84 research outputs found

    Location-Enabled IoT (LE-IoT): A Survey of Positioning Techniques, Error Sources, and Mitigation

    Get PDF
    The Internet of Things (IoT) has started to empower the future of many industrial and mass-market applications. Localization techniques are becoming key to add location context to IoT data without human perception and intervention. Meanwhile, the newly-emerged Low-Power Wide-Area Network (LPWAN) technologies have advantages such as long-range, low power consumption, low cost, massive connections, and the capability for communication in both indoor and outdoor areas. These features make LPWAN signals strong candidates for mass-market localization applications. However, there are various error sources that have limited localization performance by using such IoT signals. This paper reviews the IoT localization system through the following sequence: IoT localization system review -- localization data sources -- localization algorithms -- localization error sources and mitigation -- localization performance evaluation. Compared to the related surveys, this paper has a more comprehensive and state-of-the-art review on IoT localization methods, an original review on IoT localization error sources and mitigation, an original review on IoT localization performance evaluation, and a more comprehensive review of IoT localization applications, opportunities, and challenges. Thus, this survey provides comprehensive guidance for peers who are interested in enabling localization ability in the existing IoT systems, using IoT systems for localization, or integrating IoT signals with the existing localization sensors

    Navigation Using Orthogonal Frequency Division Multiplexed Signals of Opportunity

    Get PDF
    The global positioning system (GPS) provides high-accuracy position measurements anywhere in the world. However, a limitation of this system is that a line of sight to multiple satellites is required; therefore, it is unsuitable to use indoors or in urban canyons. Also, in the presence of radio-frequency interference or jamming, GPS may be unavailable. Alternative methods of navigation and positioning are need to either compliment GPS as a backup or for use in areas unreachable by satellites. This research analyzes a feature-based correlation approach for determining reception differences between two Orthogonal Frequency Division receivers for the purpose of TDOA calculations. Multicarrier signals have a very defined signal structure which allows for non-cooperative symbol detection techniques. Simulations are conducted with different correlation windows sizes, SNR values, and eight different statistical features. Out of the eight features tested the symbol mean and average symbol phase proved to be the most promising because they are able to achieve accurate symbol difference estimations at SNR values below 0 dB

    A survey on acoustic positioning systems for location-based services

    Get PDF
    Positioning systems have become increasingly popular in the last decade for location-based services, such as navigation, and asset tracking and management. As opposed to outdoor positioning, where the global navigation satellite system became the standard technology, there is no consensus yet for indoor environments despite the availability of different technologies, such as radio frequency, magnetic field, visual light communications, or acoustics. Within these options, acoustics emerged as a promising alternative to obtain high-accuracy low-cost systems. Nevertheless, acoustic signals have to face very demanding propagation conditions, particularly in terms of multipath and Doppler effect. Therefore, even if many acoustic positioning systems have been proposed in the last decades, it remains an active and challenging topic. This article surveys the developed prototypes and commercial systems that have been presented since they first appeared around the 1980s to 2022. We classify these systems into different groups depending on the observable that they use to calculate the user position, such as the time-of-flight, the received signal strength, or the acoustic spectrum. Furthermore, we summarize the main properties of these systems in terms of accuracy, coverage area, and update rate, among others. Finally, we evaluate the limitations of these groups based on the link budget approach, which gives an overview of the system's coverage from parameters such as source and noise level, detection threshold, attenuation, and processing gain.Agencia Estatal de InvestigaciónResearch Council of Norwa

    Advanced photonic and electronic systems - WILGA 2017

    Get PDF
    WILGA annual symposium on advanced photonic and electronic systems has been organized by young scientist for young scientists since two decades. It traditionally gathers more than 350 young researchers and their tutors. Ph.D students and graduates present their recent achievements during well attended oral sessions. Wilga is a very good digest of Ph.D. works carried out at technical universities in electronics and photonics, as well as information sciences throughout Poland and some neighboring countries. Publishing patronage over Wilga keep Elektronika technical journal by SEP, IJET by PAN and Proceedings of SPIE. The latter world editorial series publishes annually more than 200 papers from Wilga. Wilga 2017 was the XL edition of this meeting. The following topical tracks were distinguished: photonics, electronics, information technologies and system research. The article is a digest of some chosen works presented during Wilga 2017 symposium. WILGA 2017 works were published in Proc. SPIE vol.10445

    Bias Estimation for Evaluation of ATC surveillance systems

    Get PDF
    This paper describes an off-line bias estimation and correction system for air traffic control related sensors, used in a newly developed Eurocontrol tool for the assessment of ATC surveillance systems. Current bias estimation algorithms are mainly focused in radar sensors, but the installation of new sensors (especially automatic dependent surveillance-broadcast and wide area multilateration) demands the extension of those procedures. In this paper bias estimation architecture is designed, based on error models for all those sensors. The error models described rely on the physics of the measurement process. The results of these bias estimation methods will be exemplified with simulated data

    Indoor location identification technologies for real-time IoT-based applications: an inclusive survey

    Get PDF
    YesThe advent of the Internet of Things has witnessed tremendous success in the application of wireless sensor networks and ubiquitous computing for diverse smart-based applications. The developed systems operate under different technologies using different methods to achieve their targeted goals. In this treatise, we carried out an inclusive survey on key indoor technologies and techniques, with to view to explore their various benefits, limitations, and areas for improvement. The mathematical formulation for simple localization problems is also presented. In addition, an empirical evaluation of the performance of these indoor technologies is carried out using a common generic metric of scalability, accuracy, complexity, robustness, energy-efficiency, cost and reliability. An empirical evaluation of performance of different RF-based technologies establishes the viability of Wi-Fi, RFID, UWB, Wi-Fi, Bluetooth, ZigBee, and Light over other indoor technologies for reliable IoT-based applications. Furthermore, the survey advocates hybridization of technologies as an effective approach to achieve reliable IoT-based indoor systems. The findings of the survey could be useful in the selection of appropriate indoor technologies for the development of reliable real-time indoor applications. The study could also be used as a reliable source for literature referencing on the subject of indoor location identification.Supported in part by the Tertiary Education Trust Fund of the Federal Government of Nigeria, and in part by the European Union’s Horizon 2020 Research and Innovation Programme under Grant agreement H2020-MSCA-ITN-2016 SECRET-72242

    Fly by data link: feasibility of a relative navigation solution for aviation relying on a future L-band data link

    Get PDF
    Trabalho final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e TelecomunicaçõesO presente trabalho estuda uma solução alternativa de navegação aeronáutica que contribua para a racionalização da infrastrutura terrestre de ajudas-rádio de navegação na Europa. O conceito designado de “Performance Based Navigation (PBN)” emerge actualmente ao nível da Organização Internacional de Aviação Civil, visando o aperfeiçoamento do sistema de gestão do tráfego aéreo ao nível da eficiência, segurançae capacidade. O conceito PBN promove a modernização da infrastrutura aeronáutica com base na utilização preferencial de sistemas de navegação por satélite, designadamente mediante o recurso a sinais disponibilizados pelas constelações “Global Navigation Satellite System (GNSS)”. Face às vulnerabilidades dos sistemas GNSS a interferências RF, “jamming” deliberado ou fenómenos solares, foi decidido manter uma infrastrutura de recurso/”backup”, para mitigar falhas GNSS, baseada numa redede rádio-ajudas terrestres “Distance Measuring Equipment (DME)”. Visto que estes DMEs não facultam uma boa cobertura, especialmente a baixa altitude, e tratando-se de equipamentos próximos da obsolescência tecnológica e pouco eficientes em termos de espectro rádioeléctrico, a sua racionalização requer uma tecnologia alternativa. O presente trabalho explora o recurso a novas tecnologias aeronáuticas de comunicações dados ar-solo, designadamente o futuro “data link” OFDM/TDMA de banda L (LDACS), verificando a sua adequação para suportarem as funções de navegação descritas substituindo os DMEs. Pretende-se confirmar a viabilidade com base no conceito de Navegação Relativa (RELNAV) usado em contexto militar recorrendo a filtros Kalman. As características da tecnologia LDACS são descritas e são apresentados resultados de testes do seu desempenho em termos de medição de distâncias (“ranging”). Com base nas capacidades RELNAV militares são propostos melhoramentos baseadosem filtros Kalman, simulando para demonstrar que o LDACS pode ser usado para funçãode navegação. Demonstrada a viabilidade, fica em aberto a oportunidade para sinergias que poderão viabilizar a racionalização da infrastrutura terrestre de navegação e aviónicos.Abstract: The main purpose of this work is to study an alternative solution for aeronautical aircraft navigation contributing to the rationalization of the existing European ground navigation infrastructure. The emerging Performance Based Navigation (PBN) concept, described in the document 9613 of the International Civil Aviation Organization (ICAO), calls for increased reliance on Global Navigation Satellite Systems (GNSS) (and its augmentation/differential correction systems1) but retaining ground beacons such as the Distance Measuring Equipments (DME) to cope with Global Positioning System (GPS) and GALILEO outages (e.g. jamming/solar storms). The present work will focus on demonstrating the feasibility of an alternative technology to allow the decommissioning of such DME beacons based on the re-use offuture L-Band Air Ground Data Link (LDACS) communication solutions being subject of research studies. Such data links may support the required levels of positioning, navigation and timing required to complement GNSS when the aircraft fly in an area navigation environment. This work will describe the LDACS data link technologies2 and will explain how such communications enablers would be able to support a “relative navigation” function similar to the one available in military data link technologies usinga geodetic grid. The feasibility of the proposed solution will be demonstrated on the basis of lessons learnt from military relative navigation and simulations which will evidence the technical performance/error parameters of the system in terms of ranging, bearing and horizontal positioning and other relevant QoS aspects. In addition, the multipath and co-site interference effects will be also discussed. Should the proposed solution be demonstrated as viable, it may open the door, not only for synergies leading to a more seamless aircraft equipage but also to the rationalization of aeronautical systems in the spectrum band 960-1215 MHz, which is highly congested and subject of stringent non-interference basis operational limitations
    corecore