Riemannian geometry has been successfully used in many brain-computer
interface (BCI) classification problems and demonstrated superior performance.
In this paper, for the first time, it is applied to BCI regression problems, an
important category of BCI applications. More specifically, we propose a new
feature extraction approach for Electroencephalogram (EEG) based BCI regression
problems: a spatial filter is first used to increase the signal quality of the
EEG trials and also to reduce the dimensionality of the covariance matrices,
and then Riemannian tangent space features are extracted. We validate the
performance of the proposed approach in reaction time estimation from EEG
signals measured in a large-scale sustained-attention psychomotor vigilance
task, and show that compared with the traditional powerband features, the
tangent space features can reduce the root mean square estimation error by
4.30-8.30%, and increase the estimation correlation coefficient by 6.59-11.13%.Comment: arXiv admin note: text overlap with arXiv:1702.0291