11,190 research outputs found

    Symbolic representation of scenarios in Bologna airport on virtual reality concept

    Get PDF
    This paper is a part of a big Project named Retina Project, which is focused in reduce the workload of an ATCO. It uses the last technological advances as Virtual Reality concept. The work has consisted in studying the different awareness situations that happens daily in Bologna Airport. It has been analysed one scenario with good visibility where the sun predominates and two other scenarios with poor visibility where the rain and the fog dominate. Due to the study of visibility in the three scenarios computed, the conclusion obtained is that the overlay must be shown with a constant dimension regardless the position of the aircraft to be readable by the ATC and also, the frame and the flight strip should be coloured in a showy colour (like red) for a better control by the ATCO

    Augmented Reality Tower Technology Assessment

    Get PDF
    Augmented Reality technology may help improve Air Traffic Control Tower efficiency and safety during low-visibility conditions. This paper presents the assessments of five off-duty controllers who shadow-controlled' with an augmented reality prototype in their own facility. Initial studies indicated unanimous agreement that this technology is potentially beneficial, though the prototype used in the study was not adequate for operational use. Some controllers agreed that augmented reality technology improved situational awareness, had potential to benefit clearance, control, and coordination tasks and duties and could be very useful for acquiring aircraft and weather information, particularly aircraft location, heading, and identification. The strongest objections to the prototype used in this study were directed at aircraft registration errors, unacceptable optical transparency, insufficient display performance in sunlight, inadequate representation of the static environment and insufficient symbology

    Human-in-the-loop evaluation of an augmented reality based interface for the airport control tower

    Get PDF
    An innovative airport control tower concept based on the use of modern augmented reality technologies has been developed and validated by means of human-in-the-loop experiments in a simulated environment. An optical-based augmented reality interface underpins the proposed concept that consists in providing air traffic control operators in the airport control tower with complete head-up information, as opposed to the current mix of information retrieval through both head-up real view and head-down interfaces. Specific measurement of the time spent by the operator working in either head-up or head-down position, show that the proposal has a clear effect in stimulating the air traffic control operator to work in a head-up position more than in a head-down position, with positive effects on his/her situational awareness and perceived workload, especially when dealing with low visibility conditions operational scenarios

    Augmented Reality for the Control Tower: The RETINA Concept

    Get PDF
    The SESAR (Single European Sky Air Traffic Management Research) Joint Undertaking has recently granted the Resilient Synthetic Vision for Ad- vanced Control Tower Air Navigation Service Provision project within the framework of the H2020 research on High Performing Airport Operations. Here- after, we describe the project motivations, the objectives, the proposed method- ology and the expected impacts, i.e. the consequences of using virtual/augmented reality technologies in the control tower

    Augmented reality technology selection based on integrated QFD-AHP model

    Get PDF
    In the last decade, Augmented Reality has become increasingly popular. As improved performances are gathered in terms of mature hardware and software tools, we are observing the stemming of a huge number of applications of this technology both in the entertainment and in the industrial domains. On the one hand, such applications are usually claimed to bring benefits in terms of productivity or enhancement of the human\u2019s capability to perform tasks. On the other hand, researchers and developers seem not to adequately consider the different meanings that AR assumes when implemented through visualization devices that can differ significantly in nature and in their capability to provide a mixed real-virtual scenario. In this paper, we describe a user-centred method based on an integrated QFD-AHP approach to select the best visualization display technology with regard to a specific application context. The aim is to establish a repeatable and documented process for the identification of the technology that best suits and mitigates the acceptability risks of the transition from a legacy working environment to an AR based operational environment. The method has been developed in the framework of the RETINA (Resilient Synthetic Vision for Advanced Control Tower Air Navigation Service Provision) project involving the end users, in this case, air traffic controllers. Nevertheless, it can be generalised and applied to other contexts of use. Furthermore, in order to be resilient to the fast, technological development in AR, it can be used to update the results as improvements arise in the performance level of the display devices in a specific technology

    Evaluation of augmented reality tools for the provision of tower air traffic control using an ecological interface design

    Get PDF
    One of the major problems faced by the growth of air traffic in the last decade is the limited capacity of the runway especially during low visibility procedures (LVP) due to fog and bad weather. To solve this issue, the project \u201cResilient Synthetic Vision for Advanced Control Tower Air Navigation Service Provision\u201d (RETINA) project, a two-years exploratory research project, under SESAR2020 program, proposes to use new Synthetic Vision (SV) and Augmented Reality (AR) technologies for the tower controllers to allow them to conduct safe operations under any Meteorological Conditions while maintaining a high runway throughput, equal to good visibility. In this paper we introduce the Ecological Interface Design (EID) as a methodology to investigate the potential and applicability of SV tools and Virtual/Augmented Reality (V/AR) display techniques for the Air Traffic Control (ATC) service provision by the airport control tower. We explain how the EID framework can be used in RETINA, we experiment the framework on a suitable airport and we provide the EID results comparing normal and LVP conditions with operations using RETINA technologies

    Flights in my hands : coherence concerns in designing Strip'TIC, a tangible space for air traffic controllers

    Get PDF
    Best Paper Honorable Mention awardInternational audienceWe reflect upon the design of a paper-based tangible interactive space to support air traffic control. We have observed, studied, prototyped and discussed with controllers a new mixed interaction system based on Anoto, video projection, and tracking. Starting from the understanding of the benefits of tangible paper strips, our goal is to study how mixed physical and virtual augmented data can support the controllers' mental work. The context of the activity led us to depart from models that are proposed in tangible interfaces research where coherence is based on how physical objects are representative of virtual objects. We propose a new account of coherence in a mixed interaction system that integrates externalization mechanisms. We found that physical objects play two roles: they act both as representation of mental objects and as tangible artifacts for interacting with augmented features. We observed that virtual objects represent physical ones, and not the reverse, and, being virtual representations of physical objects, should seamlessly converge with the cognitive role of the physical object. Finally, we show how coherence is achieved by providing a seamless interactive space

    How neurophysiological measures can be used to enhance the evaluation of remote tower solutions

    Get PDF
    International audienceNew solutions in operational environments are often, among objective measurements, evaluated by using subjective assessment and judgement from experts. Anyhow, it has been demonstrated that subjective measures suffer from poor resolution due to a high intra and inter operator variability. Also, performance measures, if available, could provide just partial information, since an operator could achieve the same performance but experiencing a different workload. In this study we aimed to demonstrate i) the higher resolution of neurophysiological measures in comparison to subjective ones, and ii) how the simultaneous employment of neurophysiological measures and behavioural ones could allow a holistic assessment of operational tools. In this regard, we tested the effectiveness of an EEG-based neurophysiological index (WEEG index) in comparing two different solutions (i.e. Normal and Augmented) in terms of experienced workload. In this regard, 16 professional Air Traffic Controllers (ATCOs) have been asked to perform two operational scenarios. Galvanic Skin Response (GSR) has also been recorded to evaluate the level of arousal (i.e. operator involvement) during the two scenarios execution. NASA-TLX questionnaire has been used to evaluate the perceived workload, and an expert was asked to assess performance achieved by the ATCOs. Finally, reaction times on specific operational events relevant for the assessment of the two solutions, have also been collected. Results highlighted that the Augmented solution induced a local increase in subjects performance (Reaction times). At the same time, this solution induced an increase in the workload experienced by the participants (WEEG). Anyhow, this increase is still acceptable, since it did not negatively impact the performance and has to be intended only as a consequence of the higher engagement of the ATCOs. This behavioural effect is totally in line with physiological results obtained in terms of arousal (GSR), that increased during the scenario with augmentation. Subjective measures (NASA-TLX) did not highlight any significant variation in perceived workload. These results suggest that neurophysiological measure provide additional information than behavioural and subjective ones, even at a level of few seconds, and its employment during the pre-operational activities (e.g. design process) could allow a more holistic and accurate evaluation of new solutions
    • …
    corecore