593 research outputs found

    Index to 1984 NASA Tech Briefs, volume 9, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1984 Tech B Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Decoupling Control of a Disc-type Rotor Magnetic Bearing

    Get PDF
    A disc-type rotor magnetic bearing with 3-pole magnet is considered in the paper. Based on analysing magnetic forces acting on the rotor, a coupling mechanism is identified, and a coordinate transformation is formulated to decouple acting forces. Thanks to the transformation, control design is straightforward for each control channel. The goal of the design is to keep the rotor at its desired equilibrium in the presence of disturbance and parameters variation. To achieve this goal, the controller is designed in discrete-time domain based on the linearized model first. Then, the disturbance is compensated by employing the one step delay technique. The validity and robustness of the controller are verified by various numerical simulations in which both linearized model and original nonlinear model are used

    Performance of Induction Machines

    Get PDF
    Induction machines are one of the most important technical applications for both the industrial world and private use. Since their invention (achievements of Galileo Ferraris, Nikola Tesla, and Michal Doliwo-Dobrowolski), they have been widely used in different electrical drives and as generators, thanks to their features such as reliability, durability, low price, high efficiency, and resistance to failure. The methods for designing and using induction machines are similar to the methods used in other electric machines but have their own specificity. Many issues discussed here are based on the fundamental achievements of authors such as Nasar, Boldea, Yamamura, Tegopoulos, and Kriezis, who laid the foundations for the development of induction machines, which are still relevant today. The control algorithms are based on the achievements of Blaschke (field vector-oriented control) and Depenbrock or Takahashi (direct torque control), who created standards for the control of induction machines. Today’s induction machines must meet very stringent requirements of reliability, high efficiency, and performance. Thanks to the application of highly efficient numerical algorithms, it is possible to design induction machines faster and at a lower cost. At the same time, progress in materials science and technology enables the development of new machine topologies. The main objective of this book is to contribute to the development of induction machines in all areas of their applications

    Formal analysis of state estimation for nonlinear model predictive control

    Get PDF
    The main goal of this study is to carry out a closed-loop performance analysis of state estimation methods when implemented in the formulation of nonlinear model predictive control. The analysis is facilitated by two nonlinear optimal state estimation methods: augmented state EKF (ASEKF) and augmented state UKF (ASUKF) for comparison purposes. Each state estimation method is coupled to the same NMPC controller to form state estimation-based NMPC controllers, that is, to form the ASEKF-NMPC and ASUKFNMPC controllers. The resulting NMPC controllers are applied for position control of the magnetic levitation system to validate their closed-loop performances. The ASEKFNMPC and ASUKF-NMPC controllers are further applied for the angular position control of the inverted pendulum mounted on a cart system for comparative analysis. The controlled system is perturbed with different error sources: output step disturbance and 5%parametric plant-model mismatch. Output step disturbance is introduced to the system to disturb the pendulum from its upright position while the 5% mismatch is applied to the parameters of the model of the controlled system throughout the simulation. To facilitate fair analysis, Pareto front ranking method is chosen as an evaluation method whereby the cost functions are defined according to the author's preferences. The cost functions served as performance markers for analyzing performance of ASEKF and ASUKF in NMPC formulation in multidimensional space. The tunable parameters of the ASEKFNMPC and ASUKF-NMPC controllers are chosen to be the decision variables of the evaluation problem. The state estimation methods are evaluated in terms of estimation accuracy, system's response time, peak overshoot and control performance. The Level Diagrams tool is used for good visualization of the Pareto fronts to evaluate which estimator performs better in the closed-loop. Finally, the points on the Level Diagrams which provide a performance closest to the desired are selected and tested through simulation runs on the inverted pendulum on a moving cart system

    Model Identification, Updating, and Validation of an Active Magnetic Bearing High-Speed Machining Spindle for Precision Machining Operation

    Get PDF
    High-Speed Machining (HSM) spindles equipped with Active Magnetic Bearings (AMBs) are envisioned to be capable of autonomous self-identification and performance self-optimization for stable high-speed and high quality machining operation. High-speed machining requires carefully selected parameters for reliable and optimal machining performance. For this reason, the accuracy of the spindle model in terms of physical and dynamic properties is essential to substantiate confidence in its predictive aptitude for subsequent analyses.This dissertation addresses system identification, open-loop model development and updating, and closed-loop model validation. System identification was performed in situ utilizing the existing AMB hardware. A simplified, nominal open-loop rotor model was developed based on available geometrical and material information. The nominal rotor model demonstrated poor correlation when compared with open-loop system identification data. Since considerable model error was realized, the nominal rotor model was corrected by employing optimization methodology to minimize the error of resonance and antiresonance frequencies between the modeled and experimental data.Validity of the updated open-loop model was demonstrated through successful implementation of a MIMO u-controller. Since the u-controller is generated based on the spindle model, robust levitation of the real machining spindle is achieved only when the model is of high fidelity. Spindle performance characterization was carried out at the tool location through evaluations of the dynamic stiffness as well as orbits at various rotational speeds. Updated model simulations exhibited high fidelity correspondence to experimental data confirming the predictive aptitude of the updated model. Further, a case study is presented which illustrates the improved performance of the u-controller when designed with lower uncertainty of the model\u27s accurac

    Analysis and Control of Flywheel Energy Storage Systems

    Get PDF

    Model Identification, Updating, and Validation of an Active Magnetic Bearing High-Speed Machining Spindle for Precision Machining Operation

    Get PDF
    High-Speed Machining (HSM) spindles equipped with Active Magnetic Bearings (AMBs) are envisioned to be capable of autonomous self-identification and performance self-optimization for stable high-speed and high quality machining operation. High-speed machining requires carefully selected parameters for reliable and optimal machining performance. For this reason, the accuracy of the spindle model in terms of physical and dynamic properties is essential to substantiate confidence in its predictive aptitude for subsequent analyses.This dissertation addresses system identification, open-loop model development and updating, and closed-loop model validation. System identification was performed in situ utilizing the existing AMB hardware. A simplified, nominal open-loop rotor model was developed based on available geometrical and material information. The nominal rotor model demonstrated poor correlation when compared with open-loop system identification data. Since considerable model error was realized, the nominal rotor model was corrected by employing optimization methodology to minimize the error of resonance and antiresonance frequencies between the modeled and experimental data.Validity of the updated open-loop model was demonstrated through successful implementation of a MIMO u-controller. Since the u-controller is generated based on the spindle model, robust levitation of the real machining spindle is achieved only when the model is of high fidelity. Spindle performance characterization was carried out at the tool location through evaluations of the dynamic stiffness as well as orbits at various rotational speeds. Updated model simulations exhibited high fidelity correspondence to experimental data confirming the predictive aptitude of the updated model. Further, a case study is presented which illustrates the improved performance of the u-controller when designed with lower uncertainty of the model\u27s accurac

    Robustness and Control of a Magnetically Levitated Transportation System

    Get PDF
    Electromagnetic suspension of Magnetic Levitation Vehicles (Maglev) has been studied for many years as an alternative to wheel-on rail transportation systems. In this work, design and implementation of control systems for a Maglev laboratory experiment and a Maglev vehicle under development at Old Dominion University are described. Both plants are modeled and simulated with consideration of issues associated with system non-linearity, structural flexibility and electromagnetic force modeling. Discussion concerning different control strategies, namely centralized and decentralized approaches are compared and contrasted in this work. Different types of electromagnetic non-linearities are considered and described to establish a convenient method for modeling such a system. It is shown how a Finite Element structural model can be incorporated into the system to obtain transfer function notation. Influence of the dynamic interaction between the Maglev track and the Maglev vehicle is discussed and supported by both analytical results and theoretical examples. Finally, several control laws designed to obtain stable and robust levitation are explored in detail

    Third International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors
    • …
    corecore