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1. Introduction 

Active Magnetic Bearing (AMB) uses electromagnetic force generated by electromagnets to move and suspend the 

rotor at a predefined position following that the mechanical contact and friction between rotor and stator are removed. 

The magnetic suspension based on AMB offers many advantages over the conventional bearings such as long life, 

higher rotating speed, no lubrication, etc. Hence, AMBs have been widely used in many applications such as turbine 

engine [1], agile satellite [2], and especially in the Flywheel Energy Storage System (FESS) [3, 4, 5]. 

Since the force generated by the AMB is a strong nonlinear function of the coil current and the air gap, the control 

design for the AMB system is quite complicated and pay a lot of attention. To deal with the nonlinearity of the AMB, 

the control design is normally categorized into two approaches. In the first approach, a linear model is derived from its 

nonlinear counterpart by doing Taylor expansion around an equilibrium point. Then, various well-known controllers 

such as state feedback [6], robust H∞ [7, 8], sliding mode control [9, 10, 11], backstepping control [12] are designed 

based on the linear transfer function or state space model. Additional solutions such as adaptive [12], neural network 

[10] are also employed to improve the robustness of the control system. In the second approach, the control design is 

carried out based on the nonlinear model directly. For examples, a nonlinear one-step predictive control is proposed in 

[13] to stabilize an AMB with predefined linear dynamics. In [14], the flatness-based control is employed in which the 

nonlinear design of current, voltage, and cascaded feedback laws is carried out to track a desired sufficiently 

differentiable reference trajectory. The nonlinear backstepping method is also used in [15], [16], and [17] to achieve 

global exponential position tracking. Several control methods proposed for the bearing system such as robust control, 

fuzzy, exact linearization can be listed in [18, 19, 20, 21, 22]. Recently, in the way of intelligent controls, intelligent-

based controls are developed for active magnetic bearing such as neural network and iterative learning techniques [23, 

Abstract: A disc-type rotor magnetic bearing with 3-pole magnet is considered in the paper. The disc-type rotor 
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24, 25] It is evident that research on the active magnetic bearing with disc-type rotor is not well-established, coupling 

mechanisms are properly handled. 

Although most above-mentioned control methods give good result and are valuable to the AMB system, not many 

controllers designed in discrete-time domain which suits well the embedded control systems are achieved. Hence, this 

paper focuses on developing of a simple discrete-time control algorithm which can easily be installed in low-cost 

digital controllers. In advance, the proposed control method must be robust against the disturbance due to the fact that 

several parameters of the AMB such as the coil resistance, inductance and the mass of the rotor may be inaccurate. To 

achieve these goals, a linearized discrete-time state space model of the AMB which includes the errors caused by the 

parameter variation is built first. Then, a control law which fulfills a predefined position error dynamic is designed 

based on the predictive control technique. A control problem of a disc-type rotor magnetic bearing with 3-pole magnet 

is considered. The configuration exhibit strong couplings between the acting forces. The paper proposes a decoupling 

strategy based on a coordinate transformation to eliminate coupling effects; this property make the control design 

process easier. The transformation can be generalized to other disc-type rotors with different poles configuration. The 

validity of the proposed method is verified by various numerical simulations. 

 

2. Mathematical Model of a Dual Coils Magnetic Actuator 

A simple single coil magnetic actuator is shown in Fig. 1. In which, N  is the number of the turns of the coil, I  is 

the current, 
gA  is the cross section area and g  is the air gap, l  is the length of the magnetic circuit. The mathematical 

model of the magnetic actuator is based on the following assumptions: 

 
Fig. 1 - Single and dual coils magnetic actuator 

 

Assumption 1: The permeability of the isotropic mediums used in the paper m  is constant in each segment, which 

results in: 

 B
j
= m

j
H
j
  (1) 

 

in which, B  is the magnetic flux density, H  is the magnetic field intensity and j  is the index of the segment. 

Assumption 2: The permeability of the air gap is much less than the permeability of the iron core, i.e., 
g c   

Applying the Ampere’s loop law for the magnetic circuit, it gives 

 

 H
j

j=1

N
s

å l
j
= B

j
j=1

N
s

å I
j
  (2) 

 

where Ns  is the number of segments. In view of Assumption 1, (2) can be rewritten as 

 

 
B
j
l
j

m
jj=1

N
s

å = B
j

j=1

N
s

å I
j
  (3) 
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Because there are only two air gaps in the circuit and based on Assumption 2, a simple manipulation yields 

 

 B =
m
g
NI

2g
  (4) 

 

The energy, which is stored in the air gap, can be described by  

 

 E = A
g
g Hò dB   (5) 

 

Since H  is a constant, it results in 

 

 E  =  A
g
gHB   (6) 

 

The electromagnetic force F  is defined as 

 

 F =
dE

dg
  (7) 

 

By using (1), (4) and (6), it can be deduced that 

 

 F =
m
g
N 2A

g

4

I

g

æ

èç
ö

ø÷

2

  (8) 

 

In our application, a dual coils magnetic actuator is used as shown in Fig.1. The rotor is levitated and kept in the middle 

of the two cores by two opposite electromagnetic force F
1
 and F

2
. The influence of gravity is represented by F

g
. In 

details,  
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where x
1

, x
2

 represent the two air gaps and K = m
g
N 2A

g
. Denote the nominal air gap by x

0
 and x  is the 

deviation of the rotor from the nominal position, then it can be derived from Fig. 2 that 

 

 x
1
= x

0
- x, x

2
= x

0
+ x    (11) 

 

By using Newton’s law, the dynamic of the system is 

 

   (12) 

 

Assume that the two coils are identical, by applying Kirchoff’s voltage law and take the back electromotive force 

caused by the air gap flux change into consideration, the voltage equation of each coil is 

 

 u
1
= Ri

1
+ L

s

di
1

dt
+
K

2

d

dt

i
1

x
1

æ

è
ç

ö

ø
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 u
2

= Ri
2
+ L

s

di
2

dt
+
K

2

d

dt

i
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x
2
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where L
s
 and R  are the inductance and resistance of each coil, respectively. From (9)-(14), the nonlinear dynamic of 

the dual coils magnetic actuator can be represented by 

 

   (15) 

 

in which J  is the velocity of the rotor. The dynamical model of the actuator specifies nonlinearity corresponding to 

current/air gap ratio. 

 

3. Linearization of a Magnetic Actuator 

As stated by the system equation (15), the dual coils magnetic actuator is quite complicated with four state 

variables and two control inputs. To simplify the system, the differential mode is chosen. In detail, denote the 

equilibrium point as [x ,J , i
1
, i

2
] corresponding to input voltage [u

1
,u

2
] , it yields 

 

 
i
1
= i

1
+ i, i

2
= i

2
- i

u
1
= u

1
+ u, u

2
= u

2
- u

  (16) 

 

where i  and u  are the small deviations of the current from the equilibrium. Suppose that the magnetic actuator is 

always bias by a constant current I
b

 and the nominal position x
0
 is chosen as the equilibrium, then by solving (15) in 

which all the differentials are zero, it results in 

 

 

x = x
0
, J = 0

i
1
= I

b
-
F
g
x

0

2

KI
b

, i
2

= I
b
+
F
g
x

0

2

KI
b

  (17) 

 

Now, substitute (11) and (16) into (37), a simple manipulation gives 

   (18) 

 

where 

   (19) 

 

 F(X,u) = f1(X,u) f2(X,u) f3(X,u)é
ë

ù
û

T

  (20) 
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In details, 

 

 f1(X,u) = J   (21) 

 

 f2(X,u) =  
K

4m

i1 + i

x0 - x
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2

-
K

4m

i1 - i
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æ
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ö

ø÷

2

+
Fg

m
  (22) 

 

 

f3(X,u) =
(x0 - x)

2Ls (x0 - x) + K
-R(i1 + i) + (u1 + u)éë ùû

-
(x0 - x)
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K
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J

é

ë
ê

ù

û
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+
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K
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J

é

ë
ê

ù

û
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  (23) 

 

It would be seen that the original nonlinear system (37) of two inputs u1,u2[ ]  and four state variables 

x,J,i1,i2[ ]  is now transformed into a nonlinear system (18) with only one input u  and three state variables 

x,J,i[ ]. Now, applying Taylor’s expansion for the right hand side of (18) and neglect all the high order differential 

terms, i.e, higher than 1st order, it results in the following linear system 

 

   (24) 

in which 
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1
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é

ë

ê
ê
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û

ú
ú

T

, C =
1 0 0

0 0 1

é

ë
ê

ù

û
ú   (27) 

 F = 0
Fg

m
0

é

ë

ê
ê

ù

û

ú
ú

T

, L0 =
K

2x0

  (28) 

 
In equation (24), X  and u  are regarded as the small deviation of state and control variables from the equilibrium. 

The linear model in that equation reflects the behavior of the magnetic actuator in a small vicinity around the 

equilibrium and can be used for control design. 
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4. Disc-type Three Phases Active Magnetic Bearing 

In this section, mechanical and electrical transformations are introduced for the disc-type three phase active 

magnetic bearing. The transformations result in a decoupling structure that allow separately designing control channels. 

 

4.1 Coordinate Transformation for Mechanical Signals 

 
Fig. 2 - Physical configuration 

 

In this research, a three-phase active magnetic bearing (3PAMB) which is used in flywheel energy storage system 

(FESS) is proposed. The configuration of the magnetic support disc-type flywheel is illustrated in Figure 2.  

 
Fig. 3 - Co-ordinates representation 

 

The system consists of three dual coils magnetic actuators distributed equally in space of rotor's periphery, 

corresponding to u , v , w  phases and acting forces Fu , Fv , Fw  resulting in u , v , and w  displacements. The disc-

type flywheel with its coordinate is depicted in Figure 3. Without loss of generality, Oxyz  coordinate is selected in 

such away the x  and u  axes are coincided. q x  and q y  are rotational angles about x  and y  axis. These forces are 

simultaneously controlled to suspend the rotor in the air gap. Motions perpendicular to z  axis is assumed to be well 

stabilized by other magnetic actuators independently and not considered in control design. It should be noted that this 

assumption implying can only move vertically and rotate along x  and y  directions. The motion equation of the 

flywheel in Ozqxqy  coordinate is given as: 

 

   (29) 

 

where m  is the flywheel mass, Jx  and Jy  are the flywheel inertia in x  and y  directions. Fze , M xe , and M ye
 are 

magnetic force and torques acting on z , x , and y  axes, respectively. As well Fzd , M xd , and M yd
 are 

corresponding disturbances (29) characterizing independent motion in each direction, however this is not the actual 
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actuating and sensing system due to physical arrangement of the magnets and position sensors as shown in Figure 2. 

 

 

Fig. 4 - Force, torque, and position relationship between Oxyz  and 
x yOz   coordinates 

Figure 4 suggests that, after fundamental geometrical manipulations, the transformation from Oxyz  to 0zqxqy 

can be obtained as 
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  (30) 

On the contrary, one can also derive the inverse transformation as 
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  (31) 

 

In a similar fashion, magnetic forces Fu , Fv , and Fw  are converted into axial force Fze , torque M xe , and M ye
 

about x  and y  axes, respectively. 
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  (32) 

 

From equations (29) and (32), it is straightforward to derive axial motions zu , zv , and zw  resulting from axial 

magnetic forces Fu , Fv , and Fw  corresponding to disturbances Fud , Fvd , and Fwd  as follows 

 

   (33) 

 

where the mass matrix is denoted by H  and is defined as 
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  (34) 

 

Equation (34) clearly show coupling mechanism between individual motions resulting in challenges in control 

design process. It is interesting to note that, the equation of motion described in equation(29) naturally characterized as 

decoupled motions in z , q x , and q y . From the observation, control design is carried for each decoupled individual 

motion in Ozqxqy  coordinate and eventually, the control forces are transformed back to physical platform with three 

dual magnetic actuators. 

 

4.2  Coordinate Transformation for Electrical Signals 

The transformation in term of virtual acting force and torques Fze , M xe , and M ye
 corresponding to virtual 

currents i1,2z
, ii1,2 x

, and i1,2 y
 is  established. In order to proceed to design step we need the actual control i.e. current 

in each magnet in Oxyz . The arrangement of three upper magnets in Oxyz  and Ozqzqy  are depicted as follows. 
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Fig. 5 - Current relationship between  Oxyz  and 
x yOz   coordinates 

 

The virtual magnets in Ozqzqy  demonstrate that control input i1,2z
 is in charge of levitating the disc in z  direction, 

ii1,2 x
, and i1,2 y

 produce torque to rotate the rotor along y  and x  directions, respectively. In order to derive the current 

transform, since dual-magnet systems are used, at first, we consider the upper-magnet group. As shown in Fig 5, we 

can derive the following relationship between virtual and actual control current 
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in the same fashion we can derive the transformation for lower magnets 

 

 

i1z

i1x

i1y

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

1 1 1

0
3

2
-

3

2

-1
1

2

1

2

é

ë

ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú

i1u

i1v

i1w

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

= E

i1u

i1v

i1w

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

  (36) 

 

4.3 Decoupling Control Structure 

From the above-mentioned coordinate transformation, the decoupling control structure can be summarized in 

Figure 6. 

 

S
Position 

Controller
Current 

Controller E
-1 Three-phase 

AMB

E

S
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( , , )refu v w ( , , )x y refz  
, ,x yz
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, ,x yz
i

  , ,u v wi

, ,x yz   , ,u v w

 

Fig. 6 - Control structure 
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The aforementioned coordinate transformations result in the following relationship 

 

 

Fze = F1z - F2 z =
K

4

i1z
2
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-
K

4

i1z
2

(e+ z)2

M xe = (F1x - F2x )r =
K

4

ri1z
2

(e-qxr)
2

-
K

4

ri1z
2

(e+q xr)
2

M ye = (F1y - F2y )r =
K

4

ri1y
2

(e-qyr)
2

-
K

4

ri2y
2
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ì

í

ï
ï
ï
ï

î

ï
ï
ï
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  (37) 

 
By using this proposed representation, the coupling effect is completely removed. The control design can be 

carried out for each channel independently. Then, the virtual control signals are transformed into the actual ones by a 

simple transformation. The control design for each independent actuator is carried out in the following section. 

 

5. Control Design 

Inheriting the decoupling scheme in section 4, the control problem of the disc-type rotor supported by the three-

phase magnetic bearing can be transferred to a single dual-magnet. For control design purpose, a discrete time state-

space model derived from (24) is used: 

 

 
Xk+1 = FXk + Guk +E+ dk

yk =CXk

ì

í
ï

îï

  (38) 

 

where Ts  is the sampling time, O(Ts ) is the small error caused by the numerical approximation. The corresponding 

state-space variables and matrices of the discrete-time system equations (38) are as follows: 

 

 Xk = xk Jk ik
é
ë

ù
û

T

  (39) 
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f31 f32 f33
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ù
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  (40) 

 

 G = eAt

0

Ts

ò dtB = A-1(F - I3)B = 0 0 G31
é
ë

ù
û

T

  (41) 

 

 E = eAt

0

Ts

ò dtF = A-1(F - I3)F = 0 E21 0é
ë

ù
û

T

   (42) 

 

 dk = 0 dJ ,k di,k
é
ë

ù
û

T

  (43) 

 

where I3 is an unity (3´ 3)  matrix and dk  represents the error caused by the parameters variations. 

 

5.1 Current Controller 

From equation (38), the predictive current can be described by 
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 ik+1 =f31xk +f32Jk +f33ik + G31uk + di,k   (44) 

 

Denote the desired current and the one step ahead current error by id ,k
 and ei,k+1

, respectively. In detail we have, 

 

 ei,k+1 = id ,k+1 - ik+1
  (45) 

 

The control signal uk  which forces ei,k+1
 to zero can be obtained by solving the following equation 

 

 ei,k+1 = 0  (46) 

 
By substituting (44) into (46), a fundamental operation yields 

 

 uk =
1

G31

id ,k+1 -f31xk -f32Jk -f33ik - di,k( )  (47) 

 

Since di,k  is unknown, its corresponding approximation d̂i,k  is employed, instead. This approximation is based on the 

following assumption: 

Assumption 3: The disturbance di (t) is slow time-varying in comparison with the sampling frequency such that the 

difference between two consecutive sampling cycle is restricted by 

 

 di,k - di,k-1 =O(Ts )   (48) 

 
Based on (48) and (45), it gives 

 

 d̂i,k » di,k-1 = ik -f31xk-1 -f32Jk-1 -f33ik-1 - G31uk-1
  (49) 

 
As a result, the control action for the current loop is 

 

 uk =
1

G31

id ,k+1 -f31xk -f32Jk -f33ik - d̂i,k( )  (50) 

 

following that ei,k®O(Ts ) in one step. 

 

5.2  Position Controller 

Define the generalized predictive position error Ex,k+3
 as 

 

 Ex,k+3 = ex,k+3 + b1ex,k+2 + b2ex,k+1 + b3ex,k   (51) 

 

where b1 , b2  and b3  are design parameters which can be chosen such that (51) is Hurwitz, and ex,k
 is the 

instantaneous position error computed by 

 

 ex,k = xd ,k - xk   (52) 

 
Based on (38), a fundamental operation gives 

 

 
Ex,k+3 = g 1,k+3 + (g 2f11 +g 3f21)xk + (g 2f12 +g 3f22 )Jk

+g 3f23ik + (g 3E21 +g 4 )-f12f23ik+1 + (g 3 -f12 )dx,k

  (53) 
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in which, 

 g 1,k+3 = xd ,k+3 + b1xd ,k+2 + b2xd ,k+1 + b3ex,k , g 2 = - f11

2 +f12f21 + b1f11 + b2( )  (54) 

 

 g 3 = - f11f12 +f12f22 + b1f12( ), g 4 = -f12E21
  (55) 

 
The command current which forces the generalized position error to zero is obtained by solving 

 Ex,k+3 = 0   (56) 

 
which results in 

 id ,k+1 =
g 1,k+3 +q1xk +q2Jk +q3ik +q4 + (g 3 -f12 )dx,k

f12f23

  (57) 

 
with 

 
q1 = g 2f11 +g 3f21, q2 = g 2f12 +g 3f22

q3 = g 3f23, q4 = g 3E21 +g 4

  (58) 

 

Again, the estimation of the unknown terms dx,k
 is based on (38) and the one step delay technique as following 

 
d̂x,k » dx,k-1

= Jk -f21xk-1 -f22Jk-1 - E21

  (59) 

 
We define 

   (60) 

 
and assume that the sampling frequency is sufficient large such that 

   (61) 

 

Then, the following command current can drive the rotor to its desired position with O(Ts )  error despite the 

parameters variation 

 id ,k+1 =
g 1,k+3 +q1xk +q2Jk +q3ik +q4 + (g 3 -f12 )d̂x,k

f12f23

  (62) 

 

6. Simulation Results 

To evaluate the feasibility and effectiveness of the control method, numerical simulations are carried out in this 

section. The parameters of the magnetic actuator are provided in Table. 1 and proposed controller parameters 

b1 = -1.5 , b2 = 0.71, b3 = -0.105 , and Ts = 1 ms . Initially, u(t0 ) = v(t0 ) = w(t0 ) = 0 , since the rotor is 

symmetrical and three electrical magnets are identical, it implies that dynamical responses of three magnets are 

analogous. 

Table 1 - Parameters of the magnetic actuators 

Rs  
0.97 Ω 

Ls  
0.0542 mH 

N  280 Rounds 

x0  0.001 m 

Ag  0.0022 m2 

m  14 kg 

mg  1.2566×10−6 H/m 
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However, the final goal of the design is to stabilize the original nonlinear system around the equilibrium. Hence, 

various simulations with the nonlinear model are conducted in this section. The initial position of the rotor is 

[ , , ] [ 0.5 mm,  0.34 mm,  0.1 mm]u v w    . At simulation time corresponding to sampling cycle 300th
, we introduce 

external noises of 1 Nm, 2 Nm, and 20 N to q x , q y , and z  directions, respectively. The step responses of the control 

system are shown in Fig. 7. As can be observed, the system is stable without steady-state error after 70 sampling cycles. 

The overshoot is observed but well maintained in within the nomial airgap.  The coil currents converge to their 

corresponding equilibriums. However, the oscillation always occurs in the transient state due to the fact that the desired 

controller only performs well in the vicinity of the equilibrium.  

 

 
Fig. 7: Step responses of the controlled system  

 
Fig. 8 - Control current responses 
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Fig. 9 - Control voltage responses 

 

In general, the transient period in position responses is approximately of 0.1 s. The robustness of the controller is 

also verified by changing the rotor mass suddenly in the simulation. The result in Fig. 7 shows that the rotor quickly 

returns to its desired position in finite sampling cycles. Figure 8 indicates control currents corresponding to magnetic 

forces produced by the opposing magnets where it is witnessed the increase in control currents after sampling cycle 

300th
 to counteract the external disturbances. The applied control voltage, which is well maintained around 100 V, is 

presented in Fig. 9 implying the control input is of applicable range. 

 

7. Conclusions 

The contribution of the paper is the formulation of the coordinate transformation to decouple acting 

electromagnetic forces on the disc-type rotor. Based on the decoupling nature, control design can be done for each 

virtual electrical magnet independently and then the result is transformed back to actual actuators. In this research, the 

discrete time control design for the dual coil magnetic actuator applied to flywheel energy storage is discussed. First, 

the controller is designed based on the linearized model. Then, disturbance estimation technique is employed to 

enhance the robustness of the control system against the parameters variation. The effectiveness of the proposed 

controller is confirmed by various numerical simulations. The developed control design is straightforward and simple, 

the simulation results show good stabilizing ability of the controlled system. In the near future, we will look at the 

effects of rotational motion to the system and how the control can deal with this type of coupling. In addition, 

experimental works will be carried out in the next phase of our study. 
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