
      
Abstract - Motion-onset visual evoked potentials (mVEPs) are time and phase-locked brain responses to motion-related 
stimuli.  An mVEP response provides robust features for brain-computer interface (BCI) applications and have the added 
benefit of being less visually fatiguing than other visual evoked potentials (VEPs).  In this study an mVEP BCI that enables 
control of a visually rich, 3-dimensional (3D) car-racing video-game is evaluated.  A group of fifteen teenage school children 
(13-16 years old) participated in a single session while they attended a summer school.  Participants were asked to control the 
direction of a car within a realistic racing circuit, where the position of the car was controlled by focusing on one of five 
motion-related stimuli.  Classification accuracy (%) and information transfer rate (ITR) (bits per minute (bpm)) results were 
encouraging, with participants achieving an average online accuracy of 72% (12bpm) in the first lap, 67% (10bpm) in the 
second lap and 65% (10bpm) in the third lap (chance accuracy and ITR is 20% and zero bpm).  The study shows for the first 
time the feasibility of using the mVEP paradigm in a commercial-grade car-racing video-game.  It is also one of the first reports 
on the performance of a group of teenagers using a BCI. 
 
Keywords - brain-computer interface (BCI); motion-onset visually evoked potentials (mVEP); electroencephalography 

(EEG); video game; 3-dimensional (3D). 

 

1. Introduction 

A brain-computer interface (BCI) system allows muscle-

free control over a computerised application [1].  

Traditionally, the target end-user group for BCIs has been 

the physically impaired, with studies investigating, e.g., 

spelling applications for communication needs [2][3][4], 

personal transport and prosthesis control [5][6] and BCI-

based rehabilitation applications [7][8].  With the ubiquitous 

nature of powerful and inexpensive computing technology 

in recent years and the extensive investment and effort in 

developing more advanced signal processing strategies 

[9][10][11], the application domain for BCI use has 

broadened significantly, now including video gamers and 

keen interest from the video games industry [12][13][14].  In 

an industry worth almost $100 billion worldwide, the video 

games industry is a steadily growing market [15] and 

represents an ideal demographic audience for BCI 

technology where the typical user may appreciate the 

novelty and learning challenges faced by novel interaction 

techniques and control modalities such as a brain-computer 

games interaction (BCGI) [14].   

Visual evoked potentials (VEPs) form the subset of BCI 

paradigms which utilise visual stimuli to evoke responses in 

the cortical activity of a BCI user.  Typically, a number of 

stimuli are presented to the user either on a computer screen 

or via lighting panels - each representing a different 

command for the BCI system to process and execute.  In the 

case of electroencephalography (EEG), as used in this study 

to read cortical activity, these responses can be detected in 

the ongoing EEG in real-time.  

Popular VEPs for use in BCIs include the P300 potential 

[2], a positive voltage in the recorded EEG occurring at 

around 250-500 milliseconds (ms) following the 

presentation of a rare stimulus among frequently presented 

stimuli, known as the “oddball paradigm” [16].  P300 

potentials have been successfully used in BCI spelling 

applications [2][17][18][19] and BCI video games 

[20][21][22].  Steady-state VEPs (SSVEP) are a type of VEP 

which employ constantly flashing or flickering stimuli at 

particular frequencies.  The constant flashing enters the 

brain into a “steady-state” of cortical activity and the effect 

is observed in the EEG as a waveform with a frequency 

matching the frequency of the flashing or flickering stimulus 

and its harmonics.  SSVEP has been successfully used in 

many BCI applications including BCI spellers [23][24]. 

Chen et al. [4] employ SSVEP for a BCI speller and report 

the highest information transfer rates (ITR) of any BCI to 

date (5.32 bits/ sec), achieved by using the joint frequency 

phase modulation (JFPM) method to enhance 

discriminability between stimuli of narrow frequency 

ranges.  SSVEP has also been successfully used for 

wheelchair control [5], prosthesis control [6] and BCI 

gaming [25][26].  Code-modulated VEP (cVEP) also use 

flashing imagery to evoke a response in the EEG and work 

by flashing stimuli with particular code-modulated 

sequences.  cVEP is a relatively new BCI paradigm and 

studies so far have concentrated around communication 

applications as in BCI spellers [27], computer input devices 

[28] and for control in a virtual environment [29].  Although 

the above-mentioned types of VEP produce robust and 

reliable communication rates between the user and 
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computer, without the need for long user training sessions, 

they share a common caveat i.e., due to the reliance on 

flashing stimuli, they can cause visual fatigue for the user – 

particularly after a period of continuous use. 

Motion-onset VEPs (mVEPs) use motion-related stimuli 

to evoke a response in the EEG [30][3].  An mVEP occurs 

in the EEG response after the sudden motion of a moving 

stimulus.  The perception of motion occurs in the primary 

visual cortex and extends to the medial temporal (MT) and 

medial superior temporal (MST) areas of the visual cortex 

[31][32].    

 

 
Figure. 1.  Typical layout of on-screen mVEP stimuli.  In the image, the 

number 4 stimuli is the current target (to which the user should attend 

visually) and is also the currently active stimuli (i.e., the red line is in motion 
and moving from right to left). 
 

To evoke a response for motion, the user gazes at their 

required stimuli which are delineated on a computer screen 

(Fig. 1).  Typically, stimuli comprise a black-coloured 

rectangle shape 1.24° in width and 0.76° in height with a 

normally vacant plain white centre.  A red-coloured line 

0.66° in height moves from the right hand side to the left 

hand side of the white centre in a quick horizontal motion 

(Fig. 2). 

 
Figure. 2.  Visual angles and direction of motion of the mVEP stimuli. 

 

 As a consequence of the motion-related rather than 

flashing stimuli, an mVEP-based BCI paradigm presents a 

more elegant and less visually fatiguing BCI paradigm than 

P300, SSVEP or cVEP.  mVEP responses are time and 

phase-locked to the onset of motion and consist of three 

main components, separable in time and positivity [33] (fig. 

3).  The P100 positive peak occurs at around 100ms post-

stimulus and its early phase (80-110ms) emanates from the 

lateral extrastriate cortex and the later phase (110-140ms) 

emanates from the ventral occipito-temporal cortex [34].  

The P100 is immediately followed by the motion-specific 

negative N200 peak at around 160-200ms.   N200 is the most 

prominent component and is generated from the extrastriate 

temporo-occipital and associate parietal areas [35].  Finally, 

the P200, whose amplitude can be increased with more 

complex moving stimuli, has a latency of between 240-

500ms and emanates from parietal up to central areas. 

 

 
Figure. 3.  The three main features of the mVEP response. 

 

mVEPs were first investigated in BCI in [30] where an 

mVEP-based BCI control scheme was implemented to 

investigate the users’ responses to moving stimuli.  In [36] 

mVEP stimuli were employed as a control modality for three 

online BCI video games of different genres and in [37], a 

follow-up study tested the same three BCI games using a 

heads-up display (HUD) in which the stimuli were presented 

on a white background as opposed to overlaying mVEP 

stimuli onto the games graphics.  The results indicated a 

HUD with white background would likely enable better 

mVEP detection accuracy in such games.  In [38] mVEP 

stimuli were employed as a control modality to manoeuvre 

a humanoid robot in real-time.      

In order to progress the field of BCI controlled video 

gaming or neuro-gaming, it is important to consider the 

consequences of VEP stimuli employed within visually-rich 

video games with fast-paced, high-fidelity and brightly 

coloured graphics.  In a previous study [39] we investigated 

the mVEP paradigm within a BCI video game environment 

using five different levels of graphical complexity where 

five mVEP evoking stimuli were presented.  We found 

evidence to suggest that as the graphical complexity 

increased, the accuracy of detecting mVEPs decreased.  In a 

second study, to investigate the effects on mVEP accuracy 

using popular, commercially available video games from 

various genres and graphical complexities [40], we 

employed five commercially available video games with 

five mVEP stimuli presented simultaneously with the video 

games.  Our findings indicated that graphical complexity 

alone does not significantly degrade mVEP accuracies, 

whilst some of the more primitive properties of video games, 

such as the use of primary colours and pace, do have an 

effect on the mVEP detection accuracy.  Also, results from 

the study showed that the car racing game Gran Turismo 3 

(2001) [41], previously available on the Sony Playstation 2 

games console [42], consistently produced the greatest 

accuracies across subjects.  These findings verified that the 

uniformly paced gameplay and realistic colour palette used 

within the Gran Turismo 3 game level provided a gaming 

environment that minimises the impact on mVEP detection 

and similar games would likely provide maximum mVEP 

control accuracy, whereas fast-paced games such as Crash 

Bandicoot [43] had more of an impact on the reliability of 

detecting mVEPs from EEG.  In a further study [44], we 

used an Oculus Rift [45] virtual-reality (VR) headset and 

investigated the effects on mVEP accuracy while users were 

subjected to two different levels of graphical complexity.  

Our findings showed the feasibility of employing a VR 

device as a display modality for an mVEP game 



environment with no discernible difference between mVEP 

detection accuracy in VR and standard desktop computer 

monitor display.       

Following on from the findings of [40], in the current 

study, we employ the mVEP paradigm as a control modality 

for an EEG-based BCI-controlled video game.  We employ 

a real-time controlled, custom-made 3D car-racing video-

game and investigate the performance of fifteen teenagers 

playing the game in a single session. 

 

2. Methodology 

2.1. Data Acquisition Setup 

Fifteen BCI naïve teenage participants, four female 

and 11 male, of high-school age (age range 13-16 years) took 

part in the study and were recruited from a group 

participating in a summer school at Ulster University.  

Ethical approval was granted by the Ulster University 

Research Ethics Committee (UREC) and written parental 

informed consent was granted by parents of the children and 

written assent by the children.  All participants had normal 

or corrected to normal hearing and vision and had no other 

health related conditions that breached inclusion criteria for 

the study.  Each participant partook in a single session 

lasting approximately one hour.  Data was recorded within 

an electrostatic and electromagnetic interference shielded 

and acoustically insulated room.  Participants were seated in 

a fixed position on a comfortable chair in front of a 56cm 

LCD computer monitor which presented the visual stimuli 

and game (see section 2.2 and 2.3 for details).   

EEG data was recorded using g.tec research-grade 

hardware [46].  Twelve g.LADYbird active electrodes were 

located over visual processing areas at occipital positions 

Cz, TP7, CPz, TP8, P7, P3, Pz, P4, P8, O1, Oz and O2 

according to the international 10-20 system of electrode 

placement (Fig. 4).  EEG electrodes were connected to a 

g.GAMMAcap electrode positioning cap and signals were 

amplified using a g.BSamp signal amplifier, through a 

g.GAMMAbox for active sensing.  The raw EEG signals 

were digitised using a National Instruments NI6390 

analogue-to-digital data acquisition card [47]. 

        

 
Figure. 4.  The 12-channel EEG electrode montage utilised.  Twelve 

electrodes were placed around the occipital areas according to the 

international 10/20 system.  FPz was used as reference electrode while the 

left mastoid acted as ground.     

 

To record, process and store the raw EEG signals, 

Matlab [48] was used.  Unity 3D [49] was used to provide 

the visual stimulus and game environment.  As Unity 

presented each visual stimulus, timing information was sent 

to a Matlab session-based interface via user datagram 

protocol (UDP) messages.  Upon data processing of the 

users’ chosen stimulus, Matlab returns a data value between 

1 and 5 via a UDP message corresponding to the chosen 

stimuli back to the game running in Unity which 

subsequently gets processed into an in-game command. 

      

2.2. BCI Calibration  

At the beginning of each session, data was acquired 

to calibrate the BCI.  Each participant was instructed to 

focus on stimuli overlaid onto the game environment 

directed by clear cues.  These were presented within the 

same game environment in which they would play the online 

game, with the elimination of the car model which feeds 

back the detected selection to the participant during 

gameplay and some online specific game elements i.e., the 

users response was not translated into game commands 

during the calibration lap.  A lap is defined as one complete 

circuit of the racing track from start to finish (Fig. 7).  During 

the calibration lap, each of the five mVEP stimuli were 

activated 60 times yielding data from 300 trials.  One single 

trial lasted for 1000ms and consisted of one complete 

activation of each of the five stimuli in random order.  

During a trial, each stimuli was active for 140ms, followed 

by a pause between activation of the next randomly selected 

stimuli of 60ms.  Therefore the stimulus-onset asynchrony 

(SOA) between stimuli activations is 200ms.  The inter-trial 

interval (ITI) between two consecutive trials was 600ms 

(Fig. 5).  During the calibration lap, a visual indicator, a red-

coloured on-screen arrow placed immediately above the 

stimuli, indicated which stimulus the participant was 

required to attend to i.e., the target stimulus (Fig. 6). 

 

 
Figure. 5.  Trial timing details of the calibration lap.  A total of 300 trials 
were recorded.  Each trial lasted 1000ms with an ITI of 600ms.  During a 

trial, each stimuli was active for 140ms with a pause of 60ms before onset 

of the next randomly selected stimulus, yielding a SOA of 200ms.  

 

 
Figure. 6.  Screenshot of the calibration lap.  Arrows placed directly above 
stimuli directed the user to the target stimulus.  In the example shown, 

stimuli four (currently indicated by a red arrow) is the current target 



stimulus and stimulus three is currently active (red moving vertical bar at 

a point during motion from right to left). 
 

 
Figure. 7.  An aerial view of the racing track.  A total of 20 checkpoints 

were presented.  Each participant selected a lane (stimuli were active) prior 
to traversing each checkpoint.  During each session, three separate laps of 

the racing course were completed.   

 

2.3. Online Game Paradigm 

Using the data collected from the calibration run, 

an online classifier was trained (see section 3.2 for details), 

enabling the participant to play the game online with real-

time feedback.  During the online feedback, five repetitions 

of the stimuli occurred and the mVEP response averaged, 

before classification occurred.  

To provide an engaging game environment and 

online feedback, a custom-made 3D car racing game was 

developed using the Unity 3D games development engine.  

Each participant took part in three laps of the online racing 

game (except participant 12 who did not complete a third lap 

due to a health issue).  Each lap contained a total of twenty 

checkpoints (Fig. 7), at which the user had to control the 

direction of the car.  The game environment included 

realistic graphics as found in commercially available car 

racing games including realistic textures, 3D car model, race 

course, racing track, speedometer (depicting the users’ 

current score and target information), sky, mountains and 

foliage.  The forward motion of the car was automatically 

controlled.  The five mVEP stimuli were delineated at the 

top of the screen.  Arrows moving in cascading motion were 

placed on the road surface ahead of the car in the peripheral 

vison of the user.  These arrows directed the user to the target 

stimuli which they should attend to control direction/ lane 

position of the car at the next checkpoint (Fig. 8).  Of the 

five arrows, four were red-coloured and one was green-

coloured.  All four red-coloured arrows were non-target and 

the user ignored.  The green-coloured arrow indicated the 

target stimulus on which the user should focus.  The position 

of the arrow corresponded to the on-screen position of the 

stimuli.   

 

              
Figure. 8.  Screenshot of the online level.  Green-coloured arrows moving 

in cascading fashion directed the user to which stimuli to attend.  In the 
image, stimuli 2 is the current target and is also currently active. 

 

The task of the user was to select the correct racing 

line out of five available at the upcoming checkpoint.  If the 

user correctly selected the target lane by focusing on the 

motion-related stimulus associated with the target lane, the 

car moved to the correct lane and a speed boost was gained 

whilst the car traversed the green arrow at the next 

checkpoint.  If one of the four non-target lanes is selected, 

the car traverses one of the four traffic cones at the next 

checkpoint at a slower pace (Fig. 9).  The time taken for the 

car to traverse the checkpoint after the users’ choice is 

determined was based on the correct (1 second) or incorrect 

(5 seconds) lane choice.  As each lap contained twenty 

checkpoints, the more correct lanes chosen by the user, the 

quicker they were able to complete the lap.  As a further 

measure of success and feedback to the participant there was 

a scoring system.  Points were awarded based on the locality 

of the users’ chosen lane to the target lane. 

 

 
Figure. 9.  Screenshot of an online lap while traversing checkpoint 9.  In the 

image, the user selected the incorrect lane (lane 2 instead of lane 3) so 
traverses the second traffic cone taking 5 seconds of time. 

 

 

Figure. 10.  The games decision-making process and lap timing details. 

 



If the user successfully selects the correct lane, a 

score of 500 points is added to the score as they traversed 

the checkpoint.  If the user selected either of the two 

incorrect lanes that were closest to the correct lane a medium 

score of 300 was added to their points.  If the user selected 

one of the two lanes furthest from the correct lane, a lower 

score of 100 points was awarded.  The points system 

therefore penalised for incorrect lane choices but had no 

negative feedback and provided incentive to do well in 

future checkpoints.  The maximum score available was 

10000 points and could be achieved when the participant 

selected each of the correct lanes at all twenty checkpoints 

(i.e., 500 points × 20 checkpoints = 10000 points).  The 

players’ score therefore is indirectly related to accuracy 

since the player could gain three different scores i.e., 500 for 

correct lane choice, 300 for two closest lanes and 100 for the 

two furthest lanes to the target lane.  Fig. 10 depicts the game 

process. 

 

3. Data Analysis 

3.1. Data Pre-processing and Feature Extraction 

 EEG was epoched with each motion onset stimulus, 

beginning 200ms prior to the motion onset and lasting for 

1200ms.  All single trials were baseline corrected with 

respect to the mean voltage over the 200ms preceding 

motion onset.  EEG data was recorded using a sampling rate 

of 250Hz, digitally filtered using a low-pass Butterworth 

filter (order 5, with cut-off at 10Hz) and subsequently 

resampled at 20Hz.  Features were extracted between the 

100ms and 500ms epoch post-stimulus, which normally 

contains the most reactive mVEP components e.g., P100, 

N200 and P300.  This yields nine features for each channel.  

Data were averaged over five trials yielding twelve feature 

vectors per target stimulus per lap of the game played.  

mVEP is time and phase-locked to the motion-onset 

stimulus, therefore, mVEP induced from the motion stimuli 

could be obtained through the above simple averaging 

procedure [30].      

 

3.2. Offline mVEP Classification – Training Data 

 A classifier was trained using 100% (all 300 trials) 

of testing data gained from the calibration session.   

Distinguishing between target vs. non-target stimuli from 

each EEG channel (2-class accuracy) was the first objective.  

A linear discriminant analysis (LDA) classifier was trained 

to achieve this.  A leave-p-out cross validation (LpOCV) 

(leave 2 out in our case – for each of the target and non-target 

classes) was applied to the calibration data.  For each of the 

twelve EEG channels, LpOCV was applied and based on 

their mean LpOCV accuracy, each channel was ranked.  The 

top three ranked channels were concatenated to form a new 

feature vector (27 features per vector) and a further LpO 

cross-validation was performed.  Results were reported as 

“train – LpOCV target vs. non-target”. 

 As there are four non-target stimuli for each target 

stimuli, there are number of options for selecting the non-

target stimuli trials to form the second class for training a 

classifier: 1) use all the data but apply a suitable classifier 

and performance metric for unbalanced datasets i.e., 

different class sizes 2) downsample the non-target stimuli 

data samples by randomly selecting from non-target data an 

equivalent number of trials and 3) upsample the target 

stimulus trials by copying data to balance the target class 

dataset size with the non-target dataset size. In previous 

studies the random sampling approach was applied (option 

2) however this often resulted in variation in the results due 

to the random selection and variation in the non-target 

stimuli responses. To overcome this, averaging over 

multiple runs of the analysis with different random sampling 

could be applied, however, a better, less computationally 

intensive and more stable alternative is to use option 3 i.e., 

upsampling (or over sampling) e the non-target class data by 

repetition of target samples. This balances the classes, 

ensures sufficient data for classifier training, negates 

randomness and maximises training accuracy and 

generalisation performance. This is only done on the training 

data.   

 To classify individual symbols in a single trial test 

i.e., 5-class discrimination, each feature vector associated 

with each stimulus in a trial is classified as either target or 

non-target.  The LDA classifier produced a distance value, 

D, reflecting the distance from the hyperplane separating 

target and non-target features (D>0 for target and D<0 for 

non-target).  The vector that produces the maximum distance 

value is selected as the classified stimulus (in some cases 

non-target data produces a D>0, however the value of D is 

normally maximal among the target stimulus i.e., the 

stimulus on which the user is focused).  Single trial results 

for five class discrimination are validated on the training 

data and reported as “train -validation 5-class”. 

 

3.3. Online Game Control 

 Using a classifier trained from the training data, 

data from the three best-ranked channels and a Matlab 

session-based interface for real-time processing, participants 

were able to play the racing game online with real-time 

control and feedback.  During the online control, participants 

wait until the mVEP stimuli are presented.  Each of the 

stimuli are presented five times (in random sequence) as the 

car approaches each checkpoint, allowing for a lane decision 

to be made for each of the twenty checkpoints i.e., the BCI 

makes a decision based on the mVEPs averaged over five 

repetitions. 

 

3.4. Information Transfer Rate 

 To measure performance in the online laps, as well 

as reporting classification accuracy, we also calculate the 

ITR as defined in [50][51].  There are twenty checkpoints 

per lap and each checkpoint requires five seconds for 

participants to make a lane choice, yielding a time of 100 

seconds of communication time per lap (i.e., 20 checkpoints 

× 5 seconds decision time = 100 seconds).  Taking into 

account the 5s required for each lane choice (averaging 

stimuli over 5 repetitions), yields 12 commands per minute.  

Therefore, ITR is calculated as follows:- 

 

𝑏𝑝𝑚 = (𝑙𝑜𝑔2(𝑁) + 𝑃𝑙𝑜𝑔2(𝑃) + (1 − 𝑃)𝑙𝑜𝑔2(
1−𝑃

𝑁−1
))  × 12  

 

where N is the number of classes and P is the probability of 

correct classification.  ITR is reported in bits per minute 

(bpm). 

 

4. Results 

4.1. Offline Training Session 

 Table 1 shows the offline results achieved during 

the calibration lap for all participants.  Participant S9 



achieved the greatest accuracies for both analysis tests 

(94.79% and 98.33%), respectively.  Participant S15 

performed worst for the train - LpOCV target vs. non target 

analysis but still achieved an accuracy of 72.92% while 

participant S12 performed worst overall for the train - 

validation 5-class analysis achieving an accuracy of 68.33%.  

Overall, participants performed well during the calibration 

lap with the mean accuracy across all participants for both 

calibration data tests at 85.17% and 80.89%, respectively.         
 

TABLE 1: OFFLINE ACCURACY (%) FOR ALL FIFTEEN PARTICIPANTS 

OBTAINED DURING THE CALIBRATION LAP. 

 
 

4.2. Online Game Control 

 Online results are reported and represent the ability 

of the participant to select the correct stimuli based on the 

directed cues (cascading arrows on the road surface).  

Accuracies of up to a maximum of 100% are reported.  For 

each of the twenty checkpoints available in the racing 

circuit, if the user selects the correct lane, 5% of the total 

achievable accuracy is gained (5% × 20 checkpoints = 100% 

accuracy).  Three laps of the racing circuit were completed 

by each participant (except S12) and an accuracy is obtained 

for each completed circuit.   

Figures 11 and 12 depict the accuracy and ITR 

results, respectively.  Participants S2, S14 and S8 all 

achieved 95% accuracy and ITR of 23bpm, the highest 

accuracies and ITR for laps 1, 2 and 3, respectively.  

Participant S15 performed worst across all subjects for all 

three laps: 45% (3bpm), 35% (1bpm) and 35% (1bpm), for 

laps 1, 2 and 3, respectively.  The mean accuracies and ITR 

across all participants were 72% (12bpm), 67% (10bpm), 

and 65% (10bpm) for laps 1, 2 and 3, respectively.  This 

result shows a clear linear decline in accuracy and ITR as the 

session progresses from lap to lap (Fig. 13).  To verify 

significance of the difference in performance between laps 

across all participants, a Wilcoxon signed-rank test was 

applied.  The differences between all lap performances are 

significant (p<0.05).       

 

 
Figure. 11.  The average accuracies (%) achieved across all 15 participants 

for all three laps. 

 

 
Figure. 12.  The average information transfer rate (bpm) achieved across all 
15 participants for all three laps. 

 

 
Figure. 13.  The average accuracies and player scores achieved during the 

three online laps (see section 2.3 for evaluation of scoring system). 

 

 As an additional measure of the performance of 

each participant and to include additional feedback within 

the online sessions, a player score was added and displayed 

to the player during gameplay (the maximum possible score 

is 10000 points).  These are reported in Fig. 13. 

 The highest scores across all participants for lap 1 

was achieved by participant S2 (9600), the highest score for 

lap 2 was jointly achieved by participants S8 and S14 (9600) 

and for lap 3, the highest score was achieved by participant 

S8 (9600).  The worst score achieved for lap 1 was obtained 

by participant S3 who achieved 6400 points and for laps 2 

and 3, the worst score was obtained by participant S15 

achieving 5600 and 6200 points, respectively.  Mean scores 

were calculated across all subjects and for laps 1, 2 and 3 

scores of 8280, 7973 and 7943 were obtained, respectively.  

As with the online accuracy metric, as the session 

progresses, the score declined (Fig. 13).             

 

4.3. 3 Highest-ranking Channels 

 The cross-validation test explained in section 3.2 

produced the three highest-ranking EEG electrode channels 

based on the results of LpOCV calculations.  We calculated 

the three most commonly used channels for each participant 

and these results are presented in Table 2.  Table 3 depicts a 



list of the channels used and the corresponding number of 

times each were used across all participants. 

 

 

 

 

 

 

 

 

 

 

 

 
TABLE 2: THE THREE HIGHEST-RANKING CHANNELS FOR EACH 

PARTICIPANT BASED ON THE LPOCV ANALYSIS. 

 
 

TABLE 3: THE TWELVE EEG CHANNELS USED AND THE NUMBER OF TIMES 

EACH WERE CHOSEN ACCORDING TO THE LPOCV ANALYSIS AND ACROSS 

ALL PARTICIPANTS. 

 
 

 In descending order, the channels Cz, P7 and O1 

represented the three most commonly used channels across 

all participants.  This is depicted in the topographic plot in 

fig. 14. 

 

 

Figure. 14.  Topographic illustration depicting the locations of the brain 

areas that provide the maximum mVEP discrimination accuracy.   
 

5. Discussion           

 The performance of teenage participants’ control 

over a real-time online 3D car racing game controlled using 

mVEPs was evaluated in this investigation.  For the first 

time, the study showed mVEP linked to a video-game 

involving car control.  Averaged results across all 

participants were encouraging and provided evidence for the 

first time that participants of the 13 to 16 years age group 

could reliably control the custom-made BCI car racing game 

with an average accuracy of 72% (12bpm) in the first lap, 

67% (10bpm) in the second lap and 65% (10bpm) in the third 

lap.  The results varied significantly across subjects, which 

is normal for first session BCI experiments with limited 

calibration trials, where there are number of confounding 

factors that can impact on performance, including 

excitability and anxiety in relation to taking part in 

experiments as well as cognitive load and challenge during 

familiarisation with the paradigm.  Nevertheless, accuracies 

as high as 95% (23bpm) were recorded for three of the 

participants.  The average accuracy across the seven top 

performing participants is 80% (14.4bpm) while the average 

across the eight worst performing participants is 57% 

(5.7bpm).  We have found that as the session progressed, 

BCI accuracies linearly decreased.  The degradation in 

accuracy as the session progressed may relate to subject 

fatigue, reduction in interest or waning concentration.  

Participants may have found monotony in the lack of 

variation after each consecutive lap played and the slow pace 

of the games, compared to normal games that may have had 

an impact on motivation.  Of course, setup issues could also 

be a cause of the decline in accuracy e.g., the EEG cap 

loosening over time or electrode gels drying or dispersing.  

In certain cases, participants performed better during later 

laps.  This may be as a result of improved understanding of 

the control and gameplay strategy and less distraction by the 

games environment as the participants habituated to the 

graphics and distraction in the game. 

 Our findings show that when using leftwards 

motion of the stimuli, the three most commonly used EEG 

channels (Cz, P7 and O1) are located on the left visual 

hemisphere.  This finding is consistent with previous studies 

where leftwards motion of the stimuli was also used 

[37][36][39][40][30].  These locations also correspond to the 

middle temporal (MT) and medial superior temporal (MST) 

areas of the brain which is specialised for the processing of 

motion.  The asymmetrical effect of the mVEP features also 

supports the right/ left visual field asymmetry effect on 

contralateral hemisphere findings described in [52]. 

As the field of neuro-gaming has gained traction, 

particularly over the past number of years [12][13], it is 

important that professional video game design for neuro-

gaming is at a high standard.  Most previous BCI video 

games have traditionally offered only basic interfaces, 

graphics or gameplay elements and, although this has helped 

to progress the field, future studies should recognise that 

basic game elements such as those seen in most previous 

video-games tested within BCI frameworks may not be 

appealing to the wider gaming population.  Therefore, to 

ensure that BCI-controlled video-games of the future offer 

engaging, attractive and appealing graphics and gameplay 

elements, work still needs to be done to study the effects of 



these properties within BCI games.  It is important to note, 

however, that basic graphics and gameplay do not 

necessarily make for an unappealing game, in fact, some of 

the most successful video-games of all time have employed 

basic graphics and gameplay namely Pong [53], Tetris [54] 

and Pacman [55].  To appeal to the wider gaming population, 

complex graphics and gameplay within BCI video-games is 

still an important and understudied topic.  If BCGI is to 

become a viable entertainment medium in the future, careful 

consideration must be given to the current state-of-the-art in 

video-gaming. 

For this study, fifteen teenage participants were 

selected while they attended a summer school.  This is a 

relatively understudied demographic group for BCI studies.  

For the future progress of BCI technology, it is important 

that BCI performance of users of all ages be investigated.  

 

6. Limitations           
A number of limitations were observed during the 

course of the current study.  In order to gather enough data 

to enable reliable classification, we employed five trials per 

checkpoint and averaged responses were fed into the 

classifier for classification.  Therefore, a five second time 

period was required to gather the input from the participants 

between checkpoints.  Aside from this, to allow suitable 

preparation time prior to the commencement of the mVEP 

stimuli, activation of the stimuli did not begin until three 

seconds after being presented on screen.  These time 

restrictions dictated the slow speed of the in-game car.  

Some participants did not like the slow-paced gameplay 

compared to that of commercially available video-games.  

This is being addressed in a later study where faster car 

speed may be possible using less repetitions of the stimuli to 

make a decision about which stimulus the user is attending.   

As the participants were recruited during a summer 

school, there were time limitations placed on the time for 

each participant’s session.  Participants were instructed on 

the tasks required for both the offline and online games 

before their session and some may not have fully understood 

the task.  This limitation may be addressed in later studies, 

by introducing longer pre-session instruction periods and 

conducting a multisession evaluation of performance for 

larger study cohort.  As the summer school offers a period 

of densely packed training to the students, better results may 

have been achieved during a more relaxed period during the 

year. 

We decided to select a maximum of three electrode 

channels over the most reactive brain areas to form feature 

vectors, as this normally provides reasonable accuracy. 

Additionally, the feature extraction approach focused on a 

standardised method and only the 100-500ms post stimulus 

period was used. Subject-specific selection of this window 

position and width along with selection of the maximum 

number of channels from which to create a feature and 

optimising parameters of the feature extraction would have 

increased performance however, as the session for each 

participant was time-limited, and we were collecting 

calibration data, calibrating algorithms for each participant 

and providing online feedback on three laps in single 

session, extensive subject-specific calibration was not 

feasible. 

This study used the Unity 3D games engine to 

present the stimuli and games and send markers/ triggers to 

a Matlab session-based interface, over a locally connected 

network using the UDP protocol. Each element of this 

framework has inherent limitations and variations, resulting 

in the simultaneous registration of the stimulus and EEG 

response being compromised e.g., time delays and 

discrepancies can cause jitter in the triggering of the 

stimulus onset on the mVEP in the EEG recording which can 

impact on detection accuracy. There is no doubt that a more 

exact real-time processing framework, for example, and 

Matlab Simulink and dedicated triggering software and 

hardware would have increased the accuracy of the system. 

However, an aim of the study was to validate a framework 

that used commercially orientated technologies and 

protocols. 

 

7. Conclusion 

 Our findings demonstrate the feasibility of a 

reliable, online, low visually fatiguing paradigm which can 

be employed in future BCI video-games with commercial-

grade graphics, gameplay elements and technologies.  We 

have found that the commercial-grade graphics used within 

the 3D racing game environment were not detrimental to 

mVEP discrimination and acceptable control was achieved 

in a single session by BCI naïve, teenage participants.  There 

is likely to be other factors associated with engaging 

teenagers in an experiment and maintaining interest, 

attention and motivation.  Games are likely to alleviate any 

limitation in these processes during BCI studies, however, 

the results presented here show that as the session 

progressed and across each successive lap of the racing 

circuit played, a decline in performance was observed.  This 

may have been caused by the use of the same game level/ 

track and lack of variation in speed or pace of the games 

throughout the session, as well as the differential in speed of 

the games compared to commercial games.  Improving this 

part of the experiment is the topic of ongoing research where 

three different levels of gameplay in the form of three cars – 

each using a gradually increasing speed are being 

investigated.  The speed of the car during these levels will 

dictate the time available to classify the intended target 

derived from the mVEP responses.  A lower number of trials 

used to make a decision will increase the speed of the 

decisions by the BCI but may also have an impact on 

accuracy.  We aim to compare the performance of children 

and adults and robustness of performance across multiple 

sessions. 
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