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ABSTRACT OF THE DISSERTATION

A COMPREHENSIVE SECURITY FRAMEWORK FOR SECURING SENSORS

IN SMART DEVICES AND APPLICATIONS

by

Amit Kumar Sikder

Florida International University, 2020

Miami, Florida

Professor A. Selcuk Uluagac, Major Professor

This doctoral dissertation introduces novel security frameworks to detect sensor-based

threats on smart devices and applications in smart settings such as smart home, smart

office, etc. First, we present a formal taxonomy and in-depth impact analysis of exist-

ing sensor-based threats to smart devices and applications based on attack character-

istics, targeted components, and capabilities. Then, we design a novel context-aware

intrusion detection system, 6thSense, to detect sensor-based threats in standalone

smart devices (e.g., smartphone, smart watch, etc.). 6thSense considers user activity-

sensor co-dependence in standalone smart devices to learn the ongoing user activity

contexts and builds a context-aware model to distinguish malicious sensor activities

from benign user behavior. Further, we develop a platform-independent context-

aware security framework, Aegis, to detect the behavior of malicious sensors and

devices in a connected smart environment (e.g., smart home, offices, etc.). Aegis

observes the changing patterns of the states of smart sensors and devices for user

activities in a smart environment and builds a contextual model to detect malicious

activities considering sensor-device-user interactions and multi-platform correlation.

Then, to limit unauthorized and malicious sensor and device access, we present,

Kratos, a multi-user multi-device-aware access control system for smart environment

and devices. Kratos introduces a formal policy language to understand diverse user

vi



demands in smart environment and implements a novel policy negotiation algorithm

to automatically detect and resolve conflicting user demands and limit unauthorized

access. For each contribution, this dissertation presents novel security mechanisms

and techniques that can be implemented independently or collectively to secure sen-

sors in real-life smart devices, systems, and applications. Moreover, each contribution

is supported by several user and usability studies we performed to understand the

needs of the users in terms of sensor security and access control in smart devices and

improve the user experience in these real-time systems.
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CHAPTER 1

INTRODUCTION

Smart devices such as smartphones, smart watches, smart locks, smart ther-

mostats, smart plug-ins, and their applications have become omnipresent in our day to

day lives. The role of smart devices and their applications has expanded from making

phone calls and messaging to home security, health care, and even military applica-

tions. With the introduction of the Internet of Things (IoT) [LBAU17, CMT+19],

smart devices can now interact with each other and with the physical world to per-

form different tasks and take autonomous decisions. As smart devices use different

high-precision sensors to ensure seamless integration with the cyber and physical

world, they provide more efficient and user-friendly applications [LML+10]. However,

recent researches have proved that attackers can exploit the sensors of smart devices to

perform different malicious activities [FJP16,JCW+17]. Attackers can leak sensitive

information using sensors, trigger an existing malware on a device, or steal sensitive

stored information using sensors [SAU17, SPA+18]. Attackers can even use the sen-

sors as a communication channel to transfer a malware in a smart device [USB14].

These sensor-based threats have become more critical with the growing popularity

of sensing-enabled applications and automation systems in smart environments (e.g.,

smart home, smart office, smart factory). Unfortunately, existing security solutions

do not consider these threats and attackers can easily bypass the solutions to initiate

sensor-based attacks in the smart devices. For instance, the Android sensor manage-

ment system only enforces permission-based access control to the apps for specific

sensors (e.g., GPS, camera, audio sensors). After granting initial permission, the

user cannot control the usage of the sensors by the apps. More importantly, there

are sensors that are by default activated by the sensor management systems. For

instance, an installed app automatically gets the permission to access motion, light,
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and proximity sensors. Also, unauthorized sensor access in one device might lead to

malicious activities in other connected devices [BSAU18]. For instance, in a smart

home system, an attacker with unauthorized access to the smoke sensor can inject

false data to trigger the fire alarm maliciously. In this context, a comprehensive secu-

rity framework is needed to supervise atypical sensor access and detect these emerging

sensor-based threats in both standalone and connected smart devices. Moreover, a

detailed understanding of these threats as well as the needs of the users are also of

paramount importance in this dissertation.

Investigation of Sensor-based Threats to Smart Devices & Applications:

The use of sensors in smart devices inevitably increases the functionality of the de-

vices; however, the sensors can also be used as vehicles to launch attacks on the

devices or applications. Recently, there have been several attempts to exploit the

security of smart devices via their sensors [SAU17]. Attackers can use the sen-

sors to transfer malicious code or a trigger message to activate malware planted

in a device [SUCB13, HSH+13], capture sensitive personal information shared be-

tween devices (e.g., smartwatches, smart home devices, etc.) [WMJ19, SZZ+11], or

even extract encrypted information by capturing encryption and decryption keys [DP-

SKM15]. Moreover, attackers can use the sensors of one device as an attack platform

to abuse or interrupt normal functionalities of connected devices [CA17]. For instance,

a specific on/off pattern of a smart light can trick a smart camera to capture and leak

pictures containing sensitive information in a smart home environment [SBAU19].

Recently, TrendMicro, a renowned security company, reported in 2019 three publicly

available Android apps in Google Playstore used the motion sensor to evade malware

scanners in the smartphone [Mic19]. These sensor-based threats pose a significant

risk to the smart devices as manufacturers are not fully aware yet [USB14]. Indeed,

sensor-based threats are becoming more prevalent because of the easy access to the
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sensors and the limited security measures that consider these threats. Hence, trivial

execution, easy access to the sensors, and lack of knowledge about the sensor-based

threats constitute significant risks for the smart devices. Thus, understanding these

sensor-based threats and attacks in the literature is necessary for researchers and the

community to design reliable solutions to detect and prevent these threats efficiently.

Sensor-based Threat Detection in Standalone Smart Devices and Applica-

tions: The use of sensors on smart devices (e.g., smartphone, smart watch, etc.) en-

ables a seamless connection between the devices and the physical world. Indeed, mod-

ern smart devices come with a wide range of sensors (e.g., accelerometer, gyroscope,

microphone, light sensor, etc.) that enable more efficient and user-friendly applica-

tions [LML+10]. While the number of applications using different sensors is increasing

and new devices offer more sensors, the presence of sensors have opened novel ways

to exploit the smart devices [USB14]. Attackers can exploit the embedded sensors in

standalone smart devices multiple ways [USB14]. In recent years, several sensor-based

threats such as keystroke inference [HS12,MAJH16], task inference [NWX+20], false

data injection [Cof14], and eavesdropping [SZZ+11] have been reported in standalone

smart devices, especially smartphones and smart watches [SAU17]. Such sensor-

based threats become more serious with the rapid growth of Apps utilizing many

sensors [CA17]. In fact, these sensor-based threats highlight the flaws of existing

sensor management systems used by smart devices. Albeit useful, existing security

schemes overlook these critical threats which directly impact the security and privacy

of the smart device ecosystem. Moreover, although embedded sensors on standalone

smart devices seem to work independently from each other, a task or activity on a

smart device may activate more than one sensor to accomplish the task. Hence, it is

necessary to secure all the different sensors and consider the context of the sensors in

building any solution against the sensor-based threats on standalone smart devices.
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Sensor-based Threat Detection in a Connected Smart Environment: The

capabilities of the smart devices in a connected smart environment (e.g., smart home,

smart office, etc.) have evolved from simply controlling lights and opening garage

doors to connecting our living spaces to the cyber world [ST17, LZCC14]. With the

tremendous growth of Internet of Things (IoT), smart devices now have advanced

capabilities to interact with other devices and create a smart environment to per-

form different user-defined tasks collectively. Such functionality provides more au-

tonomous, efficient, and convenient daily operations [FRJP17]. Compared to early

smart environment/systems with fixed device setup procedures and limited func-

tionalities, modern smart environment have adopted a more user-centric, app-based

model. Nowadays, users can download apps from the vendor’s app market (or even

develop their own) and easily set up and control the smart devices, which makes

connected smart environment more popular and versatile than ever [Sta18].

The integration of programming platforms with smart devices and sensors surely

enhances the functionalities, but also exposes the vulnerabilities of the smart devices

to attackers [BAU19]. These attackers can release malicious apps in third-party mar-

kets and public repositories (e.g., GitHub) easily. Then, careless users may download

and utilize them to control their devices. From here, the attackers can exploit smart

devices in several ways. Recently, a repository of malicious apps in different smart

platforms has been published exhibiting several vulnerabilities of the current smart

home app development ecosystem [IoT17]. Nonetheless, a security solution that com-

prehensively detects these emerging threats associated with smart devices and sensors

in a smart setting/environment does not currently exist and is direly needed. Recent

studies have proposed the implementation of enhanced permission models for smart

environment, which depend on specific user permissions [JCW+17] or the analysis

the source code of the apps to detect vulnerabilities, which is only effective against
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specific types of attacks [CBS+18,MBY+19]. In this circumstances, a context-aware

and platform-independent security framework that considers user activity contexts,

sensor-device-user interactions (e.g., movement directions, sensors activated, rooms

involved), and multi-platform correlation is needed to ensure secure operation of smart

devices and sensors in a connected environment.

Multi-user Multi-device-aware Access Control System for Smart Devices

and Settings: A smart environment/platform (e.g., smart home, smart office, smart

factory) allows multiple devices and sensors to be connected to automate daily activ-

ities and increase the overall efficiency of the homes and workplaces [Tea17,SAA+18].

Devices as simple as a light bulb to ones as complicated as an entire AC system

can be connected and exposed to multiple users. The users then interact with the

devices through different smart applications installed through a mobile host app pro-

vided by the smart device vendors. Traditional access control mechanisms proposed

for personal devices such as computers and smartphones primarily target single-user

scenarios. However, in a smart environment, multiple users access the same smart

device, typically via a common controller app (e.g., SmartThings App), which can

cause conflicting device settings. For instance, a homeowner may want to lock the

smart door lock at midnight while a temporary guest may want to access the lock after

midnight. Also, current smart device platforms do not allow the conflicting demands

of the users to be expressed explicitly. Finally, the current access control mechanism

in smart device platforms offer coarse-grained solutions that might cause safety and

security issues [CMT18, JCW+17, BSAU18]. For instance, smart devices often give

automatic full access to every user added to the system [Sam18a]. With full access, a

new user can easily add new unauthorized users, remove existing users, or reconfigure

the connected devices and sensors [TZL+17,SBAU19]. This benign, yet undesired ac-

tion from the new user can lead to several safety issues [SPA+18,CMT+19,NSRU19].
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In these real-life scenarios, current smart device platforms cannot fulfill such complex,

asymmetric, and conflicting demands of the users as they can only handle primitive

and broad controls with static configurations.

1.1 Research Problems

This dissertation has the following five major research components and problems

investigated:

1. A detailed investigation and formal taxonomy of sensor-based threats to smart

devices and applications to identify key characteristics and impacts of these threats.

2. The design of a novel threat detection system to protect the sensors against ma-

licious attacks in a standalone smart devices (e.g., smartphone, smartwatch) and

applications, called 6thSense.

3. The design of a novel centralized intrusion detection technique to protect the

sensors in a multi-user multi-device smart environment, called Aegis.

4. The design of a novel fine-grained access control system to restrict unauthorized

device access in a multi-user multi-device smart environment to limit and control

sensor access and resolve conflicting demands of the users, called Kratos.

5. The usability studies of the proposed frameworks to understand and support the

needs of the users and improve the users’ experience in a smart system.

In general, to protect smart devices against sensor-based threats, a security frame-

work must ensure high accuracy in detecting sensor-based threats in both stand-alone

and connected smart settings. Additionally, the proposed framework must provide

fine-grained access control to the users to protect the smart devices against sensor-

based threats emerging from unauthorized sensor access. Also, the proposed frame-

work should be scalable to ensure effectiveness against current and future sensor-

based threats to smart devices. Finally, all the components of the proposed security
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framework must operate in real-life systems with minimal overhead to assure efficient

performance.

1.2 Significance of the Studies

Cyberspace is expanding fast with the introduction of new smart device technolo-

gies dedicated to make our homes, offices, factories automated and smarter [Tea17,

SAA+18]. In this ecosystem, sensors and sensing-enabled applications on smart de-

vices in smart settings have become very popular as they provide more user-friendly

and efficient functions to the users. However, these sensors and applications, if com-

promised, can perform different malicious activities in the devices including sensitive

information leakage, triggering existing malware, unauthorized device access, etc. For

this reason, it is important to secure smart devices against these sensor-based threats.

In this dissertation, we aim to secure the smart devices against sensor-based threats

by proposing a comprehensive security framework which focuses on five specific needs:

(1) A formal taxonomy and impact analysis of sensor-based threats to smart devices

and applications based on common vulnerability metrics (2) A scalable and effec-

tive sensor-based threat detector for standalone smart devices and applications (3)

A centralized sensor-based threat detection method for connected multi-device smart

environment (4) A fine-grained access control mechanism to protect on-device sensors

from unauthorized access in multi-user multi-device smart environment And, (5) A

detailed usability study to understand the needs of the users in terms of security and

access control in smart devices and improve the user experience in real-time systems

for each security mechanism proposed in this dissertation.
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1.3 Organization of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we present back-

ground information to support this dissertation. Then, in Chapter 3, we discuss the

related work for each research problem stated in this dissertation. In Chapter 4, we

provide a detailed taxonomy and provide an in-depth impact analysis of sensor-based

threats to smart devices and applications. Chapter 5 introduces a novel context-aware

security framework to detect sensor-based threats on standalone smart devices. In

Chapter 6, we present a context-aware platform independent security framework for

connected smart environment. Chapter 7 presents a multi-user multi-device-aware

fine-grained access control system for the smart environment. Finally, we conclude

the dissertation and propose future research directions in Chapter 8.

8



CHAPTER 2

BACKGROUND

In this chapter, we present the necessary background information regarding the ar-

chitecture of smart devices, a connected smart environment, and security needs of

sensors in smart devices. This chapter will give an overview of the fundamental

building blocks of this dissertation. More detailed information can be found in the

related chapters.

2.1 Overview of Smart Devices

In this section, we introduce the components of smart devices as they are relevant to

understand the significance of sensor-based threats and attacks.

In general, a smart device is an electronic device which has the capability to con-

nect, share, and interact with its user, peripheral, and other smart devices using their

sensors and communication protocols [STTPLR13,Pos11,SFRS18]. These devices in

general have the following salient features:

• Sensing - Sensors in smart devices help to sense the surrounding environment and

perform different tasks based on measured events.

• Automation - Automation is the ability of a smart device to perform a task auto-

matically based on specific events. For example, the user presence in a room can

cause a sensor to turn a light on and off.

• Accessibility - Smart devices offer easy and remote accessibility to the users. Users

can control and monitor a smart device from a remote location. For example, users

can lock or unlock a smart lock from a remote location using a smartphone.

• Context-Awareness - Context-awareness refers to the ability of a device to un-

derstand and analyze its surroundings. A smart device can understand what is

9



happening around the device and perform different tasks accordingly. For exam-

ple, a smart lock can automatically unlock as a specific person approaches the door.

Here, the smart lock is aware of the user’s presence in its proximity and unlocks

the door.

• Self-Learning - Smart devices can learn usage patterns and change responses to

perform different tasks without any manual instruction from the users. For ex-

ample, a smart thermostat can learn the usage pattern of a user and adjust the

temperature automatically to save power.

A smart device can have all or a subset of the aforementioned features. These

features of smart devices are linked together with one common component- sensors in

smart devices. For instance, an embedded temperature sensor can be used to trigger a

smart thermostat at a pre-defined temperature which represents sensing, automation,

and self-learning features of smart devices. Again, external sensors can be connected

with smart devices using different communication protocols (e.g., ZigBee, Z-Wave,

BLE, etc.) or via cloud [sam17]. An external presence sensor can be configured with

a smart thermostat to turn on whenever a user enters a room which depicts context-

awareness. Users can also control smart devices remotely that can be associated with

the embedded sensors to automate on-going tasks. Hence, sensors in smart devices

are the key components that enable aforementioned salient features in smart devices.

2.2 Smart Device Architecture

It is important to understand the smart device architecture to better visualize the

sensor-based threats and attacks. The smart device architecture can be illustrated in

four working layers (sensing, communication, data processing, and application layer)

as shown in Figure 2.1. A smart device may have all the layers or a subset of these
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Figure 2.1: Smart device architecture layers and components. Some smart devices
may have all the layers (e.g., smart thermostat) or a subset of these layers (e.g., smart
sensors).

layers. For example, a smart sensor can have sensing, communication, and data

processing layer [M+08] whereas a smart phone can have all four layers. Each of

these layers are explained below.

2.2.1 Sensing Layer

The main purpose of the sensing layer is to identify any phenomena in the devices’

peripheral and obtain data from the real world. This layer consists of several sensors,

where multiple sensors are typically used together by applications to collect various

data [KKZK12]. The sensing layer of smart device ecosystem can consist of both on-

device sensors and external independent sensors. In both cases, sensors are usually

integrated through sensor hubs [PJZ+13]. A sensor hub is a common connection

point for multiple sensors that accumulate and forward sensor data to the processing

unit of a device. A sensor hub may use several transport mechanisms (e.g., Inter-

Integrated Circuit (I2C) or Serial Peripheral Interface (SPI)) for data flow between

sensors and applications. For on-device sensors, the sensor hub uses Inter-Integrated

Circuit (I2C) or Serial Peripheral Interface (SPI) to forward sensor data to the data
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processing layer. For external independent sensors, sensor data are forwarded to the

cloud server from the sensor hub and smart devices can accumulate these data from

the cloud server using the network layer. Sensors in smart devices can be classified

into three broad categories:

Motion Sensors. Motion sensors measure the change in motion as well as the

orientation of the devices. There are two types of motions one can observe in a device:

linear and angular motions. The linear motion refers to the linear displacement of

a smart device while the angular motion refers to the rotational displacement of the

device.

Environmental Sensors Sensors such as light, pressure, etc. are used to sense the

change in environmental parameters in the device’s peripheral. The primary purpose

of using environmental sensors is to help the devices to take autonomous decisions

according to the changes in a device’s peripheral. For instance, environment sensors

are used in many applications to improve user experience (e.g., home automation

systems, smart locks, smart lights, etc.).

Position sensors Position sensors deal with the physical position and location of

the device. The most common position sensors used in smart devices are magnetic

sensors and Global Positioning System (GPS). Magnetic sensors are usually used as a

digital compass and help fix the orientation of a device’s display. On the other hand,

GPS is used for navigation purposes.

A detailed description of different sensors is given in Table 6.8.

2.2.2 Communication Layer

The communication layer acts as a channel to transfer data collected in the sensing

layer to other connected devices. In addition, the communication layer also establishes

a connection between the device and cloud server to accumulate data from the external
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Sensor Type Sensor Name Description

Motion Sensors

Accelerometer • An electro-mechanical device which can measure changes in accel-

eration forces along x, y, and z-axis.

• Detects various types of motion like shake, tilt, etc. and adjusts the

display of the device accordingly.

Linear Acceleration Sensor • An accelerometer which can detect acceleration along one axis with-

out considering the effect of gravitational force.

• Helps to adjust the display with motion.

Gyroscope • Measures the rate of change of angular momentum in all three axes.

• Detects rotational movement of the device and adjusts display ac-

cordingly.

Environmental

Sensors

Light Sensor • A photodiode which changes characteristics with the change of light

intensity.

• adjusts brightness and contrast of the display of the device.

• Controls automatic lighting system.

Proximity Sensor • IR-based sensor to detect the presence of nearby objects without

any physical contact.

• Reduces power consumption of the display by disabling the LCD

backlight and avoids inadvertent touches.

Temperature Sensor • Measures temperature of the device as well as ambient temperature.

• Controls and sets the temperature in a device.

Audio Sensor • Two types of audio sensor: microphone and speaker.

• Microphone: Detects acoustic signal.

• Speaker: Playbacks audio signal.

Camera • Deals with light intensity, device ambiance, etc. to capture pictures

and videos of surroundings.

• Provides live video feeds.

Barometer • Measures the pressure of the device peripheral.

Heart rate • Measures the heart rate of the user in beat per second.

Fingerprint • Optical or capacitive scanner to capture the fingerprint of the user.

• Provides biometric authentication.

Position

Sensors

GPS • Captures signal from the satellite to infer the location of the device.

• Helps in navigation systems.

Magnetic Sensor • Measures device’s magnetic field with respect to earth’s magnetic

field.

• It is also used to fix display position by considering the magnetic

field.

Table 2.1: Sensors available in smart devices.

independent sensors [RDM16, STTPLR13]. In smart devices, the communication

layer is realized by using diverse communication technologies (e.g., Wi-Fi, Bluetooth,

Zigbee, Z-Wave, LoRa, cellular network, etc.) to allow data flow between other

devices within the same network. The Communication layer also simplifies remote

access to smart devices. For example, a user can control a smart light from different
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locations using an app on a smartphone. For on-board sensors, data communication

from the sensor to the processing unit is performed by different serial and parallel

communication protocols such as Serial Port Interface (SPI), Inter-Integrated Circuit

(I2C) protocol, Peripheral Component Interconnect (PCI), etc.

2.2.3 Data Processing Layer

The data processing layer takes data collected in the sensing layer and analyses it to

make data-driven decisions. This layer provides processed data to installed applica-

tions to perform different tasks. Also, in some smart devices (e.g., smartwatch, smart

home hub, etc.), the data processing layer saves the results from previous analysis

to improve the user experience. For instance, the data processing layer can learn

the contexts and patterns during the user interactions to take autonomous decisions.

This layer may share the result with other connected devices via the network layer.

2.2.4 Application Layer

The application layer presents and renders the results of the data processing to the

user. In other words, the application layer is a user-centric layer which executes

various tasks for the users. There exist diverse applications, which include smart

transportation, smart home, personal care, healthcare, etc. [AIM10]. Application

layer also provides user interface to the users where users can select, control, and

monitor different applications of the smart devices.

2.3 Smart Environment

The term smart environment is commonly used to portray a residence comprising

numerous connected entities (sensors and devices) that are capable of communicating
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Figure 2.2: A smart home environment and its main components.

with each other and that can be controlled both centrally (via a hub) and remotely (via

a smartphone). In Figure 2.2, a typical architecture of a smart environment is shown.

Different smart systems such as Samsung SmartThings, Amazon Alexa, and Google

Home use similar architecture. The only difference among these platforms resides in

the communication protocols used to connect the different components [KPYK18]. A

smart environment can incorporate a single-platform structure where all the smart

devices and sensors are connected to a common access point (i.e., a hub). Smart

environment/settings can also feature a multi-platform architecture where smart de-

vices from different smart platforms share the same physical environment without

any interconnection. Both single and multi-platform smart environment have four

basic building blocks as shown in Figure 2.2. The first block of the smart environ-

ment comprises sensors and devices in the system. These smart devices and sensors

are connected to each other via a smart hub. As there is no generic interoperability

standard among smart devices, the hub provides a common access point for all the

entities in the smart environment. In some cases, hubs also act as a controlling device

and allow users to control smart devices using voice commands (e.g., Amazon Alexa,
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Google Home, etc.). Modern smart device platforms also allow devices to perform

autonomous tasks as standalone devices. For example, LIFX smart light can directly

connect to an access point such as Wi-Fi routers and perform pre-scheduled tasks.

The installed smart devices are connected to the hub, which can be further connected

to both a cloud backend service and a smartphone/tablet companion app. Users uti-

lize the smartphone app to control and configure the smart devices and sensors or

install different apps from the app stores. Indeed, we can group smart environment

architectures in two main categories: a cloud-based architecture where the installed

apps run in the cloud backend (e.g., SmartThings), and hub-based architecture where

the installed apps run the hub locally (e.g., Apple HomeKit). Users may also develop

their own apps using the web interface of the cloud backend part of the smart environ-

ment. For example, Samsung SmartThings allows its users to publish their own apps

and share them with other users [SSDG]. Users can develop their own app or simply

copy the source code available online to install the app in their smart environment.

2.4 Existing Sensor Management Systems and Security Needs

of Smart Devices

Modern smart devices create a many-to-many relationship between apps and sensors

that OSes manage. Managing this relation is a hard task and smart device OSes

need effective and practical sensor management schemes to ensure secure data flow

from the sensors to the apps. In addition, the sensor management in several smart

devices (e.g., smart light, thermostat, etc.) also needs to assure a secure and seamless

connection with external sensors to perform multiple tasks. Hence, an effective sensor

management system is required to manage and ensure the security of all the sensors

in the smart devices. In this section, we discuss different security requirements and
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goals of smart devices and how the existing sensor management systems address these

requirements. Furthermore, we also articulate the shortcomings of existing sensor

management systems.

To understand the security needs in smart devices, we consider the following

smart device use cases. Assume a user, Bob, has several smart devices and sensors

installed in his smart home system including smart lock, thermostat, motion sensor,

temperature sensor, and presence sensor. Here, temperature and presence sensors

are embedded in smart thermostat while the motion sensors are external sensors

connected with smart devices using different communication protocols (e.g., ZigBee,

Z-Wave, BLE, etc.) or via cloud [sam17]. We assume all the smart devices and

sensors are in the same network. Bob installed several smart apps to automate and

control tasks in smart devices. For instance, Bob installed an app in the thermostat

to automate temperature control using the embedded temperature sensor. Also, Bob

configured the external motion sensor with the smart lock to unlock the door with the

users’ motion. Based on the configurations and installed apps, the following scenarios

can happen-

Case 1- An attacker having access to the same network installs a malicious mo-

tion sensor without alerting Bob. How can Bob identify the legitimate sensor while

configuring the smart lock with the external motion sensor?

Case 2- Bob unknowingly installs a malicious app for the smart thermostat that

is trying to access all the embedded sensors (both temperature and presence sensor).

How can Bob limit the sensor access of the installed app?

Case 3- An attacker with the access of device peripheral captures the network

packets between external sensors and the smart lock using a sniffing device. Addi-

tionally, the attacker is trying to change environment parameters (e.g., temperature)

to change sensor reading and switch on the thermostat maliciously. How can Bob
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ensure that the attacker fails to extract any sensitive information from captured

sensor-device communication and verify whether the sensor reading is legitimate or

not?

Case 4- An attacker having access to the network sends malicious connection

requests to the external motion sensor to make it unavailable for performing pre-

defined tasks. How can Bob confirm sensor availability while configuring the smart

lock with an external motion sensor?

To address these questions, current smart device ecosystem needs, (1) a sensor

authentication system to identify fake or compromised sensors, (2) a sensor autho-

rization framework to limit malicious sensor access, (3) Secure data sharing to confirm

data confidentiality and integrity in sensors, (4) seamless connectivity to ensure sensor

availability. In the following sub-sections, we briefly discuss existing sensor manage-

ment systems and their shortcoming in addressing the aforementioned security needs.

2.4.1 Sensor Authentication

Smart devices can connect with each other to perform tasks collectively. Although

this may increase the functionalities of smart devices, device authentication is needed

to ensure secure communication among devices. The network layer of smart devices

should have an authentication framework to connect with trusted devices and sen-

sors. Similarly, the sensing layer of smart devices should also have an authentication

framework to detect tampered sensors in the device ecosystem.

Although sensor authentication has not been a big concern for on-device sen-

sors, an unauthenticated external sensor can perform malicious activities in connected

smart devices [JCW+17]. To authenticate an external sensor in a smart device ecosys-

tem, device fingerprinting can be utilized at the time of pairing between a smart device

and an external sensor. Here, we discuss how sensor fingerprinting is implemented in
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the Samsung SmartThings platform. Samsung SmartThings offers a capability-based

sensor management system which can control sensors of several devices from one

common platform (a hub or smartphone). When a new external sensor is installed

in the system, a pre-defined device handler is used to pair the sensor which specifies

the capabilities of the sensor. This device handler also contains the fingerprint of the

sensor. A sample device handler snippet is given in Listing 1. Here, a Fibaro motion

sensor device handler for the Samsung SmartThings platform is shown. From line 4

to 11 capabilities of the sensor are defined and after initial installation, the sensor can

provide these pre-defined functions. From line 13 to line 17, different benign com-

mands are defined which allowed for Fibaro motion sensor in Samsung SmartThings

ecosystem. In lines 19 and 20, the fingerprint of the sensor is defined which allows the

smart device ecosystem to understand the device type and authenticate the sensor at

the time of installation. This fingerprint is hard-coded in the device handler and can

be manually modified to create new handler.

Although capability-based sensor management provides automatic authentication

of the connected external sensor at the installation time, the hard-coded capabilities

and fingerprint in the device handler can be easily altered. The device handler can

be changed manually and an attacker can easily create a fake device handler to trick

smart device user to install a compromised sensor in the smart device ecosystem.

Attackers can also exploit the sensors by mimicking the hard-coded fingerprint in a

compromised or fake sensor [CBS+18].

Listing 2.1: An example device handler of Fibaro Motion Sensor
1 metadata {
2 definition (name: "Fibaro Motion Sensor", namespace: "smartthings", author: "SmartThings", ocfDeviceType:

"x.com.st.d.sensor.motion", runLocally: true, minHubCoreVersion: ’000.021.00001’,
executeCommandsLocally: true)

3 {
4 capability "Motion Sensor"
5 capability "Temperature Measurement"
6 capability "Acceleration Sensor"
7 capability "Configuration"
8 capability "Illuminance Measurement"
9 capability "Sensor"

10 capability "Battery"
11 capability "Health Check"
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12
13 command "resetParams2StDefaults"
14 command "listCurrentParams"
15 command "updateZwaveParam"
16 command "test"
17 command "configure"
18
19 fingerprint mfr:"010F", prod:"0800", model:"2001"
20 fingerprint mfr:"010F", prod:"0800", model:"1001"
21 }

(a) Adding sensor in the
system

(b) Adding sensor in an
app

Figure 2.3: Sensor authentication and automation in Samsung SmartThings.

Furthermore, after initial authentication, all the sensor from the same vendor is

visible to any connected users to add automation rules [SBC+19]. Hence, an adversary

with access to the smart environment can use any installed sensors to add malicious

automation rules. Figure 2.3 shows the app installation process in the Samsung

SmartThings platform. Here, three different Fibaro motion sensors are available to

the users and users can choose any of these sensors to create new automation rules.

The current ecosystem does not allow any security measure to restrict specific sensors

after initial authentication. Again, if any of these three sensors is compromised, it

can be used as a platform to attack connected devices sharing the smart environment.
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2.4.2 Sensor Authorization

Modern smart devices use different apps to perform multiple tasks. These apps use

multiple sensors to execute a task efficiently. At run-time, installed apps can ask for

sensor access and it is necessary to check whether the requested access is legitimate as

apps can use sensors for malicious purposes. For example, a simple flashlight app in

the smartphone can access the motion sensor data which is irrelevant to the function of

the app and can leak the information surreptitiously [SAU19a]. Smart devices should

have a robust authorization framework to limit these unauthorized sensor accesses.

Sensor authorization can be implemented in both the sensing and application layers.

The sensing layer authorization can bind sensors with the apps while the application

layer authorization can offer user control over sensors [PSJA15,FHE+12].

Current smart device OSes offer a permission-based sensor management system

to control on-device sensor authorization at app installation time and run-time [iOSa,

Andb]. Here, we briefly discuss the Android sensor management system as An-

droid OS holds the highest market share in the smart device domain (approximately

37%) [mar]. Whenever an application wants to access a sensor in the OS, it has

to communicate via a sensor manager framework (Figure 2.4). An application first

sends a request to the sensor manager to register the desired sensor which invokes

ListenerService service for the application. After receiving the request, the sensor

manager creates a ListenerService for the application and maps the request with the

designed sensor driver to acquire sensor data. If more than one App requests access

for the same sensor, the sensor management system runs a multiplexing process to

register one sensor to multiple Apps. This data acquisition path from the application

to the sensor driver is initiated by the Hardware Abstraction Layer (HAL) which

binds the sensor hardware with the device driver. The sensor driver then activates

the requested sensor and creates a data flow path from the sensor to the app [andc].
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Figure 2.4: Example sensor management system for Android.

On the other hand, Windows and Blackberry OSes use Sensor Class Extension to

connect sensor hardware with the device driver [win, bla]. Windows OS also uses

the User Mode Driver Framework to detect sensor access request and create a data

acquisition path between sensor API and the APP. In iOS, the sensor management

system is divided into four core services: Core Motion, Core Audio, Core Location,

and Core Video [iOSb]. The Core Motion service provides access to the motion sen-

sors and some of the environmental sensors (e.g., barometer, light, proximity, etc.).

The audio sensors (microphone and speakers), GPS, and the camera can be accessed

via the Core Audio, the Core Location, and the Core Video services, respectively.

These services provide data flow between the sensors and their apps according to the

requests.

However, the main shortcoming of the permission-based sensor authorization is the

dependence on the user’s consent for sensor access. In most smart devices, permission-

based sensor authorization is implemented for a subset of the supported sensors (e.g.,

GPS, camera, audio sensor). Whenever an application is installed in a smart de-

vice, it asks the users to grant permission to access various sensors. Thus, malicious
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applications may trick the user into allowing access to sensitive sensors to launch

sensor-based attacks [SZZ+11,TRCK13,SAU17]. Users are typically unaware of what

the malicious applications actually do with the sensed data [PAS+16,PRS+17]. Fur-

thermore, permissions are imposed on selected on-device sensors only (e.g., camera,

microphone, and GPS) and other sensors are automatically included without any ex-

plicit permission. Thus, applications can easily access other no-permission-imposed

sensors such as accelerometer, gyroscope, light sensor, etc., as discussed in the fol-

lowing sections in further detail. These sensors can be exploited maliciously and

various sensor-based threats (e.g., information leakage, denial-of-service, etc.) can be

launched on smart devices [SPYG15, OHD+12, MVCT11]. Additionally, for external

sensors, the smart device ecosystem offers one-time sensor authorization at the time

of sensor installation. After the initial installation, any connected smart device in the

same network can access the external sensor without any additional authorization

step.

2.4.3 Data Confidentiality and Integrity

One major concern is to keep the collected sensor data secure in smart devices. Smart

devices use multiple sensors to perform a task and recent studies have shown that

user activities on a smart device can be inferred using the sensor data [SAU19a].

The current smart device ecosystem implements different encryption methods in the

network layer to encrypt sensor data before sharing with the devices. For example,

Azure IoT suite, Amazon AWS, and Weave use SSL/TLS protocol to ensure secure

communication [ARC18]. Moreover, smart devices using ZigBee protocol use 128-bit

AES encryption for secure communication [AFA+18]. However, most of the existing

encryption schemes are available for communication between external sensors and

smart devices or cloud communication. Some smart device platforms (e.g., Apple
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HomeKit, Weave) allows disk encryption to secure saved sensor data. But any app

running in the smart devices can access these encrypted data, even collect unen-

crypted data from the on-device sensors [LPMS12]. These sensor data can be further

processed to gain sensitive user information such as PIN code for the devices, typed

information, even on-going tasks on a device [SAU17].

2.4.4 Sensor Availability

To perform sensor-dependent tasks, smart devices should have uninterrupted sensor

access. This requires sensor availability to the application layer of the devices from

the sensing layer. Sensor availability is more important in external sensors than on-

device sensors as attackers can target the network layer to perform a Denial-of-Service

attack. The current smart device ecosystem offers firewall rules to filter unauthorized

and malicious service requests to avoid unauthorized sensor access and avoid buffer

overflow [KMP17]. One possible solution can be fine-grained access control systems

in the application layer to ensure continuous data availability to legit app requests.

However, the existing schemes cannot detect sensor unavailability caused by forced

changes in the sensors (e.g., hacking gyroscope using acoustic signals [SSK+15]).

2.4.5 Existing Sensor Management Systems and Their Short-

comings

Although existing sensor management systems in smart devices acknowledge the needs

of securing sensors by addressing sensor authentication, authorization, and availabil-

ity, there are several shortcomings that can be easily exploited by sensor-based threats.

(1) User Dependency. Existing sensor authorizations depend on user permission

where users are asked to allow or deny sensor access permission to an app at instal-
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lation time or run-time. However, no information about the nature of sensor usage is

presented to the users. Hence, an app can easily trick the users to get desired sensor

authorization and abuse sensors for malicious purposes [SA13,SZZ+11].

(2) Selective sensor authorization. Existing sensor management systems impose

permission-based sensor authorization for selective sensors such as microphone, cam-

era, and GPS. However, any installed app can access other sensors such as motion,

light, magnetic, and proximity sensors without any explicit user permission. Attack-

ers can exploit this limitation to get access to sensors and perform malicious activities

including keystroke inference [AHIN13], eavesdropping [MBN14], etc.

(3) Passive sensor sniffing. As smart devices allow external sensor integration

to perform various tasks, it is possible to capture the network traffic between sen-

sors and smart devices without interrupting normal operation. Also, both embedded

and external sensors in a smart device are sensitive to environmental parameters

which can be captured by a nearby smart device. For instance, typing in a keyboard

creates a tap noise which can be captured by the microphone of a nearby smart-

phone [ZZT09,WLRC15]. Attackers can extract sensitive information from captured

traffic and sensor data even if proper encryption schemes are used to protect con-

fidentiality [AFA+18, SBAU19]. Hence, current sensor management systems cannot

protect sensor abuse from passive sniffing.

(4) Transitive access. Smart devices create a network of devices or smart envi-

ronment where several devices are connected with each other to perform multiple

tasks. Here, a newly installed smart device becomes automatically visible and can

access other devices and sensors without any explicit privilege. As current sensor

management systems use hard-coded capabilities and fingerprint to authenticate de-

vices and sensors, attackers can introduce a compromised or fake device to capture
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sensitive sensor information and inject false data in the system to perform malicious

activities [IoT17,JCW+17].

(5) Indirect sensor data injection. Current sensor management systems do not

offer any verification method to check whether a sensor input is valid or not. As a

result, an attacker can target to maliciously change or control environment parame-

ters such as light intensity or magnetic field to spoof sensor data, trigger malicious

activities, or interrupt normal device activities. For instance, an attacker can use

inaudible acoustic signals to trigger a voice command in voice-assisted devices and

interrupt drone operations [SSK+15,YZJ+19].
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CHAPTER 3

LIERATURE REVIEW

In this chapter, we present the related work that are closely related to the research

work presented in this dissertation.

3.1 Sensor-based Threats and Security Solutions in Stan-

dalone Smart Devices

Sensor-based threats [USB14] on smart devices have become more prevalent than

before with the use of different sensors such as user’s location, keystroke information,

etc. Several works [SUCB13] have investigated the possibility of these threats and

presented different potential threats in recent years. However, compared to reported

threats, only few prior works presented comprehensive security solutions to protect

the sensors from malicious attacks. In the following subsections, we discuss existing

sensor-based threats and proposed security frameworks to mitigate the effect of these

threats to smart devices.

3.1.1 Sensor-based Threats to Standalone Smart Devices

One of the most common threats is keystroke inference in smart devices. When a

user types in the keyboard, motion sensor readings (i.e., accelerometer and gyroscope)

change accordingly [CC12]. As different keystrokes yield different, but specific values

in motion sensors, typing information on on-screen keyboard can be inferred from

an unauthorized sensor such as motion sensor data or its patterns collected either

in the device or from a nearby device can be used to extract users’ input in smart

devices [SPA+18, SPYG15, Ngu15, WLRC15]. The motion sensor data can be ana-
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lyzed using different techniques (e.g., machine learning, frequency domain analysis,

shared-memory access, etc.) to improve the accuracy of inference techniques such

as [ASBS12, MVBC12, PSM15, MSS16, MAJH16]. Another form of keystroke infer-

ence threat can be performed by observing only gyroscope data. Smart devices have

a feature of creating vibrations while a user types on the touchpad. The gyroscope

is sensitive to this vibrational force and it can be used to distinguish different inputs

given by the users on the touchpad [NSN14, CC11, MBN14]. Recently, ICS-CERT

also issued an alert for accelerometer-based attacks that can deactivate any device by

matching vibration frequency of the accelerometer [CA17,SSK+15].

Light sensor readings also change while a user types on smart devices; hence, the

user input in a smart device can be inferred by differentiating the light sensor data

in normal and typing modes [Spr14]. The light sensor can also be used as a medium

to transfer malicious code and trigger message to activate a malware [HSH+13]. The

audio sensor of a smart device can also be exploited to launch different malicious

attacks (e.g., information leakage, eavesdropping, etc.) on the device. Attackers can

infer keystrokes by recording tap noises on touchpad [FKK10], record conversation

of users [SZZ+11], transfer malicious code to the device [SUCB13], or even replicate

voice commands used in voice-enabled different Apps like Siri, Google Voice Search,

Amazon echo, Google Smart Home etc. [DLZZ14]. Cameras of different smart devices

can also be used to covertly capture screenshot or video and to infer information

about surroundings or user activities [SA13, MLMK15, SKSP14]. GPS of a smart

device can be exploited to perform a false data injection attack on smart devices and

infer the location of a specific device.
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3.1.2 Solutions to Sensor-based Threats in Standalone Smart

Devices

Although researchers identified different sensor-based threats in recent years, no com-

plete security mechanism has been proposed that can secure sensors of a smart device.

Most of the proposed security mechanisms for smart devices are related to anomaly

detection at the application level which are not built with any protection against

sensor-based threats [WH14]. On the other hand, different methods of intrusion de-

tection have been proposed for wireless sensor networks (WSN) [PAL+08], but they

are not compatible with smart devices. Xu et al. proposed a privacy-aware sensor

management framework for smartphones named Semadroid [XZ15], an extension to

the existing Android sensor management system where users could monitor sensor

usage of different Apps and invoke different policies to control sensor access by active

Apps on a smartphone. Maiti et al. proposed a real-time activity detection frame-

work to identify user activity on a smart device using motion sensor and allow motion

sensor access based on the detected activity [MAJH16]. Petracca et al. introduced

AuDroid, a SELinux-based policy framework for Android smartphones by perform-

ing behavior analysis of microphones and speakers [PSJA15]. AuDroid controls the

flow of information in the audio channel and notifies users whenever an audio chan-

nel is requested for access. An extension of this work is AWARE, an authorization

framework to secure privacy-sensitive sensors from malicious applications [PRS+17].

AWARE considers both application requests and user interface to identify malicious

user inputs in operation bindings for microphone and camera. Jana et al. proposed

DARKLY, a trust management framework for smartphones which audits applications

of different trust levels with different sensor access permissions [JNS13]. Darkly scans

for vulnerability in the source code of an application and tries to modify the run-time

environment of the device to ensure the privacy of sensor data.
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3.2 Existing Security Threats and Detection Techniques in

Connected Smart Environment

Smart environments such as smart home systems, smart offices, smart factories, etc.

have become very popular with their user-centric customization options and third-

party app development. Developers have offered different apps to increase the func-

tionalities of smart devices in a connected smart environment. Nonetheless, the nature

of the app-based models introduces several malicious threats to the smart environ-

ment. In the following subsections, we discuss existing security vulnerabilities that

target sensors in smart environment to perform malicious activities. We also summa-

rize existing security solutions proposed by the research communities and developers

to mitigate these threats.

3.2.1 Security Vulnerabilities in Connected Smart Environ-

ment

In recent years, several works have outlined the security threats to connected smart

environment (e.g., smart home systems) [NSG+14, Sch15, DKL13]. These threats

mainly focus on three smart environment components: communication protocols,

devices, and apps. As the concept of smart environment/system is still evolving,

there are several implementation flaws in the communication protocols for smart

systems. Attackers may exploit these flaws to leak sensitive user information from

smart devices. Several prior works have reported multiple implementation flaws of

smart device’s communication protocol that can be abused to leak sensitive user

information [FG13,Sea15,MV15]. For instance, an attacker can capture the network

packets covertly using simple sniffing devices and extract shared information, even
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from the encrypted traffic [BJD16, HLM+16, AFA+18]. Fernandes et al. reported

several design flaws in popular smart home platform (e.g., Samsung SmartThings)

that includes system and app level vulnerabilities [FJP16]. Chi et al. showed that

it is possible to exploit smart home platform by triggering malicious activities from

legitimate user action [CZDY18]. As smart devices use multiple apps to automate

different tasks, researchers showed that it is possible to execute a malicious task while

performing legitimate user actions in connected devices. Moreover, current smart

device platforms use smartphone as user interface and controlling device which can

also be used to launch attacks to smart devices [SCEB16,FJP16]. Jia et al. reported

the existence of several malicious apps that can be migrated from smartphone and IoT

platforms to connected smart environment such as smart home [JCW+17]. Recently,

a group of researchers published an online repository, IoTBench [IoT17, CBS+18],

which revealed several malicious apps for existing smart platforms including Samsung

SmartThings (19 malicious apps) and OpenHab (33 third-party rules).

3.2.2 Existing Security Solutions to Smart Environment

While researchers and developers reported these various threats to smart devices and

apps in recent years, there is no comprehensive security solution that address these

threats and secure the connected smart environment. Developers have introduced

several policy-based security measures to limit unauthorized access to smart devices,

sensors, and apps which depends completely on user decisions [TZL+17,SGV+15]. On

the other hand, researchers proposed several countermeasures to bolster the security

of smart environment by implementing encrypted data traffic in smart home commu-

nication protocols (e.g., ZigBee, Z-Wave, Wi-Fi, etc.) [ARS+17,DKJG17,MAbM14].

Additionally, researchers proposed several static and forensic analysis tools to detect

threats in application level of smart devices and sensors [BSAU18, CBS+18]. In the
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followings, we discuss existing security mechanisms proposed by the researchers and

their shortcomings:

• Permission-based approach. Most of the smart device platforms use a permission-

based app management where users are asked to configure and allow permissions

(device access, sensor access, etc.) at installation time. However, once user approves

the permissions, smart platforms/systems does not provide any explicit information

about how the app is using the granted accesses. This existing coarse-grained per-

mission model could lead to unauthorized device access and sensitive information

leakage in connected smart environment [FJP16]. Jia et al. introduced ContextIoT,

a context-aware permission model to restrict unauthorized device access and detect

malicious activities in smart home systems [JCW+17]. Their proposed model creates

a run-time context of each app event, and asks for user permission before executing

any unknown activity in the smart home system.

• Policy and configuration analysis. Several policy-based security measures were pro-

posed to limit unauthorized access to smart devices and sensors in a connected smart

environment [TZL+17, SGV+15, CWR13]. Similar to permission-based approaches,

these solutions depend on user decision. Mohsin et al. presented IoTSAT, a frame-

work to analyze threats on smart home/environment using device configurations and

enforced user policies [MAH+16]. IoTSAT creates a behavioral model based on device

configurations and network policies and compares it with enforced policies to iden-

tify unusual activities in the smart environment [MAH+16]. Wang et al. introduced

iRuler, an automation rule analysis framework to detect inter-rule vulnerabilities in

smart apps [WDY+19]. iRuler uses natural language processing techniques to detect

trigger-action information flow and detect security risks in implemented applets in

IFTTT platform. Similar to this work, Babun et al. proposed IoTwatch, a run-time

analysis tool to identify privacy violations in smart apps [BCMU19]. IoTwatch col-
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lects the privacy settings of the users at installation time and collects run-time privacy

sensitive data sharing in smart devices, sensors, and apps to detect privacy violations

using natural language processing.

• Network analysis. Researchers have proposed several network analysis techniques

to detect malicious activities in smart environment. Yamauchi et al. presented a

network-based intrusion detection system (IDS) that uses benign network packets

generated from user activities to detect malicious events in a connected smart home

system [YOM+19]. Researchers implemented a network observer in the home gateway

that learns user behaviors from the network traffic and detects malicious user com-

mands from learned behavior. Anthi et al. proposed a supervised intrusion detection

system to detect malicious and known network attacks in smart devices [AWS+19a].

In a recent work, Apthorpe et al. showed that it is possible to mitigate privacy leakage

from smart home traffic by implementing traffic shaping [AHR+19].

• Static analysis. Recently, static analysis of smart apps have been proposed to

detect information leakage and cross-app interference. Berkay and Babun et al.

introduced a static analysis tool, SaINT, to track sensitive information in smart

apps [CBS+18]. SaINT performs source code analysis to trace all the sensitive in-

formation from sources to sinks and identify potential information leakage. Chi et

al. proposed a static analysis tool to extract app context from smart apps to detect

cross-app interference in a connected smart environment [CZDY18]. Their proposed

model considers data sources and sinks in an app to track the information flow and

extracts the rules presented in an app. The extracted rules are saved and compared

when a new app is installed to find possible conflicts of operations.

• Forensic analysis. Forensic analysis of smart platforms/settings has been proposed

to identify malicious events in a smart environment. Wang et al. proposed a security

tool, ProvThings, which logs run-time data from smart apps and perform provenance
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tracking to detect malicious activities [WHBG18]. ProvThings implements data col-

lector in the source code of an app to identify data flows and create provenance

graphs. These graphs are used to infer app functionalities and detect malicious activ-

ities in the smart systems. Babun et al. proposed IoTDots, a forensic analysis tools

which can detect user behavior from logged data in a smart environment [BSAU18].

IoTDots collects data from smart apps and performs a context analysis to detect

violation of security policies in a smart environment.

3.3 Smart Device and Sensor Access Control in Multi-user

Smart Environment

In a smart environment, multiple users have access to multiple devices and sensors,

typically through a dedicated app installed on a mobile device. Traditional access

control mechanisms consider one unique trusted user that controls the access to the

devices. However, multi-user multi-device smart settings pose fundamentally dif-

ferent challenges to traditional single-user systems. For instance, in a multi-user

environment, users have conflicting, complex, and dynamically changing demands on

multiple devices, which cannot be handled by traditional access control techniques.

Moreover, the coarse-grained traditional access control results in over-privilege access

in multi-user smart environment. Rather than providing fine-grained user access con-

trol, most of the prior works emphasize on limiting malicious activities via controlling

app access [DZL+17,FPR+16,WHBG18,SBAU19,NSRU19] and studying device be-

haviors to detect malicious activities [BCMU19, LBAU17]. Moreover, several works

focus on device access control and authentication on an IoT network for single-user

scenarios [CPG+15, AHD+16, RSYS16, JCB16, RSS+17]. In a recent work, He et al.

present a detailed smart home user study that portrays users’ concerns of fine-grained
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access control in multi-user smart environments [HGP+18]. Zeng et al. discuss their

findings related to security and privacy concerns among smart home users [ZMR17].

In both works, smart home users clearly raise their concerns regarding the need of

access control mechanism in smart environment such as smart home. In addition,

these studies also summarize several design specification to reflect users’ needs in an

access control mechanism. Matthews et al., also points out relevant issues with smart

home users that share the same devices and accounts [MLT+16]. However, no explicit

solution for multi-user access is proposed in any of these works.

In other works, researchers explore different access control strategies when multiple

users share a single IoT device. Liu et al. suggested a user access framework for the

mobile phone ecosystem called xShare, which provides policy enforcement on file level

accesses [LRH+09]. Ni et al. presented DiffUser, a user access control model for the

Android environment based on access privileges [NYB+09], which is only effective for

a single device. Tyagi et al. discussed several design specification needed for multi-

party access control in a shared environment [TSRG16]. Aside from these works,

there are few prior proposing access control systems for multi-user multi-device smart

environment. Gusmeroli et al. suggested a capability-based access control for users in

a multi-device environment [GPR13]. However, this system is not flexible enough to

express the real needs of the users. Jang et al. presented a set of design specification

for access control mechanism based on different use scenarios of multi-user smart

home system [JCP17]. Schuster et al. proposed a situation-based access control in

the smart home system which considers different environmental parameters [SST18].

Here, the authors considered state of the device along with the location of the users

to determine a valid access request. However, this work does not solve the conflicting

demands of multiple users. Yahyazadeh et al. presented Expat, a policy language

to define policies based on user demands [YPHC19]. In a recent work, Zeng et al.
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built an access control prototype with different access control options for smart home

users [ZR19]. Here, the authors considered four different access control mechanisms

and assessed in a month-long user study among seven households to understand the

users’ needs and improve the design. However, they did not implement the framework

in real-life systems and did not consider user conflicts while operating in a multi-user

smart environment.
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CHAPTER 4

TAXONOMY AND IMPACT ANALYSIS OF SENSOR-BASED

THREATS TO SMART DEVICES

4.1 Introduction

In this chapter, we provide a detailed taxonomy of existing sensor-based threats to

smart devices and applications. Sensor-based threats are emerging threat vectors to

smart devices and it is important understand the characteristics and impacts of these

threats to build secure smart devices and applications.

Summary of Contributions: The main contributions of this chapter are noted

as follows:

• We categorize sensor-based threats in smart devices based on different security

requirements and present a comprehensive threat model

• We provide a detailed taxonomy of sensor-based threats and attacks to smart de-

vices and discuss the mechanisms and effectiveness of the attacks in a detailed way.

We also summarize the effectiveness of the threats and attacks based on known vul-

nerability metrics.

• We identify several open issues and discuss future research that could contribute

to secure smart devices against emerging sensor-based threats.

4.2 Threat Model

In this section, we classify sensor-based threats in smart devices based on threat type,

attacker capbilities and security requirements of smart devices.
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4.2.1 Types of Sensor-based Threats

A sensor-based threat exploits on-device or external sensors in a smart device ecosys-

tem to perform attacks such as false data injection, eavesdropping, information leak-

age, etc. to jeopardize the proper operation of the device. Based on the nature of the

threats, sensor-based threats can be categorized in two categories.

• Passive threats. Passive sensor-based threats refer to the malicious sensor activities

in smart devices without obstructing the normal operation of the device. For

example, a malicious app installed in a smart device can run in the background

and observe the sensor behavior to infer the ongoing task in the device [MJ18].

Passive sensor-based threats can accomplish its malicious intents by performing

malicious activities within a smart device or by utilizing another near-by smart

device.

• Active threats. Active sensor-based threats obstruct the normal operation of the

smart device to perform malicious activities. An active sensor-based threats can

directly abuse an on-board or external connected sensor by spoofing the sensor

reading [IoT17] or obstructing sensor signals using external device [SSK+15].

4.2.2 Attacker’s Capabilities

To perform sensor attacks, we consider adversaries have the following capabilities in

terms of device access, security privilege, and processing capabilities.

• Device access. An adversary may need device access to perform malicious sensor

activities in a smart device. Based on the type of access needed for an adversary,

we categorized three different access types - direct access, transitive access, and

peripheral access. In direct access, an adversary can directly access the sensors

in a smart device to perform malicious activities. For example, a malicious app
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installed in a smartphone can directly access on-board sensors and collect data to

infer sensitive information [SAU17]. For transitive access, an adversary uses access

to a smart device or sensor to perform malicious sensor activities in a targeted

smart device. For example, in a smart home environment, an adversary can get

access and strobe a smart light to change the output of the light sensor and a

targeted smart light [IoT17]. In peripheral access, an adversary implanted in a

device (affected device) can perform malicious sensor activities in any smart device

in its peripheral. Here, the affected device and the targeted device share the same

environment, but are not connected with each other. For example, an adversary

can use the audio sensor of a smartphone to eavesdrop to another smartphone in

close proximity to infer keystrokes.

• Security privilege. An adversary needs different levels of security privileges to per-

form malicious sensor activities in a smart device. For instance, to perform eaves-

dropping, an adversary needs minimum (low) privileges in the targeted device while

for false data injection in a sensor, an adversary needs maximum privileges to ac-

cess the sensor. In this work, we consider an adversary can have both privileges to

classify the sensor-based threats and attacks correctly.

• Processing capability. In smart devices, sensors mostly act as a triggering compo-

nent to initiate automated applications. The sensed information in the smart device

sensors often needs further processing to extract important information. Hence, an

adversary needs processing capabilities to perform malicious sensor activities in

smart devices. Based on the adversary’s goal, the processing capacity may vary.

For example, an adversary extracting keystrokes from motion sensors needs higher

processing capabilities than an adversary recording phone conversation secretly off

the device [SAU19a].
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4.2.3 Threat Model

In this dissertation, we consider sensor-based threats and attacks in four working lay-

ers (sensing, communication, data processing, and application) of the smart devices.

We consider adversaries that try to abuse the sensors to perform malicious tasks as a

sensor-based threat. Additionally, this work considers passive threats to the sensors

that do not disrupt normal functionalities of the smart devices. An adversary can

be installed in a smart device to get access to the embedded sensors of the device or

external sensors connected to the smart device. An adversary that has access to the

peripheral of a targeted smart device to sniff the sensor data and network traffic is

also within the scope of this work. Furthermore, we consider an adversary that can

have direct or indirect access to the sensors of the smart devices to capture sensor

data for further analysis. Note that a physical sensor abuse or sensor tampering that

could lead to physical damage of the smart devices is not considered and outside the

scope of this work. Specifically, we consider the following threats in our threat model.

• Information Leakage. An active or passive adversary may try to access the

sensor data to steal sensitive information such as typing information, unlock code,

PIN code, etc.

• Transmitting Malicious Sensor Command. An adversary may try to abuse

sensors to transmit malicious sensor command to trigger malicious activities in a

smart device.

• False Sensor Data Injection. An adversary may try to inject false sensor data

to disrupt the normal functionalities of the smart devices.

• Denial-of-Service. An adversary may establish a sensory channel between on-

device sensors and external entities (e.g., device, signal generator, etc.) to impede
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normal sensor operation which eventually leads to obstructing an on-going task in

the smart device.

4.3 Taxonomy of Threats, Attack Methods, and Their Im-

pact

As existing sensor management systems and security schemes cannot provide adequate

security to the sensors, attackers can exploit these sensors in various ways. In this

section, we provide a detailed discussion about sensor-based threats and attacks to

smart devices and survey the existing malicious attacks confirmed by the research

community and developers [SZZ+11,TRCK13,PSJA15,PMSJ16,PAS+16,PRS+17].

To understand the severity of sensor-based threats and attacks, we considered

several common vulnerability scoring metrics for sensor-based threats in our discus-

sion [Fir19]. These scoring metrics give insights of the characteristics and impact of

the threats. Detailed of these metrics are given below.

• Attack Method (AM). Attack method reflects how the threats penetrate the

smart device to perform malicious sensor events. For sensor-based threats, we

consider three methods to assess the severity of the threat- active, passive, and

combination.

• Device Access (DA). To initiate a malicious sensor activity in a smart device,

sensor-based threats need to access the device directly or indirectly. Based on the

nature of the threat, we categorize the device access of sensor-based threats in three

categories - direct access, transitive access, and peripheral access. Direct access

refers to the threats that need access to the targeted device. In transitive access,

a sensor-based threat can preform malicious sensor activities by accessing a device

that is connected with the targeted device. For example, a sensor-based threat
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can perform malicious activities in a smart light by accessing a connected light

sensor [SBAU19]. A sensor-based threat can also execute malicious sensor-activities

by accessing the peripheral of the targeted device. For instance, keystrokes in a

smartphone can be captured by a nearby smart speaker or smart watch [MJHB18].

• Attack Complexity (AC). Sensor-based threats and attacks can target one single

sensor or multiple sensors to perform malicious tasks in smart devices. As abusing

more than one sensor at a time may require immense effort from the attacker

side, we consider two different levels (high and low) of complexity for sensor-based

threats.

• Required Privilege (RP). To get access to the sensors for initiating malicious ac-

tivities, sensor-based threats need to exploit existing security mechanisms of smart

devices. As we explained in Section 2.4, sensors in a smart device can be categorized

in two categories based on access permission: no-permission imposed sensor and

permission imposed sensor. To access the no-permission based sensors, an adver-

sary needs no excessive privilege while an adversary targeting permission imposed

sensors needs high privilege. Hence, based on permission needed for accessing sen-

sors in a smart device we consider two categories - high privilege threats (need

excessive permission) and low privilege threats (need no permission).

• User Interaction (UI). This scoring metric portrays the need of user interaction

other than the attacker to compromise the sensor functionalities in smart devices.

Low user interaction indicates the higher impact of the sensor-based threats to

smart devices.

• Attack Impact (AI). This scoring metric represents the impact of the sensor-

based threats to various security requirements of the smart device. For sensor-

based threats, we choose three important security features that might get affected

- confidentiality, integrity, and availability.
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• Success Rate (SR). Success rate of the sensor-based attacks is the fraction or

percentage of success of an attack to perform malicious activities in a smart device

among a number of attempts. We categorize this metric in three categories - high

(success rate >90%), medium (success rate 70-90%), and low (success rate <70%).

In the following sub-sections, we summarize existing sensor-based threats and

attacks in four broad categories based on the purpose and nature of the threats

(presented in Section 4.2).

4.3.1 Information Leakage

Information leakage is the most common sensor-based threat for smart devices and

their applications. Sensors on smart devices can reveal sensitive data like passwords,

secret keys of a cryptographic system, credit card information, etc. This information

can be used directly to violate user privacy or to build a database for future attacks.

An adversary (e.g., malicious app) can get access to the sensor data by exploiting

vulnerabilities of existing sensor managements systems such as selective sensor au-

thorization and user dependency (Section 2.4: use case 2). Only one sensor can be

enough for information leakage (e.g., eavesdropping using microphone [SZZ+11]) or

multiple sensors can be exploited to create a more complex attack (e.g., keystroke

inference using the gyroscope and audio sensors [NSN14]). Moreover, sensors of one

smart device can be used to leak information from a nearby device (passive infor-

mation leakage) (Section 2.4: use case 3). In general, information leakage can be

accomplished for the purpose of (1) keystroke inference, (2) task inference, (3) loca-

tion inference, or (4) eavesdropping as explained below.
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Keystroke inference

Keystroke inference is a generic threat to smart devices. Most of the smart devices

provide input medium such as the touchscreen, touchpad, keyboard (external or built-

in virtual or real). Whenever a user types or gives input to a device, the device tilts

and turns which creates deviations in data recorded by sensors (e.g., accelerometer,

gyroscope, microphone, light sensor, etc.). These deviations in sensor data can be

used to infer keystrokes in a smart device. Keystroke inference can be performed on

the device itself or on a nearby device using sensors of the smart device. Keystroke

inference can be performed actively (using on-board sensors) or passively (using exter-

nal sensors). Here, we summarize different keystroke inferences based on the targeted

sensors in the smart devices.

Keystroke Inference with Light Sensors - Light sensors in smart devices are

usually associated with the display unit. In general, the display unit of the smart

devices is touch-sensitive and provides a user interface to take inputs. For a constant

state and unchangeable ambiance, the readings of the light sensor are constant. Each

time a user touches and uses the touchscreen to interact with the device, he/she

tilts and changes the orientation of the device, which causes changes in the readings

of the light sensor. Each input may have a dissimilar light intensity recorded by

the sensor. These changes in the readings of the light sensor of a device can be

utilized to infer keystrokes of that particular device. An attacker can derive the

various light intensities recorded by the light sensor by trying several keystrokes in a

device and then construct a database. When users put their PINs or type something

in the touchpad, attackers can capture the data maliciously from the device and

collate these data with the database to decode keystroke information. As an example,

some researchers developed a method named PIN Skimming to use the data from an

44



ambient light sensor and RGBW (red, green, blue and white) sensor to extract PIN

input of the smartphone [Spr14].

Keystroke Inference with Motion Sensors - The main purpose of using the

embedded motion sensors (e.g., accelerometer, gyroscope, linear acceleration sensor)

in smart devices is to detect changes in motion of the devices such as shake, tilt,

etc.. Accelerometer and linear acceleration sensor measure acceleration force that

is applied to a device while gyroscope measures the rate of rotation in the devices.

In smart devices with user interface (e.g., smartphone, smart watch, tablet, etc.),

the value given by the motion sensors depends on the orientation of the device and

user interactions (striking force of the finger on the device display, resistance force

of the hand, the location of the finger on the touchpad of the device, etc.). Thus,

when a user gives inputs to a device, the motion sensors’ data changes accordingly.

Generally, smart devices use two types of user interface to take user input – on-screen

user interface (e.g., touchpad) and external user interface (e.g., keyboard, keypad,

etc.). For both user interfaces, input keys are in a fixed position and for a single

keystroke, the motion sensors give a specific value [CC12]. As attackers do not need

any user permission to access the motion sensors, it is easy to access the motion sensor

data.

One common keystroke inference attack can be performed by exploiting accelerom-

eter. As mentioned above, accelerometer gives a specific reading for each user input

on a smart device, thus, attackers can build a database of pre-processed accelerome-

ter readings with diverse input scenarios and make a matching vector of sensor data

and keystrokes to extract users’ input [AHIN13,HGC+19]. The data extracted from

these attacks vary from text inputs to PINs and numbers typed in the touchpad

which is much more serious as attackers can acquire the PIN or credit card informa-

tion [SPYG15, ASBS12]. Owusu et al. developed an app named ACCessory which
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can identify the area of the touchscreen by analyzing accelerometer data of smart

devices [OHD+12]. ACCessory can infer PIN input on smart devices based on the

detected area from accelerometer data. Accelerometer data can also be used to infer

keystroke from a nearby keyboard. Marquardt et al. presented an attack scenario

where accelerometer data of a smart device can be used to guess input on a nearby

keyboard [MVCT11]. Whenever a user types on the keyboard, a vibration occurs and

the accelerometer of the smart devices can catch this vibration and keystrokes can be

identified correctly by analyzing this data [AAUA18].

Another method of keystroke inference can be achieved by analyzing the gyroscope

data of a smart device. Gyroscope measures the angles of rotation in all the three

axes which vary based on the specific area of the touch on the screen. Many smart

devices such as smartphones, tablets, etc. have a feature when users input something

on the touchpad the device vibrates and gyroscope is also sensitive to this vibrational

force. The orientation angle recorded in the gyroscope and the vibration caused

by the input can be used to distinguish inputs given by the users. Moreover, the

data of the gyroscope can be combined with the tap sound of each key recorded via

the microphone which can increase the success rate of inferring keystrokes [NSN14,

CC11, LS19]. The combination of accelerometer and gyroscope data can also be

used for keystroke inference which yields more accurate results [XBZ12, MVBC12,

Ngu15, HB18, LCY+18, LL19]. Additionally, the use of pattern recognition and deep

learning algorithms can improve the success rate of keystroke inference attacks to

smart devices [BFG+19].

In most wearables (smart bands, smartwatches, etc.), the motion sensors are uti-

lized for monitoring the movement of the devices. A smartwatch, which is one of

the most common wearables, maintains constant connectivity with smartphones via

Bluetooth. While wearing a smartwatch, if a user moves his/her hands from an initial
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position, the motion sensor calculates the deviation and provides the data regarding

the change of the position of the smartwatch [JLLA15]. Typing in the touchpad of

a smart device while wearing a smartwatch will change the data recorded by the

motion sensors of the smartwatch depending on user gestures. For a specific user

input interface such as QWERTY keyboard of smartphones which has a specific dis-

tance between keys, the motion sensors’ data of the smartwatch can be used to infer

the keystrokes [LZD+15,WLRC15,MJHB15,SDN15]. Modern wearable devices (e.g.,

Apple Watch 5, Samsung Gear VR, etc.) also provide a user interface where users

can provide inputs to the devices. Researchers showed that it is possible to infer the

user input in wearables by observing hand movements [LLC+19]. In a recent work,

researchers showed it is possible to infer the unlock code of a smart lock from the

gyroscope data of a smart watch [MHSJ18].

Keystroke Inference with Audio Sensors - High precision microphones used

in smart devices can sense the acoustic signals emanating from keyboards (built-in or

nearby) which can be used to infer the keystrokes on a smart device. Asonov et al.

proposed an experiment to record the sound of key tapping and infer the correct key

from it [AA04]. In this experiment, the attacker is assumed to record the acoustic

signal emanating from the device while the user types on the keyboard. Then, the

attacker matches this signal with a training dataset recorded stealthily while the same

user was typing in the training period.

Zhuang et al. showed that it would be possible to infer keystrokes by just ana-

lyzing the acoustic emanation without having a training data set [ZZT09]. In this

attack scenario, a specific key is assigned to a pre-defined class according to the

frequency of the acoustic signal it generates while being typed. The attacker then

takes a ten-minute of recording of the acoustic signal of typing on a keyboard. This

recorded signal is analyzed using machine learning and speech recognition feature
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named Cepstrum to match with the previously defined key classes and infer the input

of a keyboard.

In another work, Halevi et al. introduced a new technique named Time-Frequency

Decoding to improve the accuracy of keystroke inference from the acoustic signal

[HS12]. In this technique, machine learning and the frequency-based calculations are

combined to match the recorded acoustic signal data from a smart device with a train-

ing dataset and increase the success rate of the attack scenario. This technique also

considers the typing style of users to minimize the error rate of keystroke inference.

Berger et al. divided a PC keyboard in regions based on tap sound generated by

keys and modeled a dictionary attack [BWY06]. This attack utilizes signal processing

and cross-correlation functions to process acoustic signal emanations from a nearby

keyboard. Kune et al. proposed a timing attack on a number pad used in smartphone

and ATMs using the audio feedback beeps generated while entering PIN [FKK10].

Inter-keystroke timing and distance between the numbers on the keypad are the main

two features which are used to infer the input PIN in this attack. By analyzing the

audio feedback recorded using the microphone of a nearby smart device, these two

features are extracted and using Hidden Markov Model, the input numbers and PINs

are inferred. Lu et al. proposed KeyListener, a context-aware inference method to

predict the keystroke in QWERTY keyboard of smartphones and tablets using em-

bedded microphones [LYC+19]. KeyListener uses a binary search tree algorithm to

predict the typed information and achieves over 90% success rate. Similar to KeyLis-

tener, Shumailov et al. presented an acoustic side-channel attack which uses the tap

noises of a virtual keyboard to infer the typed information in a smartphone [SSYA19].

Kim et al. further improved this work by capturing tap noises using multiple embed-

ded microphones and combining the patterns of the acoustic signals [KJL20]. Here,

researchers developed a tapstroke detection and localization algorithms which can
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infer the typed information with 85.4% accuracy. In a recent work, Zhou et al. pre-

sented PatternListener+, an inference attack to predict the unlock patterns on an

Android device using acoustic signal [ZWY+19]. PatternListener+ uses the speaker

of a smartphone to play an inaudible sound and capture the reflected signal from

users’ fingertips using the embedded microphone. The reflected signal contains infor-

mation of the hand movement which is further analyzed with a tree structure to infer

the pattern of the lock. Backes et al. showed that acoustic signal emanated from a

dot matrix printer which was collected by a nearby microphone of a smart device can

be analyzed to predict the text printed on a paper [BDG+10]. In the training phase

of this attack, words from a list are being printed, the acoustic signal is recorded and

the data is stored. The audio signal processing and speech recognition techniques are

used to extract the features of the acoustic signal to create a correlation between the

number of needles used in the printer and the intensity of the audio signal. In the real

attack scenario, the audio signal is captured by a nearby audio sensor and matched

with the previous dataset to infer the printed text.

Zhu et al. showed a context-free attack scenario using the keyboard’s acoustic

emanation recorded in a smartphone to infer keystrokes [ZMZL14]. In this attack

scenario, the acoustic signals emanated from the keyboards are recorded by two or

more smartphones. For each pair of microphones of smartphones, the recorded acous-

tic signal strength will depend on the distance between the typed key and the smart-

phones. By calculating the time-difference of the arrival of the acoustic signal, the

position of the key can be inferred.

In a similar attack, Chhetri et al. introduced a method to reconstruct the design

source code sent to a 3-D printer [CCAF16]. In this attack scenario, the acoustic signal

emanated the 3-D printer is being recorded by a recorder placed in close proximity of a

3-D printer and the recorded file is processed for extracting time and frequency domain
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Attack
name

Target
device

Target
sensor

Target
layer

Vulnerability
metrics† Ref.

AM DA AC RP UI SR
Pin Skimming Smartphone Light Sensing [Spr14]
Text Inference Smartphone Accelerometer, Gyroscope Application [HB18]

Motion-based keystroke inference Smartphone Accelerometer, Gyroscope Sensing [CC12]
Keystroke inference on Android Smartphone Accelerometer, Gyroscope Sensing [AHIN13]

Input extraction via motion sensor Smartphone Accelerometer, Magnetometer Sensing [SPYG15]
Accelerometer side channel attack Smartphone Accelerometer Sensing [ASBS12]

ACCessory Smartphone Accelerometer Sensing [OHD+12]
(sp)iphone Smartphone Accelerometer Sensing [MVCT11]

Single-stroke language-agnostic keylogging Smartphone Gyroscope, Microphone Sensing [NSN14]
Touchlogger Smartphone Accelerometer, Gyroscope Sensing [CC11]
Taplogger Smartphone Accelerometer, Gyroscope Application [XBZ12]

I Know What You Type Smartphone Accelerometer, Gyroscope, Light Sensing [BFG+19]
Type and leak smartphone Accelerometer Sensing [LLC+19]

Risk Assessment of motion sensor smartphone Accelerometer Sensing [HGC+19]
Infer tapped and traced user input Smartphone Accelerometer, Gyroscope Application [Ngu15]
Motion-based side-channel attack Smartphone Accelerometer, Gyroscope Sensing [LS19]

When good becomes evil Smart watch Accelerometer Sensing [LZD+15]
Mole Smart watch Accelerometer Application [WLRC15]

(Smart) watch your taps Smart watch Accelerometer Sensing [MJHB15,MJHB18]
Wristsnoop Smart watch Accelerometer Sensing [SDN15]

Inferring Mechanical Lock Combinations Smart lock Gyroscope Application [MHSJ18]
Inference of private information Smartphone Accelerometer, gyroscope Sensing [LCY+18]

KeyListener Smartphone Microphone Sensing [LYC+19]
aLeak Smart watch Accelerometer, Gyroscope Sensing [LL19]

Keyboard acoustic emanation Smartphone Microphone Sensing [AA04]
Keyboard acoustic emanations revisited Smartphone Microphone Sensing [ZZT09]

A closer look at keyboard acoustic emanations Smartphone Microphone Sensing [HS12]
TapSnoop Smartphone Microphone Sensing [KJL20]

Dictionary attacks using keyboard acoustic Smartphone Microphone Sensing [BWY06]
Timing attacks Smartphone Microphone Sensing - [FKK10]

Acoustic Side-Channel Attacks on Printers Smartphone Microphone Sensing [BDG+10]
Context-free keyboard acoustic emanations Smartphone Microphone Sensing [ZMZL14]

PatternListener+ Smartphone Microphone, speaker Sensing [ZWY+19]
Hearing your touch Smartphone Microphone, speaker Sensing [SSYA19]

PIN skimmer Smartphone Microphone, Camera Sensing [SA13]
Juice filming attack Smartphone Camera Application - [MLMK15]

Beware, your hands reveal your secrets! Smartphone Camera Sensing [SKSP14]
Smudge attack Smartphone Camera Sensing [Avi12]

iSpy Smart security camera Camera Application [RWG+11]
GazeRevealer Smartphone Camera Application [WCGS19]

Compromising electromagnetic emanations Smartphone Magnetic Sensing [VP09]
My Smartphone Knows What You Print Smart printer Microphone, magnetic Sensing [SLB+16]

† Attack Method (AM): Active- , Passive- ; Device Access (DA): Direct- , Transitive- , Peripheral- ; Attack Complexity (AC): High- , Low- ; Required Privilege (RP):
High privilege- , Low privilege- ; User Interaction (UI): Needed - , not needed - ; Success Rate (SR): High (>90%) - , medium (70-90%) - , low (<70%) - .
‡ Any type of keystroke inference impacts the confidentiality of the smart device.

Table 4.1: Summary of keystroke inference via sensors in smart devices.

features. These features are then cross-matched with a training dataset collected in

a learning phase to infer the correct design. Song et al. improved this attack by

adding magnetic sensor data to accurately reconstruct the physical prints and their

G-code [SLB+16].

Keystroke Inference with Video Sensors - Modern smart devices come with

powerful cameras which can both take still pictures and record high definition videos.

By applying image processing techniques in captured images, keystroke inference can

be done. Simon et al. developed a malware named PIN skimmer which uses the front

camera of a smartphone and microphone to infer PIN input in a smartphone [SA13].

PIN skimmer records the tap sound on the touchpad of a smartphone and records

video using the front camera of the phone. The movement recorded in the video is
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then analyzed to detect which part of the touchscreen is used. This information is

then combined with the tap sound to infer the inputs correctly.

Another potential malware attack on the smart devices using the camera is Juice

Filming Attack [MLMK15]. In this attack scenario, a malicious app uses the camera

to take screenshots when any user-input is given in the touchpad and save the images

on the storage unit (internal ROM or external memory card) of the device. Most

of the smart devices use USB for heterogeneous applications (e.g., charging, data

transfer, etc.) and when the compromised device is connected to the laptop or any

other device with a storage unit, the app transfers the stored pictures to the storage

device from which attackers can easily extract the information.

Shukla et al. showed a method to infer the PIN input by analyzing the hand

position using the recorded video [SKSP14]. In this method, a background application

gets access to the camera of the smartphone and records a video when a user starts

typing in a touchpad. Then, analyzing the hand position and the position of the

smartphone, an attacker can extract the inputs given in a touchpad. Another version

of this attack is to record the typing scenario using an external camera. In this

scenario, a camera of a smart device (e.g., smartphone, smart glass, smart surveillance

system, etc.) is used to record the video of typing the PIN. In both cases, the input

PIN can be inferred with high accuracy.

Adam J. Aviv introduced another type of attack named Smudge Attack using

an external camera to infer pattern lock of a smart device [Avi12]. In this attack

scenario, a smart device is placed in between two cameras of other smart devices

(smartphone or smart glass) and high definition pictures are taken. Whenever the

user gives the unlock pattern in the touchpad, some smudge marks are left on the

screen, and captured by the cameras, which leak information about the unlock pattern

to an attacker.
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Raguram et al. developed a process named iSpy which can reconstruct the typed

text by analyzing the reflection of the touchscreen in a reflective surface such as

sunglass or smart glass [RWG+11]. The experimental setup of iSpy includes a high

definition camera which can capture the video of the reflective surface while a user

types in the touchpad of a phone. The reflection of the phone is being extracted from

the video and consecutive frames are analyzed to extract stable pictures of the phone

screen. Features (hand position, motion in the screen, etc.) are extracted from stable

pictures extracted from the video and by using machine learning techniques, key press

detection is done and typed text can be inferred successfully. In more recent work,

Wang et al. proposed GazeRevealer, a novel side-channel attack to infer keystrokes

in a smart device using the eye movement of the users [WCGS19]. GazeRevealer uses

the front camera to capture video and analyzes to extract multiple features such as

eye movement, head position, etc. These features are used to train a classifier which

can predict the keystroke in real-time with high accuracy.

Keystroke Inference with Magnetic Sensors - Besides the aforementioned

attack scenarios, electromagnetic emanations from the keyboard can be used to infer

the input of a computer. As magnetic sensors of smart devices are sensitive to elec-

tromagnetic emanations, they can be used as the attack medium. Vuagnoux et al.

showed that both wired and wireless keyboards emit electromagnetic signals when a

user types and this signal can be further processed to infer keystroke [VP09]. In this

method, electromagnetic radiation is measured by the magnetic sensor of a smart de-

vice when a key is pressed and using the falling edge transition technique, an attacker

can infer the keystrokes.

Lessons learned for keystroke inference - We summarize the aforementioned

threats and attacks in Table 4.1 with common vulnerability metrics. We can see smart

devices with user input module (touchscreen, keypad, numeric keypad) are mostly the
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targeted device for keystroke inference. These threats and attacks affect the confiden-

tiality of the sensor data. Another interesting fact we observe is the majority of the

threats and attacks targets motion sensor (22 out of 42 reported threats and attacks)

which does not require any permission to access in current smart device security

schemes. Thus, these threats and attacks can easily access sensor data and extract

keystroke information easily. For the targeted layer, we can notice the keystroke in-

ference in smart devices only targets sensing (34 out of 42) and application (8 out of

42) layer. We can also observe a trade-off between attack complexity and required

privilege in sensor-based threats targeting sensors in smart devices. For example,

keystroke inference from the motion sensor (e.g., accelerometer) does not require any

privilege to perform while keystroke inference from the audio sensor needs permission

to access the microphone. However, accessing the motion sensor needs active vulner-

ability which may disrupt the on-going task in the smart device. On the other hand,

capturing keystroke using the audio sensor can be both active and passive which in-

creases the severity of the threat or attack. The outcomes of keystroke inference also

have diverse effects on smart devices and users. As keystroke inference is directly

related to user activities in smart devices, it impacts sensitive user information. At-

tackers can infer various typed information including device unlock code, password,

banking information, typed and printed information, etc. These inferred information

can be used to initiate another attack or directly used for malicious purposes such as

ransom, data hijacking, identity theft, etc. In summary, passive keystroke inference

with minimum required privilege (e.g., [MJHB15, SDN15, VP09]) can severely affect

the confidentiality of the smart devices.
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Task Inference

Task inference refers to a type of attack which reveals the information of an on-going

task or an application in a smart device. Task inference reveals information about the

state of the device and attackers can replicate this device state to launch an attack

without alerting security policies implemented in the device. Sensors associated with

smart devices show deviation in the reading for various tasks running on the devices.

This deviation in the reading can be used to infer the running process inside a device

and application of the device.

Task Inference with Light Sensor - Light sensor of a smart device can be

used to infer an on-going task on a device. Smart devices with display emit lights

with distinct intensity for different tasks. For example, playing separate videos in

a smart TV will change the emitted light intensity based on the background and

video quality. This change in light intensity can be used to infer an on-going task

on the display. Chakraborty et al. showed that light intensity changed in a flat

panel display (e.g., smart TV, smart monitor, etc.) can be used to infer what is

written on the screen by a light sensor of a smartphone [COS17]. In this attack, an

Android-powered smartphone is placed in front of the display to capture the light

intensity emitted from the screen. These captured light signals can be sampled and

deconvoluted to infer the task on the monitor such as on-going videos, specific web

pages, etc. Berkay et al. used a smart light to passively leak the status of a smart

home [CBS+18]. In this attack, if no user is present inside the home, a smart light will

maliciously trigger an on-off pattern to notify the user. Maiti et al. proposed a new

attack vector to infer the audio and video of a smart TV using the light emitted from

a smart light [MJ18]. Here, researchers used the multimedia-visualization feature of

smart light which creates a vibrant lighting effect in conjunction with audio and video
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playing nearby. Based on the light intensity emitted in audio frequencies, researchers

successfully inferred an on-going audio or video.

Task Inference with Magnetic Sensors - Magnetic sensors in smart devices

has the role to fix the orientation of the device with respect to Earth's magnetic field.

Data recorded by a magnetic sensor change in the presence of an external magnetic

field in the device's peripheral. This deviation in data can be used to identify the

tasks running on a device. Many smart devices have a storage unit and whenever data

is written or read from this storage unit, a change in the reading of the magnetic sen-

sor can be observed. Magnetic sensors of a smart device can be used not only to infer

information of the device itself, but can also be used as a medium to fetch information

from a nearby device. Biedermann et al. showed that the magnetic sensor of a smart-

phone could be used to infer on-going tasks in a storage unit like the hard drives of

the computers and servers [BKS15]. When an application is running on a computer,

the hard drives generate a magnetic field which can be sensed by a magnetic sensor of

a smartphone. Various actions cause distinct readings on the magnetic sensor which

can be used to track the users’ action. This can be considered as a serious threat

to the device and attackers can fetch valuable information in this way. Ning et al.

proposed DeepMag+, a side-channel attack to exploit on-board magnetic sensor for

inferring smart apps installed in a smart device [NWX+20]. DeepMag+ captures the

on-board magnetic sensor data while executing installed apps in a smart device and

uses convolutional neural network to fingerprint the apps. Additionally, DeepMag+

can combine motion sensor data with magnetic sensor to increase the inference ac-

curacy up to 98%. Similar to this work, Matyunin et al. presented MagneticSpy ,

a novel website and application fingerprinting method exploiting magnetic sensors of

a smart device [MWA+19]. MagneticSpy analyzes the electromagnetic disturbances

caused by the mobile processors which are proportional to the CPU workload. By
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analyzing the deviance in different working conditions, MagneticSpy can infer the

on-going CPU activity with high accuracy (up to 90%).

An electromagnetic (EM) emanation is a common phenomenon for smart devices.

Electromagnetic emanations occur whenever current passes through a device and a

task is running on a device. EM emanation attacks can also be observed in FPGA-

based (Field-programmable gate array) smart devices [QS01,CCDP04,AARR03]. At-

tackers can record electromagnetic emission data generated from the FPGA-based

smart devices to deduct which kind of application is running in the system and also

the states of logic blocks of the devices. Such information leakages make the system

vulnerable to the user. Smart cards also emit EM waves while performing various

tasks which can be captured by a radio frequency (RF) antenna and the task can be

inferred from the radiation [RW]. Cheng et al. proposed MagAttack, a side-channel

attack to abuse the magnetic sensor of smart mobile devices [CJX+19]. User activi-

ties such as application launching and operation has a slight but significant effect on

CPU’s power consumption, and hence in the EM emissions. An attacker can capture

this EM emission using the magnetic sensors of a smart device and infer the on-going

user activities in a laptop or workstation.

Task Inference with Power Analysis - Power analysis is a form of sensor-

based threat where an attacker studies the power consumption and power traces of

the sensors for extracting information from the devices [ÖOP03]. O’Flynn et al.

introduced an attack scenario where the power analysis attack is launched against

IEEE 802.15.4 nodes [OC15], which is a standard low power wireless protocol used

in smart devices. Low power smart devices use this protocol standard for various

communication purposes such as connecting to a network, communicating with other

devices, etc.. In this attack scenario, an attacker uses differential power analysis in the

sensors. As packets transmitted from the smart devices are encrypted, power analysis
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on the sensors can infer which encryption process is running in the device. Again,

diverse encryption process leads to diverse power profiles which reveal associated

information (e.g., key size, block size, etc.) about the encryption process. Encryption

process also depends on the packet size which can be observed in the power profile

and attackers can infer what type of information is being transmitted based on the

packet size.

Task Inference from sniffing sensor data - In a connected environment such

as smart home, several smart devices are connected with each other and with multiple

sensors. These sensors communicate with the devices using various protocols (e.g.,

WiFi, ZigBee, Z-Wave, etc.) and work as triggering devices for several automated

tasks. An attacker can sniff the communication traffics in the smart environment

and infer user and device actions which can be considered as a privacy violation.

Acar et al. showed that it is possible to infer user activities and devices states by

capturing the communication packets and extracting sensor data in a smart home

environment [AFA+18]. In this attack scenario, an adversary in close proximity of

the smart environment can sniff the communication packets and infer the states of

the devices (active/inactive). In addition, authors showed that the attacker could

deduce the actions of the users (e.g., walking, opening doors, etc.) using machine

learning techniques in captured traffics.

Lessons learned for task inference - Similar to keystroke inference, task in-

ference in smart devices also affect the confidentiality of the devices. From Table 4.2,

we can observe the majority of the task inference threats (6 out of 10 reported threats

and attacks) are passive which indicates the high impact on the smart devices. An-

other interesting fact is the majority of these threats does not need any additional

privilege (9 out of 10) to bypass existing security schemes. Also, task inference threats

target sensing (6 reported threats), application (3 reported threats), and communica-
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tion (1 reported threat) which indicates a broad attack surface of these threats. One

limitation of reported task inference attacks is the lack of extensive evaluation of the

attacks. To understand the effectiveness of a sensor-based attack, it is necessary to

check the success rate of the attack on real-life smart devices. The majority of the

task inference attacks are not appropriately evaluated with known evaluation metrics

such as success rate, error rate, precision, etc.. Without proper evaluation metrics,

especially without reported success rate, it is hard to understand the effectiveness

and feasibility of task inference attacks on a smart device. Task inference directly

impacts the confidentiality and privacy of the smart device users by leaking sensitive

information such as user activity, installed security measures, installed apps on smart

devices, etc. Attackers can profile a user based on task inference attacks to perform

diverse types of malicious activities such as gaining access to the smart device and en-

vironment, bypassing security measures to leak data, manipulate or obstruct on-going

tasks, etc. [AFA+18].

Location Inference

Researchers developed a novel location-privacy attack based on acoustic side-channels

[Ano16]. The attack is based on acoustic information embedded within foreground-

audio disseminated in a closed environment (i.e., conference room). The researchers

studied how audio, generated by secure messaging clients in voice-call mode, can

be abused to generate a location fingerprint. The attack leverages the pattern of

acoustic reflections of the human voice at the user's location and does not depend

on any characteristic background sounds. The attack can be used to compromise

location privacy of participants of an anonymous VoIP session, or even to carry out

confirmation attacks that verify if a pair of audio recordings originated from the same

location regardless of the speakers. Other researchers have also shown that several
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heuristics can be used to identify sensitive locations (i.e., home and work locations)

of a victim whose personal device is under an adversary control [PMSJ16]. Han et

al. showed that it is possible to infer the location of a user using the accelerometer

of a smartphone [HON+12]. Here, researchers first derived an approximate motion

trajectory from accelerometer reading and correlated the trajectory with the map to

infer the exact location of the user. Zhou et al. showed that it is possible to infer

the location of the user by analyzing verbal directions provided by navigation apps

of a smart device [ZDH+]. Researchers measured the on/off times of the speaker

controlled by the navigation app to leak the driving instructions to the attacker. In

a more recent work, Block et al. introduced a new location inference technique using

the smartphone’s magnetometer [BN18]. Here, researchers used small fluctuations

originated by nearby magnetic fields while the smartphone is in motion to build a

trajectory path of the user. Narain et al. proposed a combination of sensor data

(accelerometer, gyroscope, and magnetometer) to further improve the accuracy of

the inferred location [NVHBN16]. In a recent work, Zheng et al. proposed a lo-

cation eavesdropping attack using the mobile inertia/motion sensors [ZH19]. Here,

researchers showed that in the presence of specific indoor structures (e.g., elevators,

fire stop doors, etc.), motion sensors display specific patterns which can be utilized

to infer the location correctly. Similar to this work, Fyke et al. used the motion

sensors data to recreate user’s movement and plot maps and landmarks in private

spaces (e.g., home, workplace, etc.) [FGSS19].

Lessons learned for location inference - Although location inference attacks

impact the confidentiality of smart devices, all of the threats (7 reported threats and

attacks) are active which limits the consequences (Table 4.2). Also, to execute ma-

licious sensor activities, these threats need direct access to the devices which affect

the easy deployability of these threats in real-life smart devices. One can also observe
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from Table 4.2 that the success rate of these attacks is low to medium range. Com-

pared to keystroke and task inference attacks, location inference poses less effects on

the security of the smart devices. However, leaking location information can violate

user’s privacy and propagate other attacks including a targeted physical attack on

the user’s vehicle [ZDH+].

Eavesdropping

Many smart devices such as voice-enabled speakers use audio sensors for making calls,

recording audio messages, receiving voice commands, etc. Eavesdropping refers to a

type of attack where a malicious app records a conversation stealthily by exploiting

audio sensors and extract information from the conversation. An attacker can save the

recorded conversation on a device or listen to the conversation in real-time. One of the

recent examples of eavesdropping via the microphone of a smartphone is Soundcomber

[SZZ+11]. In this example, a malicious app covertly records when a conversation is

initiated from the device. As the recording is done in the background, a user does

not have any idea about the recording. Several companies like banks, social security

offices, credit card companies, etc. have automated voice messaging systems and users

have to say their private information such as credit card numbers or social security

numbers at the beginning of the call. Thus, Soundcomber does not have to record

all the conversations to extract data. Only the beginning part of the conversations

will be enough for extracting private information of the user. Moreover, a specific

conversation can also be recorded by identifying the dialed number on a smartphone.

The touchpad of the smartphone creates corresponding tones when any number is

dialed. This tone can be recorded and processed to identify the dialed number. After

that, when the desired number is dialed, the conversation can be recorded and then

processed to extract information.
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Another way to exploit microphones is to attack through voice assistant apps,

e.g., Apple’s Siri and Google Voice Search. Most of the smart devices nowadays

have built-in voice search apps. Diao et al. developed a malware named VoicEm-

ployer which can be installed on the device to record the voice command given in

a smartphone [DLZZ14]. This malware can use the recorded command for various

malicious activities such as replicate malicious voice command, transfer information

to paired devices, etc. Cyber Physical Voice privacy Theft Trojan horse (CPVT)

is another malware which uses the microphone of smartphones to record conversa-

tions [LWZ+13]. The recording of the conversation can be controlled by external

control channels like SMS, Wi-Fi, or Sensory channels [USB14]. An attacker can

trigger CPVT and create command about when to start recording and when to stop

recording using SMS, Wi-FI, or even sensors. Recorded conversations are stored in

the device and the attacker can gain the stored files using Email, SMS, or connecting

via USB. Carlini et al. showed that it is possible to exploit voice assistant apps by

inserting hidden voice commands [CMV+16]. In this attack, the attacker first records

voice commands of the user and extracts features from the recorded audio clips. From

the extracted features, a new command is generated which is not understandable by

humans, but recognized by the voice assistant apps. In a recent work, Kennedy et al.

showed that it is possible to infer the voice command given to a voice assistant device

(e.g., Amazon Alexa) by capturing the network packet and using natural language

processing [KLW+19].

The gyroscope on smart devices is also sensitive to an acoustic signal. The typical

sampling rate of gyroscope covers some frequency of audible range which can be

used to reconstruct the speech of a user. Michalevsky et al. proposed a new way

of eavesdropping by analyzing vibrational noise in gyroscope caused by an acoustic

signal [MBN14]. As the gyroscope does not cover the full audible range, this new
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process can distinguish speakers and one-syllable words by using signal processing

and machine learning techniques. In a recent work, Anand et al. showed that the

on-board accelerometer could be used to eavesdrop and reconstruct the speech of a

user [AWL+19]. While a user talks on a smartphone, the loudspeaker of a smartphone

shows some reverberations which impact the accelerometer reading. This deviation in

accelerometer can be further analyzed to extract sensitive information such as speaker

identification and gender classification.

Lessons learned for eavesdropping - Eavesdropping mostly affects smart de-

vices with audio sensors and impacts the confidentiality of the devices. From Ta-

ble 4.2, it is visible that the majority of the eavesdropping are active attacks (4 out of

5 reported threats and attacks) and require additional privileges (4 out of 5 threats

and attacks) to bypass the existing security schemes. These threats also need users

to interact with the system to perform malicious tasks that limit the impact of these

threats. For performing eavesdropping, the majority of the threats and attacks also

need direct access (4 reported threats) on a targeted smart device. Because of these

dependencies, the impact of eavesdropping is lower than other types of information

leakage attacks. Nevertheless, the information captured in the eavesdropping attack

can be used to perform various malicious activities such as leaking private conversa-

tion, gaining physical access to a secured environment, etc. [ZQL+19].

4.3.2 Transmitting Malicious Sensor Commands

Sensors available in the smart devices can be used to transmit malicious sensor pat-

terns or triggering commands to activate malware that may have been implanted in

a victim’s device [USB14]. Sensors may be employed to create unexpected communi-

cation channels between device peripherals. Such channels can be used to exchange
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critical sensor parameters (e.g., devices’ motion, light intensity, magnetic field, etc.)

or to transmit malicious commands (Section 2.4: use case 3).

Transmitting via Light Sensors - Light sensors can be used as a potential

method of transmitting signals and malicious commands [JPPS11]. It is easier to

transfer a bit stream via a light source by turning it on and off. Since the light sensor

of a smart device can distinguish the intensity of the light source, the light intensity

change can be decoded as a bit stream in the device. By controlling the voltage of a

light source, an attacker can easily transfer trigger messages and can activate malware

implanted in a device. Hasan et al. showed that TV screen or laptop monitor could

also be used to transfer trigger messages to a compromised smart device by changing

the light intensity of the monitor [HSH+13]. Fernandes et al. showed that a smart

light could be maliciously programmed to strobe the light at a high rate and if the

user has the health problem of seizure, this action will trigger the user’s seizures

which is really dangerous [FJP16]. Berkay et al. showed that a smart light could

be programmed to operate in a specific pattern to trigger a smart camera and take

pictures surreptitiously [CBS+18].

Transmitting via Magnetic Sensors - As mentioned earlier, magnetic sensors

of a smart device are sensitive to the magnetic fields of the device's peripherals.

By changing the magnetic field of the device ambiance, one can easily change the

readings of the magnetic sensor which can be used as a triggering message of malware.

Triggering messages encoded by an electromagnet can be sent to a smart device

and there will be some deviations in the magnetic sensor's readings of the device

due to this message. These deviations can be calculated and the triggering message

can be extracted from this electro-magnetic signal. Moreover, the magnetic field

deviations can be calculated in x, y, and z-axis and divergent values of the magnetic

field deviations can be interpreted as disparate triggering messages [HSH+13].
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Transmitting via Audio Sensors - Audio sensors can be used to transmit

malicious commands to activate a malicious application in a smart device. Hasan et

al. showed that a triggering message embedded in an audio song can be detected by

the microphone and can trigger a malicious app in a smartphone [HSH+13]. Moreover,

microphones used in modern smart devices can detect audio signals with a frequency

lower than the audible range. Malware can be transferred using this audio channel

as a covert channel to bypass the security measures of the device. Deshotels et al.

showed that the ultrasonic sound could be used to send information to smartphones

without alerting the user or any security measurement implemented on the device

[Des14]. Subramanian et al. showed that a trojan can be transferred by encoding

it in an audio signal and transferring it using a buzzer [SUCB13]. In a recent work,

Zhang et al. showed that it is possible to transmit an inaudible acoustic signal to

smart speakers to trigger malicious activities [ZYJ+17]. Yan et al. performed a

feasibility study of previous work and concluded that it is possible to trigger several

malicious events in smart devices including making a phone call, changing state of

connected devices, etc. [YZJ+19]. Kumar et al. showed that valid voice commands

could be used to trick smart speakers (e.g., Amazon Alexa, Amazon Echo, etc.) to

perform malicious activities in skill squatting attack [KPM+18]. Here, researchers

used misinterpretations of valid commands made by the smart speaker to trigger a

malicious activity. For example, ’test your luck’ can be misinterpreted by the smart

speaker as ’test your lock’ which can unlock the door. In a recent work, Zhang et al.

proposed Vaspy, a malicious app installed in the smart device to exploit voice assistant

devices [ZCWZ19]. Vaspy silently observes smartphone activities and captures the

phone call conversations to extract the voice activation commands. Upon extracting

the voice command, Vaspy uses a machine learning model to analyze user behavior

and choose a specific time to launch an attack surreptitiously.
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Lessons learned for transmitting malicious sensor commands - The threat

of transmitting malicious sensor commands mostly affects the integrity of smart de-

vices (Table 4.3). The majority of the threats and attacks (9 out of 11 reported) needs

an additional privilege to bypass the existing security schemes. Also, upon successful

attack, malicious sensor commands trigger malicious activities in the smart devices

which obstruct normal operations. Thus, transmitting malicious sensor commands

(all reported threats and attacks) act as active attacks to the smart devices. Another

interesting fact we observe transmitting malicious sensor commands do not need any

direct connection to the device. Only transitive (2 out of 11 threats) or peripheral

access (9 out of 11) is enough to transmit malicious commands to the targeted smart

devices. However, the success rate of most of the threats and attacks is high, indicat-

ing the high impact on smart devices. This trade-off between excessive privilege and

success rate determines the effects of the threats and attacks.

4.3.3 False Sensor Data Injection

The applications of smart devices largely depend on data collected by sensors available

on the devices. By altering the sensor data, one can control the applications of smart

devices. False sensor data injection refers to an attack where the sensor data used

in the smart applications is forged or intentionally changed to perform malicious

activities. The false sensor data can be injected in the devices by accessing the device

physically or by using various communication mediums (Bluetooth, ZigBee, Z-Wave,

Wi-Fi, cellular network, etc.) covertly. An attacker can also introduce fake sensors

in the IoT environment to inject false generated data and initiate malicious activities

(Section 2.4: use cases - 1 and 3) [CBS+18,HAUA18]. Moreover, the sensors of smart

devices can also be used to alter data typed or stored on the devices.

67



Tu et al. presented a spoof attack, where an out-of-band signal is inserted in smart

devices via motion sensor [TLLH18]. This signal injection results in deviation in sen-

sor output which disrupts the normal functionality of the smart devices. Park et al.

used infrared light to disrupt normal operation of a smart medical device [PSS+16].

Here, researchers used a medical infusion pump to inject the spoof light signal and

change the dose of the medicine in the device. In another recent work, Shin et al.

exploited the light sensor of a smart car to change the output of the automatic ob-

struction detection system [SKKK17]. Petit et al. improved this attack by combining

camera reading of a smart car to change the output of autonomous vehicle [PSFK15].

In a recent work, Zhou et al. proposed an attack to exploit the voice assistant of a

smart car [ZQL+19]. In this attack, the adversary inserts malicious commands in an

audio or video file which can inject malicious commands to the voice assistant apps

upon playing.

The smart voice assistant is deployed in several smart devices such as smartphone,

smart speaker, smart home hub, etc. These smart assistants usually triggered with

a specific command such as ”Hi Google”, ”Hey Siri”, or ”Alexa”. Recent researches

showed that it is possible to inject malicious commands to smart voice assistants by

exploiting the microphone of the smart devices. As smart voice assistants constantly

scan for desired a triggering command, an adversary needs no additional privilege

to inject malicious audio signals to the device. Yuan et al. proposed REEVE, a

stealthy voice manipulation attack to smart voice assistant [YCW+18]. REEVE uses

benign audio signals such as TV or radio as a medium and insert malicious trigger

commands which can be detected by a nearby voice assistant device. The researchers

tested this attack on consumer voice assistant devices (Amazon Echo) and achieved

high success rate. Zhang et al. improved this attack by eliminating the need of

external audio signals [ZCL+18]. Here, researchers developed a spyware which can
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abuse the microphone of a smartphone to record phone conversations and detect the

trigger messages. Later, the spyware replays the recorded command using the speaker

of the same smartphone to inject false commands to the voice assistant service.

Tippenhauer et al. showed another attack scenario in GPS-enabled devices to

change the real location of the device [TPRC11]. In this attack scenario, a vehicle

with a GPS enabled device is used. The attacker transmits a forged GPS signal to

the device to alter the location of the vehicle. In this way, the real location of the

vehicle is disguised and the attacker can perform any physical attack on the disguised

vehicle. The GPS data used in the smartwatches can expose the location of a user

and this GPS data can then be forged and a new location can be given as a false

input in the GPS [Cof14].

The power analysis attack on smart devices can also be used for injecting false

data. The power analysis on smart devices running an encryption algorithm can

reveal information about the encryption process including the block size, key size,

even the actual encryption key [YN17]. This information can be used to encrypt a

false data and replace the original data on the device. Thus, attackers can inject false

encrypted data in the communication channel to change the action of a device for

specific commands. Giannetsos et al. introduced a malicious app named Spy-sense,

which monitors the behavior of the sensors in a device and can manipulate data by

deleting or modifying it [GD13]. Spy-sense exploits the active memory region of a

device and alters the data structure and reports back important data to a server

covertly.

Lessons learned for false data injection - False data injection impacts the

integrity of the smart devices as these threats and attacks disrupt the output of an

on-going task. From Table 4.3, it is evident that the majority of the threats and

attacks are simple and do not need any user interaction (8 out of 11 reported threats
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(a) Types of sensors (b) Active vs. passive (c) Targeted security
mechanisms

(d) Device access (e) Targeted layers

(f) Types of threats

Figure 4.1: Overview of sensor-based threats and attacks to smart devices.

and attacks) to perform malicious tasks. Also, false data injection attacks are passive

by nature (7 out of 11 threats) and do not need any excessive privilege (6 out of

11 threats) to perform the attack. Another interesting fact we observe is the effect

of the successful attack directly impact the on-going activities of the smart devices.

Hence, false data injection attacks are method-wise passive, but effect-wise active.

However, the majority of the existing false data injection attacks did not report any

success rate. Without proper evaluation, it is hard to understand the effectiveness of

the reported attacks in real-life smart devices. Hence, further investigation is needed

to properly evaluate the effectiveness of these attacks on real-life smart devices. The

effects of false data injection are diverse as it can manipulate the targeted smart
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device to perform numerous malicious activities. For instance, false data injected in

smart voice assistant can give the attacker access to any connected device in a smart

environment which can cause device theft, undesired physical access to properties,

unauthorized bank transactions and online shopping, etc. [ZCL+18,YCW+18].

4.3.4 Denial-of-Service

Denial-of-Service (DoS), by definition, is a type of attack where the normal operation

of a device or application is denied maliciously. DoS attacks can be active attacks

where an application or task is refused forcefully or passive attacks where attacking

one application can stop another on-going task on the device. An adversary with

access to smart device network and peripheral can send unauthorized access request or

malicious signals to interrupt an ongoing task in smart devices (Section 2.4: use case

4). Indeed, recently, ICS-CERT published an active alert for a list of accelerometers

used in smart devices which can be exploited using vibrational force [CA17]. Every

accelerometer has a working frequency and if an external vibrational force can match

this frequency, it is possible to turn off the devices forcefully. This reported threat is

applicable for 20 different types of MEMS accelerometer which are used in multiple

commercial and consumer smart devices. Hence, the impact of this threat is severe

in real-life smart devices. Son et al. showed that it is possible to obstruct the

flight control of a drone by exploiting gyroscope using a sound signal [SSK+15]. The

MEMS Gyroscopes deployed in drones have a sensing mass inside of the sensor which

is constantly vibrating. The gyroscope measures the rotational motion of the device

with respect to the sensing mass. When the resonant frequency of the gyroscope is

matched by an audio signal, an attacker can obstruct the normal performance of the

gyroscope and change the course of the drone, or even turn it off. In a recent work,

Mao et al. presented Pairjam, a DoS attack that uses inaudible noises to disrupt
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pairing between smart devices [MZL20]. In a smart environment, multiple smart

devices are connected with each other to perform various tasks. The interconnection

between the devices follows a device authentication/pairing method to ensure secure

communication. Pairjam abuses the audio sensor of smart devices the inject inaudible

noise signal in the smart environment which disrupts the normal pairing method and

makes a targeted smart device unavailable for pairing.

Lessons learned for DoS - Denial-of-Service impacts the availability of the

targeted sensor and disrupts an on-going task immediately in a smart device. There

are only two reported DoS attack on smart devices which are passive and achieves

high success rate (Table 4.3). However, one of the reported DoS attack [SSK+15]

uses the MEMS accelerometer and gyroscope which is used by a vast number of

smart devices [CA17]. This increases the impact of DoS attacks on smart devices.

Moreover, both of these DoS attacks are applicable to both standalone and connected

smart devices which widens the attack surface. Hence, DoS attacks have a high impact

on real-life smart devices.

4.3.5 Summary of the Threats and Attacks

We categorized 89 reported sensor-based threats and attacks by the research commu-

nity and industry in four categories. Additionally, we explained the attack methods

and discuss the impacts of the sensor-based attacks based on common vulnerability

metrics (attack impact, attack method, attack complexity, required privilege, user in-

teraction, success rate). Some interesting findings of the aforementioned sensor-based

threats and attacks are listed below:

• Type of sensors targeted: Existing threats and attacks target nine different sen-

sors including both permission and no-permission imposed sensors discussed in

Section 2.4. One interesting fact we observe that the majority of the threats and
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attacks target no-permission imposed sensors which make the existing permission-

based sensor management system ineffective. From Figure 4.1(a), one can notice

that 60% of the total threats and attacks target no-permission imposed sensors

whereas only 40% of the reported threats and attacks target permission-imposed

sensor which needs to bypass existing sensor management systems.

• Active vs. passive: As previously mentioned, sensor-based threats and attacks

can be active or passive depending on the attack method. From Figure 4.1(b),

one can notice the high percentage of active sensor-based threats and attacks on

smart devices. While the majority of these are active, passive attacks and threats

are also a point of interest to the attackers. As passive threats or attacks do not

affect the normal functionalities of the devices, these may remain unnoticed to the

implemented security mechanisms and perform malicious activities surreptitiously.

• Targeted security mechanisms: Sensor-based threats and attacks target various se-

curity mechanisms of the devices (e.g., confidentiality, integrity, availability) which

make them hard to detect. Figure 4.1(c) shows different security mechanisms tar-

geted by the sensor-based threats and attacks. One can notice that most of these

threats and attacks aim to violate data confidentiality (74%) followed by integrity

(24%) and availability (2%) of the sensors.

• Device access needs: To perform malicious sensor activities, sensor-based threats

and attacks need device access (direct or transitive). Figure 4.1(d) illustrates the

device access needs of sensor-based threats. While approximately 54% of the threats

need direct or transitive access (42% direct and 12% transitive), 47% of the threats

do not need any access to execute the malicious activity. As a sensor-based threat

without any need of device access can easily bypass any security mechanism, the

impact of the threats is high. Additionally, the exclusiveness of device access needs
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of sensor-based threats manifests the shortcomings of the existing permission-based

sensor management system.

• Affected layers: Smart devices typically have four architectural layers and attackers

can target any of these layers to initiate a sensor-based attack. From Figure 4.1(e),

it is evident that the most affected layer is the sensing layer followed by the appli-

cation layer. As modern smart devices offer diverse sets of apps that use sensors

for enhanced functionalities, attackers target these layers to modify and perform

malicious activities in smart devices. The apps in smart devices directly bind the

sensing and application layer which is the main reason for increasing threats to

these layers.

• Interest of the attackers: From the discussion above, we can infer the most common

sensor-based threats and attacks to smart devices is keystroke inferences followed by

task inference and transmitting malicious sensor commands. As keystroke inference

attacks typically target smart devices with user interfaces, we can observe higher

number of sensor-based attacks in smartphones and smart watches. Figure 4.1(f)

shows the common sensor-based threats and attacks to the smart devices.

• Effect of the sensor-based threats and attacks: In Table 7.4, we summarize the

effects of sensor-based threats and attacks on smart devices. One can notice that

keystroke inference attacks can leak diverse typing information such as passwords,

PIN input, hand gestures, printed texts, etc. by exploiting a smart device directly or

using a smart device to extract information from a nearby device. Task inference

attacks reveal the nature of on-going tasks on smart devices either in the user

interface of the device or in a connected smart environment. Sensor-based threats

can also infer the geo-location of a smart device user as well as create a location

map of users’ route. By performing an eavesdropping attack using sensors, an

adversary can capture users’ conversations and smart device commands to extract
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Attack type Effect Reference

Keystroke

Inference

Information of lock code or PIN of a

smart device.

[Spr14, CC12, AHIN13, SPYG15,

OHD+12, NSN14, CC11, XBZ12,

BFG+19, Ngu15, LS19, LCY+18,

LYC+19, KJL20, ZWY+19, SSYA19,

SA13,SKSP14,RWG+11]

Typing information (typed text, notes,

commands, etc.) in an embedded or vir-

tual keyboard.

[HB18]

Drawing patterns or unlock patterns on

a smart device.

[ASBS12,MLMK15,Avi12]

Typing information of a nearby key-

board or device.

[MVCT11,LLC+19,HGC+19,LZD+15,

WLRC15, MJHB15, MJHB18, SDN15,

MHSJ18, LL19, AA04, ZZT09, HS12,

BWY06,FKK10,ZMZL14,WCGS19]

Printed information in a printer. [BDG+10]

Task

Inference

on-going task reflected on user interface

of a smart device.

[COS17,MJ18]

On-going task by a user in a single

smart device or connected smart envi-

ronment.

[CBS+18,AFA+18]

Information of an on-going task in a

near by device.

[BKS15, QS01, OC15, NWX+20,

CJX+19,MWA+19]

Location

Inference

Geo-location of a user interacting with

a smart device.

[Ano16,HON+12,BN18]

Mapping smart device users’ motion

and routes to detect location.

[NVHBN16,ZH19,FGSS19]

Eavesdropping

Capturing conversation of the users us-

ing on-board sensors surreptitiously.

[SZZ+11,MBN14,AWL+19]

Stealthily record a conversation or com-

mand and replaying it to get access to

a smart device and perform malicious

activities.

[DLZZ14,LWZ+13]

Transmitting

malicious

commands

Transmitting malicious sensor com-

mand to a nearby smart device and ex-

ecute malicious activities.

[HSH+13, Des14, SUCB13, KPM+18,

ZYJ+17,YZJ+19,ZCWZ19]

Transmitting malicious commands us-

ing a smart device in a connected smart

environment.

[FJP16,CBS+18]

False Sensor

Data

Injection

Injecting false sensor data to change the

output of a smart device or a specific

application running in a smart device

application.

[TPRC11, Cof14, GD13, TLLH18,

PSS+16, SKKK17, YCW+18, PSFK15,

SCR+19]

Denial-of-Service

Using sensory channel to disrupt an on-

going task in a smart device.

[SSK+15]

Injecting inaccurate sensor signal to

make a device unavailable in a smart

environment.

[MZL20]

Table 4.4: Effect of sensor-based attacks on smart devices.

information and accessing a targeted device. An adversary transmitting malicious

sensor commands can trigger malicious events on a smart device which can be

propagated to nearby smart devices. Additionally, introducing false sensor data
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in a smart device can change the output of a smart device and make a device or

sensor unavailable for performing a task (DoS).

4.4 Open Issues, Future Directions, and Recommendations

The concept of making devices ’smart’ is no longer in the developing stage and new

research ideas related to smart devices are emerging these days. In this section,

we discuss open issues and future research directions in the context of sensor-based

threats and attacks to smart devices.

4.4.1 Open Issues and Future Directions

Due to the lack of knowledge among users and research communities, sensor-based

threats become compelling to the attackers to exploit the security of smart devices

and perform malicious activities. There are several open issues that exist in smart

devices that need attention from developers, researchers, and users. These open

issues can be categorized in three major areas - (1) Smart device architectures and

platforms, (2) Further investigation of existing threats, and (3) Solutions to detect

sensor-based threats. In the following discussion, we briefly explain these open issues

and summarize future research directions needed to counter sensor-based threats.

Smart device architectures and platforms. The smart device industry is

growing rapidly and these smart devices are different from each other in terms of

hardware, software, implementation, and functionalities. To understand the sensor-

based threats, it is important to understand the smart device architecture and func-

tionalities properly. Researchers and developers can investigate the following open

issues in smart device architecture to understand the consequences of sensor-based

threats properly.
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Study of Smart Device Architectures and Sensor Operations - With the introduc-

tion of IoT, the number of smart devices in different domains is increasing rapidly. The

smart devices have several internal architectures (i.e., software and hardware) with

less knowledge available, which is an obstacle to secure sensors in these devices. For

instance, there are several operating systems (e.g., Linux, Android, Contiki, TinyOS,

etc.) available for smart devices which vary in terms of functionalities, operations,

and integrated security features. Moreover, smart devices can connect with each other

and create a network of smart devices to perform various tasks. The lack of knowl-

edge of device architectures can affect the security of the devices as security flaws in

one smart device can cause the compromise of other connected smart devices. Ad-

ditionally, in a smart connected environment, multiple smart devices use one sensor

to automate various tasks [SBAU19]. Hence, compromising one sensor can trigger

malicious activities in several connected smart devices. Researchers and developers

should study the smart device architectures (both standalone and connected smart

devices) and functionalities to understand the sensor mechanism which will help to

understand the consequences of emerging sensor-based threats.

Adoption of Standard Security Mechanisms - Currently, there exist several oper-

ating systems for smart devices that manage their on-board and external connected

sensors in distinctive ways (Section 2.4). These dissimilarities make it hard to con-

verge for a general security scheme to protect sensors of the smart devices [Liv16].

For example, in a smart environment, several smart devices from different vendors

can share the same sensors and physical environment. Any sensor-based threats com-

promising normal functionalities of a sensor can propagate to several connected smart

devices. In this scenario, installing vendor-specific sensor security schemes surely in-

crease the security of smart devices from a specific vendor. However, sensor-based

threats targeting smart devices from another vendor can compromise connected smart
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devices even with an installed vendor-specific security scheme [SBAU19]. Moreover,

installing different security schemes in different smart devices can lead to high re-

source usage and introduce overhead in the smart environment. Hence, a comprehen-

sive vendor-independent sensor security scheme is needed to secure sensors of smart

devices in a connected smart environment. One of the future research efforts should

be the standardization of development platforms for smart devices which will make it

easier for researchers to come up with universal security measures to defend against

sensor-based threats and attacks. Therefore, researchers should investigate the pos-

sibility of a common security mechanism for authentication of sensor data as well as

authorization of legitimate sensor access.

Fine-grained Control of Sensors - Existing sensor management systems of smart

devices offer permission-based sensor management which completely depends on user

consent. Apps generally ask for permission to access specific sensors on installation

time and once the permissions are granted, users have less control over the sensors’

usage by the apps. Again, the user permission is enforced only to secure a limited num-

ber of the on-board sensors (e.g., microphone, camera, GPS). Granting permission

to these sensors automatically grant permission for other sensors such as accelerom-

eter, gyroscope, light sensor, etc. In recent years, researchers have also shown that

both permission-enforced (microphone, camera, GPS) and no permission-enforced

(accelerometer, gyroscope, light sensor, etc.) sensors are vulnerable to sensor-based

threats and attacks. Therefore, a fine-grained sensor management system is needed

to verify compliance between sensor access and user intent.

Further Investigation of Sensor-based Threats. Several prior works have

reported many sensor-based threats to smart devices in recent years. However, these

sensor-based threats are unique from one another in terms of attack methods, targeted

devices, and attack consequences. To understand sensor-based threats, it is important
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to study the existing threats and use the knowledge to enhance the security of smart

devices to tackle new sensor-based threats.

Study of Malicious Sensor Behavior and User Perspectives- Sensor-based threats

are relatively new and there are only a few comprehensive studies available to under-

stand the threats properly. This lack of knowledge is lucrative for attackers to target

and trick smart device users to install malicious apps and perform malicious sensor

activities [SWW15]. Users carelessly install any third-party apps with illegitimate

sensor permissions which can compromise smart devices [FHE+12, fel12]. Therefore,

to secure sensors in smart devices, it is important to understand how users, smart

devices, and apps are using sensors to perform and automate various tasks and what

their views of sensor-based threats are. Researchers may perform additional usability

studies to better understand how users can contribute to improving sensor access

control via their inputs in smart devices.

Prevent Leakage of Sensor Data - Smart devices can autonomously sense their

surrounding environment which can be used to prevent information leakage from the

devices. Sensors in smart devices can anticipate an on-going task and detect the

pattern of information accessed by the task. These sensor patterns vary for different

activities and by observing these sensor behaviors, it is possible to prevent information

leakage in smart devices [SAU17].

Control Sharing of Data among Sensors - Communication on smart devices be-

come more sensor-to-sensor (i.e., machine-to-machine) compared to human-to-sensor

or sensor-to-human (human-to-machine or machine-to-human) and the introduction

of a huge number of sensors in smart devices is speeding up this shift. As smart

devices deal with sensitive personal data, sensor-to-sensor communication channels

should be secured, which helps in end-to-end security for the devices. Secure end-to-

end communication from sensors to the devices and among devices is vital to avoid
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information leakage [HFH15,Web10]. Devices should share encrypted sensor data to

avoid any information leakage via packet sniffing [AFA+18]. Sensor data should also

be available to all the connected devices continuously to ensure unimpeded perfor-

mance.

Security Measures for Sensor-based Threats. Currently, there is no com-

prehensive solutions to detect sensor-based threats in smart devices. The existing

solutions focus on specific threats or sensors which are ineffective in addressing sensor-

based threats extensively. Researchers and developers should focus on the following

open issues to develop effective security measures to detect sensor-based threats prop-

erly.

Device Independent Security Measure - The majority of the existing solutions to

secure sensors in smart devices focus on smartphone overlooking the security needs of

other smart devices [STTPLR13]. However, the number of different smart devices are

also increasing rapidly. Several prior works have verified that not only smartphones

but all the smart devices (e.g., smart watch, smart home devices, etc.) are vulnera-

ble to emerging sensor-based threats [SBAU19,NSRU19]. Additionally, smartphones

can be used as a platform to launch sensor-based threats to other smart devices as

smartphones act as controller device for several smart devices such as smart lock,

smart camera, etc. [KS16]. Hence, researchers should consider sensor-based threat as

a general threat to smart devices to develop device independent security measures.

Protect Sensor Data when at Rest - Smart device applications deal with multi-

ple sensor data at a time and tampered data in the smart devices can impact the

normal behavior of applications. To ensure the authenticity of sensor data, various

end-to-end encryption mechanisms may be applied from the sensors to the program

requesting it. Various security features of the hardware such as ARM TrustZone may

be adopted to achieve secure data flow inside the devices [NPDS13]. Researchers
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may also invest their effort in studying the adoption of the blockchain technology as

a way of designing highly distributed systems able to provide attestation and verifica-

tion among multiparty and heterogeneous components part of a larger smart device

ecosystem.

Protect Integrity of Sensor Operations - The research community has not invested

enough effort in studying the design and development of tools for automated detection

and analysis of sensors-based threats. For instance, no tool is available to automat-

ically identify and analyze adversary-controlled sensors that would compromise the

integrity of sensor operations, as well as the integrity of the data generated or modi-

fied by such operations. Also, no tool is available to automatically identify dangerous

configurations in enforced access control policies, which may lead to risky operations

by trusted programs that may compromise the integrity of the entire connected smart

device environment.

Adoption of Intrusion Mechanisms to Detect Attacks - In recent years, multiple

efficient techniques (e.g., machine learning (ML) and neural network (NN)) were

applied to detect threats in various application domains. These detection techniques

should be explored in detail to design novel intrusion detection mechanism, for smart

devices and applications, able to identify when unsafe operations are authorized.

Therefore, researchers should investigate NN and ML classification algorithms as

viable solutions to identify and differentiate legitimate from illegal sensing activities.

4.4.2 Recommendations

Vendors - Vendors have to consider the emerging sensor-based threats and attacks

and get the security requirements right for every embedded and connected sensors.

With the introduction of IoT, sensors can be external devices and connected via

different communication means. Hence, vendors need to consider sensors as embedded
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components as well as independent before implementing security measures. Smart

device vendors also should have a strong research strategy to understand the sensor-

based threats and attacks and its consequences to secure the devices.

End-users - The main victims of the sensor-based threats and attacks are end-

users. Attackers mostly target end-users with less technical knowledge of sensor-based

threats to perform malicious activities such as information leakage, task inference, etc.

Although it is hard to understand the technical part of different sensor-based threats

and attacks, end-users should know the consequences of these threats and attacks and

be cautious before using any risky apps in the devices. Additionally, end-users can

follow good security practices such as rejecting any suspicious sensor access, disabling

automatic data sharing between apps, etc. to secure their devices and information.

Users can also raise their concerns to the vendors regarding sensor-based threats and

attacks.

Developers - Developers can play an important role in securing smart devices

against sensor-based threats and attacks. Modern app-based platforms increase the

popularity of smart devices rapidly and developers can build numerous apps and

publish them in app markets. To secure the devices from the sensor-based threats and

attacks, developers can follow the guidelines published by the vendors to minimize the

sensor data abuse in the apps [anda]. Developers can also follow good app developing

practices such as the use of encrypted sensor data in the app, trusted data flow path,

use of only essential sensor permission, etc. Developers can also help the vendors to

build specific security measures against the sensor-based threats and attacks.

Research community - Several on-going research efforts have already confirmed

the necessity of securing sensors in smart devices [SAU17, KPM+18]. The research

community can help the industry to address the sensor-based threats and attacks

efficiently and propose various solutions. Researchers along with the industry experts
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should jointly propose a standard practice in app development to minimize the sensor

abuses in smart devices. Furthermore, researchers should report newly found sensor-

based threats to the vendors immediately to reduce the consequences.

Summary - In summary, there are several interesting research problems that may

be tackled by the research community toward improving the security of sensors in

smart devices and applications. While following the above directions toward better

protection mechanisms against the sensor-based threats and attacks, researchers have

to identify the key characteristics that differentiate IoT security from the commodity

system security. Such unique characteristics will guide toward the design of innovative

mechanisms that will be robust against the sensor attacks.

4.5 Conclusion

The growing popularity of topics like smart home, smart office, smart city is increasing

attention towards security issues in smart devices and applications. In this chapter,

we surveyed a lesser-known yet serious family of sensor-based threats and attacks to

smart devices. We provided a detailed analysis of recent sensor-based threats and

attacks and discussed how these threats and attacks can be used to exploits various

sensors in smart devices. We also discussed some of the challenges for future research

work in this area. In conclusion, we believe this chapter will have a positive impact in

the research community by documenting recent sensor-based threats and attacks to

smart devices and motivating researchers to develop further comprehensive security

schemes to secure these devices against sensor-based threats and attacks.
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CHAPTER 5

SENSOR-BASED THREAT DETECTION IN STANDALONE SMART

DEVICES

5.1 Introduction

In this chapter, we present a novel intrusion detection (IDS) framework called 6thSense,

as a comprehensive security solution for sensor-based threats for standalone smart

devices (e.g., smartphone, smart watch, etc.). The proposed framework is a context-

aware IDS and is built upon the observation that for any user activity or task (e.g.,

texting, making calls, browsing, driving, etc.), a different, but a specific set of sensors

becomes active. In a context-aware setting, the 6thSense framework is aware of the

sensors activated by each activity or task. Here, context-aware refers to the ability

of inferring user activities by tracking different sensors’ data of a device. 6thSense

observes sensors data in real time and determines the current use context of the de-

vice according to whether the current sensor use is malicious or not. 6thSense is

context-aware and correlates the sensor data for different user activities (e.g., tex-

ting, making calls, browsing, etc.) on the smart devices and learns how sensors’ data

correlates with different activities. As a detection mechanism, 6thSense observes sen-

sors’ data and checks against the learned behavior of the sensors. In 6thSense, the

framework utilizes several Machine Learning-based detection mechanisms to catch

sensor-based threats including Markov Chain, Naive Bayes, and a set of other ML

algorithms (e.g., PART, Logistic Function, J48, LMT, Hoeffding Tree, and Multi-

layer Perception). In this chapter, we present the design of 6thSense on different

Android devices (smartphone and smart watch) because of its open-source nature,

large market share [and16], and rich set of sensors. To evaluate the efficiency of the

framework, we tested it with data collected from real users (100 different users, 16
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different typical daily activities for smartphone and smart watch [act15a] including

153600 and 307200 different event-state information, respectively). We also evaluated

the performance of 6thSense against three different sensor-based threats and finally

analyzed its overhead. Our evaluation shows that 6thSense can detect sensor-based

attacks with an accuracy and F-Score over 96%. Also, our evaluation shows a min-

imal overhead on the utilization of the system resources. Note that, this work is an

extension of our previous work [SAU17]. We significantly improved the framework

from our prior work and implemented 6thSense on smart watch and smart phone.

We also evaluated the performance with new user data and analyzed the performance

overhead in further detail.

Contributions: In summary, the main contributions of this chapter are threefold:

• First, the design of 6thSense, a context-aware IDS to detect sensor-based threats

in standalone smart devices utilizing multiple machine learning based models from

Markov Chain to Naive Bayes to LMT.

• Second, the extensive performance evaluation of 6thSense with real user experi-

ments over 100 users for different standalone smart devices (smartphone and smart

watch).

• Third, testing of 6thSense against three different sensor-based threats.

5.2 Differences from Prior Works

Though there is no direct comparable work to compare 6thSense with, differences

between existing solutions and our framework can be noted as follows: The main

limitation of Semadroid [XZ15] is that the proposed solution is only tested against a

similar type of attack scenario (information leakage by a background application). Se-

madroid also does not provide any extensive performance evaluation for the proposed
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scheme. Finally, this work depends on user permissions to fully enforce an updated

policy on the sensor usage which is vulnerable as users might unknowingly approve the

sensor permissions for malicious Apps. Real-time activity detection proposed by Maiti

et al. considers motion sensors to identify user activity on a smart device which is

only effective against keystroke inference [MAJH16]. In Darkly [JNS13], the proposed

framework is not tested against any sensor-based threats. Audroid presented a policy

enforced framework to secure only the audio channels of a smart device. Albeit useful,

similar to the others, this work does not consider other sensor-based threats, either.

More recent work AWARE also considers selective sensors (e.g., camera and micro-

phone) to identify malicious sensor accesses of the applications [PRS+17]. Compared

to these prior works, 6thSense provides a comprehensive coverage to all the sensors

in a smart device and ensures security against different types of sensor-based threats

with high accuracy.

5.3 Adversary Model and Design Assumptions

In this section, we discuss different threats that may abuse sensors to execute mali-

cious activities on a smart device. Different design features and assumptions are also

explained in this section.

5.3.1 Adversary Model

For this work, we consider the following sensor-based threats similar to [USB14]:

• Threat 1-Triggering a malicious App via a sensor. A malicious App can exist in the

smart device which can be triggered by sending a specific sensory pattern or message

via sensors.
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• Threat 2-Information leakage via a sensor. A malicious App can exist in the device

which can leak information to any third party using sensors.

• Threat 3-Stealing information via a sensor. A malicious App can exist in the device

which can exploit the sensors of a smart device and start stealing information after

inferring a specific device mode (e.g., sleeping).

In this work, we cover these three types of malicious sensor-based threats. To build

our adversary model, we consider any component on a smart device that interacts with

the physical world as a sensor [PSJA15]. We designed specific malware to represent

above-mentioned threats and test our proposed framework against these malware.

5.3.2 Design Assumptions and Features

In designing a comprehensive security scheme like 6thSense for sensor-based threats,

we note the following design assumptions and features:

Figure 5.1: Context-aware model for 6thSense.

• Context Awareness: The main feature of 6thSense is context awareness which

refers to the ability to sense the physical environment and adapt its operations accord-

ingly in realistic cases [TK12]. 6thSense builds a context-aware model by observing
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the sensors’ behaviors on a smart device in different usage scenarios. When a user is

performing a task on a smart device, several sensors (i.e., accelerometer, gyroscope,

light sensor, etc.) may remain active. This active state of different sensors is not

constant and can change over time. This shifting in sensor’s state over time should

be considered correctly to understand the context of an activity. 6thSense divides

the total execution time of an activity into smaller times and observes the sensors’

states (on/off) over a short time span. Thus, whenever a sensor state is changed,

6thSense can understand the context and take a decision according to the context.

For example, while a user is walking with a smartphone on his hand, several sensors

(i.e., accelerometer, gyroscope, light sensor, etc.) remain active. If we divide the time

of the activity in smaller times, we can see different sets of sensors active for different

sensor states (Figure 6.1). In this way, 6thSense considers all device states to un-

derstand the context of the activity and differentiate between benign and malicious

activities.

• Sensor co-dependence: A sensor in a smart device is normally considered as an

independent entity on the device. Thus, one sensor does not know what is happening

in another sensor. However, in this work, given an activity, we consider sensors as

co-dependent entities on a device instead of independent entities. The reason for this

stems from the fact that for each user activity or task on a smart device, a specific

set of sensors remains active. For example, if a user is walking with a phone in hand,

motion sensors (i.e., gyroscope, accelerometer), the light sensor, GPS will be active.

On the contrary, if the user is walking with the phone in the pocket or bag, instead

of the light sensor, the proximity sensor will remain active. Thus, a co-dependent

relationship exists between sensors while performing a specific task. Each activity

uses different, but specific set of sensors to perform the task efficiently. Hence, one

can distinguish the user activity by observing the context of the sensors for a specific
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task. 6thSense uses the context of all the sensors to distinguish between normal

user activities and malicious activities. In summary, sensors in a smart device are

individually independent, but per activity-wise dependent and 6thSense considers the

context of the activities in its design.

• Adaptive sensor sampling: Different sensors have different sampling frequen-

cies. To monitor all the sensor data for a specific time, a developed solution must

consider and sample the sensor data correctly. 6thSense considers sampling the sensor

data over a certain time period instead of individual sensor frequencies which miti-

gates any possible error in processing of data from different sensors. 6thSense collects

each sensor data separately and samples the data according to their corresponding

frequencies. These sample data are merged together to build contexts of different

user activities in smart devices.

• Faster computation: Modern high precision sensors on smart devices have high

resolution and sampling rate. As a result, sensors provide large volume of data even

for a small time interval. A solution for sensor-based threats should quickly process

any large data from different sensors in real time while ensuring a high detection rate.

To address this, we use different machine learning algorithms as detection techniques

of 6thSense which are proven simple and fast techniques.

• Real-time monitoring: 6thSense provides real-time monitoring to all the sensors

which mitigates the possibility of data tempering or false data injection on the device.

• Configurability: 6thSense is configurable to provide different needs and flexible

deployments. For example, 6thSense offers both online and offline training mode for

different machine learning detection techniques to reduce power consumption.
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5.4 Detection Techniques: Theoretical Foundation of 6thSense

In this section, we describe the theoretical foundation of the detection techniques

used in 6thSense. For the context-aware IDS in 6thSense, we utilize several different

ML-based techniques including Markov Chain, Naive Bayes and, a set of other ML

algorithms (e.g., PART, Logistic Function, J48, LMT, Hoeffding Tree, and Multilayer

Perception) to differentiate between normal and malicious behavior on a smart device.

As explained in Section 4, we consider the context awareness of user activities

in a smart device which shows state transition and sensor co-dependence feature

in a smart device. The Markov Chain model can illustrate these properties of the

smart device’s sensors accurately based on different user activities in the transition

matrix. Another advantage of using Markov Chain model is that it is easy to build

the model from a large dataset and computational requirements are modest which

can be met by resource-limited devices. On the other hand, the Naive Bayes model

can build multiple activity contexts from sensor data and identifies whether a test

dataset belongs to a user activity or a malicious activity. The Naive Bayes model

uses the sensor co-dependence feature to build the activity context and classifies data

accordingly. In addition to this, the Naive Bayes technique is chosen for its fast

computation rate, small training dataset requirement, and ability to modify it with

new training data without rebuilding the model from scratch.

Apart from the Markov Chain and the Naive Bayes model, other ML techniques

are also common in malware detection because of their high accuracy rate [YLAI17,

SPA+18]. We also investigate how other ML algorithms perform in building a context-

aware model from sensor data and detecting sensor-based threats on a smart device.

Our main purpose is to check whether popular ML algorithms can understand and

build an effective context-aware model for sensor-based threats. A discussion of these
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approaches in the context of 6thSense is given below. The efficacy of these different

approaches utilized in 6thSense is analyzed in Section 7.

5.4.1 Markov Chain-Based Detection

Markov Chain model can be described as a discrete-time stochastic process which

denotes a set of random variables and defines how these variables change over time.

There are two main assumptions for Markov Chain model: (1) Probability distribution

of the state at time t+1 depends on the state at time t only. Here, the state refers to

the overall condition of the stochastic process. (2) A state transition from previous

timestamp (t) to next timestamp (t+1 ) is independent of time. Markov Chain can

be applied to illustrate a series of events where what state will occur next depends

only on the previous state. In our study, a series of events represents user activity

and state represents condition (i.e, values, on/off status) of the sensors in a smart

device (Figure 5.2). We can represent the probabilistic condition of Markov Chain as

in Equation 1 where Xt denotes the state at time t [Kei12].

P (Xt+1 = x|X1 = x1, X2 = x2..., Xt = xt) = P (Xt+1 = x|Xt = Xt),

when, P (X1 = x1, X2 = x2..., Xt = xt) > 0.

(5.1)

In our study, we observe the changes of condition of a set of sensors as a variable

which changes over time. The condition of a sensor indicates whether the sensor

value is changing or not from a previous value in time. Let us assume S denotes a set

which represents current conditions of n number of sensors. So, S can be represented

with S = {S1, S2, S3, ..., Sn}, where S1, S2, S3, ..., Sn = 0 or 1. For a specific time, t,

we consider the combination of all the sensors’ conditions in the smart device as the

state of our model. As we consider change in a sensor’s condition as binary output

(1 or 0, where 1 denotes that sensor value is changing from previous instance and 0

denotes that sensor value is not changing), the number of total states of our model
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Figure 5.2: Markov Chain model for 6thSense

will be exponents of 2. For example, if we consider the total number of sensors in

set S is 10, the number of states in our Markov Chain will be 210 and the states can

be represented as a 10 bit binary number where each bit will represent the state of a

corresponding sensor. For this, pij denotes the probability that the system in a state

j at time t+1 given that system is in state i at time t. If we have n number of sensors

and m = 2n states in our model, Markov Chain can be constructed by the following

transition probability matrix:

P =



p11 p12 p13 . . . . . . p1m

p21 p22 p23 . . . . . . p2m

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

pm1 pm2 pm3 . . . . . . pmm


(5.2)

The transition probability matrix of this Markov Chain can be constructed by

observing the transitions from one state to another state for a certain time. Assume

that, system’s states are X0, X1, . . . , XT at a given time t = 0, 1, . . . , T . We can

represent the transition probability matrix as follows:

Pij =
Nij

Ni
, (5.3)

where, Nij = the number of transition from Xt to Xt+1 where Xt in state i and Xt+1

in state j ; Ni = the number of transition from Xt to Xt+1, where Xt in state i and

92



Xt+1 in any other state. The initial probability distribution of this Markov Chain can

be represented as follows:

Q =

[
q1 q2 q3 . . . . . . qm

]
(5.4)

where qm is the probability that the model is in state m at time 0. Probability

of observing a sequence of states X1, X2, . . . , XT at a given time 1, . . . , T can be

computed using the following equation:

P (X1, X2, . . . , XT ) = qx1

T∏
2

PXt−1Xt (5.5)

For 6thSense, instead of predicting the next state, we determine the probability of

occurring a transition between two states at a given time. We train our Markov Chain

model with a training dataset collected from real users and build the transition matrix

accordingly. Then, we determine sensor working condition for time t and t+1. Let us

assume a and b are sensor’s state in time t and t+1. We determine the probability

of transition from state a to b which can be found by looking up in the transition

matrix and calculating P(a,b). As the training dataset consisted of sensor data from

benign activities, we can assume that if transition from state a to b is malicious, the

calculated probability from transition matrix will be zero.

5.4.2 Naive Bayes Based Detection

The Naive Bayes model is a simple probability estimation method which is based

on Bayes’ method. The main assumption of the Naive Bayes detection is that the

presence of a particular sensor condition in a task/activity has no influence over the

presence of any other feature on that particular event. The probability of each event

can be calculated by observing the presence of a set of specific features.

Assume p(x1, x2) is the general probability distribution of two events x1, x2. Using

the Bayes rule, we can have the following equation:
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p(x1, x2) = p(x1|x2)p(x2), (5.6)

where p(x1|x2) = Probability of the event x1 given that event x2 will happen. Now,

if we have another variable, c, we can rewrite Equation 7 as follows:

p(x1, x2|c) = p(x1|x2, c)p(x2|c). (5.7)

If knowledge of c is sufficient enough to determine the probability of event x1, we can

state that there is conditional independence between x1 and x2 [MS12]. So, we can

rewrite the first part of Equation 8 as p(x1|x2, c) = p(x1|c), which modifies Equation

8 as follows:

p(x1, x2|c) = p(x1|c)p(x2|c). (5.8)

In 6thSense, we consider users’ activity as a combination of n number of sensors

(Figure 5.3). Assume X is a set which represents current conditions of n number of

sensors. We consider that conditions of sensors are conditionally independent (See

Section 4.2), which means a change in one sensor’s working condition has no effect

over a change in another sensor’s working condition. As we explained earlier, the

probability of executing a task depends on the conditions of a specific set of sensors.

So, in summary, although one sensors’ condition does not control another sensor’s

condition, overall probability depends on all the sensors’ conditions. For example, if a

person is walking with his smartphone in his hand, the motion sensors (accelerometer

and gyroscope) will change. However, this change will not force the light sensor or

the proximity sensor to change its condition. Thus, sensors in a smart device change

their conditions independently, but execute a task together. From Equation 9, we

can have a generalized formula for this context-aware model [MS12]:

p(X|c) =

n∏
i=1

p(Xi|c). (5.9)

In our contextual activity-oriented model, we have a set of training data for users’

activities. Assume that B represents a set which denotes m numbers of user activities.
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Figure 5.3: Naive Bayes model for 6thSense

We can determine the probability of a dataset X to be classified as a user activity

using the following equation:

P (Bi|X) =
P (X|Bi)P (Bi)

P (X)
, (5.10)

where i = 1, 2, . . . , m. As the sum of all the conditional probabilities for X will be

1, we can have the following equation which will lead to Equation 12—
m∑
i=1

P (Bi|X) = 1. (5.11)

P (Bi|X) =
P (X|Bi)P (Bi)∑m
i=1 P (X|Bi)P (Bi)

. (5.12)

This calculated conditional probability then is used to determine the benign user

activity or malicious attacks in 6thSense. In this way, we compute the probability of

occurring an activity over a certain period of time.

We divide the sensor data into smaller time values (1 second) and calculate the

probability of each instances to infer the user activity. The calculated probability per

second data is then used in the expected value theorem to calculate total probability.

If the probability of the first instance is p1 with a value of a1, probability of the second

instance is p2 with a value of a2 and so on, up to value an, the expected value can be

calculated by the following formula:

E[N ] =
a1p1 + a2p2 + a3p3 + . . . . . .+ anpn

a1 + a2 + . . . . . .+ an
. (5.13)
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As all the values of a1, a2, ... ..., an are equally likely, this expected value becomes

a simple average of cumulative probability of each instances. We infer the user activity

by setting up a configurable threshold value in the 6thSense framework and checking

whether calculated value is higher than the threshold or not. If it is lower than the

threshold value, a malicious activity is occurring in the device.

5.4.3 Other ML-based Detection Techniques

In addition to the Markov Chain and the Naive Bayes models above, there are other

machine learning algorithms (such as PART, Logistic Function, J48, LMT, Hoeffding

Tree, and Multilayer Perception) that are very popular for anomaly detection schemes

because of their fast computation and easy implementation.

In the alternative detection techniques, we used four types of ML-based classifier

to build a context-aware analytical model for 6thSense. The following briefly discusses

these classifiers and our rationale to include them:

Rule-based Learning. Rule-based ML works by identifying a set of relational rules

between attributes of a given dataset and represents the model observed by the sys-

tem [GPY+07]. The main advantage of the rule-based learning is that it identifies

a single model which can be applied commonly to any instances of the dataset to

make a prediction of outcome. As we train 6thSense with different user activities,

the rule-based learning provides one model to predict data for all the user activities

which simplifies the framework. For 6thSense, we chose, PART algorithm for the

rule-based learning.

Regression Model. Regression model is widely used in data mining for its fast

computation. This type of classifier observes the relations between dependent and

independent variables to build a prediction model [SKE+12]. For 6thSense, we have a

total 11 attributes where we have one dependent variable (device state: malicious/be-
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nign) and ten independent variables (sensor conditions). Regression model observes

the change in the dependent variable by changing the values of the independent

variables and build the prediction model. We use the logistic regression model in

6thSense, which also yields with high accuracy against conventional Android mal-

ware [SKE+12].

Neural Network. Neural network is another common technique that is utilized

by researchers for malware detection. In neural network techniques, the relation be-

tween attributes of dataset is compared with the biological neurons and a relation

map is created to observe the changes for each attribute [LVM09]. We chose Multi-

layer Perceptron algorithm for training the 6thSense framework as it can distinguish

relationships among non-linear dataset.

Decision Tree. Decision tree algorithms are predictive models where decision maps

are created by observing the changes in one attribute in different instances [YWLY07].

These types of algorithms are mostly used in a prediction model where output can

have a finite set of values. For 6thSense, we utilized and tested three different decision

tree algorithms (J48, LMT (Logistic Model Tree), and Hoeffding tree) to compare the

outcome of our framework.

5.5 6thSense Framework

In this section, we provide a detailed overview of our proposed context-aware IDS

framework, 6thSense, for detecting sensor-based threats on smart devices. As illus-

trated in Figure 5.4, 6thSense has three main phases: (1) data collection, (2) data

processing, and (3) data analysis. In the Data Collection phase, we use a custom

Android App to collect the sensor data for different user activities and the collected

sensor data are then processed in the Data Processing phase. In Phase 3, the collected

data is fed into detection models and the end result indicates whether the current

97



state of the device is malicious or not. The following sub-sections briefly describe

these three phases.

5.5.1 Data Collection Phase

In this phase, 6thSense collects data from different sensors of a smart device. There

can be multiple sensors in a smart device. 6thSense considers nine sensors in total

to identify different user activities using a sensor-rich Android device. The sensors

selected are accelerometer, gyroscope, light sensor, proximity sensor, GPS, audio

sensor (microphone and speaker), camers, and headphone. The chosen sensors are

then categorized into two following categories.

No-permission-imposed sensors in 6thSense: For 6thSense, we chose four no-

permission imposed sensors (i.e., accelerometer, gyroscope, light, proximity sensors).

We can also refer these sensors as data-oriented sensors in the context of 6thSense

because values provided by these sensors need to be observed to infer user activities.

For example, accelerometer’s and gyroscope’s values change with motion and they

give values on X, Y, and Z axes. To detect whether a sensor is activated or not for

a specific activity, one needs to observe values of these sensors.

Permission-imposed sensors in 6thSense: We chose five permission-imposed sen-

sors to build the context-aware model (microphone, GPS, speaker, camera, and head-

set) of 6thSense. The conditions of these sensors can be represented by their logical

states (on/off status) for different user activities. Hence, we also referred to these

sensors as logic-oriented sensors in the context of 6thSense. For example, microphone

has only two values to identify users’ activity: on and off. So, it can be represented

with 0 or 1 to detect if the camera is on or off correspondingly.

To collect the data and logical values from sensors, we built a custom Android

App and 6thSense used this in the data collection phase. In Android, this App uses
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sensoreventlistener API to log numerical values of the data-oriented sensors. On the

other hand, the App determines the state of the sensor and logs 0 or 1 if the sensor is

on or off, respectively. This App uses the user permission to use the microphone, GPS,

and camera to record the working conditions of these sensors. For GPS, we consider

two datasets - either GPS is turned on or not and either location is changing or not. In

total, six different logic state information for five aforementioned permission-imposed

sensors are collected by this App.

Note that 6thSense considers different typical daily human activities [act15b] that

involve the smart devices (e.g., smart watch, smart phone, etc.) to build the con-

textual model. These activities include walking, talking, interacting (playing games,

browsing), driving (as driver and passenger). Furthermore, the number of activities

is configurable in 6thSense and is not limited to aforementioned examples. As also

explained in the evaluation of 6thSense, a total of seven and nine typical daily activi-

ties are selected for smart watch and smart phone respectively as they are considered

as common user activities [act15a]. 6thSense collects these data using the App for

different users to train the framework which is then used to distinguish the normal

sensor behavior from the malicious behavior. In summary, the aforementioned App

collects data from eight different sensors for different typical user activities. 6thSense

observes sensor state (combination of working conditions (i.e., values, on/off status)

of different sensors) in a per second manner for each user activity. Each second of data

for user activity corresponds to 512 state information from eight different sensors.

5.5.2 Data Processing Phase

In the second phase of the framework, 6thSense organizes the data to use. As different

sensors have different frequencies on the smart device, the total number of readings

of sensors for a specific time period is different. For example, the accelerometer and

99



gyroscope of LG Watch Sport have a sampling frequency of approximately 418 Hz

and 32 Hz, respectively while the light sensor has a sampling frequency of 5 Hz. Thus,

the data collected in Phase 1 needs to be sampled and reorganized. 6thSense observes

the change in the sensor condition in each second to determine the overall state of our

device and from this per second change, 6thSense determines the activity of users.

For this reason, 6thSense takes all the data given by a single sensor in a second and

calculates the average value of the sensor reading. This process is only applicable for

the data oriented sensors as mentioned earlier. Again, the data collected from the App

is numerical value as given by the sensor. However, for the detection model, 6thSense

only considers the condition of the sensors. 6thSense observes the data collected by

the aforementioned App and determines whether the condition of sensors is changing

or not. If the sensor value is changing from the previous value in time, 6thSense

represents the sensor condition as 1 and 0 otherwise.

The logic state information collected from the sensors need to be reorganized, too

as these data are merged with the data collected from the collected values from the

other sensors to create an input matrix. We consider the condition of the sensors to be

the same over time and organize the data accordingly. The reorganized data generated

from the aforementioned App are then merged to create the training matrices.

5.5.3 Data Analysis Phase

In the third, 6thSense uses different ML-based detection techniques introduced in the

previous section to analyze the data matrices generated in the previous phase.

For the Markov Chain-based detection, 6thSense uses 75% of the collected data

to train 6thSense and generate the transition matrix. This transition matrix is used

to determine whether the transition from one state to another is appropriate or not.

Here, state refers to generic representation of all the sensors’ conditions on a device.
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Figure 5.4: Overview of 6thSense.

For testing purposes, we have two different data set — benign activities or trusted

model and malicious activities or threat model. The trusted model consists of 25% of

the collected data for different user activities. We tested the trusted model to ensure

the accuracy of the 6thSense framework in detecting benign activities. The malicious

activities are built from performing the attack scenarios mentioned in Section 5.3.

6thSense calculates the probability of a transition occurring between two states at a

given time and accumulates the total probability to distinguish between normal and

malicious activities.

To implement the Naive Bayes-based detection technique, 6thSense uses the train-

ing sessions to define different user activities. In 6thSense, seven typical user activities

are selected in total for smart watch as listed in Table 3. In addition to these user

activities, we consider walking with smart device in pocket and making a video call

as typical user activities to test 6thSense in smart phone. 6thSense uses ground truth

user data to define these activities. Using the theoretical foundation explained in

Section 5.4, 6thSense calculates the probability of a test session to belong to any of

these defined activities. As 6thSense considers one second of data in each compu-
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tational cycle, the total probability up to a predefined configurable time interval (in

this case five minutes) is calculated. This calculated probability is used to detect

malicious activities from normal activities. If the computed probability for all the

known benign activities is not over a predefined threshold, then it is detected as a

malicious activity.

For the other alternative machine-learning-based detection techniques, 6thSense

uses WEKA, a data mining tool which offers data analysis using different machine

learning approaches [HFH+09].

5.6 Performance Evaluation of 6thSense

Sensor

type
Name

Model

(Smart Watch | Smart Phone)

Specification

(Smart Watch | Smart Phone)

No-permission imposed

sensors

Accelerometer
Bosch BMI160 Acceleration Sensor |

MPU6500 Acceleration Sensor

78.4532 m/s2, 417.67 Hz, 0.01 mA |
19.6133 m/s2, 203.60 Hz, 0.25 mA

Gyroscope
Bosch BMI160 Gyroscope Sensor |

MPU6500 Gyroscope Sensor

17.453293 rad/s, 31.95 Hz, 0.01 mA |
8.726646 rad/s, 203.60 Hz, 6.1 mA

Light Sensor
APDS-9306 Light Sensor |

TMG399X RGB Sensor

30000 lux, 5 Hz, 0.11 mA |
600000 lux, 5.62 Hz, 0.75 mA

Proximity Sensor
LG Wear Detection Sensor |
TMG399X proximity sensor

1V, 0.15 mA | 8V, 0.75 mA

Permission-imposed sensors

Microphone

Qualcomm Snapdragon Wear 2100

built in microphone | Qualcomm

Snapdragon 801 Processor built

in microphone

120 dB, .12 mA | 86 dB, .75 mA

Speaker

Qualcomm Snapdragon Wear 2100

built in speaker | Qualcomm

Snapdragon 801 Processor built

in speaker

90 dB, .18 mA | 110 dB, 1 mA

Camera N/A | Samsung S5K2P2XX N/A | 12 megapixels, 30 fps, 4.7 mA

Table 5.1: Sensor list of LG Watch Sport and Samsung Galaxy S5 Duos smartphone
used in experiment.

In this section, we evaluate the efficiency of the proposed context-aware IDS frame-

work, 6thSense, in detecting the sensor-based threats on smart devices (smartphone

and smart watch). We tested 6thSense with the data collected from different users

for benign activities and adversary models described in Section 5.3. As discussed
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earlier, 6thSense considers three sensor-based threats: (1) a malicious App that can

be triggered via a light or motion sensors, (2) a malicious App that can leak infor-

mation via audio sensors, and (3) a malicious App that steals data via audio sensors.

Furthermore, we measured the performance impact of 6thSense on the devices and

present a detailed results for the efficiency of the 6thSense framework on both a smart

watch and smart phone.

5.6.1 Training Environment and Dataset

In order to test the effectiveness of 6thSense, we implemented it on both a sensor-

rich Android-based smart watch and smartphone. We used the LG Watch Sport as

a reference Android smart watch with Android Wear version 2.0 to collect sensor

data for different typical user activities. We chose this Android device as the LG

watch sport is a second generation, stand-alone Android wearable that provides a

rich set of sensors. A list of sensors of LG Watch Sport is given in Table 5.1. As

discussed earlier, we selected 7 different typical user activities or tasks to collect user

data (Table 3). These are typical basic activities with the smart watches that people

usually do in their daily lives [act15a]. The user activities/tasks are categorized in

two categories as generic activities and user related activities.

Generic activities are the activities in which the sensor readings are not affected

by the smart device users. Sleeping wearing smart watch, driving with the smart

watch using GPS as a navigator, and driving with smart watch in hand are three

generic activities that were considered in this work. Basically, in the generic activities,

sensors’ data are not affected by different users since users do not interact with the

smart watch directly. For example, if a user is sleeping, sensors activity will be

irregular depending on sleeping pattern. There will be less movement detected in

the device and sensor data will be changed accordingly. For user-related activities,

103



in which the sensor readings may be affected by the user, we identified four different

activities including walking, playing games, browsing, and making voice calls via

smart watch.

For implementing and evaluating the performance of 6thSense on smartphone, we

chose Samsung Galaxy S5 Duos with Android OS version 7.1.2 (Android N) which

provides a broad range of sensors. Samsung currently holds approximately 23.3% of

total market share of smartphones [sam17] and is the largest Android operated smart-

phone manufacturer which motivates to implement 6thSense on Samsung smartphone.

In addition to user activities used in the smart watch data collection, we considered

two more user-related activities (walking with the device in pocket/bag and making

video calls) for testing 6thSense on the smartphone.

6thSense was tested by 100 different individuals (50 smart watch users and 50

smartphone users) while the sensor data was collected from the smart watch and

the smartphone. We note that our study with human subjects was approved by the

appropriate Institutional Review Board (IRB) and we followed all the procedures

strictly in our study. To train and test 6thSense on the smart watch, we collected 200

sets of data for four user-related activities for the smart watch where each dataset

comprised of 300 seconds of data from the selected sensors mentioned in Section 5.5.

We also collected three sets of data for each general activity. We asked the different

users to perform the same activity to ensure the integrity for different tasks. We

also asked the users to perform the tasks naturally without any influence of the lab

environment. Users performed these tasks in a real-life workplace and outdoor in a

natural environment. Additionally, users chose their preferred place, walking routes,

and apps in the entire data collection process. For example, to collect data in walking

scenario, users chose their preferred walking routes both inside their workplace and

outside environment. Note that each five minutes of the data collected for user-related
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and generic activities corresponds to 300 events with 512 different states. So, a total

of 153,600 different event-state information were analyzed by 6thSense for a user

activity. For testing 6thSense on a smartphone, we collected data from 50 different

individuals for nine different activities. We considered nine different sensors to build

the context-aware model and each dataset depicted 300 events with 1024 different

states and a total of 307,200 event-state information [SAU17].

For the malicious dataset, we created three different attack scenarios considering

the adversary model mentioned in Section 4. For Threat 1, we developed two different

Android Apps which could be triggered using the light sensor and motion sensors on

the smart watch. We also created the same malicious Android app for the smart

phone. To perform the attack described in Threat 2, we developed a malware that

could record conversations as audio clips and playback after a specific time to leak the

information. This attack scenario included both the microphone and speaker on the

smart watch and smart phone. We developed another version of this app which could

record conversations as audio clips in smartphone using a connected smart watch.

Also, for Threat 3, we developed a malicious App that could scan all the sensors

and if none of the sensors were changing their working conditions, the malicious App

could open up the microphone and record audio clips surreptitiously. For Threat 3,

we developed another version for smart devices with camera (e.g., smartphone) where

a malicious App can scan all the sensors of a device and if device was inactive, the

malicious App could activate camera and record videos covertly. We developed an

updated version of this attack which could start recording via microphone in a smart

watch if the connected smartphone was inactive. This version of the app could bypass

the security feature introduced on Android P [and18b]. In summary, we created 10

different malware that could perform malicious activities in Android-powered smart

phone and smart watch. We collected 18 different datasets (a total of 62,850 event-
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state information) from these three attack scenarios to test the efficacy of 6thSense

against these adversaries in a smart watch.

In order to test 6thSense, we divided the collected real user data into two sections

as it is a common practice [URC+13]. 75% of the collected benign dataset was used

to train the 6thSense framework and 25% of the collected data along with malicious

dataset were used for testing purposes. For the Markov Chain-based detection tech-

nique, the training dataset was used to compute the state transitions and to build

the transition matrix. On the other hand, in the Naive Bayes-based detection tech-

nique, the training dataset was used to determine the frequency of sensor condition

changes for a particular activity or task. As noted earlier, for the smart watch, there

were seven activities for the Naive Bayes technique. We split the data according to

their activities for this approach. For the analysis of the other ML-based approaches,

Task Category Task Name

Generic Activities
1. Sleeping
2. Driving as driver
3. Driving as passenger

User-related Activities

1. Walking with smart
watch in hand
2. Playing games
3. Browsing
4. Making phone calls
5. Walking with device in
pocket/bag†

6. Making video calls†

† Only considered for smart phone.

Table 5.2: Typical activities of users on a smart device [act15a].

the data in benign and malicious classes were used to train and test 6thSense using

10-fold cross validation for different ML algorithms.
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Smart Watch Smart Phone
Threshold† Recall FN Precision FP Accuracy F-score Recall FN Precision FP Accuracy F-score

0 0.66 0.33 1 0 0.77 0.79 0.62 0.38 1 0 0.68 0.76
1 0.77 0.22 1 0 0.85 0.87 0.86 0.14 1 0 0.88 0.92
2 0.88 0.11 1 0 0.92 0.94 0.96 0.04 1 0 0.96 0.97
3 0.97 0.02 0.98 0.01 0.97 0.98 0.98 0.02 1 0 0.98 0.98
5 0.99 0.001 0.89 0.11 0.96 0.94 1 0 0.9 0.1 0.98 0.94
6 1 0 0.84 0.16 0.95 0.92 1 0 0.8 0.2 0.96 0.89

† Number of consecutive malicious state is considered as threshold

Table 5.3: Performance evaluation of Markov Chain based model.

5.6.2 Performance Metrics

In the evaluation of 6thSense, we utilized the following six different performance met-

rics: Recall rate (sensitivity or True Positive rate), False Negative rate, Specificity

(True Negative rate), False Positive rate, Accuracy, and F-score. True Positive (TP)

indicates number of benign activities that are detected correctly while true negative

(TN) refers to the number of correctly detected malicious activities. On the other

hand, False Positive (FP) states malicious activities that are detected as benign activ-

ities and False Negative (FN) defines number of benign activities that are categorized

as malicious activity. F-score is the performance metric of a framework that reflects

the accuracy of the framework by considering the recall rate and specificity. These

performance metrics are defined as follows:

Recall rate (TP Rate) =
TP

TP + FN
, (5.14)

False negative rate =
FN

TP + FN
, (5.15)

Precision rate (TN rate) =
TN

TN + FP
, (5.16)

False positive rate =
FP

TN + FP
, (5.17)

Accuracy =
TP + TN

TP + TN + FP + FN
, (5.18)

F − score =
2 ∗Recall rate ∗ Precision rate
Recall rate+ Precision rate

. (5.19)

In addition to the aforementioned performance metrics, we considered Receiver Op-

erating Characterstic (ROC) curve and Precision Recall Curve (PRC) as other per-
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formance metrics for 6thSense. As our collected dataset is imbalanced (number of

benign events is higher than the malicious events), the accuracy of the framework

can be influenced by the dataset. To address data imbalance problem in 6thSense,

we used PRC as a performance metric which considers data imbalance and reflects

the base-rate fallacy correctly [RDL+15].

5.6.3 Evaluation of Markov Chain-Based Detection

In the Markov Chain-based detection technique, we question whether the transition

between two states (sensors’ on/off condition in each second) is expected or not. In

the evaluation, we used 66 testing sessions in total for the smart watch, among which

51 sessions were for the benign activities (both generic and user-related activities)

(a) ROC curve for Markov
Chain

(b) PRC curve for Markov
Chain

(c) ROC curve for Naive Bayes (d) PRC curve for Naive Bayes

Figure 5.5: ROC curve and PRC curve of different detection techniques on smart
watch (—–) and smart phone (—–).
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and the rest of the sessions were for the malicious activities. For evaluation in the

smartphone, we have 80 testing sessions in total (65 benign sessions). A session is

composed of a series of sensory context conditions where a sensory context condition

is the set of all available sensor conditions (on/off state) for different sensors. As

discussed earlier in Section 6, a sensor condition is a value indicating whether the

sensor data is changing or not. In this evaluation, the sensory context conditions

were computed every one second. For Markov Chain-based detection, we referred each

sensory context condition as state of the device of that particular moment. 6thSense

provides both online and offline training method to reduce performance overhead

of the resource-constrained devices. As the highest battery life is 430 mAh for LG

watch sport, training with different user data will consume more power which will

increase power-accuracy trade-off of our framework; hence, we chose offline training

method [LG17]. For the test dataset, we used the transition matrix generated from

the training period to determine whether transition from one state to another is

malicious or not. We observed that in real devices, sometimes some sensor readings

would be missed or real data would not be reflected due to hardware or software

imperfections. And, real malicious Apps would cause consecutive malicious states on

the device. Therefore, to overcome this, we also kept track of number of consecutive

malicious states and used it as a threshold after which the session was considered

as malicious. Table 5.3 displays the evaluation results associated with the Markov

Chain-based detection technique. When the threshold for consecutive malicious states

is 0, i.e., when no threshold is applied, the accuracy is just 77% and FNR is as high

as 33%. With increasing the threshold value, the accuracy first increases up to 97%

then starts decreasing.

The logical cut-off threshold should be three consecutive malicious occurrences

which has both accuracy and F-score over 97%. In Table 5.3, different performance
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indicators for Markov Chain based detection are also presented. We can observe

that FN and TN rates of Markov Chain-based detection decrease as the threshold

of consecutive malicious states increases. Again, both accuracy and F-score reach to

a peak value with the threshold of three consecutive malicious states on the device.

From Figure 5.5, we can see that FP rate remains zero while TP rate increases at the

beginning. The highest TP rate without introducing any FP case is over 88%. After

88%, it introduces some FP cases in the system. For the cut-off threshold of three

consecutive malicious occurrences, TP rate of 6thSense increases over 97% with FP

rates as low as 0.01%.

Table 5.3 also depicts evaluation of Markov chain model on the smartphone. Sim-

ilar to the smart watch, TP rate and FP rate increase with consecutive malicious

occurrences and FN and TN decrease with the threshold on a smartphone. The

plausible cut-off threshold should be three consecutive malicious occurrences which

is the same for the smart watch. The peak accuracy and F-score can be achieved

for this threshold value which is over 98%. From Figure 5.5, we can also notice that

the highest possible TP rate without introducing any FP cases is 98%. Figure 5.5(b)

shows PRC curve for Markov Chain-based detection on both the smartwatch and the

smart phone. We can see that for both the smart watch and the smartphone, area

under PRC are approximately 1 which is ideal result for our imbalanced dataset. In

summary, Markov Chain-based detection in 6thSense can acquire accuracy over 97%

and auPRC approximately 1 with low FP rates (1.43%) for both the smart watch

and the smartphone.

5.6.4 Evaluation of Naive Bayes-based Detection

In the Naive Bayes-based detection technique, 6thSense calculates the probability

of a session to match it with each activity defined in Section 5.6.1. Here, 6thSense
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Smart Watch Smart Phone
Threshold† Recall FN Precision FP Accuracy F-score Recall FN Precision FP Accuracy F-score

55% 1 0 0.53 0.47 0.96 0.69 1 0 0.6 0.4 0.93 0.75
57% 1 0 0.6 0.4 0.96 0.75 1 0 0.7 0.3 0.95 0.82
60% 1 0 0.67 0.33 0.97 0.80 1 0 0.7 0.3 0.95 0.82
62% 0.96 0.04 0.67 0.33 0.94 0.79 1 0 0.7 0.3 0.95 0.82
65% 0.89 0.11 0.67 0.33 0.87 0.76 0.94 0.06 0.7 0.3 0.9 0.80
67% 0.86 0.14 0.67 0.33 0.85 0.75 0.88 0.12 0.7 0.3 0.85 0.78

† Calculated expected probability is considered as threshold.

Table 5.4: Performance evaluation of Naive Bayes model.

Smart Watch Smart Phone
Algorithms Recall FN Precision FP Accuracy F-score Recall FN Precision FP Accuracy F-score

PART 0.98 0.012 0.69 0.30 0.98 0.80 0.99 0.01 0.65 0.35 0.99 0.79
Logistic Function 0.99 0.01 0.35 0.65 0.97 0.49 0.99 0.01 0.28 0.72 0.99 0.43

J48 0.99 0.01 0.71 0.29 0.99 0.81 0.99 0.01 0.65 0.35 0.99 0.79
LMT 0.99 0.01 0.95 0.05 0.99 0.97 0.99 0.01 0.93 0.07 0.99 0.96

Hoeffding Tree 1 0 0.07 0.93 0.99 0.12 1 0 0.06 0.94 0.99 0.11
Multi-layer Perceptron 0.99 0.01 0.65 0.35 0.98 0.81 0.99 0.01 0.69 0.31 0.99 0.82

Table 5.5: Performance of other different machine learning based-detection techniques
tested in 6thSense.

checks the calculated probability of an activity from dataset against a threshold to

determine the correct activity. If there is no match for a certain sensor condition with

any of the activities, 6thSense detects the session as malicious. Table 5.4 shows the

evaluation results.

For the smart watch, for a threshold value of 55%, FN rate is zero. However,

FPR is too high (47%), which lowers F-score of the framework. For a threshold of

60%, FPR decreases while FNR is still zero. In this case, accuracy is 97% and F-

score is 80%. If the threshold is increased over 65%, it reduces the recall rate which

affects accuracy and F-score. The evaluation indicates that the threshold value of

60% provides an accuracy of 97% and F-score of 80%. Also, From Figure 5.5, one

can observe the relation between FPR and TPR of Naive Bayes-based detection. For

FPR larger than 0.33, TPR becomes 1.

For Naive Bayes-based detection on the smartphone, we considered nine activi-

ties in total (three general activities and six user-related activities) [SAU17]. From

Table 5.4, we can observe that TP rate FP rates decrease with the threshold value

while FN and TN increase. When the threshold is 60%, the peak accuracy (95%)
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and F-score (82%) are achieved for the smartphone. Precision-Recall curve for Naive

Bayes model is given in Figure 7.8(b). We can notice that PRC curve is more ir-

regular compared to Markov Chain-based approach. Calculated auPRC for Naive

Bayes-based approach is 0.7 for the smart watch and the smartphone, both of which

indicate less efficient method for imbalanced dataset.

5.6.5 Evaluation of Alternative Detection Techniques

In alternative detection techniques, we used other supervised machine learning tech-

niques to train the 6thSense framework for both the smart watch and the smart phone.

For this, we utilized WEKA and it provides three types of analysis - split percentage

analysis, cross-validation analysis, and supplied test set analysis. We chose 10 fold

cross-validation analysis to ensure that all the data was used for both training and

test. Thus, the error rate of the predictive model would be minimized in the cross val-

idation. In Table 5.5, a detailed evaluation of different machine learning algorithms is

given for 6thSense. For Rule Based Learning, 6thSense has the best result for PART

algorithm, which has an accuracy of 0.98 and F-score of 0.80. On the other hand,

for Regression Analysis, we use the logistic function which has high FPR (0.65) and

lower F-score (0.49). Multilayer Perceptron algorithm gives an accuracy of 0.9878

and F-score of 0.80, which is higher than previously mentioned algorithms. How-

ever, FPR is much higher (0.35), which is actually a limitation for intrusion detection

frameworks in general. Compared to these algorithms, Linear Model Tree (LMT)

gives better results in detecting sensor-based attacks. This evaluation indicates that

LMT provides an accuracy of 0.99 and F-score of 0.972 for the smart watch.

From Table 5.5, one can also see performance of different machine learning algo-

rithms in 6thSense on a smartphone. Here, LMT achieves the highest accuracy and

F-score of 0.99 and 0.96, respectively. Multilayer Perception algorithm also performs
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well with F-score of 0.82. However, false positive rate is high in this algorithm which

decreases the performance. In summary, LMT works efficiently in both the smart

watch and the smart phone.

5.6.6 Comparison of Detection Methods

In this subsection, we give a comparison among the different machine learning-based

detection approaches tested in 6thSense for defending against sensor-based threats

on the smart watch and the smartphone. For all the approaches, we select the best

possible case and report their performance metrics.

Table 5.6 depicts comparison among different detection approaches on the smart

watch. For Markov Chain-based detection, we chose three consecutive malicious

states as valid device conditions. On the other hand, in Naive Bayes approach, the

best performance is observed for the threshold of 60%. For other machine learning

algorithms tested via WEKA, we chose LMT as it gives highest accuracy among

other machine learning algorithms. These results indicate that both Markov Chain

and LMT provide high accuracy and F-score compared to the Naive Bayes-based

approach.

On the contrary, Naive Bayes model displays higher recall rate and less FNR than

other approaches. However, the presence of FPR in IDS is an issue to the system

since FPR refers to a malicious attack that is identified as a valid device state. Both

Markov Chain and LMT has lower FPR. Again, as our dataset is imbalanced (number

of benign activities is higher than malicious activity), we chose auPRC as one of the

performance metric of 6thSense. From Table 5.6 we can see that Markov Chain-

based detection has the highest auPRC (0.926) followed by LMT (0.892) and Naive

Bayes (0.646). In summary, considering F-score, accuracy, and auPRC of all three
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approaches, we conclude that Markov Chain and LMT both performs effectively for

6thSense.

In Table 5.6, we present a comparison of different machine learning-based detection

techniques used in 6thSense on the smartphone. Again, we chose the best possible

(Markov Chain, Naive Bayes, and LMT) cases for all of the approaches and compare

them in Table 5.6. Similar to results in the smart watch, threshold for Markov Chain-

based detection is three consecutive malicious state. For Naive Bayes-based detection,

best performance can be observed for 60% threshold probability. From Table 5.6, we

can observe that Markov Chain and LMT performs with high accuracy and F-score

compared to Naive Bayes-based approach. Naive Bayes model also introduces high FP

rate (0.3) which indicates poor performance for IDS. On the contrary, Markov Chain

and LMT shows lower FP rate (0 and 0.0694 respectively). Again, from Figure 7.8(b),

we can observe that Naive Bayes model has low auPRC compared to Markov Chain-

based detection in Figure 5.5(b). LMT also has high auPRC (0.91) which is suitable

for our imbalanced dataset. In summary, both Markov Chain and LMT performs well

for 6thSense on the smart phone with high accuracy, F-score, and auPRC.

Performance

Metrics

Markov Chain

(Smart Watch|
Smart Phone)

Naive Bayes

(Smart Watch|
Smart Phone)

LMT

(Smart Watch|
Smart Phone)

Recall rate 0.9770 | 0.98 1 | 1 0.9998 | 0..998

False Negative

Rate
0.0230 | 0.02 0 | 0 0.0002 | 0.0002

Precision rate 0.9857 | 1 0.67 | 0.7 0.9458 | 0.9306

False positive

rate
0.0143 | 0 0.33 | 0.3 0.0694 |

Accuracy 0.9795 | 0.9833 0.9720 | 0.9492 0.998 | 0.9997

F-Score 0.9813 | 0.9899 0.80 | 0.8235 0.972 | 0.964

auPRC 0.926 | 0.947 0.646 | 0.686 0.892 | 0.91

Table 5.6: Comparison of different machine-learning-based approaches proposed for
6thSense on Smartwatch and Smartphone (i.e., Markov Chain, Naive Bayes, and
LMT).

114



5.6.7 Performance Overhead

As previously mentioned, 6thSense collects data in an Android device from differ-

ent sensors (permission and no-permission imposed sensors). In this sub-section, we

measure the performance overhead introduced by 6thSense on the tested Android

devices (smart watch and smartphone) in terms of CPU usage, RAM usage, file size,

and power consumption. Table 5.7, Table 5.8, and Table 5.9 give the details of the

performance overhead of 6thSense on the smart watch and the smartphone.

For no permission-imposed sensors, the data collection phase logs all the values

within a time interval which causes an increased usage of RAM, CPU and Disc com-

pared to permission-imposed sensors. For the power consumption, we observe that

no permission-imposed sensors use higher power than permission-imposed sensors.

This is mainly because permission-imposed sensors are logic-oriented and have lower

sampling rate, which reduces its resource needs. The overall performance overhead is

Parameters Time

No-permission

imposed sensors

(Smart Watch|
Smart Phone)

Permission-imposed

sensors (Smart Watch|
Smart Phone)

CPU Usage N/A 5.5% | 3.9% 2.5% | 0.3%

RAM Usage

(MB)
N/A 17 | 23 11 | 14

Disc Usage

(MB)

1 min 4 | 6.5 0.001 | 0.001

5 min 7.5 | 9 0.001 | 0.002

10 min 10 | 12 0.001 | 0.003

Power

Consumption

(mW)

1 min 10.5 | 13.5 2 | 3.12

5 min 45.6 | 96.67 16.5 | 27.4

10 min 78.4 | 133.33 27 | 45

Power

Consumption

(without

datafile)

1 min 1.32 | 2.68 0.1 | 0.23

5 min 8.7 | 23.4 2 | 9.63

10 min 32.56 | 55.35 9 | 17

Table 5.7: Performance overhead of data collection.

as low as 5.5% of CPU, less then 17MB RAM space, and less than 10MB disc space

for the smart watch. Compared to the smart watch, performance overhead for the

smartphone is higher because of higher number of sensors. Nevertheless, smartphone
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offers more resources (CPU speed, RAM size, disc size) than the smart watch which

minimizes the effect of performance overhead. Performance overhead for the smart-

phone is as low as 3.9%, less than 6.5MB RAM space, and less than 12MB disc space.

Thus, 6thSense’s overhead is minimal and acceptable for an IDS system on current

smart devices. One of the main concerns of implementing 6thSense on smart device

is the power consumption.

Table 5.7 also shows the power consumption of the Android app used in 6thsense.

For one minute, 6thsense consumes 10.5 mW power which increases upto 78.4 mW for

ten minutes on a smartwatch. For a smartphone, 6thSense consumes upto 133.33 mW

power for ten minutes. The main reason of this high power consumption is that all the

sensors are kept on for the data collection and all the data are saved on device for later

analysis. To mitigate power-performance trade-off, in practical settings, the data are

not saved on device rather a real-time analysis is done, which indeed decreases the

power consumption. Without saving the data, the power consumption significantly

becomes smaller. From Table 5.7, we can observe that the power consumption of

6thSense becomes 32.56 mW which is almost 2 times lower than otherwise on a

smartwatch. For real-time analysis, power consumption of 6thSense decreases 2.4

times on the smartphone. As all the sensors do not have to remain on for the analysis

part, data can be observed if the smart device is in unlocked status to lower the power

consumption.

Moreover, for the data analysis phase of 6thSense, we also implemented Markov

Chain, Naive Bayes, and LMT-based detection methods on the Android smartphone

and smart watch. Table 5.8 shows the performance overhead of different detection

techniques used in 6thSense on a smart watch. All three detection techniques yield

less than 2% CPU usage and 10 MB of RAM usage. Note that we consider the

disc usage as a performance overhead for the data analysis phase since results can be
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Parameters Markov Chain Naive Bayes LMT

CPU Usage 1% 1.5% 1%

RAM Usage 6 MB 10 MB 10 MB

Disc Usage

(For 5 Min)
<1 MB <400 kB <400 kB

Power

Consumption

(For 5

min)

1 mW 2 mW 2.5 mW

Table 5.8: Performance overhead of the data analysis phase in 6thSense on smart
watch.

stored for further performance evaluation of the framework. Our extensive evaluation

shows that the disc usage for the data analysis of 6thSense is less then 1 MB in all

the three detection methods for 5 minutes of analysis. Table 5.8 also provides the

power consumption of different detection techniques of 6thSense. We can observe

that the power consumption of the data analysis phase is comparatively lower (less

than 5 mW) than the data collection phase of 6thSense. Finally, Table 5.9 shows

performance evaluation of different detection techniques of 6thSense on an Android

operated smartphone. 6thSense performs with minimum overhead with less than 3%

CPU usage, 17 MB RAM usage, and 2 MB of disc usage. Power consumption in the

smartphone is also as low as 6 mW for different detection techniques implemented

on 6thSense. In summary, different detection methods used in 6thSense offer lower

performance overhead in the system.

Parameters Markov Chain Naive Bayes LMT

CPU Usage 1.2% 2.5% 1%

RAM Usage 12 MB 15 MB 17 MB

Disc Usage

(For 5 Min)
<2 MB <1 MB <1 MB

Power

Consumption

(For 5

min)

4.5 mW 6 mW 3 mW

Table 5.9: Performance overhead of the data analysis phase in 6thSense on smart-
phone.
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5.6.8 Power-efficiency Trade-off

One major concern of implementing a security framework in smart devices is power-

efficiency trade-off. As smart devices such as smart watch and smart phone are

resource constrained devices, an efficient security framework should work accurately

with limited resources. 6thSense uses all the available sensors in a device to under-

stand the state of the device and detects sensor-based threat based on state transition

model. This can be a drawback in terms of power consumption of the device. To

address this limitation, we performed a power-frequency trade-off study to determine

the working condition of 6thSense in real-life settings. According to Nielsen, average

American adult spends around 3 hours everyday on their smartphone [nie17].

We consider this as an average time that 6thSense has to run to detect any sensor-

based threats in a smart device. In Figure 7.8(c) and 7.8(d), we illustrate the average

power consumption graph for 6thSense with different scanning frequency in a smart-

phone and a smart watch, respectively. One can notice that 6thSense consumes 310

mW power for scanning continuously for 3 hours in a smart phone (Figure 7.8(c)).

Average power consumption lowers to 234 and 174 mW with 5s and 15s time interval

respectively. For smart watch, highest average power consumption for 6thSense is 220

mW for continuous scan. Average power consumption becomes as low as 174 mW

and 148 mW for 5s and 15s time interval respectively.

5.7 Discussion

• Sensor-based threats in real-life settings: One limitation of 6thSense is the ad-

versaries (sensor-based attacks) used in the evaluation were constructed in a lab-

environment. Note that as of this writing there are no real sensor-based malware in

the wild. However, many independent researchers have confirmed the feasibility of
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(a) (b)

Figure 5.6: Power vs frequency graph for (a) smart watch (b) smartphone

sensor-based threats for smart devices [SPA+18]. Indeed, more recently, ICS-CERT

also warned the vendors and the wider communities about the possibility of exploiting

the sensors of a device to alter sensors’ output in a controlled way to perform malicious

behavior in the device [CA17]. Google also acknowledges the sensor-based threats by

restricting sensor access for background apps in version of Android [and18b]. To un-

derstand the sensor-based threats and limitation of existing solutions, we built the

proof-of-concept versions of the sensor-based threats discussed in Section 4. We also

note that to ensure the reliability of the malware (i.e., specific malicious Apps) for the

threats described in Section 4, we checked how they perform with respect to the real

malicious software scanners. For this, we uploaded our malware on VirusTotal and

tabulated the results of the performance of 60 different malware scanners available at

the VirusTotal website in Table 5.10. As seen in this table, the sensor-based threats

are not recognized by the different scanners. In conclusion, current malware scanners

are not aware of these threats yet and our malware can be reliably used to test the

efficiency of 6thSense.

• Power monitoring app: Different smartphone and smart watch vendors offer power

monitoring apps which monitor running apps (both background and foreground apps)

and minimize the power consumption of the device. For example, Samsung provides
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Adversary Model Detection Ratio

Threat-1 0/60

Threat-2 0/60

Threat-3 0/62

Table 5.10: VirusTotal scan result for the adversary models.

a power monitoring app that prevents background apps to drain power. Power mon-

itoring apps activate sleep mode which disables the updates and notifications for the

inactive apps. This conflicts with the malicious apps described in Section 7.1. How-

ever, the power monitoring app only works when the app is in the background. If a

foreground app has malicious sensor logic, it can easily bypass the power monitoring

app and initiate an attack. As power monitoring apps restrict important updates

(e.g., messages from text apps, alarm apps, etc.), users can turn-off or modify this

feature for convenience [pow17]. Moreover, the smart watches do not have any power

monitoring option which makes them vulnerable to sensor-based threats. In sum-

mary, power monitoring app can restrict sensor-based threats to some extent, but can

not nullify them entirely.

• New OS feature: Recently, Android introduced a new version of OS (Android P)

which restricts camera and microphone usage if an app runs in the background. This

feature certainly acknowledges the sensor-based threats and restricts sensor misuse

in a smartphone. However, Android P only eliminates one threat model described

in Section 4 and 7.1. Different malicious apps can still access other sensors in the

background and perform multiple malicious activities. As explained in Section 7.1,

Threat Model-1 uses motion and light sensors which does not have any conflict with

Android P. Threat Model-2 uses the microphone of a connected smart watch which

bypasses the security feature of Android P. Threat Model-3 triggers the camera of a

smartphone if all the other sensors are inactive. Here, the malicious app opens the
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camera in the foreground which is allowed by Android P. We developed an updated

version of this attack which could start recording via microphone in a smart watch

if the connected smartphone was inactive and thus, bypass the security feature of

Android P. Again, Android P only nullifies the threat if the app is installed in a smart

phone. A malicious app installed in a smart watch can trigger the camera of a smart

phone without any restriction. Also, only 1% of Android-powered devices support

Android P currently which makes majority of the devices vulnerable to sensor-based

threats using camera or microphone surreptitiously [and18a]. In short, even with the

introduction of the new OS, sensor-based threats can still affect normal operations of

the smart devices.

• Optimum scanning frequency: As smart devices are resource-constrained devices,

an optimum scanning frequency is needed for 6thSense to lower the power consump-

tion of the device. In Section 7.8, we illustrated that by scanning the sensors in

fixed intervals (15s) and unlocked states, power consumption can be lowered by ap-

proximately 43%. However, some sensor-based threats can bypass the lock state and

perform malicious activities in smart devices. To address this limitation, 6thSense

can use the context-aware model to detect the lock state of the device and monitor

limited sensors to minimize the power consumption. As Android P is restricting some

sensors (microphone and camera), 6thSense can use this feature and select limited

sensors to scan in the locked state. In short, performance of 6thSense can be con-

figured in terms of power consumption by selecting optimum scanning frequency and

combining with existing permission model of OS.

5.8 Conclusion

Wide utilization of sensor-rich smart devices created a new attack surface namely

sensor-based attacks. Accelerometer, gyroscope, light, etc. sensors can be abused
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to steal and leak sensitive information or malicious Apps can be triggered via sen-

sors. Security in current smart devices lacks appropriate defense mechanisms for such

sensor-based threats. In this paper, we presented 6thSense, a novel context-aware

task-oriented sensor-based attack detector for smart devices. We articulated problems

in existing sensor management systems and different sensor-based threats for smart

devices. Then, we presented the design of 6thSense to detect sensor-based attacks on

sensor-rich smart devices (smartwatch and smartphone) with low-performance over-

head. 6thSense utilized different machine learning (ML) techniques to distinguish

malicious activities from benign activities on a device. To the best of our knowledge,

6thSense is the first comprehensive context-aware security solution against sensor-

based threats. We evaluated 6thSense on real devices with 100 different individu-

als. 6thSense achieved over 97% of accuracy with different ML algorithms including

Markov Chain, Naive Bayes, and LMT. We also evaluated 6thSense against three dif-

ferent sensor-based threats, i.e., information leakage, eavesdropping, and triggering a

malware via sensors. The empirical evaluation revealed that 6thSense is highly effec-

tive and efficient at detecting sensor-based attacks while yielding minimal overhead.
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CHAPTER 6

SENSOR-BASED THREAT DETECTION IN A CONNECTED SMART

ENVIRONMENT

6.1 Introduction

In this chapter, we present Aegis, a novel platform-independent context-aware se-

curity framework to detect malicious sensor and app behavior in a connected smart

environment (e.g., smart home, smart office, etc.). Aegis observes the changing pat-

terns of the states (active/inactive) of smart sensors and devices for user activities in a

smart environment and builds a contextual model to detect malicious activities. Here,

context-awareness refers to the ability of Aegis to understand the changes in sensors’

and devices’ states due to ongoing user activities and determine if the behavior in

the smart environment is benign or not. Smart devices are normally configured with

different sensors to provide autonomous control and uninterrupted operations. Thus,

different sensors in a connected smart environment can sense user activities (motion,

opening doors, etc.) and trigger associated smart devices to perform pre-defined

tasks. Aegis correlates these sensor-device relations with different user activities and

builds a context-aware model to define benign user behavior. Aegis also uses smart

app contexts to understand the trigger-action scenarios between installed smart de-

vices and sensors and automatically upgrades the framework if new devices are added

to the smart environment/platform. As a security framework, Aegis observes the

current states (active or inactive) of sensors and devices and checks with the learned

user behavior to detect any malicious behavior. Specifically, Aegis utilizes a Markov

Chain-based machine learning technique to detect malicious behavior. Additionally,

Aegis uses an action management system to alert the users in the event of malicious

behavior and considers user responses to improve the context-aware model for better
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accuracy (adaptive training mode). We tested Aegis in real-life smart home system

(an example of connected smart environment) scenarios where 20 different users per-

formed typical daily activities in three different home layouts generating over 85000

sensor-device correlated events. Furthermore, we considered different device settings

(sensor-device relations), apps, smart device platforms (four different platforms in-

cluding Samsung SmartThings, Philips HUE, LIFX Smart Light, and Amazon Alexa)

and user policies to evaluate the performance of Aegis against five different threats.

Our extensive evaluation demonstrates that Aegis can detect different threats to

smart devices and sensors with high accuracy and F-score (over 95%). In addition,

Aegis yields minimum overhead in terms of latency and computing resource utiliza-

tion, making this solution suitable for real-life deployment.

Summary of Contributions: The main contributions of this chapter are noted

as follows:

• Aegis. We present a novel context-aware security framework to detect malicious

activities (both sensor and app activities) in connected smart environment. We cap-

ture sensor-device co-dependence in smart environment to understand the context of

the user activity and detect malicious behavior. Additionally, we implemented an

action management system to alert users about Aegis’s findings.

• User-specific configurations. We designed Aegis to support different smart

environment layouts (e.g., three different smart home layouts) and configurations.

Aegis allows easy integration of new devices and apps creating app contexts and re-

configuring the training data automatically. We also introduced an adaptive training

model to automatically improve the detection mechanism from user responses.

• Real-life implementation. We implemented Aegis in Samsung SmartThings

platform and performed detailed evaluation analysis with real user data.
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• High accuracy and minimal overhead. Through a detailed evaluation, we

demonstrated how Aegis can detect different malicious activities in a smart environ-

ment. Our results show that Aegis can achieve high accuracy and F-score and impose

minimum overhead in the system.

6.2 Differences from Existing Works

The main differences between Aegis and other existing solutions (although they are

useful) can be articulated as follows. (1) While other solutions focus on securing

shared data and improving current user permission system [JCW+17], Aegis detects

malicious behaviors by considering user and device activity contexts in a connected

smart environment. (2) Aegis considers both smart device settings, platform con-

figurations, and installed apps to build a context-aware model and detect threats

at run-time which outdo user-dependent; solutions [JCW+17]. (3) Additionally, no

source code modification [BSAU18] is needed for Aegis to collect data from smart

devices and detect malicious activities in a smart environment. (4) Unlike threat-

specific existing solutions [CBS+18, WHBG18], Aegis can detect five different types

of threat in a connected smart environment which makes it a more robust solution.

(5) Aegis provides a platform-independent solution as it only considers user activity

to build the context-aware model irrespective of smart systems/platforms, specific

devices, and development platforms, (6) Finally, Aegis collects data from a common

access point and performs behavior analysis at run-time which reduces cost in terms

of processing and overhead from other prior works [BSAU18, CBS+18]. In addition,

Aegis does not store usage data from smart devices which reduces the privacy risks

and concerns from prior solutions [BSAU18]. Table 6.1 summarizes the differences of

Aegis and other existing solutions.
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In summary, Aegis offers a context-aware security framework which uses behavior

analysis, usage patterns, and app context to detect malicious activities at run-time and

ensures security against five different threats to smart environment with high accuracy

and minimal overhead.

6.3 Design Features Considered in AEGIS

To design Aegis, we considered several features of connected smart environment to

correctly capture sensor-device correlation based on on-going user activities and build

a contextual model. In this section, we explain the design features considered in Aegis

in details.

6.3.1 Context-awareness.

Context-awareness refers to the ability of a system to use situational and environ-

mental information about the user, location, and devices to adapt its operation ac-

cordingly [SAU17, JCW+17]. In a connected smart environment (e.g., smart home

system), all the sensors and devices follow different trigger-action scenarios to perform

tasks. Here, sensors are used to provide input in the devices (trigger) and devices take

autonomous decisions (actions) based on these inputs. When a user performs a task

in a smart environment, several smart sensors and devices may become active in a

sequential pattern. The pattern of active devices and sensors is different but specific

for distinct user activities. Existing smart devices and platforms cannot observe these

patterns in sensors’ and devices’ states over time and can not understand the context

of the user activity. For example, while a user moves from one bedroom to a hall-

way, several devices and sensors become active in a sequential manner (Figure 6.1):

moving towards bedroom door (sub-context 1: BL1, BLi1, BM1 are active), bedroom
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door opens (sub-context 2: BL1, BLi1, BM1, BD1 are active), entering the hallway

(sub-context 3: BL1, BLi1, BD1, HLi2, HL2, HM2 are active), bedroom door and

light close and reaches the hallway (sub-context 4: HLi2, HL2, HM2 are active). To

complete the activity (moving from the bedroom to the hallway), the user must follow

the sub-contexts in the same sequential pattern. The user cannot skip one specific

sub-context and move to the next one to complete the activity. For instance, the

transition from sub-context 1 to sub-context 4 is not possible as a user cannot go to

the hallway from the bedroom without opening the door. Motivated by this, Aegis

is designed to understand this property of connected smart environment to build a

context-aware model for different user activities and usage patterns and differentiates

between benign and malicious activities of smart devices and sensors.

Figure 6.1: Context-awareness feature, which is not considered in existing solutions
to protect smart environment against cyber attacks.

6.3.2 Sensor-device Co-dependence

In a smart environment, sensors, and devices can be configured as independent en-

tities. However, they work in a co-dependent manner to provide autonomous func-

tionalities. For instance, smart lights can be configured with motion sensors to light

up when motion is sensed. Here, the smart light depends on the input from the

motion sensor while the motion sensor alone cannot provide any significant function
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in a connected smart environment. The functions of devices and sensors create a co-

dependent relationship with each other. In this way, sensors and devices in the smart

environment can build many-to-many co-dependent relationships. However, existing

smart environment/platforms do not consider this co-dependent relationship and can

not visualize the context of a user activity by observing the usage pattern of smart

devices and sensors. In short, sensors and devices in a connected smart environment

are configured as independent components, but in reality they are function-wise co-

dependent. Aegis considers these relations to build the context of the user activities

in a smart environment.

User Activity-device Correlation. In a connected smart environment, different

users utilize and control smart devices in multiple ways. For instance, a user can set

a security camera to take pictures whenever a motion is detected in the associated

motion sensors. On the other hand, users control devices in multiple ways. For

example, a user can unlock a door by using the smartphone app or entering the code

manually. Here, the state of the lock can be determined by user activity on the

smartphone or by using a presence sensor to detect the user near the smart lock.

In short, by observing the user activities in a smart environment, it is possible to

determine the normal operation of smart devices. One can define normal or malicious

user behavior with the user activity-device correlation. Current smart platforms

cannot correlate user activity and device actions correctly, which is considered as a

feature in Aegis to differentiate benign and malicious activities.

6.3.3 Multi-platform Correlation.

Modern smart systems (e.g., smart home system) allow users to install smart devices

from different vendors within the same physical environment. These installed smart

devices can perform autonomous tasks collectively via a common hub or as standalone
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devices connected to the Internet via an access point (e.g., Wi-Fi router). However,

any on-going task in a smart device can be perceived by other standalone smart

devices, even if they are not interconnected via a hub. For instance, if a user gives a

voice command to smart speaker to open the main door, a presence sensor connected

to a smart light can verify the presence of the user inside the smart environment and

confirm the user command as a valid input in the smart devices and sensors. Here,

the presence sensor can verify a benign user activity even if it is not connected to the

smart speaker. Hence, smart devices from different smart platforms are correlated

and can capture user activity context properly. In short, sensors and devices from

multiple smart platforms that are configured as standalone devices can be correlated

via user activity context. Existing smart systems do not consider these correlations

between standalone devices from multiple platforms, which is considered as a feature

in Aegis to build user activity context in a multi-platform smart environment.

6.4 Problem Scope and Threat Model

In this section, we introduce the problem scope and articulate the threat model con-

sidered in Aegis.

6.4.1 Problem Scope

This work assumes a fully automated smart home (an example of connected smart

environment), S, with several smart devices and sensors, which is illustrated in Fig-

ure 2.2. The smart home includes smart light, smart smoke detector, smart locks,

smart thermostats, smart speakers, motion sensors, smoke sensors, light sensors, pres-

ence sensors, and temperature sensors. Here, the following sensor-device triggering

rules are configured - the smart lights are configured with motion sensors, the smart
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smoke detector is configured with smoke sensor. Additionally, The smart home sys-

tem allows manual device control by the users (e.g., unlocking smart lock with PIN).

We also assume that the user utilizes customized third-party apps to control the de-

vices. Furthermore, the smart home system has more than one user authorized to

control the devices in the system. Authorized users in the smart home systems can

control the smart devices either via using controller devices such as smartphone or

by using voice commands via the installed smart speaker in the system. We assume

the following trigger-action incidents are happening throughout the day in the smart

home - (1) one user is walking inside the bedroom but the lights are not triggered by

the motion sensors, (2) one user is trying to unlock the smart lock using PIN code, (3)

a fire alarm installed in the kitchen is being triggered in the system, (4) a smart light

in the guest bedroom executes a blinking pattern while no user is present, (5) a user is

trying to change the temperature of the smart thermostat but the temperature is not

changing, (6) the smart speaker installed in living room executes a voice command

to turn on the smart TV even though no user is present in the room?

We propose Aegis as a novel security framework that builds a context-aware model

based on user activities to determine benign and malicious incidents in the smart

environment (in this case, smart home system). Aegis answers several questions that

may arise from the above-mentioned incidents - (1) What is the reason for no activity

in the smart light installed in the bedroom?, (2) Is a legitimate user or an attacker

is trying to unlock the door using PIN code?, (3) Is the fire alarm being triggered by

a malicious app?, (4) What caused the smart light to blink and what is the intent of

this activity?, (5) Why the user is not able to change the temperature of the smart

thermostat?, (6) Why the smart speaker is executing a voice command without the

presence of any user in the room? Aegis differentiates between normal and malicious

activities happening in a connected smart environment. Furthermore, Aegis detects
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Figure 6.2: Sample smart home/environment with multiple users generating multiple
trigger-action scenarios.

malicious activities occurring in a device or sensor by observing the ongoing activities

of all the connected devices in the smart environment.

6.4.2 Threat Model

Aegis considers anomalous user behaviors (e.g, unauthorized users changing the de-

vice states) that may disrupt the normal functionalities of the smart environment.

Also, device vulnerabilities that may cause device malfunction or open doors to

threats like impersonation attacks and false data injection attacks are considered

by Aegis. Additionally, this work assumes carelessly-designed and malicious smart

applications that may cause unauthorized or malicious activities in the smart envi-

ronment. These malicious activities may facilitate side channel and denial-of-service

(DoS) attacks. Moreover, Aegis considers threats arising from malicious user com-

mands on controller device such as smart speaker. To better capture the threat model,

we classify it in the following five categories:
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• Threat-1: Impersonation Attack. An unauthorized user can try to get access to

smart devices or applications by stealing valid user credentials or recording legitimate

voice commands using a malicious app.

• Threat-2: False Data Injection. A malicious smart app can exist in the smart

system and inject forged data (e.g., sensor data, voice commands, etc.) to perform

malicious activities. This threat represents false data injection in smart devices and

sensors.

• Threat-3: Side channel attack. A carelessly developed smart app with design im-

perfections installed in the smart environment/setting can perform legitimate, yet

vulnerable side-channel activities which can be harnessed by other apps (considered

malicious) in the system or the attacker himself. This threat represents a side channel

attack on smart devices and sensors.

• Threat-4: Denial-of-service. A malicious smart app installed in the system can

impede normal behavior of other smart devices, sensors, and applications. This threat

represents a denial-of-service attack in a connected smart environment.

• Threat-5: Triggering a malicious app. A malicious smart app can exist in the

system which can be triggered by a specific activity pattern or device action (e.g.,

switching a smart light in a specific on/off pattern) in a smart environment.

In Section 6.6, we present specific examples of attack scenarios that are used later

to evaluate the effectiveness of Aegis. The information leakage caused by a compro-

mised device or untrusted communication channel in the smart environment/setting

are considered out of scope of Aegis. We also assume that the data collected from the

devices and central management system (e.g., Hub, cloud, etc.) is not compromised.
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6.5 AEGIS Framework

Aegis has four main modules: (1) data collector, (2) context generator, (3) data

analysis, and (4) action management, as depicted in Figure 6.3. First, Aegis collects

data from smart sensors and devices installed in the environment from day-to-day user

activities. The data collector module uses smart apps to collect all the device and

sensor states (active/inactive). Additionally, this module is fed from smart app rules

extracted from different smart apps using the app rule extractor and that are stored

in the multi-platform rule repository. The device state data is used to understand the

context of the user activities and feeds the context generation module. This module

creates context arrays generated from usage patterns and the predetermined user

policies in the smart apps. Each context array contains overall information of the

user activities and device states in the connected smart environment.

The context arrays generated in the context generation module are used by the

anomaly detector module to implement machine learning-based analysis and build

the context-aware model of the smart environment. Additionally, anomaly detector

module decides whether or not malicious activities occur in the smart environmen-

t/setting. Finally, the malicious activities detected by the anomaly detector module

are forwarded to the action management module. This module notifies the users re-

garding the unauthorized device and sensor activities. Also, it offers adaptive training

mode where users can validate any false positive or false negative occurrence and re-

train the detection model to improve the performance of Aegis.

6.5.1 Data Collector Module

The data collector module has two sub-modules: device data collector and app data

collector.
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Figure 6.3: Aegis framework for multi-platform smart environment.

Device Data Collector

Aegis collects data from smart devices and sensors using the data collector module.

In a smart environment, there can be multiple devices and sensors connected through

a hub and operating in a co-dependent manner. Additionally, devices and sensors can

act as standalone smart device and perform different automated tasks individually.

The data collector module of Aegis collects the state (active or inactive) of these

devices autonomously for both connected and standalone smart devices and forwards

these data to the context generation module. Based on the type of data, the collected

data is governed by:

Data array, E = {S,D,M}, (6.1)

where S is the set of features extracted from the sensors, D is the set of features ex-

tracted from the devices, and M is the features extracted from the associated controller

devices (e.g., smartphone, smart tablet, smart speakers) in a smart environment. We

describe the characteristics of these features below.

• Features extracted from sensors (S): A smart environment such as smart home can

comprise several sensors such as motion and light sensors. They sense changes in the

vicinity of the devices and work as input to multiple devices. Sensor data can be both

logical states (e.g., motion sensor) and numerical values (light sensor). For Aegis, we
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consider both logical states and numerical values of sensors to create the context of

user activities.

• Features extracted from devices (D): In a smart environment, several devices can

be connected with each other and with different sensors or act as standalone device.

These devices remain active based on user activities in a smart environment. Aegis

observes the daily activities of users and collects the device state data (active/inactive

state) to build the context of the associated activity.

• Features extracted from controller devices (M): In a smart environment, Smart-

phone or tablet works as a control device to the smart system and users can control

any installed device using the associated smart app. Additionally, smart speakers

such Amazon Alexa, etc. can be used as a controller device by allowing users to

control installed smart devices using voice commands. Aegis considers any control

command given from the controller device as a feature to understand the context of

user activity. The location of the connected controller device can also work as an

input to control multiple devices. For instance, a thermostat can be configured to the

desired temperature whenever the smartphone of the user is connected to the smart

home network. Aegis considers the location of the controller device as a feature to

build the context of user activities.

As user activities on a connected smart environment can vary based on the number

of users, Aegis considers multi-user settings to understand the user activity contexts

correctly. Moreover, user activities also change based on the daily routine of users.

For this, in the data collection process, Aegis also offers time-based activity settings

(weekday and weekend settings).
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App Rule Extractor

Modern smart device platforms offer an app-centric model where users install different

apps to automate the functionality of smart devices. These apps mostly define trigger-

action scenarios for specific devices. For instance, an app can automate a smart light

by configuring it with a motion sensor or a light sensor. Here, the sensors work as a

trigger and the state of the smart light (on/off) refers to the action. These trigger-

action scenarios can represent the app context which can be used to validate the user

activity context in a smart environment. Additionally, the app context is also used to

train the analytical model for new devices in smart environment. Aegis utilizes source

code analysis to identify and extract relevant app information related to these trigger-

action scenarios. In this work, we assume that the source code of the smart apps is

freely available for analysis. We consider this assumption realistic as some of the most

popular smart device platforms implement their apps as open-source (e.g., Samsung

SmartThings, openHAB, Windows IoT, and AWS IoT) [Sam18b,Mic20,Ope]. Aegis

implements a logic extractor to collect the smart app logic and infer the app context.

The logic extractor takes the source of the apps and generates its Asymmetric Syntax

Tree (AST). With the AST, the app rule extractor implements the Inter-Procedural

Control (ICFG). The ICFG contains the nodes that define the different trigger-action

events that are of interest of Aegis [CBS+18]. Further, the rule extractor visits every

single node of the ICFG and collects the trigger-action scenarios that are defined

in every app. For example, if a smart light is configured with a contact sensor,

Aegis extracts the following logic from the app. In Section 6.6, we provide the

implementation details of the app rule extractor in Aegis. Finally, as we found

most smart apps that feature the same type of devices define similar trigger-action

scenarios, we define an app rule extractor module that is able to analyze apps in

parallel to Aegis’s analysis. With this, we can collect and analyze apps from different
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platforms and create a multi-platform app rule repository that further feeds the data

collector module previously described. There are several advantages to this design

approach. First, it permits building a corpus of trigger-action scenarios that include

information from several apps from multiple platforms simultaneously. Second, it

prevents the need of updating Aegis’s framework every time new apps and devices

are included in the smart environment. Finally, it reduces the overhead introduces

by Aegis as smart apps are mostly analyzed prior to Aegis’s execution.

Sample Smart App for App Context One of the features of Aegis is using app

context to verify the device states in the smart environment. To build the app context,

we used similar static analysis approaches used in prior works [CBS+18, CZDY18].

We performed a source-to-sink taint analysis similar to [CBS+18] to extract the app

context. Additionally, we consider the sources for smart apps proposed in [CZDY18,

JCW+17]. We then built the abstract syntax tree (AST) and model a trigger-action

scenario of an app. We tracked the Subscribe method to represent the trigger and

follow the conditional statement (e.g., if and switch) to reach the sink. This flow from

entry point (source) to a sink is used to construct the condition of an app which is

then represented into app context. We collected 485 official Samsung SmartThings

apps (available in their website) and created the app context database using this

method.

Listing 6.1: A code snippet of a sample smart app
1 /* This is a sample smart light app for Samsung SmartThings */
2 definition(
3 name: "Smart Light App",
4 namespace: "smartthings",
5 author: "anonymous",
6 description: "Turn lights on when door is open.",
7 category: "Convenience",
8 )
9 preferences {

10 section("When the door opens/closes...") {
11 input "contact1", "capability.contactSensor", title: "Where?"
12 }
13 section("Turn on/off a light...") {
14 input "light1", "capability.light"
15 }
16 }
17 def installed() {
18 subscribe(contact1, "contact", contactHandler)
19 }
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20 def updated() {
21 unsubscribe()
22 subscribe(contact1, "contact", contactHandler)
23 }
24 def contactHandler(event) {
25 if (event.value == "open") {
26 light1.on()
27 } else if (event.value == "closed") {
28 light1.off()
29 }
30 }

Listing 6.2: Trigger-action scenarios extracted from a sample app.
1 Trigger: Contact1
2 Action: Switch1
3 Logic 1: contact1 = on, light1 = on
4 Logic 2: contact1 = off, light1 = off

6.5.2 Context Generation Module

The data collector module forwards the collected data to the context generation

module to build the context of different user activities. Then, the context generation

module maps and aggregates the data to build context arrays. Each context array

consists of information on the usage patterns in the smart environment for different

activities, which can be used for further analysis and to determine malicious activities

in the system. The context array modeling process has the following steps:

• Context of sensors: Sensor features collected in the data collector consists of both

logic state (on/off) and numerical values. Aegis observes the sensor data and gener-

ates the conditions of the sensors. These conditions represent the changing pattern

of the sensor. If the current sensor value is different than the previous one, Aegis

considers this as an active condition that is represented as 1. Similarly, conditions

labeled as inactive are represented as 0.

• Context of devices: Data collector of Aegis collects device state (active/inactive)

data for every connected device. These device state data are converted to logical

states (1 represents active and 0 represents inactive) to build the context of user

activities in a smart environment.
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• Context of controller devices: There are two features of the controller device (e.g.,

smartphone, tablet, speakers, etc.) that are collected by Aegis: Control command

for the devices and the location of the controller device. For any command from

the smartphone, tablet, or smart speakers, Aegis considers the active condition of

controller device which is represented as 1 in context array or 0 otherwise. A smart

environment/setting allows two different states to represent the location of the con-

troller device - home and away. Home location indicates that the controller device is

connected to the home network and away represents otherwise. Aegis represents the

”home” location of the smartphone as 1 and the ”away” location as 0 in the context

array.

The final context array can be represented as follows:

Context Array, C = [{S1, S2, ..., SX}, {D1, D2, ..., DY }, {M1,M2}], (6.2)

where S1, S2, ..., SX captures the conditions of X number of sensors in the system,

D1, D2, ..., DY the conditions of Y number of sensors in the system, and M1,M2 the

conditions of smartphone/tablet in the system.

Context generation module also generates the app’s context. As most of the app’s

logic represents a trigger-action scenario, the context generation module converts

the logic in a binary representation. For example, the logic extracted from the app

presented in Listing 1 is given below:

Listing 6.3: Generated app context of a sample app
1 App Context 1: contact1 = 1 , Light1 = 1
2 App context 2: contact1 = 0, Light1 = 0

Here, for the contact sensor, 1 and 0 represent the contact state from ”open” or

”close” respectively. Similarly, for the smart light, 1 and 0 represent the light state

from ”on” or ”off”, respectively. These app contexts are used to validate the sensor-

device co-dependence captured in the context array. Additionally, these app contexts
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are used to update the training dataset whenever a new device is added to the smart

environment.

Finally, as noted before, we found that the app context is highly-depended on the

specific type of devices and sensors the smart app controls. For instance, an app con-

trolling a smart thermostat is likely to contain trigger-actions related to Temperature

= high, Thermostat = on. Similarly, if the smart app controls a smart light and

a motion sensor, the trigger-action Motion = on, Light = on. We use this finding

to group together apps with similar expected trigger-action scenarios and improve

the practicality of Aegis. More specifically, we consider the devices that every spe-

cific app controls to infer expected trigger-action scenarios. With this, we found that

Aegis does not need to consider and analyze every new app in the market to main-

tain the context generation module up-to-date. This finding considerably increases

the usability of Aegis as incorporating new apps to control the smart devices and

sensors would not limit the effectiveness of the context generation module.

6.5.3 Anomaly Detector Module

In the third module, Aegis takes context arrays generated in the context generation

module as input and trains a Markov Chain-based machine learning model which is

used to detect malicious activities in connected smart environment.

The Markov Chain model is based on two main assumptions: (1) the probability

of occurring a state at time t + 1 only depends on the state at time t only and (2)

the transition between two consecutive states is independent of time. Aegis uses this

Markov Chain model to illustrate a series of events in a smart environment. Here, a

series of events denotes user activity and usage pattern and the state represents the

context array at a specific time t generated in the context generation module. The

probabilistic condition of Markov Chain model is shown in Equation 6.3, where Xt
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denotes the state at time t for a user activity in the smart environment [Kei12].

P (Xt+1 = x|X1 = x1, X2 = x2..., Xt = xt) = P (Xt+1 = x|Xt = xt),

when, P (X1 = x1, X2 = x2..., Xt = xt) > 0

(6.3)

Aegis considers the context array given in Equation 6.2 as an array of variables and

observes its changes over time. For every user activity on a connected smart environ-

ment, several context arrays are created. These arrays follow a different but specific

pattern for different user activities. Each element of the context array represents the

condition of a smart entity (active/inactive states of sensor, device, or smartphone).

For a distinct time, t, we consider the combination of all the smart devices’ and sen-

sors’ condition as binary output (1 for the active state of an entity and 0 for the

inactive state). Thus, the number of total states (A) will be the exponent of 2 and

can be represented as a n-bit binary number, where n is the total number of entities

in the smart environment. Let assume Pij denotes the transition probability of the

system from state i at time t to state j at time t + 1. If the smart system/setting

has n number of entities (sensors, devices, and controllers) and m = 2n states in the

system, the Markov Chain model of Aegis can be illustrated as in Figure 6.4. Here,

each transition probability from one state to another state represents an element of

the transition matrix. The transition probability matrix of the Markov Chain model

constructed from context arrays can be represented by the following equation:

P =



p11 p12 p13 . . . . . . p1m

p21 p22 p23 . . . . . . p2m

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

pm1 pm2 pm3 . . . . . . pmm


(6.4)

If the smart environment/system has X0, X1, ..., XT states at a given time t = [0, T ],

the elements of the transition matrix can be shown as Pij =
Nij

Ni
, where Nij denotes
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the number of transition from Xt to Xt+1, Xt is the state at time t, and Xt+1 is

the state at time t + 1 [Y+00]. If we represent Q as the initial state at time t = 0,

the initial probability distribution of the system can be represented by the following

equation:

Q =

[
q1 q2 q3 ... ... qm,

]
(6.5)

where qm is the probability that the model is in state m at time 0. Probability of

observing a sequence of states X1, X2, . . . , XT at a given time 1, . . . , T in the smart

environment can be computed using the following equation:

P (X1, X2, . . . , XT ) = qx1

T∏
2

PXt−1Xt. (6.6)

As the number of states in the smart environment depends on the total number of

installed devices and sensors, predicting the probability of the next state can intro-

duce overhead in terms of computing time and resource usage. Instead of predicting

the next state using the Markov Chain model, Aegis determines the probability of

transition between two states in the smart environment at a given time. We train the

Markov Chain model with the generated context arrays from the context generation

module and construct the transition matrix. Using this transition matrix, Aegis de-

termines the probability of transition from one state (i.e., context array) to another

state over time. For example, in Figure 6.1, the transition between sub-context 1 and

sub-context 2 is valid as the user can perform this activity. However, the transition

from sub-context 1 to sub-context 4 is invalid as the user cannot go from the bed-

room to the hallway without going through sub-context 2 and 3. Hence, the transition

probability matrix can manifest the state transition based on user activity contexts.

Let us assume a and b are system’s overall state in time t and t+1. We determine

the probability of transition from state a to b which can be found by looking up in

the transition matrix and calculating P(a,b). As users cannot skip any sub-context
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Figure 6.4: Markov Chain model for Aegis.

of an activity, P(a,b) will result in zero if transition from state a to b is malicious.

Thus, Aegis defines benign or malicious device behavior based on user activities.

6.5.4 Action Management Module

Finally, the action management module notifies the users in the event of malicious

activity in the smart environment. Action management module has two operation

modes - detection mode and adaptive training mode.

• Detection mode: In the detection mode, Aegis pushes a notification in the controller

device’s user interface (smartphone, smart tablet) to notify the users if malicious

activity is detected. Aegis provides the device ID and the installed app names to the

user for further action.

• Adaptive training mode: As Aegis builds a contextual model from user activities,

it is important to verify the correct context of an ongoing user activity [PZCG14]. In

a smart environment, users can perform different activities in an irregular pattern.

For example, a guest may come to the house which will introduce some new activity

patterns in the system. These abrupt data patterns may cause a higher false positive
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rate in the contextual model. To address this issue, Aegis offers the adaptive training

mode, a user feedback process to improve the performance. In the adaptive training

mode, whenever a malicious activity is detected, Aegis sends a notification to the

controller device’s user interface (smartphone, smart tablet) for user confirmation.

Users can either confirm the malicious activity from the controller device or mark the

activity as benign. If the user confirms the activity as benign, Aegis label that activity

context and train the framework automatically. Hence, Aegis can correctly and

automatically improve the training dataset by adding irregular or new user activity

pattern.

6.6 AEGIS Implementation

We developed Aegis as a multi-platform security framework for smart environment.

To implement and test the effectiveness of Aegis in real-life smart environment, we

chose several smart home platforms and devices including Samsung SmartThings,

Amazon Alexa, Google Home, etc. We built a real-life smart home environment

which represents the multi-platform connected smart environment. In this section,

we provide details of Aegis’s design considerations and implementation steps in the

following subsections.

6.6.1 Design Features and Goals

Existing smart platforms offer diverse sets of devices and sensors to automate day-

to-day activities. However, configurations of smart devices and sensors depend on

users’ demands, device choices, home layout, home occupancy, preferences, and so-

cial relationships. As Aegis builds the context-aware model based on data collected

for user activities, we consider following design features and goals. Layouts. Smart
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(a) Aegis interface (b) Normal Mode (c) Adaptive Training
Mode

Figure 6.5: User interfaces of Aegis in different operation modes.

environment such as smart home, smart office, etc. vary based on the layout as

number of devices, sensors, and apps differ in different layouts. To test the effective-

ness of Aegis, we selected three different smart home layouts to represent connected

smart environment: single bedroom apartment, double bedroom home, and duplex

home. We selected these three layouts as these are the most common rental units in

USA [fHSoHU20].

Occupancy. Smart environment is typically a multi-user environment where users

share the installed smart devices and sensors. As smart environment usually have

more than one occupants, we considered several multi-user environments (two, three,

and four users in same layout) to implement Aegis in real-life.

Types of devices and sensors. As smart device and sensor configuration depends

on users’ personal needs and preferences, the types of devices and sensors installed

in the smart environment vary in different layouts. Since, Aegis offers a platform-

independent security framework, we considered 14 different types of off-the-shelf de-

vices to build a real-life smart environment.

146



Date- and Time-dependent Activity. User activity in a smart setting depends on

the user’s daily routine which may change for different days of the week. For example,

a working adult may spend more time at home on the weekends than weekdays which

increases user interaction in smart devices and sensors. We considered this while

designing Aegis and implementing in real-life environment.

User-specific rules. Current smart device platforms allow users to build and define

multiple policies to control smart devices. The context of user activities may change

based on user-defined policies in a smart environment. For example, a smart light

can be controlled via the motion, door, or presence sensor. To understand the event

associated with the light sensor and build the context of user activity, one must

understand the user-defined policy enforced in the smart light. We addressed this

property in the implementation of Aegis by allowing users to define their own policies

in the smart devices and sensors in the data collection process.

Platform Independence. Smart environment allow users to install devices from

different smart device platforms in same physical environment. These devices can be

connected with each other via hub or perform tasks as standalone devices. Aegis

offers platform independence by allowing users to install smart devices from different

platforms in the same layout. Also, we considered both hub-connected and standalone

smart devices in the data collection and contextual model of Aegis.

6.6.2 Implementation

To test the efficacy of Aegis in real-life smart environment, we built a smart home

testbed to represent the smart environment. We implemented Aegis as a platform-

independent security framework in the smart home system. Also, as the majority

of the smart environments support their functionality with services running in the
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Figure 6.6: Aegis implementation in a multi-platform smart environment.

cloud, we implemented Aegis as a cloud-based solution. The integration of Aegis in

real-life smart home platforms was divided into the following integration phases.

• Smart home integration. In the smart home integration phase, we built a

customized smart app (Aegis app) to represent the data collector module described

in Section 6.5. Figure 6.5 shows the sample user interfaces of Aegis app implemented

in Samsung SmartThings platform. This app has two modules: data collection and

action management. In the data collection module, Aegis app lists the device states

as log files in smart home system and forwards the logs to Aegis’s context generation

module. Aegis app also logs the information of the installed apps to generate app

contexts in context generation module. The action management module of Aegis

app captures any notification generated in the anomaly detector (implemented in the

cloud) in the event of any malicious activity in the smart home system and notifies

the users. Additionally, users can control operational modes (detection and adaptive

training) of Aegis using the action management module.

• Cloud integration. We implemented the analytical model of Aegis (context gen-

eration and anomaly detector) as a cloud-integrated security framework. The context

generation module collects devices states forwarded from the Aegis app and creates

user activity contexts by considering device states, sensor states, and timestamp. As

users utilize different devices to implement their smart home environments, we also
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designed an app context extraction process capable of analyzing apps from multiple

smart home platforms. We implemented a tool similar to available static analysis tool

to automatically analyze and extract the trigger-action scenarios that define the app

context [BSAU18,BCMU19,CBS+18]. For trigger-actions defined for other platforms,

we found that the manual analysis and extraction was feasible as these platforms

mostly define specific binary combinations of trigger-action interactions to control

the devices. For the SmartThings apps, as they are written in Groovy [Sam18b], we

used specific compile-time tools offered by the Groovy Metaprogramming capabili-

ties [Met]. We first used the ASTTransformation class to extract the app’s AST and

build its ICFG. From there, we take advantage of pre-defined class visitors to explore

the different nodes in the ICFG and extract the different trigger-action scenarios de-

fined within the app’s event handler methods [CBS+18]. In total, we used the app

context extraction tool to automatically analyze 485 Smarthings apps, extracting a

total of 587 different trigger-action scenarios. These trigger-actions scenarios were

further stored in the multi-platform app rule repository that supports Aegis anal-

ysis. The app information forwarded from the Aegis app are cross-referenced with

App rule repository to add app contexts into the training dataset for data validation

purpose. The app contexts are only used in the adaptive training mode when the user

installs a new device or new apps (details in Section 6.5.4). Aegis uses the generated

app contexts to validate user activity context in a new smart home configuration to

minimize the effect of new device and app addition. The device and app contexts

are used to build the user activity context in a smart home system by the anomaly

detection module of Aegis. The anomaly detection module uses this user activity

contexts to train and detect any malicious events in the smart home (smart environ-

ment). In the event of any malicious activity in smart home system, the anomaly

detector sends a notification to the Aegis app which uses push notification to alert
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users in real-time. Figure 6.6 shows the implementation of Aegis in a multi-platform

smart environment (smart home).

6.6.3 Data Collection and Real-life Testbed

To test the efficacy of Aegis, we implemented a smart home testbed as a representa-

tion of connected smart environment where the users had the freedom to design their

own smart home configuration and perform regular activities in a timely order. While

collecting the user activity data, we considered five features that satisfy aforemen-

tioned design goals: Anonymous User ID, User Role, Smart Home Layout, Activity

Day-time, and User Policy. For each user, we assigned an anonymous ID to ensure

privacy. We also assigned a specific user role to each participant to understand the

context of the user activities in a multi-user scenario. As mentioned earlier, we con-

sidered three different home layouts (single bedroom apartment, two bedroom home,

and duplex home) and let the users choose their layout and smart devices. Moreover,

we considered users’ daily routine and collected the user activities performed in both

weekdays and weekends, separately. Finally, we allowed the users to define their own

policies in the smart home system during the data collection process.

We obtained necessary Institutional Review Board (IRB) approval to collect daily

usage data of a smart home with multiple users. We invited current smart home users

to participate in our study by circulating university-wide open calls and community

outreach via emails and flyers. We selected 20 smart home users to collect daily usage

data and provided monetary compensation to the users. While selecting participants

for our study, we considered several features: (1) owns more than one smart device,

(2) uses customized or vendor-specific apps/automation rules to control devices, (3)

diverse user roles (working adults, housewives, young adults, student, etc.), (4) be-

ginner level knowledge on using smart devices, (5) shares smart home environment
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with multiple users. To create the smart home environment, we considered the most

common off-the-shelf devices. We chose 8 types of devices and 6 types of sensors to

build the smart home testbed (total 14 types of devices). The detailed device lists

and apps selected in our smart home environment are given in Table 6.2. We col-

lected data from 20 different individuals with different user roles, user policies, and

smart home layouts. Our dataset consisted of over 85000 events collected in a 15-day

period. We considered two implementation scenarios based on smart home platforms

while collecting user activity data.

• Single platform smart environment. Single platform smart environment (e.g.,

smart home system) offers a single access point or hub where all the installed devices

and sensors in a smart environment are connected to perform various tasks collectively.

We considered single platform smart home system in our testbed to collect daily user

activity data and implement Aegis. We chose Samsung SmartThings platform to

create the single platform smart home environment because of its large app market

and compatibility with other smart devices [Gun17]. We implemented Aegis app as a

third-party app in Samsung SmartThings hub that uses the ListEvent command from

SmartThings API to collect the device logs. These device logs are forwarded to the

Aegis’s context generation module. We also created an app context database which

consists of 485 official Samsung SmartThings apps to cross-reference and create app

contexts. Whenever users install an app in smart home system, Aegis searches for

existing app context in the database and adds the context into the training dataset

for data validation purpose. For any third party app, users can manually use the

source code of the app in Aegis and generate the app context which is later added in

the database.

• Multi-platform smart environment. For multi-platform smart environment

(smart home), we considered four different smart home platforms and devices in
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Device

Type
Model Description Selected Apps

Smart Home

Hub

Samsung

SamrtThings Hub

• Works as a central access

point for smart home entities.

• Supports Wi-Fi,

ZigBee,and Z-Wave.

• Samsung

SmartThings App.

Smart Speaker Amazon Alexa

Google Home

• Works as a central access

point for smart home entities.

• Supports Wi-Fi,

ZigBee,and Z-Wave.

• Amazon Alexa app.

• Samsung

SmartThings App

integration.

Smart Light
Philips Hue Light

Bulb

• Uses a separate

communication bridge to

connect with smart home hub.

• Uses ZigBee to

communicate with other

components in smart

environment.

• Supports up to 12 different

sensors.

• Philips Hue app.

• Brighten Dark

Places.

• Brighten my path.

• Bright when dark

and bright after

sunset.

Smart Lock
Yale B1L Lock with

Z-Wave Push Button

Deadbolt

• Uses Z-Wave to connect

with other devices.

• Offers different pin code for

different users.

• Provides both manual and

remote access.

• Lock it at a specific

time.

• Unlock it when I

arrive.

Fire Alarm
First Alert 2-in-1 Z-Wave

Smoke Detector and

Carbon Monoxide Alarm

• Uses Z-Wave to connect

with the hub

• Provides built-in smoke and

CO sensors.

• CO detector. •
Smart alarm.

Smart

Monitoring

System

Arlo by NETGEAR

Security System

• Uses Wi-Fi to connect with

smart home hub.

• Offers both live monitoring

and still pictures.

• cameras on when

I’m away

Smart

Thermostat

Ecobee 4 Smart

Thermostat

• Uses Wi-Fi to communicate

with smart hub.

• Can be configured with

sensors.

• Ecobee connect.

• Its too cold. • Its

too hot.

• Keep Me Cozy.

Smart TV
Samsung 6 Series

UN49MU6290F LED

Smart TV

• Connects with smart home

hub using Wi-Fi.

• Power allowance.

• Make it so.

Motion, Light,

& temperature

sensor

Fibaro FGMS-001

Motion Sensor

• Uses Z-Wave to connect

with the hub.

• Can be configured with

different devices

simultaneously.

• Any apps associated

with smart devices.

Door Sensor
Samsung

Multipurpose Sensor

• Uses ZigBee protocol to

connect with smart home hub.

• Any app associated

with smart devices.

Table 6.2: List of devices used in the data collection.

single physical environment. We chose Samsung SmartThings, Philips Hue, LIFX

smart bulb, and Amazon alexa as different smart home platforms. Here, the smart
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home platforms and devices are installed as independent entitiy and no common access

point is considered in the installation. However, they share the same network access

point and perform different tasks independently. We customized and implemented

Aegis app in each of these smart home platforms. Aegis app collects device logs using

following APIs: ListEvent command from SmartThings API, LIFX HTTP API for

LIFX smart lights [LIF18], HUE API for Philips Hue [Hue18], and Smart home skill

API for Amazon Alexa [Ale18]. All the device logs collected by Aegis app in different

smart home platforms are forwarded to cloud integrated context generation module

of Aegis. We also used existing static analysis tools [BSAU18,CBS+18,BCMU19] to

create app contexts from official apps and automation rules (485 SmartThings app,

20 Alexa skills, 10 LIFX rules) that are used to add app contexts in training dataset.

These device logs are used to create the context-aware model and detect malicious

activities in smart home environment.

For collecting the malicious dataset, we considered five different threat models

(Section 6.4). We built five malicious apps to represent these threats. Our malicious

apps cover several known threats presented by other researchers in [JCW+17,IoT17].

Our handcrafted malicious apps also included smart home attacks using smart speak-

ers such as Amazon Alexa, Google Home, etc. [CMV+16, ZYJ+17]. To perform the

attack described in Threat 1, we built a battery monitor App for smart locks that

leaks the unlock code via SMS to the attacker. We realized the impersonation attack

by unlocking the smart lock as an outsider using the leaked unlock code. For Threat

2, we built an app that injects false smoke sensor data to trigger the fire alarm in

the smart home system. For Threat 3, we created an app that flickered a smart light

in a specific pattern while nobody was in the home. To perform the denial-of-service

attack described in Threat 4, we developed an app that stopped the smart thermo-

stat for a pre-defined value. For Threat 5, we created an app that could generate
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Aegis Threat Model App Description ContextIoT [JCW+17] IoTBench [IoT17] Voice command attacks

Threat-1:
Impersonation attack

A battery monitoring app
leaks unlock code via SMS
and an attacker uses the
code to unlock the smart
lock by impersonating as
valid user

• Backdoor pin code injec-
tion.
• Lock access revocation.
• LockManager.
• App Update – Power-
sOutAlert.
• Lock access revocation.

• Permissions- Implicit 2

An app that captures and
replay a voice command to
impersonate valid users.

— — • Stealing voice at-
tack [AVEF12].
• Voice spoofing at-
tack [MSS15].

Threat-2: False
data injection

An app injecting false sen-
sor data to a device.

• Fake alarm.
• Remote control – Fire-
Alarm.
• Remote command –
SmokeDetector.

— —

A voice command that mali-
ciously or mistakenly inject
false data to a connected
smart device

— — • Hidden voice com-
mands [CMV+16].
• Dolphin attack [ZYJ+17].

Threat-3: Side
channel attack

An app flickers a smart light
in a specific pattern while
no user is present.

• Leaking information.
• creating seizures using
strobed light.
• IPC – MaliciousCam-
eraIPC & PresenceSensor.
• MidnightCamera.

• Side Channel - Side Chan-
nel 1.
• Side Channel - Side Chan-
nel 1.

A malicious signal (audio
or light) causing a smart
speaker to execute a legit
yet vulnerable command

— — • Light com-
mands [SCR+19].

Threat-4:
Denial-of-Service

A malicious app that can-
cel any ongoing tasks in
smart devices at a pre-
defined value

• Disabling vacation mode.
• Abusing permission.

—

Threat-5: Triggering
a malicious app

An app changing state of
devices in a specific pattern
to trigger an malicious app
in a connected device

• Surreptitious surveillance.
• Undesired unlocking.
• IPC – MaliciousCam-
eraIPC & PresenceSensor.

—

Table 6.3: Malicious Apps mapping of Aegis, ContextIoT [JCW+17], IoT-
Bench [IoT17], and existing voice command attacks.

morse code using a smart light while no person was in the room and triggered a

smart camera to take stealthy pictures. Our malicious apps cover several existing

attacks on smart home devices presented by the researchers [JCW+17, IoT17]. In

Table 6.3, we mapped our threat models with existing malicious apps presented by

the researchers. Additionally, we added some malfunctioning devices (e.g., a smart

lock without power, fused smart light, etc.) in the smart home system to test Aegis

in cases that include device malfunction. We collected 24 different datasets (4 dataset

for each attack scenario) for a total of over 15000 events. We used 75% of the be-

nign user data to train the Markov Chain model. Then the remaining 25% of data
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along with the malicious dataset was used in the testing phase which is a common

practice [SAU19a,Goo19,AWS19b].

6.7 Performance Evaluation

In this section, we evaluate the effectiveness and feasibility of Aegis in detecting

malicious activities in smart environment with real user data. We train the anomaly

detector module of Aegis with data collected from multiple smart home users (repre-

sentation of connected environment) for benign daily activities. For testing purposes,

we use the user data as well as the malicious data collected from the adversary model

described in Section 6.4.

In the evaluation of Aegis, we consider several research questions:

RQ1 What is the performance of Aegis in different smart home environment layouts

and devices? (Sec 6.7.2)

RQ2 What is the impact of different apps, policies, and configurations on the per-

formance of Aegis? (Sec. 6.7.3)

RQ3 What is the impact of different user behavior on the performance of Aegis?

(Sec. 6.7.4)

RQ4 What are the performance overhead introduced by Aegis in a smart home

system? (Sec. 6.7.5)

6.7.1 Performance Metrics

In the evaluation of Aegis, we used six different performance metrics: True Positive

rate (TP), False Negative rate (FN), True Negative rate (TN), False Positive rate

(FP), Accuracy, and F-score. TP rate indicates the percentage of correctly identified

benign activities while TN rate refers to the percentage of correctly identified mali-
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cious activities. On the other hand, FP and FN illustrates the number of malicious

activities identified as benign and the number of benign activities detected as mali-

cious activities respectively. F-score is a indicator of accuracy of a framework which

considers TP and TN as computational vector. The performance metrics are defined

by the following equations:

TP rate =
TP

TP + FN
, (6.7)

FN rate =
FN

TP + FN
, (6.8)

TN rate =
TN

TN + FP
, (6.9)

FP rate =
FP

TN + FP
, (6.10)

Accuracy =
TP + TN

TP + TN + FP + FN
, (6.11)

F − score =
2 ∗ TP ∗ TN
TP + TN

. (6.12)

In addition to the aforementioned metrics, we also considered several parameters such

as power usage, memory usage, CPU usage, latency, etc. to measure performance

overhead of Aegis in real-life smart environment.

6.7.2 Evaluation with Different Layouts

To evaluate Aegis in different smart environment layouts, we consider two important

criteria (1) different smart home layouts, (2) multiple numbers of users. A smart

home system can have different layouts and different number of devices. We tested

the efficiency of Aegis in a multi-user environment and different smart home layouts.

Different smart home layouts: User activities in a smart home can vary depending

on the home layout as different layouts can lead to different usage patterns. To

evaluate Aegis, we considered three different layouts: single bedroom home, double

bedroom home, and duplex home. Here, we considered a single authorized smart home

user in different layouts. We collected data from 15 different users in these layouts.
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Normal Training Adaptive Training

Smart Home Layout Smart platforms Recall FN TN FP Accuracy F-score Recall FN TN FP Accuracy F-score

Single Bedroom

Home

Single platform 0.95 0.05 1 0 0.9547 0.9604 0.97 0.03 1 0 0.9712 0.9847

Multi-platform 0.94 0.06 0.99 0.01 0.965 0.9643 0.97 0.03 0.98 0.02 0.975 0.9749

Double Bedroom

Home

Single platform 0.93 0.07 1 0 0.9340 0.9655 0.96 0.04 1 0 0.964 0.9795

Multi-platform 0.92 0.08 0.97 0.03 0.945 0.9443 0.945 0.055 0.99 0.01 0.9675 0.9669

Duplex Home
Single platform 0.91 0.09 1 0 0.9119 0.9529 0.96 0.04 1 0 0.9614 0.9688

Multi-platform 0.90 0.1 0.96 0.04 0.93 0.9290 0.93 0.07 0.98 0.02 0.955 0.9543

Table 6.4: Performance evaluation of Aegis in different smart home layouts.

Our dataset also include single platform and multi-platform smart systems/settings.

Table 6.4 presents the evaluation results associated with different smart home layouts.

We can observe that accuracy and F-score for different layouts in single platform

smart home vary from 96-91% and 97-95%, respectively. For multi-platform smart

home, we can observe that the accuracy and F-score vary from 96-93% and 96-92% in

different smart home layout, respectively. Aegis also achieves high TP (96-91%) and

TN rate (100-96%) irrespective of layouts and number of platforms (single and multi-

platform). One can safely confirm that variation in different layouts has a minimal

impact on the performance of Aegis. Table 6.4 also shows how the performance of

Aegis improves in adaptive training mode. Here, whenever the controller device (e.g.,

smartphone, tablet, etc.) is connected in the smart home network, we infer the user is

in home location and use adaptive training mode. One can notice that the accuracy

of Aegis increases from 95% to 97% in adaptive training mode for single bedroom

layout for both single and multi-platform smart systems. For double bedroom and

duplex home, Aegis achieves 96.4% and 96.1% accuracy in single platform and 96.6%

and 95.4% in multi-platform smart system, respectively. As adaptive training mode

uses user validation to reduce FP and FN events, F-Score increases to approximately

95-97% for all three layouts. In summary, Aegis can achieve accuracy and F-score

over 95% for all three smart home layouts.

Different number of authorized users: Smart environment allow users to add

more than one authorized user for the same smart system. Hence, a smart environ-
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ment can have multi-user scenarios with different user activities happening at the

same time. To evaluate this setting of the smart environment in Aegis, we collected

data from several multi-user settings with different users performing their daily ac-

tivities at once. We used different smart home layouts (example of with several

multi-user scenarios (two, three, and four authorized controllers/conflicting users) in

our data collection process. Additionally, we performed the aforementioned attack

scenarios to collect malicious dataset and tested the efficiency of Aegis in different

multi-user environments. Table 6.5 illustrates the detailed evaluation of Aegis in dif-

ferent smart home settings. For single bedroom layout, we can observe that accuracy

and F-score reach the peak (0.9477 and 0.9729, respectively) for the two users setup.

If we increase the number of authorized users in the smart home system, the accuracy

gradually decreases with an increasing FN rate. Similarly, for double bedrooms and

duplex home layout, Aegis achieves the highest accuracy and F-score for two autho-

rized users’ setup. Both accuracy and F-score decreases while the FN rate increases

as the number of authorized users increases. The highest accuracy achieved in two

bedrooms and duplex home layouts are 92.29% and 90.38%, respectively. As different

users interact with smart home devices in varied ways, the FN rate increases with the

number of users in the system. To minimize the number of FN events, we implement

the adaptive training mode in Aegis. In a multi-user scenario, a notification is pushed

in all the controller devices if Aegis detects a malicious event in adaptive training

mode. All the authorized users can confirm the event based on their activities and

Aegis trains the analytical model with validated data. One can notice from Table 6.5

that Aegis achieves the highest accuracy and F-Score (97% and 98%, respectively)

for two users setup in single bedroom layout. Adaptive training mode also decreases

FN rate approximately by 38.6% and increases the accuracy to 96% and 95.25% for

three and four authorized user scenarios respectively. For two bedroom and duplex
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Normal Training Adaptive Training

Smart Home Layout
No of

Controllers
Recall FN Precision FP Accuracy F-score Recall FN Precision FP Accuracy F-score

Single Bedroom

Home

2 0.9472 0.0528 1 0 0.9477 0.9729 0.9685 0.0315 1 0 0.9711 0.9839

3 0.9399 0.0601 1 0 0.9405 0.9690 0.9564 0.0436 1 0 0.96 0.9777

4 0.9041 0.0959 0.96 0.04 0.9352 0.9312 0.9482 0.0588 1 0 0.9525 0.9734

Double Bedroom

Home

2 0.9222 0.0778 1 0 0.9229 0.9595 0.9654 0.0346 1 0 0.9682 0.9823

3 0.9058 0.0942 0.9529 0.0471 0.9062 0.9288 0.9523 0.0477 0.9785 0.0215 0.9545 0.9652

4 0.8806 0.1194 0.8941 0.1059 0.8807 0.8873 0.9476 0.0524 0.96 0.04 0.9486 0.9537

Duplex Home

2 0.9017 0.0983 1 0 0.9038 0.9483 0.958 0.042 1 0 0.9615 0.9785

3 0.8901 0.1099 0.9238 0.0762 0.8909 0.9067 0.9512 0.0488 0.975 0.025 0.9531 0.9629

4 0.8694 0.1306 0.8857 0.1143 0.8698 0.8775 0.9388 0.0612 0.953 0.047 0.94 0.9458

Table 6.5: Performance evaluation of Aegis in different multi-user scenarios.

home layout, adaptive training mode also increases the efficiency of Aegis. Adaptive

training mode reduces FN and FP rate approximately by 60% while accuracy and

F-Score increases to approximately 96% and 98% respectively in a double bedroom

and duplex home layout. In summary, Aegis can minimize the effect of conflicting

user activities in a multi-user scenario in adaptive training mode while increasing

efficiency.

6.7.3 Evaluation with Different Smart Environment Config-

urations

In this sub-section, we evaluate Aegis based on different smart Environment config-

urations including (1) different sensor configurations, (2) different user policies, (3)

different controller device configurations, and (4) number of installed apps.

Different sensor configurations: To evaluate the efficiency of Aegis based on

deployed sensors, we use several combinations of sensors to build the context-aware

model of user activities and report accuracy in Figure 6.7. Since Aegis considers

different smart sensors and devices as co-dependent components, we try to understand

to what extent changing the combinations of sensors in a smart environment affects

Aegis’s performance. For this, we tested the efficacy of Aegis with four different

combinations of sensors: without motion sensor, without the door sensor, without the
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Figure 6.7: Performance evaluation of Aegis with different sensors.

temperature sensor, and without the light sensor. As seen in Figure 6.7(c) and 6.7(d),

decreasing the number of sensors from the context-aware model in Aegis declines the

accuracy and F-score of the framework. Removing the motion sensor resulted in the

lowest accuracy and F-score (61% and 68% in duplex home layout, respectively). As

motion sensors are configured with the majority of the devices (smart light, smart

lock, etc.) and used in most of the user activity context, it affects the performance of

Aegis significantly. We can also observe that removing sensors from the smart home

system introduces high FN rate as our proposed framework cannot build the context

of the user activities correctly (Figure 6.7(b)). Again, Figure 6.7(c) illustrates that

removing the temperature sensor from the smart home system does not influence the

performance significantly (85-91% accuracy and 88-91% F-score in different layouts).
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The main reason is that the temperature sensor can be configured with a limited

number of devices; hence, it is affected by user activities less than other sensors.

Without the door sensor and light sensor, Aegis can achieve moderate accuracy

ranges from 77%-86% and 79%-88%, respectively. Figure 6.8 illustrates the change

in accuracy of Aegis for changing the number of sensors in different smart home

layouts. For all three smart home layouts (single bedroom, double bedroom, and

duplex home), limiting the number of sensors in the system decreases the accuracy

of Aegis. In conclusion, limiting the number of sensors in a smart environment can

reduce the efficiency of Aegis by introducing FN cases in the system.

Evaluation Based on Installed Apps: Users in a smart environment can install

multiple smart apps to configure and control the same devices or different devices at

the same time. For example, users can install two different apps to control a smart

light at a time with motion and door sensor respectively. To test the effectiveness

of Aegis based on the installed apps, we installed 12 benign apps in total in the

system to build the context-aware model of user activities. Figure 6.8(d) shows the

accuracy of Aegis in detecting malicious apps in a smart home based on installed

apps. Here, we installed different malicious apps (Section 6.4) in the system with

multiple benign apps to determine the effectiveness of Aegis. From 6.8(d), one can

notice that Aegis achieves the highest accuracy of 98.15% for Threat-2 and the lowest

accuracy of 94.34% for Threat-3 for only one benign smart app installed in the system.

With the increment of benign apps in the smart platform (highest 12 benign apps),

accuracy ranges between 98% to 95% and 94% to 92.5% for Threat-2 and Threat-3,

respectively. The accuracy of Aegis in detecting Threat-1, Threat-2, and Threat-

5 varies between 96% to 93%. We also tested different malicious apps installed at

once in the smart platform with a fixed number of benign apps (12 benign apps) to

understand the effectiveness of Aegis completely. Figure 6.8(e) depicts the accuracy
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Figure 6.8: Accuracy of Aegis with different number of sensors (a), (b), (c) and with
different number of benign and malicious apps (d), (e).

of Aegis based on the number of malicious apps installed in the system. One can

notice that Aegis can achieve an accuracy of 98% for one malicious app installed in

the smart home system which decreases very little with higher number of malicious

apps (92.57% with five malicious apps). In conclusion, the performance of Aegis

changed very little with the change in the number of benign apps and malicious apps

installed in the smart environment.
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(a) Voice-controlled smart de-
vices

(b) User Policy 1

(c) User Policy 2 (d) User Policy 3

Figure 6.9: Performance evaluation of Aegis in a voice-controlled smart environment
(a) and performance of Aegis in a policy-enforced smart environment (c), (d), (e).

Evaluation Based on Controller Device Configurations: Modern smart sys-

tems allow users to configure smart devices with different controller devices. Smart

device users control devices usually via vendor-specific controller apps installed in

smartphone and tablet. Additionally, smart devices can also be controlled via voice

commands if configured with a smart speaker (e.g., Amazon Alexa, Google Home,

etc.). As explained in Section 6.4 and 6.6, attackers can manipulate voice-controlled

configuration of smart devices by injecting false commands and impersonation (de-

tails in 6.3). In this subsection, we test the efficacy of Aegis in detecting malicious

activities targeting voice controlled smart devices. From Figure 7.7(d), one can no-

tice that the accuracy of Aegis increases with the number of voice-configured smart

163



devices as the increment in number of voice-controlled devices allows Aegis to under-

stand the user activity contexts properly. For single bedroom layout, the accuracy of

Aegis varies from 98-96% in detecting malicious activities targeting voice controlled

devices. Aegis also achieves high accuracy (96-94% and 95-92%, respectively) in dou-

ble bedroom and duplex home layout. In summary, Aegis achieves high accuracy in

detecting malicious activities targeting voice-controlled configurations regardless of

environment layouts.

Evaluation Based on User Policies: In smart environment, users can define

customized policies to control the smart devices. For example, users can impose a

time window to activate a smart light in a smart home system. In this sub-section,

we test the efficiency of Aegis with different policies enforced in smart environment.

We consider the following user policies to evaluate Aegis:

User Policy 1: Users can apply time-specific operations for different smart devices

and sensors. In policy 1, users configure a smart light with the motion sensor which

will be enforced only from sunset to sunrise.

User Policy 2: Users can apply sensor specific operations for different smart devices.

In policy 2, users configure smart lights with light, motion, and door sensors.

User Policy 3: Users can configure smart speakers to control smart devices using

voice commands. In policy 3, users configure smart lights with smart speakers to

control via voice commands (e.g., bedroom light on).

Figures 6.9(b), 6.9(c), and 7.7(c) present the performance of Aegis in these poli-

cies enforced in smart environment. One can observe that Aegis achieved accuracy

as high as 95% while enforcing time-specific operations in smart environment (smart

home) (Figure 6.9(b)). The F-score also ranges from 89% to 94% for different lay-

outs with time-specific operations with low FN rate (5%-8%). For User Policy 2,

one can observe a slight fall in the accuracy and F-score as changing sensor-device
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configuration introduces FN cases in the system. From Figure 6.9(b), we can see

that Aegis can perform with an accuracy ranging from 85% to 93% for different

layouts while changing the sensor-device configurations. Aegis also achieves F-score

ranging from 86.5-92% for different configurations. For controller-specific operation

(voice-controlled operation), the accuracy of detecting malicious events ranges from

96-93% with low FN rate (3-6%) in different smart environment layouts. Also, Aegis

achieves high F-scores (96-94%) in detecting malicious activities in voice-controlled

device configuration. In summary, Aegis can detect malicious activities in policy-

enforced connected smart environment with high accuracy and F-score.

6.7.4 Evaluation with Different User Behavior

In this sub-section, we test Aegis in terms of user interactions and behavior in the

smart environment. Aegis uses an adaptive training method which requires users’

feedback to detect FP and FN cases. This adaptive training method may cause

user fatigue with excessive feedback notifications [AF13]. To determine how the

user fatigue may affect the performance of Aegis, we performed accuracy vs user

feedback study which is showed in Figure 6.10(a) and 6.10(b). Figure 6.10(a) shows

the number of notifications generated in adaptive training mode by Aegis in different

smart system settings over a 10 day period. One can notice that in all three layouts

the number of generated notification decreases significantly. For the single home

layout, the number of notifications decreases by 59% in 5 days. For double bedroom

and duplex layout, the number of notifications also decreases by 52.45% and 74.67%,

respectively. This indicates that users only have to deal with higher feedback requests

for a short period of time. Note that Aegis pushes a notification for both FP and TN

events as our test dataset includes both normal user activity and malicious events.

Hence, the number of notifications generated for only FP events is lower than it seems
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Figure 6.10: Performance of Aegis in terms of user feedback (a), (b) and performance
overhead of Aegis (c), (d).

in Figure 6.10(a). For example, in day 10, the total number of notification is 10 among

which 6 notifications are from FP. Figure 6.10(b) shows how user feedback affects the

accuracy of Aegis in detecting different threats. One can notice that the accuracy of

Aegis increases very little from 50% to 100% user feedback. This indicates that if the

users actively train Aegis in the initial period (1-5 days) in adaptive training mode,

the performance improves significantly. Again, Aegis always provides the option to

choose a specific time for adaptive training mode to the users. In conclusion, Aegis

can negate the consequence of user fatigue by terminating adaptive training mode

after an initial period, which are configurable by the users.
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6.7.5 Performance Overhead

We illustrate the performance overhead of Aegis, including resource overhead and

latency. As Aegis runs in the Samsung SmartThings hub (Data Collection and Action

Management Module) and local machine (context generator and anomaly detector),

the performance overhead is minimal in terms of resources. We identify three major

features that could introduce a time delay in real-time operation.

Delay in adaptive training model: Aegis offers adaptive training mode where any

malicious event detected by Aegis is forwarded to the user for validation. Aegis uses

this validated data to retrain the analytical model which introduces a time delay in

the operation. In Figure 6.10(c), we illustrate the time needed for re-training the

framework with respect to the number of devices installed in the device. One can

notice that Aegis takes approximately 230 ms to train when the system has 6 different

devices installed in the smart environment. The training time increases to 519 ms for

24 installed devices in the smart environment. In short, Aegis introduces negligible

overhead in terms of time delay in adaptive training mode.

Delay in multi-platform smart environment: Aegis allows multi-platform system con-

figuration where smart devices form different platforms can share the same physical

home environment. Aegis uses multiple customized apps to collect device’s and

sensor’s state information to build a context-aware model from user activities. As

smart devices from different platforms vary in resource (memory, CPU, command

execution frequency, etc.), collecting data and building context-aware model from

multi-platform smart environment introduces a time delay in the operation of Aegis.

Figure 6.10(d) shows a comparison between time delay introduced in single and multi-

platform (4 different smart home platforms) smart environment with respect to num-

ber of installed devices. One can notice that for a minimum of 6 devices Aegis takes

approximately 220 ms and 300 ms in single and multi-platform smart environment,
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respectively. The highest time delay introduced in multi-platform smart environ-

ment is approximately 600 ms for 24 installed device compared to 508 ms in single

platform smart environment. In summary, Aegis introduces minimal time delay in

multi-platform smart environment compared to single platform environment. Hence,

Aegis is effective in detecting malicious activities irrespective of number of smart

devices and platforms installed in the smart environment.

Delay in action management module: Action management module of Aegis alerts

users in the event of malicious activity in smart environment. The alert message is

sent to the controller device (smartphone, tablet, etc.) in a form of notification which

introduces a time delay in the action management module. We use a SmartThings app

to send notifications to controller devices of authorized users. This app communicates

with the cloud server via http protocol which is connected with the action management

module (Section 6.5.4). On average, action management takes 210 ms time to send a

notification to the controller device from the moment of malicious activity detection

which is low for real-world deployment. In short, we conclude that Aegis meets the

efficient demands in the action management module.

6.8 User Scenarios and Benefits

In this section, we illustrate how deploying Aegis in a smart environment can help

different groups of consumers using several use scenarios and discuss different benefits

of Aegis.

6.8.1 User Scenarios

We illustrate three different user scenarios to understand the benefits of Aegis among

vendors, end-users, and developers.
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Vendors- Smart device vendors can use Aegis to detect an abnormal behavior in

a customer’s implemented smart system. Here, a customer, Alice, installs several

smart security devices (smart lock, smart camera, smart fire alarm, etc.) and the

corresponding smart apps to control them. However, one of the installed app has

malicious code that injects false sensor data when no one is at home to trigger the

fire alarm (Table 6.3- Threat- 2). As Alice does not have any idea of this malicious

event, she calls the security service provider/vendor for support. In this situation, the

security service provider can identify that the alarm is generated from a false data

from the state model generated by Aegis and support the customer with appropriate

suggestions such as deleting the malicious app, reinstalling the correct app, etc.

End-users- End-users constitute the most common victims of malicious events in

a smart environment. Attackers can perform several malicious activities including

gaining physical access to the smart environment. For instance, a smart device user,

Bob, installs a new smart lock and the corresponding app in the smart home system.

However, the installed app has a malicious snippet to forward the unlock code to the

attacker so he can unlock the smart lock by impersonating Bob (Table 6.3- Threat

1). Aegis can identify this event and notify the user in real-time. Moreover, Bob

can change the state of the lock to unlock and prevent any physical access of the

smart home. Smart device users also tend to install devices from different vendors

in the same physical environment. Aegis provides a platform-independent security

framework to the end-users which can detect malicious activities irrespective of the

platform of the devices. For instance, a malicious app can inject a voice command

to the smart speaker to open the front door (Table 6.3- Threat 2). The contextual

model of Aegis can confirm the presence of the user by checking the state of the

installed presence sensor even if it is not connected to the smart speaker. Hence,
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Aegis can detect malicious activities in smart devices using the context-aware model

in a multi-platform smart environment.

Developers- Developers or tech enthusiastic users can deploy Aegis in their smart

system and specify different rules to enhance the security of the their system. For

instance, Kyle, a smart home user, installs multiple smart lights and motion sensors

in his system. Kyle also builds a new smart app to control the lights with motion.

By using the logic extractor of Aegis, Kyle can understand whether his app logic is

correct or not. Moreover, Kyle can use the adaptive training mode to see how the

overall state of the smart home changes with new devices and apps. If the action of

the new smart lights contradicts the existing system, or any malicious event occurs

(e.g., Table 6.3- Threat 3), Kyle can understand the cause of the event and take

necessary steps. Moreover, Kyle can understand the working conditions of smart

devices and improve his technological knowledge using Aegis.

6.8.2 Discussion

Deployability in Real-life System- One of the prime features of Aegis is easy

deployability in real-life systems. Aegis uses simple smart apps to collect device

states from multiple smart platforms installed in same smart environment and build

the context-aware model. The detection mechanism runs in the cloud which does

not hamper the normal operation of the smart environment. Users can install Aegis

similarly to any other smart app.

Applicability and Real-life Threats- Security risks may arise from smart apps

performing side-channel attacks. For instance, a smart app can flash the light in a

specific pattern to leak information or trigger another connected device which can be

considered as a threat. While most of the existing solutions consider this threat as

out of scope [CBS+18,MAH+16], Aegis successfully detects such malicious behaviors.

170



In addition, Aegis can detect device malfunctions inside a smart environment. For

instance, if a smart light makes light patterns while no one is around, there will be

activity in the light sensor and the light bulb, but no activity in the motion and

presence sensors. Additionally, device malfunctions inside smart environment can be

detected. For instance, if a smart light is configured with the motion sensor, one

should expect that the light turns on due to the active motion. Other outcomes from

this specific context may be categorized by Aegis as a malfunction.

Multi-user activity in smart environment- In smart environment, more than one

user may perform different activities simultaneously. As Aegis utilizes user activity

contexts to detect malicious actions, correctly distinguishing between different user

activities is key. Instead of single-context analysis, Aegis uses a pattern of contexts

to understand the user activities. Hence, Aegis can detect simultaneous activities

performed by different users and devices in a smart environment. For instance, if two

users are walking towards the same point from opposite directions, Aegis observes

the related contexts to identify two different motion activities.

Trigger-action effect time- Smart devices use sensors to automate tasks. For

instance, a smart light can be triggered by a motion sensor or a door sensor. Each

trigger-action scenario has an effect time (time duration of a device being active). This

effect time has to be correctly considered to build the context of the user activity.

Aegis mitigates this time dependency by considering the pattern of device utilization.

For instance, the user sets a smart light to remain on for two minutes if a motion is

detected. This case is detected by Aegis by checking consecutive states of the overall

smart home and is used to detect malicious apps or malfunctioning devices (if the

motion is sensed by the sensor and it holds the state for 20s, the smart light should

be also on for, at least, 20s otherwise broken or malicious). Aegis uses these trigger-
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action scenarios to mitigate the effect of the time interval and builds the contextual

model from device state patterns.

Detecting rare events- In a smart environment, different autonomous events occur

based on device configuration and user activities. These events may include rare

events such as triggering fire alarms. As Aegis uses daily user activities to train

its analytical model, these rare events might be unaddressed and flagged as threat.

To solve this, we use the app context to verify unrecognized events in Aegis. Any

alert triggered in Aegis is verified with app context generated from the installed app

(Section 4.2). If the app context is matched with the rare event, Aegis considers the

event as benign and retrain the model automatically. Users can also check and verify

rare natural events through action management module (Section 6.5.4).

Multi-platform support- Aegis supports multi-platform smart environment which

allows users to install smart devices from different platforms in the same physical

environment. For instance, users can install both Samsung SmartThings devices and

Wi-Fi devices such as LIFX smart bulbs in the same smart home. While existing

solutions cannot ensure security in this multi-platform environment, Aegis observes

devices state changes and builds a contextual model which can envision user activity

contexts and multi-platform correlation properly in a smart environment. Also, Aegis

only considers device states to build the contextual model which does not need any

platform-specific and app-specific modification. Hence, Aegis can detect malicious

activities in a multi-platform smart environment.

6.9 Conclusion

Modern app-based connected smart environment expose the smart ecosystem to novel

threats. Attackers can easily manipulate the smart devices and sensors to perform

different attacks or deceive users into installing malicious apps. However, current de-
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tection solutions only consider threats to devices and apps in the smart environment,

skipping the very-complex and rich context-based relationships among smart plat-

forms, devices and apps. In this chapter, we presented Aegis, a novel context-aware

platform-independent security framework for connected smart environment that de-

tects malicious device and sensor activities by (1) observing the change in device

behavior based on user activities in multi-platform smart environment, (2) correlat-

ing sensor-device trigger-action scenarios with user activities in multi-platform envi-

ronment, and (3) building a contextual model to differentiate benign and malicious

behavior. We evaluated Aegis in multiple smart settings, with real-life users, with

real smart devices (i.e., Samsung SmartThings, LIFX smart bulbs, Amazon Alexa,

Google Home platform), and with different day-to-day activities. Our detailed eval-

uation shows that Aegis can achieve over 95% of accuracy and F-score in different

smart settings. We also tested Aegis against several malicious behaviors. Aegis is

highly effective in detecting threats to smart home systems regardless of the layouts,

smart platforms, the number of users, and enforced user policies. Finally, Aegis can

detect different malicious behavior and threats in smart environment with minimum

overhead.
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CHAPTER 7

MULTI-USER MULTI-DEVICE-AWARE ACCESS CONTROL

SYSTEM FOR SMART DEVICES AND ENVIRONMENTS

7.1 Introduction

This chapter presents Kratos, a multi-user multi-device-aware access control sys-

tem for smart environment (e.g., smart home, smart factory, smart office, etc.). We

designed Kratos based on a user study conducted among 72 smart home users to

reflect the real-life needs of access control in smart environment. Kratos introduces a

formal policy language for smart device users to create different device usage policies

by specifying their needs in a structured manner. Kratos implements a novel policy

negotiation algorithm that automatically detects and solves conflicting demands from

multiple users sharing same physical environment by leveraging user roles and priori-

ties. Kratos generates optimized policies for multiple users in a smart environment,

reviewing the outcomes of the policy negotiation and implementing the negotiation

results over the smart devices, sensors, and installed apps. We implemented Kratos

in a real-life a multi-user multi-device smart environment (smart home system) that

include 17 different sensors, actuators, and devices. We further evaluated performance

of Kratos on 219 different policies including 146 demand conflicts and 33 restriction

policies collected from 72 smart device users. We also tested Kratos against five

different threats and achieved 100% accuracy in detecting the threats in real-time.

Finally, we performed a usability study among 43 real-life smart device users. Our

extensive evaluation shows that, Kratos can resolve demand conflicts and detect

different threats with 100% success rate with an average rating of 4.6 out of 5 in

usability in smart environment.
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Summary of Contributions : The main contributions of this chapter are as fol-

lows:

• We conducted an access control user study with 72 different smart device users

to understand the real-life needs for multi-user multi-device access control sys-

tem in smart environment.

• We introduced Kratos, a novel multi-user multi-device-aware access control

mechanism for smart environment. Kratos considers conflicting user demands

in multi-user smart environment and implements a flexible user policy-based

access control to define user roles and understand users’ demands. Kratos

introduces a formal policy language to express users’ desires and a novel pol-

icy negotiation algorithm to automatically identify and resolve conflicting user

demands and restrictions in a multi-user smart environment.

• We implemented Kratos on a real-life smart environment (smart home sys-

tem) using 17 different smart devices and sensors. Further, we evaluated its

performance with 289 different policies collected from 72 different smart device

users and five different threats. Our extensive evaluation shows that Kratos

effectively identifies and resolves conflicting user demands and detects different

threats in real-time.

• Finally, we performed a usability study with 43 different smart device users

to understand the effectiveness of Kratos. Our results showed that Kratos

achieves an average of 4.6 ratings out of 5 from the users based on common

usability metrics including user friendliness, acceptability of use, availability,

real-time response, and effectiveness.
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7.2 Differences from Existing Works

Table 7.1 shows the major differences between Kratos and existing access con-

trol mechanisms in smart environment. In general, previous works consider access

control needs in either single-device single-user or single-device multiple-user envi-

ronment. Additionally, existing works acknowledge the conflicting user demands in

multi-user multi-device environments that reflects users’ relationships, social norms,

and personal preferences. Compared to previous works, Kratos presents a usable

fine-grained access control system that considers multi-user multi-device smart en-

vironment. Kratos reflects the user feedback in its design collected from a user

study. Kratos offers easy new-user addition with user priority level that consid-

ers device-specific usage, user-specific restrictions, location-based access, and novel

policy negotiation algorithm for resolving conflicting demands. In addition, Kratos

provides easy policy assignment and management capabilities for multiple users in a

smart environment by implementing easy-to-use user interfaces. Kratos also detects

different threats arising from over-privileged users and coarse-grained access control

systems with minimum overhead in real-life deployment.

7.3 Access Control Needs in Smart Environment

To understand the real needs for multi-device multi-user access control systems in

smart environment, we conducted a user study among 72 real-life smart device users.

We designed Kratos to address these needs in a fine-grained access control system.

As user demands in a smart environment such as smart home vary based on diverse

relationships, preferences, and social norms, it is important to understand uses’ expec-

tation in an access control system. We obtained Institutional Review Board (IRB)

approvals to conduct the user study and provided monetary compensation to the

177



participants. We divided the survey into three main blocks of questions to efficiently

characterize users’ needs in a multi-user multi-device smart environment.

• Block 1 – User Characterization: This group of questions focused on charac-

terizing the users based on age, technical experience, household characteristics,

etc. With this, we aim to understand the needs and interest of a diverse group

of users. We asked questions about the user’s preferences and experiences in

a smart environment including user experience, interests on particular smart

device and platform, household characteristics, social relationships and norms

in multi-user settings, etc.

• Block 2 – Smart Home Access Control : The second set of questions aimed to

characterize the user’s smart home setting preferences in different multi-user

settings. We asked questions to understand (1) users’ experience in a multi-

user smart environment, (2) real-life needs for access control systems, and (3)

users’ expectations about the outcome of the access control system.

• Block 3 – Multi-user/Multi-device Scenarios : Finally, in the third block of ques-

tions, we asked the users about general multi-user and multi-device settings.

The goal of these questions is to understand users’ views regarding how differ-

ent conflicting demands, policy negotiations, user restrictions, and users with

different priorities should be handled.

In the following, we present the results of the user study and explain how Kratos

reflects the needs of users in its design features.

178



7.3.1 User Characterization

We surveyed a total of 72 smart device users. We fully characterize the group of users

and their households based on age, smart device usage and interests, and technical

experiences.

Age: Out of the total 72 users, 20 (27.79%) users reported ages in the range of 25-34

years, 41 (56.94%) users were in the range of 25-34 years, and 11 (15.27%) in the

range of 35-44 years.

Smart Device Usage: 60 out of 72 users (85.7%) mentioned that they either have

previously used or currently have some smart devices in their households.

Smart Device Types: We also asked users regarding the smart device types they

had experienced with. The most popular devices among the surveyed users were:

Smart TV 49 (68.06%), smart light 31 (43%), smart thermostat 20 (27.78%), smart

camera 15 (20.83%), smart lock 12 (16.67%), and smart switch 10 (13.89%).

Smart Home Platforms: We included 10 different smart device platforms and

asked users regarding their experience with these platforms. The users stated that

they were familiar with four smart device platforms: Google Home (67 users - 93.05%),

Samsung SmartThings (55 users - 76.38%), Apple HomeKit (39 - 54.16%), and Open-

HAB (12 users - 16.67%). Furthermore, we questioned user regarding their likelihood

of using these smart device platforms. Similar to the previous results, Google Home,

Samsung SmartThings, and Apple HomeKit were the most preferred smart device

platforms among the users, 42 (58.33%), 20 (27.78%), and 10 (13.89%), respectively.

Technical Experience: We also characterized the users based on their technical

experience with smart devices, platforms, and Apps. Out of the total, 55 (76.38%) of

the users reported that they knew how to set up smart devices, 38 (52.78%) stated
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that they knew how to install Apps, and 35 (48.61%) said that they felt comfortable

integrating different smart devices using a hub or cloud-based platforms.

Household Characteristics: Finally, we concluded the first block of the survey by

asking questions to visualize the household characteristics of the users. The users re-

ported that they lived with different family/roommate sizes. For instance, 26 (36.1%)

users stated that they lived in a size of 4, 17 (23.61%) reported living in a size of

3, and 21 (29.16%) users shared their spaces with at least another person. The re-

maining eight users lived in a family size of 5 or higher. Furthermore, we asked the

users regarding their experience in shared smart home devices and platforms. Inter-

estingly, out of 36 users, only 4 (5.5%) reported that they did not share smart devices

with other users. Then, 63 out of the 68 remaining users disclosed that they shared

multiple smart devices with at least two more household members and up to 7.

We use the answers obtained in this block of survey questions to characterize

the targeted users of Kratos. In most cases, users of smart devices, platforms,

and apps know how to configure devices and install apps (vendor provided and third-

party). Additionally, multi-user smart households represent a positive potential smart

environment for fine-grained multi-user access control systems like Kratos. Finally,

we note that most of the users reported that they share a smart device with at least

two other household members.

7.3.2 Smart Home Preferences and Characterization

In this block of questions, we also asked smart device users questions regarding ex-

pected access control features in a smart environment.

Multi-member Settings: We asked users if they had ever considered or felt need

to define various control policies on the other users in multi-user environment while

installing or using smart apps. In total, 53 (73.61%) users answered “Yes” to this
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question which reflects user needs of access control system in multi-user smart envi-

ronment.

Multi-member Access: Further, we investigated if the users were ever had given

device accesses to other members. In this case, a higher majority of users (61 users,

84.7%) answered “Yes”

Conflicts Among Settings: In multi-user scenarios, 43 (59.72%) surveyed users

disclosed to update or re-evaluate smart device and platform settings after discov-

ering that previous configured settings had been modified by other members of the

household that had authorized access to the devices.

Multi-member Admin Interface: Regarding the multi-member scenarios, 64 out

of 72 users agreed that smart devices, platforms, and apps should have a user-friendly

interface that can be regularly checked by the device owner to control and monitor

the access rights of installed smart devices.

Guest Access: Lastly, we asked about giving device access to guest/temporary

members (visitors, tenants, etc.). A vast majority of users (61 users - 84.72%) re-

sponded “Yes” to the option of smart Apps having an automated mechanism to revoke

temporary access requests from guest users.

Overall, these set of questions shows the need for access control mechanisms in

smart home systems. We found that the device owners frequently had to deal with

user conflicts as a result of settings changed by other members of the household.

Additionally, the device owner wants to have control regarding who accesses the

devices and desires to enforce limited access controls for the users that are not fully

trusted.
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7.3.3 Multi-user/Multi-device Access Control

Finally, we assess the need for the fine-grained access control mechanisms, and feed-

back of users on the design and implementation of such mechanisms. Below, we group

the responses of the users regarding the features of access control mechanisms in 10

different topics.

Integrated Access Control: We asked the users whether they felt the need of

an access control mechanism in smart environment while configuring and using smart

devices. A majority of 64 (88.8%) users answered that it would be an essential feature

and smart platforms should provide an integrated access control system reflecting user

needs.

Separated Access Control: We further asked whether there is a need for a separate

access control app/system to manage the smart devices and platforms. Surprisingly,

58 (80.56%) users positively answered. Out of 58 users, 41 (70.68%) users desired to

use an access control application if it were free and secure, while 17 users (29.32%)

stated that they are willing to pay for the access control service if available. Addi-

tionally, the users agreed to share some specific personal information (PI) with the

access control app if required for the app design. Out of 6 different options provided,

the users stated that they would allow the app to use their email address (39 users -

67.24%), smart home user ID (34 users - 58.6%), smart home account credentials (31

users - 53.44%), and smart device ID (21 users - 36.2%).

User Priorities: In a multi-user environment, access control can be provided by

assigning priorities to different users. We asked the survey participants about who

in the household should have the highest (the most trusted member) and the lowest

(the least trusted member) priority. The users assigned priority levels in between

these boundaries. The “spouse/partner”, “father”, and “Mother” are among the

members with the highest priorities. On the contrary, “babysitter ”, “temporary

182



guest”, “frequent visitor”, and “cleaning personnel” were among the members that

had the lowest priority. In summary, temporary users are considered as least trusted

members by the survey participants and should be given lowest priority.

Device Priorities: We evaluated what type of devices should be included in the

access control mechanism. Out of 18 device options, the devices related to security

and safety were selected to be the most important devices for access control. This

list includes devices such as smart lock, smart thermostat, smart fire alarm, smart

monitoring system, presence sensor, and smoke sensor. On the other hand, devices

with the least importance to the user were the smart coffee machine, doorbell, and

smart Light.

Automated System: Out of 72 smart device users, 45 (62.5%) users answered

positively to the possibility of having an automated negotiation system to solve access

control conflicts among users with the same level of priority.

Update Policy Feature: Out of 72 survey participants, 53 (73.61%) participants

expressed their interest in having a feature to update/change current access control

policies.

Negotiation Process: We presented four different options to the users about how

the policy negotiation process should work among users of the same priority (su-

perusers or admin level). The answer of users shows that users desire to automate

this process with minimal interaction (51 users - 70.83%). The users’ answers also

suggested that the access control system should notify the members affected by the

policy conflict.

Multiple Policies: The users reported that the access control system should allow

multiple policies when a conflict occurs. 56 (77.78%) users suggested that a simple

notification and an automated approval of the non-conflicting policies is sufficient to

notify users regarding conflicting demands and policies.
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Conflicting Policies: If two policies conflicts and one of them is defined from a

member with lower priority, 33 (45.83%) users suggested that the lower priority policy

should be rejected. However, 25 (34.72%) other users indicated that the member with

the higher priority should be asked to assess the possibility of changing its policy to

allow the lower priority member to add its settings without conflict. In both cases,

they again suggested that a notification system is a critical feature to resolve policy

conflicts. Furthermore, we presented a use-case scenario where a member having the

same priority level as the owner introduces a conflicting policy on behalf of a low-

priority member. In this scenario, 39 (54.17%) users suggested that both the owner

and the member with similar priority should be notified so that they can negotiate

together how to solve the conflict. However, 23 (31.94%) users proposed that the

high-priority member should be notified about the conflict with the owner and the

new policy should be automatically rejected.

Low-Priority Members: The last two questions were about managing the low-

priorities members. The majority of the users (55 - 76.38%) confirmed that the

access control system should have a feature to monitor the actions and commands

from low-priority members while other 15 (20.83%) suggested that this may be an

additional feature to have. We obtained similar results when we specifically asked

about access control for guest/temporary members. In this case, 47 (65.27%) survey

participants replied that guests/temporary users needed to have restrictions while

other 20 (27.78%) users said that this would be an additional feature to include in

the access control mechanism.

Clearly, the users had expressed their interests in having access control mech-

anisms for multi-user multi-device smart environment. Also, users suggested that

despite a necessary notification system, the access control mechanism should work

effectively with minimal user interaction. Finally, users stated that the access control
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system should be able to differentiate between users with different priority levels and

negotiate conflicting demands accordingly. Conflicts between users with same priori-

ties should be resolved with the intervention when necessary while conflicts between

members with different priority levels should be resolved by rejecting the requests

from the later. Additional features were suggested to monitor and restrict the actions

from low-level priority members. In summary, our design for multi-device multi-user

aware access control system, Kratos, was heavily influenced by the needs of the users

and Kratos aims to achieve all of these desires from the users into design.

7.4 Problem Scope

In this section, we first define several important terms that we use in this work. Then,

we introduce the challenges of an access control system in the smart environment

through an example scenario in a smart home system. Finally, we articulate the

threat model considered in this work.

7.4.1 Terminology

We define several important terms that we use in this work.

Policy. In this work, we consider Policy as the group of requests made by the users

to control device usage and parameters in a multi-user smart environment. Based on

the nature of request, there are three types of policies considered in Kratos.

1. Demand Policy. We consider Demand Policy as the group of requests made by

a user or that define the control rules/configuration for a specific device or group

of devices in the smart environment. Demand policies can be general (i.e., created

by the admin and applied to all the authorized users in the system) or specific to
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a certain user. If a demand policy is general to all users, we define that policy as

General Policy.

2. Restriction Policy. We consider Restriction Policy as the set of rules that govern

the accessibility and level of control of a user or group of users to a certain device

or group or devices in the smart environment. Restriction policies regulate (1) what

devices the user has access to, (2) the time frame in which the user is authorized to

use/control the devices, and (3) the control parameter limits.

3. Location-based Policy We consider Location-based Policy as the set of automation

rules enforced to an authorized user that are only applicable if the user is connected

in the system network. Location-specific policies regulate (1) what devices the user

has remote access to and (2) the control setting limit if a specific user is not present

in the network.

Priority. We define Priority as the importance level of a user that may be used

to provide controls for users of higher priority over users with lower priority during

different smart system functionalities such as new user addition, policy enforcement,

restriction, and demand negotiation processes. In Section 7.5, we detail the different

priority levels considered in this work.

Conflict. For the purpose of this work, Conflict is defined as the dispute process that

is generated from two or more demand policies assigned by the users that interfere or

contradict based on the specific requests of the policies. Based on the nature of the

demand and restriction policies, three types of conflict can occur.

1. Hard conflict. A hard conflict occurs when demand policies of a specific device

enforced by two different users do not have any overlapping device condition.

2. Soft conflict. When demand policies enforced by the users for a specific device

have overlapping device conditions, a soft conflict occurs.
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Figure 7.1: Sample smart home with multiple users attempting to control multiple
devices with conflicting demands.

3. Restriction conflict. If the restriction policy for a specific device is being disputed

by the restricted user, Kratos identifies that as restriction conflict.

7.4.2 Problem Definition

To explain the problem of coarse-grained access control in smart settings, we consider

a use-case scenario in smart home system. We assume a smart home setting (S)

similar to the one depicted in the Figure 7.1. The smart home has several installed

devices to create an automated smart environment. In S, four different users – Bob

(father), Alice (mother), Kyle (child), and Gary (guest) interact with the devices.

We assume Bob and Alice are the owners of the smart devices and all four users

have access to the smart home system through their controller app (installed on their

smartphone or tablet). Here, the term access to the smart home system refers to the

ability to control the devices, configure the system (add/delete devices), and add new

users to the system. We assume that the users are performing the following activities

which result in conflicting demands- (1) Bob and Alice are trying to configure the
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smart thermostat to different temperature values at the same time which results in

conflicting demand, (2) Alice tries to restrict Kyle from using the smart coffee machine

but smart home system does not allow her, (3) Alice wants to set the smart lock after

midnight, but (4) Gary wants to enter the home after midnight which results in

conflicting demand, and finally, (5) Gary wants to add his friend Steve in the system

who is unknown to Bob and Bob can not restrict the activity. Hence, a new access

control system is needed and should be designed to answer the following questions:

(1) How Bob and Alice can solve their conflicting demand and use the thermostat

simultaneously? (2) How Alice can restrict a specific device for a specific user? (3)

How Alice can give exclusive permission to use the smart lock to Gary after midnight?

(4) How Bob can limit the access of Gary to add a new user? To address these, we

propose Kratos, a fine-grained access control system for the smart home that allows

users to resolve the conflicting access control demands automatically, add new users,

select specific devices to share, limit the access to specific users, and prevent undesired

user access in the system.

7.4.3 Threat Model

Kratos considers undesired access control decisions that may arise from existing

coarse-grain solutions. For instance, a new user automatically gets full access to the

system (i.e., over privileged control) which may lead to undesired device access. Also,

Kratos considers legitimate smart home users trying to change the system settings

without authorization (e.g., overriding existing system by installing new apps) that

may result in undesired device actions such as installing unknown apps and overriding

device conditions (i.e., privilege abuse), even deleting device owners from the system

(i.e., privilege escalation). Furthermore, Kratos considers threats that arise from

inadequate, inaccurate, or careless access control to multi-user multi-device smart
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Threat Attack Method Attack Example

Threat-1
Over privileged

controls

A newly added smart home user gets the access to use

all the connected devices which can lead to undesired

activities in the smart home system.

Threat-2
Privilege

abuse

A newly added smart home user can abuse the granted

privilege to perform malicious activities in the smart

home system.

Threat-3
Privilege

escalation

A newly added smart home user can use the legitimate

permissions to remove devices and apps, change device

settings, or make a device unavailable to the owner.

Threat-4
Unauthorized

access

A temporarily added smart home user can have an

access to the smart home system if the owner forgets

to delete the access manually.

Threat-5
Transitive

privilege

A newly added user adds a new user in the system

who automatically gets the same privilege level as the

owner and may utilize this transitive privilege to per-

petrate his/her exploits.

Table 7.2: Summary of the threat model considered for Kratos.

home (i.e., transitive privilege). In fact, access to a smart environment/platform

granted to unknown parties by an authorized user other than the owner may escalate

to additional threats (i.e., unauthorized device access), that Kratos also considers

as malicious activity. Also, if a temporary guest is not timely removed from the

system by the authorized user, it may lead to malicious activities such as sensitive

information leakage. Summary of these threats are given in Table 7.2

We do not consider any unauthorized user access due to malicious apps installed

in the system. We also assume that the smart environment is not compromised, which

means no malicious user is added automatically at the time of system installation as

they are different problems from the contributions of Kratos.

7.5 KRATOS Design

In this section, we present the architecture of the Kratos and its main components.

Kratos is a fine-grained access control system for multi-user multi-device smart en-

vironment where users can express their conflicting demands, desires, and restrictions
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through policies. Kratos allows an authorized user to add new users in the system

and enforce different usage policies to smart devices based on the needs of users and

the environment. Kratos considers all the enforced policies from authorized users

and offers a policy negotiation algorithm to optimize and solve conflicts among users.

In designing the Kratos framework, we consider the following design features and

goals.

User-friendly Interface. An access control system should have a user-friendly

interface to add or remove users and assign policies in the smart environment. We

integrate Kratos into the mobile app provided by smart platform vendors to provide

a single user interface to manage users and assign device policies in the installed

devices.

Diverse User Roles/Complex Relations. In a smart environment, users have

different roles that an access control system needs to define. For example, a user

having a parent role should be able to express controls on a user with a child role,

while adults in the same priority class should be able to negotiate the access control

rules automatically. To address this design feature, Kratos introduces user priority

in the system to define user roles.

Conflict Resolution. As discussed earlier, diverse needs in device usage result in

conflicts among users in a shared smart environment. The main challenge of an access

control system in a smart environment is to resolve these conflicts in a justified way.

In addition, users in a multi-user multi-device smart environ should agree with the

outcome of conflict resolution provided by the access control system. Kratos uses a

novel policy negotiation system to automatically optimize and resolve the conflicting

demands among users and institute a generalized usage policy reflecting the needs

of all the users. Additionally, Kratos notifies the users the results of the policy

negotiation system.
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Policy Expiration. In a multi-user multi-device smart environment, temporary

access for different smart devices might be needed for guests, occasional, or temporary

users. To automate the temporary access to the users, Kratos offers policy expiration

time in assigned devices. Kratos automatically deletes the device access and the users

from the system after the expiration period to avoid undesired access in the system.

Location-based Access. Smart devices and platforms offer remote access and users

can control the devices within the smart environment. Kratos uses the location of

the users to trigger a user-specific device policy to limit device usage and meet diverse

needs of the users. For example, the parents may want to restrict remote access of

the kids for specific devices. Kratos only allows users to access location-restricted

devices if he/she is connected to the home network.

Expressive Control. In a smart environment, a user should be able to express

the desired device settings easily. An access control system should provide a simple

method to the users to express their diverse needs efficiently and correctly. Kratos

introduces a unified policy language that covers different control parameters (e.g.,

role, environmental, time, device, location-specific expressions) of smart devices and

platforms to understand the users’ needs and control the devices accordingly.

Unified Policy Enforcement. All user commands [CBS+18] to the smart devices

should go through an unified access control enforcement layer to provide fine-grained

access control in smart devices and platforms. Kratos uses an execution module that

checks all enforced policies generated from user-assigned policies before executing a

command in the smart environment.

Figure 7.2 shows the architecture of the Kratos system. Kratos includes four

main modules: (1) user interaction module, (2) back-end module, (3) policy man-

ager, and (4) policy execution module. First, the user interaction module provides

a simple user interface to add new users and assign priorities based on the user’s
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Figure 7.2: Architecture of Kratos system.

role and preferences. This module also collects user-defined device policies for smart

devices. These device policies and priority assignment data are forwarded to the

back-end module via the hub or edge devices. Back-end module captures these data

and creates user priority and device policy list for the users by analyzing the user and

device information. The policy manager module gathers user priorities and device

policies from the generated lists and triggers policy generation and negotiation pro-

cess to resolve any identified conflicts. After successful negotiation, Kratos generates

final policies and forwards the policies to policy execution module which enforces the

policies to associated smart devices and apps. The following subsections details each

module in Kratos and explains how policy generation and negotiation processes are

initiated by Kratos.

7.5.1 User Interaction Module

The user interaction module collects priority assignment data and device policies

from the users using a simple user interface. It includes two sub-modules: priority

assignment and policy input .

192



Priority Assignment Module.

The priority assignment module operates as a user interface to add new users and

assign priorities. Kratos introduces a formal format to specify new users, illustrated

as follows: Ua = [Aid, Nid, P, D, T ], where, Aid is the unique ID of the commanding

user, Nid is the new user ID that is added in the system, P is the priority level of the

new user, D is the permission to add or remove devices from the system, and T is

the validity time of the new user in the system. The user priority level is used in the

policy generation module to initiate policy negotiation process and resolve conflicting

demands. For adding a new user and assigning priorities, we consider the following

rules to avoid conflicts in the priority assignment.

• Each user has an authority to add new users and assign a priority.

• The Owner of the device/system will have the highest priority in the system.

• Priority in the system is depicted with a numerical value. The lower the priority

of a user, the higher is the level of priority. For example, the owner of the device has

the priority of “0”.

• Each user can only assign the same or higher value of the priority to a new user,

e.g., a user with a priority of “1” can only assign priority of “1” or higher to a new

user.

• If two existing users add the same new user with a different priority level, the user

with a higher priority level gets the privilege to add the new user.

• If two existing users with the same priority level assigned different priority levels

to a new user, the system notifies the existing users to fix a priority level of the new

user.

• Each user can assign permissions for adding or removing devices to a new user if

the commanding user has the same permission.
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@U1: Alice
U2– restrict smart thermostat between 60-70 degrees.
U3– restrict access to smart coffee maker.
U3– allow access to smart bulb at the child room if U4 is home.
U4– allow access to smart bulb at the guest room.
U4– restrict access to smart lock at the home door from 12:00 AM

to 6:00 AM.
@U2: Bob
U1– restrict smart thermostat between 75-80 degrees.
U3– allow access to smart bulb in the child’s room between 7:00

PM and 7:00 AM
U4– allow access to smart lock at the guest room and the home

door
@U3: Kyle
U1– desires to access smart bulb at the child room
U1– desires to access coffee maker
@U4: Gary
U1– desires to access smart lock at the guest room and the home

door at 3 AM
U1– desires to access the smart bulb in guest room

Figure 7.3: An example demand and restriction requirements of users in Figure 7.1.

The priority assignment of Kratos can also be configured to define the roles of

the users. For example, the smart home system in Figure 7.1, Alice and Bob (parents)

can be assigned to priority 0, Gary (guest) can be assigned to priority 2, and Kyle

(child) can be assigned to priority 3. We use this priority list to explain the functions

of Kratos throughout the paper. In Kratos, administrator or homeowner obtains

the privilege to define the priority-role mappings in the system. Kratos also allows

the users to add temporary users by specifying validity time (T ) of a user in the

system. After the specified validity time, Kratos removes the user from the system

automatically preventing any unauthorized access from a temporary user or guest.

Policy Input Module and Access Policy Language.

Policy input module provides an interface to the users for assigning policies in smart

devices. Authorized users can choose any installed smart device and create device

policies using policy input module. To define the device policies, Kratos introduces

a formal access control policy language for the smart environment to express com-

plex and diverse user preferences (e.g., users’ demands, desires, and restrictions) by

utilizing an existing open-source smart environment ecosystem (e.g., Samsung Smart-
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Things). Each user defines a policy about their preferences for installed smart devices

and any restriction over others’ accesses in the system. For instance, sample policies

for the smart home of four users shown in Figure 7.1, where each user defines her

requirements for other users in a smart home with the thermostat, bulbs, lock, and

coffee maker, are shown in Figure 7.3. This criteria defined by the users are used

throughout this sub-section to construct their policies.

Policy Structure.

Kratos represents the policies as collections of clauses. The clauses allow each user

to declare an independent policy for their demands and other users. The clauses have

the following structure: 〈users〉 : 〈devices〉 : 〈conditions〉 : 〈actions〉. The first part

of the policy is users, which includes the information of both policy assigner and

assignee. The second part, devices, specifies the device or a list of devices included in

this statement. Kratos uses device ID assigned by the smart platform to distinguish

device-specific policies in a multi-device environment. The third part, conditions, is a

list of device conditions defining different control parameters (time-based operation,

values, etc.) based on the capabilities of the smart devices. For instance, a user

may define a condition where only a pre-defined range of commands or only a certain

time-window is matched. The final part of the policy is 〈action〉 which states the

clause type, demand, restrict, or location. We note that the Kratos’s policy language

allows users to define multiple clauses. For instance, a user may restrict a distinct

subset of smart devices for different conditions and different users. A sample policy

scenario is illustrated in Figure 7.4.
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@U1 restrict :: : thermostat1 : temperature /∈ [60− 70] ;

restrict :: U3 : coffeemaker : ;

location :: U3 : bulb3 : location ∈ [Home];

demand :: U4 : bulb4 : ;

restrict :: U4 : lock1 : time /∈ [6 : 00am− 9 : 00pm];

@U2 restrict :: : thermostat1 : temperature /∈ [75− 80] ;

demand :: U3 : bulb3 : time ∈ [7 : 00pm− 7 : 00am];

demand :: U4 : lock1, lock4 : ;

... ...

Figure 7.4: Sample policy clauses to partially implement demands and restrictions
shown in Figure 7.3.

7.5.2 Back-end Module

The user interaction module collects the user credentials and device policies generated

using the access policy language. It then forwards them to the back-end module

where these data are stored and formatted for policy generation and negotiation.

The back-end module has two functionalities: (1) generating user priority list, and

(2) generating device policy list.

User Priority List.

The back-end module collects the credential arrays and creates a database for autho-

rized users and their assigned priorities. All the credential arrays are checked with

the priority assignment rules (explained in Section 7.5.1) and sorted as valid and in-

valid priority assignments. For each invalid priority assignment, the back-end module

notifies the users who initiated the priority assignment. The back-end module also

checks the validity of the users added in the user priority list based on the specified

time in the credential arrays. The back-end module automatically removes user with

expired validity and updates the user priority table. A sample priority list is given in

Figure 7.5.
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Device Policy List.

The back-end module accumulates all the policies assigned by the users and creates

a database based on the device ID. As explained in Section 7.5.1, the access policy

language assigns a device ID to determine the intended policy for each device. This

list is updated each time a user generates a new policy.

7.5.3 Policy Manager Module

The policy manager module collects the user priority list and device policy list from

the back-end module and compares different user policies. This module consists of

two sub-modules (policy negotiation module and policy generation module) to initiate

the policy negotiation and generation processes.

Policy Negotiation Module

The policy negotiation module compares all the user-defined policies and detects dif-

ferent types of conflicts based on user priorities and demands. Similar to traditional

RBAC, Kratos uses assigned user roles and priorities to understand the user needs

Figure 7.5: A sample user priority list generated by Kratos.
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in a smart environment hierarchy. However, a smart environment needs a more fine-

grained approach than RBAC to address the conflicting scenarios based on users’

relationship, social norms, and personal preferences. To address these diverse needs,

Kratos uses an automatic policy negotiation module to resolve conflicts in multi-user

smart environment. The policy negotiation module identifies types of conflicts based

on user roles and priorities, categorizes the conflicts based on implemented policies,

automatically decides whether a policy should be executed or not, starts a negoti-

ation method between conflicting users using notification methods, and chooses an

optimum operating point for both users upon mutual agreement. For policy nego-

tiation, Kratos considers two essential research questions: (1) How does Kratos

handle the policy conflicts between users with the same and different priority levels?,

and (2) How does Kratos handle restriction policies without affecting smart devices

operations?, In the following, we address these questions.

The policy negotiation algorithm of Kratos processes all the policies and com-

putes the negotiated results by modeling the users’ authorities (classes, roles) in a

multi-layer list. User authorities are split into ordered classes. Class 0 has the highest

priority, and a higher class number means a lower priority. Each class may include a

list of users (or roles as roles are just a set of users). Users at the same priority class

shares the same priority. Kratos considers three types of conflicts (hard, soft, and

restriction conflicts) between user policies after users are classified into authorities.

When two different policies include clauses of the same user’s access for the same

device, there can be an interference between those clauses. Any such possible inter-

ference is further checked to disclose the potential conflicts. In this, hard conflicts

can happen when two interfering clauses dictate different actions for some overlap-

ping cases or dictate the same action for never overlapping cased. In other words,

when policies have no possible way of cooperation or compromising, Kratos detects
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a hard conflict. However, if the same action exists with some common overlap while

opposite actions never occur together, such interference is a soft conflict. Moreover,

hard and soft conflicts are further categorized as Priority Conflicts or Competition

Conflicts based on the priority of policy owners. When the conflict happens between

users’ policies who have different priority classes, Kratos defines a hard or soft pri-

ority conflict. However, if the users have the same priority, hard or soft competition

conflicts happens. For hard priority conflicts, Kratos enforces the policy defined by

the user with higher priority. In hard competition conflicts, Kratos initiates a ne-

gotiation process between the users with an average operational condition calculated

from both policies. If the users mutually agree with an average operational condition,

Kratos creates a new policy for the targeted device. In case of no mutual operation

condition, Kratos notifies the higher priority user/admin to resolve the dispute with

a common policy. In the case of both soft priority and soft competition conflicts,

the result of the negotiation process of Kratos is a new clause with common set of

conditions. If any interference is caused by the nature of action requested in two

different policies, Kratos detects a restriction conflict in the system. By incorporat-

ing these with hard, soft, and restriction conflicts, Kratos overall implements five

distinct conflict types. (details in following subsections 7.5.3 and 7.5.3).

Policy Negotiation Algorithm

In the policy negotiation algorithm of Kratos, each policy clause is compiled into a

quintuple, Ψ = {P,U,D, C, A}, where P is the policy assigner (that shows who states

this clause), U is the assignee (about whom this statement is), D is the targeted

smart device, C is a set of conditions over D and U , and configurable environmental

attributes, and finally A ∈ {demand, restrict} is the action requested by this state-
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ment when the set of conditions are satisfied. Kratos implements an algorithm to

solve the policy conflicts through a set of equations as follows:

interfere(Ψi,Ψj)← Ui = Uj ∧Di = Dj (7.1)

hard conflict(Ψi,Ψj)← interfere(Ψi,Ψj) ∧ (

(Ai 6= Aj ∧ ∀c ∈ Ci ∩ Cj : Θ(V(c, Ci),V(c, Cj)))

∨(Ai = Aj ∧ ∃c ∈ Ci ∩ Cj : ¬Θ(V(c, Ci),V(c, Cj))))

(7.2)

soft conflict(Ψi,Ψj)← interfere(Ψi,Ψj) ∧ (

(Ai = Aj ∧ ∀c ∈ Ci ∩ Cj : Θ(V(c, Ci),V(c, Cj)))

∨(Ai 6= Aj ∧ ∃c ∈ Ci ∩ Cj : V(c, Ci) 6= V(c, Cj)))

(7.3)

HPC(Ψi,Ψj)← hard conflict(Ψi,Ψj) ∧ Ξ(Pi) 6= Ξ(Pj) (7.4)

SPC(Ψi,Ψj)← soft conflict(Ψi,Ψj) ∧ Ξ(Pi) 6= Ξ(Pj) (7.5)

HCC(Ψi,Ψj)← hard conflict(Ψi,Ψj) ∧ Ξ(Pi) = Ξ(Pj) (7.6)

SCC(Ψi,Ψj)← soft conflict(Ψi,Ψj) ∧ Ξ(Pi) = Ξ(Pj) (7.7)

RC(Ψi, ψj)← Restriction conflict(Ψi, ψj) ∧ Ξ(Pi) > Ξ(Pj)

∧Ai = restrict

(7.8)

where Ψi,Ψj is the evaluated pair of policies, and V(c, C) is the value function that

returns the value of conditional c in the set C, Θ(x, y) checks the overlap between

the provided (x, y) tuple and Ξ(u) returns the priority of user u as the value of user’s

assigned priority class.

Policy Negotiation Process.

The negotiation N between two given policy clauses (Ψi,Ψj) can be formally ex-

pressed and computed by a sample function as in Equation 7.9.
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N(Ψi,Ψj) =



{
Ψi if Ξ(Pi) > Ξ(Pj)

Ψj otherwise
, if HPC(Ψi,Ψj){

{Pi ∪ Pj , Ui, Di, Ci ∪ Cj , Ai} if Ai = Aj

{Pi ∪ Pj , Ui, Di, Ci ∪ ¬Cj , Ai} otherwise
, if SPC(Ψi,Ψj){

majority vote(Ψi,Ψj) if binary(Di)

arbitrate(Ψi,Ψj) otherwise
, if HCC(Ψi,Ψj){

{Pi ∪ Pj , Ui, Di, Ci ∪ Cj , Ai} if Ai = Aj

{Pi ∪ Pj , Ui, Di, Ci ∪ ¬Cj , Ai} otherwise
, if SCC(Ψi,Ψj)

(7.9)

Figure 7.6: Negotiation algorithms to resolve conflicts where HPC is hard priority
conflict, SPC is soft priority conflict, HCC is hard competition conflict, and SCC is
soft competition conflict.

Here, as an example, in the case of a hard priority conflict, (e.g., mother vs. child

with contradicting clauses) result is the clause of the user with the higher priority (e.g.,

mother). For hard competition conflict, both the users are notified with overlapping

conditions assigned in the policies and Kratos offers a common operating condition

to the users. This common condition is enforced as a policy to the device upon users’

agreement. On the other hand, in the case of both soft priority and soft competition

conflicts, the result of the negotiation is a new clause with common set of conditions.

For restriction conflict, both restricted user and policy assigner are notified and if the

policy satisfies conditions in Equation 8, restriction policy is enforced in the device.

Policy Generation Module

The goal of the policy generation module is to construct valid policies that reflect the

demands and restrictions of all authorized users based on the device policies generated

in the user interaction module. The generated policies are passed to the back-end

module and stored in a database. Thereafter, these policies are enforced in smart

devices. The negotiated policies computed by the policy negotiation algorithm are

converted into enforceable access control rules. The negotiated policy clause, Ψ =

{P,U,D, C, A}, has a 5-tuple format and is indeed well suited for existing attribute-

based access control (ABAC) systems. Thus, Kratos uses an ABAC-like enforcement

for the final generated rules. Here, the policy, B, is the set of {action, subject,
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resource, constraints} tuples for a negotiated device policy. An example of mapping

a sample policy to ABAC rule through a transformation function can be illustrated

as follows:

ABAC(Ψi) {B | action (B) = Ai ∧ subject (B) = Ui

∧ resources (B) = Di

∧ constraints(B) = TCi}

(7.10)

where TC {c | c satisfies the same conditions of C in mapped attributes into ABAC

policy. Here, ABAC(Ψi) holds a direct translation of actions, subjects, resources,

and constraints. We develop an ABAC-like rule generator that enforces the rules

in a control device. The generator is integrated into the hub device as a unified

enforcement point.

7.5.4 Policy Execution Module

Policy execution module enforces the final policies generated from the policy negoti-

ation process. Smart devices can be controlled through a controller app (installed in

smartphone/tablet) or by installing different device-specific apps in the smart plat-

form (e.g., Samsung SmartThings). Policy execution process appends the generated

policies in the smartphone controller app or the installed smart apps. To append the

policies, Kratos adds conditional statements to the app source code to enforce the

policies. When a user tries to change the state of the device, the app asks the policy

execution module to check in the policy table generated by the policy generator. If

an acceptable condition is matched, the policy execution engine returns the policy to

the app and creates a binary decision (true for the accepted policy and false for the

restricted policy) in the conditional branches. Based on the decision enforced by the

policy execution engine, the user command in a smart app is executed.
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7.6 KRATOS Implementation

We implemented Kratos in Samsung SmartThings platform which has the largest

market share in consumer IoT, supports highest number of off-the-shelf smart devices,

and open-source apps [Gun17].

7.6.1 Implementation and Data Collection

We setup a smart home system to represent a smart environment and test the effec-

tiveness of Kratos in a real-life setting. We used Samsung SmartThings hub and

connected multiple smart devices and sensors to the hub to create a functional smart

environment. The complete list of devices in our smart home system is provided in

Table 7.3. The setup included four different types of devices: smart light, smart lock,

smart thermostat, and smart camera, which are some of the most common smart

devices used in smart environment (e.g., smart home system) [Sta17]. We also used

three different types of sensors: motion, temperature, and contact sensors to provide

autonomous control. Further, we collected data from 43 different smart device users.

We selected the participants by conducting an institution-wide open call for partic-

ipation and flyers for community outreach. We obtained the necessary Institutional

Review Board approval for collecting data from real-life smart device users. While se-

lecting participants for our study, we considered several features: (1) owns more than

one smart devices, (2) shares smart environment with multiple users (e.g., parents,

partners, friends, or housemates), (3) diverse user roles (working adults, housewives,

young adults, student, etc.), and (4) beginner level knowledge on using smart devices.

The participants were grouped into 14 different groups and asked to choose their roles

in a smart environment. First, we recorded different conflicting scenarios experienced

by the users and asked them to use Kratos to assign device policies. We investigated
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several multi-user scenarios for the policy generation and negotiation processes as

detailed below:

Device Type Model Quantity

Smart Home Hub Samsung SamrtThings Hub 1

Smart Light Philips Hue Light Bulb 4

Smart Lock Yale B1L Lock with Z-Wave

Push Button Deadbolt

1

Smart Camera Arlo by NETGEAR Security

System

1

Smart Thermo-

stat

Ecobee 4 Smart Thermostat 1

Motion Sensor Fibaro FGMS-001 ZW5 Motion

Sensor with Z-Wave Plus Mul-

tisensor

6

Temperature

Sensor

Fibaro FGMS-001 ZW5 Motion

Sensor with Z-Wave Plus Mul-

tisensor

1

Door Sensor Samsung Multipurpose Sensor 2

Table 7.3: Devices and sensors used in our smart home setup to evaluate Kratos.

Scenario 1: Multiple policies for the same device. We selected common devices (e.g.,

smart thermostat) and enforced different policies set by multiple users. Users assigned

demand and restriction policies in the system for the same device. We collected 44

sets of policies (a set of policy includes at least two policies from multiple users) which

included 13 hard, 17 soft, and 8 restriction conflicts.

Scenario 2: Multiple policies for different devices. We used multiple devices from

the same device category (e.g., smart light, smart lock, smart thermostat) to enforce

different policies over the same type of devices. Here, we collected 48 sets of policies

from 43 users which resulted in 15 hard, 22 soft, and five restriction conflicts.

Scenario 3: Multiple apps for the same device. In the smart environment, we allowed

users to install different apps to control the same device (e.g., smart light). For ex-

ample, multiple users can configure a smart light with both motion and door sensors

using different apps. We chose three different smart light apps available in Smart-

Things marketplace (light control with motion sensor, door sensor, and luminance

level, respectively) and asked the users to install preferable apps and assign device
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policies accordingly. Here, we collected 35 sets of policies including 8 hard, 18 soft,

and five restriction conflicts.

Scenario 4: Single app for multiple devices. We considered an individual app con-

trolling multiple same types of devices in the smart environment/system. We chose

a single light controlling app to control four different lights and asked users to en-

force device policies in different devices using one single app. We collected 32 sets of

policies in this scenario which includes 12 hard, 15 soft, and 3 restriction conflicts.

Scenario 5: Temporary users in the system. We considered a temporary user/guest is

added in the system and trying to access a smart light and smart lock after the access

is expired for that specific user. We collected 30 sets of policies in this scenario.

Scenario 6: Location-based access in the system. In the location-based access control,

we allowed multiple users to set location-based policies for a smart thermostat. Here,

users are allowed to define both location-based restriction and demand policies. We

collected 30 sets of policies in this scenario.

Malicious scenarios. We also implemented five real-life threats in our smart en-

vironment testbed to generate malicious data and further evaluate the effectiveness

of Kratos (more details in Section 7.7) . For Threat-1 (Over privileged controls),

we asked the users to add restriction clauses to the smart thermostat and asked the

restricted users to change the temperature. For Threat-2 (Privilege abuse), we asked

a newly added user with lower priority to install a new app in the smart system and

trigger a smart camera. Threat-3 (Privilege escalation) is presented by a scenario

where a new user changed the lock code of a smart lock and removed the smart lock

from the environment. For Threat-4 (Unauthorized access), we added a temporary

authorized user with limited priority and asked the users to control a smart thermo-

stat outside their accepted time range. For Threat-5 (Transitive privilege), we asked

the user with lower priority to add a new user with higher priority in the system.
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(a) User Management (b) Policy Management

(c) Instruction Set (d) Notification System

Figure 7.7: User interfaces of Kratos

7.6.2 User Interface

We built a SmartThings app that represents the user interaction module described in

Section 7.5. This app has two modules: user management and policy management.

The user management module allows users to add new users and assign priorities.

In addition to adding a new user and assigning priorities, our implemented system

allows the owner/admin to define role-based priority levels to the different users. We

define five different roles and priority levels in Kratos (i.e., father/owner - priority
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0, mother/owner - priority 0, adult - priority 1, guest - priority 2, child - priority 3).

These roles and priorities can be assigned by the smart home owner or by authorized

users with the same or higher priority to the one being assigned. Upon created a

new role/priority, the information is sent and stored in the backend server. In the

policy management module, users select devices and create new policies. Kratos

provides options to add either general device policies (intended for all existing users)

or policies that apply only to specific users. Kratos allows users to use different device

conditions (operation-based, time-based, value-based, etc.) to define the policies.

As our implementation environment had devices that only allows time-based and

value-based conditions, we classified the policies in three different possible categories:

(1) time-based device policy, (2) value-based device policy, and (3) time-value-based

policy. The policies for different devices in our implementation can be represented by

a device policy array: Device Policy, P = {U, D, C1, C2, R}.

• User ID (U): The first element of the policy array is to identify the policy assignee.

We utilized the user email as a personal identifier in our implementation.

• Device ID (D): SmartThings assigns a unique device ID for each installed device

which was used for the devices and policies.

• Time conditions (C1): Users could assign a start time and an end time for any

device action in the policies. For example, a smart light can be accessed from sunset

to sunrise only.

• Value conditions (C2): Users could assign a maximum and minimum value to

specify an acceptable range to control a device functionality. For example, a user can

set the operational range of a thermostat from 68◦F to 70◦F.

• Restricted User (R): High-priority Users could define the restriction policy for a

specific lower-priority user by adding the user ID to the restricted user’s list. Users
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could also assign general policies (Section 7.4.1) for the devices by assigning ’0’ in

this field.

Figure 7.7 shows the user interface of Kratos. We implemented Kratos as a

customized smart app in Samsung SmartThings platform. We built the Kratos

app in Groovy platform and installed the app using SmartThings web interface. As

Samsung allows each users to install customized apps in same smart environment

using the web interface, Kratos app can be easily installed in each user’s controller

device in multi-user smart environment. Each user can use official SmartThings app

in the controller device to use Kratos app to assign new users and device policies.

The information of new users and device policies are forwarded to the policy generator

via the backend server for generating final device policies.

7.6.3 Policy Enforcement

The final step during implementation is to enforce the generated policies by Kratos.

We utilized 10 different official SmartThings apps that control 17 different devices

and installed them in the smart home/environment. We installed all the apps and

observed the user-specific policies generated in the policy generation module. We

modified these apps to connect with the backend server and capture the generated

policies from the policy generator. These policies were appended to the conditional

statements inside the app to execute the policies. A sample modified app is given

below to illustrate the steps to enforce policies in a SmartThings app.

Listing 7.1: Policy enforced at install-time
1 definition(
2 name: "Big Turn ON modified",
3 namespace: "smartthings",
4 author: "Anonymous",
5 description: "Turn your lights on when the SmartApp is tapped.",
6 category: "Convenience",
7 iconUrl: "https://s3.amazonaws.com/smartapp-icons/Meta/light_outlet.png",
8 iconX2Url: "https://s3.amazonaws.com/smartappicons/Meta/light@2x.png"
9 )

10 import groovy.time.∗
11 preferences {
12 section("When I touch the app, turn on...") {
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13 input "switches", "capability.switch", multiple: false
14 input name: "email", type: "email", title: "Email", description: "Enter Email Address", required: true,

displayDuringSetup: true}}
15 def installed()
16 { atomicState.SmartLightTimes = [:]
17 atomicState.SmartLightAdmins = [:]
18 atomicState.SmartLightUsers = [:]
19 atomicState.SmartLightDevID = [:]
20 atomicState.SmartLightTimeStart = [:]
21 atomicState.SmartLightTimeEnd = [:]
22
23 log.debug "${new Date()}"
24 getSmartLightJsonData()
25
26 def item = atomicState.SmartLightUsers.indexOf(email)
27 if (item>=0){
28 int index = atomicState.SmartLightUsers.indexOf(email)
29 def between = timeBetween (atomicState.SmartLightTimeStart[index], atomicState.SmartLightTimeEnd[

index])
30 if (between == true){
31 subscribe(location, changedLocationMode)
32 subscribe(app, appTouch)
33 log.info app.getAccountId()}}
34 }
35 def updated()
36 { atomicState.SmartLightTimes = [:]
37 atomicState.SmartLightAdmins = [:]
38 atomicState.SmartLightUsers = [:]
39 atomicState.SmartLightDevID = [:]
40 atomicState.SmartLightTimeStart = [:]
41 atomicState.SmartLightTimeEnd = [:]
42 getSmartLightJsonData()
43
44 def item = atomicState.SmartLightUsers.indexOf(email)
45 if (item>=0){
46 int index = atomicState.SmartLightUsers.indexOf(email)
47 def between = timeBetween (atomicState.SmartLightTimeStart[index], atomicState.SmartLightTimeEnd[

index])
48 if (between == true){
49 unsubscribe()
50 subscribe(location, changedLocationMode)
51 subscribe(app, appTouch)}}
52 }
53 def changedLocationMode(evt) {
54 log.debug "changedLocationMode: $evt"
55 switches?.on()}
56 def appTouch(evt) {
57 log.debug "appTouch: $evt"
58 switches?.on()}
59 def getSmartLightJsonData(){
60 def listTimes = []
61 def listAdmins = []
62 def listUsers = []
63 def listIDs = []
64 def listTimeStarts = []
65 def listTimeEnds = []
66 def params = [uri: "https://mywebserver/xxxyyyzzz/2/public/values?alt=json",]
67 try {
68 httpGet(params) { resp −>
69 for (object in resp.data.feed.entry){
70 listTimes.add (object.gsx$time.$t)
71 listAdmins.add (object.gsx$adminemail.$t)
72 listUsers.add (object.gsx$restricteduseremail.$t)
73 listIDs.add (object.gsx$deviceid.$t)
74 listTimeStarts.add (object.gsx$timerangestart.$t)
75 listTimeEnds.add (object.gsx$timerangeend.$t)
76 }
77 atomicState.SmartLightTimes = (listTimes)
78 atomicState.SmartLightAdmins = (listAdmins)
79 atomicState.SmartLightUsers = (listUsers)
80 atomicState.SmartLightDevID = (listIDs)
81 atomicState.SmartLightTimeStart = (listTimeStarts)
82 atomicState.SmartLightTimeEnd = (listTimeEnds)}
83 } catch (e) {
84 log.error "something went wrong: $e"}
85 }
86
87 def timeBetween(String start, String end){
88 long timeDiff
89 def now = new Date()
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90 def timeStart = Date.parse("yyy-MM-dd’T’HH:mm:ss","${start}".replace(".000-0400",""))
91 def timeEnd = Date.parse("yyy-MM-dd’T’HH:mm:ss","${end}".replace(".000-0400",""))
92 long unxNow = now.getTime()
93 long unxEnd = timeEnd.getTime()
94 long unxStart = timeStart.getTime()
95 if (unxNow >= unxStart && unxNow <= unxEnd)
96 return true
97 else
98 return false
99 }

7.7 Performance Evaluation

We evaluate Kratos by focusing on the following research questions:

RQ1 How effective is Kratos in enforcing access control in multi-user scenarios while

handling different threat models? (Sec 7.7.1)

RQ2 What is the overhead introduced by Kratos on the normal operations of the

smart environment/setting? (Sec. 7.7.2)

7.7.1 Effectiveness

In this sub-section, we present the experimental results of Kratos while enforcing

access control in different multi-user smart environment scenarios and threat models.

We first considered a use case scenario to explain the results of Kratos in differ-

ent smart device operations. Then, we considered six different utilization scenarios

(explained in Section 7.6) to evaluate the effectiveness of Kratos.

To understand the performance of Kratos, we assume two users Alice and Bob

using the same smart thermostat and assigning different policies according to their

needs. This usage scenario may lead to conflicts in which case Kratos uses pol-

icy negotiation module to solve the conflicts. For instance, let us assume Alice and

Bob has the same priority level which is 2 and assign temperature range 60-70 and

75-80 respectively. Kratos considers this as a hard competition conflict and starts

the negotiation process with average range 67-75. If Alice and Bob both agree with

210



Conflict type Policy example Kratos outcome

Hard priority
conflict

Alice (priority-1) and Bob (priority-
2) set up the temperature range 60-
70 and 75-80 respectively in the smart
thermostat.

As Alice has higher priority,
Kratos sets the thermostat to
60-70 and notifies the users with
the decision

Soft priority
conflict

Alice (priority-1) and Bob (priority-
2) set up the temperature range 60-
70 and 65-75 respectively in the smart
thermostat.

• As Alice has the higher priority,
Kratos sets the thermostat to
60-70 and notifies Alice with com-
mon range (65-70).
• If Alice agrees with common
range, Kratos sets the temper-
ature range 65-70.

Hard
competition

conflict

Alice (priority-2) and Bob (priority-
2) set up the temperature range 60-
70 and 75-80 respectively in the smart
thermostat.

• Kratos starts the negotia-
tion with average range (67-75)
and upon mutual agreement from
the users set the range.
• If the users fail to agree,
Kratos notifies higher level
user/admin to decide the policies.

Soft
competition

conflict

Alice (priority-2) and Bob (priority-
2) set up the temperature range 60-
70 and 65-75 respectively in the smart
thermostat.

Kratos sets the temperature
range 65-70 and notifies the users
with updated policy.

Restriction
conflict

Alice (priority-1) set the temperature
range 60-70 and restrict Bob (priority-
2) to change the thermostat. Bob sets
the temperature range 75-80.

Kratos sets the temperature
range 60-70 and notifies Bob re-
garding restriction.

Temporary
access

Alice (priority-1) added Gary
(priority- 4) as a temporary user
for 2 days. After 2 days, Gary tries to
unlock the smart lock.

Kratos automatically detects
the expired validity for smart home
access and deletes Gary from au-
thorized user list to prevent any
undesired access.

Location-
based
access

Alice (priority-1) set up the temper-
ature range 70-72 and restrict Kyle
(priority-3) from using the smart ther-
mostat remotely. Kyle sets the tem-
perature range 74-76.

• If Kyle is not in the home net-
work, Kratos disregard Kyle’s
access policy.
• Kratos checks the loca-
tion of both Kyle and Alice. If
only Kyle is home, Kratos sets
the temperature range 74-76. If
both Kyle and Alice are home,
Kratos sets the temperature
range 70-72.

Table 7.4: Different usage scenarios and outcomes of Kratos.

the range, Kratos generates a new policy for the thermostat with the temperature

range 67-75 and enforces this in the device. On the other hand, if Alice and Bob

cannot agree, Kratos notifies a higher level user/admin to resolve this conflict by

assigning a new policy for the device. We also consider a temporary user scenario in

evaluating Kratos where Alice (priority-1) adds a temporary user Gary (priority-4)

in the system for 2 days. After the validity period (2 days), Gary tries to access the

smart devices. However, Kratos automatically detects any expired validity of the

users in the system and restricts the temporary users to access the system. Table 7.4
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summarizes the outcome of Kratos in different usage scenarios. Table 7.5 also shows

the summary of policy conflicts and negotiations between smart device users in differ-

ent multi-user scenarios explained in Section 7.6. In Scenario-1, Kratos successfully

negotiated 44 sets of policies collected from 43 users and executed the generated poli-

cies in the smart environment. Average policy generation time including the policy

negotiation was 0.68 seconds. In Scenario-2, Kratos evaluated 48 sets of policies in

total with an average policy generation time of 1.2 seconds. In Scenario-3 and 4,

Kratos manages 35 and 32 sets of policies with an average generation time of 0.86

and 0.48 seconds respectively. In Scenario-5, Kratos successfully manages 20 sets

of policies and automatically detects unauthorized access for expired temporary ac-

cess. For location-based access in Scenario-6, Kratos successfully manages 30 sets of

policies and provides location-based acess to multiple users. Kratos also successfully

resolves all the conflicts generated in different scenarios. In summary, Kratos suc-

cessfully resolved the policy conflicts and created optimized final policies that could

be executed within different smart apps.

We also evaluated the effectiveness of Kratos in preventing different threats in

the smart environment. We considered five different threats presented in Section 7.6.

We collected data from fifty malicious occurrences in total to evaluate Kratos against

these threats. Table 7.6 summarizes the performance of Kratos in identifying dif-

ferent threats. In each of these scenarios, Kratos detected the policy violation with

100% accuracy and effectively notified the smart homeowner/policy assigner via push

Usage

Scenario

No. of

policies

No. of hard

conflicts

No. of soft

conflicts

Restriction

policies
No conflicts

Average

time (s)

Success

rate (s)

Scenario-1 44 13 17 8 6 0.68 100%

Scenario-2 48 15 22 5 6 1.2 100%

Scenario-3 35 8 18 5 4 0.86 100%

Scenario-4 32 12 15 3 2 0.48 100%

Scenario-5 30 - 12 6 12 0.2 100%

Scenario-6 30 10 8 8 4 0.32 100%

Table 7.5: Kratos’s performance in different scenarios.
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notifications. For Threat-1, Kratos achieves the lowest average detection and noti-

fication time 0.25 and 0.4 seconds respectively. To identify Threat-2 and 3, Kratos

takes 0.4 and 0.47 seconds on average with average notification time 0.6 seconds. For

Threat-4 and 5, the average detection time is 0.35 and 0.28 seconds, respectively. In

summary, Kratos can detect different threats with 100% accuracy and notify users

with minimum delay.

Threat
model

No. of
occurances

Success
rate

Average Detection
time (s)

Average Notification
time (s)

Threat-1 10 100% 0.25 0.4

Threat-2 10 100% 0.4 0.6

Threat-3 10 100% 0.47 0.6

Threat-4 10 100% 0.35 0.52

Threat-5 10 100% 0.28 0.45

Table 7.6: Performance of Kratos against different threats.

7.7.2 Performance Overhead

We considered the following research questions to measure the performance overhead

of Kratos:

RQ3 What is the impact of Kratos in normal operations of the smart environmen-

t/settings? (Table 7.7)

RQ4 What is the impact of Kratos in executing a user command in the smart

environment via the smart apps? (Table 7.8)

RQ5 How does the impact of Kratos change with different parameters in the smart

environment/setting? (Figure 7.8)

For different multi-user scenarios, we considered four different scenarios as explained

in Section 7.6.

Latency Introduced by Kratos. Kratos considers three different types of conflicts

(hard conflicts, soft conflicts, and restriction policy) during policy generation and
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Figure 7.8: Impact of different evaluation parameters on Kratos’s performance: (a)
number of policies, (b) number of conflicts, (c) number of users, and (d) number of
devices.

negotiation based on user priorities and policy types. These policy generation and

negotiation processes normally introduce latency in the normal operations of smart

devices and the smart apps to analyze given policies and solving conflicts. Table 7.7

illustrates the delay introduced by Kratos while handling the policy conflicts and

negotiations. We note that the average negotiation time increases with the number

of policies for all types of policy conflicts. For hard conflicts, the average negotiation

time is 0.403 seconds for ten policies, which increases to 1.21 seconds for 30 policies.

Because the hard conflicts require all the conflicted users to interact with the system

to resolve the conflicts, it takes more time than soft conflict and restriction policies.

For soft conflicts, the average negotiation time is 0.27 seconds for ten policies which

increases to 0.73 seconds for 30 policies. For the restriction policies, the latency is

introduced only when a low-priority user tries to assign policies to high-priority users.
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In this case, average negotiation times vary from 0.102 seconds to 0.25 seconds from

10 to 30 policies.

Conflict types No. of Policies Average negotiation time (s)

Hard conflict

10 0.403

20 0.715

30 1.21

Soft conflict

10 0.27

20 0.53

30 0.73

Restriction Policy

10 0.102

20 0.117

30 0.25

Table 7.7: Overhead of Kratos in handling policy negotiations.

Impact of Kratos on Executing User Commands. As the policies in Kratos

are enforced in the smart apps installed via the controller device (e.g., smartphone

and smart tablet), it introduces overhead in the controller devices while installing

the apps and executing users’ command. Table 7.8 depicts the impact of Kratos on

executing user commands based on generated policy. Here, we used eight different

apps to measure the performance overhead of Kratos. We also considered three types

of constraints on the policies: time constraint, value constraint, and both time and

value constraints. Time constraint refers to the specific time range for the desired

action of a smart device (e.g., turning on lights at sunset) while value constraint

refers to the specific range of inputs to a smart device (e.g., the temperature of

the smart thermostat). With no policy enforced on a device, the average time to

install an app and execute user command is 1.3 seconds with 1.75% and 1.6% of

CPU and RAM utilization, respectively. For time constraints and value constraints,

the average time is 1.72 and 1.46 seconds, respectively. Average CPU and RAM

utilization are almost similar for both time and value constraints (2.1-2.2% and 2.25-

2.6%, respectively). For both time and value constraints, the average execution time

increases to 1.92 seconds. The CPU and RAM utilization also increases to 2.5% and
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2.82%, respectively. Considering the CPU and RAM available in modern smartphones

and tablets, the overhead introduced by Kratos can be considered negligible [SAU17,

SAU19a,SAU19b].

Type of policy Avg. time (s) Avg. CPU usage Avg. RAM usage

No policy 1.3 1.75% 1.6%

Time constraint 1.72 2.2% 2.6%

Value constraint 1.46 2.1% 2.25%

Time and Value constraint 1.92 2.5% 2.82%

Table 7.8: Overhead of Kratos in policy executions.

Impact of Different Parameters on Performance Overhead. Kratos consid-

ers different parameters in smart environment to define and execute device policies

reflecting diverse user demands. Here, we observed the performance overhead of

Kratos by changing various parameters. As policy generation and negotiation are

executed at the backend server, Kratos does not pose any performance overhead to

computational parameters (CPU and RAM utilization). The only noticeable change

is observed in delay imposed by Kratos in the normal operation of the smart devices

and apps. In Figure 7.8, the delay introduced by Kratos is shown based on the

number of policies, conflicts, users, and devices. One can notice from Figure 7.8(a),

the delay introduced by Kratos increases with the number of policies generated by

the users. Kratos introduces 90 ms delay in the operation for five policies to ex-

ecute a user command which increases to 280 ms delay for 60 policies. The delay

increases linearly with the number of conflicts and users in the system (Figure 7.8(b)

and Figure 7.8(c)). The highest delay to execute a user command is 368 ms, which

occurs when the system includes 30 different policy conflicts. Kratos also takes 310

ms to execute a command with six different users presents in the system. This delay

is the result of the overhead introduced by notifying different users about executing

the command. For the number of devices, the delay introduced by Kratos becomes

steady after adding 12 different devices in the smart environment (Figure 7.8(d)).
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7.8 Usability Study

To understand the usability of Kratos among users, we also performed a second

usability study with 43 smart home users. Again, although it is not the primary goal

of this work, it is important to understand the users’ perspectives on the usability

effectiveness of Kratos.

Again, we obtained Institutional Review Board (IRB) approval and we gave mon-

etary compensation to the users to test our proposed access control system. In this

study, users experienced the proposed access control system in a real-life smart en-

vironment (smart home system) supported by Samsung SmartThings. We created

SmartThings app for Kratos and made it available to the users to install and use it

to add new users, add demand policies, add restriction policies for specific users, and

experience policy conflict resolution provided. The questions included in the usability

study were divided into three different categories:

• Installation and tutorial: In this part, users were asked to install the Kratos app

in the system and learn how to use Kratos in the smart environment.

• Policy enforcement and notification system: In the second part of the usability test,

users were asked to create different types of policies (demand and restrict policy) using

Kratos and experience the notification system implemented in Kratos.

• Policy conflict and implementation: In the last part, users experience the conflict

resolution of Kratos and observe the implemented policies in the system.

In the following, we summarize the findings of the usability study and discuss

how users took Kratos in a smart environment. A summary of the study is given in

Table 7.9.

Installation and tutorial. 95.3% of the users installed the app successfully using

the instructions provided in the app and 97.7% of the users thought the provided

tutorial was adequate to operate the app and perform different functions successfully.
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Category Rating Category Rating

User interface Processing time

Tutorial Policy generation

Installation process Conflict resolution

Notification system User restriction

Availability User-friendly

Ease Effectiveness

Table 7.9: Summary of the usability study of Kratos.

In terms of device availability for policy enforcement, Kratos scored 5 on a scale of

5.

Policy enforcement and notification system. In terms of priority assignment,

93% users understood and correctly added new users in the system. For assigning

demand policies, 100% of the users successfully enforced and understood the notifi-

cations correctly. 97.7% users understood the notification messages clearly.

Policy conflict and implementation. In this part, users experience how Kratos

implemented the generated policies in the system and resolve conflicts between dif-

ferent user demands. Finally, the 97.7% of users were satisfied with the demand

policy decisions generated by Kratos while 100% of the users were satisfied with the

restriction policy decisions.

7.9 Benefits of KRATOS

In this section, we explain the benefits of Kratos in smart environment using a

use-case scenario of smart home. Consider a user, Bob, who defines himself as a

technology savvy person and owns a smart home (an example of smart environment).

The home is set with devices such as smart lock, thermostat, fire alarm, and smart

coffeemaker. Bob’s is the head of a family of three members, including his wife Alice,

and his teenage son Matt. Finally, Bob is an enthusiastic entrepreneur that offers

high-quality vacation rentals to Airbnb users.
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Efficient Conflict Resolution. With several devices shared among all household

members (including the Airbnb tenant), Bob feels that there is an immediate need

for some control mechanism that defines how all the smart devices are being set

up and managed among the different users. However, despite trying devices and

smart apps from different platforms (e.g., Samsung SmartThings, Google Home, etc.),

Bob cannot find a feasible and user-friendly solution that consider the needs of the

different users (e.g., Bob and Alice’s priority is to keep the thermostat temperature

as high as possible while Matt’s idea is to have cooler temperature). Kratos offers

an access control mechanism for the smart environment that allows Bob to provide

access control based on the users’ needs and priorities.

Multi-users/Multi-devices. As mentioned before, Bob’s setup comprises several

different devices with different levels of usability based on their impact on the quality

of life of users and their contribution to the general protection and security of the

household. Additionally, different users may have different levels of access based on

Bob’s and the household’s best interests. Based on these scenarios, Bob expects

an smart home access control system capable of managing multi-user and multi-

device environments. Kratos realizes and offers an access control system where the

administrator (i.e., Bob) can assign priority levels to the different devices and users.

This allows control mechanisms that consider the importance of the various devices,

but also the needs of the users based on admin’s pre-defined priorities.

Suitability for Complex User Demands. Users’ demands can be very complex at

times. For instance, in addition to the demands and interests of Bob, Alice, and Matt,

new access control policies can be generated in case Bob decides to give some control

to his Airbnb tenant Ed. Adding new users and devices to an already configured

system increase the complexity due to new conflicts between users and policies. To
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solve these issues, Kratos can actively analyze and solve policy conflicts through

negotiations in an optimized fashion based on the different user and device priorities.

Inherent Security. Bob has certain rules to protect his ecosystem. First, security-

related devices (e.g., smart lock) have the highest priority. Second, he would like

to have strict and unique control over these devices, so no other user can change

their settings or expected behavior. Finally, users with the lowest priority (e.g., Ed)

should not be able to add new devices, change device settings, etc. Our framework

was designed to provide inherent security based on the specific user’s needs. Specif-

ically, Kratos offers the means to provide complex control and demands through

comprehensive policy negotiation and conflict resolution.

Intuitive and Easy User Interaction. Finally, Bob desires a user-friendly tool,

especially because some users with little technical knowledge may need to interact

with the new access control system. Kratos addresses all the steps from gathering

users’ declared demands and policies to access control enforcement with minimal user

interaction. For this, our framework learns from the different priorities from users and

devices to create efficient and fully automated policy conflict resolution mechanisms.

Encrypted Sensitive Data. Kratos accumulates user preferences, device usage,

and connected users’ credentials which can be considered as sensitive data. These

data should be encrypted to ensure privacy of the users. Kratos is implemented in

Samsung SmartThings which uses encrypted communication channels between smart

home devices and the controller devices (smartphone, tablets, etc.). Furthermore,

we used encrypted cloud space (Google Cloud) to store the user priority list and

generated device policies to ensure user privacy in Kratos.
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7.10 Conclusion

In a smart environment (e.g., smart home, smart office, smart factory, etc.), multiple

users have access to multiple devices simultaneously. In these settings, multiple users

may want to control and configure the devices with different preferences which give

rise to complex and conflicting demands. In this chapter, we explored the need of

fine-grained access control mechanism in smart environment and developed Kratos, a

fine-grained access control system that addresses the diverse and conflicting demands

of authorized users in a shared multi-user multi-device smart environment. Kratos

implements a priority-based policy negotiation technique to resolve conflicting user

demands in a shared smart environment. We implemented Kratos on real-life settings

and evaluated its performance through real smart devices in a multi-user setting.

Kratos successfully covers the users’ needs, and our extensive evaluations showed

that Kratos is effective in resolving the conflicting requests and enforcing the policies

without significant overhead. Also, we tested Kratos against five different threats

and found that Kratos effectively identifies the threats with high accuracy.
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CHAPTER 8

CONCLUDING REMARKS AND FUTURE WORK

In this dissertation, we introduced a comprehensive security framework for smart

devices and applications to detect emerging sensor-based threats. Our developed

frameworks tackled five main security concerns of sensor-enriched smart devices, ap-

plications, and settings. First, we presented a detailed study of sensor-based threats

on smart devices and provided taxonomy of existing threats considering attack char-

acteristics, targeted components, attack mechanisms, and impact on smart device

operation. Based on this analysis, we developed three security mechanisms to se-

cure sensors in smart devices and applications. We designed a context-aware security

framework to detect sensor-based threats in standalone smart devices such as smart

phone, smart watch, etc. Further, we developed a platform-independent context-

aware security solutions to detect threats in connected smart devices in a smart

setting (i.e., smart home). Finally, we presented a fine-grained access control system

for multi-user multi-device smart environment to prevent unauthorized and malicious

sensor access.

To detect sensor-based threats in standalone smart devices, we introduced 6thSense,

a novel context-aware intrusion detection framework. 6thSense observes and learns

the changing patterns of the sensors states and correlates with ongoing user activ-

ities to detect malicious sensor activities in smart devices. For each user activity,

6thSense learns the sensors patterns and builds a context-aware model. Then, in

the detection phase, 6thSense uses different machine-learning techniques to match

activity contexts with sensor patterns and detects malicious sensor activities. To

test the effectiveness of 6thSense, We implemented 6thSense in an Android-powered

smartphone and a smart watch and collected user activity data from 100 different

real-life users. Furthermore, we tested 6thSense against three different sensor-based
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threats. Our extensive evaluation showed that 6thSense is effective in detecting dif-

ferent sensor-based threats with high accuracy and minimal overhead.

The second security mechanisms proposes Aegis, a platform-independent context-

aware security framework to detect malicious activities in connected smart environ-

ment such as smart home, office, etc. In a smart environment, multiple smart devices

and sensors can connect with each other to perform different user-defined tasks col-

lectively. As different user activities in a smart environment triggers a different but

specific sensor-device pattern, Aegis correlates these sensor-device relation with app

contexts and builds a contextual model to characterize benign user activities. In the

detection phase, Aegis checks current states of the smart devices and sensors with

learned user behavior and utilizes a Markov Chain-based machine learning technique

to detect ongoing malicious activities. We implemented Aegis in different real-life

smart home systems and collected data from 20 real-life users. We also considered

different smart device settings, platforms, and user-defined policies to test the efficacy

of Aegis against five different threats. Our evaluation shows that Aegis can detect

different threats in smart environment with high accuracy and F-Score. Further-

more, Aegis yields minimum overhead which makes this solution suitable for real-life

deployment.

Finally, to limit unauthorized and malicious sensor access in smart environment,

we introduced Kratos, a fine-grained multi-user multi-device-aware access control

system. Kratos introduces a formal access control language that allows users to

define access policies for smart devices in a shared smart environment. Kratos also

offers a novel policy negotiation algorithm that automatically detects conflicting user

demands and initiates automatic negotiation by leveraging user roles and priorities.

Finally, Kratos monitors assigned user policies and enforces the negotiation results

on installed smart devices, sensors, and apps to limit unauthorized access. We imple-
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mented Kratos in multi-user smart environment and collected device policies from

72 real-life smart device users. We also tested Kratos against five different threats

and achieved 100% accuracy. Furthermore, we performed a detailed usability study

with 43 smart device users to understand the users’ perceptions on access control

systems in multi-user smart environment. Our usability study shows that Kratos

resolves diverse demands and achieves an average of 4.6 out of 5 in usability based

on user friendliness, ease of use, and effectiveness.

For every security mechanisms presented in this dissertation, we collected data

from real-life smart users and improved our design features. We collected user de-

fined configurations and smart device settings in the data collection process of Aegis

and tested the effectiveness based on collected user data. Furthermore, as access con-

trol systems closely depends on users’ demands, we performed both user study and

usability study for Kratos. The user and usability study indicates that our designed

security frameworks can effectively detect sensor-based threat in smart devices while

satisfying user demands as a security framework.

We present several key directions for future research.

• In this dissertation, we presented three unique security mechanisms to secure sen-

sors in smart devices, applications, and settings. However, most of the smart devices

are resource-constrained devices and implementing external security mechanisms can

affect the normal operation of the devices. Although we implemented all the devel-

oped security framework in real-life smart devices and systems, real-life deployment

of these frameworks may introduce new implementation challenges such as power-

frequency trade-off in resource-limited smart devices, latency in real-time systems,

etc. To overcome these challenges, proposed security frameworks should be imple-

mented in an adaptive manner and in-depth investigation should be conducted to

minimize the overhead.
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• Sensor-based threats are relatively new and very few comprehensive studies are

available to understand the characteristics of these threats. This dissertation presents

a comprehensive study of existing sensor-based threats and presents different security

mechanisms to secure sensors in smart devices and environment. However, more

detailed study should be conducted to understand users views on sensor-based threats.

• Smart devices vary in operating system, programming language, and implemented

protocols which make it hard for the researchers to develop standard security mecha-

nisms to secure sensors in smart devices. This dissertation presents platform-independent

security mechanisms to effectively detect sensor-based threats in different smart de-

vices and systems. However, several smart device platforms are closed source and do

not allow any third-party program integration. One future research direction should

be standardization of smart devices platforms to implement and test the proposed

security framework in different smart devices and systems.

• Finally, although we considered comprehensive threat models for each security

mechanisms proposed in this dissertation, we believe that new sensor-based threats

can be available in the wild. In future, proposed security mechanisms should be tested

against new sensor-based threats available in real-life.
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