1,202 research outputs found

    Review of analytical instruments for EEG analysis

    Full text link
    Since it was first used in 1926, EEG has been one of the most useful instruments of neuroscience. In order to start using EEG data we need not only EEG apparatus, but also some analytical tools and skills to understand what our data mean. This article describes several classical analytical tools and also new one which appeared only several years ago. We hope it will be useful for those researchers who have only started working in the field of cognitive EEG

    Decoding Neural Signals with Computational Models: A Systematic Review of Invasive BMI

    Full text link
    There are significant milestones in modern human's civilization in which mankind stepped into a different level of life with a new spectrum of possibilities and comfort. From fire-lighting technology and wheeled wagons to writing, electricity and the Internet, each one changed our lives dramatically. In this paper, we take a deep look into the invasive Brain Machine Interface (BMI), an ambitious and cutting-edge technology which has the potential to be another important milestone in human civilization. Not only beneficial for patients with severe medical conditions, the invasive BMI technology can significantly impact different technologies and almost every aspect of human's life. We review the biological and engineering concepts that underpin the implementation of BMI applications. There are various essential techniques that are necessary for making invasive BMI applications a reality. We review these through providing an analysis of (i) possible applications of invasive BMI technology, (ii) the methods and devices for detecting and decoding brain signals, as well as (iii) possible options for stimulating signals into human's brain. Finally, we discuss the challenges and opportunities of invasive BMI for further development in the area.Comment: 51 pages, 14 figures, review articl

    EEG-Based User Reaction Time Estimation Using Riemannian Geometry Features

    Full text link
    Riemannian geometry has been successfully used in many brain-computer interface (BCI) classification problems and demonstrated superior performance. In this paper, for the first time, it is applied to BCI regression problems, an important category of BCI applications. More specifically, we propose a new feature extraction approach for Electroencephalogram (EEG) based BCI regression problems: a spatial filter is first used to increase the signal quality of the EEG trials and also to reduce the dimensionality of the covariance matrices, and then Riemannian tangent space features are extracted. We validate the performance of the proposed approach in reaction time estimation from EEG signals measured in a large-scale sustained-attention psychomotor vigilance task, and show that compared with the traditional powerband features, the tangent space features can reduce the root mean square estimation error by 4.30-8.30%, and increase the estimation correlation coefficient by 6.59-11.13%.Comment: arXiv admin note: text overlap with arXiv:1702.0291

    Hybrid High-order Functional Connectivity Networks Using Resting-state Functional MRI for Mild Cognitive Impairment Diagnosis

    Get PDF
    Conventional functional connectivity (FC), referred to as low-order FC, estimates temporal correlation of the resting-state functional magnetic resonance imaging (rs-fMRI) time series between any pair of brain regions, simply ignoring the potentially high-level relationship among these brain regions. A high-order FC based on "correlation's correlation" has emerged as a new approach for abnormality detection of brain disease. However, separate construction of the low- and high-order FC networks overlooks information exchange between the two FC levels. Such a higher-level relationship could be more important for brain diseases study. In this paper, we propose a novel framework, namely "hybrid high-order FC networks" by exploiting the higher-level dynamic interaction among brain regions for early mild cognitive impairment (eMCI) diagnosis. For each sliding window-based rs-fMRI sub-series, we construct a whole-brain associated high-order network, by estimating the correlations between the topographical information of the high-order FC sub-network from one brain region and that of the low-order FC sub-network from another brain region. With multi-kernel learning, complementary features from multiple time-varying FC networks constructed at different levels are fused for eMCI classification. Compared with other state-of-the-art methods, the proposed framework achieves superior diagnosis accuracy, and hence could be promising for understanding pathological changes of brain connectome

    Deep learning as a tool for neural data analysis: Speech classification and cross-frequency coupling in human sensorimotor cortex.

    Get PDF
    A fundamental challenge in neuroscience is to understand what structure in the world is represented in spatially distributed patterns of neural activity from multiple single-trial measurements. This is often accomplished by learning a simple, linear transformations between neural features and features of the sensory stimuli or motor task. While successful in some early sensory processing areas, linear mappings are unlikely to be ideal tools for elucidating nonlinear, hierarchical representations of higher-order brain areas during complex tasks, such as the production of speech by humans. Here, we apply deep networks to predict produced speech syllables from a dataset of high gamma cortical surface electric potentials recorded from human sensorimotor cortex. We find that deep networks had higher decoding prediction accuracy compared to baseline models. Having established that deep networks extract more task relevant information from neural data sets relative to linear models (i.e., higher predictive accuracy), we next sought to demonstrate their utility as a data analysis tool for neuroscience. We first show that deep network's confusions revealed hierarchical latent structure in the neural data, which recapitulated the underlying articulatory nature of speech motor control. We next broadened the frequency features beyond high-gamma and identified a novel high-gamma-to-beta coupling during speech production. Finally, we used deep networks to compare task-relevant information in different neural frequency bands, and found that the high-gamma band contains the vast majority of information relevant for the speech prediction task, with little-to-no additional contribution from lower-frequency amplitudes. Together, these results demonstrate the utility of deep networks as a data analysis tool for basic and applied neuroscience

    Kernel learning over the manifold of symmetric positive definite matrices for dimensionality reduction in a BCI application

    Get PDF
    In this paper, we propose a kernel for nonlinear dimensionality reduction over the manifold of Symmetric Positive Definite (SPD) matrices in a Motor Imagery (MI)-based Brain Computer Interface (BCI) application. The proposed kernel, which is based on Riemannian geometry, tries to preserve the topology of data points in the feature space. Topology preservation is the main challenge in nonlinear dimensionality reduction (NLDR). Our main idea is to decrease the non-Euclidean characteristics of the manifold by modifying the volume elements. We apply a conformal transform over data-dependent isometric mapping to reduce the negative eigen fraction to learn a data dependent kernel over the Riemannian manifolds. Multiple experiments were carried out using the proposed kernel for a dimensionality reduction of SPD matrices that describe the EEG signals of dataset IIa from BCI competition IV. The experiments show that this kernel adapts to the input data and leads to promising results in comparison with the most popular manifold learning methods and the Common Spatial Pattern (CSP) technique as a reference algorithm in BCI competitions. The proposed kernel is strong, particularly in the cases where data points have a complex and nonlinear separable distribution

    Comparing Recalibration Strategies for Electroencephalography-Based Decoders of Movement Intention in Neurological Patients with Motor Disability

    Get PDF
    Motor rehabilitation based on the association of electroencephalographic (EEG) activity and proprioceptive feedback has been demonstrated as a feasible therapy for patients with paralysis. To promote long-lasting motor recovery, these interventions have to be carried out across several weeks or even months. The success of these therapies partly relies on the performance of the system decoding movement intentions, which normally has to be recalibrated to deal with the nonstationarities of the cortical activity. Minimizing the recalibration times is important to reduce the setup preparation and maximize the effective therapy time. To date, a systematic analysis of the effect of recalibration strategies in EEG-driven interfaces for motor rehabilitation has not yet been performed. Data from patients with stroke (4 patients, 8 sessions) and spinal cord injury (SCI) (4 patients, 5 sessions) undergoing two different paradigms (self-paced and cue-guided, respectively) are used to study the performance of the EEG-based classification of motor intentions. Four calibration schemes are compared, considering different combinations of training datasets from previous and/or the validated session. The results show significant differences in classifier performances in terms of the true and false positives (TPs) and (FPs). Combining training data from previous sessions with data from the validation session provides the best compromise between the amount of data needed for calibration and the classifier performance. With this scheme, the average true (false) positive rates obtained are 85.3% (17.3%) and 72.9% (30.3%) for the self-paced and the cue-guided protocols, respectively. These results suggest that the use of optimal recalibration schemes for EEG-based classifiers of motor intentions leads to enhanced performances of these technologies, while not requiring long calibration phases prior to starting the intervention

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF
    corecore