layer:
- Retry(ObjectId,Xid) for requesting from Object ObjectId a new answer

for the non-deterministic method called initially within subtransaction Xid.
237

B. Messages Supported by the Control Layers
All dependents of Xid are aborted.
- Reset(ObjectId,Xid) for telling Object ObjectId to reinitialize and sus-

pend the subtransaction Xid. All dependents of Xid are aborted, and Xid itself
must be explicitly restarted. To reinitialize means that the search will start
from scratch (by opposition to a Retry request). The requesting Object does
not know the new Xids within which the Reset will take effect at Object
ObjectId.

- Restart(ObjectId,Xid) for telling Object ObjectId to immediately reexe-
cute Xid after reinitializing it. All dependents of Xid are aborted. The
requesting Object does not know the new Xids within which the reset will
take effect at Object ObjectId.

- RestartLower(ObjectId,Xid) for telling Object ObjectId to immediately
Restart all Xids with strictly lower priority than Xid. All their dependents
are aborted. The requesting Object does not know the new Xids within which
the RestartLower will take effect at Object ObjectId.

- RestartDependent(ObjectId,Xid) tells Object ObjectId to immediately
Restart the Xid(s) dependent on Xid. The requesting Object does not know
the new Xids within which the RestartDependent will take effect at Object
ObjectId.

- Suspended(ObjectId,Xid) informs Object ObjectId that Xid has been sus-
pended and will remain so until ObjectId sends to it a Restart.

3. Additional messages for the concurrency control and lower layers:
- Messages for the two phase commitment protocol (RequestVote,Vote (with

argument Yes or No), Decision (with argument Commit or Abort))
- QueryStability (ObjectId) and the answers (Unstable/Stable). This

reports about the strong stability of an Object ObjectId, i.e. whether it has
terminated (and committed) its current activity and no synchronization or sta-
bilization request is pending in its input queue.

- Terminate (ObjectId) tells Object ObjectId to immediately cease all
activity and exit. This generally supposes that ObjectId has been beforehand
progressively prepared to terminate, although it is also useful to be able to
stop a distributed prototype unconditionally.

- PrepareTermination (ObjectId) and the answer ReadyForTermina-
tion are exchanged at the level of the prototype interfaces to the asynchro-
nous world. The purpose is to block the system for any new input while still
letting the current activities terminate normally. When all the interfaces have
replied ReadyForTermination it means that the prototype is blocked and
may be halted by sending the command Terminate to all Objects.

- additional queries for ensuring that a given node has not crashed, which we
do not detail here.
238

Appendix C.
Compilation of CO-OPN Objects

Appendix C.1 Semantics of the Source Language

As for AADTs, the semantics of the source language defined for Objects is a restriction of
CO-OPN: We will apply rewriting for the algebraic terms of Objects, and resolution for
their dynamic behaviour. As explained in chapter 4, rewriting is an interpretation of condi-
tional equations which limits the semantics of algebraic specifications by orienting the
equations. This allows more efficient implementations. For the Object part, we proceed
similarly by imposing strong modes for the parameters of CO-OPN methods, which has the
advantage of making explicit the direction of the data flow, and by establishing a well
defined order in the resolution process, which helps deciding rapidly whether an event is
firable or not.

Whereas chapter 6 describes the distributed resolution mechanism, we will concentrate here
on the local view of this mechanism, as seen from inside a transition or method.

The following definition of the source language is a continuation of section 4.3 on page 95.
For every method of a CO-OPN specification the compiler requires a unique and complete
mode declaration; this allows us to determine by static analysis the data flow within a
behavioural axiom. The data flow is interpreted so that all variables are assigned exactly
once. It is clear that the meaning of the mode declaration is not the same for the caller as for
the callee: The interpretation changes according to whether the variables constitute the
formal or the actual parameters of a method. Let us define a notion of single-assignment
variable.

Definition 42: Binding of a Variable

Let be an Object module OM = < Ω, P, X, Ψ >, a behavioural axiom (Cond ⇒ Event : Pre
→ Post) ∈ Ψ. A binding of a variable x ∈ X is a function Binding: X → { free, bound }
defined as follows:

1. The initial binding of x is free;
239

C. Compilation of CO-OPN Objects
2. The binding of x becomes bound the first time it is written to;
3. If the binding of x is bound, it cannot be written to, neither its binding become free

again.

If the binding of x is free then x cannot be read from. ◊

Definition 43: Mode and Boundedness of Variables

Let be a method m defined by or synchronized with in a behavioural axiom ax of a CO-
OPN specification, then:

- TermsIn(m) is the tuple of parameters of mode IN of m in ax;
- TermsOut(m) is the tuple of parameters of mode OUT of m in ax;
- VarsIn(m) is the tuple of variables of TermsIn(m) in ax;
- VarsOut(m) is the tuple of variables of TermsOut(m) in ax;
- FreeVarsIn(m) is the subset of VarsIn(m) of variables which are free when

used as argument for m;
- FreeVarsOut(m) is the subset of VarsOut(m) of variables which are free when

used as argument for m;
- BoundVarsIn(m) is the subset of VarsIn(m) of variables which are bound

when used as argument for m;
- BoundVarsOut(m) is the subset of VarsOut(m) of variables which are bound

when used as argument for m;

◊

We extend the domain of these functions to general synchronization expressions. The
results are then tuples, the arity of which is equal to the sum of the arities of the elementar
methods composing the synchronization expression. No specific order is assumed.

The following definition gives the syntactic criteria which characterize a well-formed
method or transition definition. Recall from chapter 3 that given a signature Σ=<S,F> where
F = C ∪ OP (respectively the set of constructors and defined operations of F), TC,X denotes
the set of all terms built over constructor symbols in C and variables in X.

Definition 44: Well-Formed Method or Transition Definition

Let Spec be a CO-OPN specification and OM an Object module of Spec. An event e ∈
E(TΣ,X),M(Spec),O is defined by a set Beh-Rules(e) of behavioural axioms in OM. The defi-
nition of e is well-formed if for all (Cond ⇒ e With Sync : Pre → Post) ∈ Beh-Rules(e),
e1,e2 ∈ E(TΣ,X),M(Spec),O:
240

C. Compilation of CO-OPN Objects
1. TermsIn(e) and TermsOut(Sync) are tuples of linear terms in TC,X;
2. Pre=(Prep)p∈P is a P-indexed family of linear terms in T[C],X;
3. TermsOut(e), TermsIn(Sync), Cond ∈ TF,X;
4. Post=(Postp)p∈P is a P-indexed family of terms in T[F],X;
5. VarsOut(e) ∪ VarsIn(Sync) ∪ Vars(Cond) ∪ Vars(Post) ⊆ VarsIn(e) ∪ Vars(Pre)

VarsOut(Sync);
6. For all e1 & e2 of Sync,

- FreeVarsOut(e1) ∩ FreeVarsOut(e2) = ∅
- FreeVarsOut(e1) ∩ VarsIn(e2) = ∅
- VarsIn(e1) ∩ FreeVarsOut(e2) = ∅.

7. For all e1+e2 of Sync, and for all equation c ∈ Cond,
- Vars(Post) ∩ FreeVarsOut(e1+e2) ⊆ FreeVarsOut(e1) ∩ FreeVarsOut(e2)
- Vars(c) ∩ FreeVarsOut(e1+e2) ⊆ FreeVarsOut(e1) ∩ FreeVarsOut(e2)
- FreeVarsOut(e1) ∩ VarsIn(e2) = ∅
- VarsIn(e1) ∩ FreeVarsOut(e2) = ∅.

◊

All linearity constraints are imposed for simplifying the compilation of pattern-matching by
reusing Schnoebelen’s algorithm as described in section 4.8 on page 107. The same reason
justifies the requirement of terms in normal form, i.e. terms in TC,X. Rules 6 and 7 are
designed to verify the correctness of the data flow in presence of simultaneities and alterna-
tives, i.e. that no implicit conditions arise by the sharing of variables between independent
activities. Let us now define the rewriting of multi-sets when considered as simple lists (the
numbering of the source language rules Sn continues from chapter 4):

Definition 45: Application ‘Rewr’ on Multi-Sets of Terms

Rewr: T[F] → T[C] ∪ {error} is defined by:

◊

We also need to define rewriting on events, because of the algebraic expressions occurring
within synchronizations:

Rewr[ti] = error, ti ∈ { t1,...,tn}
Rewr[{t1,...,tn}] = error

(S9)

∀ i = 1...n, Rewr[ti] ≠ error

Rewr[{t1,...,tn}] = {Rewr[t1],...,Rewr[tn]}
(S10)
241

C. Compilation of CO-OPN Objects
Definition 46: Application ‘Rewr’ on Events

Let Spec be a CO-OPN specification. For all e,e1,e2 ∈ ETF,M(Spec),O ,
Rewr: [ETF,M(Spec),O] → [ETC ,M(Spec),O] ∪ {error} is defined by:

◊

The following is a set of basic predicates needed for the definition of the partial semantics
Resolve-PSem (definition 48 below) in the frame of the resolution calculus. In the case
where a non-deterministic operation fails, the underlying mechanism always starts back-
tracking. This should not be confused with the situation where a rewriting step returns
error: The whole computation will then stop, unless the developer defines an adequate
exception handler.

Definition 47: Basic Predicates

Let Spec be a CO-OPN specification, SpecA = < Σ,X,Φ > its associated algebraic specifi-
cation, A = T(Σ,X) /Φ the initial model of SpecA, and the Object module OM = < Ω, P, X,
Ψ > of Spec. ∀ m,m1,m2 ∈ MarkSpec,A, event,e ∈ ETF,M(Spec),O and grounding substitu-
tion σ ∈ σg :

Rewr[ti] = error, ti ∈ { t1,...,tn}
Rewr[e(t1,...,tn)] = error

(S11)

∀ i = 1...n, Rewr[ti] ≠ error

Rewr[e(t1,...,tn)] = e(Rewr[t1],...,Rewr[tn])
(S12)

Rewr[ei] = error, ei ∈{e1,e2}
Rewr[e1 .. e2] = error

(S15)
∀ i = 1...2, Rewr[ei] ≠ error

Rewr[e1 .. e2] = Rewr[e1] .. Rewr[en]
(S16)

Rewr[ei] = error, ei ∈{e1,e2}
Rewr[e1 With e2] = error

(S13)
∀ i = 1...2, Rewr[ei] ≠ error

Rewr[e1 With e2] = Rewr[e1] With Rewr[en]
(S14)

Rewr[ei] = error, ei ∈{e1,e2}
Rewr[e1 & e2] = error

(S17)
∀ i = 1...2, Rewr[ei] ≠ error

Rewr[e1 & e2] = Rewr[e1] & Rewr[en]
(S18)

Rewr[ei] = error, ei ∈{e1,e2}
Rewr[e1 + e2] = error

(S19)
∀ i = 1...2, Rewr[ei] ≠ error

Rewr[e1 + e2] = Rewr[e1] + Rewr[en]
(S20)
242

C. Compilation of CO-OPN Objects
ChooseAxiom(IN, OUT) is a non-deterministic predicate which chooses one among the
behavioural axioms of event e:

Match(IN, IN, OUT) returns the substitution σ such that event matches e. In particular, if e
is a method, then it means that all actual IN parameters of event satisfy the conditions
expressed by the corresponding formal parameters of e:

ApplyPre(IN, IN, OUT, OUT) finds input tokens in m which satisfy the preconditions
{t1,...,tn} and returns the resulting state and substitution:

ApplySync(IN, IN, OUT, OUT) performs the given synchronization e according to the
inference rules of CO-OPN and returns the resulting state and substitution:

ApplyPost(IN, IN, OUT) calculates the postcondition {t1,...,tn} from a given marking m
and returns the resulting state:

◊

We are in fact getting closer and closer to a Prolog-like view of execution, since the textual
order is now part of the semantics, and is enforced by the incremental computation of
substitutions. The expression σ1σ0, denotes the composition of the substitutions σ1 and σ0.
Since we only work with grounding substitutions, the domains and codomains of σ1 and σ0
are disjoint, which means that their composition is simply a union.

Beh-Rules(e) = {(Condi ⇒ Eventi : Prei → Posti)i=1..m }

ChooseAxiom(e, Cond1 ⇒ Event1 : Pre1 → Post1)
(S21)

σe = event

Match(e, event, σ)
(S22)

σ{t1,...,tn} ⊆ m

ApplyPre(m, {t1,...,tn}, m-σ{t1,...,tn}, σ)
(S23)

m1
σe∗→ m2

ApplySync(m1, e, m2, σ)
(S24)

ApplyPost(m, {t1,...,tn}, m+{t1,...,tn})(S25)
243

C. Compilation of CO-OPN Objects
Definition 48: Resolve-PSem

Let Spec be a well-formed CO-OPN specification, SpecA = < Σ,X,Φ > its associated
algebraic specification, A = T(Σ,X) /Φ the initial model of SpecA, and the Object module
OM = < Ω, P, X, Ψ > of Spec. The semantics Resolve-PSemA(OM) is the couple made of
a transition system and a grounding substitution < < MarkSpec,A × EA,M(Spec),O × Mark-

Spec,A >, σg > obtained by the given ordered evaluation of tests and basic predicates. ∀
m0,m1,m2,m3 ∈ MarkSpec,A, e,event ∈ EA,M(Spec),O , and grounding substitutions σ0,σ1,σ2
∈ σg :

Resolve-PSem(m0, event, m3, σ2σ1σ0) =
ChooseAxiom(event, Cond ⇒ e With Sync : Pre → Post) ∧
Match(e, event, σ0) ∧
ApplyPre(m0, Rewr[σ0Pre], m1, σ1) ∧
ApplySync(m1, Rewr[σ1σ0Sync], m2, σ2) ∧
Rewr[σ2σ1σ0Cond] = true ∧
ApplyPost(m2, Rewr[σ2σ1σ0Post], m3)

The modes of Resolve-PSem’s arguments are respectively IN,IN,OUT,OUT. ◊

This kind of ordered resolution strategy is equivalent to SLD-Resolution [Robinson 65]. A
well-known and important property of SLD-Resolution w.r.t. deduction is that it is sound
(all solutions obtained are also solutions of the original problem), but not complete since the
operational mechanism proceeds by depth first exploration of all solutions, meaning that an
infinite loop may block the search even though a correct answer exists.

Appendix C.2 Semantics of the Target Language

The source language of the preceding section is an intermediate language designed to have
identical semantics with the target language. The difference lies in the amount of opera-
tional details: The target language has lower-level primitives so that it is possible to obtain
better performance by optimizing the scheduling of instructions. Another notable change is
that the state of the Object is no longer given as explicit argument to the primitives.

In order to define the target language for the Object part of CO-OPN we will need new
constructs, which are no longer purely functional, compared to the Adt part of CO-OPN.

Definition 49: Object Target Language

Starting from definition 31 on page 98, there are four additional predefined types:
244

C. Compilation of CO-OPN Objects
- Place is the type of all places, regardless of the type of their contents.
- AxiomName is an enumerated type defined for each method and transition

and is used for distinguishing between the behavioural axioms.
- TXid is the root type of all method invocation identifiers. This type receives a

new subtype for each method of the specification.
- MessageId allows identifying all messages or internal events relative to a

method invocation.

The predefined functions, predicates and control structures are:

- Get(p, x) is a non-deterministic predicate which removes any token from p (if
p is not empty , otherwise Get fails) and assigns its value to the variable x.

- Put(p, Te) inserts a token of value Te into place p.
- DeclareSync(Sync(m1,...,mn)) declares to the concurrency control layer the

correspondence between the method invocation identifiers (to be stored in the
variables m1,...,mn of type TXid) and the forthcoming synchronization Sync
(itself of type TXid). The functions seq, sim and alt are available for
describing the structure of Sync.

- ChooseAxiom({axiom1,...,axiomn}, ChosenAxiom) is a non-deterministic
predicate which assigns to the variable ChosenAxiom one among the given
list of axioms. ChooseAxiom fails if the list of axioms is empty.

- Send(m, Te1, ..., Ten) starts a method invocation identified by m (of a type
which is itself a subtype of TXid) by sending a request with a complete list of
actual IN parameters Te1, ..., Ten.

- Receive(m, x1, ..., xr) delivers the successful reply to the method invocation
Send(m,...) and assigns the variables x1, ..., xr to be used as the respective OUT
parameters of the called method.

- Kill(m) aborts the method invocation identified by m. It is not an error to
Kill a failed or an already aborted invocation.

- NextEvent waits for and returns to its caller the MessageId of the next
incoming message.

- Reply(m) is the MessageId of the (expected or already received) reply to an
invocation started with Send(m, ...). The reply may consist in a Success(m)
or a Failure(m). A failed method invocation does not result in a visible
action at the application layer unless it is necessary for managing alternatives:
That is when a branch of an alternative fails irremediably and requires the
application code to launch one of the remaining alternatives. In all other cases
failed invocations directly produce invisible backtracks.

- The function “>=” returns a meta-boolean value which tells if the left-hand
side MessageId argument is causally dependent on (i.e. in sequence with) the
right-hand side MessageId argument. The answer is directly deduced from
245

C. Compilation of CO-OPN Objects
the structure of the specified synchronization expression.
- The function “=” returns the meta-boolean value true if its arguments of type

MessageId designate the same message, otherwise it returns false.
- Done(m) where m is an invocation identifier returns a meta-boolean value

which tells if the corresponding Receive(m,...) has been performed.
- Repeat Instructions Until B has the usual procedural semantics; B is a meta-

boolean expression.
- The control structure “If B Then Instructions EndIf” without an Else part

has been added since we are no longer only compiling into expressions: If B
Then Fail Endif is for instance a frequent construct. B is a meta-boolean
expression.

- Fail immediately aborts the current procedure call and indicates to the caller
that the search is interrupted.

◊

The purpose of defining a subtype of TXid for each method m of the specification is to allow
the automatic generation of strongly and statically typed Send and Receive primitives. This
assumes that the target programming language, such as Ada95, permits overloading. A less
elegant alternative is to have a single TXid type to identify the invocations, and to define
new primitives Send_m and Receive_m for each method m. The same reasoning is applied
to the type Place in order to obtain strongly and statically typed Get and Put primitives.

Since we do not make use of any concurrency related construct at the application level, we
do not need any new features from the object-oriented final programming language. The list
given in section 4.4.1 on page 101 is therefore also valid for implementing the Object part
of CO-OPN.

Appendix C.3 Compilation of Behavioural Axioms

This appendix describes the major algorithms involved in the compilation of behavioural
axioms. For the sake of brevity and legibility we do not list here the optimized versions.

Compilation of Variable Accesses

Thanks to the mode declarations, it is possible to determine statically how to compile
accesses to variables. We give below the corresponding compilation rules. A similar
strategy may be found in [Somogyi 87]: The general case of Prolog requires however unifi-
cation instead of simple pattern-matching.
246

C. Compilation of CO-OPN Objects
Definition 50: Rules for the Compilation of Variable Accesses

Let be an Object module OM = < Ω, P, X, Ψ >, a behavioural axiom (Cond ⇒ e WITH
Sync : Pre → Post) ∈ Ψ. A variable x ∈ X is a formal parameter when it occurs in e and
an actual parameter when it occurs in Cond, Sync, Pre or Post.

Compilation rules for formal parameter x:

Compilation rules for actual parameter x:

Cond and Post have by definition all their parameters of mode IN, whereas Pre is consid-
ered as having only OUT parameters. ◊

The cases requiring pattern-matching followed by an equality test correspond to the allowed
uses of non-linearity. Auxiliary variables (akin to variable renamings in Prolog implementa-
tions) are needed here for the correct verification of the implicit equality. For instance, the
method call m(c1(x),c2(x,y)) with actual parameters of modes OUT and OUT is compiled into
Ada like this:

Send(m);
...
Receive(m,p1,p2);
c1_match(p1,x,matched);
IF NOT matched THEN RETURN; END IF;
c2_match(p2,x1,y,matched);
IF NOT matched THEN RETURN; END IF;
IF x/=x1 THEN RETURN; END IF;

The variable x is considered as free in the first term c1(x) and as bound in the second term
c2(x,y). The functions c1_match and c2_match are generated according to the description
of section 4.8 on page 107.

Mode
IN OUTBoundedness

free

bound

pattern-matching
and assignment

pattern-matching
and equality test

error: parameter
not assigned

standard read
access

Mode
IN OUTBoundedness

free

bound

pattern-matching
and assignment

pattern-matching
and equality test

error: parameter
not assigned

standard read
access
247

C. Compilation of CO-OPN Objects
For reasons of legibility, we have omitted the management of variable naming in all
following algorithms: It is assumed that the variables are adequately declared by a lower-
level mechanism. The generated code for the synchronizations is not optimized for the same
reason, leading to redundant tests at prototype run-time. To eliminate these useless tests, a
more advanced lookahead mechanism must be implemented in the compilation algorithms.

Function GenBehAxiomList

The outermost compilation algorithm is GenBehAxiomList which generates the code for a
method or transition defined by a set BehAxioms of behavioural axioms.

1 FUNCTION GenBehAxiomList(BehAxioms: IN List_of_BehAxioms)
2 RETURN InstructionList IS
3 GeneratedCode : InstructionList := {};
4 Axiom : BehAxiom;
5 BEGIN

6 Append(GeneratedCode, GenDeclareSync(BehAxioms));
7 IF Card(BehAxioms)>1 THEN
8 Append(GeneratedCode, GenChooseAxiom(BehAxioms));
9 FOR EACH Axiom ∈ BehAxioms LOOP
10 Append(GeneratedCode,

GenIfThenEndif(GenAxiomTest(Axiom), GenBehAxiom(Axiom)));
11 END LOOP;
12 ELSE

13 Append(GeneratedCode, GenBehAxiom(First(BehAxioms)));
14 END IF;
15 RETURN GeneratedCode;
16 END GenBehAxiomList;

Function GenBehAxiom

This function generates the code corresponding to the subparts of a single axiom.

1 FUNCTION GenBehAxiom(Axiom: IN BehAxiom)
2 RETURN InstructionList IS
3 GeneratedCode : InstructionList := {};
4 BoundVars : List_of_Variables := {};
5 RemainingConditions : List_of_Equations := Conditions(Axiom);
6 BEGIN

7 Append(GeneratedCode, GenMatch(Axiom,BoundVars,RemainingConditions));
8 Append(GeneratedCode, GenPre(Axiom,BoundVars,RemainingConditions));
9 Append(GeneratedCode, GenSync(Axiom,BoundVars,RemainingConditions));
10 Append(GeneratedCode, GenPost(Axiom,BoundVars);
11 IF VarsOut(DefinedMethod(Axiom)) ⊄ BoundVars THEN
12 error(“Unassigned variables in formal OUT parameters”);
13 END IF;
14 IF RemainingConditions /= {} THEN
15 error(“Unassigned variables in global condition”);
16 END IF;
17 RETURN GeneratedCode;
18 END GenBehAxiom;
248

C. Compilation of CO-OPN Objects
Function GenMatch

The role of GenMatch is to compile the pattern-matching required for the formal IN parame-
ters of a method. If the given event is a transition, then GenMatch will do nothing.

1 FUNCTION GenMatch (Axiom: IN BehAxiom;
BoundVars: IN OUT List_of_Variables;
Conditions: IN OUT List_of_Equations)

2 RETURN InstructionList IS
3 GeneratedCode : InstructionList := {};
4 InParam : Term;
5 Var : Variable;
6 BEGIN

7 FOR EACH InParam ∈ TermsIn(DefinedMethod(Axiom)) LOOP
8 IF NOT Linear(InParam) OR NOT NormalForm(InParam) THEN
9 error(“Illegal formal IN parameter”);
10 END IF;
11 IF NOT IsSimpleVar(InParam) THEN
12 CreatePatternMatchingFunction(InParam);
13 Append(GeneratedCode,GenCallPatternMatchingFunction(InParam));
14 Append(GeneratedCode,GenTestMatchResult);
15 END IF;
16 FOR EACH Var ∈ Vars(InParam) LOOP
17 IF Var ∈ BoundVars THEN
18 Append(GeneratedCode,GenEqualityTest(Var,Renaming(Var)));
19 ELSE

20 Append(BoundVars,Var);
21 END IF;
22 END LOOP;
23 Append(GeneratedCode,GenCalculableConditions(Conditions,BoundVars));
24 END LOOP;
25 RETURN GeneratedCode;
26 END GenMatch;

Function GenPre

This function generates the code for all preconditions of the given axiom.

1 FUNCTION GenPre(Axiom: IN BehAxiom;
BoundVars: IN OUT List_of_Variables;
Conditions: IN OUT List_of_Equations)

2 RETURN InstructionList IS
3 GeneratedCode : InstructionList := {};
4 Pre : Term;
5 Var : Variable;
6 BEGIN

7 FOR EACH Pre ∈ Preconditions(Axiom) LOOP
8 IF NOT Linear(Pre) OR NOT NormalForm(Pre) THEN
9 error(“Illegal precondition”);
10 END IF;
11 Append(GeneratedCode,GenGet(Pre));
12 IF NOT IsSimpleVar(Pre) THEN
13 CreatePatternMatchingFunction(Pre);
14 Append(GeneratedCode,GenCallPatternMatchingFunction(Pre));
249

C. Compilation of CO-OPN Objects
15 Append(GeneratedCode,GenTestMatchResult);
16 END IF;
17 FOR EACH Var ∈ Vars(Pre) LOOP
18 IF Var ∈ BoundVars THEN
19 Append(GeneratedCode,GenEqualityTest(Var,Renaming(Var)));
20 ELSE

21 Append(BoundVars,Var);
22 END IF;
23 END LOOP;
24 Append(GeneratedCode,GenCalculableConditions(Conditions,BoundVars));
25 END LOOP;
26 RETURN GeneratedCode;
27 END GenPre;

Function GenPost

GenPost generates the code for all postconditions of the given axiom.

1 FUNCTION GenPost(Axiom: IN BehAxiom;
BoundVars: IN List_of_Variables)

2 RETURN InstructionList IS
3 GeneratedCode : InstructionList := {};
4 Post : Term;
5 BEGIN

6 FOR EACH Post ∈ Postconditions(Axiom) LOOP
7 IF Vars(Post) ⊄ BoundVars THEN
8 error(“Unassigned variable in postcondition”);
9 END IF;
10 Append(GeneratedCode,GenPut(Post));
11 END LOOP;
12 RETURN GeneratedCode;
13 END GenPost;

Function GenCalculableConditions

This function generates code for all calculable equations of the given global conditions.
Calculable means that the necessary variables have been assigned. The equations for which
code has been produced are removed from the given Conditions list to avoid generating
multiple identical tests.

1 FUNCTION GenCalculableConditions(Conditions: IN OUT List_of_Equations;
BoundVars: IN List_of_Variables)

2 RETURN InstructionList IS
3 GeneratedCode : InstructionList := {};
4 Eq : Equation;
5 BEGIN

6 FOR EACH Eq ∈ Conditions LOOP
7 IF Vars(Eq) ⊂ BoundVars THEN
8 Append(GeneratedCode,GenTestEquation(Eq));
9 Remove(Eq,Conditions);
10 END IF;
11 END LOOP;
250

C. Compilation of CO-OPN Objects
12 RETURN GeneratedCode;
13 END GenCalculableConditions;

Function GenSync

GenSync produces the code for the synchronization part of the given axiom. The synchroni-
zation expression is a binary tree which we tilt to the right in order to facilitate the code
generation. For instance, (e1..e2)..e3 is transformed into e1..(e2..e3). This operation is purely
syntactical and does not change the semantics of the original expression; it just makes the
structure of the generated code more regular.

1 FUNCTION GenSync(Axiom: IN BehAxiom;
BoundVars: IN OUT List_of_Variables;
Conditions: IN OUT List_of_Equations)

2 RETURN InstructionList IS
3 GeneratedCode : InstructionList := {};
4 CurrSync : Event := TiltRightwards(Synchronization(Axiom));
5 BEGIN

6 Append(GeneratedCode,GenSendFirst(CurrSync));
7 Append(GeneratedCode,GenRepeat);
8 Append(GeneratedCode,GenWaitNextEvent);
9 Append(GeneratedCode,GenSelectSync(CurrSync,BoundVars,Conditions));
10 Append(GeneratedCode,GenUntilDone(CurrSync));
11 Append(GeneratedCode,GenCalculableConditions(Conditions,BoundVars));
12 RETURN GeneratedCode;
13 END GenSync;

Function GenSendFirst

The purpose of this function is to generate Send instructions for a maximal amount of
method calls so that all simultaneous events are really fired in parallel. For instance, for the
synchronization (m1..m2)&((m3&m4)..m5), the FirstInvocations are {m1,m3,m4} and
these should be started in parallel by sending the requests at the same moment.

1 FUNCTION GenSendFirst(CurrSync: IN Event;
BoundVars: IN OUT List_of_Variables)

2 RETURN InstructionList IS
3 GeneratedCode : InstructionList := {};
4 e : Event;
5 BEGIN

6 FOR EACH e ∈ FirstInvocations(CurrSync) LOOP
7 Append(GeneratedCode,GenSend(e,BoundVars));
8 END LOOP;
9 RETURN GeneratedCode;
10 END GenSendFirst;
251

C. Compilation of CO-OPN Objects
Function GenSend

GenSend simply generates Send instructions for the given method invocation.

1 FUNCTION GenSend(Method: IN Event;
BoundVars: IN OUT List_of_Variables)

2 RETURN InstructionList IS
3 GeneratedCode : InstructionList := {};
4 Var : Variable;
5 BEGIN

6 IF Vars(TermsIn(Method)) ⊄ BoundVars THEN
7 error(“Unassigned actual IN parameter”);
8 END IF;
9 Append(GeneratedCode,Instruction(Send,GetXid(Method),TermsIn(Method)));
10 RETURN GeneratedCode;
11 END GenSend;

Function GenReceive

GenReceive generates a Receive instruction followed by all the code necessary for
assigning variables and testing the implicit conditions.

1 FUNCTION GenReceive(Method: IN Event;
BoundVars: IN OUT List_of_Variables;
Conditions: IN OUT List_of_Equations)

2 RETURN InstructionList IS
3 GeneratedCode : InstructionList := {};
4 OutParam : Term;
5 Var : Variable;
6 BEGIN

7 Append(GeneratedCode,Instruction(Receive,GetXid(Method),TermsOut(Method)));
8 FOR EACH OutParam ∈ TermsOut(Method) LOOP
9 IF NOT Linear(OutParam) OR NOT NormalForm(OutParam) THEN
10 error(“Illegal actual OUT parameter”);
11 END IF;
12 IF NOT IsSimpleVar(OutParam) THEN
13 CreatePatternMatchingFunction(OutParam);
14 Append(GeneratedCode,GenCallPatternMatchingFunction(OutParam));
15 Append(GeneratedCode,GenTestMatchResult);
16 END IF;
17 FOR EACH Var ∈ Vars(OutParam) LOOP
18 IF Var ∈ BoundVars THEN
19 Append(GeneratedCode,GenEqualityTest(Var,Renaming(Var)));
20 ELSE

21 Append(BoundVars,Var);
22 END IF;
23 END LOOP;
24 Append(GeneratedCode,GenCalculableConditions(Conditions,BoundVars));
25 END LOOP;
26 RETURN GeneratedCode;
27 END GenReceive;
252

C. Compilation of CO-OPN Objects
Function GenSelectSync

GenSelectSync inspects the given synchronization expression in order to generate the
control structure leading to the adequate actions in the event loop.

1 FUNCTION GenSelectSync(CurrSync: IN Event;
BoundVars: IN OUT List_of_Variables;
Conditions: IN OUT List_of_Equations)

2 RETURN InstructionList IS
3 GeneratedCode : InstructionList := {};
4 BEGIN

5 CASE SyncKind(CurrSync) IS
6 WHEN seq THEN
7 Append(GeneratedCode,GenSelectSeq(CurrSync,BoundVars,Conditions));
8 WHEN sim THEN
9 Append(GeneratedCode,GenSelectSim(CurrSync,BoundVars,Conditions));
10 WHEN alt THEN
11 Append(GeneratedCode,GenSelectAlt(CurrSync,BoundVars,Conditions));
12 WHEN basic THEN
13 Append(GeneratedCode,GenSelectBasic(CurrSync,BoundVars,Conditions));
14 END CASE;
15 RETURN GeneratedCode;
16 END GenSelectSync;

Function GenSelectSeq

This function generates the control structure necessary for managing sequential synchroni-
zations. The call GenIfGTE(m) where m is the set {m1,...,mn} produces the code “if
CurrEvent>=Reply(m1) or ... or CurrEvent>=Reply(mn) then”. The call GenIf-
Done(e) with e=m1&m2 results in the code “if Done(m1) and Done(m2) then” and if
e=m1+m2 then it returns “if Done(m1) or Done(m2) then”.

1 FUNCTION GenSelectSeq(CurrSync: IN Event;
BoundVars: IN OUT List_of_Variables;
Conditions: IN OUT List_of_Equations)

2 RETURN InstructionList IS
3 GeneratedCode : InstructionList := {};
4 BEGIN

5 Append(GeneratedCode,GenIfGTE(FirstInvocations(Left(CurrSync))));
6 Append(GeneratedCode,GenSelectSync(Left(CurrSync),BoundVars,Conditions));
7 IF SyncKind(Left(CurrSync)) ∈ {sim,alt} THEN
8 Append(GeneratedCode,GenIfDone(Left(CurrSync)));
9 Append(GeneratedCode,GenSendFirst(Right(CurrSync)));
10 Append(GeneratedCode,GenEndIf);
11 ELSE

12 Append(GeneratedCode,GenSendFirst(Right(CurrSync)));
13 END IF;
14 Append(GeneratedCode,GenElse);
15 Append(GeneratedCode,GenIfGTE(FirstInvocations(Right(CurrSync))));
16 Append(GeneratedCode,GenSelectSync(Right(CurrSync),BoundVars,Conditions));
17 Append(GeneratedCode,GenEndIf);
18 RETURN GeneratedCode;
19 END GenSelectSeq;
253

C. Compilation of CO-OPN Objects
Function GenSelectSim

This function generates the control structure necessary for managing simultaneous synchro-
nizations.

1 FUNCTION GenSelectSim(CurrSync: IN Event;
BoundVars: IN OUT List_of_Variables;
Conditions: IN OUT List_of_Equations)

2 RETURN InstructionList IS
3 GeneratedCode : InstructionList := {};
4 LeftBoundVars : List_of_Variables := Copy(BoundVars);
5 RightBoundVars : List_of_Variables := Copy(BoundVars);
6 BEGIN

7 Append(GeneratedCode,GenIfGTE(FirstInvocations(Left(CurrSync))));
8 Append(GeneratedCode,GenSelectSync(Left(CurrSync),LeftBoundVars,Conditions));
9 Append(GeneratedCode,GenElse);
10 Append(GeneratedCode,GenIfGTE(FirstInvocations(Right(CurrSync))));
11 Append(GeneratedCode,GenSelectSync(Right(CurrSync),RightBoundVars,Conditions));
12 Append(GeneratedCode,GenEndIf);
13 BoundVars := LeftBoundVars ∪ RightBoundVars;
14 RETURN GeneratedCode;
15 END GenSelectSim;

Function GenSelectAlt

This function generates code for exploring sequentially all alternatives of a synchronization.

1 FUNCTION GenSelectAlt(CurrSync: IN Event;
BoundVars: IN OUT List_of_Variables;
Conditions: IN OUT List_of_Equations)

2 RETURN InstructionList IS
3 GeneratedCode : InstructionList := {};
4 LeftBoundVars : List_of_Variables := Copy(BoundVars);
5 RightBoundVars : List_of_Variables := Copy(BoundVars);
6 BEGIN

7 Append(GeneratedCode,GenIfGTE(FirstInvocations(Left(CurrSync))));
8 Append(GeneratedCode,GenIfFailureSendNext(Left(CurrSync),Right(CurrSync)));
9 Append(GeneratedCode,GenSelectSync(Left(CurrSync),LeftBoundVars,Conditions));
10 Append(GeneratedCode,GenElse);
11 Append(GeneratedCode,GenIfGTE(FirstInvocations(Right(CurrSync))));
12 IF SyncKind(Right(CurrSync))=alt THEN
13 Append(GeneratedCode,

GenIfFailureSendNext(Left(Right(CurrSync)),Right(Right(CurrSync))));
14 END IF;
15 Append(GeneratedCode,GenSelectSync(Right(CurrSync),RightBoundVars,Conditions));
16 Append(GeneratedCode,GenEndIf);
17 BoundVars := LeftBoundVars ∩ RightBoundVars;
18 RETURN GeneratedCode;
19 END GenSelectAlt;
254

C. Compilation of CO-OPN Objects
Function GenSelectBasic

GenSelectBasic generates the code for receiving the reply to a successful method call.

1 FUNCTION GenSelectBasic(CurrSync: IN Event;
BoundVars: IN OUT List_of_Variables;
Conditions: IN OUT List_of_Equations)

2 RETURN InstructionList IS
3 GeneratedCode : InstructionList := {};
4 BEGIN

5 Append(GeneratedCode,GenIfSuccess(CurrSync));
6 Append(GeneratedCode,GenReceive(CurrSync,BoundVars,Conditions));
7 Append(GeneratedCode,GenEndIf);
8 RETURN GeneratedCode;
9 END GenSelectBasic;

Appendix C.4
Summary of Restrictions to CO-OPN Objects

Let us briefly review the list of restrictions to the Object part of CO-OPN. There are mainly
four kinds of limitations, all of which are detectable by static analysis of the source text:

1. We have the restriction that the algebraic terms upon which pattern-matching is
performed must be linear and in normal form, as in the left-hand sides of condi-
tional equations in Adt modules of CO-OPN (definition 44 on page 240).

2. There are limitations on the sharing of variables between the branches of a simulta-
neity: Variables cannot be assigned by two independent threads, and variables can-
not be used to transmit information between independent threads. See definition 44
on page 240 for a complete description.

3. There are limitations on the behavioural axioms:
- There must be no “recursive” call from a transition, i.e. during the stabiliza-

tion of an Object o, no call to a method defined in o is acceptable since unsta-
ble Objects are not allowed to serve invocations.

- There must be no transition without any precondition or synchronization, oth-
erwise it will always be firable, thus violating the hypothesis that all stabiliza-
tions are finite.

4. There is a limitation, seen in section 6.4.3, on the inter-Object structure and num-
bering which excludes all cases where the branches of a simultaneous synchroniza-
tion do not have the same priorities when viewed from the emitter and from a
shared Object. This requires a static analysis of all synchronization combinations
to be performed.
255

C. Compilation of CO-OPN Objects
256

Appendix D.
The Collaborative Diary Specification

In this specification all Objects except Network should be duplicated for each of the three
users of the collaborative diary. This can be done either manually or by transforming them
into generic Objects (which we did not do for the sake of legibility). In appendix E an
example is given where the instance of Object DAL for user number one is called DAL1, and
so on.

(:---*
| Specification of ADT Time: Sorts ‘date’ and ‘daytime’ with their associated comparison operators. |
*---:)

ADT Time;
INTERFACE
USE Naturals, Booleans;
SORTS date, daytime;
GENERATORS
DMY _ _ _ : natural natural natural -> date;
HM _ _ : natural natural -> daytime;

OPERATIONS
_ = _ : date date -> boolean;
_ = _ : daytime daytime -> boolean;
_ < _ : daytime daytime -> boolean;

BODY
AXIOMS
((DMY day1, month1, year1) = (DMY day2, month2, year2)) =
(day1=day2) AND (month1=month2) AND (year1=year2);

((HM hour1, minute1) = (HM hour2, minute2)) =
(hour1=hour2) AND (minute1=minute2);

((HM hour1, minute1) < (HM hour2, minute2)) =
(hour1<hour2) OR (hour1=hour2 AND minute1<minute2);

WHERE
day1,day2,month1,month2,year1,year2 : natural;
hour1,hour2,minute1,minute2 : natural;

END Time;

(:---*
| Specification of ADT Event. |
| An event is an entry in the diary consisting of a date, a beginning and an end time within normal |
| working hours, as well as a string describing in natural language the nature of the event. |
*---:)
ADT Event;
INTERFACE
USE Booleans, String, Time;
257

D. The Collaborative Diary Specification
SORTS event;
GENERATORS
< _ _ _ _ > : date, daytime, daytime, string -> event;

OPERATIONS
_ = _ : event event -> boolean;
Overlapping _ _ : event event -> boolean;

BODY
AXIOMS
(: Define equality :)
(< day1, start1, end1, cmnt1 > = < day2, start2, end2, cmnt2 >) =
(day1=day2) AND (start1=start2) AND (end1=end2) AND (cmnt1=cmnt2);

(: Define ‘Overlapping’ working hours :)
Overlapping < day1, start1, end1, cmnt1 >

< day2, start2, end2, cmnt2 > =
(day1=day2) AND (start1 <= end2) AND (end1 > start2);

WHERE
day1, day2 : date;
start1, start2 : daytime;
end1, end2 : daytime;
cmnt1, cmnt2 : string;

END Event;

(:---*
| Specification of ADT ListEvent. |
| ListEvent is the unordered list of all events composing a diary. Operation ‘-’ is partial. |
*---:)
ADT ListEvent;
INTERFACE
USE Booleans, Event;
SORTS listevent;
GENERATORS
[] : -> listevent;
_ + _ : event listevent -> listevent;

OPERATIONS
_ + _ : listevent listevent -> listevent;
_ - _ : listevent event -> listevent;
_ isin _ : event listevent -> boolean;
_ = _ : listevent listevent -> boolean;

BODY
AXIOMS
([] + l1) = l1;
((e + l1) + l2) = (e + (l1 + l2));

(e1=e2) = true => ((e1+l1) - e2) = l1;
(e1=e2) = false => ((e1+l1) - e2) = (l1 - e2) + e1;

e1 isin [] = false;
(e1 isin (l1+e2)) = (e1 = e2) or (e1 isin l1);

([] = []) = true;
((e+l1) = []) = false;
([] = (e+l1)) = false;
((e1+l1) = (e2+l2)) = (e1=e2) and (l1=l2);

WHERE
l1, l2 : listevent;
e,e1,e2 : event;

END ListEvent;
258

D. The Collaborative Diary Specification
(:---*
| Specification of ADT Action. |
| An action is a reified view of one of the operations which can be applied to the diary. The purpose |
| is to be able to validate an operation on the network before applying it definitively to the diary. |
*---:)
ADT Action;
INTERFACE
USE Event, ListEvent, Booleans;
SORTS action;
GENERATORS
AddEvent _ : event -> action;
Update _ _ : event, event -> action;
Cancel _ : event -> action;

OPERATIONS
_ = _ : action action -> boolean;
Conflicting _ _ : action action -> boolean;
Consistent _ _ : action listevent -> boolean;

BODY
SORT
actionKind; (: for testing equality of actions :)

GENERATORS
AddEventKind,UpdateKind,CancelKind : -> actionKind;

OPERATIONS
Kind _ : action -> actionKind; (: auxiliary operation for defining ‘=’ :)
GetFirstEvent _ : action -> event; (: for checking for conflicts :)
GetSecondEvent _ : action -> event; (: idem :)

AXIOMS
Kind(AddEvent e1) = AddEventKind;
Kind(Update(e1,e2)) = UpdateKind;
Kind(Cancel e1) = CancelKind;

(AddEvent e1 = Addevent e2) = (e1=e2);
(Update e1,e2 = Update e3,e4) = (e1=e3) and (e2=e4);
(Cancel e1 = Cancel e2) = (e1=e2);
!(Kind(a1)=Kind(a2)) => (a1=a2) = false;

GetFirstEvent(AddEvent e1) = e1;
GetFirstEvent(Update e1,e2) = e1;
GetFirstEvent(Cancel e1) = e1;
GetSecondEvent(AddEvent e1) = e1;
GetSecondEvent(Update e1,e2) = e2;
GetSecondEvent(Cancel e1) = e1;

Conflicting (AddEvent e1, Addevent e2) = not(e1=e2) and Overlapping (e1,e2);
Conflicting (Update(e1,e2), Update(e3,e4)) =

(not(e1=e3) and not(e2=e4)) and (Overlapping (e1,e3) or Overlapping (e2,e4));
Conflicting (Cancel e1, Cancel e2) = not(e1=e2) and Overlapping (e1,e2);
!(Kind(a1)=Kind(a2)) =>

Conflicting (a1,a2) = Overlapping (GetFirstEvent(a1),GetFirstEvent(a2)) or
Overlapping (GetSecondEvent(a1),GetSecondEvent(a2));

Consistent(AddEvent e1,[]) = true;
Consistent(AddEvent e1, e2+le) =

(not Overlapping(e1,e2)) and Consistent(AddEvent e1, le);
Consistent(Update(e1,e2), le) =

Consistent(Cancel e1, le) and Consistent(AddEvent e2, le);
Consistent(Cancel e1, le) = e1 isin le;

WHERE
259

D. The Collaborative Diary Specification
a,a1,a2 : action;
e1,e2 : event;
le : listevent;

END Action;

(:---*
| Specification of Object ADR (Abstract Document Representation). |
| Object ADR encapsulates the low-level data structures for the replicated diary. |
*---:)
OBJECT ADR;
INTERFACE
USE Booleans, ListEvent, Event;
METHODS
Consult _ : listevent;
AddEvent _ : event;
Update _ _ : event, event;
Cancel _ : event;

BODY
PLACES
diary: listevent;

INITIAL
diary [];

AXIOMS
Consult(le) : diary le -> diary le;
AddEvent(e) : diary le -> diary(e + le);
(e1 isin le) = true =>
Update(e1, e2): diary le ->diary (e2 + (le - e1));

(e isin le) = true =>
Cancel e : diary le -> diary (le - e);

WHERE
e, e1, e2 : event;
le : listevent;

END ADR;

(:---*
| Specification of Object DAL (Data Access Layer). |
| Object DAL filters all accesses to the ADR part of a diary. |
*---:)
OBJECT DAL;
INTERFACE
USE Booleans, ADR, ListEvent, Event, Action;
METHODS
Act _ : action;
DisplayModif _ : listevent;
DisplayConflict _ : action;
Transmit _ : action;
Confirm _ : action;
Conflict _ : action;

BODY
PLACES
confirmed: listevent;
conflicts: action;
wait-transmit: action;

AXIOMS

Consistent(a,l) = true =>
Act a WITH Consult(l) : -> wait-transmit a;
260

D. The Collaborative Diary Specification
Consistent(a,l) = false =>
Act a WITH Consult(l) : -> conflicts a;

DisplayModif l : confirmed l ->;

DisplayConflict a : conflicts a ->;

Transmit a : wait-transmit a ->;

Confirm (AddEvent(e)) WITH AddEvent(e) .. Consult(l) : -> confirmed l;

Confirm (Update(e1, e2))
WITH Update(e1, e2) .. Consult(l)
: -> confirmed l;

Confirm (Cancel e)
WITH Cancel e .. Consult(l)
: -> confirmed l;

Conflict a
: -> conflicts a;

WHERE
e, e1, e2 : event;
a : action;
l : listevent;

END DAL;

(:---*
| Specification of ADT Vote. |
| ADT Vote simply defines an enumerated type (VoteCommit,VoteAbort) for which operation ‘Result’ is |
| similar to a boolean conjunction. |
*---:)
ADT Vote;
INTERFACE
USE Booleans;
SORTS vote;
GENERATORS
VoteCommit : -> vote;
VoteAbort : -> vote;

OPERATIONS
Result _ _ : vote vote -> vote;
VoteForCondition _ : boolean -> vote;

BODY
AXIOMS
Result VoteCommit VoteCommit = VoteCommit;
Result VoteCommit VoteAbort = VoteAbort;
Result VoteAbort VoteCommit = VoteAbort;
Result VoteAbort VoteAbort = VoteAbort;

VoteForCondition true = VoteCommit;
VoteForCondition false = VoteAbort;

END Vote;

(:---*
| Specification of ADT Decision. |
| ADT Decision defines an enumerated type (DecideCommit,DecideAbort) for which the only operation is |
| to convert a ‘vote’ into a ‘decision’. |
*---:)
261

D. The Collaborative Diary Specification
ADT Decision;
INTERFACE
USE Vote;
SORTS decision;
GENERATORS
DecideCommit : -> decision;
DecideAbort : -> decision;

OPERATIONS
DecisionForVote _ : vote -> decision;

BODY
AXIOMS
DecisionForVote VoteCommit = DecideCommit;
DecisionForVote VoteAbort = DecideAbort;

END Decision;

(:---*
| Specification of ADT Message. |
| ADT Message defines a variant record the role of which is to transform the given data into a message. |
*---:)
ADT Message;
INTERFACE
USE Action, Vote, Decision;
SORTS message;
GENERATORS
Pack _ : action -> message;
Pack _ : vote -> message;
Pack _ : decision -> message;

BODY
(: No axioms :)

END Message;

(:---*
| Specification of ADT ID. |
| ADT ID defines an enumerated type of three identifiers to be used as network addresses for the diary |
| users. This is a static solution which simplifies the specification. |
*---:)
ADT ID;
INTERFACE
USE Booleans;
SORTS id;
GENERATORS
id1, id2, id3 : -> id;

OPERATIONS
_ = _ : id id -> boolean;

BODY
;; Syntactic equality is fine for such a simple type:
(ida = idb) => (ida = idb) = true;
!(ida = idb) => (ida = idb) = false;

WHERE
ida,idb : id;

END ID;

(:---*
| Specification of Object Network. |
| This is a centralized view of the services expected from the real communication medium. This Object |
| will have to be unfolded at the moment of implementation so as to provide each diary user with its |
| own refined Network Object which sends and receives requests intelligently instead of broadcasting |
| and filtering like here. |
*---:)
262

D. The Collaborative Diary Specification
OBJECT Network;
INTERFACE
USE Message, ID;
METHODS
Put _ _ _ : message id id;
Get _ _ _ : message id id;

BODY
PLACES
Channel _ _ _ : message id id;

AXIOMS
Put msg iddest idorigin : -> Channel msg iddest idorigin;
Get msg iddest idorigin : Channel msg iddest idorigin ->;

WHERE
msg : message;
iddest, idorigin : id;

END Network;

(:---*
| Specification of Object DSA (Distributed Synchronization Algorithm). |
| The role of the DSA is to ensure that the information in all replicated diaries is consistent. To |
| this end, it implements an atomic commitment protocol known as the “two phase commit”. At any moment |
| each diary user has at most one action to validate; if another user wants to validate his own action |
| exactly at the same time, then it must be controlled that these two actions are compatible. |
| To simplify the specification, we have a static configuration with three permanent diary users. |
*---:)
OBJECT DSA;
INTERFACE
USE
Booleans,
Action, Vote, Decision, Message, ID,
DAL, Network;

BODY
TRANSITIONS
DispatchRequest,
ReceiveRequest,
CollectVote,
DispatchDecision,
ReceiveDecision;

PLACES
MyIdHolder _ : id;
MyDecision _ : decision;
PendingActions _ _ : id action;
OwnAction _ : boolean;

INITIAL
OwnAction false;
MyIdHolder id1; ;; for instance, or id2 or id3.

AXIOMS
;; My DAL wants me to submit an action for approval:

DispatchRequest
WITH Transmit a ..

(Put (Pack a) id1 myId ..
(Put (Pack a) id2 myId ..
Put (Pack a) id3 myId))
: OwnAction false, MyIdHolder myId
-> OwnAction true, PendingActions myId a, MyIdHolder myId;

;; When all participants have voted, put the decision in MyDecision for DispatchDecision:
CollectVote
WITH Get (Pack v1) myId id1 &

(Get (Pack v2) myId id2 &
263

D. The Collaborative Diary Specification
Get (Pack v3) myId id3)
: PendingActions myId a, MyIdHolder myId
-> MyDecision DecisionForVote(Result(v1,Result(v2,v3))),

PendingActions myId a, MyIdHolder myId;

;; I have decided whether my action was ok or not, let everybody know about it:
DispatchDecision
WITH Put (Pack d) id1 myId ..

(Put (Pack d) id2 myId ..
Put (Pack d) id3 myId)
: MyDecision d, OwnAction true, MyIdHolder myId
-> OwnAction false, MyIdHolder myId;

;; This message is not from me, and I have some action pending
;; check if they conflict.

(myId = anyId)=false =>
ReceiveRequest
WITH Get (Pack a) myId anyId ..

Put (Pack VoteForCondition(Conflicting a myAction)) anyId myId
: OwnAction true, PendingActions myId myAction, MyIdHolder myId
-> PendingActions anyId a, PendingActions myId myAction,

MyIdHolder myId;

;; This message does not come from me, and I have no own action pending
;; therefore, commit:

(myId = anyId)=false =>
ReceiveRequest
WITH Get (Pack a) myId anyId ..

Put (Pack VoteCommit) anyId myId
: OwnAction false, MyIdHolder myId
-> PendingActions anyId a, OwnAction false, MyIdHolder myId;

;; This is a message from myself: just commit
(myId = anyId)=true =>
ReceiveRequest
WITH Get (Pack a) myId anyId ..

Put (Pack VoteCommit) myId myId
: MyIdHolder myId
-> MyIdHolder myId;

;; Receive the positive decision of the action originator ‘anyId’ (it could be myself)
;; and transfer the action as committed to my DAL:

ReceiveDecision
WITH Get (Pack DecideCommit) myId anyId .. Confirm a

: PendingActions anyId a, MyIdHolder myId
-> MyIdHolder myId;

;; Receive a negative decision about my action and tell my DAL there is a conflict:
(myId = anyId)=true =>
ReceiveDecision
WITH Get (Pack DecideAbort) myId anyId .. Conflict a

: PendingActions anyId a, MyIdHolder myId
-> MyIdHolder myId;

;; This action was rejected. Since it was not my action, just forget about it.
(myId = anyId)=false =>
ReceiveDecision
WITH Get (Pack DecideAbort) myId anyId

: PendingActions anyId a, MyIdHolder myId
-> MyIdHolder myId;
264

D. The Collaborative Diary Specification
WHERE
a,myAction : action;
v,v1,v2,v3 : vote;
d : decision;
myId,anyId : id;

END DSA;
265

D. The Collaborative Diary Specification
266

Appendix E. An Execution Cycle of the Collaborative
Diary

The pictures on the following pages represent a successful insertion of a new meeting into
the collaborative diary (specified in appendix D). The numbers preceded by the sign indi-
cate the number attributed to the associated Object for the establishment of a total order in
the dependency graph. This execution only shows successful invocations, which means
however that all stabilize requests are displayed. In order to keep the figures legible only
two of the three specified diary users are depicted.
267

E. An Execution Cycle of the Collaborative Diary
268

N
et

w
o

rk

G
et

P
ut

A
D

R
2

A
c
t

C
on

su
lt

A
ct

G
IL

2

1

S
ub

m
it

N
ew

E
ve

nt
D

S
A

2 D
i
s
p
a
t
c
h
R
e
q
u
e
s
t T

ra
ns

m
it

3

4

D
A

L
2

1

4

0

2

3

8

11

A
D

R
1

G
IL

1

D
S

A
1

R
e
c
e
i
v
e
R
e
q
u
e
s
t

D
A

L
1

5

8

6

7

M
ou

se
 e

ve
nt

0
A

sy
nc

hr
on

ou
s

en
vi

ro
nm

en
t

C
O

-O
P

N
 im

pl
em

en
ta

ti
on

Sy
st

em
 in

te
rf

ac
e

Sy
st

em
 in

te
rf

ac
e

F
ig

ur
e

12
1.

 S
uc

ce
ss

fu
l A

dd
iti

on
 b

y
U

se
r

at
 G

IL
2

of
 a

n
E

ve
nt

 in
to

 th
e

R
ep

lic
at

ed
 D

ia
ry

 (
1st

 p
ar

t)

S
u
b
m
i
t
E
v
e
n
t

5

6

2
7

9

10

14

17

18

19

23

21

G
IL

1
In

te
rf

ac
e

G
IL

2
In

te
rf

ac
e

22

20
R
e
c
e
i
v
e
R
e
q
u
e
s
t

13

15
16

12

S
t
a
b
i
l
i
z
e

m
es

sa
ge

s
Sy

nc
hr

on
iz

at
io

n
fr

om
 m

et
ho

d
ca

ll
Sy

nc
hr

on
iz

at
io

n
fr

om
 in

te
rn

al
 tr

an
si

tio
n

E. An Execution Cycle of the Collaborative Diary
269

N
et

w
o

rk

G
et

P
ut

A
D

R
2

A
dd

E
ve

nt
C

on
su

lt

C
on

fi
rm

D
is

pl
ay

M
od

if

C
o
n
f
i
r
m

G
IL

2

D
S

A
2

D
i
s
p
a
t
c
h
D
e
c
i
s
i
o
n

D
A

L
2

1

4

0

2

3

26

A
D

R
1

C
on

su
ltC

on
fi

rm
D

is
pl

ay
M

od
if

C
o
n
f
i
r
m

G
IL

1

D
S

A
1

R
e
c
e
i
v
e
D
e
c
i
s
i
o
n

D
A

L
1

5

8

6

7

A
sy

nc
hr

on
ou

s
en

vi
ro

nm
en

t

C
O

-O
P

N
 im

pl
em

en
ta

ti
on

Sy
st

em
 in

te
rf

ac
e

Sy
st

em
 in

te
rf

ac
e

F
ig

ur
e

12
2.

 S
uc

ce
ss

fu
l A

dd
iti

on
 b

y
U

se
r

at
 G

IL
2

of
 a

n
E

ve
nt

 in
to

 th
e

R
ep

lic
at

ed
 D

ia
ry

 (
2nd

 p
ar

t)

G
e
t
R
e
p
l
y

G
e
t
R
e
p
l
y

17

23

G
IL

1
In

te
rf

ac
e

G
IL

2
In

te
rf

ac
e

C
o
l
l
e
c
t
V
o
t
e

24
2527

R
e
c
e
i
v
e
D
e
c
i
s
i
o
n

28
29

30

31
34

33

36

35

39
37

38

40

41

42

43
44

45

48

47

49

50

S
t
a
b
i
l
i
z
e

 m
es

sa
ge

s
Sy

nc
hr

on
iz

at
io

n
fr

om
 m

et
ho

d
ca

ll
Sy

nc
hr

on
iz

at
io

n
fr

om
 in

te
rn

al
 tr

an
si

tio
n

A
dd

E
ve

nt

32
46

E. An Execution Cycle of the Collaborative Diary
270

N
et

w
o

rk

A
D

R
2

G
IL

21

D
S

A
2

D
A

L
2

1

4

0

2

3

A
D

R
1

G
IL

1
D

S
A

1

D
A

L
1

5

8

6

7

4
A

sy
nc

hr
on

ou
s

en
vi

ro
nm

en
t

C
O

-O
P

N
 im

pl
em

en
ta

ti
on

Sy
st

em
 in

te
rf

ac
e

Sy
st

em
 in

te
rf

ac
e

F
ig

ur
e

12
3.

 2
PC

 A
to

m
ic

 C
om

m
itm

en
t a

ft
er

 th
e

A
dd

iti
on

 b
y

U
se

r
at

 G
IL

2
of

 a
n

E
ve

nt
 in

to
 th

e
R

ep
lic

at
ed

 D
ia

ry

G
IL

1
In

te
rf

ac
e

G
IL

2
In

te
rf

ac
e

3

3 1

3
1

3
1

31

3
1

3
1

3
1

3
1

2

2

2

2
2

2

2

4 U
pd

at
eS

cr
ee

n

U
pd

at
e

sc
re

en
 (

by
 c

al
l-

ba
ck

)

U
pd

at
eS

cr
ee

n

U
pd

at
e

sc
re

en
 (

by
 c

al
l-

ba
ck

)

1 2

B
ro

ad
ca

st
 R
e
q
u
e
s
t
V
o
t
e

C
ol

le
ct

 a
ll
V
o
t
e

s

3 4

B
ro

ad
ca

st
 D
e
c
i
s
i
o
n

Pe
rf

or
m

 th
e

ir
re

ve
rs

ib
le

 a
ct

io
ns

 (
ou

tp
ut

 to
 th

e
te

rm
in

al
s)

2
2

Curriculum Vitae

Geir Jarle Hulaas received a BS and MS in computer science from the Swiss Federal Insti-
tute of Technology (EPFL) in Lausanne, Switzerland, in 1991. Until mid-1993 he worked in
the same institute as a research assistant on the subject of portable compilation techniques
for multi-paradigm programming languages. Then he took part in the design and implemen-
tation of a concurrent extension of the C++ language. During three years from April 1994
he was a PhD student at the EPFL working on incremental prototyping techniques for
formally specified concurrent systems. In 1995 he received a postgraduate degree in soft-
ware engineering.

Publications

J. Hulaas, The Newton Concurrent Object-Oriented System, DEC-Alpha Innovator
Program, Available at Digital Equipment Corporation as CD-ROM AG-Q159A-RE,
September 1993.

D. Buchs, J. Hulaas, P. Racloz, M. Buffo, J. Flumet, E. Urland, SANDS Structured Alge-
braic Net Development System for CO-OPN, 16th International Conference on Application
and Theory of Petri Nets, Torino, Italy, June 1995, pp. 45-53.

D. Buchs, J. Hulaas, Incremental Object-Oriented Implementation of Concurrent Systems
Based on Prototyping of Formal Specifications, SIPAR workshop, Biel, Switzerland, Oct.
1995, pp. 141-145.

J. Hulaas, An Evolutive Distributed Petri Nets Simulator, 10th European Simulation Multi-
conference ESM’96, Budapest, Hungary, 2-6 June 1996, pp. 348-352.

D. Buchs, J. Hulaas, Evolutive Prototyping of Heterogeneous Distributed Systems Using
Hierarchical Algebraic Petri Nets, Procs. IEEE International Conference on Systems, Man
and Cybernetics SMC’96, Beijing, China, Oct. 14-17 1996, pp. 3021-3026. Also available
as European Esprit Long Term Research Project 20072 “Design for Validation” (DeVa)
technical report #09, 1996.

D. Buchs, J. Hulaas, P. Racloz, Exploiting Various Levels of Semantics in CO-OPN for the
SANDS Environment Tools, Tool presentations, 18th Int. Conf. on Application and Theory
of Petri Nets, Toulouse, June 23-27, 1997, pp. 34-43.
271

	Acknowledgements
	Abstract
	Résumé
	Table of Contents
	Chapter 1 Introduction
	Chapter 2 An Incremental Prototyping Methodology based on Formal Specifications
	Chapter 3 The CO-OPN Specification Language
	Chapter 4 Operational Semantics of AADTs
	Chapter 5 Prototyping of AADTs
	Chapter 6 Operational Semantics of CO-OPN Objects
	Chapter 7 Prototyping the Object Application Layer
	Chapter 8 Conclusion

	List of Figures
	Chapter 1 Introduction
	1.1 Our Motivation
	1.2 An Interesting Initial Solution: Mixed Prototyping
	1.3 Methodological Contributions
	1.4 Technical Contributions
	1.5 Structure of the Report

	Chapter 2 An Incremental Prototyping Methodology based on Formal Specifications
	2.1 Foreword
	2.2 Introduction
	Figure 1. The Software Life Cycle

	2.3 Prototyping in the Software Development Cycle
	Different Approaches to Prototyping
	The Benefits of Formal Specifications
	Refinement of Formal Specifications
	Figure 2. The Continuous Model

	2.4 Incremental and Heterogeneous Prototyping
	2.5 Mixed Prototyping
	Figure 3. The Concept of Mixed Prototyping

	2.6 Contributions of the Object-Oriented Paradigm
	Figure 4. Object-Oriented View of Mixed Prototyping
	2.6.1 A Class-Based Decomposition of Functionalities
	2.6.2 The Flexibility of Prototype Objects
	Figure 5. Role of the Configuration Module
	Figure 6. Detailed View of the OOMP Class Pattern

	2.7 The Incremental Prototyping Process
	Figure 7. Activities and Formalisms within SANDS/CO-OPN
	Figure 8. Our Proposal for an Incremental Prototyping Methodology
	2.7.1 Why Object-Oriented Design is Necessary

	2.8 An Error Detection Scheme for the Concrete Code
	A Basic Idea and Some Applications
	Figure 9. Position of the Testor Class in the Hierarchy

	A Scheme for Automatic Generation of Executable Assertions
	The Problem of Correlated Errors

	2.9 Rationalization of Memory Management
	2.10 Assessment of OOMP
	2.10.1 Conditions for Semantic Validity
	Figure 10. The Continuous Evolution from Symbolic+Abstract to Concrete

	2.10.2 Implementation of Object-Oriented Formalisms
	Figure 11. A Possible Implementation of Specified Inheritance

	2.10.3 The Inheritance Anomaly in Target Languages
	2.10.4 Possible Sources of Inefficiency at Run-Time
	Slow-Down due to Object-Orientation
	The Cost of Non-Determinism

	2.11 Putting OOMP to Work
	2.11.1 General View of the Prototyping Tool
	Figure 12. Operations and Outputs in the Prototyping Tool

	2.11.2 The Annotation File
	Figure 13. Annotation File for Object Network

	2.12 Open Problems and Possible Extensions
	2.13 Related Work
	2.13.1 Incremental and Heterogeneous Prototyping
	Prototyping without Code Concretization
	Prototyping with Code Concretization

	2.13.2 Related Work in Executable Assertions

	2.14 Epilogue

	Chapter 3 The CO-OPN Specification Language
	3.1 Introduction
	3.2 Historical Background
	3.3 Introductory Example: The Collaborative Diary
	Figure 14. Module Enrichment Relationships of the Diary Specification
	Figure 15. Global View of the Synchronizations in the Control of a Collaborative Diary
	Figure 16. An algebraic Petri net: Internal view of object DAL
	Figure 17. Partial Specification of Object DAL
	Figure 18. Specification of Adt Event

	3.4 CO-OPN Syntax
	3.4.1 Signature and Interface
	3.4.2 Variables, Terms and Equations
	3.4.3 Adt Module
	3.4.4 Multi-Sets

	3.5 CO-OPN Objects and Synchronizations
	3.5.1 Behavioral Axioms
	3.5.2 Object Module
	3.5.3 N-tuples as Tokens and Net Inscriptions
	Figure 19. CO-OPN Object as Abstraction of the Network

	3.5.4 CO-OPN Specification

	3.6 CO-OPN Semantics
	3.6.1 Algebras and Multi-set Extension
	3.6.2 Object States
	3.6.3 Inference Rules
	3.6.4 Partial Semantics of an Object
	Figure 20. Algebraic Net Formulation of the Dining Philosophers Problem
	Figure 21. CO-OPN Source for the Representation of Figure 20
	Figure 22. The System of Dining Philosophers After p1 Having Taken his Forks

	3.6.5 Semantics of a CO-OPN Specification
	Figure 23. A Problematic Case for the Total Order
	Figure 24. State Graph Construction for SemA((Ob » Oa) » Ot)
	Figure 25. State Graph Construction for SemA((Ob » Ot) » Oa)
	Figure 26. Object with Recursive Method Calls
	Figure 27. Derivation Tree for a Sequence with Recursive Method Calls
	Figure 28. Divider Object with Internal Transitions
	Figure 29. Derivation Tree for a Sequential Synchronization with Divider Object

	3.6.6 Semantic Discussion About the Diary Example
	Figure 30. Specification of Object ADR

	3.6.7 Anti-Inheritance of Instability
	Figure 31. Stability of an Object in Relation with an Enclosing Event
	Figure 32. Evaluation of Invocation m2 (without stabilization messages)

	3.6.8 Compositional Properties of CO-OPN Semantics
	Figure 33. Generic Derivation Tree for rule Beh-Seq
	Figure 34. Generic Derivation Tree for rule Beh-Sim
	Figure 35. Generic Derivation Tree for rule Beh-Alt
	Figure 36. Generic Derivation Tree for rule Sync

	3.6.9 Summary of the Structured Operational Semantics of CO-OPN

	3.7 Refinement
	Strong Concurrent Bisimulation

	3.8 A Characterization of CO-OPN Events
	3.8.1 Method Calls Viewed as Rendez-Vous
	3.8.2 About Instantaneity and Strong Synchrony
	3.8.3 Ordering of Events in CO-OPN
	Figure 37. Different Forms of Concurrency

	3.8.4 Kinds of Non-Determinism in CO-OPN

	3.9 Epilogue

	Chapter 4 Operational Semantics of AADTs
	4.1 Introductory Example
	Figure 38. Specification of a Stack of natural numbers
	Figure 39. Ada95 Code Generated for Operation top

	4.2 Rewrite Systems
	4.3 Semantics of the Source Language
	Figure 40. Semantics of Rewr
	Figure 41. Semantics of Apply

	4.4 Semantics of the Target Language
	Figure 42. Semantics of Eval for Domain TLE
	Figure 43. Semantics of Eval for Domain TLB
	4.4.1 Object-oriented features of the target language

	4.5 The Compilation Algorithm
	Figure 44. Rules for Compile For
	Figure 45. Rules for CompileRH

	4.6 Low-Level Optimizations
	4.7 Restrictions in Modular Specifications
	Well-Structured Algebraic Specifications
	Correct Operation Definition

	4.8 Compilation of Algebraic Terms in Petri Nets
	Figure 46. Matching Function for the Constructor “push_on”

	4.9 Epilogue

	Chapter 5 Prototyping of AADTs
	5.1 Introduction
	5.2 General Mapping Rules
	5.3 An Example in Ada95
	5.3.1 The Abstract Class
	The Abstract Class Interface
	Figure 47. Partial Specification of Naturals
	Figure 48. Type Declarations and Class Methods for Naturals
	Figure 49. Declaration of Constructor Function zero
	Figure 50. Invoking Constructor zero in Ada95 and C++
	Figure 51. Definition of Wrapper for Constructor Function zero
	Figure 52. Declaration of Generator and Generator Inverse for Succ
	Figure 53. Declaration of Generator and its Associated Enumerated Type
	Figure 54. Some Predefined Operations
	Figure 55. The Defined Operations of the Specification
	Figure 56. Declaration of the Specified Operations
	Figure 57. Private Declarations of the Abstract Class

	The Abstract Class Body
	Figure 58. Specification of Addition on Naturals
	Figure 59. Abstract Ada95 Implementation of Addition

	5.3.2 The Symbolic Class
	Figure 60. Package Specification of the Symbolic Natural Class
	An Optimized Symbolic Class
	Figure 61. Pseudo-code for an Optimized Symbolic Implementation of Addition
	Figure 62. Specializing the Symbolic Class

	5.3.3 The Concrete Class
	Figure 63. A Concrete Implementation of Addition
	Figure 64. Incorporation of a Concrete Class

	5.3.4 Implementation of a Concrete Class
	Figure 65. Concrete Implementation of Constructor succ
	Figure 66. Concrete Implementation of succ-inverse
	Figure 67. Concrete Version of the Function Generator
	Figure 68. Providing a Prototype Object for Concrete_Natural

	5.4 Special Cases of Mapping
	5.4.1 Derived Operations Not Having the Sort of Interest in Their Profile
	Figure 69. Partial Signature of a Hash Table Specification

	5.4.2 Modules Without Sort Definitions
	Figure 70. Signature of Nat-Fact

	5.4.3 Modules Defining Several Sorts
	Figure 71. Signature of Tree-of-Info

	5.4.4 Generic Modules
	5.4.5 Generic Parameter Modules
	Figure 72. Partial Definition of a Parameter Module

	5.4.6 Renaming and Morphisms
	Figure 73. Specification of a Generic Module Instantiation
	Figure 74. Mapping into Ada95 of the Renaming of a Defined Operation

	5.5 About the Reliance Upon Generator Inverses
	5.6 Other Uses of Object-Orientation
	5.6.1 Redefinition of Input-Output Operations
	Customizing Textual I/O
	Figure 75. Default Textual I/O Routines used by Concrete_Natural

	Customizing Marshalling Operations

	5.6.2 Subtyping
	5.6.3 Coercion

	5.7 Automatic Verification of Concrete Code
	Figure 76. Pseudo-code for Testing the Concrete “+“ Operator

	5.8 Related Work in Compilation of AADTs
	5.9 Epilogue

	Chapter 6 Operational Semantics of CO-OPN Objects
	6.1 Introduction
	6.2 General Implementation Model
	6.2.1 A Simple Example
	Figure 77. A simple Example
	Figure 78. Messages Exchanged for the Execution of the Simple Example

	6.2.2 Structure of the Generated Prototypes
	Figure 79. General Prototype Architecture
	Figure 80. CO-OPN Object Implementation Model

	6.2.3 Environment of a Distributed Prototype
	Figure 81. A CO-OPN Specification and its Environment
	The Synchronous/Asynchronous Interface
	Resemblance of CO-OPN Implementations and Simulators

	6.3 The Concurrency Control Layer
	6.3.1 Representing Synchronizations as State Diagrams
	6.3.1.1 The Basic Synchronization
	Figure 82. State Diagram for the Basic Synchronization

	6.3.1.2 The Sequential Synchronization
	Figure 83. State Diagram for the Sequential Synchronization

	6.3.1.3 The Simultaneous Synchronization
	Figure 84. State Diagram for the Simultaneous Synchronization

	6.3.1.4 The Alternative Synchronization
	Figure 85. State Diagram for the Alternative Synchronization

	6.3.2 Events viewed as Nested Transactions
	6.3.2.1 Failure Atomicity of the CO-OPN Model
	6.3.2.2 Concurrency Atomicity of CO-OPN Implementations
	Figure 86. A CO-OPN Implementation with Isolation of Transaction Trees

	6.3.2.3 Origin and Characteristics of Nested Transactions
	6.3.2.4 The Locking Protocol
	Figure 87. Transactions and Subtransactions in a CO-OPN Implementation
	Figure 88. Structure of a Subtransaction Id
	Figure 89. Structure of Two Subtransaction Xids

	6.3.2.5 The Two Phase Commit Protocol
	6.3.2.6 Deadlock Avoidance
	Figure 90. Deadlock Involving Transactions Rooted at O4 and O3
	Figure 91. The Wound-Wait Method

	6.3.3 Detection of Stability and Termination
	6.3.4 The Synchrony Hypothesis in an Asynchronous Environment
	6.3.4.1 The Optimisitic Approach to Simultaneity
	Figure 92. Object Sharing in a Simultaneous Synchronization

	6.3.4.2 The Notion of Synchronization Vector
	Figure 93. Update Rules for the Logical Clock
	Figure 94. Logical Clocks and Simultaneity
	Figure 95. Timestamping with Instantaneous Synchronizations
	Figure 96. Vector Clocks and Simultaneity
	Figure 97. Combination of Xids and Clock Vectors (without Stabilization)
	Figure 98. Xids and Synchronization Vectors (without Stabilization)
	Figure 99. Synchronization Vectors and Simultaneity (Without Stabilization)

	6.3.4.3 How to Compute the Context of an Invocation
	How to Calculate the Context of a Simultaneous Synchronization

	6.3.5 The Global Stabilization Process
	6.3.5.1 Identifying Stabilization Requests
	Figure 100. Structure of a Synchronization with Some Stabilization Requests

	6.3.5.2 Organization and Optimization of The Stabilization Process
	Figure 101. Example where Stabilization of O2 is Reactivated after the Call from O4 to O0
	Figure 102. Synchronization and Stabilization for figure 101 (1st part)
	Figure 103. Synchronization and Stabilization for figure 101 (2nd part)
	Figure 104. Stabilization by Extending Spheres

	6.3.5.3 Finalizing the Synchronization and Stabilization
	6.3.6 Distributed Prototype Startup
	6.3.6.1 Establishment of a Total Order
	6.3.6.2 Stabilization at Startup

	6.4 The Resolution Layer
	6.4.1 Solving CO-OPN Events by Resolution
	6.4.2 Parallel and Distributed Prolog Variants
	6.4.2.1 Process-Based Prolog Extensions
	6.4.2.2 And-Parallel Implementations of Prolog
	6.4.3 Assignment of Object and Request Priorities
	Figure 105. Problematic Priority Assignments in Simultaneous Synchronizations

	6.4.3.1 The Problem of Deep Backtracking
	Figure 106. Example of Deep Backtracking from a Sequence back into a Simultaneity
	Figure 107. Incompatibility of Request Priorities in Shared Objects
	Figure 108. A Disallowed Object Topology and a Possible Remedy

	6.4.3.2 The Search within Sequences and Stabilizations
	6.4.4 Levels of Parallelism Allowed by the Resolution Layer

	6.5 The Generated Code
	6.5.1 Overview of the Model Structural Description Layer
	6.5.2 The Application Layer
	6.5.2.1 General Objectives
	6.5.2.2 Mixing Procedural and Logic Styles
	Elimination of Logic Variables
	Supporting Search Non-Determinism
	Figure 109. Code Generated for Transition Divide

	6.5.2.3 Taking Concurrency into Account
	Figure 110. Code Generated for a Transition with Synchronization

	6.6 Related Work
	6.6.1 Fault-Tolerance in Executable Specifications and Logic Programming
	6.6.2 Distributing Strong Synchronous Systems
	6.6.3 Compilation of Petri Nets and Algebraic Petri Nets

	6.7 Epilogue
	Contributions
	Conclusion and Future Work

	Chapter 7 Prototyping the Object Application Layer
	7.1 Introduction
	7.2 General Mapping Rules
	7.3 Range of Action in the Prototyping of Objects
	7.3.1 Changing the Implementation of Places
	7.3.2 Guiding the Search
	7.3.3 Modifying the Synchronizations

	7.4 An Example of Prototyping
	7.4.1 The Abstract Class for Object DAL
	Figure 111. Public Type Declarations and Class Methods for DAL
	Figure 112. Functions for Constructing, Copying and Initializing DAL
	Figure 113. Specified Methods of DAL
	Figure 114. Private Definitions of Abstract_DAL

	7.4.2 Prototyping of Method Act in Object DAL
	Figure 115. Automatically Generated Code for Method Act
	Figure 116. Concrete Implementation of Method Act

	7.4.3 Possible Extensions
	Optimizing with Nogoods
	Labelling Choice Points
	Figure 117. Example with Labelling of Choice Points

	7.5 Automatic Verification of Concrete Classes
	7.6 Epilogue

	Chapter 8 Conclusion
	8.1 Overview of Results
	8.2 Limitations of our Approach
	8.3 Perspectives and Open Problems

	Bibliographic References
	Appendix A. Major Control Algorithms for CO-OPN
	Appendix A.1 Some Relations Between Method Calls
	Figure 118. Example for the Terminology (with some Stabilize Requests for O0)

	Appendix A.2 Basic Synchronization Algorithms
	Function ServeSerial
	Function ServeSim
	Function ServeAlt

	Appendix A.3 The Stabilization Procedure
	Introduction
	Figure 119. Mutual Dependency of Stabilize and StabilizeLowerObjects

	Function Stabilize
	Function StabilizeLowerObjects
	Proof of Completeness

	Appendix A.4 Internal Structure for Managing Synchronizations
	Figure 120. Internal Structure for Managing the Synchronizations (without Stabilization)

	Appendix B. Messages Supported by the Control Layers
	Appendix C. Compilation of CO-OPN Objects
	Appendix C.1 Semantics of the Source Language
	Appendix C.2 Semantics of the Target Language
	Appendix C.3 Compilation of Behavioural Axioms
	Compilation of Variable Accesses
	Function GenBehAxiomList
	Function GenBehAxiom
	Function GenMatch
	Function GenPre
	Function GenPost
	Function GenCalculableConditions
	Function GenSync
	Function GenSendFirst
	Function GenSend
	Function GenReceive
	Function GenSelectSync
	Function GenSelectSeq
	Function GenSelectSim
	Function GenSelectAlt
	Function GenSelectBasic

	Appendix C.4 Summary of Restrictions to CO-OPN Objects

	Appendix D. The Collaborative Diary Specification
	Appendix E. An Execution Cycle of the Collaborative Diary
	Figure 121. Successful Addition by User at GIL2 of an Event into the Replicated Diary (1st part)
	Figure 122. Successful Addition by User at GIL2 of an Event into the Replicated Diary (2nd part)
	Figure 123. 2PC Atomic Commitment after the Addition by User at GIL2 of an Event into the Replicated Diary

	Curriculum Vitae
	Publications

