1,463 research outputs found

    Active microwave users working group program planning

    Get PDF
    A detailed programmatic and technical development plan for active microwave technology was examined in each of four user activities: (1) vegetation; (2) water resources and geologic applications, and (4) oceanographic applications. Major application areas were identified, and the impact of each application area in terms of social and economic gains were evaluated. The present state of knowledge of the applicability of active microwave remote sensing to each application area was summarized and its role relative to other remote sensing devices was examined. The analysis and data acquisition techniques needed to resolve the effects of interference factors were reviewed to establish an operational capability in each application area. Flow charts of accomplished and required activities in each application area that lead to operational capability were structured

    JRC - Alenia Aeronautica Coupled UAS and Spaceborne SAR Campaign in Italy

    Get PDF
    The European maritime area is one of Europe’s most important assets with regard to resources, security and ultimately prosperity of the Member States. A significant part of Europe’s economy relies directly or indirectly on it. It is not just the shipping or fisheries industries and their related activities. It is also shipbuilding and ports, marine equipment and offshore energy, maritime and coastal tourism, aquaculture, submarine telecommunications, blue biotech and the protection of the marine environment. The European maritime area faces several risks and threats posed by unlawful activities, such as drugs trafficking, smuggling, illegal immigration, organised crime and terrorism. Piracy in international waters also constitutes a threat to Europe since it can disrupt the maritime transport chain. These risks and threats can endanger human lives, marine resources and the environment, as well as significantly disrupt the transport chain and global and local security. It is anticipated that these risks and threats will endure in the mid and long run. In order to keep Europe as a world leader in the global maritime economy, an effective integrated/interoperable, sustainable maritime surveillance system and situational awareness are needed. A significant number of unlawful maritime activities, such as illegal immigration, drugs trafficking, smuggling, piracy and terrorism involve mainly small boats, because small boats are faster and more difficult to detect using conventional means. Hence, it is very important to find out the feasibility of using Unmanned Aerial Systems (UAS) for small boat detection, tracking, classification and identification, as well as to study the potential of UAS for maritime surveillance. Since 2010 the EC-JRC has carried out a number of UAS maritime surveillance campaigns to study the potential of UAS for maritime surveillance, in particular for small boat detection. This report presents the results and conclusions of the JRC - Alenia Aeronautica Coupled UAS and Spaceborne SAR campaign carried out in Oct. 2010 in Porto Corallo, Sardinia, Italy.JRC.G.4-Maritime affair

    JRC - Metasensing Coupled Spaceborne & Airborne SAR Campaign in Rotterdam

    Get PDF
    The European maritime area is one of Europe’s most important assets with regard to resources, security and ultimately prosperity of the Member States. A significant part of Europe’s economy relies directly or indirectly on it. It is not just the shipping or fisheries industries and their related activities. It is also shipbuilding and ports, marine equipment and offshore energy, maritime and coastal tourism, aquaculture, submarine telecommunications, blue biotech and the protection of the marine environment. The European maritime area faces several risks and threats posed by unlawful activities, such as drugs trafficking, smuggling, illegal immigration, organised crime and terrorism. Piracy in international waters also constitutes a threat to Europe since it can disrupt the maritime transport chain. These risks and threats can endanger human lives, marine resources and the environment, as well as significantly disrupt the transport chain and global and local security. It is anticipated that these risks and threats will endure in the mid and long run. In order to keep Europe as a world leader in the global maritime economy, an effective integrated/interoperable, sustainable maritime surveillance system and situational awareness are needed. A significant number of unlawful maritime activities, such as illegal immigration, drugs trafficking, smuggling, piracy and terrorism involve mainly small boats, because small boats are faster and more difficult to detect using conventional means. Hence, it is very important to find out the feasibility of using new sensors and platforms, such as SAR or Unmanned Aerial Systems (UAS) for small boat detection, tracking, classification and identification, as well as to study the potential of airborne SAR for maritime surveillance. Since 2010 the EC-JRC has carried out a number of coupled UAS and spaceborne SAR maritime surveillance campaigns to assess the potential of UAS for maritime surveillance, in particular for small boat detection. This report presents the results and conclusions of the JRC – Metasensing Coupled Spaceborne SAR and Airborne SAR campaign carried out in Feb. 2011 in Rotterdam, The Netherlands.JRC.G.4-Maritime affair

    Integration of LIDAR and IFSAR for mapping

    Get PDF
    LiDAR and IfSAR data is now widely used for a number of applications, particularly those needing a digital elevation model. The data is often complementary to other data such as aerial imagery and high resolution satellite data. This paper will review the current data sources and the products and then look at the ways in which the data can be integrated for particular applications. The main platforms for LiDAR are either helicopter or fixed wing aircraft, often operating at low altitudes, a digital camera is frequently included on the platform, there is an interest in using other sensors such as 3 line cameras of hyperspectral scanners. IfSAR is used from satellite platforms, or from aircraft, the latter are more compatible with LiDAR for integration. The paper will examine the advantages and disadvantages of LiDAR and IfSAR for DEM generation and discuss the issues which still need to be dealt with. Examples of applications will be given and particularly those involving the integration of different types of data. Examples will be given from various sources and future trends examined

    JRC – Elbit Systems Coupled UAS and Spaceborne SAR Campaign in Israel

    Get PDF
    The European maritime area is one of Europe’s most important assets with regard to resources, security and ultimately prosperity of the Member States. A significant part of Europe’s economy relies directly or indirectly on it. It is not just the shipping or fisheries industries and their related activities. It is also shipbuilding and ports, marine equipment and offshore energy, maritime and coastal tourism, aquaculture, submarine telecommunications, blue biotech and the protection of the marine environment. The European maritime area faces several risks and threats posed by unlawful activities, such as drugs trafficking, smuggling, illegal immigration, organised crime and terrorism. Piracy in international waters also constitutes a threat to Europe since it can disrupt the maritime transport chain. These risks and threats can endanger human lives, marine resources and the environment, as well as significantly disrupt the transport chain and global and local security. It is anticipated that these risks and threats will endure in the mid and long run. In order to keep Europe as a world leader in the global maritime economy, an effective integrated/interoperable, sustainable maritime surveillance system and situational awareness are needed. A significant number of unlawful maritime activities, such as illegal immigration, drugs trafficking, smuggling, piracy and terrorism involve mainly small boats, because small boats are faster and more difficult to detect using conventional means. Hence, it is very important to find out the feasibility of using Unmanned Aerial Systems (UAS) for small boat detection, tracking, classification and identification, as well as to study the potential of UAS for maritime surveillance. Since 2010 the EC-JRC has carried out a number of UAS maritime surveillance campaigns to study the potential of UAS for maritime surveillance, in particular for small boat detection. This report presents the results and conclusions of the JRC – Elbit Systems Coupled UAS and Spaceborne SAR campaign carried out in Dec. 2010 in Haifa, Israel.JRC.G.4-Maritime affair

    Synthetic Aperture Radar (SAR) data processing

    Get PDF
    The available and optimal methods for generating SAR imagery for NASA applications were identified. The SAR image quality and data processing requirements associated with these applications were studied. Mathematical operations and algorithms required to process sensor data into SAR imagery were defined. The architecture of SAR image formation processors was discussed, and technology necessary to implement the SAR data processors used in both general purpose and dedicated imaging systems was addressed

    Review on Active and Passive Remote Sensing Techniques for Road Extraction

    Get PDF
    Digital maps of road networks are a vital part of digital cities and intelligent transportation. In this paper, we provide a comprehensive review on road extraction based on various remote sensing data sources, including high-resolution images, hyperspectral images, synthetic aperture radar images, and light detection and ranging. This review is divided into three parts. Part 1 provides an overview of the existing data acquisition techniques for road extraction, including data acquisition methods, typical sensors, application status, and prospects. Part 2 underlines the main road extraction methods based on four data sources. In this section, road extraction methods based on different data sources are described and analysed in detail. Part 3 presents the combined application of multisource data for road extraction. Evidently, different data acquisition techniques have unique advantages, and the combination of multiple sources can improve the accuracy of road extraction. The main aim of this review is to provide a comprehensive reference for research on existing road extraction technologies.Peer reviewe

    2015 Oil Observing Tools: A Workshop Report

    Get PDF
    Since 2010, the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA) have provided satellite-based pollution surveillance in United States waters to regulatory agencies such as the United States Coast Guard (USCG). These technologies provide agencies with useful information regarding possible oil discharges. Unfortunately, there has been confusion as to how to interpret the images collected by these satellites and other aerial platforms, which can generate misunderstandings during spill events. Remote sensor packages on aircraft and satellites have advantages and disadvantages vis-à-vis human observers, because they do not “see” features or surface oil the same way. In order to improve observation capabilities during oil spills, applicable technologies must be identified, and then evaluated with respect to their advantages and disadvantages for the incident. In addition, differences between sensors (e.g., visual, IR, multispectral sensors, radar) and platform packages (e.g., manned/unmanned aircraft, satellites) must be understood so that reasonable approaches can be made if applicable and then any data must be correctly interpreted for decision support. NOAA convened an Oil Observing Tools Workshop to focus on the above actions and identify training gaps for oil spill observers and remote sensing interpretation to improve future oil surveillance, observation, and mapping during spills. The Coastal Response Research Center (CRRC) assisted NOAA’s Office of Response and Restoration (ORR) with this effort. The workshop was held on October 20-22, 2015 at NOAA’s Gulf of Mexico Disaster Response Center in Mobile, AL. The expected outcome of the workshop was an improved understanding, and greater use of technology to map and assess oil slicks during actual spill events. Specific workshop objectives included: •Identify new developments in oil observing technologies useful for real-time (or near real-time) mapping of spilled oil during emergency events. •Identify merits and limitations of current technologies and their usefulness to emergency response mapping of oil and reliable prediction of oil surface transport and trajectory forecasts.Current technologies include: the traditional human aerial observer, unmanned aircraft surveillance systems, aircraft with specialized senor packages, and satellite earth observing systems. •Assess training needs for visual observation (human observers with cameras) and sensor technologies (including satellites) to build skills and enhance proper interpretation for decision support during actual events

    Spaceborne synthetic-aperture imaging radars: Applications, techniques, and technology

    Get PDF
    In the last four years, the first two Earth-orbiting, space-borne, synthetic-aperture imaging radars (SAR) were successfully developed and operated. This was a major achievement in the development of spaceborne radar sensors and ground processors. The data acquired with these sensors extended the capability of Earth resources and ocean-surface observation into a new region of the electromagnetic spectrum. This paper is a review of the different aspects of spaceborne imaging radars. It includes a review of: 1) the unique characteristics of space-borne SAR systems; 2) the state of the art in spaceborne SAR hardware and SAR optical and digital processors; 3) the different data-handling techniques; and 4) the different applications of spaceborne SAR data
    • …
    corecore