Abstract

An operator deformed quantum algebra is discovered exploiting the quantum Yang-Baxter equation with trigonometric R-matrix. This novel Hopf algebra along with its q1q \to 1 limit appear to be the most general Yang-Baxter algebra underlying quantum integrable systems. Three different directions of application of this algebra in integrable systems depending on different sets of values of deforming operators are identified. Fixed values on the whole lattice yield subalgebras linked to standard quantum integrable models, while the associated Lax operators generate and classify them in an unified way. Variable values construct a new series of quantum integrable inhomogeneous models. Fixed but different values at different lattice sites can produce a novel class of integrable hybrid models including integrable matter-radiation models and quantum field models with defects, in particular, a new quantum integrable sine-Gordon model with defect.Comment: 13 pages, revised and bit expanded with additional explanations, accepted for publication in Theor. Math. Phy

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 27/12/2021
    Last time updated on 03/12/2019