78 research outputs found

    A Comprehensive Security Framework for Securing Sensors in Smart Devices and Applications

    Get PDF
    This doctoral dissertation introduces novel security frameworks to detect sensor-based threats on smart devices and applications in smart settings such as smart home, smart office, etc. First, we present a formal taxonomy and in-depth impact analysis of existing sensor-based threats to smart devices and applications based on attack characteristics, targeted components, and capabilities. Then, we design a novel context-aware intrusion detection system, 6thSense, to detect sensor-based threats in standalone smart devices (e.g., smartphone, smart watch, etc.). 6thSense considers user activity-sensor co-dependence in standalone smart devices to learn the ongoing user activity contexts and builds a context-aware model to distinguish malicious sensor activities from benign user behavior. Further, we develop a platform-independent context-aware security framework, Aegis, to detect the behavior of malicious sensors and devices in a connected smart environment (e.g., smart home, offices, etc.). Aegis observes the changing patterns of the states of smart sensors and devices for user activities in a smart environment and builds a contextual model to detect malicious activities considering sensor-device-user interactions and multi-platform correlation. Then, to limit unauthorized and malicious sensor and device access, we present, kratos, a multi-user multi-device-aware access control system for smart environment and devices. kratos introduces a formal policy language to understand diverse user demands in smart environment and implements a novel policy negotiation algorithm to automatically detect and resolve conflicting user demands and limit unauthorized access. For each contribution, this dissertation presents novel security mechanisms and techniques that can be implemented independently or collectively to secure sensors in real-life smart devices, systems, and applications. Moreover, each contribution is supported by several user and usability studies we performed to understand the needs of the users in terms of sensor security and access control in smart devices and improve the user experience in these real-time systems

    Fighting the network: MANET management in support of littoral operations

    Get PDF
    Advances in computer processing and communications capabilities have contributed to the recent explosion of mesh network technologies. These technologies’ operational benefits are of particular interest for those operating in the littorals. The dynamic complexities of the littorals force tactical decision-makers to adapt to a constantly changing battlespace in a constrained temporal and spatial environment. Ongoing research into the integration of unmanned systems and sensors as mobile ad-hoc network (MANET) nodes highlights the significant potential to improve situational awareness and force efficiency in the littoral environment. However, difficulties associated with tactical network operations and management make the littorals particularly challenging. There remains a need for a unified approach to managing these networks in a coherent and effective manner. The complexity of the littorals emphasizes the inherent interconnectedness of MANET management and command and control (C2). As a result, new and innovative approaches to C2 are also required. This thesis explores the value of modern network management systems as they contribute to the richness of the human-network interface, as well as the integration of network management and maneuver at the tactical level. The result is a proposal for a novel framework for littoral MANET management and C2 as a corollary of cyber-physical maneuver.http://archive.org/details/fightingnetworkm1094548561Outstanding ThesisLieutenant, United States NavyApproved for public release; distribution is unlimited

    Counter Unmanned Aircraft Systems Technologies and Operations

    Get PDF
    As the quarter-century mark in the 21st Century nears, new aviation-related equipment has come to the forefront, both to help us and to haunt us. (Coutu, 2020) This is particularly the case with unmanned aerial vehicles (UAVs). These vehicles have grown in popularity and accessible to everyone. Of different shapes and sizes, they are widely available for purchase at relatively low prices. They have moved from the backyard recreation status to important tools for the military, intelligence agencies, and corporate organizations. New practical applications such as military equipment and weaponry are announced on a regular basis – globally. (Coutu, 2020) Every country seems to be announcing steps forward in this bludgeoning field. In our successful 2nd edition of Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets (Nichols, et al., 2019), the authors addressed three factors influencing UAS phenomena. First, unmanned aircraft technology has seen an economic explosion in production, sales, testing, specialized designs, and friendly / hostile usages of deployed UAS / UAVs / Drones. There is a huge global growing market and entrepreneurs know it. Second, hostile use of UAS is on the forefront of DoD defense and offensive planners. They are especially concerned with SWARM behavior. Movies like “Angel has Fallen,” where drones in a SWARM use facial recognition technology to kill USSS agents protecting POTUS, have built the lore of UAS and brought the problem forefront to DHS. Third, UAS technology was exploding. UAS and Counter- UAS developments in navigation, weapons, surveillance, data transfer, fuel cells, stealth, weight distribution, tactics, GPS / GNSS elements, SCADA protections, privacy invasions, terrorist uses, specialized software, and security protocols has exploded. (Nichols, et al., 2019) Our team has followed / tracked joint ventures between military and corporate entities and specialized labs to build UAS countermeasures. As authors, we felt compelled to address at least the edge of some of the new C-UAS developments. It was clear that we would be lucky if we could cover a few of – the more interesting and priority technology updates – all in the UNCLASSIFIED and OPEN sphere. Counter Unmanned Aircraft Systems: Technologies and Operations is the companion textbook to our 2nd edition. The civilian market is interesting and entrepreneurial, but the military and intelligence markets are of concern because the US does NOT lead the pack in C-UAS technologies. China does. China continues to execute its UAS proliferation along the New Silk Road Sea / Land routes (NSRL). It has maintained a 7% growth in military spending each year to support its buildup. (Nichols, et al., 2019) [Chapter 21]. They continue to innovate and have recently improved a solution for UAS flight endurance issues with the development of advanced hydrogen fuel cell. (Nichols, et al., 2019) Reed and Trubetskoy presented a terrifying map of countries in the Middle East with armed drones and their manufacturing origin. Guess who? China. (A.B. Tabriski & Justin, 2018, December) Our C-UAS textbook has as its primary mission to educate and train resources who will enter the UAS / C-UAS field and trust it will act as a call to arms for military and DHS planners.https://newprairiepress.org/ebooks/1031/thumbnail.jp

    Aeronautical engineering: A continuing bibliography with indexes (supplement 301)

    Get PDF
    This bibliography lists 1291 reports, articles, and other documents introduced into the NASA scientific and technical information system in Feb. 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Multi-agent Collision Avoidance Using Interval Analysis and Symbolic Modelling with its Application to the Novel Polycopter

    Get PDF
    Coordination is fundamental component of autonomy when a system is defined by multiple mobile agents. For unmanned aerial systems (UAS), challenges originate from their low-level systems, such as their flight dynamics, which are often complex. The thesis begins by examining these low-level dynamics in an analysis of several well known UAS using a novel symbolic component-based framework. It is shown how this approach is used effectively to define key model and performance properties necessary of UAS trajectory control. This is demonstrated initially under the context of linear quadratic regulation (LQR) and model predictive control (MPC) of a quadcopter. The symbolic framework is later extended in the proposal of a novel UAS platform, referred to as the ``Polycopter" for its morphing nature. This dual-tilt axis system has unique authority over is thrust vector, in addition to an ability to actively augment its stability and aerodynamic characteristics. This presents several opportunities in exploitative control design. With an approach to low-level UAS modelling and control proposed, the focus of the thesis shifts to investigate the challenges associated with local trajectory generation for the purpose of multi-agent collision avoidance. This begins with a novel survey of the state-of-the-art geometric approaches with respect to performance, scalability and tolerance to uncertainty. From this survey, the interval avoidance (IA) method is proposed, to incorporate trajectory uncertainty in the geometric derivation of escape trajectories. The method is shown to be more effective in ensuring safe separation in several of the presented conditions, however performance is shown to deteriorate in denser conflicts. Finally, it is shown how by re-framing the IA problem, three dimensional (3D) collision avoidance is achieved. The novel 3D IA method is shown to out perform the original method in three conflict cases by maintaining separation under the effects of uncertainty and in scenarios with multiple obstacles. The performance, scalability and uncertainty tolerance of each presented method is then examined in a set of scenarios resembling typical coordinated UAS operations in an exhaustive Monte-Carlo analysis

    Spinoff 1993

    Get PDF
    This publication is intended to foster the aim of the NASA Technology Transfer Program by heightening awareness of the NASA technology available for reapplication and its potential for public benefit. The publication is organized in three main sections. Section 1 outlines NASA's mainline effort, the major programs that generate new technology and therefore replenish and expand the bank of knowledge available for transfer. Section 2 contains a representative sampling of spinoff products that resulted from secondary application of technology originally developed to meet mainline goals. Section 3 describes the various mechanisms NASA employs to stimulate technology transfer and lists, in an appendix, contact sources for further information about the Technology Transfer Program
    • …
    corecore