341,755 research outputs found

    A Lie Algebra for Closed Strings, Spin Chains and Gauge Theories

    Get PDF
    We consider quantum dynamical systems whose degrees of freedom are described by N×NN \times N matrices, in the planar limit N→∞N \to \infty. Examples are gauge theoires and the M(atrix)-theory of strings. States invariant under U(N) are `closed strings', modelled by traces of products of matrices. We have discovered that the U(N)-invariant opertors acting on both open and closed string states form a remarkable new Lie algebra which we will call the heterix algebra. (The simplest special case, with one degree of freedom, is an extension of the Virasoro algebra by the infinite-dimensional general linear algebra.) Furthermore, these operators acting on closed string states only form a quotient algebra of the heterix algebra. We will call this quotient algebra the cyclix algebra. We express the Hamiltonian of some gauge field theories (like those with adjoint matter fields and dimensionally reduced pure QCD models) as elements of this Lie algebra. Finally, we apply this cyclix algebra to establish an isomorphism between certain planar matrix models and quantum spin chain systems. Thus we obtain some matrix models solvable in the planar limit; e.g., matrix models associated with the Ising model, the XYZ model, models satisfying the Dolan-Grady condition and the chiral Potts model. Thus our cyclix Lie algebra described the dynamical symmetries of quantum spin chain systems, large-N gauge field theories, and the M(atrix)-theory of strings.Comment: 52 pages, 8 eps figures, LaTeX2.09; this is the published versio

    Classical Symmetries of Some Two-Dimensional Models

    Get PDF
    It is well-known that principal chiral models and symmetric space models in two-dimensional Minkowski space have an infinite-dimensional algebra of hidden symmetries. Because of the relevance of symmetric space models to duality symmetries in string theory, the hidden symmetries of these models are explored in some detail. The string theory application requires including coupling to gravity, supersymmetrization, and quantum effects. However, as a first step, this paper only considers classical bosonic theories in flat space-time. Even though the algebra of hidden symmetries of principal chiral models is confirmed to include a Kac--Moody algebra (or a current algebra on a circle), it is argued that a better interpretation is provided by a doubled current algebra on a semi-circle (or line segment). Neither the circle nor the semi-circle bears any apparent relationship to the physical space. For symmetric space models the line segment viewpoint is shown to be essential, and special boundary conditions need to be imposed at the ends. The algebra of hidden symmetries also includes Virasoro-like generators. For both principal chiral models and symmetric space models, the hidden symmetry stress tensor is singular at the ends of the line segment.Comment: 51 pages, minor corrections and added reference

    Conformal Current Algebra in Two Dimensions

    Full text link
    We construct a non-chiral current algebra in two dimensions consistent with conformal invariance. We show that the conformal current algebra is realized in non-linear sigma-models on supergroup manifolds with vanishing dual Coxeter number, with or without a Wess-Zumino term. The current algebra is computed using two distinct methods. First we exploit special algebraic properties of supergroups to compute the exact two- and three-point functions of the currents and from them we infer the current algebra. The algebra is also calculated by using conformal perturbation theory about the Wess-Zumino-Witten point and resumming the perturbation series. We also prove that these models realize a non-chiral Kac-Moody algebra and construct an infinite set of commuting operators that is closed under the action of the Kac-Moody generators. The supergroup models that we consider include models with applications to statistical mechanics, condensed matter and string theory. In particular, our results may help to systematically solve and clarify the quantum integrability of PSU(n|n) models and their cosets, which appear prominently in string worldsheet models on anti-deSitter spaces.Comment: 33 pages, minor correction

    Symmetry Algebras of Large-N Matrix Models for Open Strings

    Get PDF
    We have discovered that the gauge invariant observables of matrix models invariant under U(NN) form a Lie algebra, in the planar large-N limit. These models include Quantum Chromodynamics and the M(atrix)-Theory of strings. We study here the gauge invariant states corresponding to open strings (`mesons'). We find that the algebra is an extension of a remarkable new Lie algebra VΛ{\cal V}_{\Lambda} by a product of more well-known algebras such as gl∞gl_{\infty} and the Cuntz algebra. VΛ{\cal V}_{\Lambda} appears to be a generalization of the Lie algebra of vector fields on the circle to non-commutative geometry. We also use a representation of our Lie algebra to establish an isomorphism between certain matrix models (those that preserve `gluon number') and open quantum spin chains. Using known results on quantum spin chains, we are able to identify some exactly solvable matrix models. Finally, the Hamiltonian of a dimensionally reduced QCD model is expressed explicitly as an element of our Lie algebra.Comment: 44 pages, 8 eps figures, 3 tables, LaTeX2.09; this is the published versio

    Yang-Baxter algebra and generation of quantum integrable models

    Full text link
    An operator deformed quantum algebra is discovered exploiting the quantum Yang-Baxter equation with trigonometric R-matrix. This novel Hopf algebra along with its q→1q \to 1 limit appear to be the most general Yang-Baxter algebra underlying quantum integrable systems. Three different directions of application of this algebra in integrable systems depending on different sets of values of deforming operators are identified. Fixed values on the whole lattice yield subalgebras linked to standard quantum integrable models, while the associated Lax operators generate and classify them in an unified way. Variable values construct a new series of quantum integrable inhomogeneous models. Fixed but different values at different lattice sites can produce a novel class of integrable hybrid models including integrable matter-radiation models and quantum field models with defects, in particular, a new quantum integrable sine-Gordon model with defect.Comment: 13 pages, revised and bit expanded with additional explanations, accepted for publication in Theor. Math. Phy
    • …
    corecore