32,999 research outputs found

    Resilient Critical Infrastructure Management using Service Oriented Architecture

    No full text
    Abstract—The SERSCIS project aims to support the use of interconnected systems of services in Critical Infrastructure (CI) applications. The problem of system interconnectedness is aptly demonstrated by ‘Airport Collaborative Decision Making’ (ACDM). Failure or underperformance of any of the interlinked ICT systems may compromise the ability of airports to plan their use of resources to sustain high levels of air traffic, or to provide accurate aircraft movement forecasts to the wider European air traffic management systems. The proposed solution is to introduce further SERSCIS ICT components to manage dependability and interdependency. These use semantic models of the critical infrastructure, including its ICT services, to identify faults and potential risks and to increase human awareness of them. Semantics allows information and services to be described in such a way that makes them understandable to computers. Thus when a failure (or a threat of failure) is detected, SERSCIS components can take action to manage the consequences, including changing the interdependency relationships between services. In some cases, the components will be able to take action autonomously — e.g. to manage ‘local’ issues such as the allocation of CPU time to maintain service performance, or the selection of services where there are redundant sources available. In other cases the components will alert human operators so they can take action instead. The goal of this paper is to describe a Service Oriented Architecture (SOA) that can be used to address the management of ICT components and interdependencies in critical infrastructure systems. Index Terms—resilience; QoS; SOA; critical infrastructure, SLA

    Agent-based simulation framework for airport collaborative decision making

    Get PDF
    Airport Collaborative Decision Making is based on information sharing. A better use of resources can be attained when the different stakeholders at airport operations share their more accurate and updated information. One of the main difficulties when dealing with this information sharing concept is the number of stakeholders involved and their different interest and behaviour: aircraft operators, ground handling companies, airport authority, air traffic control and the Central Flow Management Unit. It is paramount to quantify the benefit of an airport collaborative decision making strategy in order to involve all these different organisations. Simulations are required to analyse the overall system and its emerging behaviour. This paper presents the development and initial testing of an agent-based framework, which allows this behavioural analysis to be done. The simulator explicitly represents the different stakeholders involved in the A-CDM and the interactions between them from milestone 1 to 7. This framework allows independent gradual development of local behaviours and optimisation, and a gradual increase on complexity and fidelity on the simulations

    Agent-based simulation framework for airport collaborative decision making

    Get PDF
    Airport C ollaborative Decision Making (A - CDM) is based on information sharing. A better use of resources can be attained w hen the different stakeholders at airport operations share their more accurate and updated information . One of the main difficulties when dealing with this information sharing concept is the number of stakeholders involved and their different interest and behaviour : aircraft operators , gro und handling companies, airport authority, air traffic control and the Central Flow Management Unit . It is paramount to quantify the benefit of an airport collaborative decision making strategy in order to involve all these different organisations. Simulat ions are required to analyse the overall system and its emerging behaviour . This paper presents the development and initial t est ing of a n agent - based framework , which allows this behavioural analysis to be done . The simulator explicitly represents the diff erent stakeholders involved in the A - CDM and the interactions between them during the 16 milestones defined by EUROCONTROL o n its A - CDM implementation manual . T his framework allows independent gradual development of local behaviours and optimisation, and a gradual increase on complexity and fidelity on the simulationsPeer ReviewedPostprint (published version

    Contribution à l'organisation des opérations d'escale dans une plateforme aéroportuaire

    Get PDF
    La croissance du trafic aérien a rendu critique l opération de la gestion des plateformes aéroportuaires. Celle-ci fait appel à de nombreux acteurs (autorités aéroportuaires, compagnies aériennes, contrÎle du trafic aérien, prestataires de services, ). Le concept d Airport Collaborative Decision Making (A-CDM) développé depuis une dizaine d années est basé sur un partage d informations opérationnelles en temps réel entre les différents acteurs de la plate-forme, permettant de prendre des décisions en commun pour rechercher une utilisation optimale, en toutes conditions, des capacités de l aéroport. L objectif principal de cette thÚse est de contribuer à l organisation de la gestion des opérations d escale dans une plateforme aéroportuaire. Il s agit de proposer une structure d organisation de cette opération qui soit compatible avec l approche A-CDM. La structure proposée introduit un coordinateur des opérations d escale (GHC) qui joue le rÎle d interface de communication entre les partenaires de l A-CDM et les différents gestionnaires des opérations d escale (GHM). Cette structure hiérarchique permet d une part de partager des informations avec les partenaires de l A-CDM et d autre part d interagir avec les gestionnaires des opérations d escale (GHM). Les processus de prise de décision basés sur des heuristiques ont été développés à chaque niveau de l organisation proposée et sont évalués aussi bien dans le cas de conditions nominales que dans le cas de la présence de perturbations majeures.The increase of the world air traffic growth of the last decades has generated a permanent challenge for civil aviation authorities, airlines and airports to supply sufficient capacity to provide a safe transportation service with acceptable quality standards. New traffic management practices, such as A-CDM, based on multi-agent and collaborative decision making concepts have been introduced at airports. However, within the turnaround process of aircraft at airports, ground handling management of aircraft has not been developed specifically in the A-CDM approach, even if it has an important role in the fluidity of aircraft operations at airports. The main objective of this thesis dissertation is to contribute to the organisation of the ground handling management at airports. It consists to provide a structure organize the ground handling management compatible with the A -CDM concept. The proposed structure introduces a ground handling coordinator (GHC) which is considered as an interface for communication between the partners of the A -CDM and the different ground handling managers (GHM). This hierarchical structure allows sharing information with partners in the A -CDM on the one side and on the other side, interacting with ground handling managers (GHM). Decision making processes based on heuristics have been developed at each level of the proposed organization and have been also evaluated in the case of nominal conditions and in the case of the presence of major disruptions.TOULOUSE-INP (315552154) / SudocSudocFranceF

    Influences on aircraft target off-block time prediction accuracy

    Get PDF
    With Airport Collaborative Decision Making (A-CDM) as a generic concept of working together of all airport partners, the main aim of this research project was to increase the understanding of the Influences on the Target Off-Block Time (TOBT) Prediction Accuracy during A-CDM. Predicting the TOBT accurately is important, because all airport partners use it as a reference time for the departure of the flights after the aircraft turn-round. Understanding such influencing factors is therefore not only required for finding measures to counteract inaccurate TOBT predictions, but also for establishing a more efficient A-CDM turn-round process. The research method chosen comprises a number of steps. Firstly, within the framework of a Cognitive Work Analysis, the sub-processes as well as the information requirements during turn-round were analysed. Secondly, a survey approach aimed at finding and describing situations during turn-round that are critical for TOBT adherence was pursued. The problems identified here were then investigated in field observations at different airlines’ operation control rooms. Based on the findings from these previous steps, small-scale human-in-the-loop experiments were designed aimed at testing hypotheses about data/information availability that influence TOBT predictability. A turn-round monitoring tool was developed for the experiments. As a result of this project, the critical chain of turn-round events and the decisions necessary during all stages of the turn-round were identified. It was concluded that information required but not shared among participants can result in TOBT inaccuracy swings. In addition, TOBT predictability was shown to depend on the location of the TOBT turn-round controller who assigns the TOBT: More reliable TOBT predictions were observed when the turn-round controller was physically present at the aircraft. During the experiments, TOBT prediction could be improved by eight minutes, if available information was cooperatively shared ten minutes prior turn-round start between air crews and turn-round controller; TOBT prediction could be improved by 15 minutes, if additional information was provided by ramp agents five minutes after turnround start

    Airport under Control:Multi-agent scheduling for airport ground handling

    Get PDF

    Cargo Logistics Airlift Systems Study (CLASS). Volume 2: Case study approach and results

    Get PDF
    Models of transportation mode decision making were developed. The user's view of the present and future air cargo systems is discussed. Issues summarized include: (1) organization of the distribution function; (2) mode choice decision making; (3) air freight system; and (4) the future of air freight

    Application of ICT as a Key Element for Airport Safety and Security Operations

    Get PDF
    Airport risk management is a demanding task as several different areas have to be monitored including outer edges, car parks, terminals, and other passenger facilities. Information and communication technologies (ICT) are key elements for airport operation safety and security. One of the advantages of ICT based systems is they can react better and faster in real time and perform certain tasks at airports. This paper aims to present a safety overview of ICT and multi-agent systems (MAS) usage in the implementation of various airport operations. This paper aims to present a safety overview of ICT and MAS systems usage in the implementation of various airport operations. This paper summarizes a multi-agent concept that highlights their applications at airports such as passenger transfer, baggage management, aircraft handling, and field service through a detailed and extensive literature review on related topics. Much of the information on processes within the airport, processes in air traffic, and the processes of operators, i.e. airlines, is the result of monitoring work on a software development project for individual airports that serves to manage all processes in airports. The analysis led to the conclusion that safety and security in airports can be additionally improved by greater use of ICT as well as greater use of MAS, which ultimately contributes to the optimization of the airport
    • 

    corecore