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Abstract

This research aims at contributing in the development of a firefighting technology, which
uses swarms of self-organising autonomous drones. Wildfires are indeed one of the most
threatening cataclysms induced by climate change that endangers wildlife and human
lives, and which devastates health, social, economic and environment spheres. Hence,
the urge to find a new solution to tackle more efficiently and effectively critical wildfires
by either extinguishing or containing them. The frontier of autonomous swarm robotics
seems to provide good chances to succeed in this venture thanks to many strong points,
for instance: the capability to work in hazardous areas, the robustness of the system
with respect to loss of a few drones, and no need of highly trained pilots. The research
presented in this thesis spans between various fields such as thermo-fluid-dynamics,
swarm robotics, and Swarm-in-the-Loop (SwiL) simulation. More specifically the main
research topics are wildfire propagation modelling, autonomous multi-agent robotics for
firefighting application, stigmergic collision-avoidance systems for autonomous flight,
and study and improvement of indoor positioning systems (IPSs). While the first three
research subjects are clearly interlaced with each other, the last topic regarding IPS con-
sists of some relevant theoretical and experimental work towards the development of a
SwiL platform to test the fire suppression system and new self-organisation algorithms.
The main contributions of the presented research are: a faster-than-real-time physics-
based propagation model, namely FireProM-F; self-organisation algorithms for swarm
of autonomous firefighting drones; a stigmergy-based collision-avoidance algorithm for
autonomous swarm; a study of the precision, accuracy, and failure of UWB-based IPSs;
and the development of a debiasing filter for the improvement of the IPS’s accuracy.
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the debiased position (x̂, ŷ); the actual position on the rail (xref); and
the estimated instantaneous velocity in x-direction (vx). . . . . . . . . . 88

6.32 Visualisation of the square-path experiment results. The flying domain
is delimited by the four anchors while the reference path is the black
dotted square. The drone starts moving from the corner located at
(0.5,0.5) and moves towards the positive x-axis direction then following
the other edges of the reference path. Two clouds of data with their
respective trend lines are shown: IPS-1 which only uses EKF and the
IPS-2 embedding also the DF. The yellow transparent areas highlight
the problematic phases. The overal experiment shows a time-to-time
considerable improvement given by the DF. . . . . . . . . . . . . . . . 89



LIST OF FIGURES xiii

7.1 Summarising diagram of the undergone research and how its various
topics relate to the grand scheme. ”Prop.” stands for a list of desirable
and attained properties; ”Out.” for delivered outcomes; ”(Out.)” for
desired but not/partially delivered outcomes; and (£) means reasonably
affordable while (£££) is very costly. . . . . . . . . . . . . . . . . . . . 94



List of Tables

3.1 Choice of parameters’ values at the interface between two different fuels
as either local, minimum or maximum. . . . . . . . . . . . . . . . . . . 20

3.2 Feasible range for calibration variables of the proposed fire propagation
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Variables calibrated with respect to the burnt area (Ab) predicted by
FARSITE 10 min after ignition. . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Computational time for different domain sizes (N number of points)
performed with ∆x = 1 m and ∆t = 10 s, using Matlab R2017a on a
Windows machine with an Intel Xeon CPU @3.20 GHz. . . . . . . . . . 29

5.1 Experiments results at various combination of cruise speed, v, and sam-
pling frequency, f . C is the total collision count, while T is the duration
of the simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1 Representative results of the dynamic on-rail validation. In the column
headed ’dir.’ is highlighted if the rail was oriented horizontally (hor.)
or vertically (ver.). The path was always cross-cutting the overall flying
domain left-to-right or top-to-bottom. The RMSEs of an IPS with (IPS-
2) and without (IPS-1) debiasing are compared in order to depict the
improvement given by the DF, which average value is stored in the
columns with ∆x and ∆y headings. The average cruise velocity is also
registered in the last column. . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Representative results of the square-path experiment. The RMSEs of
an IPS with and without debiasing are compared in order to depict
the improvement given by the filter. The columns with ’raw’ heading
refer to the overall stream of data, while the ’sel.’ heading refers to the
selection of the undamaged stream of data - e.g. neglecting intervals
where uncontrolled misbehaviour of the IPS are detected. ∆ gives an
idea of the average improvement of the accuracy given by the use DF. . 87

xiv



Chapter 1

Introduction

1.1 Motivation

With climate change wildfires are one of the major and most threatening cataclysms
that put wildlife and human lives in extreme danger because of both immediate damage
and long term repercussions. A wildfire is an unplanned and uncontrolled vegetation
fire which can have devastating health, social, economic and environmental impacts [1].
The deadliest wildfires in Portugal’s history erupted in 2017, killing 66 and injuring
204 people. In 2018, several major series of wildfires broke out around the world,
including in the United States (US), Canada, Australia, Greece, Portugal and the
United kingdom (UK): California saw the largest wildfires on record; British Columbia
saw the largest total burn-area during wildfire season on record; Sydney’s bushfire
season started two months early, in winter; more than 80 people were killed in Athens;
forest fires wreaked havoc in the Algarve region; whilst a record-breaking series of
wildfires burnt across the UK. In February 2019, New Zealand saw the worst wildfires
in over 50 years, with 155 firefighters, 23 helicopters and three planes deployed to tackle
the blaze. One helicopter crashed fighting the Nelson wildfire, with the pilot suffering
moderate injuries. The Forestry Commission predicts that destructive wildfires will
increase in frequency due to increased land-use pressure and climate change [2]. The
development of more effective and safer means to fight wildfires is one of the world’s
most pressing challenges of our time [1]. Even though many organisations put a lot of
effort in preventing wildfires by improving lands’ resiliency, fires still occur and cannot
be completely avoided. When a wildfire happens it is hardly extinguished and causes
immense damage. Hence the urge to find a new strategy and technology to tackle
wildfires by either containing them or, in the best case scenario, extinguishing them.
The frontier of autonomous swarm robotics seems to provide good chances to succeed
in this venture thanks to many strong points. Some advantages can be the following:
the capability to work in hazardous areas without putting human lives in danger, the
robustness of the system with respect to loss of a few agents, and no need of highly
trained pilots to command directly each drone.

1
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Besides, even though the presented research is focussed on firefighting swarms, it
should not be misinterpreted as an attempt to suppress any wildfire on our planet and
prevent any new ones from happening: if this would be even possible, it would have a
detrimental impact on the worldwide ecosystem. In fact, wildfires act as oxygen-level
controllers as supported by a fairly recent study on the relation between terrestrial
ecosystems, fires and oxygen levels [116]; therefore, not all wildfires are supposed to be
suppressed. Hence, the proposed technology should be used sparingly and thoughtfully
evaluating the importance of the eventual ecosystem the fire is about to destroy and
the impact on the local population’s lives.

1.2 Aims and Objectives

The aim of the research is to contribute on various aspects of the eventual development
of a firefighting technology that uses swarms of autonomous drones. The general aim
is to develop control and cooperative decision-making algorithms for self-organising
drones and study the dynamics of such system interacting with a mechanistic wildfire
propagation model.
The main objectives of the presented research are the following:

1. To obtain a mechanistic parametric and realistic wildfire spread model, and to
calibrate and validate it against realistic scenarios.

2. To design algorithms for a swarm of self-organising autonomous firefighting drones
at different levels of autonomy – e.g. high-level behavioural algorithms; and
medium- and low-level algorithms for collision-avoidance and flight-dynamics con-
trol.

3. To test the previously formulated algorithms for the swarm of drones over the
simulated wildfire by performing a controlled indoor Swarm-in-the-Loop (SwiL)
simulation.

Due to time constraints and major uncontrollable events (e.g. covid-19 pandemic) a
great part of the work has been done towards SwiL simulations, but the last objectives
has been accomplished by means of Software-in-the-Loop (SiL) simulations.

Moreover, some additional objectives formed throughout the research process. They
has been considered to be essential for a reliable modelling of such system. They are:

4. the study of precision, accuracy and failure of utra-wide-band (UWB) based
indoor positioning system and its improvement,

5. and the formulation of a stigmergy-based collision-avoidance algorithm for multi-
agent systems.
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1.3 Methodology

Given the multidisciplinary nature of this research, the work has been organised in
three distinct phases, that would eventually fit together in order to create the final
desired system.

1. After thoroughly assessing the already available wildfire propagation models, I
realise there is no model that fits our requirements of being both mechanistic,
parametric, realistic, and faster-than-real-time. Therefore, the first phase consists
in developing a wildfire spread model that meets these criteria. Furthermore, it
needs to be calibrated for a variety of vegetation fuels and validated against
realistic scenarios.

2. This phase embeds the previously formulated wildfire propagation model in a
simulation of the self-organising dynamics of the swarm. Each particle in the
swarm is able to interact with the environment (e.g. by measuring temperature
and dropping water). This is a first step towards SiL and SwiL simulations. This
allows to quickly evaluate the effects of new high-level and low-level control and
behavioural algorithms on the dynamics of the swarm, before passing to more
complicated and computational expensive SiL simulations.

3. Once the simulation platform has been developed, new control/self-organisation
algorithms and firefighting strategies can be tested.

1.4 Contributions

The contributions to this research amount of the following:

� FireProM-F, a faster-than-real-time physics-based wildfire propagation model;

� self-organisation algorithms for swarm of autonomous firefighting drones, and
firefighting strategies;

� a SiL platform for testing algorithms (fire and swarm dynamics on Matlab);

� a stigmergic collision-avoidance algorithm based on the gradient of the cu-
mulative signal strength field generated by the drones;

� and some work towards Swarm-in-the-Loop platform, by developing and im-
proving tools in order to perform a hardware in the loop simulation of the de-
veloped self-organisation algorithms (this comprises the main effort in the study
and improvement of the indoor positioning system);

More insight is provided in the following chapters.
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1.5 Overview of the Report

The content of this Thesis is organised as follows:

1. Chapter 2 collects the current theoretical knowledge and state-of-art technologies
for each covered research topic in four sections, namely: wildfire propagation
modelling, autonomous multi-agent robotics, collision-avoidance systems, and
indoor positioning systems.

2. Chapter 3 is focused on the wildfire propagation model and introduces FireProM-
F. It contains the mathematical formulation of the model, the adopted numerical
solution, and finally numerical experiments for calibration and testing.

3. Chapter 4 presents the self-organisation algorithm for a swarm of autonomous
firefighting drones, and related simulation results and discussion.

4. Chapter 5 provides the formulation of a stigmergy-based collision-avoidance algo-
rithm for the firefighting swarm depicted in the previous chapter. Some numerical
experiments are also performed and discussed.

5. Chapter 6 collects some work done towards the establishment of a Swarm-in-the-
Loop platform, more specifically the topic is the indoor positioning system (IPS).
This chapter provides a detailed study of the precision, accuracy, and failure of
the IPS. Furthermore, a filtering process is proposed in order to improve the
IPS performance. Specifically, a debiasing filter is formulated, calibrated, and
validated against static and dynamic experiments.

6. Chapter 7 contains a comprehensive conclusion of the presented research. The
diagram 7.1 helps the reader in understanding how the various covered topics
interlace and how they are working together in the grand fire suppression picture.



Chapter 2

Literature Survey

In this chapter an introductory research background is provided about the four main
research topics of this thesis: wildfire propagation modelling, autonomous multi-agent
robotics, collision-avoidance systems, and indoor positioning systems.

2.1 Wildfire Propagation Modelling

Modelling the propagation of wildfires is an incredibly challenging endeavour because
of the complexity that arises from its multiphysics and multiscale nature. According to
what phenomena, scales and modelling technique are considered, various classifications
of wildfire mathematical models are possible (e.g. [3, 4, 5, 6, 1]).

Following the criteria set out in [1] and shown in Fig. 2.1 , a general classification
is given by distinguishing between data-driven, theoretical, and mechanistic surrogate
models. Data-driven models are built so as to fit available data, theoretical models
are mechanistic and based on governing laws directly associated with the phenomena
or system being modelled, whilst mechanistic surrogate models are based on a few
leading assumptions that act as governing laws seemingly unrelated to the problem
in question despite making predictions that appear sufficiently accurate. A model in
any of these three classes may present continuous or discrete variables, responses or
structures; and may be fully deterministic or include different degrees of stochasticity
to model uncertainty [7].

Data-driven models which are purely data-fitting are called black-box models, a.k.a.
phenomenological or empirical models. At the other end of the spectrum, theoretical
models derived purely from first principles are referred to as white-box models. The
combination of governing laws and empirical data results in grey-box models, which
are semi-empirical. The latter are considered theoretical if mostly based on governing
laws with some parameters calibrated using empirical data (light-grey-box), whereas
they are considered data-driven if mostly driven by data but built upon a predefined
structure derived from associated theories (dark-grey-box)[7].

Early models of wildfire propagation consisted of one-dimensional models of fire

5
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Taxonomies of
Mathematical Models

(general, yet particularly suitable
for fire propagation models)

Theoretical Models
Mechanistic, possibly

physics-based.

Data-Driven Models
Constructed from data, 
fitted to data, or data-

driven surrogate model.

White-Box Models
Derived from first principles,
purely mechanistic models.

Light-Grey-Box Models
Semi-empirical, mostly based on

governing laws but with some
calibrated parameters.

Dark-Grey-Box Models
Semi-empirical, model-fitting, mostly

driven by data yet incorporating
principles and laws from theories.

Black-Box Models
Empirical, data-fitting,

phenomenological, completely
independent of theories.

Cellular Automata Models
Computational model, rules derived from
first principles or mathematical analogue.

Lattice Boltzmann Models
Computational model, commonly used
to model fluid flow as emerging from

streaming and collision among particles.

Network/Graph Models
Represents objects and their relationships
as a graph of nodes, edges and weighs.

Agent-Based Models
Computational model, typically stochastic,

commonly used to model complex systems.

Mechanistic
Surrogate Models 

Mechanisms not directly
related to system or

phenomena being modelled.
May be white-box or grey-box.

Two-Dimensional Fire Growth Models
e.g. perimeter representation as envelope
of local ellipses and perimeter expansion

by Huygens wavelet propagation
based on classical fire spread models.

Figure 2.1: General taxonomies of mathematical models suitable for the family of
wildfire propagation models (modified version from [1]).

behaviour based on the empirical determination of key characteristics such as the local
rate of spread (RoS) at the headfire or the height and angle of the flames. Based on a
heat balance model and empirical data, a prominent example is Rothermel’s model [8]
which predicts the RoS in the direction of the wind in an environment specified by fuel,
weather and topography descriptors [3]. The model was incorporated into the point-
based fire modelling system BehavePlus [9] and the Fire Area Simulator FARSITE
[10]. For further reading on this type of models, refer to [3, 5, 11, 1].

Theoretical models are often physics-based, typically including balances of mass,
momentum and energy with mathematical formulations expressed as systems of cou-
pled partial differential equations (PDEs). Physics-based white-box models are often
three-dimensional (3D), and attempt to describe all relevant phenomena with model
parameters aimed to be mathematically derived. The scale of the model must be
finer than the smaller representative scale of the modelled dynamics. In the context
of fire modelling, they typically solve convection-reaction-diffusion-radiation equations.
Whilst 3D multi-domain, multiscale and multiphase models of wildfire propagation can
be found in the literature (e.g. [12, 13, 14, 15, 16]), they are computationally intensive.
Physics-based light-grey-box models tend to be two-dimensional (2D), based on simple
laws such as energy balance (e.g. [17, 18, 19]), and often require empirical parame-
ters and experimental data to calibrate them for particular conditions. The research
presented in this thesis focuses on this type of 2D models. Thus, Ferragut et al. [17]
propose a system of two coupled PDEs, one for the energy balance and the other for
the convection model. The energy balance is as in Eq. (2.1), where the energy (e) is
an element of a multivalued operator that considers the latent heat of evaporation and
the pyrolysis heat, whilst S(T,Xfuel) is a source term that accounts for combustion
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and non-local radiation. Transport due to wind, conduction and convection are also
considered. The two main variables are temperature (T ) and fuel mass fraction (Xfuel)
[7].

∂e

∂t
+

transport︷ ︸︸ ︷
u · ∇e −

conduction︷ ︸︸ ︷
∇(κ(T )∇T ) +

convection︷︸︸︷
αT =

source︷ ︸︸ ︷
S(T,Xfuel), (2.1)

Similarly, Margerit, Séro-Guillaume et al. [18, 20] propose a 2D anisotropic propagation
model consisting of only one energy balance equation, as shown in Eq. (2.2):

(1− Φ)ρ(cs +Hucl)
∂T

∂t
=

conduction︷ ︸︸ ︷
∇ · (κ∇T ) +Rc +

convection︷ ︸︸ ︷
χ(Ta − T ) +

evaporation︷ ︸︸ ︷
(1− Φ)ρLevδT=Tev

∂Hu

∂t
+Mr

(2.2)
where Rc is the combustion heat source, Φ is the porosity of the medium, and cs, cl are
the heat capacities of the solid and liquid parts, respectively. Interestingly, the local
self-radiation heat flux is neglected while the non-local radiative term (Mr) is consid-
ered. Mr is the integral of all radiation coming from the flame above the simulation
domain. The heat loss due to evaporation of a moisture fraction (Hu) is considered via
the latent heat (Lev) triggered by the evaporation temperature (Tev), where δ is the
Dirac distribution [7].

Mechanistic surrogate models are those designed disregarding the theories that un-
derlie the system or phenomena being modelled, yet based on a few leading assumptions
which may be somewhat physics-based [1]. Examples are Cellular Automata (CA) mod-
els, Lattice Boltzmann models (LBMs), Network models, and 2D Fire Growth models
[7].

A CA model consists of a system of a high number of elements of simple geometry
locally connected following a predefined scheme. Hence, two main constituents can be
recognised: the cellular space and the transition rule. The former is a lattice of many
identical finite-state machines whereas the transition rule evaluates the new state of
the cell taking into account also adjacent cells identified by a connection scheme. CA
models demonstrate a high level of efficiency and robustness when simulating complex
physics. As far as wildfire propagation modelling is concerned, CA are mostly mecha-
nistic surrogates. For instance, the CA model in [21] is not derived from fire dynamics
theories but based on some main assumptions which may nonetheless have a physics
origin. Other CA-based fire models can be found in [22, 23, 24, 25, 26, 27] [7].

The fundamental idea behind LBMs is a simplification of Boltzmann’s represen-
tation of fluids as composed of a large but discrete number of particles. This model
consists of a discretised representation of the Boltzmann transport equation that re-
lates the particles’ distribution to their velocities by means of a collision operator. An
example is the simulation of combustion in a three-dimensional porous structure in [28].

Another discrete modelling approach, rarely adopted, is based on small-world net-
works. A square lattice is used to model short-range phenomena like radiation, con-
vection, and diffusion, whilst fire-spotting processes are described by long-range con-
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nections. Two examples are the modelling of initiation of spot-fires due to transport
of firebrands [29] and fire-spread onboard naval vessels [30].

Two-Dimensional Fire Growth Models are sometimes referred to as vector-based
models. They consist of predicting the fire front line in the form of an envelope curve
making use of Huygens’ principle [6]. At the core of these models is the notion of
the RoS (called R in Rothermel’s model), which is the local normal velocity of a fire
front. Vector-based models can be further subdivided into two main branches, one
using level sets and the other based on markers [7]. Level-set-based models (LSMs)
such as [31, 32, 33] consist of tracking the interface of the fire front. The 2D curve (ϕ)
described in Eq. (2.3) evolves in time following the rates of spread Ru and Rv in the x
and y directions, respectively [7].

dϕ

dt
=

∂ϕ

∂t
+Ru

∂ϕ

∂x
+Rv

∂ϕ

∂y
= 0 (2.3)

Differently, marker-based models (MMs) predict the movement of individual points
(markers) to be connected to give shape to the fire line. Each marker behaves as a
new ignition point for the next time step. The basic propagation geometry is an ellipse
focused on the marker, which size, shape and orientation depend on the fuel type, wind
intensity and local slope [20, 10]. One major drawback in the use of MMs is the need to
change the number of markers throughout the simulation in order to maintain a certain
level of precision [7]. Whilst the mathematical formulation of LSMs automatically
handles the case of merging fire fronts, MMs need to carefully recognise which side
delimited by the fire front is the burnt area. Widely known vector-based MMs are
the Fire Area Simulator FARSITE [10], the Canadian wildland fire growth simulator
Prometheus [34], and the Australian Bushfire Risk Management Tool Phoenix [35].

What modelling approach is best at predicting fire behaviour is still an open ques-
tion, and the subject of much heated debate. For instance, whilst some researchers [?
5] adamantly support FARSITE given that it has been calibrated to reliably reproduce
historical fires, others prefer approaches which are mostly physics-based and reliant on
the rigorous description of the underlying fire dynamics. As an example of the latter,
the Fire Dynamics Simulator (FDS) [36] is the result of 26 years of collaboration be-
tween several research centres around the world, FIRETEC [12] has been refined for 22
years, whilst the fire-spread models in [14, 18] have been developed during 16 years of
rigorous work by the Laboratoire d’Energétique et de Mécanique Théorique et Appliquée
(LEMTA). This research does not intend to answer this burning question. Instead, a
physics-based approach is adopted as a requirement, since the model is intended to
be used to underpin research on innovative firefighting technologies. Therefore, the
physics-based interaction between the fire and suppressants will need to be modelled.
Nonetheless, the proposed model also attempts to harness the ability of a commercial
simulator to predict historical fires by calibrating a few parameters within realistic
intervals [7].
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2.2 Autonomous Multi-Agent Robotics

Unmanned aerial vehicle (UAV) technology has progressed rapidly for the past two
decades, extending its capabilities and the kinds of problems it can help tackle. Mod-
ern UAVs – a.k.a. drones– can be equipped with a range of advanced cameras and
sensors which enable them to operate in remote areas, dangerous environments, and
even through solid smoke. Current applications include aerial photography and filming,
information gathering for human decision-makers, provision of essential supplies, sup-
port for search and rescue operations, mapping of inaccessible locations, field surveying,
and crop health monitoring. With regards to firefighting operations, drone technology
has been applied to forest surveillance, building fire risk maps, forest fire detection
and monitoring [37], post-fire recovery monitoring [38], bushfire hotspot detection [39],
and support for disaster relief operations. Compared with their use in forest fire mon-
itoring and detection, research and development on UAV-based fire suppression is still
scarce [40]. Yet, given the hazardous nature of the activity, fighting fires using UAVs
in place of humans is of special interest. Swarm intelligence (SI) is a route to arti-
ficial intelligence (AI) which stems from decentralised and self-organising behaviour
observed in groups of social animals in nature. By way of collaboration, a form of
collective intelligence emerges enabling them to accomplish tasks that are far beyond
the aggregation of their individual capabilities. SI is the branch of AI that deals with
the collective behaviour that emerges from decentralised self-organising systems, where
individuals only interact locally with one another and with the environment. Swarm
robotics (SR) is an approach to the self-coordination of large numbers of simple robots
which emerged as the application of SI to multi-robot systems. It differs from other
SI studies in that it emphasises the physical embodiment of individuals [41], and from
distributed robotics in that it promotes scalability. There is a limited number of UAVs
which can be remotely controlled and coordinated to operate simultaneously, there-
fore restricting the achievable fire suppression capabilities. There are also difficulties
associated with centralised communication with ground control during wildfire events.
Conversely, swarm robotic systems allow for a high number of self-coordinating agents
with only local drone-to-drone communication and no central control. Furthermore,
the use of swarms of decentralised collaborative and self-organising robots results in
a robust and resilient system with collective decision-making able to cope with uncer-
tainty, errors, local perturbations, and the failure or loss of a few units. While the
use of drones to support firefighting operations is fast becoming common practice, the
design of self-organising swarms of drones to directly engage in the suppression of fires
remains unexplored [1].

Three main fields form the wealth of knowledge for the related research on self-
organising swarm of firefighting drones presented in Chapter 4: swarm intelligence (SI),
swarm robotics (SR), and particle swarms algorithms. Follows a brief introduction of
such topics.

Swarm intelligence (SI) is a paradigm of AI which stems from decentralised and
self-organising behaviour observed in groups of simple social animals in nature such as
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ant, termite and bee colonies, fish schools and bird flocks. By way of collaboration,
a form of collective intelligence emerges enabling these animals to accomplish tasks
that are beyond the simple aggregation of their individual capabilities. That is, the
whole is more than the sum of its parts. Thus, SI is the branch of AI that deals with
the collective behaviour that emerges from decentralised self-organising systems. Self-
Organisation occurs with no central control or sense of purpose, as individuals only
interact locally with one another and with the environment inducing the emergence of
global patterns. SI is the emergent collective intelligence of groups of simple agents
[42]. As an AI discipline, it is concerned with the design of intelligent multi-agent
systems. A SI system should satisfy the following conditions: (a) be composed of
a number of simple agents or individuals, as some critical mass is required for self-
organisation to occur; (b) be composed of agents or individuals who are similar to one
another, typically identical or belonging to a few typologies; (c) have local interactions
based on simple behavioural rules that exploit information exchanged locally among
individuals in a direct manner or indirectly through the environment (stigmergy); (d)
exhibit an emergent global behaviour which results from the interactions of individuals
with one another and with the environment. This self-organised intelligent behaviour
at the swarm level is not known at the individual level. These characteristics make
SI systems scalable, parallel, robust and fault-tolerant. Scalability guarantees that the
system can change size without redefining its behaviour. Since interactions are local,
individual behaviour is marginally affected by changes in the swarm size. In turn, the
population-based nature of these systems results in a parallel search that acquires infor-
mation in a distributed manner. This makes them robust to local perturbations whilst
the exchanges of information among agents enlarge the pool of knowledge decreasing
uncertainty. Fault tolerance is due to their decentralised, self-organised and scalable
nature as well as to the similarity among agents. If an agent is faulty or removed, the
system does not cease to function [1].

Swarm robotics (SR) is an approach to the self-coordination of large numbers of
simple, relatively inexpensive robots which emerged as the application of SI to multi-
robot systems. Different from other SI studies, emphasis is on the physical embodiment
of individuals [41]. SR systems differ from distributed robotic ones in that the former
are scalable, which means that performance can be improved by increasing the size
of the swarm without the need to redefine or reprogram the system. As a SI system,
SR must abide by the conditions discussed previously. In addition, the agents must
be autonomous robots operating in the physical world with the ability to sense and
actuate in a real environment. These robots must possess individual capabilities that
are limited relative to the task to be carried out at the system level. In other words,
they must be unable to solve the problem absent collaboration. This simplicity carries
the added benefit that the robots are inexpensive and less prone to failure.SR aims
to study how a large number of simple robots can be designed so that a desired col-
lective behaviour emerges from the local interactions among themselves and with the
environment [43] [1].

Particle swarm optimisation (PSO) is one of the most successful SI algorithms, orig-



CHAPTER 2. LITERATURE SURVEY 11

inally developed as a model of social behaviour inspired by earlier bird-flock simulations
within the field of social psychology. In particular, Reynolds’ boids [44] and Heppner
and Grenander’s artificial birds [45] strongly influenced early developments. It was
also influenced by experiments and theories in social psychology such as Sherif’s experi-
ments, Bandura’s no-trial learning, and Latané’s Social Impact Theory [46]. Therefore,
the method is closely related to other simulations of social processes and experimental
studies in social psychology whilst also having strong roots in optimisation and AI as
well as applications in SR. PSO is a global optimiser in the sense that it is able to escape
poor suboptimal attractors thanks to a parallel search carried out by a swarm of co-
operative particles. Its overall behaviour results from a combination of each particle’s
individual behaviour and the social behaviour that emerges from their interactions.
The individual behaviour materialises as the trajectory of a particle pulled by an at-
tractor. In most versions of the algorithm, this attractor results from some stochastic
weighted average of an individual attractor (a particle’s best experience) and a social
attractor (best experience of neighbouring particles). The social behaviour is governed
by how individually acquired information is propagated throughout the swarm. The
individual and social behaviours are linked by the update of the social attractor in the
trajectory equation. While the social behaviour is controlled by the neighbourhood
structure (sociometry), the individual behaviour is controlled by the settings of the
coefficients in the trajectory equation [1].

2.3 Collision-Avoidance Systems

Multi-agent systems such as drone swarms consist of a multitude of decision-making
individuals that interact directly and indirectly within the environment in order to
achieve one or more predefined goals. In such systems, one of the most critical is-
sues to be dealt with is collision avoidance. In the related Chapter 5, I adhere to the
classification of Collision-Avoidance Systems (CASs) suggested in [47] and [48], which
consists of the following classes: 1) predefined collision avoidance; 2) protocol-based
collision avoidance; 3) optimised escape trajectory approaches; 4) E-field / potential
field methods; and 5) other CAS approaches. The first two categories are the original
and most trivial approaches. Predefined collision avoidance follows a fixed set of un-
changeable rules requiring no computation, whilst protocol-based collision avoidance
relies on both a set of rules and continuous exchange of information among agents with
regards to their states. The former results in a faster reaction time whereas the latter
is safer. The most advanced CASs fall within the remaining three categories.

The optimised escape trajectory approach consists of solving an optimisation prob-
lem that combines the drone kinematic model with a set of physical and behavioural
constraints. The following decentralised multi-agent algorithms fall within this group:
1) the Reciprocal Velocity Obstacles (RVO) and the derived Optimal Reciprocal Collision-
Avoidance (ORCA) algorithms [49]; 2) the Cooperative Dynamic (CoDy) algorithm
[50], which is able to solve dead-lock situations; 3) the Context-Aware Route Planning
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(CARP) algorithm [51, 52], which is a graph routing algorithm aimed at finding the
shortest trajectory and avoiding collisions; and 4) other optimisation-based algorithms
such as [53] and [54].

Among the potential field (E-field) methods, the original ones suffer from the in-
sidious problem of drones getting randomly trapped in local minima (e.g. [55]) though
this issue has been dealt with (e.g. [56, 57]). The advantages are their low computa-
tional cost and short reaction time, whilst two major disadvantages still persist: 1) the
requirement of high-level flight guidance, and 2) the potential occurence of hard-to-
perform sharp discontinuities in the commanded manoeuvre.

In the miscellaneous category, other algorithms can be found. For example, a sense-
and-avoid algorithm has been formulated for a structured multi-agent system in [58]
and [48], where one leader is followed blindly by other drones. Such approach is claimed
to have remarkable computational savings compared to other CASs for this specific
application. Other researchers explore more exotic solutions to the problem, such as
a two-stage reinforcement learning approach for multi-drones under imperfect sensing
[59]. Their aim is to train a policy to plan a collision-free trajectory by leveraging
local noisy observations. Others try to infer the state of the overall swarm through
stigmergy, assuming this would be useful for collision avoidance purposes. For example,
an approach based on anticipatory stigmergic collision avoidance (ASCA) under noise
is proposed in [53], which consists of using pheromone information in a rather unusual
fashion: instead of leaving a trail of pheromones over past positions, all drones in
the swarm share information in the same indirect manner but about future intended
positions instead. The drones will then optimise their trajectories in order to avoid
locations with high concentrations of pheromone.

Numerous CASs have been proposed in the literature, the majority of which are
suitable for Autonomous Ground Vehicles only. This is because CASs formulations
typically rely on two main assumptions [53]: stationary vehicles (i.e. vehicles can
stop suddenly and remain still indefinitely) and perfect information (accurate noiseless
perception). This is certainly not the case for Unmanned Aerial Vehicles (UAVs) or
Unmanned Underwater Vehicles, which might need to move with limited awareness of
other vehicles’ locations due to vision obstructions (e.g. smoke, cluttered environments,
cloudy water) as well as high variance and bias of the positioning system being used.
From here forth, drones will refer to UAVs only.

2.4 Indoor Positioning Systems

In robotics and autonomous systems, accurate and precise positioning constitute a
crucial technology. A variety of positioning systems exist, which make use of different
technologies, signal properties, and positioning algorithms [60]. Technologies include
inertial navigation systems (INS) [61, 62], sound waves [63, 64], infrared [65], visible
light [66], and radio frequency – including Ultra-WideBand (UWB) [67], bluetooth [68],
Wireless Local Area Network (WLAN) [69, 70], and Wireless Underground Sensor Net-
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work [71]. Signal properties used for positioning include Angle of Arrival (AoA) [65],
Time of Arrival (ToA) [71], Time Difference of Arrival (TDoA) [72], and Received Sig-
nal Strength Indication [60]. Positioning algorithms include triangulation, trilateration
[73, 74], proximity, and Two-Way Ranging algorithms [75]. Technologies which make
use of a prediction model (e.g. INS), and are highly sensitive to external disturbances,
typically rely on sensor fusion approaches that use Kalman filter and neural networks
[76, 77].

Global Navigation Satellite Systems (GNSSs) are suitable for efficient outdoor long-
range positioning. Whilst the most common technology is the Global Positioning Sys-
tem (GPS), the European Galileo started providing services in 2016 with a constellation
of 26 satellites [78]. GNSSs allow an electronic receiver to determine its position by
trilateration using radio signals travel times (ToA) from at least four satellites [79].
However, since these signals cannot penetrate walls or objects, using this technology
for Indoor Positioning Systems (IPSs) is infeasible. Conversely, UWB technology is
well-suited for IPSs given that they present high data transfer rates over short dis-
tances and at low power densities, whist also having the ability to penetrate obstacles
[67]. In addition to that, UWB-based IPSs constitute one of the most accurate and
precise positioning technologies at present. All things considered, they are arguably the
best choice amongst current technology [80, 67]. However, they are susceptible to inter-
ferences, which may be caused by metallic materials or by systems working on similar
frequencies. Recently developed hybrid solutions make use of UWB technology and
LIDAR-based range finders for near-wall localisation in GNSS-denied Environments
[81].

Traditionally, the precision of positioning systems is studied by performing a Cramér–Rao
Lower Bound (CRLB) analysis [82] from the signal perspective, and then applying coef-
ficients such as Geometric Dilution of Precision (GDoP) [83] to capture the geometrical
features – e.g. to identify where there is a sudden drop of the IPS’s performance. CRLB
analysis is widely accepted for systems where the node to be localised is far away from
the anchors –e.g. for GNSSs– but is generally deemed unsuitable for IPSs [84, 85], in
which anchors and nodes are located within a confined space.



Chapter 3

FireProM-F: wildfire propagation
model

This chapter presents the mathematical formulation, numerical solution, calibration
and testing of a physics-based model of wildfire propagation aimed at faster-than-
real-time simulations. Despite a number of simplifying assumptions, the model is
comprehensive enough to capture the major phenomena that govern the behaviour of
a real fire –namely, the pyrolysation of wood; the combustion of a mono-phase medium
composed of premixed gas of fuel and air; and the heat transferred by conduction,
convection, radiation, mass diffusion and transport due to atmospheric wind. The
model consists of two coupled partial differential equations, one representing the mass
formation of each chemical species involved in the combustion and the other ensuring
the balance of enthalpy. Dimensionality reduction is sought by modelling these three-
dimensional phenomena in a two-dimensional space, which has been achieved by means
of heat-sources and heat-sinks to account for the third dimension in the energy balance
equation. Once calibrated with a widely used non-physics-based commercial wildfire
simulator, the proposed Fire Propagation Model for Fast simulations (FireProM-F)
is tested, returning similar predictions in terms of the size and shape of the burnt area,
although similarity deteriorates for windy conditions. It has the added benefit of being
both physics-based and computationally inexpensive, so that its interaction with fire
suppressants may also be modelled in the future and simulated in real time [7].

The remainder of this chapter is organised as follows: Section 3.1 presents the
mathematical formulation of the proposed model, including detailed descriptions of
its components; Section 3.2 deals with the numerical method adopted to solve the
formulated initial boundary value problem; Section 3.3 is concerned with numerical
experiments, where Section 3.3.1 presents the calibration process, Section 3.3.2 presents
case studies to test the calibrated model, and Sections 3.3.3-3.3.4 show applications of
the proposed model on a realistic scenario; finally, conclusions and recommendations
for future work are offered in section 3.4 followed by a brief summary of the chapter’s
topic, scope, method and findings in section 3.5.

14
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3.1 Proposed model

In line with [17] and [18], the vegetation stratum is modelled as a virtual premixed
layer of pyrolysis gases and air. The considered reference irreversible chemical reaction
is the combustion of methane in air:

θ1CH4 + θ2O2 → θ3CO2 + θ4H2O (3.1)

The reactants in Eq. (3.1) are the gaseous fuel and oxygen, mixed in air. The latter
is considered to be composed of oxygen, carbon dioxide, water vapour, and nitrogen.
Even though five chemical species are considered in this model, the nitrogen mass
can be assumed constant, therefore leading to only four mass balance equations. The
fire spread model can be represented by a system of five coupled PDEs: Eq. (3.2) for
the enthalpy balance, where FT is the summation of all heat sources and sinks; and
Eq. (3.3) for the consumption or formation of each of the four chemical species – i.e.
fuel, O2, CO2 and H2O [7].

∂

∂t
(cpT ) = FT (T,Xi) (3.2)

∂Xi

∂t
= FXi

(T,Xi) , i = 1, . . . , 4 (3.3)

In Eq. (3.3), FXi
is the molar fraction formation rate. The system of Eqs. (3.2)–(3.3)

can be expanded as shown in the system of Eqs. (3.4)–(3.5) [7].

ρ
∂

∂t
(cpT ) = Rc +Qw −∇ · (qc + qd + qr) +Qconv +Qrz (3.4)

∂Xi

∂t
= − θi

θ1

Mi

M1

r, (3.5)

where the following terms can be identified:

▷ Rc: Combustion energy source - i.e. energy released by consumption of the fuel
(see section 3.1.1);

▷ Qw: Transport term due to wind - i.e. horizontal convective preheating (see
section 3.1.2);

▷ qc: Conductive heat flux (small compared to other terms but not negligible, see
section 3.1.3);

▷ qd: Interdiffusional enthalpy flux - i.e. heat transported by species diffusion (see
section 3.1.4);

▷ Qconv: Vertical convection - i.e. buoyancy flux, convective heat sink outside the
2D simulation domain (see section 3.1.5);

▷ qr: 2D radiation heat flux - i.e. horizontal radiative preheating (see section
3.1.6);
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▷ Qrz: Vertical radiation - i.e. radiative heat loss outside the 2D simulation domain
(see section 3.1.7).

Notice that the radiation heat flux is split into two contributions: the auto-radiation
in the 2D domain, and the emitted radiation outward from the domain in the ver-
tical direction. Thus, the proposed Fire Propagation Model for Fast simulations
(FireProM-F) is governed by Eqs. (3.4)-(3.5) [7].

3.1.1 Combustion energy

The combustion energy in Eq. (3.6) depends on the combustion enthalpy (hc) and on
the reaction rate (r), both of which depend on the temperature (T ), the mole fraction
of fuel (X1), and the mole fraction of oxidiser (X2) [7].

Rc = −ρchhc
M

M1

r (3.6)

The role of the enthalpy proportionality coefficient (ch) is explained in Section 3.3.1.
The combustion enthalpy in Eq. (3.7) consists of the summation of all formation en-
thalpies Hi at the specific local temperature T . The reference empirical values Hi,ref

and Tref can be found in [86] [7].

hc =
Hc (T )

M̄
= − 1

M̄

5∑
i=1

θiHi (T ) =
1

M̄

5∑
i=1

θi (Hi,ref +Micpi (Tref − T )) (3.7)

The combustion rate in Eq. (3.8) represents the rate of fuel consumption and follows
the law of mass action –i.e. the exponential Arrhenius law [7]. The pre-exponential
coefficient (Ar) and the activation temperature (Ta) are empirical parameters that
depend on the fuel structural and chemical properties [87].

r = −δ+(T,X1,2)
ArTX

0.5
1 X2 exp

(
−Ta

T

)
(3.8)

In Eq. (3.8), δ+(T,X1,2)
is the Kronecker delta as defined in Eq. (3.9), which represents

a simple extinction model: if the temperature is lower than the ignition temperature
(Tig) or if either the fuel mass fraction or the oxidant mass fraction is lower than the
corresponding flame extinction value (X1e, X2e), the combustion is deactivated –i.e.
the combustion rate is null. It is assumed here that the ignition temperature is equal
to the activation temperature [7].

δ+(T,X1,2)
=

{
1 if T > Tig ∧X1,2 > X1,2e

0 otherwise
(3.9)
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3.1.2 Transport due to wind

The transport term in Eq. (3.10) models windy conditions, where u = (u1, u2) is
the atmospheric wind velocity. The meaning of the wind reduction coefficient (cw) is
explained in Section 3.3.1 [7].

Qw = −ρcwu · ∇ (cpT ) (3.10)

3.1.3 Conductive heat flux

The conductive heat flux is modelled as shown in Eq. (3.11), where the thermal con-
ductivity (κ) is assumed to be constant.

qc = −κ∇T (3.11)

3.1.4 Interdiffusional enthalpy flux

The adopted interdiffusional enthalpy flux is as in Eq. (3.13), based on the Fickian
approximation of the diffusive mass flux (Ji) shown in Eq. (3.12) [88]. The diffusivity
(Di) is assumed to be the same for every chemical species and it has been expressed in
Eq. (3.13) as a function of κ to reduce the number of parameters [89].

Ji ≈ −ρ

(
Di∇Yi − Yi

∑
j

Dj∇Yj

)
(3.12)

qd =
∑
i

hiJi ≈
∑
i

hiρDi∇Yi ≈
κT

cpM̄

∑
i

cpi∇ (XiMi) (3.13)

3.1.5 Vertical convection

The heat loss due to vertical convection is governed by the simple formulation in
Eq. (3.14), where the atmospheric domain above the vegetation is at ambient temper-
ature (Tamb) [7].

Qconv = χ (Tamb − T ) (3.14)

As suggested by Séro-Guillaume et al. [20], this simple linear model should be
improved. Nonetheless, one could assume the disregarded nonlinearities in the vertical
convection dynamics to be implicitly embedded in the radiation heat loss in Eq. (3.22).
Though this is not a rigorous theoretical observation, it could serve well for the purpose
of the proposed wildfire model [7].
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3.1.6 2D radiation heat flux

Radiation is a volumetric phenomenon proportional to the 4th power of the temperature
of the source [90]. The hemispherical radiation power (q) emitted by a finite radiative
volume is shown in Eq. (3.15) in terms of the Boltzmann constant (σ), the emittance
(ε), and the radiation aspect (ϕ) [7].

q = σεϕT 4 (3.15)

Let us consider two sources separated by the absorption length (δx), which are at
different temperatures as in Eq. (3.16). Then, the radiative heat fluxes, qA and qB,
are as in Eq. (3.17) [7]. {

TA = T
TB = T + ∂T

∂x
δx

(3.16)

{
qA = σεϕT 4

qB = σεϕ
(
T + ∂T

∂x
δx
)4 (3.17)

The 4th power of the temperature at point B in Eq. (3.17) may be simplified by
neglecting some small differentials, as shown in Eq. (3.18).(

T +
∂T

∂x
δx

)4

≈ T 4 + 4T 3∂T

∂x
δx (3.18)

A formulation of the net heat flux (qr) in the x direction (qrx) can be obtained as
in Eq. (3.19) [7].

qrx = qA − qB = −4σεT 3∂T

∂x
δx (3.19)

In order to consider the energy variation induced by radiation on a finite control
volume of dimension dx×dy×dz, one could evaluate the energy change due to radiation
heat flux through the faces perpendicular to the domain plane:

Qrxy = −∇ · qr = 4σεδx

[
∂

∂x

(
T 3∂T

∂x

)
+

∂

∂y

(
T 3∂T

∂y

)]
= 4σεδx∇ ·

(
T 3∇T

)
(3.20)

Hence, the local 2D self-radiation heat flux expression results as shown in Eq. (3.21)
[7].

qr ≈ −4σεδxT 3∇T (3.21)

The absorption length δx (or optical thickness) is assumed to be isotropic, and it
has to be equal to or smaller than the smallest cell size for the numerical solution to
be valid [7].
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3.1.7 Vertical radiation

The vertical radiation heat loss shown in Eq. (3.22) [90] consists of the emission along
the z direction –i.e. perpendicular to the simulated xy domain [7].

Qrz = σεδ−1
z

(
T 4
amb − T 4

)
(3.22)

3.1.8 Closure equations

Finally, the system is closed with the following equations:

M̄ =
5∑

i=1

XiMi (3.23)

cp =
5∑

i=1

Xi
Mi

M̄
cpi (3.24)

The molar mass (M̄) of the mixture in Eq. (3.23) is a linear combination of the
molar masses of each chemical species (Mi) multiplied by the respective mass fraction
(Xi). Similarly, the total heat capacity coefficient at constant pressure (cp) of the
mixture in Eq. (3.24) is obtained by weighted summation of the partial heat capacities
(cpi) of each chemical species [7].

3.2 Numerical solution

The numerical scheme used to solve the system of PDEs in Eqs. (3.4) and (3.5) is
given by the 2nd order centred finite difference method for the spatial integration and
the 4th order Runge-Kutta method (RK4) for the time integration. For example, time
integration for Eq. (3.2) is as shown in Eq. (3.25), where T̃ = cpT :

T̃ k+1 = T̃ k + FT∆t

FT = (1/6) (FT,1 + 2FT,2 + 2FT,3 + FT,4)

FT,1 = FT

(
T̃ k, Xk

i

)
FT,2 = FT

(
T̃ k + FT,1

∆t
2
, X

k+ 1
2

i

)
FT,3 = FT

(
T̃ k + FT,2

∆t
2
, X

k+ 1
2

i

)
FT,4 = FT

(
T̃ k + FT,3∆t,X

k+1
i

)
(3.25)

This is an accurate and efficient (explicit) method, although it is still conditionally
stable. For instance, the maximum time-step to ensure stability for a grid-size of
0.25 m2 is 5 s.
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All numerical derivatives in space are 2nd order accurate except for when applying
the flux limiter operator in the transport term, which gradually reduces accuracy to
1st order by using an upwind scheme [7].

As far as Boundary Conditions (BCs) are concerned, the main idea is to keep the
simulation domain as unconstrained as possible, allowing free heat fluxes through the
boundaries. Therefore, I applied Dirichlet BCs on both the temperature (ambient) and
the chemicals mass fractions. The fuel mass fraction right at the boundary and some
neighbouring cells is set to zero, creating a safe band where the fire cannot spread. In
order to avoid eventual artificial effects on the solution due to boundary assignment,
the flaming area is kept far from the domain edges [7].

Regarding the initial conditions, the initial temperature field is set to the atmo-
spheric temperature at the considered altitude. The ignition point is represented by
a Gaussian distribution, which peak temperature is 300 K higher than the pyrolysis
temperature to avoid numerical effects related to discontinuities or excessively steep
gradients. The flammable gas mixture is lean, setting the initial fuel molar fraction to
10% with the remaining 90% air, which results in an almost unlimited availability of
oxygen for the combustion to take place [7].

A flux limiter is applied to the transport term Qw in Eq. (3.10) in order to constrain
the heat fluxes with the wind direction. The flux limiter in Eq. (3.26) is formulated in
order to have a gradual switch from centred differences at no-wind condition towards
upwind differences scheme for very strong winds [7].

Qw = −ρcwu · ∇T̃
FL

(3.26)

Moreover, negative transport heat fluxes due to wind are reduced in order to enforce
the permanence of the flame in the vegetation stratum, which is not a volatile gas
mixture.

In cases with multiple types of fuels present in the same domain, a problem arises
in choosing the parameters for the spatial derivatives which affect the value of the heat
fluxes at the interface between two different fuel types. Table 3.1 shows how to choose
between the local, the minimum, and the maximum values. While it would have made
sense to choose local values for δ∗z and χ, better predictions were observed with the
choices shown in Table 3.1 [7].

parameter ch Ar κ δ∗
x δ∗

z χ Tig cw
value local local min min min max local local

Table 3.1: Choice of parameters’ values at the interface between two different fuels as
either local, minimum or maximum [7].

The model’s predictions have been compared against the simulated dynamics ob-
tained by other models and experimental results from the literature. For instance,
Fig. 3.1 shows the radial temperature profile of a circular flame growing radially from
a single ignition point in a grass bed in the centre of the domain. A qualitatively and
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Figure 3.1: Temperature profile along a radial direc-
tion across an ignition point, where T* = T/Tamb [7].

quantitatively similar result was reported by Ferragut et al. [17], whose model was
previously introduced in Eq. (2.1) [7].

Furthermore, in order to observe the combustion dynamics, I studied the evolution
in time of temperature, fuel mass fraction, products mass fraction (e.g. CO2), and fuel
mass loss rate [7]. This is shown in Fig. 3.2, where some non-dimensional values are
defined as follows:

i) Temperature:
(T − Tamb)

⋆ = (T − Tamb)/Tamb

ii) Fuel mole fraction:
X⋆

CH4
= XCH4/X

t=0
CH4

iii) Product mole fraction:
X⋆

CO2
= XCO2/X

t→∞
CO2

In Fig. 3.2, it is easy to recognise the heating phase (t1 < t < t2), combustion phase
(t2 < t < t4), ignition of a neighbouring cell (t3 < t < t4), and suppression/cooling
phase (t > t4). The local combustion dynamics obtained with the proposed model is
also qualitatively and quantitatively similar to those reported from other models and
experiments such as those in [91, 92, 93].
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Figure 3.2: Ignition dynamics of a cell showing the average temperature normalised
by the ambient temperature, the molar fraction of fuel by its initial value, the molar
fraction of the carbon dioxide by its final value and the mass loss rate of fuel normalised
by its maximum value. The specific times ti, with i from 1 to 4, point out a crucial
event of the simulated environment [7].

3.3 Numerical experiments

Absent access to detailed wildfires data-bases, the proposed fire propagation model is
calibrated against a commercial simulator for single-species and uniform wind scenarios.
The commercial simulator of choice is FARSITE [10], as it has been validated against
historical fires and is equipped with an extensive collection of fuel models. Given the
similarity between FireProM-F and the model proposed by Séro-Guillaume et al. [20], I
was tempted by using their model for calibration and testing purposes. However, three
conditions made this choice prohibitive (compared to the obvious choice for FARSITE):
the lack of validation with historic wildfires, the lack of different fuel models, and the
low availability of the model. The calibrated model is then tested for different wind
speeds and on different mixed-fuels scenarios. Finally, a realistic scenario is designed for
further testing, which also includes atmospheric wind and barriers to the propagation
of the wildfire. All propagations predicted by this model in the numerical experiments
are compared against those returned by the commercial simulator [7].
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3.3.1 Model calibration

The calibration methodology adopted is described in this section, where the reference
values are obtained by carrying out simulations of fire propagation especially designed
for this purpose using the popular Fire Area Simulator FARSITE.

The methodology consists of starting a fire from a single ignition point within a
uniform fuel bed in the centre of a square domain of 100 m × 100 m in the absence
of wind, atmospheric conditions at sea level, and 20% of fuel moisture. Evidently, the
fire is to propagate radially displaying a circular propagation front. The ignition point
is represented by a Gaussian distribution, as dicussed in Section 3.2. Whilst one of the
most relevant features of wildfires is the rate of spread (RoS), an indirect way to take
this into account while also considering a 2D propagation is by using as a reference the
burnt area (Ab) once the wildfire has propagated for a predefined length of time. As
a trade-off between computational time and reliability, the fire is allowed to propagate
for 10 min before extracting this reference value. Note that Ab is defined as the area
that, at any time during the simulation, has had some of its fuel burning [7].

Thus, the objective is to minimise the error between the burnt area predicted by
the presented model (Ab) and the one predicted by FARSITE (Aref). The optimisation
problem is formulated in Eq. (3.27) where x is a vector gathering seven calibration vari-
ables, namely: the combustion heat proportionality coefficient (ch), the pre-exponential
Arrhenius coefficient (Ar), the thermal conductivity (κ), the modified optical thickness
on the simulation plane (δ⋆x), the modified optical thickness in the vertical direction
(δ⋆z), the turbulent convection coefficient (χ), and the effective ignition temperature
(Tig). Calibration variables and their feasible ranges are shown in Table 3.2 [7].

Minimise
x

(Ab − Aref)
2

Subject to Tmax = Tref

x ∈ [xmin,xmax]

(3.27)

Tref = 1,200 K is the temperature of wood combustion in the absence of wind
and crown fire [91]. Since higher temperature peaks are possible under different cir-
cumstances, this is imposed as a soft constraint by setting a small tolerance. The
optimisation problem is solved using SQP, with variables calibrated for three different
types of fuel. Adopting the same standard classification as FARSITE [94], these are:
FM1 (short grass), FM2 (timber), and FM6 (dormant brush and hardwood slash).
Resulting values of the calibrated variables are provided in Table 3.3.

ch [∼] Ar [K
−1s−1] κ [Wm−1K−1] δ∗

x [m] δ∗
z [m] χ [Wm−3K−1] Tig [K]

[0.7,1.2] [1,10]e-5 [1,10]e-1 [1,100]e-2 [1,100]e-1 [1,10]e-2 [T+
amb,800]

Table 3.2: Feasible range for calibration variables of the proposed fire propagation
model [7].

All calibration variables in the model have physical meaning, as described below:
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FM ch [∼] Ar [K
−1s−1] κ [Wm−1K−1] δ∗

x [m] δ∗
z [m] χ [Wm−3K−1] Tig [K]

1 0.995 5.757e-5 0.978 3.43e-2 1.67 4.92e-2 374.5
2 0.988 4.324e-5 0.499 3.65e-2 1.49 5.16e-2 458.3
6 0.803 4.154e-5 0.255 2.98e-2 1.91 2.16e-2 431.6

Table 3.3: Variables calibrated with respect to the burnt area (Ab) predicted by FAR-
SITE 10 min after ignition [7].

� ch is a proportionality coefficient that takes into account the possibility of burn-
ing fuels that have different specific combustion energy with respect to gaseous
methane. Considering the reaction in Eq. (3.1), the energy output due to com-
bustion is predefined by the reference enthalpy of each chemical species involved
between products and reactants, as shown in Eq. (3.7). In order to consider a
wider spectrum of fuels that might have different reference enthalpy than that of
methane, the combustion enthalpy of the gaseous mixture of methane and air is
multiplied by ch. Refer to Eq. (3.6) [7].

� Ar is the pre-exponential Arrhenius coefficient, which affects the reaction rate.
Similar to ch, the reference chemical reaction is the combustion of methane that
has a precise reaction rate. Therefore, in order to consider different combustion
rates, Ar is a critical parameter to be calibrated. This will sensibly change the
combustion power output [7].

� κ is the thermal conductivity, which controls the heat transferred by conduction.

� δ⋆
x is the modified optical thickness in the simulation plane as defined in Eq. (3.28),

where δx is the optical thickness in x whose value depends on factors such as
porosity and smoke presence, and must be smaller than the cell-size as a model
assumption (see Section 3.1.6) [7].

� δ⋆
z is the modified optical thickness in the vertical direction as defined in Eq. (3.29),

where δz is the optical thickness in z whose value depends on the height of the
vegetation stratum and on smoke presence [7].

� χ is the turbulent convection coefficient, which strongly depends on the combus-
tion power strictly affecting the intensity of the buoyancy fluxes.

� Tig is the effective ignition temperature, which can be far lower than the actual
ignition temperature for the reference fuel (CH4) since I am considering the aver-
age value in the cell and modelling wood combustion. The activation temperature
Ta for the combustion to take place is set equal to Tig [7].

δ⋆x = εδx (3.28)
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δ⋆z = δz/ε (3.29)

Note that ε in Eqs. (3.28)-(3.29) is the radiation emissivity, which depends on both
porosity of the vegetation medium and smoke presence.

The calibration described thus far applies to no-wind conditions. Hence, a new
calibration variable is considered to account for the wind effect, namely the wind
reduction coefficient (cw). The latter is always smaller than one, and reduces the
atmospheric asymptotic wind velocity to an effective wind velocity due to drag at the
interface and inside the vegetation layer. This parameter should depend on porosity,
average height, and crown coverage [7].

Figure 3.3: Fire perimeter predictions
by FireProM-F (red) and by FARSITE
(black) 10 min after ignition with (a)
0 m/s, (b) 5 m/s and (c) 10 m/s wind
speeds blowing from left to right. The
ignition point is marked as (0), and a
slow-burning fuel is used [7].

Figure 3.4: Wind reduction coefficient
laws in relation to wind speed for three
fuel types, where ♦, ■ and • are the ref-
erence calibration points [7].

Two different wind velocities are considered, 5 m/s and 10 m/s, with the previous
case of 0 m/s added as a third case scenario (no-wind). Interestingly, the shape of
the fire front predicted by the proposed physics-based model and the one predicted by
the mechanistic surrogate model embedded in FARSITE differ considerably for windy
conditions. Therefore, it makes little sense to use Ab as the reference response. Instead,
the downwind flame-front run (∆̂X) is used, and the objective function in Eq. (3.27)
is replaced by the one in Eq. (3.30) for the calibration of cw [7].

Minimise
cw

(
∆̂X − ∆̂Xref

)2
(3.30)
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The fire front for each of these three scenarios is shown in Fig. 3.3, where the
predictions made by the proposed calibrated physics-based model are displayed in red
lines whereas those made by the commercial simulator FARSITE are displayed in black
lines. As can be observed, the ∆̂X predicted by the two models coincide whereas the
predicted values of the Ab show great discrepancies. In particular, FARSITE predicts
significant expansions of the fire perimeter against the wind and on both flanks. This is
an artificial effect introduced by the geometrical construction of the flame front based
on elliptic waves with their back focuses forcibly placed on the ignition points in the fire
perimeter (Huygens principle). This is a known issue associated with the embedded 2D
fire growth model. It is important to note that, while the Ab depends on the elliptical
growth (mechanistic surrogate) model, the size of the major axis depends only on the
RoS in the direction of the wind calculated in advance in FARSITE using Rothermel’s
model. This supports the case for using ∆̂X rather than Ab as the reference variable
for the calibration of cw [7].

Since aerodynamic coefficients are usually modelled proportionally to a certain
power of the wind velocity [95], it is assumed here that cw follows a quadratic law,
as shown in Fig. 3.4. Thus, the calibrated cw corresponding to the three wind veloci-
ties are interpolated with a quadratic polynomial for each of the three fuels considered.
Fig. 3.4 also shows that FM1 (blue) and FM2 (red) follow marked parabolic trends
whereas FM6 (green) displays an almost linear one. This is because FM6 consists of
bushes with foliage which, despite being very flammable, are coarse. Hence fire propa-
gation is strongly driven by wind, which can almost freely penetrate the highly porous
media somewhat justifying the quasi-linear trend of cw.

Two examples of fire spread from a single source predicted by the calibrated model
are shown in Figs. 3.5–3.8 for fuel FM1 uniformly distributed in the domain. Figs. 3.5 and 3.6
show the temperature and fuel energy fields, respectively, for the no-wind case whereas
Figs. 3.7 and 3.8 show them for a 10 m/s wind. Note that any non-white region in the
fuel energy field contributes to the total Ab. The outer solid red lines in Figs. 3.6 and 3.8
are the fire perimeters modelled by FARSITE. Clearly, agreement is almost perfect for
the no-wind case and deteriorates once wind is introduced, as previously discussed.
The inner dotted contours in Figs. 3.7 and 3.8 enclose regions with T < Tig.

3.3.2 Model tests

In order to test the proposed FireProM-F beyond the calibration scenarios, two sets
of numerical experiments are carried out in this section: one for different wind speeds,
and the other for different inhomogeneous fuel mixtures. Predicted fire perimeters are
compared against those modelled by FARSITE, and the satisfaction of the soft Tmax

constraint is checked.
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Tests under different wind speeds

The first set of experiments consists of testing the calibration curves in Fig. 3.4 to set
the cw coefficient in the transport term in Eqs. (3.4) and (3.10) as a function of the
wind velocity. Thus, wind velocities were selected within the calibration range [0 m/s–
10 m/s], but also outside by extrapolating the curves up to 15 m/s. I believe that the
parabolic formulation of cw would still work for stronger winds, though this has not
been tested here.

As shown in Figs. 3.9, 3.10 and 3.11, the discrepancies in the predictions of the
fire-front runs (∆̂X) by this calibrated model and FARSITE are smaller than 5% for
each of the three fuels, even for wind velocities larger than 10 m/s. This calibration
may also be applied to the remaining standard fuels described by Anderson [94].

Tests under different fuel mixtures

While the model has been calibrated for individual fuels, the aim here is to test its
predictions for a mixture of them. Thus, the three different fuel types have been allo-
cated randomly throughout the domain in order to simulate a plausible inhomogeneous
distribution of fuel energy. The fuels are mixed randomly but predefining their occu-
pational percentages (CFM1, CFM2 and CFM6), with each cell containing only one type
of fuel. Tests are performed for two ignition cases: single-point ignition in the centre
of the domain (as during calibration), and multiple ignitions from four sources. An
example of the fire propagation when mixing the three fuel models in equal percentages
and for a fire initiated from four ignition points is shown Figs. 3.12 and 3.13. Since
calibration was performed for reference values extracted 10 min after ignition, simula-
tions are carried out for an extended period of 20 min to confirm that the agreement
persists [7].

As can be observed in Figs. 3.12 and 3.13, the predictions of the fire perimeter
by the calibrated model and by FARSITE are in clear agreement. Also note that the
maximum temperature in the field is around the value set for Tmax during calibration
(1,200 K).

Percentage errors (ϵ) for pairwise mixtures of the three fuels in different occupa-
tional percentages are shown in Figs. 3.14, 3.15, and 3.16. It was expected that ϵ for
the mixture would monotonically vary between the values at the two extremes with
single fuel, e.g. along the red lines in the figures. However, the discrepancies between
the predictions of the Ab increase when mixing fuels, even if there is some skewness
towards the fuel with higher ϵ. This can be caused by a different modelling of the fire
propagation in the neighbourhood of an interface between two different fuels. For in-
stance, FARSITE averages the properties of the fuels traversed by the fire front during
the time-step considered [10, 96], whereas FireProM-F chooses the parameters as previ-
ously explained in Table 3.1. Nonetheless, discrepancies of predictions are consistently
maintained below 5% for different mixtures of fuels [7].

Analysing the performance of the model for cases with multiple ignitions, a 3%
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increment of ϵ is observed for a fire originating from four ignition points when compared
to one propagating from a single source. This may be –at least partially– due to the
geometrical formulation of the fire front in FARSITE, as marker methods are known to
have difficulties in handling situations such as when the edges of a concave fire front –or
two separate fire fronts– collide. With the current crossover management algorithm,
the superposed area is simply eliminated disregarding the energy that theoretically has
been generated in producing it. Furthermore, in cases of junction fires and concave fire
fronts, experiments show that the RoS should momentarily increase and then gradually
slow down to reach normal speed once the shape becomes convex [97]. As opposed to
FARSITE, the presented model appears to reproduce this phenomenon to some extent
[7].

3.3.3 Reproducing real fire experiments

This section is aimed at assessing qualitatively FireProM-F. The predictions are com-
pared with findings of well established historical experiments [98, 99]. The reference
field experiments are performed on 1 hectar square lots with different kind of grass fuels
for characterisation. Some properties are the burning rate, the RoS, susceptibility to
wind, and flame intensity. In this section the main feature that is going to be consid-
ered is the evolution of the shape of the fire front predicted with the presented model
[7]. Since FireProM-F has not yet been calibrated for a wide variety of fuels, here other
features (such as the RoS) are not considered. As suggested buy [98, 99] experiments,
the dynamics of the shape of the firefront are the following (refer to Fig. 3.17):

1. Using torches, two firemen ignite one edge of the fuel bed (west in Fig. 3.17),
starting from the centre and walking apart from each other aiming for the vertices.

2. The wind (10 m/s) blowing from west to east, forces the forming fire front to
assume a characteristic Gaussian shape (a).

3. This will quickly evolve into a triangular (b) shape due to larger heat transport
towards convex areas.

4. Eventually the flame front obtains a more rounded shape from tear-drop (c) to
final parabolic (d) shape.

As demonstrated by Fig. 3.17, FireProM-F is capable to predict also this evolutionary
feature of real fires.

3.3.4 Simulation under realistic scenario

This section aims to simulate the fire propagation over a realistic large-scale scenario in
order to demonstrate the reliability of the predictions made by the proposed FireProM-
F. The realistic scenario consists of a square lot of forest of 1500×1500 m2 extracted
from a tutorial example provided by FARSITE. Topographic maps like this one are
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usually provided by the Geographic Information System (GIS), and can provide infor-
mation about the vegetation cover and type. The lot, shown in Fig. 3.18, comprises
fuels FM1, FM2 and FM6, as well as an obstacle through which the fire is not allowed
to propagate but the wind may cut through unaffected. Such an obstacle may be given
by a natural barrier like a lake or rocks. It is important to note that the precision of
the vegetation raster provided by the GIS (≈ 30 m) is not the same as the cell-size used
in the simulations (1 m2). Slope and elevation are set to flat and sea-level conditions,
as the presented model does not yet include these features. Moisture level is set to
20% as during calibration [7].

Two experiments are carried out for a wildfire propagating from a single ignition
point, one under no-wind condition and the other with a 5 m/s wind blowing at a
60◦ angle. The temperature field after 3 hrs of propagation for the first experiment
is shown in Fig. 3.19, where the flame front is displayed by the outer dotted white
contour. The inner white contour encloses a region with T < Tig. The fire front
predicted by FARSITE is not displayed because it overlaps almost exactly with the
one predicted by FireProM-F. For the second experiment, the temperature field after
3 hrs of propagation is shown in Fig. 3.20, where the meaning of the dotted white
contours is the same as in the first experiment. However, the fire perimeter predicted
by FARSITE is now displayed in a solid magenta contour. Predictions in this case are
not perfectly overlapping but still appreciably similar [7].

It is interesting to notice from Figs. 3.19 and 3.20 that certain areas within the field
are observed to retain higher temperatures than neighbouring areas. If these figures are
analysed in conjunction with Fig. 3.18, it can be inferred that these areas correspond
to the most energetic fuels, namely FM2 and FM6, which are harder to be ignited but
provide more energy. All things considered, the results from the two experiments are
satisfactory, fulfilling the expectations [7].

In Table 3.4 the computational times for different domain sizes are collected. It
can be noticed that for a fairly large domain of 1 hectare the simulation is faster than
real time. The turning point when the run time and the simulation time are identical
is about 4 hectares [7].

Domain size [m2] N [×103] Simulation time [h] Run time [h] Ratio [∼]
100×100 10 0.33 0.25 0.75
600×600 360 2.00 3.00 1.50
1500×1500 2250 3.00 28.00 9.33

Table 3.4: Computational time for different domain sizes (N number of points) per-
formed with ∆x = 1 m and ∆t = 10 s, using Matlab R2017a on a Windows machine
with an Intel Xeon CPU @3.20 GHz [7].



CHAPTER 3. FIREPROM-F: WILDFIRE PROPAGATION MODEL 30

3.4 Conclusion

Wildfires are dangerous uncontrolled phenomena which can have devastating health,
social, economic and environmental impacts. Their frequency and severity have been
increasing for decades. Therefore, the development of tools to support the management
of wildfires is gaining interest as this becomes an increasingly pressing issue worldwide
[7].

Traditionally, fire propagation models were aimed either at the development of fire
danger rating systems or at the accurate quantification of wildfire events [3]. I propose
that their use be extended to two new crucial applications: simulation-based testing
of fire management and suppression technologies; and integration into fire suppression
technologies as a predictive tool to support autonomous decision-making [7].

Advanced physics-based models which incorporate a wide range of fire dynamics
phenomena such as FDS [15] are computationally intensive and cannot be used in
real time. In turn, operational fire spread models such as FARSITE [10] are useful as
real-time management tools, but they are not physics-based. This chapter presented
the mathematical formulation, numerical solution, calibration and testing of a two-
dimensional physics-based Fire Propagation Model for Fast simulations (FireProM-
F). A major motivation is to support the design of innovative fire management and
suppression technologies and strategies, as well as to function as a decision-support
tool to assist firefighters in the use of current technology. Hence the need for the model
to be physics-based and computationally inexpensive: the modelling of interactions
between fire and suppressant must be feasible, and simulations must be in real-time or
faster [7].

Despite a number of simplifying assumptions aimed at making the model quick,
the underlying physics is comprehensive enough to capture the major phenomena that
govern the behaviour of real fires. As a first step towards validation, eight parame-
ters with physical meaning were calibrated within realistic ranges using FARSITE to
generate reference values, as this widely used commercial simulator has been shown
to reliably reproduce historical fires. To this end, seven parameters were calibrated to
match the burnt area and one to match the downwind fire-front run for three different
uniform fuels and three wind speeds [7]. This calibration may be straightforwardly
extended to the remaining standard fuels described in [94].

Several numerical experiments were carried out to test the calibrated model, in-
cluding one in a medium-scale realistic scenario with mixed fuels, natural barrier, and
atmospheric wind. The fire perimeters predicted by FireProM-F and by FARSITE
show nearly perfect agreement for no-wind conditions. Agreement deteriorated once
wind was introduced, especially in terms of rates of spread (RoS) against the wind and
on the flanks. This is likely to be due to the elliptical growth geometrical approach
adopted by FARSITE, which is believed to overestimate the RoS in those directions
[7].

Overall, the numerical experiments showed that FireProM-F is able to produce fast
and reliable predictions of the fire perimeter, with the added benefit of being physics-
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based. For a grid of 4×104 points on a standard computer with Intel Xeon CPU
(@3.20 GHz), FireProM-F simulates 1 min of fire dynamics in about 58 s (faster than
real-time). For larger-scale experiments the computational effort required is evidently
higher so the simulations are slower than real-time [7].

Among other things, the use of autonomous technologies to operate in dangerous
and hazardous environments, such as wildfires, are currently gathering momentum and
gaining interest from researchers and practitioners. For instance, Innocente and Grasso
[1] propose the use of self-organising swarms of drones for autonomous firefighting.
These types of technologies require models like FireProM-F for their development and
extensive testing under realistic scenarios. Furthermore, a faster-than-real time model
may also be used as a predictive tool to enable more advanced autonomous firefighting
strategies [7].

For future work, it is paramount that FireProM-F incorporate the effects of topog-
raphy. A possibly more challenging endeavour consists of the development of efficient
means to incorporate balances of mass and momentum into the 2D model without no-
ticeably increasing the computational weight. While the aim of this research was the
development of a fast 2D physics-based model, a more advanced 3D high-fidelity model
is currently under development for offline simulations aiming to provide better insight
into the dynamics of the interactions between the fire and different suppressants [7].

3.5 Summary

Scope: Develop a two-dimensional wildfire propagation model for further integration
with the Swarm-in-the-Loop system for designing firefighting strategies.
The wildfire propagation model ought to be:

� mechanistic: physics based in order to accurately model the effect of different
extinction technologies (e.g. water dropping, foams, retardants, powders, dis-
rupting sound or shock waves, etc.);

� parametric: in order to model a multitude of fire dynamics associated with dif-
ferent vegetation fuel types (e.g. short or tall grass, shrubs, trees, peat, mixed)
and moisture conditions;

� realistic: which reproduces with very good appreciable similarity what would be
the actual natural fire dynamics with heterogeneous fuel distribution (e.g. rate
of spread, fire front shape, temperature profile, consumed fuel areas, etc.);

� faster-than-real-time: computationally lightweight, necessary for each time inte-
gration to be computed fast enough to be integrated in real time in loop with
some hardware, such as a swarm of drones indoor.

Method, studies, and experiments:
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� Mathematical formulation of the fire propagation model consisting of a combus-
tion reaction equation for mass balance and an energy equation (subdivided into
combustion energy source, wind transport, conduction, interdiffusional enthalpy,
horizontal local radiation, outward convection and radiation sinks terms).

� Numerical solution with finite differences method (FDM): 2nd order centred FDM
for the spatial integration and the 4th order Runge-Kutta method (RK4) for the
time integration.

� Calibration of eight parameters with physical meaning bounded by realistic ranges
using FARSITE [10] to generate reference values for three different vegetation fuel
types (FM1: short grass; FM2: timber; and FM6: dormant brush and hardwood
slash). Seven parameters were calibrated to match the burnt area, and one to
match the downwind fire-front run.

� Numerical experiments to test the calibrated model. Nearly perfect agreement
on fire perimeters between FireProM-F and by FARSITE, apart across the flanks
and against the eventually introduced wind.

Main outcomes and findings:

� FireProM-F : a mechanistic, parametric, realistic and faster-than-real-time 2D
wildfire propagation model. It is able to produce fast and reliable predictions of
the fire perimeter, with the added benefit of being physics-based.

� The solution of the model is not as fast as FARSITE, but it has an acceptable
compromise of the properties listed above. In any case, the development of
FireProM-F was never a competition with FARSITE.

� A model of smoke generation should be added in order to emulate the decreased
visibility for the Swarm-in-the-Loop (SwiL) simulation.

� A model of vertical wind draft associated to the buoyancy fluxes (vertical con-
vection) should be formulated in order to realistically affect the flight dynamics
of each drone in the SwiL.
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Figure 3.5: Temperature field 10 min
after single-point ignition of FM1 fuel
bed under no-wind condition [7].

Figure 3.6: Energy fuel field 10 min
after single-point ignition of FM1 fuel
bed under no-wind condition. The grey
region shows the burnt area (Ab), the
red dot shows the ignition point, and
the red circle is the FARSITE predic-
tion [7].

Figure 3.7: Temperature field 10 min
after single-point ignition of FM1 fuel
bed with 10 m/s wind. The inner con-
tour encloses a region with T < Tig [7].

Figure 3.8: Energy fuel field 10 min
after single-point ignition of FM1 fuel
bed with 10 m/s wind. The grey re-
gion shows the burnt area (Ab), and
the red ellipse is the FARSITE predic-
tion. The inner contour encloses a re-
gion with T < Tig [7].
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Figure 3.9: Fire-front run ∆̂X pre-
dicted by the model and by FARSITE,
and their difference (error), for a range
of wind velocities and FM1 [7].

Figure 3.10: Fire-front run ∆̂X pre-
dicted by the model and by FARSITE,
and their difference (error), for a range
of wind velocities and FM2 [7].

Figure 3.11: Fire-front run ∆̂X pre-
dicted by the model and by FARSITE,
and their difference (error), for a range
of wind velocities and FM6 [7].
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Figure 3.12: Temperature field 20 min
after multiple ignition of a randomly
mixed fuel bed with equal partition of
FM1, FM2 and FM6. The inner con-
tour encloses a region with T < Tig [7].

Figure 3.13: Fuel energy field and fire
perimeter 20 min after multiple ignition
(red dots) of a randomly mixed fuel bed
with equal partition of FM1, FM2 and
FM6. The uniform dark region with
low density of fuel energy depicts the
Ab predicted by FireProM-F whereas the
red contour is FARSITE’s prediction of
the fire perimeter. The inner contour
encloses a region with T < Tig [7].

Figure 3.14: Estimation error distribution for different percentages of two ran-
domly mixed fuel types: FM1 and FM2. In continuous line the expected trend. At
0% of FM2 corresponds 100% FM1 [7].
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Figure 3.15: Estimation error distri-
bution for different percentages of two
randomly mixed fuel types: FM2 and
FM6. In continuous line the expected
trend. At 0% of FM6 corresponds 100%
FM1 [7].

Figure 3.16: Estimation error distri-
bution for different percentages of two
randomly mixed fuel types: FM1 and
FM6. In continuous line the expected
trend. At 0% of FM6 corresponds 100%
FM2 [7].

Figure 3.17: Temperature field after
dynamic linear ignition on the western
side of a 100× 100 m2 FM1 field blown
by a 10 m/s wind. It is a composite
map of time isopleths of fire perimeter
(dotted magenta line) and depth at (a)
48 s gaussian, (b) 114 s triangular, (c)
301 s tear-drop, and (d) 538 s parabolic
fronts respectively [7].

Figure 3.18: Fuel energy distribution
over a 1500×1500 m2 wildland lot. The
black area is an obstacle, while the three
different scales of grey represent the fuel
types FM1, FM2, and FM6. Initial
flame contour shown in red [7].
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Figure 3.19: Temperature field 3 h af-
ter three-point ignition (see Fig. 3.18 for
their location) under no-wind condition.
The outer dotted white contour displays
the fire front whilst the inner one en-
closes a region with T < Tig [7].

Figure 3.20: Temperature field 3 h af-
ter three-point ignition and 5 m/s wind.
The outer dotted white contour displays
the fire front whilst the inner one en-
closes a region with T < Tig. The ma-
genta contour is the fire front predicted
by FARSITE [7].



Chapter 4

Autonomous Firefighting

This chapter aims to demonstrate the feasibility and potential of employing swarm
robotics (SR) to fight wildfires autonomously. The focus is not on the design of the
physical robots but on their self-coordination mechanisms for the desired firefighting
behaviour to emerge. To this end, an efficient yet realistic physics-based model of wild-
fire propagation and a self-organisation algorithm for swarms of fire-fighting drones are
developed and coupled, with the collaborative behaviour based on a particle swarm
algorithm adapted to individuals operating in physical dynamic environments of high
severity and frequency of change. The introductory Chapter 2 presented a background
and related work on fire propagation models, swarm intelligence (SI), SR, and the
particle swarm algorithm. Section 4.1 describes the proposed system of self-organising
swarms of firefighting drones. Numerical experiments are carried out in Section 4.2
and simulation results are discussed. Besides, the used wildfire propagation model is
formulated and calibrated in Chapter 3 (FireProM-F). Finally, conclusions and recom-
mendations for future work are offered in section 4.3 followed by a brief summary of
the chapter’s topic, scope, method and findings in section 4.4.

4.1 Self-organising swarm

Since the PSO algorithm was inspired by models of decentralised flocks of birds, its
potential to prescribe the desired behaviour of a swarm of self-organising drones is
promising. A detailed study of PSO is beyond the scope of this chapter. It suffices
to say that the PSO objective is to find the best position on the considered wildfire
domain where a certain quantity is maximised. Such objective could be to find the
highest temperature on the collective fire-front in order to act with the selected ex-
tinction technology - e.g. dropping water. Deciding the firefighting strategy affects the
definition of the objective. Such objective is formulated in the PSO algorithm as local
and global attractors, that can be combined into a single attractor at a given time-step
(t) as follows [100]:
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Clearly, the effect of the incorporated randomness is two-fold: it affects the trajectory
of a particle towards the overall attractor (p), while also affecting the generation of
this attractor as a stochastic convex combination of the individual (xbi) and the so-
cial (xbk) attractors. Different from classical formulations, these two features of the
algorithm are decoupled here. Thus, the attractor is generated at every time-step from
a uniform distribution within the rectangle generated such that its edges are parallel
to the coordinate axes and it contains the current individual and social attractors as
vertices. Once the attractor p is generated, the trajectory difference equation is as in
(4.3) [1].
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The random variable can be realised as in (4.1) so that the probability distribu-
tion is triangular or trapezoidal as in the classical formulation, or a different density
function can be chosen. Analysing the trajectory of a single particle with stationary at-
tractor and constant coefficients, the settings of ω and ϕ control the type of behaviour
[1]. For optimisation purposes, convergent high-frequency harmonic oscillations are
generally preferred, as there is no cost attached to large displacements. Conversely,
low-frequency harmonic oscillations and smaller displacements are favoured for swarm
robotic systems. The settings in (4.4) are adopted, which ensure convergent low-
frequency harmonic oscillations, with randomly generated from a uniform distribution
within this range [1]. {

ω ∈ (0, 1)
ϕ ∈ [(

√
ω − 1)2, (ω + 1)]

(4.4)

A study of the influence of the coefficients in the trajectory difference equation on
the types of behaviour of a particle is beyond the scope of this chapter, besides more
information can be found in [100, 1]. While local neighbourhood topologies and other
types of sociometries like distance-based nearest neighbours and speciation need to
be investigated, the global neighbourhood topology is adopted for the initial studies
presented in this formulation [1].

The classical PSO requires some adaptations to cope with dynamic environments
by addressing the problems of outdated memory and diversity loss [101]. The propa-
gation of fire leads to a dynamic environment with multiple hot-spots frequently and
severely changing location and intensity. This feature is reinforced by drones attempt-
ing to suppress the fire and therefore modifying the environment and adding a form
of stigmergy to their direct communication. An usual solution adopted in PSO is to
reinitialise the memory of the stagnated particle, but this is not possible in the case
of SR, since the physical drones cannot be instantly repositioned. Both the outdated
memory and the diversity loss problems are addressed by erasing the individual mem-
ory of a drone when it has not been updated in the preceding 10 seconds, and then
randomly re-initialising the memorised position. Thus, outdated memories are deleted
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and diversity is increased smoothly by new memories pulling the drones outwards via
the trajectory equation rather than by an instant relocation.These new memorised
positions are assigned temperatures one degree below ignition to avoid the search to
continue once the fire is believed to have been suppressed [1].

The formulated firefighting strategy is the following: each drone searches for hotspots
in the field, and every time it finds a location that is hotter than the hottest one stored
in its individual memory, a third of its total water payload is dropped. After three
drops of water payload, it must go back to the water source to replenish. Like-wise,
once a drone has travelled its total flying range, it must go back to its recharging dock-
ing station. Figure 4.1 provides a high-level description of the proposed self-organising
swarm of firefighting drones coupled with the developed physics-based model of fire
propagation (described in Chapter 3). This flowchart is colour-coded for clarity, iden-
tifying five main sections and providing explanatory text-boxes that briefly describe
the main tasks performed within each [1].

4.1.1 Initialisation

The settings for the physics-based fire propagation model and those for the agent-based
model of the swarm of drones are entered independently, defining both the wildfire scene
and the firefighting tool. One or more sparks are randomly generated to initiate the
fire, and the drones are placed on their recharging docking stations fully charged and
fully loaded with water at the beginning of the simulation (t = 0). The variables for
the PSO-based self-coordination mechanism are initialised for each drone. Namely, the
temperature at its current location (T ) is measured, its memory storing the location
of its best experience (xb) is generated randomly from a uniform distribution within
the field, and the temperature associated is fictitiously set to the ignition temperature
(Tb = Tig). Every drone is set to firefighting mode, and its target location is set the
same as the individual memory (xt = xb) [1].

4.1.2 Update of fire model

The 2D fire model is updated by numerically computing its evolution for one time
increment of the simulation, therefore requiring the discretisation of the space and
time domains (∆x, ∆y, ∆t). From the initial fire sparks until the swarm of drones
is launched, the fire propagates unchecked. In a real scenario, automated wildfire
detection technology would include stationary (ground-based) visual systems, ground-
based sensors, manned and unmanned surveying aircrafts, and/or satellite monitoring.
For the purpose of these studies, the fire is simply allowed to propagate unchecked for
a given amount of time (tlaunch) before the drones are informed that a fire has been
detected within the region of interest (no precise location is given). Once the firefighting
activities start, the drones may affect the temperature field between updates of the fire
model [1].
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4.1.3 First loop through drones

This loop is nested within the time loop simulating the evolution of the whole system
from t = 0 to t = tmax, with a given time increment (∆t) between iterations. For each
drone, its current target is identified, which states whether it must proceed to fight the
fire, move towards the docking recharging station, or move towards the water source
for replenishment. When a drone decides it must move towards the recharging docking
station, whatever water is left in the tank is dropped at its current location. In such
a case, the fire field needs to be updated by computing the new temperatures at the
nodes affected by the drop. It is considered that a drop only affects instantaneously the
four nodes from the discretised space which are closest to the coordinates of the drop.
Thus, coefficients of influence are calculated for each of these four nodes as shown in
(4.5) [1].

Aij =
∆x− |x− xj|

∆x
· ∆y − |y − yi|

∆y
(4.5)

The fraction of the mass of the water dropped that affects each node is given by
its coefficient of influence. The temperature at each of the four nodes is updated by
means of a mass-based weighted average between the current nodal temperature and
the temperature of the water dropped, as in (4.6) [1].

Tij ←
AijmdropTwater +mgasTij

Aijmdrop +mgas

(4.6)

The mass of the gas mixture of fuel and air (mgas) is determined by the density of
the gas (ρ) multiplied by the volume represented by a node: ∆x·∆y·zth, where zth is the
thickness of the gas layer provided as an input to the fire model. Note that A is a 2×2
matrix that contains the four coefficients of influence for the nodes in question. The
indices (i, j) are meant to facilitate the identification of the nodes they apply to. For
instance, A21 applies to (xj, yi). Whether the update of the fire field has been completed
or unnecessary, the drone then moves towards its current target,whichever this may
be, always ensuring that the maximum velocity permitted is not exceeded. Evidently,
this physical displacement requires the update of the drone’s remaining flying range.
In this formulation, the latter is simply measured in terms of the distance that can
still be travelled before requiring a recharge. It goes without saying that the drone’s
payload is fully refilled and its flying range reset to the maximum once it reaches the
water source and there charging docking station, respectively. The outdated memory
and the diversity loss problems are addressed by erasing the individual memory of a
drone when it has not been updated in the preceding 10 seconds, re-initialising its
memorised best position randomly, and setting the associated temperature one degree
below ignition [1].
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4.1.4 Update of highest temperature in collective memory

Since the drones operate in parallel, it is more realistic to update the global memory
in a synchronous manner once all individual memories are up-to-date. Therefore, it
needs to be carried out outside the first loop through drones discussed in the previous
section. This update simply consists of extracting the location and temperature of the
hottest spot from the current memories of all drones [1].

4.1.5 Second loop through drones

The choice of a synchronous update of the global memory makes this loop necessary.
Otherwise, both the asynchronous update of the swarm’s best experience and the tasks
described below could be performed at the end of the first loop through the drones
discussed in Section 4.1.3. Hence the two loops through the drones are sequential and
nested within the loop through time that simulates the evolution of the whole system.
Note that the second loop is only executed every 5∆t. As discussed before, the PSO
formulation proposed here decouples the generation of the overall attractor and the
evaluation of the trajectory difference equation. Thus, the overall attractor for drone
i at time t (p

(t)
i ) is stochastically generated from a uniform distribution within the

rectangle spanned between the location of the individual best experience (xb
(t)
i ) and

that of the global best experience (xb
(t)
k ) as in (4.7). Sub-index k identifies the drone

holding the global best experience [1].

p
(t)
ij = xb

(t)
ij + U(0,1)

(
xb

(t)
kj − xb

(t)
ij

)
(4.7)

The acceleration coefficient (ϕ
(t)
ij ) is generated independently from the overall attractor

as in (4.8), and the couple (ϕ, ω) is kept within the interval associated with low-
frequency harmonic oscillatory behaviour [1].

phi
(t)
ij = (

√
ω − 1)2 + U(0,1)

[
(ω + 1)− (

√
ω − 1)2

]
(4.8)

The target location for drone i for the next iteration xt
(t+1)
i is generated as in (4.9).

While the resemblance to the PSO trajectory equation is evident, this is not really a
difference equation because it returns xt(t+1) as a function of x(t) and x(t−1). This is
the drone’s target when in firefighting mode [1].

xt
(t+1)
ij = x

(t)
ij + ω

(t)
ij

(
x
(t)
ij − x

(t−1)
ij

)
+ ϕ

(t)
ij

(
p
(t)
ij − x

(t)
ij

)
(4.9)

4.2 Simulation results and discussion

The domain in these experiments is a field of 100 × 100 m2 with fuel uniformly dis-
tributed except for a small band of 9.6 m around the field so that combustion does
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not take place near the boundaries. Thus, the total area covered with fuel equals 6529
m2 whilst the total fuel energy available is 218.30 GJ. The adopted fuel is short grass,
referred to as Fuel Model 1 in [94]. No-wind condition is assumed, and all experiments
are run for 480 s [1].

Once the model for fire propagation (FireProM-F in Chapter 3) is developed and
runs reasonably fast in the chosen environment size, it is coupled with the proposed
model of self-organising swarms of firefighting drones as shown in Figure 4.1. Since
the focus in this chapter is on the swarm-intelligent coordination mechanisms so that
the drones self-organise to develop the ability to fight fires autonomously and col-
laboratively, the simulated drones are collision-free at this stage [1]. A stigmergic
collision-avoidance algorithm is presented and coupled with this swarm dynamics in
the following Chapter 5. Moreover, it is important to note that the model of the
firefighting system is stochastic, and therefore multiple runs are necessary for each
experiment in order to compute basic statistics required to derive reliable conclusions
from the results. This statistical study has been carried out in [1] while here the most
salient results are provided.

The fire-extinction success rate highly depends on the number of ignition points
and on the total number of drones in the swarm. For instance in the case of only one
ignition point the success rate with a swarm-size of 30 drones is 60%, while increasing
the size to 70 drones results in an increment of the success rate to 90%.

The success rate depends also on the temperature sampling frequency. Being able
to only measure temperature above their exact current positions, and only taking
measurements once per second whilst vmax = 10 m/s, the swarm is unable to fine-
tune the search repeatedly overflying small remaining hotspots. This makes the swarm
believe that the fire has been suppressed in a few cases, returning to the docking
stations prematurely and letting the fire grow back unchecked. An example of this
exemption is shown in Figure 4.2.

As far as the influence on the success rate of the number of ignition points is
considered, the fire which started from four sources is evidently more challenging, and
a 70-drone swarm now fails to suppress it every time, as depicted in Figure 4.3.

The problem of multiple ignition points is solved by increasing the fire-fighting
power to 100 drones. Now, a wildfire originated by four random and simultaneous
ignition points is extinguished by a swarm-size of 100 drones with a success rate of
100% as depicted in Figure 4.4.

4.3 Conclusion

Destructive wildfires continue to increase in frequency and severity worldwide. Modern
drones are often used to operate in such dangerous environments for monitoring and
detection of wildfires, but scarcely for their suppression. This part of the research
investigated the feasibility and potential of using self-organising swarms of drones to
fight the propagation of wildfires autonomously and collaboratively, without risking
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human lives. The focus was not on the design of the physical robots but on their
self-coordination mechanisms so that the desired firefighting behaviour would emerge.
Thus, an efficient physics-based model of fire propagation (presentend in Chapter 3)
and a self-organisation algorithm for swarms of firefighting drones were developed and
coupled, with the collaborative behaviour based on a particle swarm algorithm adapted
to individuals operating within physical dynamic environments of high severity and
frequency of change [1].

The numerical experiments carried out in Chapter 4 and in [1] demonstrated the
expected scalability and fault-tolerance of the proposed self-organising swarm of drones
as an autonomous firefighting system. It can be concluded that the exploitation of self-
organising decentralised collaborative behaviour is a powerful approach and a promising
line of research to deal with complex dynamic problems such as the suppression of
wildfires. In principle, any wildfire could be suppressed given enough time and a
sufficiently high number of firefighting drones – even if such number is unrealistically
high with current technology [1].

It is important to note that, whilst water was used as the fire suppressant, the ulti-
mate goal is to exploit more sophisticated technology with higher extinguishing power
and comprising a lighter payload for the drones. One key challenge for this technology
to become practical is the design of efficient, light-weight and environmentally friendly
fire-suppression materials which can be carried by relatively small drones. One of the
future research directions lies in the design of such materials based on Class-A foam
enhanced by nanoparticles [1].

4.4 Summary

Scope: Demonstrate the employability of swarm robotics (SR) to fight wildfires au-
tonomously. The proposed solution is a firefighting swarm, which ought to be:

� autonomous : there shall not be any direct control of the drones, the swarm shall
be able to self-organise by following decentralised decisions (i.e. the overall swarm
behaviour shall emerge from the individual decisions each agent is independently
taking);

� adaptable: the autonomous swarm should be able to adjust to the ever-changing
wildfire shapes and intensities, and should be able to detect new fire spots;

� scalable: its self-organisation algorithm should work with any swarm size to tackle
different wildfire sizes (i.e. the algorithm should work for any critical number of
drones);

� robust : the lost of a few agents (i.e. drones) should not be detrimental for the
final outcome of the firefighting mission.

Method, studies, and experiments:
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� Focused on the self-coordination mechanisms of a swarm of firefighting drones:
the desired behaviour should emerge.

� Formulated a fire suppression model, consisting in the combination of FireProM-F
(fire propagation model from Chapter 3) and the swarm dynamics described in
this chapter, along with a fire detection model and a fire extinction model.

� Numerical experiments consist in a simulation of various firefighting missions with
different initial conditions (e.g. take off time, position of ignition points), bound-
ary conditions, and initialisation parameters (e.g. initial number of drones).
Statistics have been obtained in [1] and presented in this chapter.

Main outcomes and findings:

� A PSO-inspired self-organisation firefighting algorithm function of ever-changing
mission phases (i.e. staggered take-off, water refilling, refuelling, fire detection
and firefighting, suppression check, stand-by hovering, organised landing).

� Self-organising decentralised collaborative behaviour is a very promising approach
to deal with complex dynamic problems, such as the suppression of wildfires.

� Quite simple fire detection model (i.e. temperature measurement) and fire ex-
tinction model (i.e. dropping water) since the focus was on the self-organisation.
Future obligated improvement consists of exploiting more sophisticated technolo-
gies, such as lighter materials with higher extinguishing power.

� The following topics have been intentionally overlooked at this stage and should
be considered for further studies: the uncertainty in the environment, the stochas-
ticity in the algorithms, and flight dynamics.

� Since the drones converge on a single dynamically changing attractor (coordi-
nates of the point with a combination of best experiences - i.e. highest detected
temperature), far too many unwanted collisions have been counted, dozens of
collisions every second for a swarm of 100 drones; therefore the development of
a collision-avoidance algorithm is of utmost importance. Given the high number
of drones, such c.a. algorithm must be decentralised (see following Chapter 5).
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Figure 4.1: Flowchart with a high-level description of the model implementation
for the proposed self-organising swarms of firefighting drones [1].
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Figure 4.2: Swarm of 70 drones fighting a single-source fire propagating for 480 s.
The figures on the left show the temperature fields at t = 85 s (top), t = 149 s (middle)
and t = 480 s (bottom). The figures on the right show the corresponding fuel energy
fields. By t = 149 s, the fire is almost suppressed and the swarm returns to the docking
stations leaving the fire to propagate unchecked [1].
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Figure 4.3: Example of a run for a 70-drone swarm failing to suppress a four-source
fire. The figure on the left shows the temperature field while the one on the right shows
the fuel energy field at the end of the simulation (t = 480 s) [1].
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Figure 4.4: Initial swarm of 100 drones (ω = 0.75) fighting a fire originated from four
sources and propagating for 480 s. Drone losses occur during firefighting operations at
the constant rate of one unit every 15 s, with the first drone lost at t = 30 s. Drones
are launched 20 s after the fire is ignited. The figure shows four snapshots of the
temperature field at t = 19 s, t = 50 s, t = 100 s and t = 480 s. The fire is successfully
suppressed, with 79 drones surviving the operations [1].



Chapter 5

Collision-Avoidance Algorithm

The PSO-inspired self-organisation algorithm, presented in Chapter 4, forces the drones
to converge on a single dynamically changing attractor (e.g. target position with the
highest detected temperature), this results in a very high count of collisions, which
is greatly undesirable. Therefore the development of a collision-avoidance (c.a.) al-
gorithm is of utmost importance. Real-time multi-agent c.a. algorithms comprise a
key enabling technology for the practical use of self-organising swarms of drones. This
chapter proposes a decentralised reciprocal collision-avoidance algorithm based on stig-
mergy, which can be applied to swarms of any size. The algorithm is based on the
gradient of the locally measured dynamic cumulative signal strength field emitted by
the swarm, and therefore it is computationally efficient. The signal strength acts as
a repulsor on each drone so that it steers away from the ’noisiest’ regions (i.e. clut-
tered environments) therefore avoiding collisions. The magnitudes of these repulsive
forces can be tuned to control the relative importance assigned to collision-avoidance
with respect to the other phenomena affecting the drone dynamics. As expected, I
found that the collision rate can be reduced either by decreasing the cruise speed of
the drones and/or by increasing the sampling frequency of the global signal strength
field. I carried out numerical experiments on a self-organising swarm of drones aimed
at fighting wildfires autonomously. A beneficial side effect of the proposed collision-
avoidance algorithm is that it helps maintain diversity in the swarm, thus enhancing
exploration.

In this chapter, I propose a reactive decentralised stigmergy-based reciprocal collision-
avoidance algorithm to be implemented on a self-organising swarm of drones. Its
mathematical formulation can be found in section 5.1. The algorithm is tested on a
two-dimensional autonomous firefighting system based on [102, 1] (i.e. with all drones
flying at the same altitude) aimed at suppressing a simulated wildfire [7]. Formulation
allows for a relatively seamless generalisation to three dimensions, which is beyond
the scope of this chapter. The proposed multi-agent collision-avoidance algorithm was
inspired by the E-field/potential field methods [47], the charged particles method [103],
and the classical Reynold’s rules [104, 105]. However, these methods are based on di-
rect communication and inter-drone distance computations. Conversely, the proposed

50
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algorithm is indirect via stigmergy using information that is continuously available and
dynamically changing in the flying environment: the cumulative strength of a continu-
ously broadcasted signal which is identically generated by each drone. Thus, the drone
behavioural rules are modified by adding a repulsor that pushes the trajectory in the
direction of the signal gradient. Numerical experiments are performed, in section 5.2,
in order to investigate the effects of cruise speed and sampling frequency on the per-
formance of the algorithm. Finally, conclusions and recommendations for future work
are offered in section 5.3 followed by a brief summary of the chapter’s topic, scope,
method and findings in section 5.4.

5.1 Stigmergic collision avoidance

A stigmergic collision-avoidance algorithm is developed as an efficient and reliable alter-
native to other multi-agent algorithms proposed in the literature which require direct
communication among drones. This approach is expected to be more reliable in real-
world applications such as firefighting, since the required information is measured from
and in turn modifies the environment, whilst direct drone-to-drone communications
may be lost. Given the early stages of this research, comparisons against other meth-
ods are not carried out in this chapter. Instead, the aim is to demonstrate that the
proposed method works, and to investigate how drone cruise speed and signal sampling
time affect its performance.

Considering that the swarm-dynamics model I use as a reference (formulated in
Chapter 4 and [1]) is based on the Particle Swarm Optimisation (PSO) method, I in-
tend to embed the collision-avoidance algorithm within the drone trajectory difference
equation in the form of a repulsor. Since each drone has no information regarding the
location of other drones, indirect communication (stigmergy) comprises a highly desir-
able feature of the method: communication among drones is carried out by measuring
and modifying the surrounding signal strength field in the environment. Thus, the pro-
cess consists of two main stages: 1) sufficiently high-frequency simultaneous sampling
of the signal intensity in a few points surrounding the drone to calculate the gradient,
and 2) correction of the attractor by a convex combination of the collision-avoidance
repulsor and the original attractor.

The original target formulation of each drone is regularly estimated at a predefined
frequency as follows:

x
(t+1)
i = x

(t)
i +∆x

(t)
i

∆x
(t)
i = ω

(t)
i ⊙

(
x
(t)
i − x

(t−1)
i

)
+ϕ

(t)
i ⊙

(
p
(t)
i − x

(t)
i

)
ϕ

(t)
i = (ϕmin + kϕ ⊙ (ϕmax −ϕmin))

ϕmax,ϕmin = f(ω
(t)
i )

(5.1)

where x
(t)
i is the ith drone position at time t, ∆x

(t)
i is the intended position update

for the following time step (capped by maximum cruise speed), p
(t)
i is the behavioural
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attractor (function of the state of the drone), ω
(t)
i represents the inertia of the ith drone,

and ⊙ is the component-wise product. The bounds ϕmin = (ω+1) and ϕmax = (
√
ω−1)2

are defined in [106] and [1] to ensure oscillatory behaviour of the drones (beyond the
scope of this chapter). The parameter kϕ can change throughout the mission either
deterministically or stochastically. In this chapter, I set kϕ = (0.5 0.5)T to obtain a
deterministic behaviour of the swarm thus facilitating the inference of the effects of
other relevant parameters.

The attractor p
(t)
i for the ith drone in (5.1) was originally a function of the best

experiences of both the drone and the swarm (e.g. the highest measured temperature
when fighting the wildfire) or the individual attractor for the specific drone’s prioritised
target (e.g. refuelling or water/suppressant collection). The attractor is modified by
adding a repulsor associated to the signal strength field for collision avoidance purposes
(q

(t)
i in (5.2)): {

p
(t)⋆
i = (1− kca) · p(t)

i + kca · q(t)
i

0 ≤ kca < 1
(5.2)

The repulsor q
(t)
i is function of the gradient of the signal strength field, σ, as follows:{

q
(t)
ij = x

(t)
ij − kσ · ∂σ(x

(t)
i )

∂xj
j = 1, 2

σ(x
(t)
i ) = ΣN

m=1σm(x
(t)
i )

(5.3)

The individual signal intensity fields, σm, are normalised and are defined as usual
power law with the distance from the mth source:

σm(x
(t)
i ) =

{
r2ref · r−2

im rim > rref

1 0 ≤ rim ≤ rref
,

where rim =
∥∥∥x(t)

i − x
(t)
m

∥∥∥ , (5.4)

and rref is a reference radius of a circle delimiting the area of generation of the signal
within each drone. Setting rref approximately the size of the drone or smaller ensures
that the second condition in (5.4) should never occur. The proportionality constants
in (5.2) and (5.3) depend on the magnitude of the other attractors in the trajectory
equation (5.1), and therefore need to be tuned for the problem at hand. In this chapter,
I set kca = 0.7 and kσ = 1000. The gradient was calculated on a stencil of eight points
surrounding the position of the drone on a structured grid with the same increment in
both directions (∆x = ∆y), as shown in (5.5).

∂σ
∂xj
≃ dσ

dxi

dσ

dx1

=
1

6∆x
· (σE − σW + 0.5 · (σNE + σSE −σSW − σNW))

dσ

dx2

=
1

6∆y
· (σN − σS + 0.5 · (σNE + σNW −σSW − σSE))

(5.5)
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5.2 Numerical experiments

The multi-agent collision-avoidance algorithm developed in this chapter is tested on a
swarm of deterministically self-organising drones [1] fighting a simulated wildfire [7].
The collision-avoidance algorithm is always active whilst drones are airborne during
any of the following mission phases for the simulated firefighting operations [1] in Figure
5.1:

� Initialisation The drones are positioned in their docking station with no water
in their hull, the combustible vegetation fuel is distributed in the domain, and
the wildfire is started in multiple ignition points (e.g. three in Fig. 5.1).

� Firefighting The drones search for fires by recording their best experience and
sharing it with the entire swarm. They will pour a predefined amount of water
when flying over their target position.

� Water collection When the water payload is less than 30% of the total storage
volume, the drone’s target is the water reservoir location (top left corner).

� Refuelling When the drones are about to finish the fuel, the refuelling area
(bottom left corner) becomes their prioritised target.

� Check After all fires are supposed to be extinguished, the swarm will float
around the domain searching for new hot spots.

� Landing The nearest (six) drones have priority to fly towards their original
docking stations and land. When landed the collision-avoidance algorithm is
deactivated and their position will not be considered any more for the collision
count.

� Hovering The farthest drones will fly towards a waiting area, hovering until
there is no more drones with priority over them for landing.

� Landed After every drone has landed, the simulation will continue for another
minute to check that all fires are properly extinguished and that no re-ignition
occurs.

While the first and the last phases are fixed, the other states are dynamically
changing and can coexist: while some drones are moving towards their attractor, others
may be flying to collect water or refuel.

Various numerical experiments have been performed with different combinations of
maximum cruise speed (v) and sampling frequency of the signal field (f). For each
experiment, the total number of collisions and the duration of the mission have been
recorded. A few representative cases were collected and are provided in Table 5.1.
It is important to note that every drone survives any collision in these numerical
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ID v
[m·s−1]

f
[Hz]

C
[-]

T
[s]

f · v−1

[m−1]
C ·T−1

[s−1]

1 5 30 0 551 6.0 0.00

2 10 30 7 264 3.0 0.03

3 15 30 244 182 2.0 1.34

4 20 30 1019 169 1.5 6.03

5 20 40 243 167 2.0 1.46

6 20 50 36 159 2.5 0.12

7 30 80 1 127 2.7 0.01

Table 5.1: Experiments results at various combination of cruise speed, v, and sampling
frequency, f . C is the total collision count, while T is the duration of the simulation.

experiments. Although this may sound unrealistic, this is for statistical purposes:
the rate of collisions would decrease due to a shrinking swarm rather than due to a
successful collision-avoidance algorithm.

Experiments 1 to 4 in Table 5.1 were carried out at the same sampling frequency
(30 Hz), clearly showing that increasing cruise speed (5, 10 and 15 m/s) exponentially
deteriorates the performance of the proposed collision-avoidance algorithm. In turn,
experiments 4 to 6 in Table 5.1 were carried out at the same cruise speed (20 m/s),
clearly showing that increasing sampling frequency (30, 40 and 50 Hz) dramatically
decreases the collision rate. Whilst the available computational resources allowed us to
carry out experiments up to a sampling frequency of 80 Hz, I expect that a sampling
frequency of 100 Hz would suffice to bring the collision rate to zero in this particular
case. Further experiments will be performed in the near future to support this claim.

By studying the values of the frequency-to-velocity and collisions-to-time ratios (last
two columns in Table 5.1), one can identify a hyperbolic trend - i.e. for small frequency-
to-velocity values the collisions-to-time ratio tends to infinity, while for higher values of
the frequency-to-velocity ratio the collisions-to-time count tends to zero. The fact there
might exist just one function describing the relation between these two coefficients is
suggested by the experiments 3 and 5 performed at 30 Hz and 40 Hz, respectively: in
these cases approximately the same ratios are obtained, so they could lie on the same
curve. Incidentally, the ratio f · v−1 provides a trade-off between the two requirements
expected to reduce the collision rate: increasing the sampling frequency, f ; or decreas-
ing the cruise speed, v. Further experiments will be carried out in order to better
investigate this claim.

Additionally, I observed a beneficial side effect of the proposed collision-avoidance
algorithm: it helps maintaining diversity in the swarm, thus enhancing exploration.
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5.3 Conclusion

I proposed and developed a reactive multi-agent decentralised stigmergy-based algo-
rithm for reciprocal collision-avoidance. Its potential was demonstrated by implement-
ing it on a swarm of drones self-organised to fight the propagation of simulated wildfires.
Arguably, the algorithm could also be used for blind flight –i.e. when the drones have
no means of knowing the positions of others. The effects of two main parameters
were investigated, namely the cruise speed and the sampling frequency, reaching the
expected conclusion that decreasing the former and/or increasing the latter results in
the reduction of the collision rate. Furthermore, by analysing the frequency-to-speed
and collisions-to-time ratios, I infer that there might be a trend that should be further
investigated.

Purposely, no uncertainty in the environment, no stochasticity in the algorithms,
and no flight dynamics were considered in order to focus on the impact of the stigmergy-
based collision-avoidance algorithm on the collective behaviour and performance of the
swarm. Future work will introduce these aspects as well as extend the developments
to three-dimensional space.

5.4 Summary

Scope: Propose a collision-avoidance algorithm for a self-organising swarm of drones.
This would solve the issue of drones converging on the same attractor, and therefore
colliding, in the PSO-inspired firefighting algorithm presented in Chapter 4.
The collision-avoidance algorithm ought to be:

� decentralised : it should not need an overarching omniscient controller, it should
rely on the individual decisions of each drone;

� scalable: can be applied to swarms of any size;

� cluttered swarm: chaotic movements of a multitude of drones close together
should not be an issue;

� no line of sight : the drones should detect the imminent collision even if direct
sight is blear or impossible - e.g. in case of smoke or obstruction by vegetation.

Method, studies, and experiments:

� Mathematical formulation of the collision algorithm: the drones’ self-organisation
rules are modified by adding a repulsor that pushes the trajectory in the direction
of the signal gradient.

� Simulation by using the same system presented in Chapter 4 and adding the
collision avoidance.
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� Testing the algorithm against different combinations of cruise speed and sampling
frequency of the signal field.

Main outcomes and findings:

� A reactive multi-agent decentralised stigmergy-based algorithm for reciprocal
collision-avoidance. It consists in adding a repulsor in the modified attractor
for the PSO-inspired swarm self-organisation presented in Chapter 4. The repul-
sor is function of the spatial and temporal derivatives of the cumulative signal
strength originated by each drone in the swarm.

� Two main parameters regulate the success of the algorithm: decreasing the
cruise speed or increasing the sampling frequency result in decreasing the col-
lisions count. This suggests a critical ratio value between the two that assures
no collisions occur.

� The developed c.a. algorithm has the potential to be used for blind flight - i.e.
drones are not aware of other drones positions.

� The following topics have been intentionally overlooked at this stage and should
be considered for further studies: the uncertainty in the environment, the stochas-
ticity in the algorithms, and flight dynamics.
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Initial condition Water collection (ciano)

Refuelling (red) Fire extinction

Hovering (green) & landing (magenta) Landed (black) on docking station

Figure 5.1: Top views of a 100m×100m homogeneous distribution of combustible
vegetation ignited in three locations (top-left figure) and some representative instances
for the main mission phases of a swarm of 100 firefighting drones. The colour scale
represents the temperature field in Kelvin, the darkest blue is ambient temperature, while
red is high flaming temperature. At the bottom-left corner, the red circle is the refuelling
area, while the arena polygon represents the collection of all the landing points of the
drones. The blue circle in the top-left corner is the water source used for suppression.



Chapter 6

Swarm-in-the-Loop: the Indoor
Positioning System

This chapter presents some theoretical and experimental research contributions to the
development of a Swarm-in-the-Loop system for testing self-organisation algorithms for
swarms. Specifically, the interest is in developing a platform to test the fire suppres-
sion system previously presented. Here the focus is on the Indoor Positioning System
(IPS), which provides an estimation of the positions of each drones in the swarm. Po-
sitioning systems comprise a crucial technology in robotics and autonomous systems.
In particular, IPSs are used where satellite and other outdoor positioning technology
lack precision or fail. Ultra-WideBand (UWB) technology was developed for high data
transfer rates over short distances and at low power densities. Therefore it is suitable for
IPSs, although signals tend to be disrupted by various objects. This chapter presents
a comprehensive study of the precision, accuracy and failure of IPSs based on UWB
technology and pseudorange multilateration algorithm using signal Time Difference
of Arrival (TDoA). These IPSs consist of a network of more than three transmitting
anchors and a single receiving object whose position is to be estimated. Thus, a the-
oretical study of the precision of the position estimates is performed, which consists
of a Cramér–Rao Lower Bound analysis for the case of round-robin scheduling, and of
an anisotropic representation of the signal-to-noise ratio function of the reconstructed
three-dimensional radiation pattern of the antennae being considered. In addition, a
geometrical study of the two-dimensional positioning domain is carried out, thereby
defining bifurcation envelopes which bound the areas where the IPS is predicted to
fail. Finally, a debiasing filter that relies on the statistics of experimental data is de-
veloped to improve the accuracy of the position estimates. Experimental results with
four anchors demonstrate the correctness of the theoretical predictions of precision and
failure, and the accuracy improvement achieved by the debiasing filter. If the region
of interest is the convex hull of the four anchors, the IPS is observed to fail near them,
whilst precision is found to be of about ±3 cm. The average accuracy improvement
achieved by the debiasing filter is of about 15 cm for static and 5 cm for dynamic
measurements.
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This chapter is organised as follows: in Section 6.1, the properties of the IPS
under study are specified; Section 6.2 presents the main contributions to the precision,
accuracy, and failure analysis of UWB-based IPSs that use multilateration algorithm
and signal TDoA; Section 6.3 provides an overview of the filtering process proposed to
improve accuracy; the validation and testing experiments are designed in Section 6.4,
with results being presented and discussed in Section 6.5. Finally, conclusions and
recommendations for future work are offered in section 6.6 followed by a brief summary
of the chapter’s topic, scope, method and findings in section 6.7.

6.1 Layout of the IPS under study

The purpose of the IPS is to localise a moving object, which behaves as a receiver, based
on the spatial distribution of the anchors (transceivers). The designed experimental
setup will be used to perform the experiments described in Sections 6.4 and 6.5.

The reference IPS, depicted in Figure 6.1, consists of a drone to be localised and four
transceiver anchors positioned at the vertices and facing the centre of a square domain.
All the antennae are at a height of 20 cm from the floor. The drone is not flying but
sliding parallel to the floor at the same height on a moving stand equipped with a laser
pointer, which is aligned with the onboard UWB antenna in order to achieve reference
positioning of high precision (±1mm) and accuracy. The regularly spaced markers on
the floor are the sampling positions to be used for mapping in Section 6.4.1.

6.2 Precision and failure analyses

A CRLB analysis specific for TDoA with round-robin scheduling is performed to study
the precision of the system, whilst a bifurcation envelope is defined to bound the areas
where it is expected to fail. Note that the object to be localised is a passive receiver
here whereas it is often a transceiver in the literature. This is in line with the Loco
Positioning system installed in our laboratory (AVAILab, availab.org). Nonetheless,
the theoretical results are applicable to both cases, as long as receivers are sensitive
and approximately omnidirectional.

6.2.1 Reference CRLB analysis

Before proceeding with the analysis, it is important to refresh some reference theory to
set the background nomenclature. Considering an indoor positioning system consisting
of only three anchors and using a Time-Difference-of-Arrival (TDoA) multilateration,
the pseudoranges can be defined as the range differences between the node and each
anchor:

pseudorange: τij(x) = dj(x)− di(x)
range: di(x) = ∥x− xi∥ and i, j = 1, 2, 3

(6.1)
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Figure 6.1: Diagram of the setup of the studied 4× 4 m2 IPS for 2D localisation:
(a) adjustable stands for transmitting anchors antennae (A0-A3), (b) measurement
points regularly distributed every 50 cm in both directions, and (c) mobile stand
for the object to be localised. The system’s components are not in scale for better
visualisation.

where di is the distance between the drone (x) and the ith anchor position (xi). Ac-
cording to [84], the speed of propagation in the medium is considered to be 1 without
loss of generality since the range is linearly dependent on the Time-of-Arrival (ToA).
The τij can be assembled together by defining a TDoA mapping that transforms from
the two-dimensional space of source location to a space of pseudoranges called τ -plane,
as suggested in [107]:

τ2 : R2 → R2

x → (τ12(x), τ13(x))
(6.2)

Studying the TDoA map is crucial for the mathematical characterisation of the
localisation problem at hand. Considering an IPS that consists of a network of N
anchors and one node - e.g. a drone -, M measurements (number that depends on the
localisation algorithm) are performed every time step, accordingly to the frequency at
which messages are sent from anchors to node. Every measurement is modeled as a
normal distribution which is a function of both the real measurements and an additive
Gaussian noise. The standard deviation of the noise changes in space with the distance
from any transmitting anchor. The collection of M measured pseudoranges, τ̂ , at time
step k can be expressed as:
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τ̂ (k) ∈ RM ,
τ̂ij ∼N

(
τij(x), σ̄

2
ij

)
, σ̄ij = f(σi, σj),

τij = ∥x− xi∥ − ∥x− xj∥ ,
i, j ∈ {1, . . . , N} with i ̸= j,

(6.3)

where τ̂ij is the individual pseudorange measurement, considering the two ToAs to the
node from the ith and jth anchors, and τij is the real range difference. The superscript
(k) will be omitted, but implicitly inferred, in further analyses. Please note that τ̂ is
a column vector, not a matrix. The τ̂ij components can be as many as the binomial
coefficient

(
N
3

)
= N !

3!(N−3)!
. The functions evaluating the combined standard deviations,

, will be presented for the specific studied IPS in section 6.2.
As early stated, the well-known Cramér–Rao Lower Bound (CRLB) analysis comes

very handy in evaluating the precision of an unbiased IPS. Such analysis is based on the
concept of the Fisher Information Matrix (FIM), which contains the likelihood to obtain
a correct measurement. The elements of the total FIM for the general positioning
problem according to [108, 109] are:

FIMij =

(
∂τ (x)

∂xi

)T

F−1
τ (x)

(
∂τ (x)

∂xj

)
+
1

2
tr

(
F−1

τ (x)
∂Fτ (x)

∂xi

F−1
τ (x)

∂Fτ (x)

∂xj

) (6.4)

where Fτ is the covariance matrix of the τ̂ measurements, and tr(M) is the trace of a
matrix M. Since each standard deviation is considered to be changing in space – i.e.
σi(x, y) – the correction term (second row in (6.4)) is acknowledged in the following
analysis. The likelihood function, L, that describes the relative odds of obtaining the
observed data h for all permissible values of the parameter x for a single measurement
h is:

L(ĥ|x) = 1√
2πσ(x)

e

(
− 1

2σ2(x)
(ĥ−h(x))

2
)

(6.5)

In the positioning problem at hand, h(x) is the range, or similarly the ToA, and
the parameter x is the node position. The standard deviation of such distribution is
again σ. Considering what Fisher Information Matrix (FIM) is in terms of likelihood
[108, 109], the logarithmic likelihood has to be considered:

ℓ(ĥ|x) = ln

(
1√

2πσ(x)

)
− 1

2

(
ĥ− h(x)

)2
σ2(x)

(6.6)

Hence, the total FIM for the location, considering that also each standard deviation
changes in space (σi = ξ(x, y)) is the following:

FIMij =

(
∂h(x)

∂xi

)T

F−1
τ (x)

(
∂h(x)

∂xj

)
+

1

2
tr

(
F−1

τ (x)
∂Fτ (x)

∂xi

F−1
τ (x)

∂Fτ (x)

∂xj

)
(6.7)
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where tr(M) is the trace of the matrix M .
The Fτ is the information matrix of the selected TDoA measurements set. Let’s

suppose that the TDoA protocol requires M measurements, therefore Fτ is:

Fτ = [Fij]M×M (6.8)

Using an efficient unbiased estimator it is proven [108] that Fτ is the measurement
covariance matrix:

Fτ = [E [(τ̂ij − τ̄ij)(τ̂kp − τ̄kp)]]M×M (6.9)

where the indices i, j, k, p depends on the selected scheduling.
As an example, if all the TDoA measurements where performed keeping always

the anchor 1 as reference (all the studies found in literature), all the τ1i would be
correlated with the standard deviation in 1 (σ2

1). Therefore, the resulting FIM for the
measurement set τ1 = {τ12, τ13, τ14} is:

Fτ =

s1 + s2 s1 s1
s1 s1 + s3 s1
s1 s1 s1 + s4

 (6.10)

with si = σ2
i .

6.2.2 CRLB analysis for pseudorange multilateration with round-
robin scheduling

The Cramér–Rao Lower Bound (CRLB) analysis is generally deemed suitable for eval-
uating the precision of an unbiased IPS. It is based on the concept of the Fisher In-
formation Matrix (FIM) involving the likelihood of obtaining a correct measurement.
For details on the theory and terminology, refer to Appendix 6.2.1. The elements of
the total FIM for the general positioning problem [108, 109] are as shown in (6.11):

FIMij =

(
∂h(x)

∂xi

)T

F−1
τ (x)

(
∂h(x)

∂xj

)
+

1

2
tr

(
F−1

τ (x)
∂Fτ (x)

∂xi

F−1
τ (x)

∂Fτ (x)

∂xj

)
(6.11)

where h(x) is the range vector (e.g. distance between receiver and anchors), Fτ is the
covariance matrix of the τ̂ measurements, and tr(·) is the trace function. Eq. (6.11)
considers that the standard deviations (σi) of the likelihood function (and hence Fτ )
vary in space.

One column of the Jacobian matrix of h is defined as in (6.12).

∂h(x)

∂xi

=


∂h12(x)

∂xi
∂h23(x)

∂xi
∂h34(x)

∂xi
∂h41(x)

∂xi

 (6.12)
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TDoA measurements for N anchors and round-robin scheduling are referred to as
τrr = {τ12, τ23, ..., τN1}. Thus, the divergence matrix of h for τrr = {τ12, τ23, τ34, τ41}
for the TDoA2 protocol used by bitcraze [110, 111] is as in (6.13).

∂h(x)

∂x
=


x−x1

∥x−x1∥ −
x−x2

∥x−x2∥
y−y1

∥x−x1∥ −
y−y2

∥x−x2∥
x−x2

∥x−x2∥ −
x−x3

∥x−x3∥
y−y1

∥x−x1∥ −
y−y2

∥x−x2∥
x−x3

∥x−x3∥ −
x−x4

∥x−x4∥
y−y3

∥x−x3∥ −
y−y4

∥x−x4∥
x−x4

∥x−x4∥ −
x−x1

∥x−x1∥
y−y4

∥x−x4∥ −
y−y1

∥x−x1∥


4×2

(6.13)

Making use of the linear properties of the expected value, I can calculate the diag-
onal elements of Fτ as in (6.14) and its connected elements for consecutive estimators
as in (6.15), where only the jth anchor is in common, the hat identifies measurements,
the bar stands for the mean, and E[·] stands for expectation.

Fij,ij = E
[
(τ̂ij − τ̄ij)

2
]
= E

[
((τ̂i − τ̄i)− (τ̂j − τ̄j))

2
]
=

E
[
(τ̂i − τ̄i)

2
]
+ E

[
(τ̂j − τ̄j)

2
]
− 2

(((((((((((
E [(τ̂i − τ̄i)(τ̂j − τ̄j)] = σ2

i + σ2
j

(6.14)

Fij,jk = E [(τ̂ij − τ̄ij)(τ̂jk − τ̄jk)] =

E [((τ̂i − τ̄i)− (τ̂j − τ̄j))((τ̂j − τ̄j)− (τ̂k − τ̄k))] =

E
[
−(τ̂j − τ̄j)

2
]
= −E

[
(τ̂j − τ̄j)

2
]
= −σ2

j

(6.15)

Estimating the covariance between seemingly uncorrelated TDoA measurements
(τ̂ij, τ̂kp) is not trivial. Deriving from the Cauchy-Bunyakovsky-Schwarz inequality,

(E[∆τ̂ij ·∆τ̂kp])
2 ⩽ E[∆τ̂ 2ij] · E[∆τ̂ 2kp] =⇒

−
√
E[∆τ̂ 2ij] · E[∆τ̂ 2kp] ⩽ E[∆τ̂ij ·∆τ̂kp] ⩽

√
E[∆τ̂ 2ij] · E[∆τ̂ 2kp].

(6.16)

where ∆τ̂ij = (τ̂ij − τ̄ij). From (6.15) and (6.16), the covariance between τ̂ij and τ̂kp
can be bounded as shown in (6.17):

0 > Fij,kp = E [(τ̂ij − τ̄ij)(τ̂kp − τ̄kp)] ≥ −
√
E [(τ̂ij − τ̄ij)2] · E [(τ̂kp − τ̄kp)2] =

−
√
(σ2

i + σ2
j )(σ

2
k + σ2

p)
(6.17)

Thus, the information matrix of the TDoAmeasurements set τrr = {τ12, τ23, τ34, τ41}
for four coplanar anchors using an efficient unbiased estimator is given by the measure-
ment covariance matrix in (6.18), where si stands for σ

2
i .

Fτ =


s1 + s2 −s2 F12,34 −s1
−s2 s2 + s3 −s2 F23,41

F12,34 −s3 s3 + s4 −s4
−s1 F23,41 −s2 s4 + s1


4×4

F12,34 = −
√
(s1 + s2)(s3 + s4)

F23,41 = −
√
(s2 + s3)(s4 + s1)

(6.18)
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Kaune et al. [109] suggest that the variance for a specific source is as shown in
(6.19).

σ2
i (r) =

{
a

SNR0
· r

2
i

r20
if ri ≥ r0

a
SNR0

if ri < r0

with a = c2

B2

(6.19)

where SNR0 is the signal-to-noise power ratio at threshold distance r0 from the ith

anchor considered; c is the signal propagation speed; and B is the bandwidth of the
received signal. The SNR0 varies with the view angle θ if the antenna has some
directionality. In order to evaluate the SNR(x), I use the Friis formula for noise,
which would give the relation between signal gain (over the noise) and distance between
transmitter and receiver for different channel frequencies.

6.2.3 Signal-to-Noise-Ratio formulation

The SNR in (6.20) is the ratio between the power of the signal reaching the receiver
(Pr) and the noise power (PN):

SNR (d, θt, ϕt, fref, T, Pt) =
Pr

PN

(6.20)

It can be written as a function of the distance (d) between transmitter and receiver,
the representative transmission frequency (fref) and bandwidth of the selected channel,
the temperature of the environment (T ), the transmitting power (Pt) and the gains
of the transmitting antenna (Gt) and the receiving antenna (Gr). Since the receiving
antenna is usually very sensitive, Gr can be neglected in this analysis. The gain Gt can
be a function of the azimuth (θt) and elevation (ϕt) angles with respect to the frame
of reference centred on the antenna. The power at the end of the transmission line can
be expressed using the contemporary Friis law, as shown in (6.21):

Pr =
Pt ·Gt ·Gr

Lt · Lr

·
(

c

4π · fref · d

)2

(6.21)

where Lt and Lr are the electric losses in the electronics of the transmitter and receiver
modules, respectively, which have been embedded in the gains Gt and Gr. It is conve-
nient to express everything in logarithmic form. Combining (6.21) and (6.19), the upper
bound of the standard deviation is obtained as in (6.22), where dBm stands for dB milli-
watts. Note that the noise power is expanded into a thermal noise power term, kBTBw,
where kB is the Boltzmann constant for radiation of a black body (≈ 1.38×10−23J/K).

{
SNRdB = PtdBm(T, Vi) +GtdBi(θt, ϕt)− 10 log10(kBTBw10

3)− 20 log10 (4πfrefd/c)

σ2 = c2

B2
w
· 10−SNRdB/10

(6.22)
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where PtdBm(T, Vi) is an experimental curve approximating the relationship between
the transmission power, the ambient temperature, and the input voltage (Vi) as in
(6.23) [112], and GtdBi(θt, ϕt) is the measured transmitting antenna gain (with respect
to an isotropic antenna), which is a three-dimensional (3D) radiation pattern function
of the azimuth and elevation angles [113].

PtdBm(T, Vi) = Pt0dBm +
∂Pt

∂T

∣∣∣∣
Tref

(T − Tref) +
∂Pt

∂V

∣∣∣∣
Vref

(Vi − Vref) (6.23)

6.2.4 Radiation pattern of the DW1000 antenna

In order to reconstruct the 3D radiation pattern from the three measured sections in
azimuth (θ), elevation-1 (ϕ1) and elevation-2 (ϕ2) planes (see Figure 6.2), I formulate
a linear combination of the boundary values of the considered quadrant. Using the
system of equations in (6.24), the 3D radiation pattern depicted in Figure 6.3 can be
obtained. 

a1 = cos2(θ) · (1− cos40(ϕ))
a2 = (1− cos2(θ)) · (1− cos40(ϕ))

a3 = cos40(ϕ)
G(θ, ϕ) = a1 ·Gϕ1 + a2 ·Gϕ2 + a3 ·Gθ

(6.24)

0

30

60
90

120

150

180

210

240
270

300

330

0

10

20

30

1 2

0 /2 3 /2 2 5 /2

angle [rad]

10

15

20

25

30

35

G
t [

dB
0]

      interp. 

1
    interp. 

1

2
    interp. 

2

0

30

60
90

120

150

180

210

240
270

300

330

0

10

20

30

1 2

(a) (b) (c)

Figure 6.2: (a) Original experimental radiation pattern sections on θ, ϕ1, and
ϕ2 planes; (b) approximation procedure forcing identical values on intersections;
and (c) radial projection of the approximated radiation pattern sections. These are
used to reconstruct the 3D radiation pattern.
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(a) 3D view. (b) Top view.

(c) Front view. (d) Lateral view.

Figure 6.3: Views of the reconstructed anchor’s antenna radiation pattern.

6.2.5 Analytical results of CRLB analysis

The CRLB analysis has been carried out here for two different representative distribu-
tions of four anchors: a symmetric layout and a random one, as shown in Figure 6.4.
The ripples of the contour lines in Figure 6.4 are to be expected due to the anisotropy
of the radiation pattern in Figure 6.3.

The best precision is obtained within the convex hull defined by the anchors. In
this case, it is about ±5 cm with 99% confidence level (i.e. k = 2.58). A realistic
non-isotropic transmitting antenna gain (DWM1000 module [113]) is also applied for
the estimation of the SNR, hence the slight fluctuations in the represented values.
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(a) Precision level sets,
symmetric anchors.
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Figure 6.4: Precision level sets for symmetric and random anchors, and precision
colourmap for random anchors. The magenta trapezoid is the convex hull defined by
four anchors.

6.2.6 Failure analysis

Studying the TDoA map, which is a geometrical representation of the TDoA measure-
ments, is crucial for the mathematical characterisation of the localisation problem in
hand [84]. For instance, IPSs suffer from so-called flipping uncertainty, which is a well
known problem of geometrical origin [85]. Thus, I define the flyable area based on a
combination of the previous CRLB analysis and the bifuraction envelope below derived
from a geometrical study. The aim is to bound the usable area of the IPS.

Bifurcation curve The bifurcation curve is the projection of the TDoA map bound-
aries from the τ -plane (pseudorange space) to the space of source localisation (2D in
this case). The bifurcation curve as defined in [84] is the quintic curve Ẽ(x) depicted
by the roots of a polynomial P (x) which is the representation of the TDoA map con-
straints. The definition of P (x) and some examples of algebraic equations of Ẽ(x)
can be found in [72], whilst its rigorous derivation is presented in [84] using tools like
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exterior algebra formalism and Minkowski space. This formulation is invariant under
permutation of the TDoA measurements, which means that scheduling does not af-
fect this analysis. Any TDoA-based system has a unique solution of the positioning
problem if P (x) is negative, which defines the region outside the bifurcation curves
surrounding the anchors. The multilateration algorithm within the bifurcation curves
(convex regions) returns either two mirrored solutions or complex solutions with no
physical meaning. An example of a bifurcation curve is shown in Figure 6.5(a) for the
case of three anchors {m2,m3,m4}.

Bifurcation envelope For positioning systems comprising several antennae, the
bifurcation curve will change dynamically depending on the pair of Times-of-Arrival
(TOAs) considered in each TDoA query. As discussed earlier, the system fails to
estimate the position of a vehicle within the concave regions of the bifurcation curves
(containing the anchors). In order to ensure a unique solution for any possible pairing,
a so-called bifurcation envelope is defined, which bounds all bifurcation curves on each
anchor (e.g. one curve surrounding each anchor for three anchors, and four curves for
four anchors). In Figure 6.5(b,c), the flyable area shaded in yellow is defined as the
intersection of two areas:

1. The unique-solution area defined as the intersection of all concave areas outside
each green bifurcation envelope (i.e. not including anchors).

2. The region with acceptable precision returned by the CRLB analysis.

6.3 Proposed filtering process

Thus far, I have analysed precision and failure of UWB-based IPSs based on pseudor-
ange multilateration algorithm and signal TDoA. The aim here is to develop a filtering
process to improve its precision and accuracy.

6.3.1 Initial filter design

In the experimental setting, the vehicle to be positioned is a Crazyflie 2.0 nano-
quadcopter and the IPS is the Loco Positioning System. This is already equipped
with an Extended Kalman Filter (EKF) [114, 115], which transforms raw sensor mea-
surements into better estimates of the state of the drone. The EKF developers note
that the position estimates are affected by a bias, which appears to be non-uniform in
space. That is to say, the quadcopter estimates to be in a position that is shifted from
the actual one.

The original idea was to use multiple filtering layers to enhance both precision and
accuracy (see Figure 6.6). While the EKF is the first filter by default, the remaining
ones may be applied in any order. The reason why the debiasing filter is applied last is
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Figure 6.5: Bifurcation curves, bifurcation envelopes and flyable area for three an-
chors, four symmetric anchors, and four random anchors. There is a single bifurcation
curve for three anchors whereas there are four bifurcation curves for four anchors (green
line showing their envelope). The ith transmitting anchor is represented by mi, with m1

being disregarded in Figure (a). The centroids of triplet (mi,mj,mk) is represented by
Cijk, whilst C is the collective centroid. Figures (b) and (c) also show the flyable area
(shaded in yellow) and the convex hull defined by the four anchors (dotted magenta
trapezoid). The latter is taken as the region with acceptable precision.

that the bias values can change dramatically throughout the flying area whilst precision
values do not (and they also have smaller magnitudes). Hence it is better to work on
a more precise estimate to avoid selecting the wrong value of the bias. The proposed
filtering process is defined as follows:

1. Extended Kalman Filter.

2. Saturation (and artificial smoothing).

3. Correction of position through 4th order Adams-Moulton (AM4) correction.

4. Debiasing filter.

Unfortunately, precision was not noticeably enhanced. Therefore, only the EKF
and the Debiasing Filter are implemented for the experiments carried out later in this
chapter. Nonetheless, the mathematical formulations of the other filtering layers are
included in Appendix 6.3.4 to support future work.

6.3.2 Debiasing filter

A Debiasing Filter (DF) is proposed and developed aiming to reduce systematic biases.
The aim of the DF is to increase the accuracy of the localisation of the drone by sub-
tracting the expected bias of the measurements. Assuming that discrete distributions
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Figure 6.6: Proposed filtering process consisting of four steps returning estimates
identified with their respective filter symbols: x̄ stands for saturated, x̃ for dynamically
corrected, and x̂ for debiased. The superscripts b refers to body frame and g to inertial
frame.

of variances and biases (section 6.4.1) have been obtained by statistical post-processing
of consecutive position measurements, two major complications arise:

1. The bias values are available only at a limited set of points, and therefore they
need to be interpolated to cover the continuous domain. This interpolation is
represented by a 3D surface for 2D positioning (not necessarily defined on a
quadrangular grid), and by a 4D hypersurface for 3D positioning. Needless to
say that the latter is considerably more complex.

2. The obtained bias distribution is a function of the real position of the drone,
while the bias that needs to be subtracted from the measurement is a function
of the measurement itself. This requires a change of domain from real position
(100% precise and accurate) to measured position (imprecise and inaccurate).

In order to understand the debiasing process, at first a general explanation is pro-
vided starting from the desired final product - i.e. the debiased measurement. Refer
to Figure 6.7 and the legend of the position variables listed in (6.25).

x = (x, y) position
x̄ measured x

Xij = (Xij, Yij) actual x of the
ith - jth point

x̂ debiased x

(6.25)

In Figure 6.7, every real position, surrounding the expected result of the debiasing
filter, has a certain probability to be the father of the measured position. In fact, any
measured position can be expressed as shown in (6.26). For instance, the measured x̄
component of the position vector is obtained by summing to the actual (real) abscissa
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yβij(x)

Figure 6.7: Expected result of the debiasing filter (x̂) applied on a measured
posistion (x̄) in 2D. The cloud of real positions (Xij) is constrained by the
boundary Ω.

(X) the relative bias in x-direction (xb (X)) and a random fluctuation (R), which is
function of the evaluated variance (xp(X)) in x-direction of the measurements in that
specific real position.

x̄ = Xij +
xb (Xij) +R (xp(Xij),x)

ȳ = Yij +
yb (Xij) +R (yp(Xij),x)

(6.26)

Assuming that the R fluctuation is acceptably small, every real position (shown in
Figure 6.7) can be obtained from the measurement x̄ by subtracting the bias associated
to the same real position.

Follows the derivation of the modified bias maps xβ (x̄) and yβ (x̄) in a 2D envi-
ronment. For better understanding refer to Figures 6.8, 6.9, and 6.10. As shown in
section 6.4.1 discrete mappings of the variances (xpij and

ypij) and biases (xbij and
ybij)

in both î and ĵ directions are evaluated. The real points (used to create the map) are
expressed in the form Xij = (Xij, Yij). For sake of simplicity, the measurements have
been taken on a regular quadrangular mesh. Note that the precision of the EKF esti-
mated positions provided by the IPS consists of the standard deviation (±σ) defined
by the following relations between variance and standard deviation:

xpij =
xσ2

ij variance in x direction
ypij =

yσ2
ij variance in y direction

(6.27)

The normal probability function (Gaussian distribution) around the Xij position
evaluated in x direction can be written as

xγij =
xN (Xij,

xpij) = (2π · xpij)−1/2 · e−
1
2

(x−Xij)
2

xpij |
∫ +∞

−∞

xγij · dx = 1 (6.28)
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and similarly in y direction

yγij =
yN (Yij,

ypij) = (2π · ypij)−1/2 · e−
1
2

(y−Yij)
2

ypij |
∫ +∞

−∞

yγij · dy = 1 (6.29)

Note that the infinite integral of both functions is the unity, although in the following
derivations it is going to be integrated within three standard deviations, and its value
is shown in (6.30). ∫ +3·xσ

−3·xσ

xγij · dx =

∫ +3·yσ

−3·yσ

yγij · dy = 0.9973 ≃ 1 (6.30)

The shapes of xγij and yγij around a general point xij are shown in Figures 6.8 and
6.9.

+3xσ-3xσ

x-xij

xγij

i i+1i-1

xbij(x)
i

xbij
xbij

*

Figure 6.8: Representation debiasing
in 1D.
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i j

yγij
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j
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*

Figure 6.9: Representation debiasing
in 2D.

For the purpose of the following derivation, continuous interpolating functions of
the x and y biases both along the î and ĵ axis have to be obtained (these could be
cubic splines). Therefore, from the biases of x measurements around any xi,j position,

two interpolating functions can be obtained: x
î
bij and

x
ĵ
bij respectively along the î and

ĵ axis. Analogously, for the biases of y measurements, the y

î
bij and y

ĵ
bij interpolating

functions can be defined. The intention is to write weighted averages of the biases
around the estimation position in order to estimate the expected biases. However,
instead of performing a surface integral, the average of two integrals in perpendicular
directions is considered. Figure 6.8 depicts the problem in î direction for the bias of
the measurement of the x-component of the position. The interpolated bias function
x
î
bij multiplied by the weighting probability distribution xγij is integrated in x direction
and normalised by the length of the considered interval. A fair coverage factor of k = 3
has been selected. This means that approximately 99% (level of confidence) of the
measurements, of the real position rxij, will fall in the interval between (x − 3xσ)ij
and (x+3xσ)ij, where

xσij is the standard deviation of the Gaussian distribution xγij.



CHAPTER 6. SWARM-IN-THE-LOOP: THE INDOOR POSITIONING SYSTEM73

The same integral can be evaluated in ĵ direction and the two integral values can be
averaged in order to obtain the corrected bias value of x-component measurements, as
shown in (6.31). The same process can be applied for evaluating the corrected bias of
the y-component measurements (6.32).

xb∗ij =
1

2

∫ +3·xσij

−3·xσij

xγij · xî bij · dx+
1

2

∫ +3·yσij

−3·yσij

yγij · xĵ bij · dy (6.31)

yb∗ij =
1

2

∫ +3·xσij

−3·xσij

xγij · yî bij · dx+
1

2

∫ +3·yσij

−3·yσij

yγij · yĵ bij · dy (6.32)

For the following remaining derivations refer to Figure 6.10. Rewriting the decom-
position expressed in (6.25), neglecting the fluctuating part, the measured position
will be shifted from the original one approximately by the corrected weighted biases
expressed in (6.31)-(6.32):

X̄ ij = X ij +
xb∗ij

Ȳ ij = Y ij +
yb∗ij

(6.33)

x

y

x

y

x

y

x

y

x

y

y

Figure 6.10: Diagram of derivation of debiasing functions in x and y directions xβ(x)
and yβ(x).

Therefore, while the original experimentally-obtained biases were distributed on a
regular quadrangular grid [rxi,j

ryi,j], the new corrected biases b∗ can be distributed over
a deformed grid [x̄i,j ȳi,j]. As shown in (6.34), the two new corrected bias distributions
of x measurements (xmi,j) and y measurements (ymi,j) can be interpolated, obtaining
bias surfaces that are function of the measured positions.

xmij =
[
X̄ ij Ȳ ij

xb∗ij
]T interp.→ xβ(x)

ymij =
[
X̄ ij Ȳ ij

yb∗ij
]T interp.→ yβ(x)

(6.34)
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Finally, it is possible to subtract from the measured position these new interpolating
bias functions in order to obtain a debiased measurement:

x̂ = x− xβ(x)
ŷ = y − yβ(x)

(6.35)

Two example of calibrated debiasing function fields can be found in figures 6.21
and 6.22. The formulation of the Radial Basis Function Network (RBFN) used for the
interpolation of the debiasing values is explained in the following section.

6.3.3 RBFN implementation

In this section the formulation of a Radial Basis Function Network (RBFN) is intro-
duced for the interpolation of the debiasing distributions in both 2D (6.34) environ-
ment. In the following equations the change of variable expressed in (6.36) must be
considered, so that the NN will work on strictly positive values.

bij =
xb∗ij,

yb∗ij, or
zb∗ij and

if bmin = min {bij} < 0 then bij = b∗ij − bmin
(6.36)

The considered Gaussian activation function (fij) is defined on every marker (Xij)
that was previously used for mapping purposes. Hence, every marker represents a node
in the NN.

fij(x) = c1 · bij · e−c2·d2

d2 = ∥x−Xij∥2
(6.37)

While the constant c2 can be uniquely defined for each node (as follows in (6.38)-
(6.41)), the constant c1 is used for calibration of the RBFN interpolation. The value
of c1 can be chosen between 0 and 1 (by trial and error the best acceptable value is
found to be c1 = 0.5).

fij(Xij) = c1 · bij
fij(Xmn) = c1 · bij · e−c2·d2mn = 1−c1

8
bmn

d2mn = ∥Xmn −Xij∥2
(6.38)

ln
(
c3

bmn

bij

)
= −c2 · d2mn

c3 =
1−c1
8·c1

(6.39)

c2,mn = − 1

d2mn

ln

(
c3
bmn

bij

)
(6.40)

The constant c2,ij(θ) is a periodic function interpolating the values of c2,mn on a
neighbourhood stencil of 8 points (in 2D).

c2,ij(θ) = interp (c2,mn, θmn) periodic in [−π,+π]
mn = [(i+ 1, j) (i+ 1, j + 1) (i, j + 1) (i− 1, j + 1) (i− 1, j)

(i− 1, j − 1) (i, j − 1) (i+ 1, j − 1) (i+ 1, j)]

with θmn = atan
(

Y mn−Y ij
Xmn−Xij

) (6.41)
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Therefore, once all the c2,ij(θ) constants have been defined, the resulting RBFN
(shown in Figures 6.11-6.14) will be:

b(NN)(x) = bmin +
N,M∑
i,j

fij(x)

fij(x) = c1 · bij · e−c2,ij ·d2ij

d2ij = ∥x−Xij∥2
c1 = 0.5

c2,ij = c2,ij(θ) periodic in [−π,+π]

view angle θij = atan
(

y−Y ij
x−Xij

)
(6.42)

Since the Gaussian activation function are here defined so that they have influence
only to the adjacent nodes, the debiasing filter (DF) code uploaded in the Crazyflie
firmware takes account of this in order to optimise the performance in terms of real
time computation. Therefore, not all fij(x) are computed at every time step, but only
those that are within a distance (dij) of 1 m from the measured position.

b(NN*)(x) = bmin +

N,M∑
i,j|dij<1m

fij(x) (6.43)

Figure 6.11: RBFN of bias values
on markers points (red stars) for es-
timations of the x component of the
position.

Figure 6.12: RBFN of bias values
on markers points (red stars) for es-
timations of the y component of the
position.



CHAPTER 6. SWARM-IN-THE-LOOP: THE INDOOR POSITIONING SYSTEM76

Figure 6.13: RBFN surface interpo-
lating bias values of estimations of the
x component of the position.

Figure 6.14: RBFN surface interpo-
lating bias values of estimations of the
y component of the position.

6.3.4 About other filters

In this section a formulation of the other filters is proposed: saturation, smoothing
and Adams-Moulton correction. However, no experiments are carried out to test and
validate such filters since the focus of the chapter is on the most crucial debiasing filter.
Although, I thought that providing extra layers of filters would most likely improve
the overall precision and accuracy of the positioning system. The saturation filter
consists of limiting the eventual estimation overshoots of both velocity and position.
Two types of velocity overshoots are considered: a maximal overestimation and a
maximum allowed time derivative. For example, each component of the estimated
velocity vector will be limited by a maximum velocity value that can be different in
the three directions. For instance, the horizontal velocity components (in x and y
direction) can be limited by the maximum cruise speed, while the vertical velocity (in
z direction) could be at maximum two times the free-fall speed. Moreover, also the
time derivative of the velocity is limited by the expected maximum acceleration. Also
this values might be smaller horizontally and greater vertically, but for simplicity the
derivatives in all directions have been limited by the same amount. The effect of the
presented saturation filter on a casual sequence of velocity estimations is depicted in
Figure 6.15. The filter will act analogously on a positions sequence - i.e. equations
(6.48)-(6.50).

Let’s start defining the scalar variation of velocity (g∆v(k)) as the modulus of the
difference between the EKF-estimated velocity at the current time (k) and the filtered
velocity at the previous timestep (k−1):

g∆v(k) =
∥∥∆gv(k)

∥∥ =
∥∥gv(k) − gv̄(k−1)

∥∥ (6.44)

This value should not exceed the maximum allowed speed variation (limited by the
maximum acceleration, amax). Therefore, the (6.45) inequality can be used to formulate
the ceiling of components of the velocity variation (∆gv̄(k)) in (6.46).

g∆v(k) ⩽ ∆t · amax (6.45)
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Figure 6.15: Representation of the presented saturation filter on some veloc-
ity estimates in ith direction. In blue the original EKF estimate and in red
the correction. Note that the measurements are discrete and represented by the
peaks, the linear interpolation between measurements is only for visualisation
purposes.

∆gv̄(k) = min
(
∆t · amax · g∆v(k)

−1
, 1
)
·∆gv(k) (6.46)

At this point, every velocity component has to be limited by the maximum allowed
speeds (vimax) as explained earlier. The components of the final filtered velocity vector
(gv̄(k)) are defined as follows:

gv̄
(k)
i = min

(
gv̄

(k−1)
i +∆gv̄

(k)
i , vimax

)
vmax =

[
v1max v2max v3max

] (6.47)

The same filtering procedure can be applied on the position estimates, but in this
case only the time derivative will be limited. As before, the inequality (??) can be
used to define the variation of each ith component (i = 1, 2, 3) of the filtered position
∆x̄(k) expressed in (6.49).

∆x
(k)
i ⩽ ∆t · vimax

where
∆x(k) =

∥∥∆x(k)
∥∥ =

∥∥x(k) − x̄(k−1)
∥∥ (6.48)

∆x̄
(k)
i = min

(
∆t · vimax ·∆x(k)

−1
, 1
)
·∆x

(k)
i (6.49)

Finally the filtered estimation of the position can be defined as follows:

x̄(k) = x̄(k−1) +∆x̄(k) (6.50)

Additionally embodied in this filtering step is the smoothing filter that aims at
artificially reducing the oscillations of the measurements by averaging the history of
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n + 1 measurements. The average is weighted so that the contribution of the last
measurement (x̄(k)) is more important.

x̄
(k)
s = (1− q)n · x̄(k−n) +

n−1∑
l=0

q · (1− q)l · x̄(k−l)

q = q%/100

(6.51)

where q% is the percentage of influence of the last measurement.

Thirdly, the main idea of the Adams-Moulton dynamic prediction is to correct the
EKF estimations, that consider only the measurements at the current time, with a pre-
diction that takes into account the previous history of estimations. Hence, a multistep
scheme should be selected. As far as the prediction of the position is considered, an
implicit scheme can be chosen since the estimation of the time derivative of the position
(estimated velocity) is known. This will make the prediction more trusty since linked
to the current state of the drone. Usual multistep predictor-corrector schemes consist
in the combination of an explicit predictor - e.g. Adams-Bashforth (AB) of order n -
and an implicit corrector - e.g. Adams-Moulton (AM) of order m - that can use the
prediction of the derivative function given by AB(n). In the exception of the presented
correction filter, AM can be directly used. In (6.52) an AM scheme of 4th order is de-

fined for predicting the position x̄
(k)
AM4 by the use of the filtered (from previous sections

?? and ??) velocity estimates at the current and the previous four time steps. A higher
order AM scheme could be selected for considering a longer history of estimates.

x̄
(k)
AM4 = x̄(k−1) +

∆t

720
·
(
251 · gv̄(k) + 646 · gv̄(k−1)

−264 · gv̄(k−2) + 106 · gv̄(k−3) − 19 · gv̄(k−4)
) (6.52)

One aspect that is considered by the EKF estimates but neglected by the AM4
prediction is the effect that the control command input have on the state. For instance,
the EKF takes into account the given thrust input. Intuitively, at low cruise speed the
drone’s dynamics are very affected by controls input so the EKF estimate is more
important, while at high cruise speed the drone dynamics at short period are mostly
a direct effect of the stored momentum of the flying body (that will move by inertia).
Therefore, a vectorial weighting function α is here defined so that the filtered correction
of the estimated position follows this logic about the cruise speed. The formulation
of the newly filtered position ˜̄x(k) is shown in (6.53) while the shape of the ith weight
component function (6.54) is shown in Figure 6.16.

˜̄x(k) = α⊙ x̄(k) + (1−α)⊙ x̄
(k)
AM4 (6.53)

where ⊙ is the component-wise multiplication operation, so that given two vectors a
and b the resulting vector components are ci = ai · bi, with i = 1, 2, 3.
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αi = exp

−1

2

(
ā
(k)
i

ai f

)2
 (1− αmin) + αmin (6.54)

αi

1

αmin

ai f |ai|

momentum 

prevails

affected by 

controls

Figure 6.16: Weight function for averaging between EKF state es-
timations and AM4 predictions; vi f is the flipping velocity, vimax is
the maximum expected speed, and αmin is an additional calibration
parameter.

6.4 Design of experiments

6.4.1 IPS mapping

In order to build the maps, a large number of measurements (N = 700) are taken at
a sampling frequency of 100 Hz while keeping the drone still for at least 30 seconds
on each marker (Xij). Then, the raw stream of data is post-processed omitting the
transients corresponding to the movement between markers. The drone is kept aligned
with the x axis and parallel to the floor, as the effect of its attitude is not being
investigated. Finally, the bias (b), standard deviation (σ) and mean squared error
(MSE) are computed. For instance, their values in the x direction (superscript x) are
as follows:

xbij = N−1
∑N

k=1 x
(k) −Xij

xσij =
(
xMSEij − xb2ij

)0.5
xMSEij = N−1

∑N
k=1

(
x(k) −Xij

)2 (6.55)

where x(k) is the kth position measurement. The resulting maps can be found in Fig-
ure 6.17 and Figure 6.19 for x-direction measurements, and Figure 6.18 and Figure 6.20
for y-direction measurements.
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Figure 6.17: Precision mapping
of the x component of the position
(±xσ).

Figure 6.18: Precision mapping
of the y component of the position
(±yσ).

Figure 6.19: Accuracy mapping
of the x component of the position
(±xb).

Figure 6.20: Accuracy mapping
of the y component of the position
(±yb).

6.4.2 DF calibration and validation

After the mapping of the bias of x and y components of the position estimations
with the available IPS is completed, the debiasing filter must be calibrated using
these data. The calibration consists actually in interpolating using the Radial-Basis-
Function-Network (RBFN) formulated in Appendix 6.3.3. The final output will be
something similar to Figures 6.21-6.22, or Figures 6.13-6.14.
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Figure 6.21: Debiasing function
for measurements of the x compo-
nent of the position (xβ).

Figure 6.22: Debiasing function
for measurements of the y compo-
nent of the position (yβ).

A second aim of the experiment described in this section is to validate the proposed
DF. The estimations of position provided by the original IPS (which uses only EKF) are
compared to those provided by the new IPS (EKF+DF) on a predefined set of staggered
markers (ref. to Figure 6.1) that have not been previously used for calibration purposes.
Variances and biases are evaluated to provide statistical insight on the performance of
the newly developed filter.

6.4.3 DF validation in dynamic conditions

The aim of the experiment described in this section is to validate the proposed filter
dynamically. Moreover, it can be used in order to calibrate the coefficients of the
Adams-Moulton-4th (AM4), however this aspect will be investigated in further research.
Let’s define the positioning system to be IPS-1 when only EKF is activated, and IPS-2
when also DF is active. The aim is to compare the two with respect to dynamic (while
the drone is moving) estimations of position at different cruise speed.
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Figure 6.23: Dynamic experiment setup: cf-stand rover on rail. (a) starting and
(b) ending point of rail; (h) optical obstacles - i.e. nails; (g) optical infrared sensor;
(c) power control unit, batteries and electric motors; (d) Crazyflie drone; (e) direction
of movement; (f) embedded laser pointer. The optical sensor is actually aligned right
underneath the drones’ UWB antenna while performing the experiment.
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Figure 6.24: Visualisation of rail and IPS position measurements. Lr

is the total length of the rail.

The mobile stand, on which the drone is mounted, is constrained to move along an
encoder rail. In the frame of reference along the rail, the position (s) of the drone - i.e.
of the optical sensor - is given by the count n(k) of the pins moving from the starting
point (a) to the ending point (b).

s(k) = ∆s · n(k) (6.56)

where∆s is the constant distance between each nail. Here (k) is the high frequency time
step counting, which is the frequency at which data from all the sensors are recorded;
therefore n is supposed to increment slower than k. The real position of the drone
along the rail (x

(k)
r ) in the inertial frame of reference can be obtained by projecting s(k)
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by the angle between the rail and the x-axis, θr:

x
(k)
r =

(
x
(k)
r , y

(k)
r

)
x
(k)
r = s(k) · cos(θr) and y

(k)
r = s(k) · sin(θr)

θr = atan
(

yb−ya
xb−xa

) (6.57)

Every time a new nail is detected, at time step (p), the estimated position by both
IPS-1 and IPS-2 (x

(k)
1 ,x

(k)
2 ) and the actual position on the rail have been recorded and

stored as follows in storage variables ξ and υ:

if n(k) > n(k−1) then:

ξ
(p)
r = x

(k)
r υ

(p)
r = y

(k)
r τ (p) = t(k)

ξ
(p)
1 = x

(k)
1 υ

(p)
1 = y

(k)
1 ξ

(p)
2 = x

(k)
2 υ

(p)
2 = y

(k)
2

(6.58)

The velocity estimations with IPS-1 and IPS-2 can also be compared to the discrete
average velocity on the rail (6.59):

ν
(p)
x = ∆ξ

(p)
r

∆τ (p)
and ν

(p)
y = ∆υ

(p)
r

∆τ (p)

∆ξ
(p)
r = ∆s · cos(θr) = const.

∆υ
(p)
r = ∆s · sin(θr) = const.
∆τ (p) = τ (p) − τ (p−1)

(6.59)

where ∆τ (p) is the time passed between the detection of the p-th and (p − 1)-th
pins. Since the aim is to evaluate how well the IPS-2 performs with respect to IPS-1
at different cruise speed of the drone, multiple measurements are required at different
speeds. The recorded position data, can be classified in groups corresponding to dif-
ferent speed ranges - e.g. a speed breaks vector can be defined as [0.2, 0.4, 0.6, 0.8, 1].
This experiment design, apart from DF, could be used also as platform to calibrate
and validate the other filters presented in Appendix 6.3.4.

6.4.4 Square path experiment

The aim is to partially reproduce the experiment of a drone following a square path
[114] (Figure 6.25). Since I want to investigate the performance of the only debiasing
filter, it is suggested to perform an experiment that separates the IPS estimations from
the automatic control dynamics of the drone. Therefore, the drone is not free to fly,
but it is driven by the mobile support along the square path (which is the reference
trajectory) and estimation of the position with and without the debiasing filter (DF)
are recorded. The experiment is performed multiple times in order to collect some
statistics on the DF’s performance. The expected result is depicted in Figure 6.26. The
debiased path estimation should be more accurate than the only EKF measurement,
aiming towards the reference square path of the rail.



CHAPTER 6. SWARM-IN-THE-LOOP: THE INDOOR POSITIONING SYSTEM84

Figure 6.25: Experiment performed
by [114]. The drone was not
constrained, free to move following
through auto-pilot the square path
multiple times. It compares the EKF
estimate (blue line) with the actual
position of the drone (red line). Both
trajectories are not accurate since
shifted from the actual wanted refer-
ence square path (black line).

x

y

anchors

EKF estimate EKF+DF estimate

reference trajectory

0

Figure 6.26: Proposed experiment
following a square path. It is expected
the EKF+DF estimation (continuous
red line) to be more accurate than
the EKF only estimation (dotted blue
line). The drone is forced to move
linearly on four rails (reference black
square).

6.5 Results and Discussion

6.5.1 Proof of accuracy improvement

The improvement to the accuracy of the positioning system given by the use of the
proposed debiasing filter is proven by performing the validation experiment described
in Section 6.4.2, which results are depicted in Figures 6.27-6.30. In order to highlight
the overall accuracy gain using the DF, the absolute value of the bias is represented.
Please note that the calibration points are on the main grid spaced 50 cm, while the
validation mesh is staggered by 25 cm from the main calibration points.

Accordingly to the colour legend used in Figures 6.27-6.30, the whiter the area the
more accurate it is. Hence it is really evident the contribution of the proposed DF.
Although, it is noticeable that in very few points the DF failed to improve the accuracy
in the validation positions. This means that the sampling points used for the mapping
did not capture that gradient of the bias. A finer sampling mesh most likely would
have discovered that trend, however a compromise between mapping refinement and
complexity of the interpolating RBFN (which would result in longer computational
time, detrimental for real time application) must be made. Moreover, another interest-
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Figure 6.27: Original (only EKF)
absolute bias for x-direction measure-
ments.

Figure 6.28: Absolute bias for x-
direction measurements after applying
debiasing filter (DF).

ing aspect of the previously carried theoretical analysis is manifest around the anchor
positioned at (0,0) m. In fact, the points within approximately 50 cm radius around
this anchor are undefined because those locations fall within the bifurcation envelope,
explained in Section 6.2.6. Therefore, no position can be measured in this area and
the DF is justified to fail.

6.5.2 Debiasing dynamic validation

In this section all the results related to the dynamic experiments explained in Sections
6.4.3 and 6.4.4 are collected and investigated. I expected a reduction in the performance
of the DF, because of dynamic effects intrinsic of the used positioning algorithm that are
not addressed by the DF. Still, even if slightly, the formulated DF allows more accurate
measurement of the position, as depicted in Tables 6.1 and 6.2. More precisely the first
table refers to the dynamic validation of the DF explained in Section 6.4.3, while the
statistics of the results of the square path experiment (Section 6.4.4) are collected in
Table 6.2.

The following Figure 6.31 is an example of a single dynamic experiment in x-
direction. Such partial experiment has been repeated 10 times for each rail position in
order to obtain a general trend of the IPS measurements.

Notice in Figure 6.31 the dynamic ’misbehaviour’ of the IPS at around 22 s which
cannot be addressed by the presented DF but which could be solved by the use of other
filters presented in section 6.3.

Follows in Figure 6.32 a graphical representation of the overall results of the square-
path experiment, and in Table 6.2 a quantitative summary.

The root-mean-square-errors (RMSEs) in Table 6.2 are computed comparing the
trend lines for each edge with the actual position of the drone on the rail at every
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Figure 6.29: Original (only EKF)
absolute bias for y-direction measure-
ments.

Figure 6.30: Absolute bias for y-
direction measurements after applying
debiasing filter (DF).

time step. For instance, the RMSEEKF on the bot edge is obtained considering the
cloud of data (cyan colour in Figure 6.32) of ten experiments on the edge going from
(0.5,0.5) to (3.5,0.5). The same dynamic issues that where pointed out in the validation
experiment in Figure 6.31 persist in the square experiment (yellow regions in Figure
6.32). Hence, believing that DF is not responsible to address this intrinsic problems
of the studied IPS, I thought it would be useful to isolate this misbehaviour and give
statistics of a selected subdomain of data that were not affected by this. Hence the
raw and sel. column headings in Table 6.2.

6.6 Conclusion

Considering the recent drive of robotics towards autonomy and self-organisation, the
precision and accuracy of Indoor Positioning Systems (IPS) are crucial for performing
indoor experiments efficiently and safely. While the precision of the system is generally
well studied, reasonably estimated, and provided by the manufacturer, accuracy tends
to be assessed poorly if not plainly disregarded. This may not pose a major problem
when flying one small inexpensive drone – or even a few of them in formation flight – but
would certainly render the system not operational for a swarm of frenetic self-organising
drones which may end up bumping into one another. In this chapter about IPS, beside
a comprehensive study of precision, accuracy and failure of IPSs, a debiasing filter was
developed aiming to improve the accuracy. The proposed analysis is generalised and
repeatable for any other IPS that uses UWB technology and multilateration algorithm
based on the TDoA signal property. The numerical values that follow in this section
correspond to the specific IPS used for the validation and testing experiments.

The measured distribution and magnitude of the precision are coherent with their



CHAPTER 6. SWARM-IN-THE-LOOP: THE INDOOR POSITIONING SYSTEM87

RMSEx,avg [cm] RMSEy,avg [cm]
dir. x [m] y [m] IPS-1 IPS-2 ∆x IPS-1 IPS-2 ∆y vavg
hor. [0, 4] 1 12.7 6.8 5.9 10.0 7.9 2.1 0.58
hor. [0, 4] 2 12.0 8.1 3.9 6.7 4.3 2.4 0.44
hor. [0, 4] 3 12.6 8.0 4.6 9.3 8.0 1.3 0.43
ver. 1 [4, 0] 15.6 10.3 5.4 9.4 6.8 2.7 0.58
ver. 2 [4, 0] 10.3 8.0 2.3 15.8 10.1 5.7 0.51
ver. 3 [4, 0] 11.4 9.4 2.0 15.3 12.2 3.1 0.42

Table 6.1: Representative results of the dynamic on-rail validation. In the column
headed ’dir.’ is highlighted if the rail was oriented horizontally (hor.) or vertically
(ver.). The path was always cross-cutting the overall flying domain left-to-right or
top-to-bottom. The RMSEs of an IPS with (IPS-2) and without (IPS-1) debiasing are
compared in order to depict the improvement given by the DF, which average value is
stored in the columns with ∆x and ∆y headings. The average cruise velocity is also
registered in the last column.

RMSEIPS-1 [cm] RMSEIPS-2 [cm]
edge dir. x [m] y [m] raw sel. raw sel. ∆ [cm]
bot hor. [0.5, 3.5] 0.5 9.2 9.5 7.5 4.7 4.8
right ver. 3.5 [0.5, 3.5] 12.6 12.5 9.0 8.3 4.2
top hor. [3.5, 0.5] 3.5 6.0 5.5 5.7 4.6 0.9
left ver. 0.5 [3.5, 0.5] 15.8 15.2 8.8 6.7 8.5

Table 6.2: Representative results of the square-path experiment. The RMSEs of an IPS
with and without debiasing are compared in order to depict the improvement given by
the filter. The columns with ’raw’ heading refer to the overall stream of data, while the
’sel.’ heading refers to the selection of the undamaged stream of data - e.g. neglecting
intervals where uncontrolled misbehaviour of the IPS are detected. ∆ gives an idea of
the average improvement of the accuracy given by the use DF.

theoretical estimations – i.e. using Cramér–Rao Lower Bound analysis, the best pre-
cision values are in the centre of the flying area and the maximum standard deviation
is lower than ±3 cm (figures 6.17-6.18). The IPS’s failure study – i.e. the formulation
of the bifurcation envelope – reflects in the experimental measurements as undefined
positioning areas in the anchor’s proximity (Figures 6.27-6.30).

As far as the formulated debiasing filter is considered, its static use – e.g. when the
drone is hovering – shows a dramatic improvement of the accuracy: from an original
worst case of ±20 cm to a corrected one of about ±5 cm. Testing such debiasing
filter dynamically – i.e. moving the drone – still shows a substantial improvement
of the accuracy, but not as much as expected: a maximum accuracy gain of about
5.5 cm (tables 6.1-6.2). Other dynamic issues occur, that should be addressed with
additional filters complementarily to the proposed one. A possible filtering process
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Figure 6.31: Example of horizontal dynamic experiment performed at average cruise
velocity of 0.33 m/s with x spanning from 0 m to 4 m at constant y = 2 m. The
variables are: the poistion estimate with only EKF (x, y); the debiased position (x̂, ŷ);
the actual position on the rail (xref); and the estimated instantaneous velocity in x-
direction (vx).

has been suggested consisting of the following steps to be taken after obtaining a first
raw estimation of the position given by the Extended-Kalman-Filter: saturation and
smoothing, correction by the use of a prediction model (such as Adams-Moulton),
and finally the proposed debiasing filter. The reproduction of a previous reference
experiment [114], consisting of flying a drone along a square path, proves the global
improvement of the accuracy given by the use of the proposed debiasing filter also for
dynamic case (figure 6.32).

Further extension of the presented research might involve: the generalisation of the
introduced rigorous precision, accuracy, and failure analysis for a three-dimensional
IPS; the formulation and validation of the proposed debiasing filter in 3D and au-
tomation of the process; the formulation and testing of further filtering algorithms to
cope with the dynamic effects on the position estimation; and the optimisation of the
positioning and orientation of the anchors in 3D availing of the slight anisotropy of the
radiation pattern of the UWB module.

6.7 Summary

Scope: Contribute, with theoretical and experimental research, to the development of
a Swarm-in-the-Loop system for testing self-organisation algorithms for swarms. The
focus of this Chapter was on Indoor Positioning Systems (IPS), which is a crucial
technology for indoor experiments in swarm robotics.
The developed IPS ought to have the following properties:

� precise and accurate, with also good understanding of its failure condition areas;

� passing through solid obstacles : the chosen technology is UWB-based (Ultra
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Figure 6.32: Visualisation of the square-path experiment results. The flying domain
is delimited by the four anchors while the reference path is the black dotted square. The
drone starts moving from the corner located at (0.5,0.5) and moves towards the positive
x-axis direction then following the other edges of the reference path. Two clouds of
data with their respective trend lines are shown: IPS-1 which only uses EKF and the
IPS-2 embedding also the DF. The yellow transparent areas highlight the problematic
phases. The overal experiment shows a time-to-time considerable improvement given
by the DF.

Wideband);

� indoor system analogous to GNSSs (such as GPS): considered to use a Time
Difference of Arrival (TDoA) algorithm, possibly asynchronous.

Method, studies, and experiments:

� Cramér–Rao Lower Bound analysis (CRLB) to estimate numerically the precision
of the system at hand.

� Define geometrically the bifurcation envelope which consists in the areas where
the IPS fails to provide an unambiguous position measurement.

� Rapid prototyping and assembly of the IPS components. Writing the software
in the drones firmware for three purposes: the filter, the live debugging, and the
data collection for the experiments.
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� Calibration: map the original accuracy of the IPS measurements and formulate
the debiasing filter as modified (by the local standard deviation) de-bias values
on a deformed grid.

� Perform a static test of the debiasing filter on a staggered grid (i.e. not on the
points used for calibration).

� Perform dynamic experiments to assess the performance of the developed filter
when the drone is moving.

Main outcomes and findings:

� A rigorous and comprehensive study of precision, accuracy and failure of 2D
UWB-based IPS using TDoA algorithm. This could be used in future for optimi-
sation of the positioning and orientation of the anchors (i.e. the IPS antennae)
availing of the slight anisotropy of the radiation pattern of their UWB module.

� The measured IPS precision is in agreement with the theoretical CRLB analysis

� A debiasing filter aimed at improving the accuracy of the used IPS. This was
placed right after the Extended Kalman Filter, which was already part of the
firmware of the used drones. It performs outstandingly statically, while its im-
provement on accuracy deteriorates during dynamic experiments.

� The IPS study and the debiasing filter should be generalised to 3D during further
future research.

� An in-house IPS to be used for SwiL simulations.

� The the TDoA-based multilateration can be used to create a ”local positioning
system” (LPS) outdoor. Its scope would be to improve the GPS estimations in
case of obstruction of the signal by large solid objects.



Chapter 7

Conclusion and Final Remarks

In this chapter, concluding remarks are provided about what has been achieved for
the four main topics of this thesis: wildfire propagation modelling and simulation, self-
organising firefighting drones modelling and simulation, stigmergic collision-avoidance
algorithm, and analysis and improvement of indoor positioning systems (IPSs). More-
over, in Figure 7.1 a summarising diagram highlights the various research topics that
I carried out, along with other intended necessary sections, in order to explain how
they relate to the grand firefighting scheme: I believe this could help in clarifying the
links between studies, presented in the previous chapters, that might seem so distant
at a first look but that all come together in this picture. Two main projects repre-
sent the steps to prove the employability of swarms of drones to fight wildfires: the
first consists in the development of a Swarm-in-the-Loop (SwiL) system to test self-
organisation algorithms and firefighting strategies in a safe and reasonably affordable
indoor environment; while the second is the ”real world” test platform for validating
the swarm algorithm over a multitude of firefighting missions on prescribed fires. It is
important to note that, even though the swarm’s main mission is to suppress wildfires,
their self-organisation can be leveraged in order to perform other missions, for instance:
wildfire mapping and monitoring, fire perimetre containment, and aiding evacuation of
endangered population. Moreover, even though this research is all about firefighting
swarms, it should not be misinterpreted as an attempt to suppress any wildfire on our
planet and prevent any new ones from happening: if this would be even possible, it
would have a detrimental impact on the worldwide ecosystem. In fact, wildfires act
as oxygen-level controllers as supported by a fairly recent study on the relation be-
tween terrestrial ecosystems, fires and oxygen levels [116]; therefore, not all wildfires
are intrinsically bad. Hence, the proposed technology should be used sparingly and
thoughtfully evaluating the importance of the eventual ecosystem the fire is about to
destroy and the impact on the local population’s lives.

The SwiL system (Figure 7.1) consists of three main subsystems: wildfire dynamics,
swarm dynamics, and communication and monitoring. Within these, for each compo-
nent, I highlighted the major wanted properties and the main outcomes of the related
research. It is important to notice that, only four main blocks communicate in order
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to form the wildfire suppression model which is the firefighting solution that ought to
be tested in the SwiL. Such components work in a loop:

1. the wildfire propagation model (FireProM-F) initialises the simulated fire in a
number of predefined or random points and the fire starts spreading;

2. a fire detection model senses the wildfire and provides information to the swarm
accordingly to the selected technology (in this research case, the technology was
infrared camera, so the information transmitted was simply a temperature field);

3. each drone in the firefighting swarm acts on their memory of the received in-
formation (e.g. the best temperature experience could be an attractor for the
decision of the next targeted position);

4. the swarm acts on the simulated fire through a fire extinction model, that for
simplicity in this research has been considered to be water dropping (hence the
two main payloads of the drones were fuel and water);

5. the wildfire propagation model evolves in time considering the impact of the
extinction model (then restarts from point 2).

The virtual and physical interfaces between these sub-models are handled by the server,
which covers also a monitoring function. The idea was to set up a Gazebo/ROS plat-
form that would be used for both SiL simulations, in which the drones are simulated,
and SwiL simulations, where the drones are real hardware in the loop. In case of the
latter, such platform would be used only for two purposes: a virtual representation of
what is really happening in the laboratory (e.g. visualising the position of each drone
in the flying domain), and communication between the FireProM-F simulation and the
real swarm dynamics. Other three blocks can be seen in the swarm dynamics subsystem
in the diagram 7.1: multi sub-swarms, collision-avoidance algorithm, and indoor posi-
tioning system (IPS). The first two are improvements of the core firefighting algorithm
for the swarm, while the IPS is a necessary tool for indoor swarm robotics. During
the presented research I managed to contribute on the last two components which
were quite critical for the advancement of the research towards SwiL simulations. I
find that it is important to mention that the developed multi-agent collision-avoidance
algorithm is stigmergic, which means it relies on indirect communication between the
drones by means of modifying some properties of the surrounding environment - e.g.
in this case transmitting a signal at constant strength. As far as the IPS is considered,
I managed to develop a debiasing filter which managed to considerably improve the
accuracy of the position estimations. Even though the IPS is an indoor technology,
the same principle can be used to create outdoor a ”local positioning system” (LPS) to
improve the precision and accuracy of the GPS estimation in case of signal obstruction
- e.g. in proximity of a building or a hill-side, or when flying in canyons. In such LPS
some reference drones could actually stay stationary and act as reference antennae for
the TDoA-based multilateration.
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Concluding, the research presented in this thesis is just the ”tip of the iceberg” of
a larger multidisciplinary applied research which will eventually enable an exciting
wildfire suppression technology. I passionately believe this will be part of our highly
technological future where autonomy is the engine of most of our daily lives.
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Figure 7.1: Summarising diagram of the undergone research and how its various
topics relate to the grand scheme. ”Prop.” stands for a list of desirable and attained
properties; ”Out.” for delivered outcomes; ”(Out.)” for desired but not/partially de-
livered outcomes; and (£) means reasonably affordable while (£££) is very costly.
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[18] J. Margerit and O. Séro-Guillaume, “Modelling forest fires. part II: reduction to
two-dimensional models and simulation of propagation,” International Journal
of Heat and Mass Transfer, vol. 45, no. 8, pp. 1723–1737, apr 2002.

[19] P. Grasso and M. S. Innocente, “A two-dimensional reaction-advection-diffusion
model of the spread of fire in wildlands,” in Advances in forest fire research 2018.
Imprensa da Universidade de Coimbra, 2018, pp. 334–342.

[20] O. Séro-Guillaume, S. Ramezani, J. Margerit, and D. Calogine, “On large scale
forest fires propagation models,” International Journal of Thermal Sciences,
vol. 47, no. 6, pp. 680–694, jun 2008.

[21] V. G. Ntinas, B. E. Moutafis, G. A. Trunfio, and G. C. Sirakoulis, “Parallel fuzzy
cellular automata for data-driven simulation of wildfire spreading,” Journal of
Computational Science, vol. 21, pp. 469–485, jul 2017.

[22] L. H. Encinas, S. H. White, A. M. del Rey, and G. R. Sánchez, “Modelling forest
fire spread using hexagonal cellular automata,” Applied Mathematical Modelling,
vol. 31, no. 6, pp. 1213–1227, jun 2007.



BIBLIOGRAPHY 97

[23] C. Li, J. Li, L. Hu, and D. Hou, “Visualization and simulation model of un-
derground mine fire disaster based on cellular automata,” Applied Mathematical
Modelling, vol. 39, no. 15, pp. 4351–4364, aug 2015.

[24] X. Rui, S. Hui, X. Yu, G. Zhang, and B. Wu, “Forest fire spread simulation
algorithm based on cellular automata,” Natural Hazards, vol. 91, no. 1, pp. 309–
319, nov 2017.

[25] N. Fernandez-Anez, K. Christensen, and G. Rein, “Two-dimensional model of
smouldering combustion using multi-layer cellular automaton: The role of igni-
tion location and direction of airflow,” Fire Safety Journal, vol. 91, pp. 243–251,
jul 2017.

[26] R. M. Almeida and E. E. N. Macau, “Stochastic cellular automata model for
wildland fire spread dynamics,” Journal of Physics: Conference Series, vol. 285,
p. 012038, mar 2011.

[27] H. Gazmeh, A. Alesheikh, and M. K. 1, “A new methodology in modeling forest
fire spread using cellular automata,” Journal of Advanced Science and Engineer-
ing Research, 2012.

[28] K. Yamamoto, N. Takada, and M. Misawa, “Combustion simulation with lattice
boltzmann method in a three-dimensional porous structure,” Proceedings of the
Combustion Institute, vol. 30, no. 1, pp. 1509–1515, jan 2005.

[29] B. Porterie, N. Zekri, J.-P. Clerc, and J.-C. Loraud, “Modeling forest fire spread
and spotting process with small world networks,” Combustion and Flame, vol.
149, no. 1-2, pp. 63–78, apr 2007.

[30] A. Kacem, C. Lallemand, N. Giraud, M. Mense, M. D. Gennaro, Y. Pizzo, J.-
C. Loraud, P. Boulet, and B. Porterie, “A small-world network model for the
simulation of fire spread onboard naval vessels,” Fire Safety Journal, vol. 91, pp.
441–450, jul 2017.

[31] S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed:
Algorithms based on hamilton-jacobi formulations,” Journal of Computational
Physics, vol. 79, no. 1, pp. 12–49, nov 1988.

[32] V. Mallet, D. Keyes, and F. Fendell, “Modeling wildland fire propagation with
level set methods,” Computers & Mathematics with Applications, vol. 57, no. 7,
pp. 1089–1101, apr 2009.

[33] A. S. Bova, W. E. Mell, and C. M. Hoffman, “A comparison of level set and
marker methods for the simulation of wildland fire front propagation,” Interna-
tional Journal of Wildland Fire, vol. 25, no. 2, p. 229, 2016.



BIBLIOGRAPHY 98

[34] C. Tymstra, “Development and structure of prometheus : the canadian wildland
fire growth simulation model,” Information report NOR-X-417, 2010.

[35] K. Tolhurst, B. Shields, and D. Chong, “Phoenix: development and applica-
tion of a bushfire risk management tool.” The Australian Journal of Emergency
Management, 2008.

[36] K. B. McGrattan and G. P. Forney, “Fire dynamics simulator user’s guide (ver-
sion 4),” Tech. Rep., 2004.

[37] D. Casbeer, S.-M. Li, R. Beard, R. Mehra, and T. McLain, “Forest fire moni-
toring with multiple small UAVs,” in Proceedings of the 2005, American Control
Conference, 2005. IEEE, 2005.

[38] C. Torresan, A. Berton, F. Carotenuto, S. F. D. Gennaro, B. Gioli, A. Matese,
F. Miglietta, C. Vagnoli, A. Zaldei, and L. Wallace, “Forestry applications of
UAVs in europe: a review,” International Journal of Remote Sensing, vol. 38,
no. 8-10, pp. 2427–2447, nov 2016.

[39] R. Graml and G. Wigley, “Bushfire hotspot detection through uninhabited aerial
vehicles and reconfigurable computing,” in 2008 IEEE Aerospace Conference.
IEEE, mar 2008.

[40] C. Yuan, Y. Zhang, and Z. Liu, “A survey on technologies for automatic forest fire
monitoring, detection, and fighting using unmanned aerial vehicles and remote
sensing techniques,” Canadian Journal of Forest Research, vol. 45, no. 7, pp.
783–792, jul 2015.
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