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In this paper, we propose a kernel for nonlinear dimensionality reduction over the manifold of Sym-
metric Positive Definite (SPD) matrices in a Motor Imagery (MI)-based Brain Computer Interface (BCI)
application. The proposed kernel, which is based on Riemannian geometry, tries to preserve the topology
of data points in the feature space. Topology preservation is the main challenge in nonlinear dimen-

manifold by modifying the volume elements. We apply a conformal transform over data-dependent
isometric mapping to reduce the negative eigen fraction to learn a data dependent kernel over the
Riemannian manifolds. Multiple experiments were carried out using the proposed kernel for a dimen-
sionality reduction of SPD matrices that describe the EEG signals of dataset IIa from BCI competition IV.
The experiments show that this kernel adapts to the input data and leads to promising results in
comparison with the most popular manifold learning methods and the Common Spatial Pattern (CSP)
technique as a reference algorithm in BCI competitions. The proposed kernel is strong, particularly in the
cases where data points have a complex and nonlinear separable distribution.

& 2015 Elsevier B.V. All rights reserved.
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1. Introduction

In brain–computer Interface systems that use motor imagery,
brain activity is usually captured in the form of EEG signals and is
transferred to an external device [27]. Extracting information from
EEG signals is carried out by using different pattern recognition
methods involving feature extraction, dimensionality reduction,
and classification [32,49,51] to ultimately determine the user's
mental state [28,36].

Several techniques are available for extracting features from
EEG signals [25,4,7,8]. A common spatial pattern algorithm [38,7]
and a spatial covariance matrix of a signal [4,5,9] are two major
approaches to represent EEG signals in BCI applications. CSP can
be considered to be a dimensionality reduction technique that
learns spatial filters that maximize class separability. A spatial
covariance matrix of the EEG signal, which lies in the space of
symmetric positive definite matrices, can be formulated as a
connected Riemannian manifold [2]. In recent years, methods
using a spatial covariance matrix have attracted considerable
attention [10,4,5,9].
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In BCI application, samples are usually represented by large
feature vectors. Therefore, these problems suffer from the curse of
dimensionality [28]. Different research efforts have attempted to
overcome the problem of the curse of dimensionality in the BCI
literature. Zhang et al. [51] introduced Spatial-Temporal Dis-
criminant Analysis (STDA) as a multiway extension of Linear Dis-
criminant Analysis (LDA). They attempted to maximize the dis-
crimination between two classes by finding two projections from
the spatial and temporal information [52]. These projections
reduce the dimensionality of the features that feed into the dis-
criminant analysis. To overcome the problems of the curse of
dimensionality and the bias-variance tradeoff for Event-Related
Potential (ERP) classification in BCI applications, Zhang et al. [50]
introduced Aggregation of Sparse Linear Discriminant Analysis
(ASLDA). They introduced a sparse LDA to reduce the dimension-
ality. For this purpose, sparse discriminant vectors were learned by
solving a l1-regularized Least Squares Regression (LSR). Sparse CSP
that uses a linear combination of a subset of channels was intro-
duced by Goksu et al. [20]. They proposed a generalized eigenvalue
decomposition based on a greedy search to identify multiple
sparse eigenvectors to compute spatial projections. They showed
the effectiveness of the sparse CSP in comparison with the tradi-
tional CSP by examining the datasets in the BCI competition
(2005). Wu et al. [46] used a statistical framework to provide a
spatio-temporal representation of the EEG trials. They modeled
the variance of source signals as random variables and proposed a
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hierarchical Bayesian model for retrieving the inter-trial variability
of amplitude in a sparse way to provide a reduced representation
of data [46].

In the case of representing EEG signals by spatial covariance
matrices, although this representation reduces the length of the
descriptors in comparison with the raw EEG, this reduction is not
sufficient to overcome the curse of dimensionality. Dimensionality
reduction over the space of SPD matrices by considering the Rie-
mannian geometry of the SPD matrices has difficulties in com-
parison with treating the points as Euclidean objects [4]. For-
mulating covariance matrices as a connected Riemannian manifold
[4] leads to a nonlinear relationship between observations and
latent variables. Therefore, NLDR techniques are required to
reduce the dimensionality over this manifold. Several techniques
are adapted to the cases where the relationships between obser-
vations and latent variables are nonlinear [24]. Popular NLDR
techniques, such as locally linear embedding (LLE) [39], local
tangent space alignment (LTSA) [48], Laplacian Eigenmap (LE) [6],
and Isomap [41], have been applied to the manifolds. However,
these techniques all have shortcomings on the manifold of SPD
matrices. These shortcomings stem from ignoring the geometrical
structure of the manifold (i.e., living the manifold in the non-
Euclidean space and performing computations by assuming that
the data points are embedded in Euclidean space) [17].

In this paper, we attempt to overcome the curse of dimen-
sionality in the SPD matrix space in BCI applications by learning a
kernel that is adapted to the manifold by considering the Rie-
mannian geometry of the manifolds. The main contribution of this
paper is learning a kernel by minimizing a measure that shows the
non-Euclidean characteristics of the manifold by changing the
volume elements, while preserving the geometry, of the input
space. This minimization is especially useful in the cases where the
data points lie on a manifold with a nonzero intrinsic curvature.
The proposed kernel, when applied in multi-dimensional scaling
[21], provides an NLDR technique that is well adapted to the
manifold of SPD matrices.

The rest of the paper is organized as follows. In Section 2, we
describe mathematical preliminaries that are required for learning
over Riemannian manifolds and understanding the proposed
modifications in the feature space. Section 3 provides more details
on learning a data-dependent kernel by preserving geometry.
Section 4 reports our experiments on a BCI data set. Our findings
are discussed in Section 5, and concluding notes are mentioned in
Section 6.
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2. Preliminaries

In this section we describe basic concepts of Riemannian geo-
metry that are necessary to understand our proposed approach.
We review the metric applied in the SPD matrix space, its asso-
ciated log and exp map, and the kernel functions from a geome-
trical point of view [22,23].

2.1. Riemannian geometry

The Riemannian metric on the Riemannian manifolds is a
positive definite metric that takes two tangent vectors as inputs
and generates a real number, which is a generalization of the inner
product, and allows the similarity or dissimilarity of two points on
the manifold to be measured [13,16,45]. A common invariant
Riemannian metric on the tangent space of the SPD matrices
[15,33,34] is defined as

oy; z4X ¼ traceðX� 1
2yX�1zX� 1

2Þ ð1Þ
Please cite this article as: K. Sadatnejad, S. Shiry Ghidary, Kernel learn
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where X denotes a point on the manifold and y and z show tangent
vectors in the tangent space formed at point X.

The length of the curves along the manifold is computed by
integrating the metric tensor along the curve, which connects two
points on the manifold [13,26]. The geodesic, which is the local
distance-minimizing curve over the manifold of SPD matrices
associated with a metric from Eq. (1), is computed as

dG
2 X;Yð Þ ¼ o log X Yð Þ; log X Yð Þ4X ¼ trace log 2 X�1=2YX�1=2

� �� ��

ð2Þ
where X and Y are two points on the manifold, log X Yð Þ is the
Riemannian log map of point Y to the tangent space formed at
point X, and dG denotes the geodesic distance on the manifold of
the SPD matrices [42]. The Riemannian log map projects a point
on the manifold to a point in tangent space. Its inverse is Rie-
mannian expX yð Þ, which projects a tangent vector yATXM into a
point Y on the manifold.

The Riemannian exponential and logarithmic mappings asso-
ciated to the metric of Eq. (1) are defined as

expX yð Þ ¼ X1=2exp X� 1
2yX� 1

2

� �
X1=2 ð3Þ

log X Yð Þ ¼ X1=2 log X� 1
2YX� 1

2

� �
X1=2 ð4Þ

where exp and log are matrix exponential and logarithmic func-
tions that are calculated as:

exp Σ ¼
X1

k ¼ 0

Σk

k!
¼U exp Dð ÞUT ;Σ ¼UDUT

log Σ ¼
X1

k ¼ 1

ð�1Þk�1 Σ� Ið Þk
k

¼ U log Dð ÞUT ; Σ ¼UDUT ð5Þ

Eq. (5) assumes that Σ is decomposed into eigenvalues and
vectors. Note that exp operator on the matrices always exists,
while the log operator is defined only on symmetrical matrices
with positive eigenvalues [15].

2.2. Kernel geometry

Kernel function Kð:; :Þ corresponds to the inner product in a
high dimensional space H.

K x; x0ð Þ ¼φ xð Þ:φ x0ð Þ ð6Þ
where φ is a projection of the input space S into the higher
dimensional space H. The kernel function K :; :ð Þ induces a Rie-
mannian metric to S using mapping φ, which is computed as [1,45]

gij x; x
0ð Þ ¼ ∂

∂xi
∂
∂x0j

K x; x0ð Þj x ¼ x0 ð7Þ

where xi denotes ith basis of vector x. Eq. (7) is written in Einstein
summation notation. The volume element corresponding to the
induced metric in input space is computed as [45]

dV ¼
ffiffiffiffiffiffiffiffiffi
g xð Þ

p
dx1…dxn ð8Þ

where g xð Þ represents the determinant of the matrix whose ele-
ments are gij and dV denotes the volume element. The expressionffiffiffiffiffiffiffiffiffi
g xð Þ

p
is a factor that controls the expansion and contraction of

volume elements [44].

2.3. Kernel principal component analysis

Kernel Principal Component Analysis (KPCA) (Algorithm 1)
[40], which is widely used in dimensionality reduction and
denoising applications, is a nonlinear generalization of principal
component analysis (PCA) [19]. Classical PCA is designed to reduce
dimensionality in the cases where the manifold is linearly
ing over the manifold of symmetric positive definite matrices for
5), http://dx.doi.org/10.1016/j.neucom.2015.11.065i
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embedded in the observation space. KPCA, which is composed of
the kernel trick and PCA, provides the prerequisites of its later
component by linearizing the manifold using the former compo-
nent. KPCA projects data into a feature space implicitly using
feature mapping φðxiÞ and computes the pairwise scalar product
between the mapped data in feature space G by using the kernel
function. PCA is reformulated into an equivalent metric MDS ver-
sion that is applied to the data projected in feature space. Finding
an appropriate kernel, which considers the geometry of the input
space to linearize the manifold in the feature space, is not a trivial
problem. An inappropriate projection that does not provide these
conditions would lead to the inadequacy of KPCA in nonlinear
dimensionality reduction.

Algorithm 1. Kernel PCA algorithm [24]

1. Compute the matrix of scalar products, S, or the matrix of
squared Euclidean distances, D, depending on the chosen
kernel from observations Y.

2. Compute the matrix of kernel values G.
3. Centralize the projected points in the feature space.
4. Decompose the centralized into eigenvalues and eigenvec-

tors, G¼ UΛUT.
5. A P-dimensional representation of Y is obtained by com-

puting X̂ ¼ IP�NΛ
1=2UT .
F

F

E
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3. Data-dependent geometry preserving kernel

In this section, we describe our proposed data-dependent
kernel, which adapts to the geometry of data points lying on the
manifold of SPD matrices. We first describe an isometric kernel
over the manifold of SPD matrices and show the drawbacks of this
mapping and then rectify the isometric kernel by learning an
appropriate conformal transformation. Some important notations
that are used in this section are listed in Table 1.

3.1. Isometric kernel

The main goal of the NLDR methods is preserving the geometry
during the mapping of observations to a low dimensional space. To
relate the geometry of the observed data to the structure of the
latent variables, two available choices are isometric and conformal
embeddings [12]. Isometric embedding preserves the geometry by
preserving the geodesic distances. This embedding results in
preserving the geometrical structure of the manifold and the
distribution of class labels over the manifold, which is influenced
by the similarity of objects in the representation space (due to the
compactness hypothesis). As preserving geodesic distances has an
influence on the efficiency of learning methods, we construct our
proposed kernel based on an isometric kernel.
Table 1
Some important notations that are used in Section 3.

Notation Description Notation D

K Kernel matrix λi i
gij Riemannian metric cðxÞ C
dG Matrix of geodesic distances αi ; δ U
K0 An isometric kernel matrix which is computed based on dG CN�N A

s
φ A feature mapping from input space, S, to a high dimensional

space H
C 0

M�M A
s

Please cite this article as: K. Sadatnejad, S. Shiry Ghidary, Kernel learn
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To compute this kernel over the manifold of SPD matrices,
considering the Riemannian geometry of the manifold, we apply a
double centering algorithm [11] to the matrix of geodesic distances
between data points, which is computed as follows:

K0 ¼ �1
2
JdG

2J

J ¼ IN�N�
1
N
1N � 1N

T ð9Þ

where K0 is the inner product matrix, dG is the matrix of geodesic
distances, and Ndenotes the number of data points. The expression
IN�N is an N � N identity matrix, and 1N is a column vector where
the elements are 1.

To compute dG; a collection of tangent spaces is implicitly
formed at different points, and in each implicit tangent space, the
geodesic distances along the radial geodesics are computed using
Eq. (2). Eq. (2) calculates the dissimilarity between the basepoint
of a tangent space and other points that are mapped to that tan-
gent space, which is the same as the actual value along the
manifold. Therefore, we have implicitly formed a tangent space at
a point Xi on the manifold. The distances between the basepoint of
the tangent space, Xi, and the projection of any other points, Xj, in
that tangent space, which is denoted by dG i; jð Þ; is computed by Eq.
(2), which is equal to the geodesic distance between Xi and Xj.
Iterating this procedure for every point as the basepoint of an
implicit tangent space and using Eq. (2) results in an N � N
dimensional matrix of geodesic distances, dG. The resulting matrix
dG would represent the actual dissimilarity between all pairs of
samples. Because dG i; jð Þ ¼ dG j; ið Þ; Algorithm 2 would eliminate
redundant computations for computing dG:

Algorithm 2. Compute the matrix of the geodesic distances over
the manifold of SPD matrices.
esc

th e
onf
nkn
dia
amp
dia
amp

ing
5),
or i¼ 1 : N�1
(Implicitly form a tangent space, TXi Mð Þ, at point Xiof the
manifold M)
or j¼ iþ1 : N

(Implicitly project Xjto TX i Mð Þ)
Compute dG i; jð Þ using Eq. (2) between Xi and Xj

(Note that dG j; ið Þ ¼ dG i; jð Þ)
nd

dG i; ið Þ ¼ 0
nd
E

Applying an isometric kernel over the manifolds with nonzero
intrinsic curvatures (i.e., non-developable manifolds) leads to an
indefinite kernel [14,35]. The negative eigenvalues of the resulting
Gram matrix are the consequence of the nonlinear structure of the
manifold and application of the Riemannian metric. This indefinite
kernel leads to suboptimal solutions in classification problems and
may transfer data points into pseudo-Euclidean space in dimen-
sionality reduction applications [14,35]. Removing the negative
eigenvalues of the Gram matrix over the manifold of SPD matrices
120
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may lead to the overlapping of the data points and consequently
missing local information. In classification applications, the
increased class overlap that occurs by removing negative eigen-
values can cause a decline in performance.

3.2. Conformal mapping

As stated in Section 3.1, due to the importance of the negative
eigenvalues of the isometric kernel over the manifolds with non-
zero intrinsic curvatures, we might not be able to remove them to
preserve the geometry. However, we might be able to manipulate
the isometric kernel using a geometry-preserving transform that
decreases the negative eigenvalues.

Our main aim is learning a kernel that leads to changing the
metric so that it modifies the volume elements to decrease the
non-Euclidean characteristics while preserving the geometry. As
mentioned in Eq. (8), the volume element is proportional to a
factor that is computed based on the Riemannian metric induced
by feature mapping φ in the input space. Therefore, modifying the
kernel leads to changes in the induced metric and, consequently,
the volume element. Our choice for modifying the metric is
applying a conformal transformation that preserves the local
geometry by preserving the local angles. The transformation can
be defined as:

k xi; xj
� �¼ c xið Þk0 xi; xj

� �
c xj
� � ð10Þ

where k0 is called the basic kernel and c xið Þ denotes a conformal
transform of xi. In this study,c xið Þ is defined by the following for-
mula [47]:

c xð Þ ¼ α0þ
XN

i ¼ 1

αie�δ j j x�ai j j 2 ð11Þ

where αi and δ denote unknown parameters that should be tuned
using an optimization process;ais are called empirical cores, which
can be selected randomly or based on the geometry of the training
dataset; and N denotes the number of cores.

The desired kernel is achieved by learning the unknown para-
meters of Eq. (10) so that they would decrease the negative eigen
fraction (NEF) of the resulting kernel. The NEF is the result of the
nonlinear structure of the manifold and is used to quantify the
non-Euclidean characteristics of the manifold. The NEF is defined
as:

NEF¼
P

λi o0 λi
�� ��

P
i λi
�� �� ð12Þ

where λi is the ith eigenvalue of the kernel matrix, which is
computed as

K ¼ C � K0 � C;
C ¼ diag c x1ð Þ;…; c xNð Þ½ �ð ð13Þ
where K is the proposed kernel matrix that depends on αi and δ
parameters, K0 is an N � N isometric kernel matrix over the
training set, and C is an N � Ndiagonal matrix with diagonal ele-
ments c xið Þs. The expression c xið Þ denotes the conformal transfor-
mation of xi; which is computed using Eq. (11). The parameters
xiare training samples, and N denotes the number of training
samples.

Tuning the unknown parameters of the proposed kernel is
performed in an iterative process using a genetic algorithm, which
is a heuristic technique for optimization [30,37]. Our solution
space is an array of parameters of the model, including the weight
of different cores and variance parameters. The NEF of the Gram
matrix of proposed kernel over the training dataset is used as the
fitness function for evaluating the chromosomes as the solutions
of the optimization problem. The stopping criterion should be set
Please cite this article as: K. Sadatnejad, S. Shiry Ghidary, Kernel learn
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to lead to the reduction of the negative eigen fraction of our
proposed kernel over the training set. The stopping criterion is set
as a fraction of the negative eigen fraction of the isometric kernel,
which should be rectified by learning an appropriate conformal
transform in our proposed kernel. The resulting δ and αi para-
meters are used to compute similarity values between the test
samples and the training set as the following

Ktest ¼ C0
M�M � K0M�N � CT

N�N

C0 ¼ diag c x;1
� �

;…; c x;M
� �� 	�

C ¼ diag c x1ð Þ;…; c xNð Þ½ �ð ð14Þ
where Ktest is a M � N matrix that shows the similarity between
the test and training samples. K0M�N is a M � N matrix that
denotes the isometric kernel matrix between the test and the
training samples. C and C 0 are diagonal matrices where their
diagonal elements are conformal transforms of training and test
samples, respectively, and N and M are the number of training and
test samples. x; i and xi denotes the ith test and train samples,
respectively.

The method for learning the proposed data dependent kernel
and for using it as a kernel in a dimensionality reduction proce-
dure is described as Algorithm 3.

Algorithm 3. Dimensionality reduction over the manifold of SPD
matrices.

1. Divide the training dataset into empirical cores, ai which are
selected randomly and a smaller training dataset.

2. Compute the isometric kernel matrix, K0; over the training
set, Eq. (9).

3. Learn a conformal transform using GA that uses NEF
of Ktrain as a fitness function,

where Ktrain ¼ CN�N � K0N�N � CN�N
T ;

C¼ diag c x1ð Þ;…; c xNð Þ½ �ð .
4. Compute Ktest ; which is the similarity matrix between the
training and test samples.

Ktest ¼ C0
M�M � K0M�N � CT

N�N , C
0 ¼ diag c x;1ð Þ;…; c x;Mð Þ½ �ð

5. Run the kernel PCA using the resulting data dependent
kernel.

4. Evaluations

To assess the proposed kernel, we used it as a kernel in kernel
PCA for dimensionality reduction. The experiments were run over
data set IIa of the BCI competition IV [31]. The 1-Nearest Neighbor
classifier (1-NN) is used to evaluate the proposed method in
comparison with the most popular nonlinear dimensionality
reduction techniques, as shown in Table 2. We have also made the
comparison against CSP with the Linear Discriminant Analysis
classifier (CSPþLDA), which is a reference method in BCI
competitions.

4.1. Data set IIa, BCI competition IV

Data set IIa of BCI competition IV contains EEG signals that are
captured from 9 subjects while performing four different motor
imageries, including Left Hand (LH), Right Hand (RH), Foot (F), and
Tongue (T) MIs. Twenty-two electrodes lying over the scalp are
used for recording EEG signals. For each class and subject, 72 trials
are recorded as training and test sets in different sessions. In this
study, we assign each trial to one of the four specified classes. For
each trial, the features are extracted from 0.5 s to 2.5 s after the
cue that is used to perform MI by the subjects. The trials are
band-pass filtered in 8–35 Hz using a 5th order Butterworth filter
ing over the manifold of symmetric positive definite matrices for
5), http://dx.doi.org/10.1016/j.neucom.2015.11.065i

http://dx.doi.org/10.1016/j.neucom.2015.11.065
http://dx.doi.org/10.1016/j.neucom.2015.11.065
http://dx.doi.org/10.1016/j.neucom.2015.11.065


1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

Table 2
Accuracy of kernel PCA (RBF and CILK), Isomap, LLE, LE, and LTSA with 1-NN classifier and CSP with LDA classifier on all pairs of MIs over dataset IIa, BCI competition IV.

LH/RH S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean7STD

KPCA(CILK) 88.89 59.03 90.28 78.47 62.50 75.00 72.92 93.06 87.50 78.63712.34
KPCA(RBF) 54.17 49.31 54.17 45.14 46.53 54.86 50.69 47.22 43.06 49.0073.94
Isomap 50.00 50.00 56.25 52.08 50.00 52.08 47.92 65.97 72.92 55.2578.55
LTSA 49.31 53.47 50.00 49.31 48.61 45.83 46.53 48.61 60.42 50.2374.39
LE 47.22 42.36 55.56 50.69 47.22 48.61 44.44 52.08 33.33 46.8376.24
LLE 60.42 47.92 84.03 64.58 54.86 59.03 53.47 84.72 76.39 65.05713.53
CSPþLDA 88.89 51.39 96.53 70.14 54.86 71.53 81.25 93.75 93.75 78.01717.01
LH/F S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean7STD
KPCA(CILK) 97.92 86.81 96.53 81.94 70.14 75.69 88.89 85.42 97.22 86.7379.73
KPCA(RBF) 44.44 54.86 54.86 48.61 44.44 52.08 52.08 59.72 50.00 51.2375.01
Isomap 63.19 53.47 64.58 70.14 50.00 61.11 50.69 50.00 63.89 62.34711.15
LTSA 47.92 47.92 54.17 57.64 40.28 54.17 44.44 54.86 47.22 49.8575.68
LE 44.44 49.31 59.03 45.14 47.22 54.17 45.14 50.00 45.83 48.9274.90
LLE 84.03 53.47 77.78 64.58 47.22 59.03 61.81 70.83 86.11 67.21 13.49
CSPþLDA 98.61 68.75 94.44 78.47 63.19 59.03 97.92 87.50 95.14 82.56715.63
LH/T S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean7STD
KPCA(CILK) 96.53 71.53 93.75 85.42 77.78 75.00 87.50 88.89 97.92 86.0479.50
KPCA(RBF) 50.00 45.83 47.22 44.44 52.78 45.83 58.33 50.69 64.58 51.0876.64
Isomap 69.44 45.83 65.97 65.97 48.61 51.39 68.75 65.97 79.17 62.34711.15
LTSA 45.83 54.17 46.53 47.92 55.56 47.22 57.64 55.56 59.03 52.1675.22
LE 47.92 51.39 58.33 44.44 47.42 55.56 45.14 51.39 45.83 49.7174.83
LLE 88.89 53.47 80.56 72.22 52.78 65.97 70.14 77.78 90.97 72.53713.70
CSPþLDA 98.61 67.36 94.44 86.81 68.75 71.53 95.14 90.97 95.14 85.42712.62
RH/F S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean7STD
KPCA(CILK) 98.61 90.97 90.97 84.03 67.36 74.31 95.83 88.19 86.11 86.2679.98
KPCA(RBF) 50.69 50.69 51.39 49.31 45.14 47.22 49.31 51.39 47.22 49.1572.19
Isomap 60.42 53.47 61.11 65.97 47.92 64.58 51.39 59.72 44.44 56.5677.55
LTSA 46.53 49.31 53.47 58.33 46.53 51.39 52.08 47.92 49.31 50.5473.78
LE 52.78 45.14 52.08 45.83 42.36 54.86 51.39 54.84 47.92 49.6974.53
LLE 84.72 58.33 79.17 61.11 43.06 60.42 70.83 67.36 54.17 64.35712.77
CSPþLDA 97.22 81.25 93.06 88.89 68.75 63.19 99.31 86.81 84.72 84.80712.20
RH/T S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean7STD
KPCA(CILK) 98.61 90.97 97.22 85.42 72.92 75.69 95.83 87.50 89.58 88.1979.05
KPCA(RBF) 53.47 47.22 51.39 59.72 48.61 57.64 53.47 54.17 43.75 52.1675.04
Isomap 70.14 45.83 62.50 63.89 48.61 53.47 68.06 63.19 67.36 60.3478.84
LTSA 47.92 57.64 51.39 54.17 47.22 50.69 59.03 52.78 48.61 52.1674.17
LE 52.78 50.69 55.56 51.39 50.69 49.31 57.64 56.94 47.22 52.4773.56
LLE 93.06 47.92 81.94 63.19 50.00 59.72 70.83 68.06 70.83 67.28714.37
CSPþLDA 100.00 63.89 96.53 85.42 65.28 65.97 97.22 91.67 81.94 83.10714.67
F/T S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean7STD
KPCA(CILK) 81.94 89.58 79.86 72.22 73.61 69.44 80.56 86.11 89.58 80.3277.39
KPCA(RBF) 54.86 49.31 45.14 59.72 47.22 48.61 47.92 48.61 45.83 49.6974.67
Isomap 50.69 49.31 51.39 44.44 50.69 47.22 63.19 61.11 68.06 54.0178.07
LTSA 52.78 48.61 45.14 51.39 47.22 45.83 53.47 53.47 55.56 50.3973.77
LE 50.00 47.92 44.44 63.89 51.39 47.92 46.53 52.78 55.56 51.1675.84
LLE 58.33 53.47 63.19 53.47 51.39 55.56 67.36 72.92 72.92 60.9678.45
CSPþLDA 69.44 69.44 69.44 56.94 70.83 67.36 81.25 82.64 88.89 72.9179.66

Table 3
Mean accuracy and standard deviation of kernel PCA (CILK)þ1-NN, MDM, and
CSPþLDA on all pairs of MIs in BCI competition IV, dataset IIa

KPCA(CLIK) þ1-NN CSPþLDA MDM
Mean7STD Mean7STD Mean7STD

LH/RH 78.63712.34 78.01717.01 72.00730.00
LH/F 86.7379.73 82.56715.63 85.4178.88
LH/T 86.0479.50 85.42712.62 82.95712.21
RH/F 86.2679.98 84.80712.20 83.33712.11
RH/T 88.1979.05 83.10714.67 82.02711.50
F/T 80.3277.39 72.9179.65 72.9277.92
Mean 85.6878.68 81.15712.00 81.1578.64
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[28]. The covariance matrix of each trial is computed using Eq.
(15).

C ¼ 1
T�1

E � ET ð15Þ

where T shows the epoch duration; E is the N � T dimensional EEG
signal, while N shows the number of channels used for recording
EEGs; and C denotes the resulting N � N dimensional covariance
matrix. In this data set, 22 channels have been used to record the
EEG signals. We therefore have 22� 22 dimensional descriptors.

4.2. Experiments

We evaluated the proposed kernel in a dimensionality reduc-
tion problem. Because CSPþLDA is appropriate for two-class
classification problems, we ran our experiments over the pairs of
two MIs [9] in Tables 2 and 3. Therefore, the signals are divided
into LH/RH, LH/F, LH/T, RH/F, RH/T, and F/T subsets. In all of the
experiments, different methods were trained using training trials
and were evaluated on the test trials, except in Table 5, where we
applied 10-fold cross-validation over the entire dataset.
Please cite this article as: K. Sadatnejad, S. Shiry Ghidary, Kernel learn
dimensionality reduction in a BCI application, Neurocomputing (201
Popular dimensionality reduction techniques assume that data
points are embedded in Euclidean space. Therefore, applying these
methods over SPD matrices requires the conversion of the matri-
ces to points of Euclidean space. For this purpose, the matrices
need to be vectorized by stacking the columns of each matrix on
top of each other and converting them to a column vector. Note
that our proposed kernel receives the matrix of geodesic distance,
ing over the manifold of symmetric positive definite matrices for
5), http://dx.doi.org/10.1016/j.neucom.2015.11.065i

http://dx.doi.org/10.1016/j.neucom.2015.11.065
http://dx.doi.org/10.1016/j.neucom.2015.11.065
http://dx.doi.org/10.1016/j.neucom.2015.11.065


1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

Table 4
Performance of KPCA (CILK)þ1-NN and the first 3 winners of the BCI competition 2008 on dataset IIa (4-class problem) in terms of the kappa value.

S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean

First method 0.6800 0.4200 0.7500 0.4800 0.4000 0.2700 0.7700 0.7500 0.6100 0.5700
Second method 0.6900 0.3400 0.7100 0.4400 0.1600 0.2100 0.6600 0.73 00 0.6000 0.5200
Third method 0.3800 0.1800 0.4800 0.3300 0.0700 0.14 00 0.2900 0.49 00 0.4400 0.3100
KPCA (CILK)þ1-NN 0.7407 0.4259 0.7407 0.4815 0.2315 0.2963 0.7454 0.7454 0.7130 0.5689

Table 5
Performance of KPCA with proposed kernel (CILK), [3,18], Gaussian, and polynomial kernelsþLDA classifier in terms of the kappa value, according to a 10-fold cross-
validation on dataset IIa, BCI competition IV.

S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean

CILK 0.7079 0.4564 0.7612 0.4419 0.2600 0.3679 0.7887 0.7479 0.6127 0.5716
Harandi et al. [18] 0.5865 0.6059 0.6481 0.4237 0.1528 0.2718 0.7157 0.7420 0.5596 0.5229
Barachant et al. [3] 0.7917 0.4880 0.8151 0.3460 0.2285 0.2693 0.6539 0.7082 0.3304 0.5146
Gaussian 0.0139 0.0220 0.0078 0.0123 0.0148 0.0231 0.0407 0.0644 0.0147 0.0237
Polynomial 0.0550 0.0039 0.0203 0.0217 0.0217 0.0167 0.0167 0.0198 0.0158 0.0231
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dG, as the input and manipulates this matrix. Our kernel considers
the geometry of the manifold by using Eq. (2) for computing the
geodesic distances between SPD matrices (Algorithm 2). The vec-
torization that destroys the geometry of the manifold is not
required for the proposed method.

We named the proposed kernel as a Conformal-Isometric Lin-
earizing Kernel (CILK) and compared it with the RBF kernel (in a
kernel PCA setup) as well as other popular NLDR techniques,
including Isomap, LLE, LE, and LTSA. Drtoolbox [43] is used to
implement these techniques. In this experiment, the number of
neighbors needed to construct the graph in Isomap, LLE, and LE is
determined empirically. On average, we chose the 20 nearest
neighbors to construct the graphs. The dimensionality of the low
dimensional space was determined experimentally by evaluating
different dimensions and reporting the best results. In most cases,
the best results were achieved for less than 50 dimensions. A wide
range of values has been investigated to tune the variance para-
meter of the RBF kernel. K-fold cross-validation was applied over
the training set, and the setting that led to the maximum average
performance was used as our choice for evaluating the test set. In
the case of CSPþLDA [9], three pairs of spatial filters were selec-
ted, which is a common setting in the BCI problem [7]. Solving the
optimization problem that leads to our proposed method is per-
formed by using GA, which is implemented using the Matlab
genetic algorithm toolbox. Approximately 10% of the training data
are devoted as the cores. The variance parameter is constrained to
be a positive value, and the lower bound of the weight parameters
is set to zero. The stopping criterion is set to a fraction (0.01) of the
NEF of the empirical isometric kernel over the training set.

Table 2 shows the accuracy of classification over the LH/RH, LH/
F, LH/T, RH/F, RH/T, and F/T pairs of MIs for each subject and the
average for each pair of MIs. In this experiment, different dimen-
sionality reduction techniquesþ1-NN classifier and CSPþLDA
were trained over training trials and were evaluated during the
test trials.

Fig. 1 illustrates the distribution of data points corresponding to
the subjects in the LH/RH pair of MIs using isometric mapping into
two dimensions. We use this figure to emphasize the relationship
between the distribution of different classes and the efficiency of
the proposed method in comparison with CSPþLDA, which are
reported in Table 2. Comparing CSPþLDA and our proposed
method shows 3 distinct states: our algorithm performs better,
both methods behave similarly, and CSPþLDA is the superior
algorithm. Fig. 1 illustrates the subjects that correspond to these
three states in Fig. 1(a), (b), and (c), respectively.
Please cite this article as: K. Sadatnejad, S. Shiry Ghidary, Kernel learn
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A comparison of the kernel PCA with the CILK kernel and 1-NN
classifier, Minimum Distance to Mean (MDM) [9], and CSPþLDA
on the EEG signals of all of the pairs of MIs is reported in Table 3.

To compare the significance of CSPþLDA, KPCA (CILK)þ1-NN,
and MDM with respect to each other over the means of the
accuracies of the pairs of MIs for each subject, the nonparametric
Wilcoxon test is used. KPCA (CILK)þ1-NN predicts a significantly
better than CSPþLDA and MDM, with p¼ 0:028 and p¼ 0:011;
respectively. However, MDM with p40:05 shows an insignificant
performance with respect to the CSPþLDA method.

Table 4 shows a comparison between the proposed method and
the first three winners of the BCI competition 2008 on dataset IIa.
The methods are evaluated on the test set, and the results are
reported in terms of the kappa value. The proposed method, with
an average performance of 0.5689, achieved second place in this
experiment, with a very slight difference from the winner.

To verify the effectiveness of the proposed kernel, we compare
it with other kernels (Table 5). The Riemannian kernel [18] and the
kernel proposed by Barachant et al. [3] are kernels that consider
the geometry of the SPD manifolds. We use the geometric mean as
the reference point in Barachant’s kernel. Gaussian and poly-
nomial kernels, which are based on Euclidean geometry, are also
compared. Experiments were performed by applying k-fold cross-
validation to the total training and validation sets. The experi-
mental results show the superiority of the proposed kernel in
comparison with the competitors. The experimental results con-
firm the effectiveness of considering the geometry of the input
space and the shortcoming of the kernels that rely on Euclidean
geometry on the manifold of SPD matrices.
5. Discussion

In the experiments described in Section 4, the SPD matrices are
formulated as a Riemannian manifold that lives in the non-
Euclidean space. The experimental results on this manifold show
the superiority of the proposed approach in comparison with
popular manifold learning methods. The lower accuracy of the
popular manifold learning methods, such as Isomap, LLE, LE, and
LTSA, which are reported in Table 2, are a result of the incon-
sistency of the requirements of the above-mentioned methods for
the geometry of the Riemannian manifold of SPD matrices. The
decreased performance of those methods can be explained as
ing over the manifold of symmetric positive definite matrices for
5), http://dx.doi.org/10.1016/j.neucom.2015.11.065i
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S5 S6 

 S1 S8 

 S7 S9 

S2 S4 

Fig. 1. Two dimensional representations of the subjects for LH/RH using kernel PCAwith isometric kernel (a) subject nos. 2,4,5, and 6; (b) subject nos. 1 and 8, and (c) subject nos. 7 and 9.
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In the case of LE, which is a local method and uses a Laplacian
matrix to represent the manifold, the deficiency is the result of
approximating true geodesic distances by graph distances.
Please cite this article as: K. Sadatnejad, S. Shiry Ghidary, Kernel learn
dimensionality reduction in a BCI application, Neurocomputing (201
LLE, which attempts to preserve local linearity, computes a
weight matrix to represent each data point as a linear combination
of its neighbors. This aim is achieved by solving a least-squares
ing over the manifold of symmetric positive definite matrices for
5), http://dx.doi.org/10.1016/j.neucom.2015.11.065i
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problem in Euclidean space, while on the Riemannian manifold,
solving an interpolation problem on the manifold is required.

LTSA needs to provide a local parameterization of the data
points by relying on the assumption that data points are embed-
ded in Euclidean space. The local coordinates around each point
are computed by a Taylor series expansion in Euclidian space at
the tangent space around the base point, which is computed using
PCA. Because LTSA estimates the tangent space of the Riemannian
manifold at a point using the available data samples in the
neighborhood of the base point, the sampling conditions, such as
the sampling extent and density, affect the estimated tangent
space. Running PCA on some instances of the Riemannian mani-
fold leads to inaccurate local information, which leads to poor
classification results.

The comparison between RBF and CILK kernels, as shown in
Table 2, demonstrates the significance of considering the geometry
of the input data. As shown in Table 2, the proposed approach in
some cases shows considerable superiority over the CSPþLDA
method. Plotting samples in two dimensions using the isometric
kernel, which is illustrated in Fig. 1(a), shows that the superiority
of our proposed method (Table 2) corresponds to cases where
different classes have complex non-linearly separable distribu-
tions. For linearly separable samples (Fig. 1(b)), our proposed
method and CSPþLDA would achieve a similar performance
(Table 2). For the cases where the training data do not provide a
good covering over the feature space (Fig. 1(c)), CSPþLDA shows
superiority, which is the result of using a discriminative classifier
(Table 2).

As shown in Table 3, for all pairs of MIs, our proposed method
results in higher accuracy with a smaller standard deviation in
comparison with the CSPþLDA. The observed superiorities, espe-
cially in complex non-linearly separable cases, are the result of the
strength of the local classifiers in these cases. The strength of these
methods is strongly dependent on providing their prerequisites.
1-NN, which is used in our experiments, suffers from the curse of
dimensionality. Overcoming the curse of dimensionality is a pre-
requisite for the 1-NN classifier, which is provided by reducing the
dimensionality by decreasing the non-Euclidean characteristics
while preserving the topology of the data points. The lower
standard deviation that is achieved for the kernel PCA (CLIK)þ1-
NN is the result of the strength of the proposed approach in
complex non-linearly separable cases.
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6. Conclusions

In this paper, we propose a kernel for reducing dimensionality
over manifolds with a known geometry (e.g., the manifold of SPD
matrices). Preserving the geometrical structure of the manifold
based on Riemannian geometry provides a kernel that is adapted
to the manifold. The novelty of our algorithm is the modification of
the volume elements to decrease the non-Euclidean characteristics
of the manifold, which is represented by the negative eigen frac-
tion of the resulting Gramian matrix in the feature space.
Embedding to a lower dimensional space with this topology pre-
serving mapping and using 1-NN for its classification leads to
superior accuracy over the methods that are based on popular
NLDR techniques and CSP þLDA. These superiorities are found,
especially in the cases where samples have complex and nonlinear
separable distribution. Considering the geometry of the input
space and applying a classifier that relies on local information
provides these superiorities in complex nonlinear separable cases,
which leads to a lower standard deviation.
Please cite this article as: K. Sadatnejad, S. Shiry Ghidary, Kernel learn
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