14 research outputs found

    A framework for surface metrology on Cultural Heritage objects based on scanning conoscopic holography

    Get PDF
    L'applicazione della metrologia di superficie e dell'analisi dimensionale allo studio dei beni culturali può rivelare importanti informazioni sull'oggetto e favorire l'integrazione di molteplici tecniche diagnostiche. Tuttavia, l'applicazione di queste discipline ai Beni Culturali richiede particolari requisiti e attenzioni. In questa tesi, presento i risultati dell'implementazione di diversi sistemi di misurazione della superficie basati sul principio della conoscopia olografica. I senori conoscopici sono strumenti capaci di misurare distanze con precisione micrometrica a scale diverse, accoppiati a slitte micrometriche possono essere utilizzati per acquisire scansioni areali dell'oggetto in esame. Per facilitare la loro applicazione alle opere d'arte ho sviluppato un extit{framework} per applicare la metrologia di superficie ai beni culturali. Il framework copre diversi aspetti del processo di analisi ed utilizzo dei dati e comprende la creazione di raccolte di campioni, le strategie per la scansione dell'oggetto, l'archiviazione e l'analisi dei dati ed eventualmente l'incertezza legata alla misura. Il extit{framework} mira a rendere più accessibile l'implementazione della metrologia di superficie e dei sistemi di scansione dell'analisi dimensionale per l'analisi dei beni culturali. I risultati raccolti su una varietà di materiali artistici (metalli, dipinti su tavola, tela, carta, pergamena e dipinti murali) mostrano come questi sistemi possano essere utilizzati per monitorare gli effetti delle procedure di pulitura, la stabilità dimensionale delle opere d'arte ed il loro invecchiamento.The application of surface metrology and dimensional analysis to the study of artworks can reveal important information on the object and aid the integration of multiple techniques. However, the application of these disciplines to Cultural Heritage objects necessitates particular care and requirements. In this dissertation, I present the results of the implementation of different systems, based on Conoscopic Holography range finders, for measuring the surface. Conoscopic holography range finders are viable instruments for measuring distances with micrometer accuracy at different scales, coupled with micrometric stages they can be used for acquiring areal scans of the object under investigation. To ease their application to artworks I built a framework for applying surface metrology to Cultural Heritage objects. The framework covers different aspects of the research workflow comprising the creation of samples collections, the strategies for scanning the object, the storing and the analysis of the data and eventually the uncertainty linked to the measurement. This framework aims to make more accessible the implementation of surface metrology and dimensional analysis scanning systems tailored to the analysis of Cultural Heritage objects. The results collected on a variety of artworks materials (metals, panels painting, canvas, paper, parchment and mural paintings) show how these systems can be used for monitoring the effects of cleaning procedures, the dimensional stability of the artworks and their ageing

    Towards the Control of Electrophotographic-based 3-Dimensional Printing: Image-Based Sensing and Modeling of Surface Defects

    Get PDF
    Electro-Photography (EP) has been used for decades for fast, cheap, and reliable printing in offices and homes around the world. It has been shown that extending the use of EP for 3D printing is feasible; multiple layered prints are already commercially available (color laser printers) but only for a very limited number of layers. Many of the advantages of laser printing make EP 3D printing desirable including: speed, reliability, selective coloring, ability to print a thermoplastic, possibilities for multi-material printing, ability to print materials not amenable to liquid ink formulations. However, many challenges remain before EP-based 3D printing can be commercially viable. A limiting factor in using the same system architecture as a traditional laser printer is that as the thickness of the part increases, material deposition becomes more difficult with each layer since the increased thickness reduces the field strength. Different system configurations have been proposed where the layer is printed on intermediate stations and are subsequently transferred to the work piece. Layer registration and uniform transfer from the intermediate station become crucial factors in this architecture. At the Print Research and Imaging Systems Modeling (PRISM) Lab preliminary tests have confirmed the feasibility of using EP for Additive Manufacturing (AM). However, similar issues were encountered to those reported in literature as the number of layers increased, resulting in non-uniform brittle 3D structures. The defects were present but not obvious at each layer, and as the part built up, the defects add up and became more obvious. The process, as in many printers, did not include a control system for the ultimate system output (print), and the actuation method (electrostatic charge) is not entirely well characterized or sensed to be used in a control system. This research intends to help the development of a model and an image-based sensing system that can be used for control of material deposition defects for an EP 3D printing process. This research leverages from the expertise at RIT and the Rochester area in Printing, Electrophotography, Rapid Prototyping, Control, and Imaging Sciences

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Social work with airports passengers

    Get PDF
    Social work at the airport is in to offer to passengers social services. The main methodological position is that people are under stress, which characterized by a particular set of characteristics in appearance and behavior. In such circumstances passenger attracts in his actions some attention. Only person whom he trusts can help him with the documents or psychologically

    Annual Report of the University, 1994-1995, Volumes 1-4

    Get PDF
    DEMONSTRATING THE STRENGTH OF DIVERSITY A walk around the UNM campus as students change classes demonstrates UNM\\u27s commitment to diversity. Students and professors from a variety of ethnic backgrounds crowd the sidewalks and fill classrooms. Over the past year UNM moved forward with existing and new programs to interest more minority students, faculty and staff in the University and to aid in their success while here. Hispanic Outlook in Higher Education recently recognized the University\\u27s endeavors, ranking UNM as one of the best colleges in the nation at graduating Hispanic students. Provost Mary Sue Coleman says diversity contributes to a stimulating environment where faculty and students have different points of view and experiences. The campus becomes a more intellectually alive place, she says. The efforts to build a diverse campus go hand in hand with the University\\u27s goals of achieving academic excellence and attracting the best and brightest. MINORITY ENROLLMENT In the fall of 1994 a total of 32 percent of the student body came from underrepresented groups. The UNM School of Law had the largest number of Native Americans enrolled in any law school in the country

    Towards Predictive Rendering in Virtual Reality

    Get PDF
    The strive for generating predictive images, i.e., images representing radiometrically correct renditions of reality, has been a longstanding problem in computer graphics. The exactness of such images is extremely important for Virtual Reality applications like Virtual Prototyping, where users need to make decisions impacting large investments based on the simulated images. Unfortunately, generation of predictive imagery is still an unsolved problem due to manifold reasons, especially if real-time restrictions apply. First, existing scenes used for rendering are not modeled accurately enough to create predictive images. Second, even with huge computational efforts existing rendering algorithms are not able to produce radiometrically correct images. Third, current display devices need to convert rendered images into some low-dimensional color space, which prohibits display of radiometrically correct images. Overcoming these limitations is the focus of current state-of-the-art research. This thesis also contributes to this task. First, it briefly introduces the necessary background and identifies the steps required for real-time predictive image generation. Then, existing techniques targeting these steps are presented and their limitations are pointed out. To solve some of the remaining problems, novel techniques are proposed. They cover various steps in the predictive image generation process, ranging from accurate scene modeling over efficient data representation to high-quality, real-time rendering. A special focus of this thesis lays on real-time generation of predictive images using bidirectional texture functions (BTFs), i.e., very accurate representations for spatially varying surface materials. The techniques proposed by this thesis enable efficient handling of BTFs by compressing the huge amount of data contained in this material representation, applying them to geometric surfaces using texture and BTF synthesis techniques, and rendering BTF covered objects in real-time. Further approaches proposed in this thesis target inclusion of real-time global illumination effects or more efficient rendering using novel level-of-detail representations for geometric objects. Finally, this thesis assesses the rendering quality achievable with BTF materials, indicating a significant increase in realism but also confirming the remainder of problems to be solved to achieve truly predictive image generation

    Aging Prediction of Cultural Heritage Samples Based on Surface Microgeometry

    Get PDF
    A critical and challenging aspect for the study of Cultural Heritage (CH) assets is related to the characterization of the materials that compose them and to the variation of these materials with time. In this paper, we exploit a realistic dataset of artificially aged metallic samples treated with different coatings commonly used for artworks' protection in order to evaluate different approaches to extract material features from high-resolution depth maps. In particular, we estimated, on microprofilometric surface acquisitions of the samples, performed at different aging steps, standard roughness descriptors used in materials science as well as classical and recent image texture descriptors. We analyzed the ability of the features to discriminate different aging steps and performed supervised classification tests showing the feasibility of a texture-based aging analysis and the effectiveness of coatings in reducing the surfaces' change with time
    corecore